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Abstract 

This thesis investigates the role of DNA methylation in age-related diseases by improving 

patient classification and exploring transcription factor interactions in the context of methylation. 

We developed an enhanced k-means clustering algorithm integrated with an expectation-

maximization (EM) framework to filter irrelevant CpG sites and reduce noise in patient 

classification. The algorithm’s performance is benchmarked against traditional k-means 

clustering to assess its efficacy in stratifying patients and gain meaningful insights. Our method 

improved patient stratification based on survival outcomes by applying to Kidney Renal 

Papillary Cell Carcinoma (KIRP) data. It revealed hypermethylated profiles resembling the CpG 

Island Methylator Phenotype (CIMP), which is associated with poor prognosis. Clinical features 

better represent the population, and tumour stages are more realistically linked to survival 

outcomes after grouping using the EM k-means algorithm. An analysis of the Fraction Genome 

Altered (FGA) and mutation rates suggests that post-cancer development survival rates appear 

more closely tied to large-scale genomic instabilities induced by aberrant methylation than point 

mutations. Gene Ontology (GO) and KEGG pathway analyses identified critical pathways in cell 

adhesion, signal transduction, and BMP signalling influencing tumour behaviour and metastasis. 

With slight modifications, the EM k-means algorithm was used to predict patient survival based 

on the methylation patterns. Although there was a large difference between the training and 

testing populations due to sampling variability, the results were promising, indicating a potential 

as a diagnostic method for treatment plans. 

Extending our approach to Alzheimer's disease (AD), we uncovered genes associated 

with differentially methylated regions (GADMR) in AD patients not identifiable through 

traditional Braak staging or simple k-means clustering. The algorithm classified patients into 
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pseudo-intermediate and pseudo-advanced groups, with significant overlaps in known AD-

associated genes and pathways. An age analysis demonstrated that machine learning-classified 

patients exhibited increased chronological and genetic ages (DNA methylation aberrations) 

correlated with AD progression risk. 

Furthermore, we explored the molecular interplay between transcription factors Ying-

Yang 1 (YY1) and TATA-Binding Factor 1 (TAF1). Employing TFregulomeR for motif 

distribution, genomic location, and Gene Ontology (GO) analysis on the YY1-TAF1 pair, we 

investigated methylation changes by comparing three scenarios: both TFs present together, and 

each TF alone by excluding the partner's peaks. From 152 conditions showing significant 

methylation variations, we focused on the YY1-TAF1 pair in GM12878, H1-hESC, and SK-N-

SH cell lines. We found that TAF1 will not co-bind to YY1 when the YY1 binding motif is 

methylated at the third residue (cytosine or guanine) or when methylation is impossible due to 

the third residue not supporting it. Although the motif for co-binding peaks is cell-specific, 

stronger cytosine conservation at the third residue is observed where YY1-TAF1 co-binding 

occurs. Additionally, TAF1 binding to YY1 depends on an unmethylated state at this site. Our 

GO analysis reveals that the co-binding of YY1 and TAF1 expands the set of GO terms 

compared to YY1 alone, indicating a synergistic effect in regulating cellular processes. The 

extent of YY1-TAF1 co-binding at promoter-TSS sites varies by cell type, being more extensive 

in cells capable of differentiation. Specifically, co-binding in GM12878 cells correlates with 

functions related to protein synthesis and RNA processing, while in H1-hESC and SK-N-SH 

cells, it associates with a broader range of enrichments. Conversely, TAF1 alone shows the 

opposite pattern, suggesting that cellular needs and differentiation potential influence binding 

patterns. 
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 In conclusion, this thesis presents a novel computational framework for 

improving patient classification based on DNA methylation patterns. It sheds light on the 

molecular mechanisms of transcription factors in the context of methylation specificity. The 

enhanced EM k-means algorithm demonstrates potential as a diagnostic tool for personalized 

treatment plans, while the insights into YY1 and TAF1 interactions contribute to understanding 

gene regulation in disease progression. These findings have significant implications for 

developing targeted therapies and highlight the importance of methylation dynamics in age-

related disease mechanisms. 
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General Summary 

 This thesis explores the effects of DNA methylation, focusing on two main areas. The 

first approach uses machine learning to study age-related diseases like Kidney Renal Papillary 

Cell Carcinoma (KIRP) and Alzheimer's Disease (AD). The second examines how transcription 

factors YY1 and TAF1 interact. 

Chapter 1 includes an introduction and literature review. Chapter 2 focuses on my 

research project that enhances KIRP prognosis prediction using advanced clustering techniques 

to analyze DNA methylation patterns, improving survival predictions. Chapter 3 adapts this 

approach to better classify AD patients by identifying age-related methylation changes. Chapter 

4 investigates the interaction between YY1 and TAF1, showing that their co-binding leads to 

lower methylation levels and increased gene activity, highlighting TAF1's role in enhancing YY1 

function. 
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CHAPTER 1: Introduction 

1.1 General Concepts  

1.1.1 Overview Epigenetic Mechanisms 

The incidence of age-related diseases, including cancer, cardiovascular diseases, and 

neurodegenerative disorders, increases with aging. Aberrant changes in the epigenome have been 

identified as key risk factors for these diseases. Epigenomics explores changes in gene 

expression and cellular phenotype that do not stem from alterations in the DNA sequence itself.  

According to the epigenetic progenitor model, age-related diseases and cellular dysfunctions 

originate from modifications in epigenetic marks rather than from genetic mutations [1], [2], [3]. 

As cells proliferate, progenitor cells harbouring accumulated epigenetic errors can lead to 

differentiated cells with dysfunctional gene expression patterns, thereby contributing to the onset 

of age-related diseases. Given that epigenetic changes are potentially reversible, unlike genetic 

mutations, they represent a promising focus for research. This thesis aims to elucidate 

methylation signatures that can be used as biomarkers in diagnostics and screenings of age-

related diseases. 

1.1.1.1 Overview of RNA-mediated modification & Histone modification 

One form of epigenetic modification is mediated by RNA, which includes miRNAs and 

other non-coding RNAs. These miRNAs function primarily in the post-transcriptional regulation 

of gene expression. They bind to complementary sequences on mRNA resulting in gene 

silencing either through mRNA degradation or repression of translation. Long Non-Coding 

https://www.zotero.org/google-docs/?Xv7jOP
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RNAs (lncRNAs) can regulate gene expression via chromatin modification, transcription, and 

post-transcriptional processing.  Other types of RNA may also induce epigenetic change through 

similar techniques. 

Another significant type of epigenetic change involves histone modification [1], [2]. 

These modifications occur on the histone proteins around which DNA is wrapped, forming a 

structure known as nucleosomes. Changes to the histone proteins can influence the accessibility 

of DNA to transcription factors and other machinery necessary for gene expression, thereby 

altering the transcription rate of many genes. Epigenetic histone alteration can occur via histone 

acetylation, methylation, phosphorylation, and ubiquitination.  

1.1.1.2. DNA Methylation 

DNA methylation is one of the most well-known epigenomic modifications; aberrant 

DNA methylation refers to changes in the pattern of DNA methylation that deviate from what is 

typically seen in normal cells. As we age, we continue to accumulate more and more aberrant 

DNA methylations in a process called epigenetic drift. There is a discrepancy between age-

related DNA methylation and chronological age, which may predict future disease and general 

mortality rates. Aberrant DNA methylation patterns have been implicated in various diseases, 

including cancer, cardiovascular disease, and neurological disorders like Alzheimer's [3], [4]. 

In the context of cancer, DNA methylation can be gained or lost at specific genomic 

locations, contributing to malignancy. For instance, DNA methylation gains at the promoter 

regions of tumour suppressor genes can lead to their inactivation [1]. In contrast, DNA 

methylation loss in some genes has been shown to contribute to tumour malignancy.  

Furthermore, metastasis, the process where a tumour invades and spreads to different tissues, is 

cancer's most lethal attribute, and initial findings indicate that metastasis initiation could be 

https://www.zotero.org/google-docs/?Vz6DNf
https://www.zotero.org/google-docs/?4zjfgr
https://www.zotero.org/google-docs/?KWdOXC
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epigenetically controlled. For example, metastasis initiation could be epigenetically controlled 

through the loss of DNA methylation in the SNAI1 gene or the inactivation of TRIM29, which 

results in reduced DNA methylation of TWIST. 

DNA methylation is an epigenetic modification that involves adding a methyl group to 

the carbon-5 cytosine residue in DNA, forming 5-methylcytosine (5mC). The family of DNA 

methyltransferases (DNMTs) catalyze this process by transferring a methyl group from S-adenyl 

methionine (SAM) to cytosine. There are four members of the DNMT family: DNMT1, 

DNMT2, DNMT3A, and DNMT3B [5], [6]. DNMT1 is critical in maintaining DNA methylation 

patterns during cell division [7]. It uses hemi-methylated CpG DNA strands as a template to re-

methylate cytosines in both strands. In contrast, DNMT3A and DNMT3B deposit de novo 

methylation patterns during development or in response to environmental stimuli and are known 

as de novo DNMTs [8]. DNMT2's function remains largely unknown, but some evidence 

suggests it plays a role in tRNA methylation during spermatogenesis [9]. DNA 

hydroxymethylation is a modification of DNA that involves adding a hydroxyl group to the 5-

methylcytosine base, forming 5-hydroxymethylcytosine (5hmC)  [10], [11] 5hmC is an 

intermediate of active demethylation catalyzed by a group of enzymes called ten-eleven 

translocation (TET) proteins.  

  

https://www.zotero.org/google-docs/?U2xy9p
https://www.zotero.org/google-docs/?wuozIT
https://www.zotero.org/google-docs/?jsZoyY
https://www.zotero.org/google-docs/?o8X1Nd
https://www.zotero.org/google-docs/?qy38O0
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.

 

Figure 1. Overview of DNA Methylation: (A) Chemical structures of cytosine and 5-methylcytosine, illustrating the 

addition of a methyl group to the cytosine base. (B) Typical DNA methylation landscape in mammals, highlighting 

CpG islands, transposable elements, and the density of CpG sites represented as a lollipop plot (source: ). (C) 

Breakdown of different DNA regions and their methylation-expression correlations, with Pearson (R) values shown 

for the promoter, transcription start site (TSS), and gene body regions (Permission for re-use through a Creative 

Commons CC-BY-NC license: T. Benoukraf, S. Wongphayak, L. H. A. Hadi, M. Wu, and R. Soong, “GBSA: a 

comprehensive software for analyzing whole genome bisulphite sequencing data,” NUCLEIC ACIDS Res., vol. 41, 

no. 4, Feb. 2013, doi: 10.1093/nar/gks1281). 
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Often, the addition of a methyl group onto cytosine occurs next to guanine, forming what 

is commonly referred to as CpG dinucleotide [4]. CpG dinucleotide clusters, known as CpG 

islands, are sections of DNA that are at least 200 bp long and contain a CG concentration greater 

than 50%. Approximately 60% of mammalian promoters have CpG islands, most of which are 

unmethylated. DNA methylation at CpG islands can lead to gene silencing by preventing 

transcription factors and other regulatory proteins from binding to the DNA, resulting in 

decreased gene expression [12], [13]. DNA methylation also impacts splicing, nucleosome 

positioning, and transcription factor recruitment to DNA. Furthermore, DNA methylation can 

occur in non-CpG contexts, such as CHG and CHH (where H represents A, T, or C). Non-CpG 

methylation has been observed in a few cell types, such as neurons during brain tissue 

development and neuron differentiation, embryonic stem cells, and induced pluripotent stem 

cells. Additionally, X chromosome inactivation appears to be partly regulated by non-CpG 

cytosine methylation [14]. 

Differential methylation can occur at CpG island (CGI) shores. These shores refer to 

genomic regions immediately adjacent to CpG islands extending up to 2 kilobases (kb) away 

from the CpG island itself [3], [5], [15]. This change in methylation influences gene expression 

and can contribute to the development of various diseases. Similar to the methylation of CpG 

islands, a typically active gene may become silenced when heavily methylated at its CpG shore, 

potentially disrupting regular cellular function and fostering disease development. The effects of 

shore methylation are not limited to these proximal regions. Indeed, methylation at CpG shores 

situated in intragenic regions, within the gene but outside the protein-coding sequence, or in gene 

deserts, which are expansive genomic regions with sparse or no genes, could harbour additional 

regulatory roles that are not yet fully understood. Emerging research underscores the role of 

https://www.zotero.org/google-docs/?RVSZZc
https://www.zotero.org/google-docs/?LFtyRR
https://www.zotero.org/google-docs/?wHABmT
https://www.zotero.org/google-docs/?zDKkxk
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differential methylation at CpG island shores in the onset of numerous diseases, including colon 

cancer and neurological disorders.  

Differential methylation of CpG sites in relation to their nearest gene also helps elucidate 

genomic expression [16]. CGIs are often found near the TSS of genes, especially housekeeping 

genes that are consistently expressed in most cells. When CpG islands near the TSS are 

unmethylated, the associated gene is likely to be transcribed and, therefore, active. Conversely, 

when the CpG islands near the TSS are methylated, the gene is usually silenced because the 

methylation physically impedes the transcription machinery from accessing the gene, preventing 

its transcription [1], [5], [17]. Differential methylation within the gene body refers to changes in 

DNA methylation patterns within gene coding and non-coding regions. These changes can affect 

gene expression, which can play a role in various diseases, including cancer and neurological 

disorders [3], [5]. The impact of differential methylation on gene expression is complex. It 

depends on several factors, such as the location of the methylated cytosine base within the gene, 

the type of methylation pattern (e.g., hypermethylation or hypomethylation), and other epigenetic 

modifications. Overall, differential methylation within the gene body is an important area of 

research in understanding the role of epigenetics in disease development and progression. 

Enhancers are regions of DNA that are responsible for controlling gene expression. They 

are situated at variable distances from promoters and are key to regulating gene expression in 

development and cell function [16]. The methylation status of enhancers is closely connected to 

their function. In general, these regions have relatively variable methylation. Differential 

methylation of enhancer regions can lead to changes in gene expression, which can impact 

cellular processes and contribute to the development of diseases such as cancer. Researchers use 

DNA methylation arrays to identify enhancer regions and analyze the data using statistical 

https://www.zotero.org/google-docs/?0myVlE
https://www.zotero.org/google-docs/?hNvOqN
https://www.zotero.org/google-docs/?nE2BC7
https://www.zotero.org/google-docs/?VT5bWo
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methods such as ANOVA or t-tests. The impact of differential methylation on enhancer regions 

is a topic of ongoing research. Still, this epigenetic modification plays a critical role in regulating 

gene expression and controlling cellular processes. 

1.1.2 Transcription Factors 

Variation of genetic expression is critical to adaptability to our cellular environment and 

differentiation in multicellular life. Transcription factors, proteins that bind to specific DNA 

domains known as motifs, play a key role in variability seen in genetic expression [18], [19]. 

They do so by modulating the rate at which genes are transcribed. They control cellular 

processes such as differentiation, development, and response to environmental cues. 

Transcription factors regulate gene expression by interacting with distinct DNA sequences 

termed regulatory elements, such as promoters, enhancers, and silencers, each having a 

specialized role in transcription.  

Enhancers are distinct genomic regions containing binding sites for transcription factors 

that can upregulate the transcription of a target gene from its transcription start site (TSS) [20]. 

Despite their potential distances from target genes, active enhancers in specific tissues are bound 

by activating transcription factors and brought into close proximity to their target promoters 

through DNA looping, often mediated by cohesin and other protein complexes (Figure 2).  This 

complex interaction enhances gene transcription and is marked by distinct biochemical features. 

For instance, active enhancers and promoters show nucleosome depletion and specific histone 

modifications such as histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 acetylation 

(H3K27ac). Conversely, inactive enhancers might be characterized by repressive markers like 

the H3K27me3 mark, associated with Polycomb proteins, or by binding repressive transcription 

factors. 

https://www.zotero.org/google-docs/?mrBVvt
https://www.zotero.org/google-docs/?dYXSJN
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Figure 2. Enhancers are distinct genomic regions (or the DNA sequences thereof) that contain binding site 

sequences for transcription factors (TFs) and that can upregulate (that is, enhance) the transcription of a target gene 

from its transcription start site (TSS). A) Along the linear genomic DNA sequence, enhancers can be located at any 

distance from their target genes, which makes their identification challenging. B&C) In a given tissue, active 

enhancers (Enhancer A in part b or Enhancer B in part c) are bound by activating TFs. They are brought into 

proximity of their target promoters by looping, which is thought to be mediated by cohesin and other protein 

complexes. Additionally, gene regulatory elements are distinguished by their nucleosome presence or absence and 

specific histone modifications: active promoters and enhancers exhibit nucleosome depletion and modifications like 

histone H3 lysine 4 monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac). Inactive enhancers might be 

silenced by different mechanisms, such as the Polycomb protein-associated repressive H3K27me3 mark (part b) or 

repressive TF binding (part c). Permission for re-use through a SPRINGER NATURE LICENSE copyright: D. 

Shlyueva, G. Stampfel, and A. Stark, “Transcriptional enhancers: from properties to genome-wide predictions,” Nat. 

Rev. Genet., vol. 15, no. 4, pp. 272–286, Apr. 2014, doi: 10.1038/nrg3682 ). 
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The additive action of different enhancers, each with cell-type- or tissue-specific 

activities, results in complex gene expression patterns. Transcription factors (TFs) act as 

molecular switches, which can either activate or repress the recruitment of RNA polymerase to 

specific genes, thereby controlling the gene transcription rate.  [18], [19]. This "on-off" 

mechanism is not binary; it fine-tunes the gene expression level in response to cellular needs. 

The interplay between transcription factors adds to their complexity. TFs usually function within 

complex networks, where multiple TFs work together temporarily and chronologically. Co-

binding of TFs can activate or silence domains, which would otherwise lead to the transcription 

factor acting differently. The combinatorial interactions of different transcription factors can lead 

to diverse transcriptional outcomes, allowing cells to respond with precision to various signals 

and cellular stresses. This complexity is further enhanced by post-translational modifications that 

can modulate transcription factors' activity, stability, or DNA-binding affinity [21]. 

Promoters, enhancers, and silencers are essential regulatory elements that transcription 

factors engage with [18]. Promoters are located immediately upstream of the gene and serve as 

the primary docking site for the transcriptional machinery. On the other hand, enhancers can be 

found thousands of base pairs away from the genes they influence. They boost the transcriptional 

activity of a gene by looping the DNA so that the enhancer comes into close proximity with its 

target gene’s promoter. Silencers are the antithesis of enhancers; they downregulate or inhibit 

transcription. Like enhancers, they can also be located considerably from the genes they 

influence. 

 

 There are three main structures in transcription factors that facilitate their binding onto 

DNA (Figure 3). The zinc finger is a dominant eukaryotic DNA-binding motif [22], [23], [24], 

https://www.zotero.org/google-docs/?X9bxEg
https://www.zotero.org/google-docs/?0rOtSv
https://www.zotero.org/google-docs/?ygWA9e
https://www.zotero.org/google-docs/?NGc5db
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[25], [26], [26]. Discovered in transcription factor IIIA from the African clawed toad, this motif 

involves compact, small globular domains brought together by Zn2+ ions, facilitating DNA 

binding. The Zif268 protein from mice is an example that uses this motif, employing three zinc 

fingers arranged in a structure aptly complementing the DNA's major groove. Each finger forms 

highly specific hydrogen bonds with the DNA, leading to a modular system proficiently 

recognizing extended asymmetric base sequences. 

  

https://www.zotero.org/google-docs/?NGc5db
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Figure 3. Key Structural Motifs in Eukaryotic Transcription Factors A) illustrates the zinc finger motif, which uses 

zinc ions to stabilize its structure for DNA interaction. B) displays the leucine zipper motif. C) depicts the basic 

helix-loop-helix (bHLH) motif combined with a leucine zipper. (Permission for re-use through a Creative Commons 

CC-BY-NC license [26] and [27]: K. Kluska, J. Adamczyk, and A. Krezel, “Metal binding properties, stability and 

reactivity of zinc fingers,” Coord. Chem. Rev., vol. 367, pp. 18–64, Jul. 2018, doi: 10.1016/j.ccr.2018.04.009; S. E. 

Ahmadi, S. Rahimi, B. Zarandi, R. Chegeni, and M. Safa, “MYC: a multipurpose oncogene with prognostic and 

therapeutic implications in blood malignancies,” J. Hematol. Oncol.J Hematol Oncol, vol. 14, no. 1, Aug. 2021, doi: 

10.1186/s13045-021-01111-4). 
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Another eukaryotic transcription factor feature is the leucine zipper. Heptad repeats 

(seven-residue pseudo repeating sequences) within these factors, particularly leucine at every 

seventh position, facilitate dimerization, creating a structure resembling a zipper [22], [24], [25], 

[28], [29]. The leucine zipper doesn't bind DNA but enables the DNA-binding motif's proper 

orientation. Many of these proteins encompass a DNA-binding region rich in basic residues right 

before the leucine zipper, leading to their classification as basic region leucine zipper (bZIP) 

proteins. One representative example is GCN4, where the protein's helices dimerize through the 

leucine zipper and then diverge to interact with DNA's significant grooves. 

The basic helix-loop-helix (v) is another motif in eukaryotic transcription factors. Often 

followed by a leucine zipper, the bHLH motif's basic region, combined with the first helix, binds 

to the DNA major groove [22], [24], [25], [29]. Meanwhile, its second helix aids protein 

dimerization via coiled-coil formation. As visualized in the Max protein, the bHLH/Z dimer 

grips the DNA akin to forceps, where each basic region contacts specific DNA bases and 

phosphate groups, culminating in precise gene regulation. 

Transcription factors are instrumental in cellular differentiation, the process by which 

unspecialized cells mature into specialized forms. For example, the presence or absence of 

specific TFs can trigger stem cells to differentiate into muscle cells, neurons, or other cell types. 

Pluripotency is a transient property of cells within the early embryo. This property can be 

captured in vitro as pluripotent stem cells (PSCs) at different developmental periods [9]. These 

cells initially appear in the blastocyst-stage embryo's inner cell mass and can be maintained later 

by reprogramming germ cells, resulting in embryonic germ cells similar to ESCs. This 

differentiation process is crucial for multicellular organism development and tissue repair [31], 

[32].  

https://www.zotero.org/google-docs/?H2ZcmX
https://www.zotero.org/google-docs/?H2ZcmX
https://www.zotero.org/google-docs/?GyvbrL
https://www.zotero.org/google-docs/?6dqFgi
https://www.zotero.org/google-docs/?PEfNoO
https://www.zotero.org/google-docs/?PEfNoO
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Transcription factors regulate gene expression for tissue and organ growth, ensuring 

timely cell proliferation and specialization [18], [30]. Mutations in transcription factors or their 

regulatory elements can result in diseases such as cancer, auto-immune diseases, diabetes, and 

mental disorders such as retinopathies [33]. For instance, the transcription factor SOX9 is critical 

in developing and differentiating chondrocytes, which are cells found in cartilage and have 

implications in disorders such as campomelic dysplasia, a skeletal malformation syndrome [34]. 

Transcription factors like SOX9 regulate genes responsible for the growth and development of 

tissues and organs, ensuring that cells proliferate and specialize at the appropriate times and 

locations.  

1.1.3 Techniques for Measuring Genome-wide DNA Methylation Profiles 

Genome-wide DNA methylation profiling has become an essential tool for understanding 

the role of epigenetic regulation in various biological processes and diseases. Several techniques 

have been developed to measure DNA methylation profiles on a genome-wide scale, each with 

advantages and limitations. Some more common methods include whole-genome bisulphite 

sequencing (WGBS), Illumina Infinium Methylation arrays, methylated DNA 

immunoprecipitation sequencing (MeDIP-seq), and Methylated DNA binding domain 

sequencing (MBD-seq). 

WGBS is considered the gold standard for DNA methylation profiling [35]. This 

technique treats genomic DNA with sodium bisulphite, which converts unmethylated cytosines 

to uracil while methylated cytosines remain unchanged. Subsequently, the bisulphite-converted 

DNA is sequenced using high-throughput sequencing platforms. Bioinformatic analysis is 

employed to align the sequenced reads to a reference genome and determine the methylation 

status of individual cytosines by comparing the differences between the bisulphite-converted and 

https://www.zotero.org/google-docs/?AF6etg
https://www.zotero.org/google-docs/?ZuOMVx
https://www.zotero.org/google-docs/?oLTWTy
https://www.zotero.org/google-docs/?0fvJNI
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unconverted sequences. WGBS provides single-base resolution and covers the entire genome, 

but it is relatively expensive and requires a large amount of input DNA. 

 Illumina Infinium Methylation arrays have a high throughput, are cost-effective, and 

require less input DNA than bisulphite sequencing-based methods [36]. The Infinium 

Methylation arrays, such as the 450K and EPIC arrays, consist of thousands of CpG probes 

designed to interrogate specific CpG sites across the genome. Genomic DNA is bisulphite-

converted, and the methylation status of the targeted CpG sites is determined by hybridization to 

the array probes, followed by single-base extension and fluorescence detection. These arrays 

provide information on many pre-selected CpG sites but do not offer single-base resolution or 

cover the entire genome. 

 MeDIP-seq is an antibody-based method that involves immunoprecipitation of 

methylated DNA fragments using an anti-5-methylcytosine antibody [37]. The enriched 

methylated DNA is then sequenced using high-throughput sequencing platforms. MeDIP-seq 

provides information on genome-wide methylation patterns but lacks single-base resolution and 

may have reduced sensitivity in regions with low CpG density. 

Similar to MeDIP-seq, MBD-seq uses a protein domain (such as the MBD domain of 

MeCP2) with a high affinity for methylated DNA to enrich methylated DNA fragments [38]. The 

captured DNA is then sequenced to generate genome-wide methylation profiles. MBD-seq also 

lacks single-base resolution and may have reduced sensitivity in regions with low CpG density. 

1.1.4 Tools and Techniques for Mapping Transcription Factor Binding Sites 

Chromatin Immunoprecipitation followed by sequencing, commonly known as ChIP-seq, 

stands as a cornerstone technique in the modern realm of genomics, granting researchers the 

ability to map protein-DNA interactions on a genome-wide scale [39], [40], [41]. The essence of 

https://www.zotero.org/google-docs/?6aMf2T
https://www.zotero.org/google-docs/?5e5EOs
https://www.zotero.org/google-docs/?aixg08
https://www.zotero.org/google-docs/?a9hyIf
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ChIP-seq revolves around identifying where specific proteins, such as transcription factors or 

modified histones, bind to DNA. The procedure initiates with cross-linking, where DNA and its 

associated proteins are fixed using formaldehyde, ensuring their interactions are preserved. Post-

cross-linking, cell lysis breaks open the cells, followed by sonication to fragment the DNA into 

smaller, manageable pieces. Immunoprecipitation is then employed, where specific antibodies 

selectively pull down the protein of interest, capturing the DNA it's bound to. Once this is 

achieved, the cross-links are reversed, reverting the protein-DNA complex to its native state, and 

the DNA is subsequently isolated. The culminating step involves sequencing these isolated DNA 

fragments, which illuminates the precise regions of the genome where the protein binds. 

The vast potential of ChIP-seq is reflected in its multifaceted applications [39], [40], [41]. 

It is instrumental in identifying transcription factor binding sites, which are crucial for 

understanding how genes are turned on or off. Additionally, it facilitates the mapping of genome-

wide histone modifications, offering insights into the epigenetic mechanisms that regulate gene 

expression. Beyond this, ChIP-seq plays a pivotal role in deciphering the intricate regulatory 

networks that govern gene expression, shedding light on the dynamic interplay between proteins 

and the genome. Post-sequencing, the obtained DNA fragments are analyzed against a reference 

genome, elucidating regions instrumental in regulating gene expression, pinpointing active 

enhancers, and identifying other functional DNA elements, thereby deepening our understanding 

of the genomic landscape and its regulatory intricacies. 

TFregulomeR is a comprehensive database that integrates position weight matrices 

(PWMs) of transcription factor (TF) motifs from the MethMotif and Gene Transcription 

Regulation Database (GTRD) [42], [43]. MethMotif provides TF motifs enriched with 

methylation data, generated using MACS2 for ChIP-seq peak calling and MEME-ChIP for motif 

https://www.zotero.org/google-docs/?o7PDjf
https://www.zotero.org/google-docs/?uVDdJ6
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analysis [41], [44]. DNA methylation profiles are also inferred using whole-genome bisulphite 

sequencing (WGBS). TFregulomeR incorporates data from GTRD, including ChIP-seq peaks 

and motifs centred within a 200 bp range of those peaks. Each PWM in TFregulomeR is given a 

unique ID and thoroughly annotated with details such as source, species, cell line, and other 

contextual factors. 

1.1.5 Introduction to Machine Learning 

1.1.5.1 fundamental concept of machine learning 

Computational biology faces the challenge of extracting useful information from 

biological data [45]. Developing tools and methods to convert data into biological knowledge is 

essential. Machine learning, a powerful tool for analyzing complex biological datasets in 

bioinformatics, trains algorithms to make predictions or classifications without explicit 

programming. It consists of two phases: (i) estimating unknown dependencies from a dataset and 

(ii) using these dependencies to predict new system outputs [45]. Machine learning can be 

categorized into supervised and unsupervised algorithms useful for bioinformatics analysis. 

Supervised learning trains algorithms on labelled datasets, with correct outputs or targets 

assigned. It learns the input-output relationship by finding patterns in labelled examples. 

Unsupervised learning uses unlabeled datasets, identifying patterns or structures independently. 

Two methods to solve biological problems using machine learning optimization principles are 

exact and approximate. Exact methods provide optimal solutions in specific cases, while 

approximate methods consistently offer solutions, although not always optimal. Machine 

learning models favour approximate methods with computational constraints, such as estimation 

maximization [46]. 

https://www.zotero.org/google-docs/?mXu0aX
https://www.zotero.org/google-docs/?EaOGhD
https://www.zotero.org/google-docs/?WKAvVz
https://www.zotero.org/google-docs/?ZQXaAj
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The curse of dimensionality refers to the difficulties in handling high-dimensional 

datasets. Data sparsity and computational complexity increase as dimensions increase, impacting 

algorithm effectiveness, training times, and performance. Visualizing and understanding data in 

high-dimensional spaces is challenging, rendering traditional data analysis techniques less 

effective. 

Machine learning aims to create models for classification, prediction, and estimation [47]. 

Classification, the most common task, sorts data into pre-defined categories. Training errors 

occur during training, while generalization errors occur with new data. A good classification 

model should fit the training set and perform well on unseen data. Overfitting happens when a 

model fits training data too well but underperforms with new data. The ideal model complexity 

minimizes generalization error. The bias-variance decomposition analyzes the expected 

generalization error, summing the bias and variance components for a classification model's 

overall expected error. 

1.1.5.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are one of the most well-known forms of machine 

learning algorithms and are often misused synonymously in media for machine learning. ANNs 

can handle various classification or pattern recognition problems by generating output as a 

combination of the input variables [48]. The process usually involves multiple hidden layers that 

represent the neural connections mathematically. Although ANNs are considered a gold standard 

method in several classification tasks, they have some drawbacks. ANNs can be computationally 

expensive and time-consuming to train, particularly for larger and more complex models in 

genomic analysis. Additionally, understanding how the model makes its predictions in genomic 

https://www.zotero.org/google-docs/?rhFwhr
https://www.zotero.org/google-docs/?iStr4T
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analysis is challenging, if not impossible. Finally, ANNs are susceptible to overfitting, where the 

model is too closely tailored to the training data and performs poorly on new, unseen data. 

1.1.5.3 Support Vector Machines 

Support Vector Machines (SVMs) are supervised learning algorithms used in genomics 

for classification and regression analysis [45], [49]. SVMs work by finding the hyperplane that 

maximizes the margin between the two classes of data points or fits the data points as closely as 

possible in the case of regression analysis. In genomics, SVMs are particularly useful for 

analyzing high-dimensional data, such as gene expression. The input features are mapped into a 

higher-dimensional space using a kernel function, which can effectively separate the classes of 

data points. Different kernel functions have different properties and are suitable for different 

types of genomic data. However, the performance of SVMs in genomics depends on the choice 

of the kernel function and the value of hyperparameters. Additionally, SVMs can be 

computationally expensive when dealing with large genomic datasets. They may need to 

improve when the data is imbalanced or the classes overlap, a common issue in genomic data 

analysis. 

1.1.5.4 k-means clustering 

In high-throughput genomics research, the curse of dimensionality can make it 

challenging to identify meaningful patterns in datasets with more variables than observations. 

Traditional statistical techniques may not be sufficient to address this challenge. To overcome 

this, some researchers have developed methods such as feature selection to reduce the data's 

dimensionality while preserving important features and relationships between variables [46], 

[49], [50]. Unsupervised machine learning algorithms such as k-means clustering have also been 

https://www.zotero.org/google-docs/?SSZljW
https://www.zotero.org/google-docs/?4HTfM1
https://www.zotero.org/google-docs/?4HTfM1
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employed to partition the data into clusters with similar characteristics. K-means clustering is an 

unsupervised machine learning algorithm that aims to partition a given dataset into k clusters 

where each data point belongs to the cluster with the nearest mean. The algorithm randomly 

initializes k centroids and iterates through two steps until convergence. In the first step, each data 

point is assigned to the cluster with the nearest centroid. In the second step, the centroids are 

recalculated as the mean of all the data points in the cluster. The two steps are repeated until the 

assignments no longer change or a maximum number of iterations is reached. Applying k-means 

clustering in genomics aims to increase the effectiveness of analyzing high-dimensional datasets 

with few observations. 

1.1.5.5 Estimation Maximization 

Estimation Maximization (EM) is another popular iterative algorithm in machine learning 

used to maximize a posteriori (MAP) estimates of parameters in statistical models. EM is 

beneficial in epigenomic analysis, where some variables or parameters may be unobserved or 

hidden. EM alternates between two key steps: estimating the missing or hidden variables and 

updating the model parameters based on these estimates. The estimation of missing data is 

carried out in the E-step, where the expected value of the log-likelihood function is calculated 

using the current estimates of the model parameters. This provides an estimate of the missing or 

hidden data, which is then used to update the model parameters in the M-step. The process of 

alternating between the E and M-steps continues until the estimates of the model parameters 

converge to a local maximum or minimum. Carefully choosing the initial estimate of the model 

parameters is important, and regularization techniques should be used to avoid overfitting. In 

summary, EM is a powerful technique for identifying the parameters of complex statistical 

models, particularly when some variables are unobserved or hidden. 
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1.1.5.6 Technique Overview and Limitation in Machine Learning 

Machine learning (ML) utilizes statistical theory and mathematical principles to create 

computational models that efficiently process data and make accurate inferences [45], [51]. 

Algorithm efficiency is as crucial as predictive accuracy due to computational constraints. 

Preprocessing techniques, such as dimensionality reduction, feature selection, and feature 

extraction, can enhance data analysis by modifying raw data. Dimensionality reduction, 

particularly for datasets with numerous features, can eliminate irrelevant features, reduce noise, 

and improve learning model accuracy. Machine learning can aid in extracting biological 

knowledge from complex datasets through supervised and unsupervised algorithms, useful for 

classification, prediction, and estimation. Artificial Neural Networks (ANNs) and Support 

Vector Machines (SVMs) are popular supervised algorithms used in genomics for classification 

and regression analysis. However, both are computationally expensive, and ANNs are prone to 

overfitting. Employing preprocessing techniques can boost the accuracy and efficiency of 

learning models. 

1.1.6 Background on Kidney Renal Papillary Cell Carcinoma (KIRP) 

1.1.6.1 Overview of Cancer 

Cancer arises from the uncontrolled growth and spread of abnormal cells within the body, 

originating from changes or mutations in a cell's genetic material [52]. These mutations can 

occur spontaneously or be induced by external factors such as radiation, chemicals, or viruses. 

Genetic changes disrupt normal cell growth and division processes, allowing cells to proliferate 

uncontrollably and form a tissue mass called a tumour. Tumours can be classified as benign or 

malignant. Benign tumours are non-cancerous and do not invade neighbouring tissues or spread 

https://www.zotero.org/google-docs/?FtnoJQ
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to distant organs. In contrast, malignant tumours are cancerous, having the ability to invade 

surrounding tissues and spread to other parts of the body through a process called metastasis. 

This invasive nature of malignant tumours is a key factor that makes cancer a life-threatening 

disease. 

In cancer biology, tumours are generally defined as enlarged tissue swellings caused by 

excessive epithelial cell growth. Although "tumour" and "cancer" are often used synonymously 

and will be used synonymously in this paper, it is crucial to distinguish between benign and 

malignant tumours [52]. Benign tumours are encapsulated by fibrous tissue and do not invade 

neighbouring tissues, while malignant tumours lack structure, infiltrate nearby tissues, and are 

classified as cancer. Tumour metastasis can interfere with organ function and result in patient 

death, making early detection and treatment critical for improved outcomes. 

Cancer is a complex and diverse disease that arises from abnormal cell growth and 

behaviour. While there are various types of cancer, they all share several common features that 

differentiate them from normal cells and provide insight into their underlying mechanisms. 

Hanahan and Weinberg (2000) identified six key cancer features outlined below and illustrated 

in figure 4 [53]: 

  

https://www.zotero.org/google-docs/?MMaW1i
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Figure 4. The six acquired capabilities of cancer: insensitivity to anti-growth signals, tissue invasion and metastasis, 

limitless replicative potential, sustained angiogenesis, evasion of apoptosis, self-sufficiency in growth signals,   
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1. Self-sufficiency in growth signals: Normal cells require external growth signals to divide. 

However, cancer cells can produce their growth signals or become less dependent on 

them, promoting continuous cell division. Various factors, such as mutations in 

oncogenes or loss of tumour suppressor genes, can drive this feature. 

2. Insensitivity to anti-growth signals: Cancer cells can become resistant to signals that 

usually inhibit cell growth or initiate cell death, allowing them to continue growing 

unchecked. This resistance can be due to genetic mutations or epigenetic changes that 

affect the expression of key genes involved in cell cycle regulation. 

3. Evasion of apoptosis: Apoptosis is the process of programmed cell death that eliminates 

damaged or unwanted cells. Cancer cells often develop mechanisms to avoid apoptosis, 

such as overexpression of anti-apoptotic proteins or downregulation of pro-apoptotic 

proteins, enabling them to survive and multiply. 

4. Limitless replicative potential: Normal cells can divide a finite number of times before 

they enter a state called senescence. Cancer cells can bypass this limit by activating 

telomerase or other telomere maintenance mechanisms, allowing them to replicate 

indefinitely. 

5. Sustained angiogenesis: Angiogenesis is the formation of new blood vessels. Cancer cells 

can stimulate angiogenesis to ensure a continuous supply of nutrients and oxygen, 

supporting their growth and survival. This feature is crucial for tumour growth and 

progression. 

6. Tissue invasion and metastasis: Malignant tumours lose adhesion capabilities and gain 

the ability to invade surrounding tissues and spread to distant organs through blood or 

lymphatic vessels. This process, called metastasis, is a key characteristic of cancer and a 
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major contributor to its severity. The mechanisms underlying metastasis are complex and 

involve numerous factors, including the expression of specific genes and interactions 

between cancer cells and the surrounding microenvironment. 

1.1.6.2 Fundamental Biological Understanding of Kidney Function 

The kidneys are a pair of vital, bean-shaped organs in the lower back region on either 

side of the spine [19], [54]. They play a critical role in maintaining the body's homeostasis by 

filtering waste products, excess nutrients, and fluids from the blood to produce urine, which is 

then eliminated from the body. The kidneys carry out several essential functions to ensure 

overall health, and their complex and intricate mechanisms involve numerous physiological 

processes: 

 

● Blood volume and pressure regulation: Kidneys control fluid excretion and produce 

hormones like renin, involved in the renin-angiotensin-aldosterone system (RAAS), 

regulating blood pressure and blood vessel constriction. 

● Electrolyte balance: The kidneys maintain electrolyte balance (sodium, potassium, 

calcium, phosphate) by regulating ion reabsorption and secretion in nephrons, their 

functional units. The renal tubular epithelium, cells lining renal tubules within nephrons, 

actively transport ions between blood and forming urine. Electrolytes are vital for 

physiological functions, including muscle contractions, nerve impulses, and maintaining 

the body's acid-base balance. 

● Acid-base balance: The kidneys help maintain the body's acid-base balance by excreting 

hydrogen ions and reabsorbing bicarbonate ions through complex processes in the renal 

https://www.zotero.org/google-docs/?EJI9yz
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tubular epithelium. This regulation helps maintain the blood's pH levels within a narrow 

range, essential for proper cellular function, enzyme activity, and overall homeostasis. 

● Waste excretion: The kidneys excrete metabolic waste products (urea, creatinine, uric 

acid) by filtering them through glomeruli in nephrons, then combining them with excess 

water and substances in renal tubules to form urine. The renal tubular epithelium actively 

transports waste products from the blood into the urine, preventing toxic substance 

accumulation in the body. This waste removal process is essential for maintaining overall 

health. 

● Hormone production: Kidneys produce hormones like erythropoietin (EPO), stimulating 

red blood cell production, and calcitriol (active vitamin D) for calcium absorption and 

bone health. 

● Gluconeogenesis: The kidneys are involved in gluconeogenesis, which generates glucose 

from non-carbohydrate sources such as amino acids, lactate, and glycerol. This function 

is particularly important during fasting or prolonged exercise when the body requires 

additional glucose to maintain normal blood sugar levels. 

 

The renal tubular epithelium's location within the nephrons and its involvement in 

various kidney functions emphasize its crucial role in maintaining the body's overall health and 

homeostasis. The renal tubule is a long, convoluted structure emerging from the glomerulus and 

is functionally divided into three parts. The first part, the proximal convoluted tubule (PCT), 

remains in the renal cortex near the glomerulus. The second part, the loop of Henle or the 

nephritic loop, forms a descending and ascending limb that passes through the renal medulla. 

The third part, the distal convoluted tubule (DCT), is also in the renal cortex. The DCT, the final 
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segment of the nephron, connects and empties its contents into collecting ducts lining the 

medullary pyramids. These collecting ducts gather contents from multiple nephrons and fuse as 

they enter the papillae of the renal medulla. Figure 5 illustrates a more detailed look at the 

nephron of the kidney. Any impairment in kidney function, including disruptions in the renal 

tubular epithelium, can lead to imbalances and complications that affect various physiological 

systems, such as the cardiovascular, nervous, and musculoskeletal systems. For example, 

electrolyte imbalances can cause irregular heartbeats, muscle weakness, and neurological issues. 

Impaired waste excretion may lead to toxin accumulation, causing fatigue, nausea, and kidney 

failure. Additionally, hormone production disruptions can affect red blood cell production and 

bone health. Therefore, maintaining renal tubular epithelium function is essential for overall 

well-being and preventing severe health complications. 
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.

 

Figure 5. The nephron is the functional unit of the kidney. The glomerulus and convoluted tubules are located in the 

kidney cortex, while collecting ducts are located in the pyramids of the medulla (Permission for re-use through a 

Creative Commons CC-BY-NC license [55]: C. Rye, R. Wise, V. Jurukovski, J. DeSaix, J. Choi, and Y. Avissar, 

Biology. Houston, Texas: OpenStax, 2016.) 

 

  

https://www.zotero.org/google-docs/?zPClt2
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1.1.6.3 Overview of kidney renal papillary cell carcinoma and kidney cancer 

Kidney Renal Papillary Cell Carcinoma (KIRP) is a subtype of renal cell carcinoma 

(RCC) originating from a renal tubular epithelium mutation, accounting for most primary kidney 

cancers. RCC development is linked to the disruption of metabolic pathways, with clear cell 

RCC being associated with genetic changes such as the loss of von Hippel Lindau's (VHL) gene 

function [56]. When the VHL gene is lost, silenced, or mutated, it can lead to the abnormal 

stabilization of hypoxia-inducible factors (HIFs). Many target genes of HIF-α encode proteins 

that contribute to renal carcinogenesis. Apart from the VHL-HIF pathway, RCC is marked by 

alterations in several other signalling pathways, including mTOR, PI3K/AKT, and Wnt 

pathways. These pathways regulate cell cycle control and apoptosis, thereby driving tumour 

growth and progression [57], [58], [59]. According to the epigenetic progenitor model, 

epigenetic changes could be powerful substitutes for genetic mutations. 

Other forms of kidney cancer include transitional cell carcinoma (TCC), which develops 

in the renal pelvis, the part of the kidney that collects urine and funnels it to the ureter. It 

originates in the urothelium, the lining of the urinary tract. There is also Wilms tumour, also 

known as nephroblastoma, which typically occurs in the renal parenchyma, the kidney's 

functional tissue, most commonly in children. Nephroblastoma is associated with abnormal 

kidney development. Renal sarcoma arises in the kidney's connective tissue or blood vessels and 

is often more aggressive than other tumours. Other forms of kidney cancers include oncocytoma, 

angiomyolipoma, medullary carcinoma, and cystic nephroma. 

KIRP, a subtype of RCC, begins in the cells lining the small tubes in the kidney, known 

as the renal papillae. These renal papillae are small structures that extend into the kidney's 

collecting system and facilitate urine transport from the kidney to the bladder [60]. KIRP 

https://www.zotero.org/google-docs/?NuvSNN
https://www.zotero.org/google-docs/?95ehg0
https://www.zotero.org/google-docs/?N9ZHwU
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accounts for 15-20% of all kidney cancers and is more common in men than women. It typically 

affects people over 55, and some risk factors include smoking, obesity, high blood pressure, and 

a family history of kidney cancer. Compared to other RCC subtypes, KIRP is less invasive and 

generally has a more favourable prognosis [61]. 

DNA methylation, an epigenetic modification, plays a significant role in the development 

and progression of KIRP. Aberrant methylation patterns have been found in KIRP tumours, 

leading to changes in gene expression that contribute to tumour development and progression 

[62], [63]. These changes may be potential biomarkers for diagnosis, prognosis, and treatment 

response prediction. One study, which includes analysis of the TCGA KIRP data, emphasizes the 

integration of various molecular platforms for improved molecular classification of different 

cancer types [64]. 

Understanding the various signalling pathways and molecular mechanisms behind the 

development and progression of RCC subtypes, including KIRP, is crucial for advancing 

diagnosis, prognosis, and treatment. Further research is required to comprehend the mechanisms 

underlying these epigenetic changes and develop novel diagnostic and therapeutic strategies 

targeting DNA methylation in KIRP. Using a machine learning approach, researchers can 

uncover novel patterns and relationships between various molecular factors, KIRP and other age-

related diseases, which might have remained hidden using traditional analytical methods. 

Moreover, the algorithm's ability to analyze multivariate data enables it to identify complex 

interactions between different pathways, thereby creating a valuable understanding of the 

disease's underlying mechanisms. The insights gained from this advanced analysis could pave 

the way for developing more effective diagnostic tools, personalized treatments, and preventive 

https://www.zotero.org/google-docs/?JPHCQu
https://www.zotero.org/google-docs/?60SdZn
https://www.zotero.org/google-docs/?HiDQFu
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strategies, ultimately improving patient outcomes and quality of life for those affected by age-

related diseases. 

1.1.7 Background on Alzheimer's Disease 

1.1.7.1 Fundamentals of Neurobiology 

 The nervous system is a highly intricate and interconnected network that relies on 

specialized cells known as neurons to transmit and process information. These basic functional 

units of the nervous system are responsible for sending electrical/chemical signals through their 

distinct parts, including the soma or cell body, dendrites, axons, and synapses [65], [66]. The 

soma contains the nucleus and other essential cellular components, while dendrites are branch-

like structures that receive signals from other neurons. The axon is a long projection that 

transmits electrical signals, and synapses are junctions between neurons where information 

exchange occurs. 

Synaptic transmission is the primary method of communication between neurons, 

occurring when an action potential (signal) travels down the presynaptic neuron's axon. This 

process triggers the release of neurotransmitters, which are chemical messengers, into the 

synaptic cleft [65], [66]. These molecules then diffuse across the cleft and bind to receptors on 

the postsynaptic neuron. Depending on the neurotransmitter and receptor type, this binding can 

either excite or inhibit the postsynaptic neuron, generating a new action potential and facilitating 

the flow of information. 

Neurotransmitters are pivotal in transmitting signals across synapses [65], [66]. Some 

common neurotransmitters include glutamate, which is generally excitatory; GABA, which is 

inhibitory; dopamine, which modulates reward and motivation; serotonin, which regulates mood; 

https://www.zotero.org/google-docs/?WcLGXQ
https://www.zotero.org/google-docs/?F7AFSU
https://www.zotero.org/google-docs/?0d87Uz
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and acetylcholine, which is involved in learning and memory. Receptors are specialized proteins 

found on the surface of neurons that bind to neurotransmitters. The binding of a neurotransmitter 

to its receptor can trigger a variety of cellular responses, such as depolarization in the 

postsynaptic neuron, which creates an action potential or activates intracellular signalling 

pathways. 

The brain organizes neurons into intricate circuits and networks, which process and 

integrate information from various sources to support multiple functions, including sensory 

perception, motor control, memory, learning, and decision-making. These complex networks 

comprise diverse neuronal populations with specific properties and connectivity patterns. The 

coordinated activity among interconnected neurons within these circuits enables the brain to 

process and respond to information with remarkable speed and efficiency. 

Glial cells are non-neuronal cells in the nervous system that play crucial roles in 

supporting, protecting, and nourishing neurons [65], [66]. There are three main types of glial 

cells: astrocytes, oligodendrocytes, and microglia. Astrocytes help maintain the extracellular 

environment, regulate neurotransmitter levels, and contribute to the blood-brain barrier. 

Oligodendrocytes produce the myelin sheath that insulates axons, enabling faster signal 

transmission. Microglia are the brain's primary immune cells, contributing to inflammation, 

clearing cellular debris, and responding to injury or infection. 

Neuroplasticity refers to the brain's remarkable ability to adapt and change its structure 

and function in response to experiences, learning, or injury [65]. This dynamic process involves 

various cellular and molecular mechanisms, including the formation and strengthening of 

synaptic connections through long-term potentiation, the generation of new neurons 

(neurogenesis), primarily in the hippocampus, and the pruning of unused or weak connections. 

https://www.zotero.org/google-docs/?FdtTtT
https://www.zotero.org/google-docs/?hHy7fC
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Neuroplasticity is crucial for learning, memory, cognitive flexibility, and recovery from brain 

injury. 

Memory and learning are interconnected cognitive processes that involve encoding, 

storing, and retrieving information. These processes rely on changes in synaptic connections, a 

phenomenon known as synaptic plasticity [65], [66]. The hippocampus and surrounding medial 

temporal lobe structures play a crucial role in forming and consolidating long-term memories. 

Other brain regions, such as the prefrontal cortex and amygdala, contribute to memory's 

emotional and contextual aspects. 

In conclusion, the fundamentals of neurobiology encompass the structure and function of 

neurons, synaptic transmission, neurotransmitters and their receptors, neuronal circuits and 

networks, glial cell function, neuroplasticity, and the processes of learning and memory. 

Understanding these principles is essential for studying age-related cognitive decline and 

neurodegenerative disorders, such as Alzheimer's, and developing novel therapeutic strategies to 

address these complex and multifaceted conditions. 

1.1.7.2 Overview of Alzheimer's Disease 

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder 

affecting the brain. It is the most common cause of dementia, accounting for 60-80% of all cases 

[67], [68]. AD is classified into two distinct categories: early-onset AD (EOAD), which accounts 

for about 5% of the AD population, and late-onset AD (LOAD), which accounts for the other 

95% of AD patients. EOAD is a Mendelian pattern disease, whereas LOAD is genetically 

complex and associated with several genes. The apolipoprotein E (APOE) gene is LOAD's most 

important genetic risk factor. Although there is currently no known cure for Alzheimer's disease, 

treatments are available that can help manage the symptoms and slow the progression of the 

https://www.zotero.org/google-docs/?yvcUjF
https://www.zotero.org/google-docs/?0LppIW
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disease [69]. The exact causes of Alzheimer's disease remain a topic of research; it is believed to 

be caused by a combination of genetic, environmental, and lifestyle factors. A family history of 

the disease, age, and specific genetic mutations are known risk factors for developing the 

disease. Other potential risk factors include head injuries, high blood pressure, and high 

cholesterol levels. 

The symptoms of Alzheimer's disease typically begin with mild memory loss, difficulty 

with language, and problems with decision-making and problem-solving. As the disease 

progresses, these symptoms worsen, and other symptoms may develop, such as changes in mood 

and behaviour, difficulty with basic activities of daily living, and eventually, complete loss of 

communication and mobility. In the later stages of the disease, patients may require round-the-

clock care. 

Alzheimer's is a complex disorder with multiple biological and molecular mechanisms 

involved in its development. Amyloid plaques and neurofibrillary tangles within the brain most 

often characterize it [70], [71]. Amyloid plaques consist of beta-amyloid (Aβ42/40) aggregates 

derived from amyloid precursor protein (APP) by β-secretase 1 (BACE-1) and γ-secretase 

cleavage. However, in Alzheimer's disease, beta-amyloid proteins accumulate in the spaces 

between neurons, forming clusters visible as amyloid plaques. This disrupts communication 

between neurons by interfering with the normal transmission of signals between neurons and 

triggering the formation of neurofibrillary tangles.  

Neurofibrillary tangles (NFTs) consist of abnormal tau protein clumps that develop inside 

neurons in the brain [72]. Tau is a protein that usually helps stabilize the neurons' structure by 

binding to microtubules, which are long, thin fibres that provide support and transport materials 

within the neuron. In addition to inferring neuron function, NFTs can lead to neuronal death. In 

https://www.zotero.org/google-docs/?iSUCXX
https://www.zotero.org/google-docs/?ulK9nb
https://www.zotero.org/google-docs/?lomzYo
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the brain, tau proteins are usually modified by adding a phosphate group, a process called 

phosphorylation, which helps regulate their function. However, in Alzheimer's, tau proteins are 

hyperphosphorylated, leading to abnormal aggregation and the formation of neurofibrillary 

tangles. 

Amyloid plaques, neurofibrillary tangles, oxidative stress, neuro-inflammation, genetics, 

and epigenetics all contribute to Alzheimer's disease development. Oxidative stress occurs when 

an imbalance arises between reactive oxygen species (ROS) production and their removal [73]. 

These highly reactive molecules can damage cells and tissues, leading to neuronal death and 

beta-amyloid and tau protein accumulation. Inflammation, the body's natural response to injury 

or infection, also plays a role in Alzheimer's by activating microglia, the brain's primary immune 

cells [74]. Microglia release pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β) and 

tumour necrosis factor-alpha (TNF-α), which can cause neurotoxicity and neuronal damage and 

promote beta-amyloid accumulation. Inflammation also activates astrocytes, another type of glial 

cell in the brain, which release cytokines and chemokines that can serve as Alzheimer's disease 

biomarkers, such as interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). 

Furthermore, chronic inflammation can disrupt the blood-brain barrier, a specialized membrane 

that protects the brain from toxins and pathogens in the bloodstream. In Alzheimer's disease, this 

weakened barrier allows inflammatory cells and toxic substances to enter the brain, exacerbating 

neuronal damage. 

Alzheimer’s disease can be divided into early and late-onset. The genes for the amyloid 

precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2)  are considered to be 

genomic biomarkers in early-onset Alzheimer’s disease (EOAD) [75]. APP is a transmembrane 

protein primarily found in the synapses of neurons in the brain. The protein is involved in 

https://www.zotero.org/google-docs/?UDCQvi
https://www.zotero.org/google-docs/?62dCQJ
https://www.zotero.org/google-docs/?4w3Gex
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various cellular processes, including synaptic plasticity, neurite outgrowth, and neuronal 

survival. APP is cleaved by the β and 𝛾 secretases to produce the amyloid beta (Aβ) peptides, a 

key component of amyloid plaques. PSEN1 and PSEN2 are the 𝛾-secretase that cleave APP. 

PSEN mutations increase the ratio of Aβ42 to Aβ40; the 42 amino acid-long Aβ isoform is more 

prone to aggregate than the shorter Aβ40 isoform, thereby forming amyloid plaques. This finding 

has led to the widespread use of mutant forms of APP genes to generate animal models of AD. 

APOE is the most potent risk factor and the only confirmed susceptibility locus of LOAD 

[68]. The most common genotype of APOE is APOE3, which has an odds ratio (OR) estimated 

at around 3.2; APOE3 has a cysteine (Cys) amino acid at position 112 and an arginine (Arg) at 

position 158. APOE4, on the other hand, is a variant with an OR estimated at around 14.2; 

APOE4 arginine (Arg) at positions 112 and 158 due to a single nucleotide polymorphism. 

APOE4 is the strongest known genetic risk factor for late-onset Alzheimer's disease. Clusterin 

(CLU), bridging integrator 1 (BIN1), complement component (3b/4b) receptor 1 (CR1), and 

triggering receptor expressed on myeloid cells 2 (TREM2) along with 50 other risk loci have 

been associated with LOAD in genome-wide association studies of APOE4. These genes were 

related to the Aβ pathway, immune system, lipid metabolism, and synaptic function. 

  Studies have reported increased and decreased DNA methylation levels in AD, which 

could be partially due to using various tissue samples. A significant increase in DNA 

methylation has been reported in multiple brain regions, including the hippocampus, entorhinal 

cortex, dorsolateral prefrontal cortex, temporal cortex, and temporal gyrus [76]. The prefrontal 

cortex, locus coeruleus, and blood samples observed a DNA methylation decrease [77]. The 

presence of a change in the methylation signature in the blood of Alzheimer's patients has 

promising potential to serve as a biomarker for the disease. These changes could potentially be 

https://www.zotero.org/google-docs/?8QQrTU
https://www.zotero.org/google-docs/?a3d7sW
https://www.zotero.org/google-docs/?aBJ1Py
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used as a diagnostic tool to identify individuals at risk for developing Alzheimer's disease or to 

monitor disease progression. 

 AD can be classified according to Braak stages, based on the extent and distribution of 

NFTs in the brain. In the initial stages, Braak I and II, NFTs are localized in the transentorhinal 

and entorhinal regions, respectively, often without significant clinical symptoms. As the disease 

progresses to Braak III and IV, NFTs extend to the hippocampus and other limbic structures and 

then to parts of the association cortex, correlating with the onset and worsening of cognitive 

impairment. In the advanced stages, Braak V and VI, NFTs are widespread throughout the 

association cortex and eventually across much of the cerebral cortex, leading to severe cognitive 

decline and dementia.  

 

1.2. State of the Arts 

1.2.1 Style and Coherence of the Thesis 

 This thesis is presented in a manuscript-style format, with individual research chapters 

prepared for publication in peer-reviewed journals. Each chapter addresses distinct but 

interrelated aspects of epigenetic mechanisms and/or machine-learning applications in genomics 

studies research, aligning with the overarching theme of methylomic and epigenomic studies. 

Although each chapter is designed as a more in-depth stand-alone manuscript for publication, the 

research chapters collectively form a cohesive investigation into methylation in the context of 

transcription factor interactions or their implications in kidney renal papillary cell carcinoma and 

Alzheimer’s disease. Together, they address the overarching research objective of understanding 
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transcription factor co-binding and DNA methylation through biological and machine-learning 

approaches. 

1.2.2 Synthesis of Literature on the Application of Machine Learning in Genomics 

Studies 

As the importance of machine learning (ML) in genomics research continues to grow, 

researchers are leveraging its capabilities to analyze large, high-dimensional datasets. One such 

instance is the modification Juan A. Botía et al. (2017) proposed to the standard Weighted Gene 

Co-expression Network Analysis (WGCNA) approach, which incorporates k-means clustering as 

an additional processing step [78]. WGCNA is widely used for identifying gene co-expression 

networks (GCN) and deriving gene clusters or modules, helping to identify functionally related 

genes and understand the molecular mechanisms underlying complex diseases. Integrating k-

means clustering generates more accurate network partitions and enhances biological 

meaningfulness, fostering fruitful downstream analyses. 

In miRNA-gene datasets, a research group addressed the curse of dimensionality by 

implementing an EM algorithm [79]. The group developed a program called miREM, which 

employs the EM algorithm to enhance the prediction and prioritization of miRNAs from gene 

sets of interest. By modelling complex relationships between miRNAs and mRNAs, miREM 

successfully overcame the curse of dimensionality in miRNA-gene datasets. The method couples 

the EM algorithm with the common approach of hypergeometric probability, resulting in 

improved predictions compared to existing programs. 

Addressing the curse of dimensionality is particularly relevant in genomic studies, and 

researchers have devised methods to reduce data dimensionality while preserving essential 

https://www.zotero.org/google-docs/?vlSIdo
https://www.zotero.org/google-docs/?NXZIIQ
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features and relationships between variables. In one study, researchers implemented a lasso-

based clustering method designed explicitly for high-dimensional genomic data with small 

sample sizes. This approach, known as robust sparse k-means clustering (RSKC), adaptively 

selects a subset of genes or proteins that contribute to partitioning samples into age-related 

clusters progressing across the lifespan [50]. The clusters identified by RSKC demonstrate a 

complex relationship between chronological and brain age, spanning a range of ages. This 

method solves the challenge of high dimensionality, leading to more accurate and meaningful 

results that can aid in understanding human brain development. 

In a study by Wei et al. (2015), a five-CpG-based assay for ccRCC prognosis was 

developed using a lasso model based on genome-wide CpG methylation profiling. This classifier, 

validated in three independent datasets, predicts the overall survival of ccRCC patients 

independently of standard clinical prognostic factors [80]. The five-CpG-based classifier 

categorizes patients into high-risk and low-risk groups, with significant differences in clinical 

outcomes across respective clinical stages and individual 'stage, size, grade, and necrosis' scores. 

Moreover, methylation at these five CpGs correlates with the expression of five genes: PITX1, 

FOXE3, TWF2, EHBP1L1, and RIN1. This demonstrates its potential as a practical and reliable 

prognostic tool for ccRCC. 

Lastly, Baucum M. et al. (2020) used a combination of hidden Markov models (HMMs) 

and recurrent neural networks to create a hidden Markov recurrent neural network (HMRNN), 

which improved the accuracy of forecasting in Alzheimer's disease patients [51]. This hybrid 

model combined the interpretability of HMMs with the flexibility of neural networks, providing 

a more comprehensive data analysis. The researchers demonstrated that combining different 

machine learning algorithms can enhance the performance of available genomic tools for 

https://www.zotero.org/google-docs/?ztIwAh
https://www.zotero.org/google-docs/?za76wm
https://www.zotero.org/google-docs/?iPWvO2
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forecasting or classification. Although HMMs and EM differ in design, both rely on iterative 

approaches to estimate unknown parameters from observed data. HMMs are designed explicitly 

for sequential data with hidden states, whereas EM is a more general framework that can be 

applied to different models. Incorporating additional patient covariates can improve parameter 

estimation and predictive performance in HMMs.  

Together, these studies illustrate the importance of machine learning techniques in 

genomics research and highlight various approaches to overcome the challenges posed by high-

dimensional datasets. While each method has its strengths and limitations, incorporating multiple 

machine learning algorithms can provide more accurate and meaningful results for understanding 

the molecular mechanisms underlying complex diseases. 

1.2.3. Synthesis of the Literature on DNA methylation in kidney renal papillary 

cell carcinoma and other renal cell carcinomas. 

In a comprehensive molecular characterization of 161 primary KIRP tumours, The 

Cancer Genome Atlas Research Network (2016) discovered that Type 1 and Type 2 KIRP 

tumours are distinct renal cancer types characterized by specific genetic alterations [62]. Type 1 

tumours were linked to MET alterations, while Type 2 tumours were associated with CDKN2A 

silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant 

response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in 

a distinct Type 2 KIRP tumours subgroup, marked by poor survival and gene encoding fumarate 

hydratase (FH) mutation. 

Due to the lack of symptoms in early-stage renal tumours, there is an urgent need for 

reliable biomarkers to detect the presence of cancer and monitor patients during and after 

https://www.zotero.org/google-docs/?qswPmQ
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therapy. Lasseigne et al. (2014) examined genome-wide DNA methylation alterations in renal 

cell carcinoma (RCC), identifying two panels of DNA methylation biomarkers that reliably 

distinguish tumours from benign adjacent tissue across all common kidney cancer histologic 

subtypes and another that does explicitly so for clear cell RCC tumours(ccRCC) [56]. These 

biomarkers have been independently validated and demonstrate promising potential for clinical 

application in the early detection of kidney cancer. 

While the focus thus far has been on the molecular characteristics and epigenetic 

alterations in KIRP, it may be beneficial to consider the findings in clear cell renal cell 

carcinoma (ccRCC) for KIRP research in lieu of a lack of KIRP-specific research. KIRP and 

ccRCC are subtypes of renal cell carcinoma, and the molecular mechanisms and epigenetic 

alterations discovered in ccRCC may provide valuable insights for understanding KIRP. In 

ccRCC, many genes are epigenetically inactivated by promoter hypermethylation, some 

associated with clinical outcomes. Ricketts et al. (2012) observed hypermethylation of Fibrillin 2 

(FBN2), secreted frizzled-related protein 1 (SFRP1), and basonuclin 1 (BNC1) genes in a large 

percentage of ccRCC tumours, with SFRP1 and BNC1 hypermethylation being significantly 

associated with poorer survival [81]. The loss of SFRP1 protein can potentially activate the 

WNT pathway, leading to poorer survival outcomes in patients with somatic mutations of WNT 

pathway-regulating genes. 

Fisel et al. (2013) investigated the role of DNA methylation in the regulation of 

monocarboxylate transporter 4 (MCT4) expression in clear cell renal cell carcinoma (ccRCC) 

[82]. MCT4 is involved in lactate transport across membranes, resulting in antiapoptotic effects. 

The study found that MCT4 protein expression was upregulated in ccRCC and was associated 

with cancer-related death. DNA methylation in the SLC16A3 promoter, which encodes MCT4, 

https://www.zotero.org/google-docs/?a5bxkt
https://www.zotero.org/google-docs/?W3m6jl
https://www.zotero.org/google-docs/?jfu6cV
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was identified as a novel epigenetic mechanism for MCT4 regulation, with higher methylation at 

individual CpG sites associated with prolonged survival. 

Turajlic et al. (2018) conducted a large-scale study on clear-cell renal cell carcinoma 

(ccRCC), analyzing 1,206 primary tumour regions from 101 patients [83]. The study identified 

up to 30 driver events per tumour and found that subclonal diversification was associated with 

known prognostic parameters. The authors categorized ccRCC into seven evolutionary subtypes, 

ranging from tumours with early fixation of multiple mutational and copy number drivers to 

highly branched tumours with extensive parallel evolution. The study also suggested that genetic 

diversity and chromosomal complexity determine patient outcomes in ccRCC. 

In conclusion, there is a need for more research into reliable biomarkers in early-stage 

renal tumours and the integration of potentially relevant findings in ccRCC to KIRP research in 

lieu of the lack of research in DNA methylation finding in KIRP. By examining these renal 

cancer subtypes, researchers can gain valuable insights, identify novel therapeutic targets and 

diagnostic biomarkers, and ultimately improve patient outcomes. 

1.2.4. Synthesis of the Literature on DNA Methylation in Alzheimer’s Disease. 

Numerous studies have examined changes in DNA methylation in Alzheimer's disease 

(AD) patients. Research indicated 71 CpGs linked with AD pathology burden in 708 autopsied 

brains within genes such as ABCA7 and BIN1, which contain AD susceptibility variants [84].  

Concurrently, another study identified 948 CpG sites across 918 genes associated with late-onset 

AD (LOAD) in the frontal cortex, suggesting that DNA methylation alterations could influence 

AD onset and progression [85].  However, these studies could not distinguish between DNA 

methylation and hydroxymethylation, pointing out the necessity for further research to clarify the 

impact of these epigenetic modifications in AD. 

https://www.zotero.org/google-docs/?jQhPuO
https://www.zotero.org/google-docs/?a3Ax5y
https://www.zotero.org/google-docs/?9aoFRr
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In related research, K. Lunnon et al. (2014) discovered a differentially methylated region 

in the ANK1 gene linked to neuropathology in the entorhinal cortex, a key AD-affected area 

[86]. This highlighted the utility of sequential replication designs in identifying methylomic 

variations associated with complex diseases such as AD. Another study found 858 differentially 

methylated sites related to 772 genes, enriched in AD genetic risk loci and associated with 

normal aging processes, particularly in cell adhesion, immunity, and calcium homeostasis [87]. 

Furthermore, an independent study validated 11 differentially methylated regions in a set of 117 

subjects and identified genes like ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1, and 

SERPINF2 with altered RNA expression in AD [84].  Lastly, Tan et al. (2013) explored the role 

of the BIN1 gene as a significant risk locus for LOAD, detailing its involvement in tau pathology 

modulation, endocytosis, inflammation, calcium homeostasis, and apoptosis, as well as the 

potential methylation of the BIN1 promoter, illustrating the intricate genetic and epigenetic 

interplay in AD [88].  

One study focused on comprehensively fine-mapping DNA methylation (DNAm) at 

enhancers in neurons [70], revealing that these enhancer regions in AD neurons were 

hypomethylated. Hypomethylation of enhancers in AD neurons suggests a disruption in the 

epigenetic regulation of gene expression, which may contribute to the development and 

progression of the disease. The same research group found that integrating their epigenetic and 

transcriptomic data demonstrated a pro-apoptotic cell cycle reactivation in post-mitotic AD 

neurons, possibly contributing to neuronal dysfunction and loss in AD. 

Vitamin B supplements have shown promise in delaying or maintaining cognitive decline 

in elderly adults, with meta-analysis results indicating significant effects on global cognitive 

function and homocysteine levels [89]. Overall, the literature review highlights the complex 

https://www.zotero.org/google-docs/?OrVMyW
https://www.zotero.org/google-docs/?KNBAEI
https://www.zotero.org/google-docs/?nYrLyH
https://www.zotero.org/google-docs/?bNyaOB
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relationship between methylation and Alzheimer's disease, emphasizing the importance of 

further research to better understand the roles of these epigenetic modifications in AD 

pathogenesis and their potential as therapeutic targets. 

1.2.5 Synthesis of Literature on YY1 and TAF1 

Yin Yang 1 (YY1) is a multifaceted transcription factor central to various cellular 

activities with a known binding DNA sequence [90]. Structurally, the gene for YY1 is highly 

preserved across eukaryotic organisms, suggesting an essential biological significance across 

eukaryotes. YY1 features four zinc fingers at its C-terminus at the protein level, enabling it to 

bind to DNA securely. Beyond this, the protein contains various domains facilitating interactions 

with other proteins [90], [91]. Initially, YY1 was identified for its role in repressing the adeno-

associated virus, such as inhibiting its replication [92]. YY1 has since evolved in the scientific 

literature to be a versatile regulator of numerous genes. Reflecting this duality, its name 

symbolizes its capacity to activate and repress gene transcription, depending on the cellular 

context. 

YY1 is pivotal in various cellular processes, including cell proliferation, differentiation, 

and apoptosis, making it highly relevant in cancer research. YY1 can function either as a tumour 

suppressor or an oncogene, depending on the cellular context. One study demonstrated that 

silencing YY1 increases the activity of the RKIP promoter in lung cancer [93], [94], illustrating 

that YY1 and RKIP regulate each other's expression through feedback loop mechanisms in an 

inverse reciprocal manner. Additionally, the activity of YY1 is influenced by its cofactors; 

methylation of YY1 and these cofactors can affect mRNA expression levels and broader 

biological functions, such as immune infiltration [93]. This interaction underscores the 

complexity of YY1's role in cellular regulation and its potential impact on cancer pathology. 

https://www.zotero.org/google-docs/?W1MdI5
https://www.zotero.org/google-docs/?wlfbcO
https://www.zotero.org/google-docs/?NTjoGA
https://www.zotero.org/google-docs/?iJ98G6
https://www.zotero.org/google-docs/?c5dOgr
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YY1 acts as a repressor through three primary mechanisms [30], [91]. Firstly, it can 

engage in direct competition at binding sites. This involves YY1 competing with activating 

factors for overlapping DNA binding sites, leading to diminished promoter activity. Notably, the 

α-actin muscle regulatory elements (MREs) and the serum response element (SRE) of the 

FBJ/FBR osteosarcoma gene exemplify this overlap. A second mechanism by which YY1 can 

act as a repressor is interfering with other transcriptional activators. For instance, the c-fos 

promoter has overlapping sites for YY1 and SRE and features additional YY1 sites. When YY1 

attaches to these distal sites, it represses the upstream CRE promoter. YY1 can obstruct the 

conventional communication pathways of other activators, like the cAMP response element 

binding (CREB) protein, hampering their activation. Certain coactivators, like E1A, can block 

YY1-induced repression by disturbing the YY1–CREB interaction. In its third model of 

repression, YY1 recruits corepressors that either directly induce transcriptional repression or 

stimulate chromatin restructuring. This restructuring enhances YY1's ability to interact with 

DNA and repress transcription. YY1's zinc-finger and glycine-rich domains are pivotal for its 

repression activity. If these regions are altered, the repression capabilities of YY1 fusion proteins 

are compromised. To boost its repression, YY1 collaborates with several cofactors, including 

mRPD3, GATA-1, and members of the Smad family. In short, YY1's transcriptional regulation 

intricacies encompass competitive interactions, direct interference with other activators, and 

multifaceted collaborations with corepressors and cofactors. 

YY1’s activating role can be conceptualized through three primary models [91]. First, the 

direct activation model suggests YY1 promotes transcription through direct interaction with 

other transcription factors, such as TATA-binding protein (TBP), TAF, and transcription factor 

IIB (TFIIB), utilizing specific activation domains within its structure. This model, however, 

https://www.zotero.org/google-docs/?35SttY
https://www.zotero.org/google-docs/?FYPPoR
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might represent a simplified version of YY1's intricate regulatory mechanism, with additional 

cofactors potentially playing a role [91]. In the second model, YY1 can act as an activator 

through the cofactor-induced inhibition of its repressive function. In this mechanism, structural 

alterations in YY1, possibly induced by interactions with other cellular elements, unmask the N-

terminal activation domain, facilitating a transition from a repressive to an active state [91]. 

Lastly, the recruitment of coactivators model proposes that YY1 can initiate transcription by 

recruiting other activating factors to the target promoter [91]. This often involves coactivators 

with histone acetyltransferase (HAT) activity, enhancing transcriptional activation by facilitating 

more accessible DNA interactions [95].  

TAF1 is one of the TBP-associated factors (TAFs) and a component of the TFIID 

complex [96], [97], [98]. TAF1 recognizes and binds to specific core promoter elements, such as 

the initiator (Inr) and the downstream core element (DCE), helping fine-tune the promoter 

activity based on the gene and cell type. In addition, TAF1 can modulate the binding of TFIID or 

TBP to the core promoter, acting as both a repressor and activator of basal transcription, 

depending on the context. It can inhibit the DNA-binding activity of TBP, a component crucial 

for initiating transcription, through two separate regions at its N-terminus, designated as TAND1 

and TAND2. These regions interact with TBP, blocking TATA recognition and competing with 

other factors that facilitate the TBP-TATA complex formation, thereby regulating transcription 

activity. Moreover, TAF1 plays a crucial role in recognizing and interacting with various core 

promoter elements, showcasing its importance in broader promoter recognition, especially in 

TATA-less promoters. It may function as a promoter-marking factor, helping in transcriptional 

memory as cells progress through the cell cycle, maintaining its association with active gene 

promoters even during mitosis. 

https://www.zotero.org/google-docs/?iB4oa7
https://www.zotero.org/google-docs/?XCDMW8
https://www.zotero.org/google-docs/?NZdB1k
https://www.zotero.org/google-docs/?hfZFZY
https://www.zotero.org/google-docs/?qlSLOS
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1.2.6 Gaps in Current Knowledge and Potential Research Directions 

One notable gap in genomics research is the limited focus on DNA methylation 

signatures in KIRP. Although studies on ccRCC offer valuable insights, there is a critical need to 

broaden investigations to include the molecular and epigenetic characteristics of KIRP. 

Deepening our understanding of the methylation signature and its impact on KIRP can enhance 

our biological comprehension of the mechanisms underlying renal cell carcinoma and may lead 

to novel therapeutic and diagnostic biomarkers. The role of DNA methylation in regulating 

transcription and transcription factors in KIRP remains relatively underexplored.  Previous 

research on MCT4 regulation in ccRCC has unveiled new epigenetic mechanisms potentially 

affecting patient survival [82]. Applying the framework in this thesis to other studies, alongside a 

genome-wide analysis, could uncover methylation variations linked to AD, thereby broadening 

the network of implicated genes and identifying potential epigenetic modifiers. 

Another area that may require further exploration is understanding methylation dynamics 

in Alzheimer's disease. The literature review emphasizes the importance of additional research to 

better understand these epigenetic modifications' roles in AD pathogenesis and their potential as 

therapeutic targets. Additionally, sequential replication design and genome-wide analysis could 

be employed to detect methylomic variations linked to complex diseases like AD, further 

expanding the network of genes implicated in the disease and suggesting potential epigenetic 

modifiers. 

Despite considerable research, the roles of YY1 and TAF1 in gene regulation through 

methylation are not fully elucidated, particularly regarding their interactions with other 

transcription factors. A gap exists in our understanding of the molecular pathways that govern 

these interactions, often mediated through epigenetic changes such as DNA methylation. 

https://www.zotero.org/google-docs/?GO5q38
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Investigating how YY1 recruits co-activators and corepressors and how TAF1 affects TFIID’s 

binding to core promoters, especially in TATA-less promoters, remains largely unexplored. 

Moreover, studying the effects of post-translational modifications on YY1 and TAF1’s activity, 

such as their impact on DNA-binding affinity and protein interactions, presents a rich field for 

exploration. 

Another critical area for research is the dynamic regulatory spectrum of YY1 and TAF1 

in response to various cellular stimuli and environmental factors. This encompasses a detailed 

analysis of how YY1 is modulated during cellular stress, developmental processes, and disease 

states. It is essential to understand the implications of its domain structures in diverse cellular 

contexts, including gene silencing and chromatin organization. In the case of TAF1, its 

multifaceted roles in transcriptional memory and interactions with different core promoter 

elements offer an expansive landscape for investigation. 

Lastly, the therapeutic potential of YY1 and TAF1 is an underexplored avenue. While 

their critical roles in fundamental cellular processes are acknowledged, leveraging this 

understanding for disease intervention presents a novel frontier. Future research could focus on 

developing targeted therapies, such as specific inhibitors or modulators, which could precisely 

influence the activity of these transcription factors or their interacting partners. Such 

interventions could provide innovative approaches to modulate gene expression in various 

pathological conditions, marking a significant step in gene regulation and therapeutic 

development. 

This thesis addresses some of these gaps, highlighting the need for further comprehensive 

research across various aspects of genomics. By advancing our understanding of DNA 

methylation, gene expression regulation, and the interactions of transcription factors, we can 
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uncover novel therapeutic targets and diagnostic biomarkers, ultimately improving disease 

management and treatment outcomes. 
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CHAPTER 2: Optimizing KIRP Prognosis Prediction: 

Leveraging EM-Enhanced K-Means Clustering for DNA 

Methylation Signature Analysis in KIRP 

2.1 Publication Stage and Co-author Statement 

This chapter forms the basis of the manuscript titled "Predicting Patient Survival 

Outcomes by Combining k-means and Expectation Maximization Approaches with Methylomic 

Data." Preparation of the manuscript has been paused to prioritize other sections of this thesis. I, 

Gatonguay Siu, am the primary author responsible for the conception of the study, data analysis, 

coding, and manuscript preparation. Dr. Touati Benoukraf provided guidance on study design, 

while Dr. Roberto Tirado-Magallanes contributed several key concepts used in my early research 

and model development. 

2.2 Objective and Machine Learning Implementation 

2.2.1 Objectives 

We hypothesize in this section that integrating an estimation maximization (EM) algorithm with 

k-means clustering can significantly improve the classification of distinct patient populations 

based on DNA methylation patterns in Kidney Renal Papillary Cell Carcinoma kidney cancer, 

thus enhancing our overall ability to understand KIRP and implement different treatment 

strategies. This approach will allow for discovering key differentially methylated CpG sites, 

which can serve as potential biomarkers for KIRP prognosis and contribute to developing 

personalized treatment strategies. To this end: 
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● The first objective is to create a working, testable algorithm that combines a k-means 

clustering algorithm and an estimation maximization (EM) algorithm to reduce noise and 

identify patient clusters with distinct methylation patterns associated with overall survival 

(OS) in KIRP patients. 

● Following this, we will evaluate the performance of the ML approach in classifying KIRP 

patients based on OS in comparison to traditional k-means clustering of methylation 

signatures alone. 

● Investigate the clinical features and differentially methylated CpG sites significantly 

enriched in each patient cluster, assessing their potential as biomarkers for predicting 

KIRP outcomes. 

● Demonstrate the utility of the proposed approach in identifying key DNA methylation 

CpG sites associated with KIRP and improving the accuracy of KIRP prognosis, which 

could contribute to developing personalized treatment strategies. 

2.2.2 Implementation of hybrid k-means EM investigative model 

 EM is a general-purpose iterative algorithm used in machine learning to maximize a 

posteriori (MAP) estimates of parameters in statistical models; in our case, the parameter is the 

probes used in the k-means clustering. Given that we know the outcome of the patients, the EM 

part of the algorithm would be considered supervised, and the k-means would be regarded as 

unsupervised. EM is beneficial in situations where some of the variables or parameters are 

unobserved or hidden. The idea behind EM is to alternate between estimating the missing or 

hidden variables and updating the model parameters based on these estimates. This process 

continues until the estimates of the model parameters converge to a maximum or a local 

maximum; a flowchart summary of the process is illustrated in figure 6. 
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2.2.2.1 The machine learning CpG biomarker isolation workflow: 

Phase 1, called Initialization (e0), involves using all the available probes as a baseline. 

This means that the (probe ✕ sample) matrix initially contains a row for each DNA CpG 

probe with no NA value in any samples. The matrix is then grouped into different 

populations/clusters using k-means clustering. Each cluster is scored based on clinical 

data and organized into predicted survival outcome groups. 

 

Phase 2, called the Estimation Maximization Inner Loop, involves copying the probes from the 

current best list and creating a new estimation by randomly adding and removing a few probes.  

1. The probes from the current best list are copied to create a trial clone. 

2. The trial clone randomly adds and removes a unique set of probes to create a new 

estimation. Up to half of the current probes are removed, and up to the same number of 

unused probes are added. 

3. Unsupervised k-means clustering is performed on the samples using the probes in the 

new estimation, resulting in three groups (k = 3). 

4. Scoring uses clinical data to compare the new estimations to previous ones. A new best-

estimated probe list is saved if one of the following criteria is met (in order of priority): 

a. The clustering of the worst outcome group is more accurate. 

b. The best OS group has a better censored-to-death ratio without hindering the 

worse outcome group. 
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c. Scoring improves because more samples are added to the extreme ends of the 

groups, indicating that patients are correctly classified into the best and worst 

predicted survival groups without losing accuracy in prediction. 

d. The new estimation has fewer probes, but the scoring remains the same. This 

maximizes the weight of new probes or removes probes in the k-means clustering 

step. 

5. The best estimation is fed back into the k-means clustering in step A. The process is 

repeated until a predetermined number of new estimation trials fail to improve the best 

estimation, indicating that the best list of probes for k-means clustering to segregate 

survival outcomes in KIRP tumour samples has been reached. 

Phase 3 follows a process similar to the Estimation Maximization Inner Loop in Phase 2 but with 

slight modifications to the scoring criteria. After optimizing the scoring in Phase 2, the focus in 

Phase 3 shifts to enhancing the model's robustness. To achieve this, the scoring criteria now 

prioritize adding probes when the scoring is equal to the best estimation. 

 

Phase 4, the Estimation Maximization Optimization, saves the probe list that yields the best 

results in Phase 3 and removes them from the potential probe pool. The algorithm returns to 

Phases 1-3, using fewer probes, and iterates ten times (Conv.1 - Conv.10). Finally, the list of 

probes from the previous ten instances is initialized at the start of Phase 2. In contrast, the rest of 

the probes remain available to be added and exchanged during the EM cycles, resulting in an 

optimized list of probes. At the end of Phase 3, with the new probes, our optimized list of CpG 

probes is finalized. 
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Figure 6. The flowchart illustrates the steps to combine k-means and estimation maximization into three phases for 

a machine learning algorithm. Phase 1, initialization of e0, involves using all the available probes as a baseline for 

future phases in the algorithm. Phase 2 & 3, the Estimation Maximization inner loop, consists of copying the probes 

from the current best list and creating a new estimation by randomly adding and removing a few probes until the 

probes converge onto the maximum possible score. Phase 4, the Estimation Maximization Optimization, involves 

probe lists from several converged iterations to build a new list of probes that converges and an optimized probe list 

that more accurately represents a global maximum score.  
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2.2.2.5 The metric for the scoring and gradient for the investigative model 

 Each patient will die due to cancer or stop following up with checkups. However, no 

longer following through with follow-ups does not necessarily mean survival, but the elapsed 

time since the initial cancer diagnosis may provide helpful information. Therefore, it is crucial to 

have information about the Last Communication Contact from the Initial Pathologic Diagnosis 

Date (lc_from_IPDD) as well as the date of death from the initial diagnosis  [99], [100]. 

We used the F1 to identify the cluster with the poorest projected overall survival rate.  

The F1 score is a commonly used metric for evaluating the performance of machine learning 

models in binary classification problems, particularly when the data classes are imbalanced. It 

ranges from 0 to 1, where 1 represents the best possible score. F1 is a harmonic mean of precision 

and recall, two other important evaluation metrics, which ensures a balance between them. 

Where recall is the proportion of true positive predictions among all actual positive instances, 

and precision is the proportion of true positive predictions (TP) among all positive predictions. In 

other words, recall measures how many of the actual positive instances were correctly identified 

by the model (i.e., the model's ability to find all relevant cases within a dataset), while precision 

measures how many of the instances predicted as positive by the model were actually positive 

(i.e., the accuracy of the positive predictions made by the model). 

The F1 scores evaluate the hyperparameters in our predictive machine-learning model. 

Specifically, we used this score to identify the CpG sites that best group patients in the poorest 

overall survival group. It's crucial to highlight that whether we utilized the F1 score or another 

metric, the general trends remained consistent. However, the specific highlighted CpG sites 

varied based on the chosen metric.  

 

https://www.zotero.org/google-docs/?woHlDP
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Precision = D / (D + (l/α)      (1) 

Recall = D / (D + σ)       (2) 

 F1  =  
 2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
      (3) 

 

The F1 is calculated using Equation 1-3, where 'D' represents the count of patients within 

the cluster who died due to cancer, 'l' signifies the number of days counted in lc_from_IPDD, 'α' 

is the median survival period (in days) before patients died of cancer across all patient data, and 

'σ' is the number of know patients that succumb to cancer in another cluster. 

 

The score (Rscore) is used to determine the best predicted overall survivability group and 

is calculated using equation 2: 

 

 Rscore = (D/L) * (d/Beta)        (4) 

  

In this context, 'D' stands for the count of patients who have died from cancer, 'L' 

represents the number of samples in the cluster, 'd' is the number of days patients survived before 

succumbing to cancer, and Beta is the median value of the number of days since the last 

communication contact from the initial pathologic diagnosis date (lc_from_IPDD) for all clinical 

data patients. Note that there are cases where patients who have died from cancer did not have 

recorded lc_from_IPDD days. If there are no reported cancer deaths, 'D' and 'd' are assigned a 

value of 0.01 to avoid yielding a score of zero. A lower Rscore is desirable for identifying the most 

effective probes for survivability prediction. 
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The final condition under which a set of probes could be regarded as the new optimum is 

when a smaller probe list is found that achieves the same score. The computational time 

efficiency is an important constraint of the Expectation-Maximization (EM) algorithm. This 

algorithm operates on multiple iterations with linear complexity, decreasing performance as 

input data increases. To address this, we've strived to limit the number of CpG probes involved 

in the computation to those most likely to be genuinely significant. To ensure this, the final 

scoring condition checks whether the new set of probes has a smaller total number while 

maintaining the same score. 

2.2.3 Implementation of the Hybrid Predictive Model 

 The ML predictive model underwent several notable changes to improve efficiency and 

standardize the metric used to evaluate hyperparameters. In the context of machine learning, 

hyperparameters are predefined settings that control the training process and are not learned 

directly from the data. In our model, the hyperparameters are the probes, each representing a 

scalar observation of a single location along the genome that can have a varied methylation level. 

These probes are utilized to determine the dimensionality of the k-means clustering process, 

where the number of clusters is fixed at three. The purpose of this step is to reduce noise in the 

observations, enabling the model to focus on meaningful patterns in the data. 

The centroids of the k-means clusters, which represent the model parameters, are derived 

from the training data and subsequently used for predictions and classifications. The dataset was 

divided into training and testing subsets to ensure reliable model evaluation. The training data 

comprises 90% of the samples selected randomly, while the remaining 10% are held out for the 

testing phase. This workflow ensures that the model's performance is validated on unseen data, 

allowing for an accurate assessment of its predictive capabilities. 
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Phases 1 -3 remain the same. In phase 4, the list of probes from the previous instances is 

combined to create an extensive list of CpG probes used to determine the centroid locations in 

hyperdimensional space using k-means clustering. The location of each centroid is saved and 

held constant to be used to predict the grouping of new samples. The metric for scoring remained 

unchanged from the previous classification model 

2.3 Material and Methods 

2.3.1 TCGA Data Acquisition and Selection Criteria 

We obtained DNA methylation beta value profiles for all TCGA patients from the 

National Cancer Institute (NCI) Genomic Data Commons (GDC) using the TCGAbiolinks API 

[99], [100]. We restricted samples to KIRP (Kidney Renal Papillary Cell Carcinoma) TCGA 

PanCancer Atlas for the main section of our analysis to ensure uniformity in clinical information, 

consistent processing, and normalization of copy numbers [101], [102]. Furthermore, we only 

used files sequenced via Illumina Infinium Human Methylation 450K BeadChip, which 

facilitated data processing using the manifest files associating each probe with additional 

information. We extracted the patient's race, weight, age, gender, and pathologic tumour stage 

from the American Joint Committee on Cancer (AJCC), as well as the survival information for 

each patient from the clinical data table, available on either the GDC or cbioportal websites [99], 

[100]. For the gene expression analysis, the data was also downloaded from GDC; however, the 

RNA-seq data was processed for patient confidentiality; as such, the files already calculated the 

TPM values for each patient sample; all samples with Illumina 450k DNAm profiles had 

corresponding RNA-seq quantization data. 

https://www.zotero.org/google-docs/?rneeZd
https://www.zotero.org/google-docs/?yLgHsx
https://www.zotero.org/google-docs/?mfjndJ
https://www.zotero.org/google-docs/?mfjndJ
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2.3.2 NCI GDC Methylation Array Harmonization Workflow and Pre-processing. 

The NCI GDC utilizes a Methylation Array Harmonization Workflow to process raw 

methylation array data from Illumina Infinium DNA methylation arrays (HM27 and HM450) and 

EPIC platforms. This workflow measures the level of methylation at known CpG sites as beta 

values by calculating array intensities (Level 2 data) using the formula Beta = M/(M+U), where 

M represents the methylation intensity signal, and U represents the unmethylated intensity signal 

measured by the Illumina 450k array. The SeSAMe [103] software package processes the raw 

methylation array data. From the SeSAMe output files, we utilized the Methylation Beta Value 

TXT file derived from the two Masked Methylation Array IDAT files. 

2.3.3 Beta and M-values Calculation and Their Significance 

The Beta-value method has a direct biological interpretation [104], [105], ranging from 0 

(unmethylated) to 1 (fully methylated) and represents the average of DNA methylation within a 

specific cytosine across all reads (i.e. depth of coverage), but they can be affected by background 

noise. They may be less suitable for detecting small methylation differences. M-values have a 

more symmetric distribution and perform better in Detection Rate (DR) and True Positive Rate 

(TPR) for highly methylated and unmethylated CpG sites, making them more suitable for 

sequencing-based studies. We calculated M-values using the formula: 

 

Mi = log2[ βi / ( 1 - βi )]    (5) 

https://www.zotero.org/google-docs/?uuJlIh
https://www.zotero.org/google-docs/?lrfWQr
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2.3.4 Determining Optimal Clustering in Methylation Analysis 

 In our analysis, we utilized hierarchical clustering, grouping samples based on similarity 

in their methylation profiles. To maintain accuracy, we excluded any probe sites with absent M-

values measuring methylation levels in at least one sample. We employed the within-cluster sum 

of squares (WSS) method to determine the optimal number of clusters by minimizing the 

variation within each group. We identified three as the ideal number of clusters using the 

"elbow" method, which locates the point where increasing the cluster count doesn't substantially 

lower the WSS. 

2.3.5 Heatmap Generation and DMR and DEG Criteria 

A CpG probe was considered a differentially methylated region if its average M-value 

difference between normal tissue samples and one of the tumour clusters exceeded ±3Z, 

measured against the near-normal ML cluster compared to the normal tissue group, along with 

an adjusted p-value of < 0.01. The p-value was calculated based on the paired Kolmogorov-

Smirnov test with the Bonferroni-Hochberg correction. Following this, we further restricted the 

list of probes to those labelled as "Promoter*" in the "Regulatory_Feature_Group" column found 

in the hm450k manifest file [36] to reduce computational RAM to under 32Gb when building the 

heatmaps.  

In the context of investigating correlative differentially expressed genes (DEGs) for our 

groups, slight modifications were made. For the DMR magnitude and binary heatmap 

generation, we randomly sampled the same 75% of the DMR regions to reduce computational 

RAM to under 32G yet retain information about the distribution of the DMR locations within the 

genome. The “Relation_to_UCSC_CpG_Island” of the manifest file gave us information about 

https://www.zotero.org/google-docs/?8jSQ6N
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the location of each of our DMRs (not restricted to the 75% sampling). For the DEGs, less 

restrictive criteria were used in which any gene would be considered differentially expressed if at 

least one of the groups had a p-adjusted value of < 0.01 based on the pairing of the Kolmogorov-

Smirnov Test, with the Bonferroni-Hochberg correction.  

2.3.6 Survival Analysis and Clinical Features 

We used the Kaplan-Meier (KM) survival curve to estimate the survival function from 

data containing censored data points and truncated or missing values. We built a list of patient 

TCGA IDs for each cluster and saved them on the cbioportal website as unique groups to create 

the KM survival curves later. Of the 320 samples that fit our initial research criteria, 266 

remained in the cbioportal database that could be used in the KM-survival curve. 

We also included the clinical features of each patient on the cbioportal website. These 

features include sex, age, and tumour stage.  We downloaded this data in table format and 

analyzed it based on clusters at the e0 stage, and afterward, the EM k-means algorithm optimized 

the clustering of each patient sample. The data for the fraction of genome altered and mutation 

count was also downloaded from the cbioportal website in a boxplot format, in which the P-

values were calculated using the Kruskal-Wallis test along with the Benjamini & Hochberg 

method. Although the Kruskal-Wallis test can use two or more independent groups, we restricted 

the test to a pairwise comparison. 

2.3.7 Global Analysis of CpG Methylation, Genes, and GO Terms 

We analyzed all differentially methylated CpG sites, taking a comprehensive approach 

rather than limiting our focus to the CpG sites previously identified as biomarkers by our 

machine learning (ML) algorithm for patient grouping. Differentially methylated probes had the 
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same criteria as when building the heatmaps, with one significant change: we used all CpG sites, 

not just the CpG sites that were labelled as "Promoter*" in the "Regulatory_Feature_Group" 

column found in the hm450k manifest file [35]. We acquired the gene symbols of the genes 

associated with differentially methylated regions from the hm450k manifest file. When a probe 

was linked to multiple genes, all related genes were included in the global enrichment analysis. 

We compiled a list of all known KIRP-associated genes from the National Center for 

Biotechnology Information (NCBI) using the keyword search "KIRP" as a reference. After 

downloading all genes in a table format, we filtered them for KIRP-related genes specific to 

Homo sapiens. This list allowed us to compare the differentially methylated genes against the 

known genes associated with KIRP. This gave us a simplified KIRP gene enrichment analysis to 

compare each group and condition. 

Subsequently, we examined the differences between the k-means and k-means-EM 

algorithms in isolating genes associated with differentially methylated regions (GADMR; Figure 

4). We utilized gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses on David's platform [106].  This allowed us to pinpoint significant changes 

in GO and KEGG terms isolated within each cluster when adding the EM stage to the ML 

algorithm, leading to insights in the context of the underlying biological processes, molecular 

functions, and KEGG pathways that significantly impact overall survival. This comparison 

employed a significance threshold of P < 0.05 for the subset of genes under review. 

  

https://www.zotero.org/google-docs/?gHNR1h
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Figure 7. Venn Diagrams comparing gene-associated DMR Isolation by k-means and k-means-EM Algorithms: 

This Figure displays the overlap and differences in gene isolation between the k-means and k-means-EM algorithms 

in identifying genes associated with differentially methylated regions. Each diagram shows the number of shared 

genes isolated by both algorithms and those unique to each method. 
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2.3.8 Distribution analysis of the isolated biomarkers 

While the primary aim of our analysis did not directly focus on the biomarkers, we 

recognized the importance of understanding how the isolated biomarkers' distribution compared 

with the overall CpG probe distributions in our dataset. We conducted a distribution analysis to 

assess whether the biomarkers share similar distribution characteristics with the broader set of 

CpG probes. We employed the Kolmogorov-Smirnov Test to compare the biomarker's averaged 

methylation values (m-values) distribution with the global averaged CpG probe m-values 

distribution. This comparison helps determine if the biomarkers' distribution patterns are 

statistically consistent with or divergent from the general CpG probe population. Furthermore, 

we applied the Bonferroni-Hochberg correction to the Kolmogorov-Smirnov Test results.  

In addition to comparing the biomarkers' M-values with the global CpG probe 

distributions, we also examined how these biomarkers' M-values align with the distributions of 

specific CpG probe clusters. This secondary comparison aimed to discern whether the 

biomarkers follow a distinct distribution pattern within specific clusters of CpG probes, 

providing deeper insight into the biomarkers' behaviour and characteristics within the subset of 

the data. 

2.3.9 Analysis of dysregulation of transcription factor motifs 

  An additional angle to our investigation focused on how the differentially methylated 

CpG markers influence transcription factor binding sites (TFBS) in the context of kidney renal 

clear cell carcinoma (KIRP). To do so, we used the same isolated DMR as earlier in our analysis, 

namely the CpG probes that had an average M-value difference between normal tissue samples 

and one of the tumour clusters that exceeded ±3 standard deviations (±3Z) measured of the near-
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normal ML cluster compared to the normal tissue group along with a p-adjusted value of < 0.01 

bases on the pairing the Kolmogorov-Smirnov Test, with the Bonferroni Hochberg correction.  

The coordinates of these CpG sites were then converted from the human genome 

assembly hg19 to hg38 to employ them within MethMotif, a tool for studying TFBS occurrences 

and their methylation states across genomic loci. Using MethMotif’s "Batch Query," we mapped 

these regions and retrieved TFBS and their CpG methylation levels in the HEK293 cell line, 

chosen for its similarity to kidney tissue samples. Subsequently, we isolated all CpG sites within 

the motif regions of various transcription factors (TFs). We performed an analysis to elucidate 

the overall changes in methylation seen at TF binding sites. We investigated specific TF-

associated motifs with initial corresponding beta values that overlapped our differential 

methylated sites in at least 15 CpG markers according to Methmotif. Converting the beta values 

for these sites from hg38 back to hg19, we were able to compare the changes seen in the motif 

methylation of various transcription factors across healthy samples, cell line samples, and 

samples from near-normal cl3, cl2, and CIMP cluster cl1, which was done for all 12 isolated TFs 

by use of boxplots. 

A pairwise ANOVA was conducted across the different populations. The false discovery 

rate (FDR) was then adjusted using the Benjamini & Hochberg method to identify the most 

relevant transcription factors (TFs) for further study. To corroborate the expression levels of 

these TFs, an additional validation step was implemented using BioPortal, which applies RSEM 

(RNA-Seq by Expectation-Maximization) for mRNA quantification [100]. 

RSEM is designed to deduce gene and isoform expression levels from RNA-Seq data. It 

employs statistical models to distribute reads to their probable gene or isoform origins, 

particularly when reads may align with multiple locations. Through its expectation-maximization 

https://www.zotero.org/google-docs/?6irIZb
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(EM) algorithms, RSEM offers refined estimates of gene and isoform expression, enhancing the 

accuracy of the mRNA quantification process. The RNASeqV2 data, as referenced in cBioPortal, 

undergoes normalization and processing using RSEM, aligning with the standards of TCGA. In 

this context, the "normalized_count" in the .rsem.genes.normalized_results file signifies a 

transformed value of the "raw_count." This transformation adjusts for technical variations across 

samples, such as differences in sequencing depth and library size, by normalizing against the 

75th percentile of all counts and applying a scaling factor. A flowchart to summarize the 

methodology is shown below in figure 8. 
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Figure 8. Flowchart of DMR Processing and Transcription Factor Analysis in KIRP. Starting with all non-NA CpG 

probes, the analysis narrows down to significant DMRs to examine their influence on TFBS in kidney renal clear 

cell carcinoma. Utilizing MethMotif, overlaps between DMRs and TFBS were identified and analyzed, followed by 

processing to isolate and examine transcription factors pertinent to the study's focus on differential methylation and 

its implications. 
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2.4 Results 

We have developed an EM k-means algorithm to improve the prediction of survival 

outcomes of KIRP patients. The EM k-means algorithm will ideally cluster groups so that 

differential methylation analysis highlights probes associated with genes and pathways relevant 

to kidney cancer. To test the EM k-means algorithm, we benchmark it against unsupervised k-

means clustering alone, using all non-NA hm450k CpG probes, which were also used in the E0 

(step 1 of the implementation).  

2.4.1.A. CpG promoter methylation signatures clustered via all probes at e0. 

We characterized a CpG island methylator phenotype (CIMP) (Figure 9.A) that exhibited 

predominant hyper-methylation across most CpG promoter sites, irrespective of the methylation 

states in normal samples in our first cluster grouping (cl1). Interestingly, a small portion of the 

CpGs in this cluster showed hypo-methylation in areas that typically present higher methylation 

levels in normal tissues. This cluster demonstrated the poorest survival rates marked by a 

significant downturn in the Kaplan-Meier (KM) survival curve (Figure 9.C). This group 

contained 10 samples, of which 6 recorded deaths, accounting for 15.79% of all fatalities in the 

processed dataset. The DNA methylation profile of the second cluster (cl2) depicted a minor 

segment of hypermethylated CpGs. The third cluster (cl3) revealed an evenly distributed 

methylation pattern, with a slight inclination towards lower CpG methylation levels. The KM 

survival curves for cl2 and cl3 were similar, plateauing at 66.16% and 63.90%, respectively. 

2.4.1.B. DNA methylation signatures clustered using EM algorithm 

In this round, KIRP tumours were again segregated into three DNA methylation 

subgroups through k-means during the heatmap creation process. CpG biomarker probes were 
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selected for this process based on the hybrid of k-means and estimation-maximum. The first 

cluster (Cl1) demonstrated the worst overall survival rate, as shown by a complete drop in the 

KM survival curve (Figure 9.D). This group included 27 samples with 21 reported deaths, 

making up 55.26% of all recorded fatalities in the post-processed dataset. Similar to the previous 

analysis, the DNA methylation profile of Cl1 exhibited a CIMP profile (Figure 9.B). The second 

cluster (Cl2), like its k-means-only counterpart, showed a section of hypermethylated CpGs, 

albeit with a more extensive range. The cluster with near-normal methylation signatures 

displayed the highest survival rates, with no death recorded among the 32 samples, equating to 

12.03% of all samples. The intermediate outcome group comprised the remaining 207 samples 

(77.81%) analyzed.  
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Figure 9. Heatmaps represent each cluster's average M-values for all differentially methylated promoter-associated 

CpG sites; the names of the clusters are semi-descriptive, with the near-normal being the tumour cluster that was 

grouped along with the normal tissue samples, the CIMP group being the group displaying a generalize 

hypermethylation pattern, the int_OS group being the intermediate overall survival group, and the norm is for the 

normal tissue samples. The heatmap on the left is clustered at the e0 step, with only k-means (A). The heatmap on 

the right organized the clusters based on the optimized EM k-means algorithm (B). Kaplan-Meier analysis of overall 

survival (OS) based on k-means clustering of methylation signatures in the TCGA dataset at e0 (C) and after 

optimization by estimation maximization (D). 
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2.4.2 Comparative Analysis of Genomic Instabilities 

In the exploration of the mutational landscape of three distinct patient groups 

characterized by their methylation profiles and survival outcomes, the Fraction of Genome 

Altered (FGA) and mutation rates were analyzed using cbioportal [99], [100]. High FGA and a 

high number of mutations can both indicate genomic instability and are often observed in cancer 

cells. While FGA deals with large-scale structural changes in the genome, such as copy number 

alterations, including amplifications (increased copy number) or deletions (reduced copy 

number) of chromosomal segments, mutations refer to specific alterations in the DNA sequence. 

These changes can be small-scale, affecting individual nucleotides (point mutations), such as 

insertions, deletions, and rearrangements of smaller DNA segments. The comparative analysis of 

FGA and mutation rates across three patient groups revealed notable patterns (Figure 10.A-B).  

Group CL1, with a CIMP-high profile, exhibited the highest median FGA at 0.23, coupled with a 

low mutation log2 value of 5.13, establishing the correlation between a CIMP profile in KIRP 

patients and large-scale genomic instabilities. In contrast, Group CL2, with intermediate survival 

outcomes, showed a moderate median FGA of 0.16 and the highest median mutation log2 value 

of 6.08. Group CL3, with the highest survival and a near-normal methylomic profile, had the 

lowest median FGA at 0.08, yet an unexpectedly relatively high median mutation log2 value of 

5.64. This indicated that although the CL3 group had a low level of large-scale mutations, this 

group did have an overall high level of point mutations within the genome. The results after 

optimizing the set of CpG biomarkers by means of the EM k-means clustering groups for 

analysis resulted in similar trends (Figure 10.C-D). The data for the fraction of genome altered 

and mutation count was also downloaded from the cbioportal website in a boxplot format, in 

which the P-values were calculated using the Kruskal-Wallis test along with the Benjamini & 

https://www.zotero.org/google-docs/?moZNBr
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Hochberg method. Although the Kruskal-Wallis test can use two or more independent groups, 

we restricted the test to a pairwise comparison. 
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Figure 10. Comparative boxplots of Fraction of Genome Altered (FGA) and mutation rates (log2 values) across 

three patient groups with distinct methylation profiles and survival outcomes in KIRP (A-B) using only k-means 

clustering to categorize patients or (C-D) using the ML algorithm to categorize patients. 

  



 

91 

2.4.2 Differentially expressed gene & differentially methylated regions 

Our analysis of differentially methylated regions (DMRs) identified 68,599 sites from the 

initial Illumina data using the K-means EM algorithm to classify patients. A substantial overlap 

of DMRs was observed among patients, with a notable negative correlation between DMR 

isolation and overall survival (Figure 11). The CpG island methylator phenotype (CIMP) group 

contained 67,874 (98.94%) of these DMRs, with 42,508 uniquely isolated within this group. 

Patients with intermediate overall survival (OS) exhibited 53,383 (77.82%) DMRs, with 12,167 

being unique, while the best OS group had 41,557 (60.58%) DMRs, 498 of which were unique. 

Further investigations revealed distinct genomic patterns: DMRs unique to the CIMP 

group were predominantly within island regions (53.0%), whereas those unique to the 

intermediate OS group were significantly less frequent in these areas (11.4%). All 3,262 

differentially expressed genes (DEGs) were found only in the intermediate OS group, with none 

meeting the FDR threshold of less than 0.01 in other groups. Variations in log-scaled expression 

were recorded with standard deviations of 2.37, 2.16, and 2.48 for the CIMP, intermediate OS, 

and best OS groups, respectively. The average squared differences in log fold change (LFC) 

from normal tissue were 0.97 for the CIMP group, 2.8 for the intermediate OS group, and 0.84 

for the best OS group. Altogether, this highlights distinctive molecular signatures associated with 

this survival category. 
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Figure 11. Correlation between DMRs and DEGs. A) depicts a heatmap that simplifies the initial DMR analysis, 

illustrating the magnitude of M-value shifts in each group compared to normal tissue samples, scaled using M-

values. B) presents a second heatmap that adopts a binary approach to represent the overlap of DMRs across the 

three groups, simplifying the quantization of changes. Panel C) shows pie charts detailing the distribution of DMRs 

relative to CpG islands. D) features a Venn diagram providing another visual representation of the number of DMRs 

in each group, including overlaps.; accompanied by counts of DEGs associated with each of the three overarching 

classifications of patients. 
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2.4.3 Clinical Feature Distribution Post-Optimization 

 The distribution of many clinical features remained close to the same between the e0 and 

optimized clusters. However, some clinical features change to reflect a distribution that more 

closely reflects realistic distributions, such as the tumour stages association and the ratio of 

male/female patient samples in each group, which both showed a shift after optimization of the 

EM k-means algorithm. This shift is especially noticeable in the ratio of male/female patient 

samples for the worst survival outcome group, which starts at 70% female patients in e0, 

dropping to 44.4% after optimization (Figure 12).  



 

94 

 

.. 

Figure 12. The ratio of male to female patients in each cluster (A) at e0 when clustered using k-means on all probes 

as input, or (B) when the input for clustering is optimized using the EM k-means algorithm. (C) The ratio of all male 

to female patients in the TCGA KIRP dataset, and (D) the ratio of all male to female patients recorded as deceased. 
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The tumour stage is one of the most important factors determining cancer patients' 

prognosis and survival outcome. Tumour staging is a process that involves determining the 

extent and spread of cancer in the body. It is based on factors such as the size and location of the 

tumour, as well as whether or not cancer has spread to other parts of the body. In stage T1, the 

cancer is localized to a small area and hasn’t spread to lymph nodes or other tissues. In stage T2, 

cancer has grown, but it hasn’t spread. In stage T3, cancer grows larger and possibly spreads to 

lymph nodes or other tissues. This stage is also referred to as metastatic or advanced cancer. The 

ratio stages of patients within each cluster shift after being adjusted by the EM algorithm. The 

ratio is calculated by equation 3: 

Ratio = s / T       (8) 

Where s is the number of patients in a given stage within a cluster, and n is the total 

number of patients within the cluster. When an estimation maximization is added to k-means 

clustering, the distribution of tumour stage by cluster and predicted survival out is improved. The 

group with the best survival outcome gains a higher ratio of patients in T1, going from 60.00% to 

77.78%. The patients in the worst outcome group shift away from the T2 stage and towards the 

T3 stage after adjustments to the clustering by the EM algorithm. The T2 patient stage ratio goes 

from 66.67% to 40.00%, whereas the T3 stage ratio shifts from 33.33% to 40.00%. (Figure 13) 
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Figure 13. The percent ratio of tumour stages found with just k-means clustering using all CpG probes as input (A), 

compared to the optimized probe CpG input based on the estimation maximization k-means clustering algorithm 

(B). 
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2.4.4 Analysis of Genes associated with differentially methylated regions 

We analyzed the genes associated with differentially methylated regions (GADMR) in 

our three clustered groups. Specifically, the k-means clustering approach categorized patients 

into three groups, one of which—the near normal methylation group —exhibited 3502 GADMRs 

that were significantly distinct, each with an adjusted p-value < 0.01 and an average M-value 

difference exceeding ±3Z. Using the same M-value threshold and adjusted p-value, the group 

with intermediate overall survival (int_os) displayed 7624 significant GADMRs, while the group 

with the CIMP signature showed 12558 significant GADMRs. 

To understand the potential impact of these GADMRs on kidney renal papillary cell 

carcinoma (KIRP), we conducted an enrichment analysis. This analysis compared the GADMRs 

in each group against a dataset of genes associated with KIRP. The CIMP group's GADMRs 

overlapped with 362 out of 534 known KIRP genes. In contrast, the intermediate OS group 

(int_OS) and the near normal group (near_norm) contained fewer overlaps, with 279 and 144 

known KIRP genes, respectively.  (illustrated in Figure 14. A-C). 

Further comparisons were drawn using an enhanced patient grouping methodology that 

combined k-means clustering with expectation maximization. The results were somewhat 

parallel; the enhanced method identified 9515 significant GADMRs in the CIMP group, 7396 in 

the int_OS group, and 2532 in the near normal group. The enrichment followed suit with a 

similar pattern as the k-means grouping method. The CIMP group's GADMRs overlapped with 

298 out of 534 known KIRP genes. The intermediate OS group (int_OS) and the near normal 

group (near_norm) contained fewer overlaps, with 274 and 109 known KIRP genes, respectively 

(shown in Figure 14. D-F). 
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The analysis of the three clustered groups has revealed a substantial variation in the 

number of significantly isolated GADMR, pointing to a complex interplay between methylation 

patterns and patient outcomes in KIRP. The notable difference in the number of GADMR among 

the clusters—particularly between the near normal methylation group (cl3) with fewer GADMR 

and the CIMP/poor_OS group with a significantly higher number—underscores the potential of 

methylation patterns to affect overall survival outcome for patients diagnosed with KIRP.  
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Figure 14. The pie chart represents the relative number of genes associated with differentially methylated regions 

that overlap with known KIRP genes found using either k-means alone or a k-means EM approach for each of our 

three predicted survival outcome groups. 
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2.4.5 Enrichment analysis of changes in the poor overall survival and near normal 

groups 

The changes in GADMR GO and KEGG in the CIMP-like group, in which more patients 

could be isolated after using the EM stage to reduce noise in the methylation data, are relevant 

within the context of cancer metabolism. The changes isolated by the GADMR were found 

within biological processes and pathways that would allow the tumour cells to evade the immune 

system and resist apoptosis, as well as metastasis (Figure 15).  

Conversely, in the near-normal group, characterized by a methylation pattern associated 

with better overall survival, post-EM filtering revealed GADMR-related biological processes and 

pathways that bolster the immune system's capacity to combat tumour cells (Figure 15). The 

critical takeaway from this analysis is the significant role that algorithm choice and subsequent 

data refinement play in deciphering the complex relationships between DNA methylation 

patterns, gene functions, and cancer progression. By contrasting the outcomes from k-means and 

k-means-EM algorithms, we gain nuanced insights into how specific methylation-related 

changes at the genomic level can influence critical biological pathways that dictate tumour 

behaviour and patient prognosis. 
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Figure 15. Bubble plot of Gene Ontology (GO) and KEGG Terms for biomarkers used in categorizing patients 

based on methylation profiles associated with predicted survival outcomes. The bubble plot displays all GO linked 

to the CpG biomarkers with a P value < 0.1. Colour represents the type of GO: blue represents biological processes, 

and green represents molecular functions. The KEGG pathways are also represented in red in this figure.  
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2.4.6. Analysis of ML Biomarkers for different patient populations 

The significance of the biomarkers in the poor overall survival (poor_OS) group, as 

indicated by their distribution being markedly different from the overall averages of the 450k 

CpG probes with a P-adjusted value < 0.05, highlights the potential of these biomarkers in 

prognosticating outcomes for patients. This distinct distribution suggests that these biomarkers 

are not random variations but are statistically meaningful differences that could be linked to the 

underlying biological processes affecting patient survival. In contrast, the inability of the 

biomarker distributions in the other groups to reach statistical significance when compared to the 

overall average M-values implies that the differences in survival outcome may not be 

specifically associated with the differential methylation of these biomarkers. In essence, the 

biomarker's importance is limited to categorizing the patients into groups based on their distinct 

epigenetic profiles. 

Consistent with the patterns observed in our other datasets, the differentially methylated 

CpG sites located within transcription factor (TF) motifs were predominantly hypermethylated in 

the group exhibiting poor overall survival (OS) and characterized by a CpG island methylator 

phenotype (CIMP), as illustrated in our volcano plot analysis (Figure 16). The ratio of the 

differentially methylated CpG site found within the motifs is proportionate to the number of 

differentially methylated sites found for each group (Ratios; CIMP: 0.013, Int_OS: 0.009, 

near_norm: 0.013). 
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Figure 16. Volcano Plots Showing Changes in M-values Across Clusters. Volcano plots illustrate the changes in 

each cluster's average M-value (ΔM-val) compared to the normal value. The y-axis represents the significance of the 

changes, with a threshold set at p = 0.01. The x-axis shows the ΔM-val; negative values represent hypomethylation, 

whereas positive values represent hypermethylation. A standardized ±3Z threshold marks significant deviated 

samples using the vertical lines. Blue dots indicate biomarkers identified using the EM algorithm, while the orange 

dot represents the differentially methylated region (DMR) found within transcription factor (TF) motifs. (A) The 

CIMP/poor overall survival (OS) cluster is on the left, (B) the intermediate survival outcome cluster is in the middle, 

and (C) the near-normal/best OS group is on the right. 

  



 

104 

2.4.7 Dysregulation of Transcription Factor Motifs 

The TF motifs exhibiting more than 15 overlapping CpG sites with corresponding shifts 

in beta values, as indicated by our data, encompass CTCF, EGR2, KLF1, KLF9, REST, SP2, SP3, 

WT1, ZFHX2, ZFHX2, ZNF263, and ZNF654 (Figure 17). A pairwise ANOVA was conducted 

across the different populations for each transcription factor represented in the boxplot. FDR was 

then adjusted using the Benjamini & Hochberg method to identify the most relevant TFs for 

further study using a p-adjusted cut-off of 0.05. Additionally, we corroborate the expression 

levels of these TFs. We used BioPortal, which applies RSEM for mRNA quantification, of the 

transcription factors investigated; the subsets of biologically relevant TF were CTCF, KLF1, 

KLF9, REST, SP2, SP3, and WT1. The change in the methylation pattern of these TF motifs 

shows significance in the CIMP group compared to the HEK293 and normal samples. 

Significance was usually also reached when comparing the methylation levels with the int_OS or 

near_norm groups. 
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Figure 17. Comparative methylation analysis of Beta values across CIMP high, intermediate OS (int_OS), 

Near_norm (Best_OS), cell line (HEK293), and normal samples from healthy controls, focusing on TF motifs (TCF, 

EGR2, KLF1, KLF9, REST, SP2, SP3, WT1, ZFHX2, ZFHX2, ZNF263, and ZNF654) with significant CpG overlap 

and beta value shifts. 
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The overall changes brought on by the implementation of an additional EM stage within 

the ML algorithms in isolating genes associated with differentially methylated regions 

(GADMR; Figure 18-19) displayed gene ontology and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses (on David's platform [107]) that were heterogeneous in 

when looking at the individual impact of each isolated TF motifs. In other words, no readily 

available pattern is discernible. 

However, the sum of effects caused by differentially methylated motifs seems relevant in 

the context of cancer's impact on overall survival. The changes brought on by the additional 

stage of EM in the k-means algorithm enhanced the isolation of DMRs and allowed for more 

precise identification of biological processes and pathways shared by patients with poor OS. In 

this group, the BP and KEEG pathways generally enable tumour cells to evade immune 

detection, resist cell death, and metastasize with the present methylation aberrations. 

  

https://www.zotero.org/google-docs/?epwL0R
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Figure 18. Bubble Plot of key pathways and functions of DMR TF motifs. This plot visualizes the biological 

processes, molecular functions, and KEGG pathways associated with transcription factors CTCF, KLF1, KLF9, 

REST, SP2, SP3, and WT1, which exhibit significant differential methylation within their motifs linked to poor 

overall survival outcomes. The size corresponds to the p-values, and the colour of the bubbles corresponds to the 

pathway of function. 
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Figure 19. Comprehensive Bubble Plot of GO Enrichment and KEGG Pathway Analysis for DMR-Associated 

Genes. This plot elucidates the integrated impact on biological processes, molecular functions, cellular components, 

and KEGG pathways related to the genes associated with differentially methylated regions (DMRs) of transcription 

factor motifs. Instead of individual TF analysis, it aggregates the effects across genes linked to the motifs of CTCF, 

KLF1, KLF9, REST, SP2, SP3, and WT1. These are critical in the context of poor survival outcomes, with 

differential methylation serving as a key modifier. Bubble size indicates the p-value significance, while the colour 

highlights the specific enriched pathways or functions category. 
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2.4.8. Using K-means and EM to create predictive models 

 CpG biomarker probes were selected based on the hybrid of k-means and estimation-

maximum using 90% of patient samples in the training phase. Once the CpG biomarkers were 

isolated, the location of the centroids was determined; the testing samples could be grouped to 

their nearest centroid for investigation. The F1 score in our worst overall survival group 

increased in the testing data, going from 0.611 in training to 0.800 in testing (supplemental). The 

KM-survival curve results reflect the same trends as our investigative model. The second cluster 

(Cl2) demonstrated the worst overall survival rate, as shown by a complete drop in the KM 

survival curve (Figure 20). This group included 28 samples with 20 reported deaths, making up 

52.63% of all recorded deaths in the post-processed dataset. The first cluster starts with the best-

predicted survival rate, with 61 patients in this group and only 4 recorded deaths. However, of 

the last 3 patients that remained in the group after 85 months, 2 succumbed to cancer, breaking 

the expected trend. The intermediate outcome group (cl2) comprised the remaining 177 samples 

(66.54%) analyzed and included 14 known patient deaths. 
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Figure 20. Kaplan-Meier analysis of overall survival (OS) of the combined training and testing samples for the ML 

predictive algorithm. 
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2.4.9. Extending the EM K-means Algorithm to Additional Cancer Types 

In this study, we extended the application of our EM k-means algorithm beyond KIRP 

kidney cancer to assess its broader utility in oncological research. Specifically, we aimed to 

evaluate whether the algorithm could effectively categorize patients across various cancer types 

based on their methylation patterns and survival outcomes. For this purpose, we selected a subset 

of cancer types from the TCGA database that are known to exhibit poor survival outcomes 

associated with CIMP profiles, mirroring the characteristics observed in our KIRP dataset. 

The selected cancers—colorectal adenocarcinoma (COAD), lung adenocarcinoma 

(LUAD), breast invasive carcinoma (BRCA), pancreatic adenocarcinoma (PAAD), lung 

squamous cell carcinoma (LUSC), and kidney renal clear cell carcinoma (KIRC)—were chosen 

based on their known CIMP-related survival implications. Applying the EM k-means algorithm 

to these cancer types, we observed a consistent enhancement in the stratification of patients 

according to survival outcomes (Figure 21). This improved segregation underscores the 

algorithm's ability to identify meaningful methylation patterns pertinent to survival across 

various cancer contexts. Each cancer type maintained its unique methylation signature associated 

with different survival outcomes; the algorithm successfully highlighted the underlying 

signatures within each group, facilitating further analysis by other research groups. 
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Figure 21. Comparative KM-Survival Curves Across Six Cancer Types Using k-means and Enhanced EM k-means 

Classification. This Figure presents twelve Kaplan-Meier survival curves for six different cancers: colorectal 

adenocarcinoma (COAD: A, B)), lung adenocarcinoma (LUAD: C, D)), breast invasive carcinoma (BRCA: E, F), 

pancreatic adenocarcinoma (PAAD: G, H)), lung squamous cell carcinoma (LUSC: I, J), and kidney renal clear cell 

carcinoma (KIRC: K, L)). The left-hand Figures (A, C, E, G, I, K) depict patient survival outcomes based on 

conventional k-means clustering. In contrast, the right-hand Figures (B, D, F, H, J, L) apply k-means on subsets 

identified using EM to focus on methylation biomarkers. Notably, the EM-enhanced k-means classification 

consistently demonstrates superior patient stratification, significantly improving the segregation between high-risk 
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and low-risk survival groups across all cancer types, reflecting the algorithm's efficacy in identifying prognostic 

methylation signatures. 
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2.5 Discussion & Conclusion 

2.5.1 Investigation of DNA methylation in survival outcomes. 

In the kidney renal papillary cell carcinoma (KIRP) study, unique DNA methylation 

profiles correlated with different survival outcomes were identified. These profiles underscore 

the significant role that DNA methylation plays across various stages and types of cancer, 

linking directly back to the unifying theme of my thesis: methylation. Hypermethylated profiles 

resembling the CIMP (CpG Island Methylator Phenotype) profile are observed in the group with 

poor overall survival outcomes. This finding supports the association between CIMP methylation 

patterns and adverse survival outcomes, which is a recurring theme in many cancer types. The 

distinct epidemiological and clinicopathological features of CIMP tumours, probably stemming 

from a unique underlying biological mechanism, further emphasize the critical role of 

methylation patterns in cancer subgroup characterization [108]. 

The CpG methylation pattern in the intermediate and best overall survival groups is more 

subtle; the general trend is a further drift away from the normal in the intermediate group 

compared to the best overall survival group (heatmap). Based on the k-means clustering, the best 

overall tumour samples survival group is always clustered along with the normal samples, 

suggesting the closest resemblance in methylation signature.  

The analysis of the Fraction of Genome Altered (FGA) and mutation rates within the 

context of the epigenetic progenitor model of cancer yields intriguing insights regarding the 

influence of methylation on genomic stability. In the context above, mutation rate refers to small-

scale changes affecting individual nucleotides (point mutations) and rearrangements of smaller 

DNA segments. According to this model, epigenetic alterations precede and facilitate genetic 

https://www.zotero.org/google-docs/?OhDRaO
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mutations in oncogenesis. Consistent with this theory, the CIMP methylomic profile associated 

with the worst predicted survival outcomes exhibited the highest median FGA but the lowest 

overall mutation rate, pointing to large-scale structural changes that may induce genomic 

instability, setting the stage for further genetic aberrations in KIRP patients. Conversely, the 

intermediate-predicted survival group displayed a moderate FGA with a pronounced mutation 

rate, while the group with the near-normal methylomic signature exhibited the lowest FGA but a 

relatively high mutation rate. These observations underline a potential correlation between the 

development of KIRP and specific single-point mutations, whereas the prognosis post-cancer 

development appears more closely tied to large-scale genomic instabilities induced by aberrant 

methylation. 

The divergence in the relationship between epigenetic modifications and gene expression 

across different KIRP patient groups suggests distinct modes of interaction. The large number of 

hypermethylated DMRs in the CIMP group negatively correlated with survival rates and did not 

coincide with differential gene expression. This observation indicates that alterations in the 

methylation and changes in gene expression independently modulate survival outcomes. Despite 

extensive methylation differences, both the CIMP and the near-normal groups show consistent 

gene expression patterns, with lower averages in the squared differences in log fold change 

(LFC) and similar standard deviations in the LFC of differentially expressed genes (DEGs), 

which further dispels the notion that heterogeneity in gene expression is the sole determinant for 

poor survival in the CIMP group.  

In contrast, the intermediate survival group, characterized by a large number of DMRs 

but significantly isolated differentially expressed genes (DEGs), shows the greatest deviation in 

gene expression from normal tissue. This pronounced change in gene expression, coupled with 
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less extensive methylation than seen in the CIMP group, suggests that different molecular 

mechanisms might be at play, potentially involving a higher level of smaller-scale mutations 

directly affecting gene expression, crucial for the observed intermediate survival outcomes. 

By refining k-means clustering, the Estimation Maximization (EM) k-means algorithm 

significantly enhances the categorization of KIRP patients, leading patients' methylomic 

signatures to reflect more accurately their survival outcome, as shown in the Kaplan-Meier 

survival curves (Figure 9). Drastic shifts in the survival rates often occur toward the end of the 

Kaplan-Meier curves due to factors like censoring and attrition bias. Censoring arises from 

incomplete patient information, such as patients leaving the study prematurely or the study 

concluding before an event occurs. Attrition bias affects results when the loss of participants is 

non-random and related to the likelihood of the event, introducing bias into the estimates. Based 

on the clinical features of patients, it is apparent that the ML algorithm improves the 

categorization of patients within the context of OS. Without the estimation maximization, k-

means clustering will bias poor survival outcomes with sex differences. Although still biased 

toward grouping female patients, after optimization, the ratio of male to female patients moves 

back toward a more representative population (Figure 12). The EM K-means algorithm reflects 

more realistically the link between tumour stage and survival outcome based on the CpG 

methylation pattern. The cluster predicted to have the highest survival rate gained a larger ratio 

of T1 staged-diagnosed patients. In contrast, the cluster predicted to have the worst survival 

outcome gains a larger ratio of T3-stage tumour patients (Figure 13). This data also indicates 

changes in methylation patterns are correlated to different tumour stages. As such, the EM 

algorithm is mining CpG data that supports what we know to be generally true, namely that later 

stages of cancer are implicated in poor cancer diagnosis. 
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2.5.2 Links between TF motif methylation and survival outcomes in KIRP 

In our investigation into the link between epigenetic signatures and TF motifs in KIRP 

patients categorized according to our machine learning algorithm, we identified a critical link 

between the methylation status of specific TF motifs—namely CTCF, KLF1, KLF9, REST, SP2, 

SP3, and WT1. These TFs play pivotal roles in cellular processes essential for maintaining 

genomic integrity and regulating cell proliferation, differentiation, and apoptosis. Although 

aberrant methylation patterns are apparent in the poor OS CIMP population, investigating 

specific disruptions in TF motif binding may give us insight into actionable changes occurring in 

gene expression. 

The Sp family of transcription factors and Krüppel-like factors (KLFs), notably KLF1 

and KLF6, play a key role in gene transcription regulation, attributed to their structural features 

like activation domains and a zinc finger DNA-binding region [109], [110]. Although Sp3 can 

act both as an activator and a repressor, depending on the context, Sp3 is distinguished by an 

inhibitory domain. These factors are vital in controlling gene expression involved in critical 

cancer-related processes such as cell cycle, apoptosis, and angiogenesis. The dysregulation of Sp 

and KLF members, particularly affecting processes like the epithelial-mesenchymal transition 

(EMT), crucial for metastasis, underlines their impact on cancer behaviour and patient outcomes. 

Sp3's inhibitory function is especially significant in gene regulation, influencing tumour 

suppression and growth.  

CTCF's role in KIRP extends beyond maintaining genomic stability; it is pivotal in 

transcription and chromatin organization, influencing tumour suppressor gene expression. 

Disruptions in CTCF, such as mutations or binding site silencing, can facilitate oncogenesis 

[111]. Additionally, the WT1 transcription factor, known for its roles in development and 

https://www.zotero.org/google-docs/?FAhsqS
https://www.zotero.org/google-docs/?ZAK0Py
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differentiation, has been associated with other forms of cancer [112], [113]. Although WT1 was 

first identified as a tumour suppressor in Wilms’ tumour, emerging evidence indicates that WT1 

acts as an oncogene in various solid tumours and hematological malignancies. As a transcription 

factor, WT1 plays an important role in development, differentiation arrest, apoptosis, and 

proliferation. 

When analyzed collectively, the identified GO terms and KEGG pathways appear to 

delineate a network of biological processes that could potentially exacerbate the malignancy of 

KIRP through various mechanisms. For instance, pathways related to 'intracellular signal 

transduction' and 'Wnt signalling pathway' have been highlighted in our study. Aberrations in 

these pathways can significantly influence tumour cell behaviour, promoting angiogenesis, 

immune evasion, resistance to apoptosis, and enhancing their metastatic potential [114]. 

Disruptions in Wnt signalling, through genetic mutations in the Wnt gene or its pathway 

components, can result in developmental anomalies and contribute to cancer's onset. It is 

particularly noteworthy as its aberrant activation is often implicated in cancer progression and 

metastasis [115]. Gene Ontology (GO) terms like 'cell adhesion' and 'cell-cell adhesion' are 

crucial in understanding how cancer cells. In addition, they are associated with cancer stem cells 

(CSCs). CSCs are integral to tumour structure and behaviour, heavily relying on adhesion 

processes for maintaining their niche, migration, and initiating metastasis. Abnormalities in cell 

adhesion mechanisms can enable CSCs to detach from the primary tumour, survive in 

circulation, and colonize new tissues, thereby facilitating metastatic spread. This capacity for 

metastasis, coupled with CSCs' ability to resist conventional therapies, often correlates with 

poorer prognosis and survival outcomes in patients [116]. 

https://www.zotero.org/google-docs/?2zaZlb
https://www.zotero.org/google-docs/?hKRagJ
https://www.zotero.org/google-docs/?mwCgzK
https://www.zotero.org/google-docs/?sowMgS
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The PI3K/AKT signalling pathway is pivotal in cancer biology, particularly in KIRP. 

This pathway is often hyperactive in cancers with PTEN or PIK3CA mutations, contributing to 

tumour growth and evading apoptosis [58], [114]. In the context of KIRP, the methylomic 

aberrations within the TF motifs may explain the dysregulation in the PI3K/AKT pathway, 

leading to apoptotic evasion and poor survival outcomes. Similarly, pathways like the 'Hippo 

signalling pathway are integral to cell fate determination and tissue homeostasis and have been 

correlated with the survival outcome of patients suffering from cancer [117]. Alterations in these 

pathways could lead to uncontrolled cell proliferation and a failure in the differentiation 

processes that normally suppress tumour formation. 

This study explored the nuanced correlation between TF motif methylation and patient 

survival in KIRP, shedding light on the sophisticated epigenetic mechanisms in cancer 

progression and prognosis. The altered methylation profiles of critical TFs, including CTCF, 

KLF1, KLF9, REST, SP2, SP3, and WT1, reveal intricate regulatory disruptions that may 

compromise key cellular processes vital in oncogenesis, such as genomic stability and apoptosis. 

Notably, the Sp and KLF families emerge as pivotal entities in this regulatory landscape, offering 

potential therapeutic targets. The interplay between TF methylation and signalling pathways like 

PI3K/AKT and Hippo underscores a complex network influencing KIRP malignancy and 

suggests a strategic avenue for developing nuanced therapeutic interventions. 

2.5.3 Trends in GO and KEGG enrichment for improved accuracy in poor OS 

Isolation 

When applying k-means clustering enhanced by the Estimation Maximization (EM) 

algorithm to our selected probes, we observe more distinct segregation of survival outcomes 

https://www.zotero.org/google-docs/?L6eAY9
https://www.zotero.org/google-docs/?N81Bfs
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among patient clusters compared to using k-means alone (Figure 7). Investigating the change in 

the GADMR in the larger context of gene ontology and KEGG pathways gives us insight into 

what these patients share as a common denominator in either classification of high or low overall 

survival outcomes. 

As mentioned in the previous section, aberrations in pathways such as “signal 

transduction” and its related process such as “intracellular signal transduction” can significantly 

influence tumour cell behaviour, promoting angiogenesis, immuno evasion, resistance to 

apoptosis, and enhancing their metastatic potential. Signal transduction pathways are crucial for 

transmitting signals from the cellular exterior to its interior, impacting various cellular responses 

[114]. Cell adhesion molecules (CAMs) and related pathways, such as "cell adhesion" and "cell-

cell adhesion," are fundamental in maintaining normal tissue architecture and cellular 

communication. CAMs include diverse groups like integrins and cadherins, which are essential 

for tissue integrity and pathological processes. They interact with various receptors, integrating 

external signals with cellular responses. In cancer, changes in CAM expression or function can 

facilitate cancer cell detachment, invasion, and dissemination through the bloodstream to distant 

organs [116].  

The concept of "stem cell division" underscores the critical role of stem cell-like 

characteristics within the realm of oncology, particularly highlighting how cancer stem cells 

(CSCs) influence resistance to therapy and contribute to the diversity seen within tumour 

structures [31]. These CSCs, like normal stem cells, are capable of extensive self-renewal and 

differentiation, supporting the tumour's growth and complexity. This mechanism is particularly 

relevant in understanding how the differentiation processes, such as those regulating chondrocyte 

maturation, intersect with cancer pathology. Pathways regulating cell differentiation, like 

https://www.zotero.org/google-docs/?hTCma2
https://www.zotero.org/google-docs/?JEKuKF
https://www.zotero.org/google-docs/?rKhJHV
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chondrocyte differentiation, can also impact tumour progression and metastasis, particularly in 

cancers affecting bone or exhibiting osteomimicry. 

The "BMP signalling pathway" stands out as a crucial system involved in cellular growth 

and differentiation processes, with Bone Morphogenetic Proteins (BMPs) serving as pivotal 

signalling entities within this pathway. These proteins engage in extensive intercellular 

communication, binding to specialized receptors on their target cells and initiating a cascade of 

intracellular events that govern cell fate. In tumours, aberrant BMP signalling is linked to 

enhanced tumour growth and the disruption of normal cellular regulation mechanisms. The 

pathway's influence extends to various cancer-related processes, including the stem cell-like 

behaviour of CSCs, underpinning their role in tumour heterogeneity and therapy resistance [118]. 

Transforming growth factor beta (TGF-ß), a versatile polypeptide, regulates numerous cellular 

processes, including cell proliferation, differentiation, embryonic development, angiogenesis, 

and wound healing across different cell types [119]. In advanced cancers, the "TGF-ß receptor 

signalling pathway" promotes tumour progression and metastasis in later stages. The "cAMP 

signalling pathway" and "Ras signalling pathway" in the context of cancer provide insights into 

cell fate decisions and survival. These pathways are critical in mediating cellular responses to 

external stimuli, and their dysregulation can lead to aberrant proliferation, survival, and 

metastasis [120], [121]. 

In the context of finding the similarity of patients with enhancing the overall survival 

outcomes, understanding the isolated GO terms and KEGG pathways in our best survival 

outcome group can guide research into therapeutic interventions. The Toll-like receptor (TLR) 

signalling pathways, such as the "Toll-like receptor 3 signalling pathway," play pivotal roles in 

the innate immune response. TLRs are critical in detecting pathogen-associated molecular 

https://www.zotero.org/google-docs/?uYL7hW
https://www.zotero.org/google-docs/?kP9HZG
https://www.zotero.org/google-docs/?i7m632


 

123 

patterns (PAMPs) and initiating immune responses. Activation of TLR3 pathways leads to the 

production of type I interferons and other pro-inflammatory cytokines, enhancing the immune 

system's ability to eliminate pathogens and potentially malignant cells [122], [123]. In the 

context of cancer, activation of these pathways can enhance the immune surveillance against 

tumour cells, promoting tumour regression and improving patient survival. Furthermore, these 

pathways can stimulate the adaptive immune response, providing a long-term immunological 

memory against tumour antigens. 

In the context of KIRP, an important relationship has been observed between IL-6 

methylation levels and patient survival, where elevated IL-6 serum levels are linked to poorer 

outcomes [124], [125]. IL-6 plays a dual role, aiding in immune defense but also cancer 

progression when overexpressed. For KIRP patients, the regulation of IL-6 through methylation 

is particularly significant. Genes associated with differentially methylated regions (GADMR) 

that enhance IL-6 production are pivotal since their methylation likely results in reduced IL-6 

output. This decrease is beneficial because high IL-6 levels are associated with advanced disease 

and lower survival rates. Methylation reduces IL-6 levels, which likely dampens inflammation 

that supports tumour growth and enhances the effectiveness of the immune response against the 

tumour, thereby improving patient survival. 

Increased levels of macrophages in the tumour microenvironment of renal cell carcinoma 

(RCC) are generally associated negatively with patient survival. The research indicates that 

macrophages within the RCC microenvironment predominantly adopt a tumour-promoting role 

[126], [127]. They are implicated in various processes that facilitate cancer progression, such as 

promoting angiogenesis, inhibiting effective immune responses, enhancing tumour cell 

proliferation, invasion, metastasis, and contributing to the formation of tumour stem cells and 

https://www.zotero.org/google-docs/?BdTxsF
https://www.zotero.org/google-docs/?8rzeIA
https://www.zotero.org/google-docs/?8LfVZa
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drug resistance. Within the context of our own KIRP research, improved categorization of the 

best survival outcome group highlights differences in GADMR that are enriched for GO terms 

such as "macrophage activation involved in immune response," "positive regulation of 

inflammatory response," and "positive regulation of macrophage activation" are pivotal since an 

increased survival outcome is associated with a methylation signature that reduces macrophage 

levels. This methylation-driven alteration in gene expression likely modulates macrophage 

function and density in the tumour microenvironment, skewing them away from a pro-tumoural 

activity and potentially restoring their normal immunosurveillance and anti-tumour roles, 

offering a promising avenue for therapeutic intervention in KIRP. 

In conclusion, our research offers a nuanced understanding of the correlations between 

GO terms, KEGG pathway enrichments, and survival outcomes in kidney renal papillary cell 

carcinoma KIRP, highlighting the molecular intricacies that dictate patient prognosis. The 

integration of k-means EM-determined probes has yielded a refined segregation of patient 

clusters, illuminating the biological commonalities that underpin distinct survival rates. Key 

pathways involving cell adhesion, signal transduction, and BMP signalling emerge as critical 

determinants of tumour behaviour, influencing cell detachment, invasion, and differentiation—

factors central to cancer progression and metastasis. Our findings underscore the importance of 

immune-related pathways, particularly the TLR and IL-6 signalling pathways, in modulating the 

immune response and its impact on tumour progression and patient survival. The differential 

methylation patterns observed, particularly in genes affecting macrophage activation and IL-6 

production, reveal potential epigenetic targets for therapeutic intervention. These methylation 

patterns are pivotal, highlighting the underlying epigenetic mechanisms that may influence these 

critical pathways and the clinical outcomes in KIRP.  
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2.6. Predictive capability of hybrid k-means EM machine learning 

In our research, we devised a predictive machine learning (ML) algorithm distinct from 

our investigative algorithm. One key difference was the choice to exclude the predictive 

algorithm from a final reduction and reintegration of CpG probes within a k-means EM cycle 

during the algorithm's final phase. This decision was intentional. Despite the potential of such a 

cycle to enhance patient grouping within the training data, it also risked augmenting generalized 

error. In simpler terms, it threatened to reduce the performance of the testing data. The primary 

goal was establishing a model that would perform equivalently on the training and testing data. 

An illustration of the model can be seen in the provided flowchart (Figure 6). 

Interestingly, the F1 score within our worst overall survival group showed improvement in the 

testing data, rising from 0.611 during training to 0.800 during testing. Though a phenomenon 

where we observe a better test error than train error may seem unusual, it can occur given the 

right conditions and the stochastic nature of small sampling. The right conditions would include 

model design and hyperparameter selection aimed at minimizing generalized error. The 

framework of my ML model has strong regularization as phases 2 and 3 iteratively refine the 

probes in the model to reduce noise and reduce the model's input complexity on the training data. 

At the same time, phase 4 of the modelling workflow guards against overfitting by combining all 

the CpG probes from previous iterations to generate an extensive list of probes used in k-means 

clustering. 

Sampling variability within a small sample size of 266  between training and testing sets 

could also play a role. The training set, comprising 90% of the samples, may include noisier 

examples or challenging cases due to the stochastic nature of the EM process. In contrast, the 
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smaller test set may have been less noisy and contain fewer outliers or better aligned with the 

model’s learned parameters, which could explain the higher F1 score. This is particularly 

plausible given that the phenomenon is limited to a specific group and not the entire dataset. 

Initially, the first cluster displayed the best-predicted survival rate. However, this group 

diverged from its expected trend after 85 months, at which point only three patients remained 

under observation (Figure 20). When analyzing Kaplan-Meier survival curves, deviations in 

survival probabilities often occur due to factors like censoring. Censoring is another aspect 

affecting the late-stage trend deviation. Censoring happens when there's a lack of complete 

patient information, such as when patients leave the study prematurely or if the study concludes 

before an event occurs. 

Attrition bias is another aspect affecting the late-stage trend deviation when analyzing 

Kaplan-Meier survival curves. If attrition is not random and is tied to the event likelihood, bias 

can be introduced into the results. The assumption of a homogeneous population inherent in the 

KM estimator can impact the curve's final part. We often notice a deviation from the original 

trend or a steep decline towards the end when few patients remain under study. Several factors 

contribute to this phenomenon. A significant element is the weight each event—like death or 

relapse—has on the overall survival probability. With fewer patients left in the study, each event 

has a larger proportional effect on the estimated survival probability. This is a consequence of 

the smaller denominator in the survival probability calculation, meaning that even a single event 

can lead to a noticeable decrease in the curve. 

Throughout the study, those who remain are typically those who have been censored, 

which can distort the survival function estimation towards the study's end. Attrition bias is yet 
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another aspect affecting the late-stage trend deviation. If attrition is not random and is tied to the 

event likelihood, bias can be introduced into the results. Furthermore, the assumption of a 

homogeneous population inherent in the KM estimator can impact the curve's final part. The 

estimator assumes censored individuals share the same survival prospects as those who continue 

to be observed. However, if the remaining subjects towards the end of the study aren't 

representative of the initial group—perhaps they're unusually resilient or have received superior 

care—this could lead to an abrupt change in the curve. Some researchers may prefer to report 

median survival times, as these figures tend to be less influenced by the number of patients under 

observation towards the end of the study. 

2.7 Concluding Statement 

One of the major challenges in analyzing genomic data is the vast amount of information 

that needs to be sifted through to make sense of it all. Our study begins with over 450,000 CpG 

probe sites across multiple patients, each with various characteristics. Statistical analysis is a 

common approach in epigenomic research, allowing for comparing methylation levels at 

individual CpG sites or regions between different groups. However, this method can be limited 

by the need for multiple comparison corrections and potential confounding factors like age, sex, 

and batch effects. K-means clustering algorithms can also have drawbacks, including sensitivity 

to outliers and unstable results. To address these challenges, we use an estimation maximization 

approach to k-means clustering, which helps to reduce noise and yield a smaller set of genes for 

investigation. 

This study was not without its limitations, including difficulty in categorizing the data 

from patients who contributed both a normal and a primary tumour sample. This led to the 

potential of these patients to be clustered into two groups but only represented at one point in the 
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KM survival curve. As such, we have 45 patients with a normal sample and a tumour sample 

appearing in two different groups throughout the analysis but only represented by their tumour 

sample in the KM-survival curve. This assumes that a methylation pattern in normal tissue 

samples will also be seen in the tumour samples for patients with better survival outcomes. 

Another risk in using a layer or staged machine learning is the risk of over-correction, which is 

why there are small discrepancies between our investigative and predictive models. The 

categorization of optimized probes will correspond more heavily to our training data and will 

likely lose some effectiveness when implemented on new samples or different data sets. 

The stark difference in survival outcomes associated with different DNA methylation 

profiles between tumour groups and normal samples indicates tumours can be classified based on 

DNA methylation signatures and that the malignancy of some subset of tumours might depend 

heavily on maintaining their methylation states. Enrichment analysis of differentially methylated 

promoter sites in poor outcome groups from tumour samples identified some methylation 

signatures correlated with biological processes that control RNA and DNA transcription, a key 

regulatory point for tumour metastasis. 

Although most age-related DNA methylation patterns are specific to certain tissues, 

certain genes exhibit conserved DNA methylation patterns across different tissues [128]. 

Building on our work, future studies can use a similar method on cfcDNA to identify KIRP DNA 

methylation signatures related to different survival outcomes. This research could assist with the 

predisposition and diagnostic cancer screenings and narrow the focus to the most critical 

biological pathways. Despite the limitations, our technique shows the potential of using machine 

learning algorithms with clustering analysis to identify influential DNA methylation sites linked 

to survival outcomes in kidney tumours. With further refinement and validation, this approach 

https://www.zotero.org/google-docs/?dFVsX0
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may have important implications for developing personalized therapies and improving clinical 

outcomes for kidney cancer patients. 
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CHAPTER 3:  Optimizing AD Patient Classification and 

Detection: Modifying the EM-Enhanced K-Means 

Clustering on Available DNA Methylation Signatures 

3.1 Publication Stage and Co-author Statement 

This chapter builds on the research from the previous chapter and applies k-means and 

Expectation Maximization Approaches to reclassify and enhance the analysis of Alzheimer’s 

disease patients. The manuscript, tentatively titled "Application of k-means and Expectation 

Maximization Approaches with Methylomic Data to Improve Analysis of Alzheimer’s Disease 

Patients," is in the early stages of preparation, as much of the methodology has been integrated 

into the manuscript from Chapter 2. I, Gatonguay Siu, am the primary author responsible for the 

study's conception, data analysis, coding, and manuscript preparation. Dr. Touati Benoukraf 

provided guidance on study design. 

3.2 Objective and Machine Learning Implementation 

3.2.1 Objectives 

We hypothesize in this section that we can modify the EM k-means clustering algorithm from 

Chapter 2 to significantly improve patients' classification by identifying DNA methylation 

signatures in Alzheimer’s disease. This approach will allow further development into 

personalized treatment strategies. To this end: 

● The first objective is to modify the EM K-means algorithm from Chapter 2 and to test its 

ability to reduce noise and classify patients with distinct methylation patterns based on 

the Brakk stage. 
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● Evaluate the performance of the modified algorithm in identifying patients and their 

biomarkers with distinct methylation patterns, clinical features, genomic features, gene 

isolation, and GO enrichment analysis in the context of Alzheimer’s disease. 

3.2.2 Implementation of estimation maximization 

 The data initially categorizes patients based on the Braak stage. Braak stages are based on 

the brain's extent and distribution of neurofibrillary tangles (NFTs). Furthermore, Braak staging 

is typically done post-mortem and thus is not used for clinical diagnosis or classification of 

living patients. The Expectation-Maximization (EM) algorithm discussed in this chapter closely 

resembles the one presented in the previous chapter. However, the only notable change is that 

phase 4 is the product of five iterations rather than ten and changes to the definition of fitness to 

account for the differences in diagnosing Alzheimer's compared to cancer (Figure 6). 

3.2.3 Determining Optimal Clustering in Methylation Analysis 

 In our analysis, we utilized hierarchical clustering, grouping samples based on similarity 

in their methylation profiles. To maintain accuracy, we excluded any probe sites with absent M-

values measuring methylation levels in at least one sample. We employed the within-cluster sum 

of squares (WSS) method to determine the optimal number of clusters by minimizing the 

variation within each group. We identified three as the ideal number of clusters using the 

"elbow" method, which locates the point where increasing the cluster count doesn't substantially 

lower the WSS (Figure 22). 
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Figure 22. Analysis of Methylation Profiles and Optimal Cluster Determination. (A) Table outlining the grouping of 

samples based on Braak stages, showing Braak stages 0, I, and II combined into one group, Braak stages III and IV 

as another group, and Braak stages V and VI as the final group. (B) Elbow graph illustrating the within-cluster sum 

of squares (WSS) against the number of clusters. The graph identifies the optimal number of clusters as three, 

indicated by the point where further increases in the number of clusters do not significantly reduce the WSS. 
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3.2.4 The formulation for the scoring of the EM Algorithm￼ 

 The patient samples were categorized into three groups according to their Braak stage. 

Group A contained samples with no Alzheimer's disease symptoms or only early-stage signs, 

specifically Braak stages I and II, comprising 23 patient samples. Group B included patients at 

Braak stages III and IV, totalling 16 samples. Group C encompassed patient samples at Braak 

stages V and VI, amounting to 56 samples (Figure 22). 

The scoring metric was established based on the clustering accuracy for each group, with 

larger groups allowing for greater leniency in sample miscategorization. We employed the 

following formula to compute a score based on the scoring of each group (eq. 7): 

 

Ascore = ∑  R - ( T - R ) / G    (7) 

 

In this equation, Ascore represents the sum of scores for all groups. T denotes the total number of 

patients in each group, R signifies the number of correctly categorized samples, and G 

corresponds to the initial number of samples assigned to each group. 

3.1 Material and Methods 

3.3.1 Data Acquisition and Selection Criteria 

We manually searched the published literature through the Web of Science to identify 

relevant data for this study. We conducted NCBI keyword searches using terms such as "brain + 

methylation" and "neur* + Illumina." We downloaded data from Smith Adam et al. (2019) in a 

study that utilized oxidative bisulphite conversion with the Illumina Infinium Human 
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Methylation 450K microarray to identify neuropathology-associated differential DNA 

methylation and DNA hydroxymethylation in the entorhinal cortex. Data can be found using the 

GEO accession number GSE105109 [10]. 

The GSE105109 library, downloaded in Dec 2022, contains IDAT files for the Illumina 

450k CpG methylation data from the entihornal cortex. For the Illumina 450K profiling, both BS 

and OxBS methods were used from brain samples in the entorhinal cortex (EC) collected from 

96 individuals stored in the MRC London Neurodegenerative Disease Brain Bank. 

3.3.2 Pre-processing IDAT to beta values 

In this study, we employed the Sesame R package for preprocessing and analyzing 

Illumina Infinium DNA methylation microarray data derived from IDAT files. Sesame is 

specifically tailored for Illumina's 450K and EPIC arrays, facilitating the transformation of raw 

IDAT files into beta values that signify methylation levels at distinct CpG sites [103], [103], 

[129], [130]. 

The Sesame package was sourced from Bioconductor and subsequently loaded into the R 

environment. After installing and activating the Sesame package, raw IDAT files were imported 

into R using the readIDATpair function. Upon completion of the preprocessing, beta values for 

individual CpG sites were calculated using the getBeta function. The resulting beta_values 

matrix encompasses methylation levels, from 0 (unmethylated) to 1 (fully methylated), for each 

CpG site across all samples incorporated in the analysis [104], [105]. These beta values were 

subsequently employed for further analyses, including differential methylation analysis and data 

visualization. The Beta values were converted to M-values (eq. 4), making them more 

appropriate for sequencing-based studies. M-values have a more symmetric distribution and 

https://www.zotero.org/google-docs/?Sk0aUI
https://www.zotero.org/google-docs/?FjZUoO
https://www.zotero.org/google-docs/?FjZUoO
https://www.zotero.org/google-docs/?nT5B9A
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perform better in Detection Rate (DR) and True Positive Rate (TPR) for highly methylated and 

unmethylated CpG sites. 

3.3.3 Heatmap Generation and Differential Methylation Analysis 

We thoroughly analyzed all DMR, taking a comprehensive approach rather than limiting 

our focus to the ML-determined biomarkers for patient grouping. When building the volcano 

plots, we utilized all CpG probes listed in the HM450k manifest file  [36], which did not contain 

any NA values across the samples. The heatmap generation refined the selection of CpG probes 

for further analysis; we calculated and compared the average M-value scores across each 

identified cluster. We classified a CpG probe as differentially methylated if the difference in its 

average M-value between the pseudo-control group and the pseudo-advanced group was greater 

than or equal to ±2Z, accompanied by an adjusted p-value of less than 0.01. This statistical 

significance was determined using the Kolmogorov-Smirnov Test with Bonferroni-Hochberg 

correction for multiple comparisons. The same change in M-value was applied to identify 

differentially methylated regions (DMRs) within the pseudo-intermediate group. Following this, 

we further restricted the list of probes to those labelled as "Promoter*" in the 

"Regulatory_Feature_Group" column found in the hm450k manifest file [36] to reduce 

computational RAM to under 32Gb when building the heatmaps. 

3.3.4 Isolated Genes and Enrichment Analysis 

After isolating the gene associated with DMR data of patient clusters using machine 

learning, we obtained the gene symbols for all DMR within the hm450k manifest file. 

Differentially methylated probes had the same criteria as when building the heatmaps, with one 

significant change, we used all CpG sites. All related genes were included in the enrichment 

https://www.zotero.org/google-docs/?xuPodg
https://www.zotero.org/google-docs/?K0I4cW
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analysis when a probe was associated with multiple genes. We utilized gene ontology and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on David's platform [106] to 

investigate the GADMR of different AD groups based on machine learning-derived cluster 

groupings of disease severity. 

As a frame of reference, we curated a list of all known genes associated with Alzheimer’s 

disease from NCBI, using the keyword search "Alzheimer’s.” We downloaded all genes in a 

table format, then filtered them for only the Alzheimer’s genes associated with Homo sapiens. 

This same list created a reference point for our enrichment analysis. 

The gene expression data of patients were imported and subjected to enrichment analysis. 

This enrichment analysis aimed to establish if the GADMR were in agreement with previous 

findings on genes and enriched terms associated with AD. This also gave rise to the potential to 

find new insights into the Gene Ontologies and KEGG pathways associated with late-stage 

Alzheimer's disease. To ensure robust results, a stringent Bonferroni FDR cutoff of less than 0.01 

was applied in the analysis to evaluate our machine learning-based grouping method with known 

Alzheimer's GO and KEGG enriched terms. 

3.3.5 Age and DNA Methylation Age Analysis of Alzheimer's Groupings 

Utilizing the model devised by Steve Horvath [131], we incorporated our beta values for 

each patient. We made minor adjustments to the tutorial files to calculate the DNA methylation 

(DNAm) age. Out of the 353 CpG probes recommended by Horvath, only 300 were accessible 

for analysis. Consequently, a constant was incorporated into the DNAm age calculation to 

account for this discrepancy. The following equation was used to determine the constant added: 

 

C = DNAm_ageavg - Ageavg     (10) 

https://www.zotero.org/google-docs/?QEoPI3
https://www.zotero.org/google-docs/?jLtJC5
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3.4 Results 

We have modified the EM k-means machine learning algorithm from Chapter 2 to improve the 

classification of Alzheimer’s disease patients. The EM k-means algorithm will ideally reduce the 

heterogeneity in our sample analysis to understand AD's epigenomic landscape better. To test the 

EM K-means algorithm, we benchmark it against the methylation signature of raw Braak 

classification of Alzheimer’s disease. 

3.4.1 DNA CpG methylation sites in Alzheimer's Disease Patients 

In this study, Alzheimer's disease (AD) patients were initially categorized based on their 

Braak stages: Group A with stages 0-II, Group B with stages III-IV, and Group C with stages V-

VI. The objective was to create a baseline for further comparison in identifying significantly 

differentially methylated CpG sites among these groups. However, when using the Braak stage 

alone and applying the Kolmogorov-Smirnov test followed by Benjamini & Hochberg 

calculations, no CpG site could be isolated with a p-adjusted value lower than 0.01. 

Consequently, no associated heatmap for significantly differentially methylated probes was 

generated, and no further analysis could be conducted with significance. 

Our study continued by categorizing AD patient samples into three distinct DNA 

methylation subgroups using k-means clustering. The input CpG probes for this analysis were 

refined using the estimation-maximum (EM) algorithm. A gradient descent approach favoured 

CpG probes that classified patients' samples according to their corresponding Braak stages 

grouping. The pseudo-advanced Braak stage subgroup displayed a unique CpG methylation 
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signature characterized by distinct hypermethylated and hypomethylated regions, with fewer 

intermediate methylated sections than the other groups (Figure 23.A). In contrast, the best and 

intermediate outcome groups exhibited shared patterns across various CpG site sections but 

remained distinct due to their unique combinations and methylation levels in other sections. 

Moreover, the pseudo-intermediate Braak stage subgroup showed more hypomethylated CpG 

sections than the control/low-level AD group, emphasizing the differences in methylation 

patterns between these subgroups. 

In the volcano plot presented below (Figure 23.B-C), the distribution of EM-determined 

biomarkers is overlaid across all CpG probes. The pairwise p-values were calculated using the 

Kolmogorov-Smirnov Test to compare the distributions between the pseudo-intermediate and the 

global average and between the pseudo-advanced and the global average. The respective p-

values are 0.1209 and 0.4213. Consequently, we cannot reject the null hypothesis. This indicates 

insufficient statistical evidence to assert that the distributions of these samples significantly 

differ. Compared to the overall average M-values, the failure to achieve statistical significance in 

the biomarker distributions across other groups suggests that differences in Alzheimer's disease 

severity may not be directly linked to these biomarkers. Instead, these differences might be 

associated with other differentially methylated regions (DMRs). The utility of biomarkers may 

be limited to categorizing patients into specific groups. 
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Figure 23. A) Heatmap illustrates the distinct methylation patterns in the ML-classified AD patient subgroups based 

on average M values for DMR within promoter regions. The left heatmap shows the pseudo-control group,  the 

center represents the pseudo-intermediate patient grouping, and the right represents the pseudo-advanced patient 

grouping.  Volcano plots illustrate each cluster's average M-value (ΔM-val) changes relative to the pseudo_control 

values. The y-axis represents the significance of the changes, with a threshold set at p = 0.01. The x-axis shows the 

ΔM-val; negative values represent hypomethylation, whereas positive values represent hypermethylation. A 

standardized ±2Z threshold marks significant deviation samples using the vertical lines.  Plot B) displays the 

pseudo_intermediate group, while Plot C) shows the pseudo_advanced group. 
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3.4.2 Alzheimer's Disease GADMR Enrichment Analysis 

We examined the genes associated with differentially methylated regions (GADMR) that 

passed the adjusted p-value significance test in each cluster, representing various Alzheimer's 

severity levels. The pseudo-intermediate Alzheimer's disease sample cluster (cl2) contained 2836 

significantly isolated genes with an adjusted p-value < 0.01 and an average M-value difference > 

±2Z when using the pseudo-control group as a reference for methylation levels. The pseudo-

advanced Alzheimer's disease sample cluster (cl3) had 8737 significantly isolated genes using 

the pseudo-control group as a reference for methylation levels. To assess the relevance of these 

isolated genes, we compared them to known Alzheimer's disease-associated genes. We 

discovered that cl2's gene list contained 247 1554 known AD genes, while cl3's gene list 

included 738 (Figure 24).  
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Figure 24. The Pie chart represents the relative number of genes associated with DMR that overlap with known AD 

genes found using either the k-means EM approach for each of our two severity groups. 
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3.4.3 Enrichment analysis of differentially methylated genes 

To delve deeper into our investigation, we conducted an enrichment analysis on all 

GADMR. We first analyzed the Homo sapiens NCBI gene list for Alzheimer's disease (AD) to 

establish a baseline of Gene Ontology (GO) and KEGG enrichment terms related to AD. This 

analysis produced 916 GO terms (Figure 25). For the pseudo-intermediate group (cl2), 32 GO 

terms were associated with its 2015 GADMR, while the pseudo-advanced group (cl3) had 232 

GO terms for its 4770 GADMR. We then examined the GO terms overlapping the ML-

determined GADMR and the AD GO terms. We identified 17 overlapping GO terms between the 

pseudo-intermediate AD group and the general AD GO terms and 145 overlapping GO terms 

between our pseudo-advanced AD group and the known AD GO term group (Figure 25. A-B). In 

addition, new GO and KEGG terms were isolated in our pseudo_advanced group. Comparing the 

cl2_AD overlap with the cl3_AD overlap revealed 13 shared GO terms (Figure 25. C).  
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Figure 25. Venn diagram of GO enrichment analysis. (A-B) Overlapping GO terms between the ML-classified 

pseudo-intermediate (cl2) and pseudo-advanced (cl3) AD clusters and the known AD GO terms. (C) Comparison of 

the overlapping GO term from (A) cl2_AD and (B) cl3_AD.  

  



 

144 

3.4.4 Model evaluation based on age and DNAm age analysis  

In this study, we evaluated clinically categorized AD patients and compared them with 

our machine learning (ML)-classified counterparts to assess our ML algorithm. Our findings are 

summarized in box plots (Figure 26). When categorizing patients by chronological age. We 

observed a larger spread than when comparing their DNAm age. Interestingly, when classifying 

patients based on their Braak stage grouping, the intermediate group had a higher average age 

than the advanced AD patient group in both DNAm and chronological age. Another notable 

feature of the data was the inconsistent mean relative error (MRE) between the chronological age 

and DNAm age across all three groups: the control/low AD group had an MRE of 9.6, the 

intermediate AD group had an MRE of 5.34, and the advanced AD group had an MRE of 7.17. 

In our ML-classified AD patient groups, we found more consistency. The chronological and 

DNAm ages of the clusters showed a clear increase with our pseudo-advancement of AD staging 

risk. Additionally, the MRE for all clusters remained within a closer range: our pseudo-control 

group (cl1) had an MRE of 7.79, our pseudo-intermediate AD group (cl2) had an MRE of 7.39, 

and our pseudo-advanced AD group (cl3) had an MRE of 7.23.   
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Figure 26. Comparison of clinically categorized and ML-classified AD patients based on chronological and DNAm 

age. Age value is found on the Y-axis. Each group is represented twice, once with chronological age (age) and once 

with their adjusted DNAm age. The box's width represents the IQR and indicates the spread of the middle 50% of 

the data; the mean relative error is displayed below. Skewness: The whiskers extending from the box indicate the 

range of the data outside the IQR but within 1.5 times the IQR. Outliers are represented as individual points on the 

plot and found beyond 1.5 times the IQR. 
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3.5 Discussion 

3.5.1: Validating ML Algorithm: Gene Association, Enrichment, and Age Analysis 

In this study, we sought to validate our machine learning (ML) algorithm by analyzing 

genes associated with differentially methylated regions (GADMR) in Alzheimer's disease (AD) 

patients. Initially, patients were categorized by Braak stages, but this approach failed to isolate 

any DMR at a significance threshold of < 0.01 p-adjusted. This study employed k-means 

clustering and the estimation-maximum (EM) algorithm, categorizing AD patient samples into 

three DNA methylation subgroups corresponding to their methylation signatures and 

approximate Braak stages.  

Our findings revealed that 2015 GADMR were significantly isolated in the pseudo-

intermediate AD group (cl2) and that 4770 genes were in the pseudo-advanced AD group (cl3). 

We compared these genes to known AD-associated genes and found that 11.6% (180) of 

pseudo_intermediate and 27.2% (422) of pseudo_advanced GADMR matched. Our results 

support that there is a high level of differential methylation that is associated within the 

entorhinal cortex that is associated with the progression of AD. Additionally, this finding may 

add to our understanding of AD as the DMRs that pass significance have implications on gene 

expression that are yet to be fully understood and, as such, may offer novel insights into AD by 

uncovering previously unexplored genes and CpG sites related to the disease. 

The enrichment analysis underscores the potential mechanistic insights that GADMR 

might offer in AD pathology, particularly in pseudo-advanced AD groups. The significant 

overlap between the GADMR-derived GO and KEGG terms with those already established in 

AD research validates the relevance of these regions in the disease context. Notably, identifying 
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87 new GO and KEGG terms in advanced AD patients may be associated with AD through 

differential methylation and suggests novel pathways that may be implicated in disease 

progression or severity. The shared GO terms across different severity groups highlight common 

molecular pathways affected in AD, reinforcing the idea of a continuum in molecular changes as 

the disease progresses. The differential GO terms specific to each group could reflect distinct 

biological processes driving the disease at different stages, which could be crucial for staging 

AD or tailoring treatments to specific disease phases. 

Adding to our evaluation of our ML algorithm, our age analysis results emphasize the 

ML algorithm's validity in categorizing AD patients. Comparing genetic and chronological age 

in clinically categorized and ML-classified patient groups, we noted the ML-classified patients 

showed a general trend towards increased chronological age and DNAm age based on AD 

risk/progression, thereby validating the ML algorithm’s classification as it is supported by what 

is known in age being associated with AD risk and progression. In addition, we also observed an 

increase in consistency of chronological and DNAm age in our ML-classified groups. The mean 

relative error values in these groups showed enhanced consistency, further validating the ML 

algorithm's effectiveness in categorizing AD patients and its potential for improving patient 

stratification. By identifying novel genes and CpG sites involved in the disease, the ML 

algorithm contributes to a deeper understanding of AD's epigenetic landscape. It enables a more 

accurate assessment of risk and progression. This highlights the potential of ML methods in early 

Alzheimer's disease diagnosis. 



 

148 

3.5.2 Concluding Statement 

In this study, we aimed to validate a machine learning (ML) algorithm designed to 

categorize Alzheimer's disease (AD) patients based on DNA methylation profiles. By employing 

k-means clustering and the expectation-maximization algorithm, we effectively differentiated 

patients into subgroups corresponding to methylation signature similarity and approximate AD 

neuropathological classification. Our analysis identified a significant number of genes associated 

with differentially methylated regions in the pseudo-intermediate and pseudo-advanced stages. 

This validation underscores the ML algorithm's capability to detect epigenetic signatures that 

reflect the progression of AD. 

In our study on Alzheimer's disease, we encountered several challenges akin to those 

previously noted in our work on kidney cancer. A primary difficulty in Alzheimer's research is 

the disease's heterogeneity. Patients exhibit various pathological features, including amyloid-beta 

plaques, neurofibrillary tangles, and neuroinflammation, complicating the task of identifying 

universally applicable biomarkers or molecular signatures. This heterogeneity renders 

categorization based solely on clinical features problematic for comprehensive analysis. To 

mitigate these issues, we applied k-means clustering and the expectation-maximization algorithm 

to stratify patients into subgroups based on their epigenetic profiles. This hybrid method could be 

considered by future researchers grappling with similar challenges. Moreover, the limitations 

stemming from the data quality and our sample size warrant consideration. Our dependence on 

existing datasets likely introduced biases related to sample representativeness and the 

completeness of methylation profiles. An increase in sample size would likely bolster the 

statistical power of our analyses and facilitate a more robust validation of our machine-learning 

model. 
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CHAPTER 4: Elucidating the Dynamics of YY1 

Behavioural Shifts Amidst TAF1 Co-Binding Interactions 

4.1 Publication Stage and Co-author Statement 

This chapter forms the basis of the manuscript "Elucidating the Dynamics of YY1 

Specificity Amidst TAF1 Co-Binding Interactions " prepared for submission to Frontiers; it has 

not yet been submitted. I, Gatonguay Siu, am the primary author responsible for the study's 

conception, data analysis, and manuscript preparation. Dr. Touati Benoukraf provided guidance 

on study design, and Dr. Thomas J. Belbin contributed to data interpretation and manuscript 

revisions.  

4.2 Objective of YY1 and TAF1 analysis 

We hypothesize in this section that the direct interaction between the transcription factors Ying-

Yang1 (YY1, specifically the subset bound near the promoter region) and TATA Binding-

Factor1 (TAF1) critically modulates and amplifies the initiation of gene transcription. This 

interaction may affect gene expression across diverse biological processes and molecular 

functions. Building on existing knowledge about YY1's role in gene activation through 

interactions with other transcription factors, we propose a deeper exploration into the 

collaborative dynamics of YY1 and TAF1. To this end: 
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● The first objective is to employ TFregulomeR and additional analytical techniques to 

analyze variations in the DNA-binding sites of YY1 and TAF1 across diverse cell lines in 

the context of tag fold change and methylation. 

● Subsequently, we aim to analyze gene expression and ontology to pinpoint the specific 

biological processes notably influenced by the simultaneous expression of YY1 and 

TAF1. 

● Should our findings provide evidence of a significant impact on gene expression due to 

YY1-TAF1 co-binding, our next step will be to propose a model that explains the 

formation and functional implications of a complex arising from the collaborative 

expression of YY1 and TAF1. 

4.3 Methods 

4.3.1 Methylation Analysis in TF Co-binding Using TFregulomeR 

We used the tool TFregulomeR to identify a subset of TFs that show changes in 

methylation status based on their co-binding activities [132]. This tool provides information on 

the context in/dependent peaks between TF pairs.  We established specific heuristic criteria for 

our initial data collection to guide subsequent analyses for all the DNA methylation matrices 

using the DNA methylation and read enrichment scores reports. Among the 414 human cell lines 

available in TFregulomeR, each cell line required ChIP-seq data for at least three different TFs to 

be analyzed further. For those cell lines with extensive ChIP-seq data, we limited our comparison 

to each TF's top five co-binding partners. 

 We investigated changes in the methylation status of transcription factors by comparing 

three different scenarios: one where both transcription factors (TFs) were present together 

https://www.zotero.org/google-docs/?T8reIZ
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(referred to as the TF pair) and another where only one of the TF pairs was present, excluding 

the peaks associated with its partner (referred to as exclusive TF peaks). This comparison 

allowed us to assess how the methylation status differed when the TFs operated independently, 

as opposed to when they functioned together. Using TFregulomeR, we also obtained DNA 

methylation data that provided a count of methylated peaks for each base pair (bp) in the DNA 

sequences where TFs were bound. We excluded instances where neither the TF pair nor the 

exclusive TF showed more than 25 methylated peaks at the most highly methylated base pair. 

We also applied a heuristic rule: if a dataset had fewer than 10 total methylated peaks or more 

than 95% of the peaks exhibited low methylation levels (less than 10% methylation), that dataset 

was deemed "unmethylated" for subsequent comparisons. 

 The TF pair and the exclusive TF data were then organized into matrices. Each matrix 

had three rows, representing low (less than 10%), intermediate (10%-90%), and high (more than 

90%) methylation levels. Each column in these matrices corresponded to a base pair within the 

binding motif. We first normalized the peak counts for each to compare the two scenarios. The 

absolute difference was calculated between corresponding elements in the two matrices, squared 

these differences, and summed the result. This approach gave us a pseudo-sum-of-squares 

difference, allowing for a meaningful comparison between the two conditions. Subsequently, we 

gathered statistics on these conditional comparisons. Specifically, we identified all TF pairs 

where the change in methylation exceeded one standard deviation above the average. This 

resulted in a total of 152 sets of conditions that showed significant variations in methylation. The 

YY1-TAF1 pair was noticeable in its difference, showing significance in three cell lines: 

GM12878, H1-hESC, and SK-N-SH. 
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Our study also employed TFregulomeR for Motif Distribution, Genomic Location, and 

Gene Ontology (GO) analysis. The tool offers a range of functionalities to ease data 

manipulation and interpretation. We used the 'data browser' feature to navigate through curated 

datasets and 'plotLogo' to visualize motif logos. The 'loadPeaks' function was used to import 

peak regions, while 'exportMMPFM' allowed us to extract motif PWMs and DNA methylation 

matrices. We focused on 'intersectPeakMatrix' and 'exclusivePeaks' to study interactions between 

TF cofactors and create the correct conditions for the analysis. The peak information also 

included the Tag fold change of each fragment.  

To better understand the biological implications of target genes associated with the 

promoter-TSS sites, we analyzed our data for enrichment of associated Gene Ontology (GO) 

terms. We used the list of genes derived from the ChIP-Seq data for each cell line under three 

conditions using TFRegulomR, taking advantage of the peak information generated by the 

HTML [13]. This list of genes could also be generated online using MethMotif [21]. This gene 

list was uploaded to David's website for KEGG and GO biological process enrichment analysis 

[21]. Tables describing enrichment terms were downloaded and converted into bubble plots 

using a threshold  False Discovery Rate (FDR) of less than 0.05 for gene set enrichment.  

4.3.2 Transcriptomic Analysis 

We performed a transcriptomic analysis using the same gene list for the GO analysis 

using publicly available RNA-seq data. Our RNA-seq analysis pipeline is structured to include 

multiple computational phases such as quality control, read trimming, and transcript 

quantification. This pipeline is configured to operate on Linux-based systems and uses Bash 

scripts to automate and execute tasks in parallel. We utilized specific software tools for 

specialized tasks: FastQC for assessing data quality, Trim Galore! for quality and adapter 
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trimming of sequences, and Salmon for measuring transcript abundance [133], [134], [135]. A 

flowchart of the steps taken is provided in the figure below: 

  

https://www.zotero.org/google-docs/?fbV0py
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Figure 27. Flowchart of the RNA-seq data analysis pipeline used in the transcriptomic analysis. The process 

begins with quality control using Fastp, followed by adapter and quality trimming with Trim Galore!, FastQC for 

quality checks, transcript quantification via Salmon, and statistical analysis and visualization using R.  
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4.3.3 RNA-seq Data Availability 

A list of file prefixes was defined to manage multiple samples. Each file prefix 

(ENCLB039ZZZ, ENCLB040ZZZ, etc.) was associated with a pair of FastQ files containing the 

sample's RNA-Seq reads. All the prefixes were related to their publicly available file names. The 

publicly available files were downloaded from Encode; their GEO IDs are GSE78552, 

GSE187560, and GSE175034 [136], [137]. Furthermore, an index for the human genome (hg38) 

generated by Salmon was specified and stored in the INDEX environment variable. The initial 

hg38 reference genome was obtained from the 'bigZips' directory provided by the UCSC 

Genome Browser [138]. After downloading and decompressing the hg38.fa.gz file, the reference 

genome was used to build the Salmon index for transcript quantification. 

 

4.3.4 Tools Used for Processing, Analysis and Interpretation of Data 

The first computational step in the pipeline was the quality control and filtering of raw 

reads using Fastp  [139]. This software performs an initial analysis and filters the FastQ files. For 

each sample (prefix), the pipeline reads the corresponding FastQ files (${prefix}_1.fastq and 

${prefix}_2.fastq) and creates filtered output files (${prefix}_1.fastp.fastq and 

${prefix}_2.fastp.fastq) then employed Trim Galore! to remove any remaining adapters and low-

quality bases [134]. This program is designed to work with paired-end reads and automatically 

handles read pairing. The trimmed reads are output to a dedicated subfolder, and the filenames of 

these trimmed files are also standardized for future steps. After trimming, FastQC is used for 

quality checks on the trimmed reads [133], and outputs are stored in individual folders. 

https://www.zotero.org/google-docs/?UxMYTE
https://www.zotero.org/google-docs/?ogmVd8
https://www.zotero.org/google-docs/?RB34Io
https://www.zotero.org/google-docs/?tITTOw
https://www.zotero.org/google-docs/?Cet8xd
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For each sample, an output directory (salmon_output_${prefix}) was created to hold the 

results of the Salmon quantification process [135]. Salmon was used for transcript quantification 

with the -l A parameter specifying that the library was automatically detected. Paired-end 

trimmed FastQ files ($trimmed1 and $trimmed2) were used as input. Salmon used 16 threads (-p 

16) and validated mappings (--validateMappings) to ensure high-quality quantification. The 

output, which included transcripts per million (TPM) and counts among other metrics, was 

stored in the Salmon output directory. 

4.3.5 Data Import, Manipulation, and Statistical Analysis of RNA-Seq Data 

We utilized various R libraries to facilitate data manipulation, visualization, and 

statistical analysis. Specifically, we used tximport for importing transcript-level estimates, 

biomaRt for transcript-to-gene mapping, and dplyr and tidyr for data wrangling. The ggplot2 and 

scales libraries were employed for data visualization, and statistical analyses were conducted 

using the stats package in R [140], [141], [142], [143], [144], [145], [146]. 

Initially, output files were generated by the Salmon software for the two cell lines under 

three different conditions [136], [137]. These files were imported into R using the tximport 

package, allowing us to extract Transcripts Per Million (TPM) directly for subsequent analysis. 

We utilized the gene symbols readily available from a derived file containing the peak 

information in TFregulomeR. This resulted in a data frame where rows represented unique gene 

symbols and columns reflected different conditions. The gene symbols matched the original 

TPM estimates, generating a final matrix containing gene-level aggregated TPM values. Next, 

we read predefined gene lists for our cell line and conditions to analyze overall trends in gene 

expression. We subsetted the original TPM data using these lists to generate three separate data 

frames, which were then prepared for visualization. 

https://www.zotero.org/google-docs/?ZV7viX
https://www.zotero.org/google-docs/?aAh9xq
https://www.zotero.org/google-docs/?IOd6sw
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For the statistical analysis, we performed an Analysis of Variance (ANOVA) followed by 

Tukey's Honest Significant Difference (HSD) test to compare the average gene expression 

among all conditions. These results were visualized using a boxplot, which employed a 

logarithmic y-axis to better capture the variance in expression levels. Finally, we generated 

summary statistics for each condition, which included the number of genes, average and median 

expression levels, standard deviation, and minimum and maximum expression levels. These 

summaries provided an overview of the data distribution in each subset and were vital for 

interpretative analyses. 

4.4 RESULTS 

4.4.1 Revised the YY1 and YY1-TAF1 co-binding motifs 

Using our approach, we could analyze the distinct peaks identified in the Chip-seq data of 

one transcription factor, exclusive of the other, in addition to co-bound. YY1 demonstrated DNA 

binding specificity to a distinct sequence, traditionally understood to be the 5'-CCGCCATNTT-

3' consensus sequence, as cited in several previous studies [90], [91]. Nevertheless, our research 

revealed that this sequence initiated one base pair earlier in the 5' direction, coupled with weak 

conservation at the third position cytosine, thus suggesting a revised consensus motif of 5'-

GCNGCCATNTT-3' (as depicted in Figure 28) when not co-bound with TAF1. The motif for the 

TAF1 exclusive peaks showed some level of cell specificity, with the motif for the GM12878 

cell line being 5’-GCCGCCATNTT’-3, the motif of the H1-hESC cell line being 5’-

NCCGCATNTT-’3, and the motif of the SK-N-SH cell line being 5’-NNCGCATNTT-’3. Co-

bound, the YY1-TAF1 motif also displayed a certain level of cell specificity; in the GM12878, 

the motif was not conserved in the third position (5’-GCNGCCATNTT-’3), whereas in the H1-

https://www.zotero.org/google-docs/?zkecpV
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hESC cell-line, the 3 bp position was more strongly conserved as a cytosine. DNA methylation 

data was added to unveil various methylation levels throughout peaks within the YY1 motif. On 

the other hand, a markedly low level of methylation could be seen when there was a co-binding 

of YY1 and TAF1, mirroring the observations predominantly seen in TAF1 peaks. This 

phenomenon was further accentuated by the heightened conservation of the third base pair 

cytosine in the motif, potentially facilitating methylation at the CpG pair between the motif's 3-4 

base pairs.  
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Figure 28. The Diagram Illustrates the Motif and methylation comparison of YY1 and TAF1 from ChIP-seq data 

across GM12878, H1-hESC, and SK-N-SH. A) YY1-exclusive peaks motif shares the same motif as co-bound YY1-

TAF1 within the GM12878 cell line. The first two bp in the motif are not conserved in the TAF1-exclusive motif,  

transitioning to 5'-NNCGCCAATNTT-3'. B&C) Examining methylation levels within motif peaks highlights 

variable methylation for YY1 peaks in the H1-hESC and SK-N-SH cell lines, respectively. A significant reduction 
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in methylation levels is observed during YY1-TAF1 co-binding, mirroring the methylation pattern primarily seen in 

TAF1 peaks. This suggests a potential cooperative regulatory mechanism between YY1 and TAF1. 
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4.4.2 Comparative Analysis of YY1 and TAF1 Motif Distributions in ChIP-seq 

The motif distribution reveals the frequency and specific genomic locations where a 

transcription factor attaches to DNA. In the context of ChIP-seq analysis, a sharp, normal 

distribution of the motif around the peak summit, as observed for YY1, indicates that most motif 

occurrences are clustered tightly around the peak summit (Figure 29). In other words, the 

transcription factor binding events are highly concentrated at a specific position relative to the 

center of the binding peak. The motif distribution for TAF1 shows a binomial pattern within the 

GM12878 and H1-hESC cell lines, along with a broader spread than YY1 in all three cell lines 

(GM12878, H1-hESC, and SK-N-SH). This indicates a less localized DNA binding and suggests 

that TAF1 has a more versatile genomic binding profile, potentially binding to other transcription 

factors rather than onto the DNA directly and exerting a more flexible regulatory influence. 
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Figure 29. This Figure shows the motif distributions for YY1 and TAF1 across GM12878, H1-hESC, and SK-N-SH 

cell lines. YY1 exhibits a sharp, normal distribution around the peak summit, indicating concentrated binding events 

at specific genomic locations. In contrast, TAF1 displays a binomial pattern with a broader spread, suggesting a 

more versatile and less localized binding profile across the examined cell lines. 
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4.4.3 YY1 and TAF1 ChIP-seq Dynamics: Tag Fold Change and Peak Distribution 

Analysis 

By examining the variations in tag fold change within the peak values of ChIP-seq data, 

we can gain valuable insight into the behaviour of the transcription factor and the complexities of 

the formations they constitute. When we focus our analysis on the peaks of the YY1 transcription 

factors in our selected cell lines and scrutinize them based on tag fold change, we observe a 

positively skewed distribution (Figure 30).  This distribution is characterized by a predominant 

mode within the 8-13 range, showcasing a potential commonality in the transcription factor’s 

behaviour within this specific range. Delving further into the data, an analysis of the subset 

where YY1 co-binds with TAF1 reveals a notable shift in the mode, steering toward a platykurtic 

distribution (Figure 30). This deviation in the distribution pattern highlights a distinct interaction 

behaviour between YY1 and TAF1. It points to a probable shift in the functional dynamics 

compared to scenarios where YY1 operates in isolation. This suggests that the co-localization of 

YY1 and TAF1 might bring about a nuanced modification in their functional interplay, 

validating the complex formation between the two transcription factors. 
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Figure 30. This Figure illustrates the tag fold change distribution for YY1 transcription factors across selected cell 

lines, showing a positively skewed pattern with a mode in the 8-13 TFC range. An overlapping analysis of YY1-

TAF1 co-binding indicates a shift towards a platykurtic distribution with a mode at a higher TFC range. 
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The locations of binding peaks within the genome offer valuable insights into the 

functions and activities of transcription factors. Our study presents consistent patterns across 

three distinct cell lines—GM12878, SK-N-SH, and H1-hESC—concerning the distribution of 

transcription factor binding sites (Figure 31). Specifically, in our analysis of ChIP-seq peaks 

unique to YY1 (and not associated with TAF1), we noted a considerable accumulation of peaks 

in intronic, intergenic, and promoter-transcription start site (TSS) regions. 

. 

.  

Figure 31. These pie charts illustrate the region distribution of ChIP-seq binding peaks for transcription factors YY1 

and TAF1 across three cell lines: GM12878, SK-N-SH, and H1-hESC. Each chart represents the percentage of peaks 

located in intronic, intergenic, and promoter-TSS regions, segmented by individual and shared binding scenarios of 

YY1 and TAF1. 
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For example, in the GM12878 cell line, the intronic regions contain the majority of 

peaks, accounting for approximately 53.42% of the total. In contrast, the SK-N-SH cell line 

shows a higher prevalence of YY1 binding in the promoter-TSS regions, making up 45.97% of 

the peaks. In the H1-hESC cell line, the distribution of peaks between intronic and promoter-TSS 

regions is more balanced, with percentages of 36.30% and 32.69%, respectively. 

When analyzing ChIP-seq data for peaks exclusive to TAF1 in GM12878, H1-hESC, and 

SK-N-SH cell lines, we observed that most of these peaks are concentrated in the promoter-TSS 

regions, accounting for 89.05%, 68.16%, and 79.65% of the total peaks, respectively. For peaks 

shared between YY1 and TAF1, the majority were also located within the promoter-TSS regions 

across all three cell lines: 83.77% in GM12878, 86.75% in H1-hESC, and 91.59% in SK-N-SH. 

Interestingly, the proportion of peaks in the promoter-TSS regions increased for the shared YY1-

TAF1 peaks in the H1-hESC and SK-N-SH cell lines. Conversely, the GM12878 cell line 

showed a decrease in the percentage of peaks located in these regions when YY1 and TAF1 were 

found to bind together. These variations in peak localization, especially concerning the shared 

YY1-TAF1 peaks, could indicate distinct regulatory mechanisms across different cellular 

contexts. 

4.4.4 Enhanced Gene Expression in YY1-TAF1 Co-binding 

We obtained a list of target genes via TFRegulomR, leveraging the peak information 

supplied by the HTML [132] and subsetting the gene list for peaks found within the promoter-

TSS sites. Our TPM analysis across the GM12878 and H1-hESC cell lines indicated that the 

YY1 and TAF1 co-binding was linked to increased gene expression. The most significant 

variations were observed in GM12878 cells. Genes regulated by co-bound YY1-TAF1 tended to 

have higher expression levels across all three cell lines than genes regulated exclusively by YY1 

https://www.zotero.org/google-docs/?wSq3Hy
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or TAF1 (Figure 32). These genes were significant in the pairwise comparison between the YY1-

TAF1 common and YY1 exclusive peaks in the GM12878 cell line (adjusted p-value < 0.01). 

The same trend was observed when investigating the promoter-TSS-associated genes. However, 

there is no statistically significance difference between the all-inclusive annotation gene-

associated peaks for YY1-TAF1 and the promoter-TSS gene-associated peaks for YY1-TAF1.  
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Figure 32. Boxplot Depicting the Transcripts Per Million (TPM) Levels of Genes Associated with YY1 and TAF1 

Across GM12878 and H1-hESC Cell Lines. The plot segregates data based on the exclusive and co-bound peaks 

identified in the ChIP-seq analysis. Also, it provides another set of plots for further narrowing down the genes 

associated with promoter-TSS peaks in the GM12878 cell line (A), the H1-hESC cell line (B), or the SK-N-SH cell 

line (C). 

  



 

169 

4.4.5 Promoter-TSS Peaks Gene Ontology Analysis of YY1 and TAF1 

We subsequently uploaded this promoter-TSS peak-gene list to David's platform for 

enrichment analysis of GO terms [29]. The retrieved enrichment terms were illustrated as a 

bubble plot, applying a threshold  FDR  of less than 0.05.  Although some characteristics were 

shared in both cell lines for the YY1 and TAF1 binding condition, the GO enrichment analysis 

indicated a large degree of cell specificity, as indicated by the extent to which GO enrichment 

was impacted by the YY1 and/or TAF1 binding. In the GM12878 cell line, the shared YY1-

TAF1 peaks were linked to more terms (21 terms, 1 BP, 1 CC, 19 KEGG) than the YY1-

exclusive peaks (2 terms, 0 BP, 2 CC, 0 KEGG). The promoter-TSS TAF1-exclusive genes 

reflected significantly more terms than the other two conditions (44 terms, 6 BP, 22 CC, 16 

KEGG); these peaks in GM12878 were connected to many GO terms encompassing diverse 

cellular compartments and processes, from ribosomal activities to transcription regulation and 

proteasomal functions. Conversely, although we also found a larger number of GO terms 

associated with YY1-TAF1 co-bound peaks, there was a decrease in GO terms related to TAF1 

exclusive peaks. In the H1-hESC cell line, the number of significantly enriched terms was 11 for 

YY1-exclusive peaks (4 BP, 7 CC, 0 KEGG), 50 for shared YY1-TAF1 peaks (12 BP, 19 CC, 19 

KEGG), and 18 for TAF1-exclusive peaks (0 BP, 2 CC, 16 KEGG); in the SK-N-SH cell line, 

the number of significantly enriched terms were 24 for YY1-exclusive peaks (5 BP, 6 CC, 13 

KEGG), 52 for shared YY1-TAF1 peaks (14 BP, 19 CC, 20 KEGG), and 2 for TAF1-exclusive 

peaks (0 BP, 2 CC, 0 KEGG). 
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Figure 33.  Bubble plot of Gene Ontology (GO) Terms for YY1 and TAF1 Peaks in the GM12878, H1-hESC, and 

SK-N-SH cell lines. The bubble plot displays all GO linked to the promoter-TSS sites with an FDR < 0.05. All 

FDRs that were less than 1e-10 were rounded up to 1e-10 to keep the size of the bubbles readable. Colour represents 

the type of GO: blue represents biological processes, red represents cellular components, and green represents 

molecular functions. Notably, the co-binding of YY1-TAF1 widens the spectrum GO terms compared to YY1 

exclusive peaks. Refer to the supplemental section for a detailed breakdown of specific GO terms. 
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4.5 Discussion 

In the complex hierarchy of gene regulation, understanding the subtle shifts in the 

behaviour of TFs can provide insights into the regulatory dynamics of spatial and temporal gene 

expression. The transcription factor YY1 is a pivotal element in multiple cellular processes, 

characterized by its roles in cell proliferation, differentiation, DNA repair, and apoptosis [90], 

[91]. Our ChIP-seq data analysis shed light on a significant modification in the YY1 binding 

consensus sequence when TAF1 was present; specifically, there was enhanced preservation of 

cytosine at the third position within the motif. This modification suggests a nuanced shift in 

function whereby the regulatory actions observed when YY1 operates independently differ from 

those observed when co-binding with TAF1. 

4.5.1 Insights of YY1-TAF1 Co-Binding Dynamics 

Our analysis adopts a nuanced approach to understanding the interaction between TAF1 

and YY1. By constructing the TAF1 motif from data excluding the overlapping peaks with YY1, 

we observed some similarity to the YY1 peak, with minor deviations in the first or fourth base 

pairs that are cell type-specific (Figure 28). These deviations highlight the unique binding motifs 

of TAF1 and YY1 under varying contexts, emphasizing how the cell type and the presence of 

TAF1 co-binding can influence YY1's regulatory function. Aligning with the current 

understanding of DNA methylation, where decreased promoter region methylation correlates 

with increased transcription binding, we noticed reduced methylation levels on the YY1 binding 

motif during YY1 and TAF1 co-binding. This suggests a favourable environment for their co-

binding and subsequent transcriptional activation of target genes. 

https://www.zotero.org/google-docs/?UHiEaC
https://www.zotero.org/google-docs/?UHiEaC
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Further substantiating this theory is the motif distribution of YY1 and TAF1, which 

indicates TAF1's direct engagement with YY1 during complex formation. A sharp, normal 

distribution of YY1's localization on the motifs is observed, denoting a precise, localized binding 

to genomic sites—a hallmark of YY1's established role in focused gene binding and regulation. 

On the other hand, TAF1 showcases a bi-modal binding landscape, a characteristic vital for 

initiating and sustaining transcription, as seen in studies [96], [97], [98]. This attribute is 

prominently observed across various cell lines, including GM12878, H1-hESC, and SK-N-SH. 

Intriguingly, the distribution of TAF1's binding motifs hints at its capacity to bind to other 

transcription factors or co-factors.  

Following the same line of thought, gene expression analysis showed that sites where co-

binding of YY1 with TAF1 occurred increased the average target gene expression (Figure 31). 

Thus, a compelling hypothesis can be formed by integrating these observations, including the 

alterations to the binding motif in the co-binding of YY1-TAF1, the observed decrease in 

methylation levels in the YY1 motif during the co-binding of YY1 and TAF1, and the increase in 

gene expression at the YY1-TAF1 sites. These elements collectively suggest that methylation 

affects the co-binding of YY1 and TAF1, which promotes target gene transcription (Figure 33). 

The figure below summarizes our findings into a model for a state-dependent co-binding 

of TAF1 to YY1. When the YY1 binding motif is methylated, having a cytosine or guanine 

residue at the third residue, TAF1 will not co-bind to the YY1 bound transcription factor. If 

methylation is impossible due to the third residue within the motif not supporting methylation, 

TAF1 will also fail to co-bind. When YY1 binds without TAF1, it will have a stronger affinity to 

act as a repressor. Although the motif for the co-binding YY1-TAF1 peaks is cell-specific, we 

see stronger cytosine conservation within the third residue, within the peaks that we find YY1-

https://www.zotero.org/google-docs/?55Flq0
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TAF1 co-binding. In addition, although methylation is possible at this site, the binding of TAF1 

onto YY1 depends on an unmethylated state. When TAF1 is co-bound to YY1 in an 

unmethylated form, the complex has a stronger tendency to act as a transcriptional activator.  
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Figure 34. Differential Binding Mechanisms of YY1 and TAF1 in Response to Methylation: The Figure delineates 

the distinct interactions of Yin Yang 1 (YY1) and TATA-box Binding Protein Associated Factor 1 (TAF1) 

contingent on the YY1 binding motif's methylation. On the left in Figure A, methylation of the YY1 motif permits 

the binding of YY1 while precluding TAF1 association, resulting in transcription repression. In cases where 

methylation cannot occur due to the base pair sequence of the motif, TAF1 still does not bind with YY1.  On the 

right side, cytosine is preferentially found at the third residue of the motif and unmethylated conditions, enabling the 

sequential binding of YY1 and TAF1, thus promoting YY1's role as a transcriptional activator. 
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4.5.2 Divergent Roles of YY1-TAF1 Co-Binding in GM12878 and H1-hESC 

Our Gene Ontology (GO) analysis in GM12878, H1-hESC, and SK-N-SH cell lines 

shows that the co-binding of YY1 and TAF1 results in an expanded set of GO terms compared to 

when YY1 is expressed independently. This expanded range suggests a synergistic effect 

between YY1 and TAF1 in regulating various cellular processes. We observe that the number of 

genes and GO terms associated with YY1-TAF1 at promoter-TSS sites varies between cell types, 

indicating a more extensive set of co-binding sites and cellular functions in cells capable of 

differentiation. Specifically, in GM12878 cells, YY1-TAF1 co-binding correlates with more 

narrow functions related to ribosomal machinery, RNA processing, and nucleoplasm activities, 

highlighting their critical role in protein synthesis and RNA maturation in these cells. 

Conversely, in the H1-hESC and Sk-N-SH cell lines, the  YY1-TAF1 co-binding correlates with 

a wide range of enrichments. Interestingly, TAF1's association with promoter-TSS genes in the 

same cell line reveals the opposite pattern as YY1-TAF1 co-bound peaks; a broader array of 

processes in the GM12878 cell line, and a more narrow range in the H1-hESC and Sk-N-SH cell-

lines. This difference suggests that each cell line's cellular needs and differentiation potential 

influence the binding patterns. GM12878 cells, being more mature, may not require rapid 

responses to environmental changes, leading to a more pronounced role for TAF1 in gene 

expression regulation. In contrast, H1-hESC cells, primed for differentiation, might need more 

stringent control over gene expression to navigate their developmental paths. The SK-N-SH can 

also differentiate to some extent, which is why it likely follows the same trends as the H1-hESC 

cell -line. Here, the dual role of YY1, as both an inhibitor and promoter of gene expression, 

becomes crucial. 
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4.5.3 Limitation and Concluding Statement 

One limitation of our study stems from the limited evidence to specify the nature of the 

relationship between YY1 and TAF1—namely, whether they form a physical complex, co-bind 

to DNA, or are merely co-bound in cells. Although our ChIP-seq data reveal overlapping binding 

peaks for YY1 and TAF1, and Gene Ontology (GO) analysis suggests a possible functional 

collaboration, these findings do not necessarily confirm direct interactions or complex formation. 

Without deploying additional investigative techniques like co-immunoprecipitation, fluorescence 

resonance energy transfer (FRET), or mutational analyses, we can only theorize about the 

nuances of their interaction and its functional implications. 

Future research could benefit from specific experimental techniques to narrow this 

knowledge gap. For instance, co-immunoprecipitation assays could validate whether YY1 and 

TAF1 form a cohesive protein complex. Visualization methods like FRET or bimolecular 

fluorescence complementation (BiFC) could offer insights into the spatial relationship between 

these proteins within live cells. Furthermore, functional validation through gene knockout or 

knockdown experiments could elucidate whether the co-binding of both YY1 and TAF1 is 

essential for the gene expression patterns and biological processes we observed. Based on what 

is known of TAF, it would come as no surprise if TAF is indirectly bound to the proximal DNA; 

as such, a series of co-immunoprecipitation or crystallography experiments may also elucidate 

transcription factors that play a role in our model. 

In conclusion, our investigation into the intricate synergistic dynamics between 

transcription factors YY1 and TAF1 unveils a novel mechanism of co-binding that integrates 

closely with our unifying theme of methylation analysis. This study expands on how YY1-TAF1 

co-binding impacts gene promoter activity and fine-tunes the methylation dynamics at these 
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sites. Leveraging advanced computational methods alongside RNA-seq, ChIP-seq, and bisulphite 

sequencing, we have mapped out how these factors are dependent on methylation changes and 

specificity in the motif sequence. This synergy results in alterations in the YY1 binding 

consensus sequence and a notable decrease in methylation levels on the YY1 motif, indicating 

that methylation plays a role in the YY1-TAF1 co-binding. Furthermore, our gene expression 

analysis uncovers that the YY1-TAF1 co-bound peaks occur with a subset of YY1's peaks 

primarily located in the promoter-TSS regions, as opposed to intronic and intergenic domains, 

indicating its pivotal shift in role, going from orchestrating complex regulatory strategies to 

acting primarily as a promoter. This study is a significant milestone in understanding the intricate 

interplays between YY1 and TAF1, offering promising avenues for further exploration of 

therapeutic potentials harboured within their synergistic landscapes. It beckons a bright future for 

genetic transcription research with profound implications in cellular biology and potential 

therapeutic advancements. 
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Chapter 5: Conclusion and Perspectives 

5.1 Broad summary and limitations 

In our analysis of Kidney Renal Papillary Cell Carcinoma (KIRP), we identified three 

distinct DNA methylation signatures correlating to different survival outcomes. Particularly, we 

identified a CpG Island Methylator Phenotype (CIMP) in patients with poor overall survival 

outcomes. This correlation underpins the recurring theme across various cancers where CIMP 

methylation patterns are linked to adverse prognoses.  The DNA methylation pattern in patients 

with the best overall survival cluster alongside normal samples when using k-means clustering 

indicates a methylation signature closest to normal.  

The CIMP profile associated with the worst survival outcomes has the highest Fraction of 

Genome Altered (FGA) and a low mutation rate compared to the other two groups. Conversely, 

the group with intermediate overall survival had low FGA and a high mutation rate. These 

findings suggest two different mechanisms of tumorigenesis. The CIMP group’s tumours likely 

result from broad structural changes causing genomic instability and cancer development. On the 

other hand, the patients in the intermediate group likely have a high number of SNPs or other 

small DNA mutations. The divergent relationships between epigenetic modifications and gene 

expression across different KIRP patient groups further support the notion of distinct 

mechanisms for tumorigenesis. In the CIMP group, numerous hypermethylated DMRs do not 

coincide with a large number of differentially expressed genes. Conversely, the intermediate 

overall survival group has a lower level of DMRs but the highest level of DEGs. Despite 

extensive methylation differences, gene expression patterns in both CIMP and near-normal 

groups show consistency, with lower variability in log fold change of DEGs, challenging the idea 
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that gene expression heterogeneity alone determines poor survival in CIMP groups. However, 

the intermediate survival group, characterized by a significant number of DMRs but distinctly 

expressed DEGs, shows substantial deviation in gene expression from normal tissue. This 

pronounced change, coupled with less extensive methylation than the CIMP group, implies that 

different molecular mechanisms, possibly involving a higher degree of smaller-scale mutations 

directly impacting gene expression, are crucial for the observed intermediate survival outcomes. 

Categorized methylomic signatures more accurately reflect representative clinical 

features such as tumour stage and sex distribution. In the case of the tumour stage, the refined 

ML algorithm isolated a larger number of stage 3 tumour patients in the poor survival outcome 

group. This finding supports that methylation pattern changes correlate with tumour stages and 

survival outcomes. In the context of the sex distribution, k-means clustering initially biases 

female patients into the poor survival outcome group. However, adding the EM stage to the ML 

algorithm reduces this bias. 

Our investigation reveals a link between the methylation status of certain TF motifs in 

our poor survival outcome group—namely, the transcription factor motifs of CTCF, KLF1, 

KLF9, REST, SP2, SP3, and WT1. These TFs, crucial for cellular processes like genomic 

integrity maintenance, cell proliferation, differentiation, and apoptosis, show aberrant 

methylation patterns. Gene ontology analysis of the sum effect of these transcription factors 

reveals dysregulation affects pathways linked to tumour cell metastatic potential, promotion of 

angiogenesis, immune evasion, and resistance to apoptosis; the dysregulated gene ontology terms 

include 'intracellular signal transduction' and the 'Wnt signalling pathway.' Additionally, 

abnormalities in cell adhesion mechanisms related to 'cell-cell adhesion' are crucial for cancer 

stem cells (CSCs) and play a critical role in initiating cancer metastasis.  
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In the study on Alzheimer’s disease (AD), we aimed to validate an ML algorithm. With 

slight modifications, we successfully differentiated patients into subgroups reflecting their 

methylation signatures and approximated Braak stages of AD neuropathology using entorhinal 

cortex tissue samples. Once groups use the ML algorithm, statistical power improves, allowing 

for the identification of 2015 genes associated with differentially methylated regions (GADMR) 

in the pseudo-intermediate AD group and 4770 genes in the pseudo-advanced AD group. 

Notably, many of these genes overlapped with known AD-associated genes. Specifically, 11.6% 

of the genes in the pseudo-intermediate group and 27.2% in the pseudo-advanced group matched 

with previously identified AD-related genes. This showcases the potential effect of dysregulated 

methylation levels on AD-associated genes. The overlap with known genes validates the ML 

algorithm's effectiveness and suggests that the novel genes and CpG sites merit further 

investigation in the context of understanding AD progression. Enrichment analysis added depth 

to our findings, linking the GADMR to known and novel GO and KEGG terms associated with 

AD. This suggests potential new pathways involved in the disease's progression or severity, 

offering avenues for therapeutic intervention. The discovery of 87 new GO and KEGG terms in 

advanced AD patients enriches our understanding of AD. These new GO and KEGG terms open 

up potentially unexplored molecular pathways that might influence the disease's course. 

Our age analysis further supported the validity of the ML algorithm, showing that ML-

classified patients tended to have increased chronological age and DNA methylation age, which 

aligns with known risk factors and progression markers in AD. The consistency of chronological 

and DNA methylation age within these groups reinforced the ML algorithm’s accuracy in patient 

stratification. Moreover, the study’s approach reflects broader challenges in Alzheimer’s 

research, such as the heterogeneity of the disease. AD patients display diverse pathological 
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features that complicate the identification of consistent biomarkers. Our application of a hybrid 

ML approach, integrating k-means clustering with EM, addresses these categorization 

challenges, allowing for more nuanced analysis based on epigenetic profiles rather than solely on 

clinical features.  

Our application of k-means clustering combined with the EM algorithm in both KIRP 

and AD demonstrates the efficacy of hybrid machine-learning approaches in stratifying patient 

populations based on methylation profiles. This methodology enhances the precision and 

accuracy of disease classification and supports its broader application in genomics. The 

successful differentiation of patients into subgroups with distinct methylation signatures in both 

diseases underscores the potential of these ML techniques to uncover patterns that have yet to be 

explored. 

The correlation between methylation signatures and clinical features, such as tumour 

stage and sex distribution in KIRP, underscores the clinical relevance of our findings. The 

refined ML algorithm's ability to accurately isolate stage 3 tumour patients in the poor survival 

outcome group and reduce initial biases related to sex distribution highlights its potential for 

clinical diagnostics. In AD, the alignment of DNA methylation age with chronological age in 

ML-classified patients supports using the ML framework in isolating biomarkers for disease 

diagnosis and progression. This precision in patient stratification is crucial for enhancing our 

understanding of the epigenetic landscape of diseases and guiding personalized therapeutic 

strategies. 

The dysregulation of TF motifs in KIRP and their impact on pathways related to 

metastasis and angiogenesis mirrors the role of TFs in AD, where aberrant methylation affects 

pathways associated with neuronal survival and synaptic function. These parallels suggest that 
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targeting specific TF pathways could be a unifying strategy in developing therapies for both 

diseases. Synthesizing findings from KIRP and AD provides a comprehensive understanding of 

the interplay between epigenetic modifications and disease mechanisms. Using ML techniques to 

analyze methylation profiles has enhanced our ability to classify patient subgroups accurately 

and revealed critical molecular pathways that could be targeted for therapeutic intervention. 

These insights pave the way for future research to explore novel pathways, integrate multi-omic 

data, and translate findings into clinical applications, ultimately aiming to improve patient 

outcomes in both oncology and neurology. 

Our final study explores the impact of methylation on transcription factor (TF) activity, 

particularly examining the dynamics of YY1 and TAF1 co-binding and its implications for gene 

expression in various cellular contexts. YY1 is a crucial TF involved in multiple cellular 

processes, including cell proliferation, differentiation, DNA repair, and apoptosis. Our ChIP-seq 

data revealed a significant modification in YY1's binding consensus sequence in the presence of 

TAF1, marked by consistent preservation of cytosine at the third position within the motif. This 

alteration suggests a functional shift when YY1 co-binds with TAF1, differing from its 

regulatory actions when operating independently. 

While there is some similarity in the peaks of YY1 and TAF1, minor deviations are 

specific to the cell type. TAF1 co-binding can influence YY1's regulatory functions, with 

reduced methylation levels on the YY1 binding motif during co-binding supporting a more 

transcriptionally active state. Gene expression analysis corroborated these findings, showing that 

YY1 and TAF1 co-binding sites exhibited increased target gene expression. Such insights are 

crucial as they reveal the complex interplay between methylation and transcription factor 

dynamics, offering potential avenues for therapeutic intervention. 
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Moreover, our GO analysis in GM12878 and H1-hESC cell lines illustrated that YY1 and 

TAF1 co-binding leads to an expanded set of GO terms compared to when YY1 is expressed 

independently, suggesting a synergistic effect in regulating cellular processes. This co-binding 

effect varied between cell types, with a broader range of GO terms associated with promoter-

TSS sites in cells capable of differentiation, reflecting the cell-specific needs and differentiation 

potentials that influence binding patterns and gene regulation. 

Despite these advances, our study is limited by the challenges in confirming the physical 

and functional interactions between YY1 and TAF1 solely through ChIP-seq and GO analysis. 

Without additional techniques like co-immunoprecipitation, fluorescence resonance energy 

transfer (FRET), or mutational analyses, the detailed nature of their interaction and its biological 

implications remain hypothetical. Future research should use these experimental approaches to 

validate whether YY1 and TAF1 form a cohesive protein complex and elucidate the precise 

mechanisms by which their co-binding affects gene expression and cellular processes. Our 

findings propose a revised model for state-dependent co-binding of TAF1 to YY1. When the 

YY1 binding motif is methylated at the third residue, TAF1 does not co-bind, and if methylation 

is impossible due to the motif's composition, TAF1 also fails to co-bind. YY1, binding without 

TAF1, acts more strongly as a repressor. However, in cell-specific motifs where cytosine is 

conserved at the third residue and the site is unmethylated, TAF1 co-binding to YY1 acts as a 

transcriptional activator. This investigation into YY1 and TAF1 dynamics reveals a novel 

mechanism of transcriptional regulation through co-binding, integrating this phenomenon with 

the broader theme of DNA methylation analysis. This study significantly advances our 

understanding of how methylation influences transcription factor activity, impacting gene 

promoter activity and potentially offering new insights into therapeutic strategies.  
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5.2 Future Research Directions 

Our research has provided significant insights into the role of DNA methylation and 

transcription factor dynamics in KIRP and AD. However, several unanswered questions and 

areas require further exploration. One area with vast potential for exploration is the precise 

mapping of epigenetic mechanisms on the gene expression network. While our study identified 

correlations between methylation signatures and transcriptional activity, the exact molecular 

pathways through which these epigenetic modifications influence gene expression remain 

unclear. Additionally, the interaction between different epigenetic modifications, such as histone 

modifications and non-coding RNA interactions, in conjunction with DNA methylation, leaves 

room for further exploration in the next few decades. 

Emerging technologies hold promise in epigenomic and genomics research, which could 

enhance future studies. Future studies may wish to employ a multi-faceted approach combining 

new computational techniques with experimental validation to build on our findings. Potential 

studies could include functional genomics using CRISPR/Cas9 technology to selectively modify 

methylation sites and assess the resulting changes in gene expression and cellular phenotypes 

[147]. This approach could validate the functional significance of the identified methylation 

markers and elucidate their roles in disease progression. Single-cell epigenomics, leveraging 

single-cell sequencing technologies to explore the heterogeneity of DNA methylation patterns at 

the single-cell level, could provide insights into the clonal evolution of tumours and the 

heterogeneity of epigenetic states within different cell populations in AD. 

Longitudinal studies tracking changes in DNA methylation over time in patients with 

KIRP and AD are another possible approach to help identify early epigenetic changes associated 

with disease onset and progression, potentially leading to the development of predictive 

https://www.zotero.org/google-docs/?Jd2qLa
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biomarkers. Integrating DNA methylation data with other omics data, such as transcriptomics, 

proteomics, and metabolomics, could build a comprehensive understanding of the molecular 

networks underlying KIRP and AD. This holistic approach could uncover new therapeutic 

targets and biomarkers. 

Furthermore, emerging technologies like single-molecule sequencing—such as nanopore 

sequencing and single-molecule real-time (SMRT) sequencing—offer the potential to detect 

DNA methylation and other modifications at single-molecule resolution directly  [148]. These 

techniques can provide a more accurate and comprehensive view of the epigenome. Spatial 

transcriptomics, which allows for gene expression mapping within the spatial context of tissues, 

could reveal how epigenetic modifications influence gene expression in specific cellular niches 

and tissue architectures when combined with DNA methylation analysis. Machine learning 

frameworks can utilize various strategies in tandem to facilitate and speed up research on large-

scale epigenomic data sets, identify complex patterns, and predict functional outcomes. These 

tools can also aid in integrating multi-omic data and developing predictive models for disease 

diagnosis and prognosis. 

By merging these technological advancements with interdisciplinary approaches, future 

research can deepen our understanding of epigenetic mechanisms in KIRP and AD, potentially 

leading to novel therapeutic strategies and improved patient outcomes. 

5.4 Concluding Remarks 

In conclusion, our research has advanced the understanding of DNA methylation and its 

role in disease mechanisms. By focusing on computational bioinformatics using publicly 

available data, we have uncovered many potential insights into the epigenetic regulation of gene 

https://www.zotero.org/google-docs/?1sxfxE
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expression in KIRP and AD. Our findings highlight the potential of DNA methylation markers as 

diagnostic and prognostic tools and provide a framework for future research that utilizes layered 

machine learning. Additionally, our investigation into the dynamics of YY1 and TAF1 co-

binding provided a more nuanced model of gene regulation during the co-binding of these 

transcription factors. 
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