
Joint Task Offloading, DNN Pruning, and

Computing Resource Allocation for Fault

Detection With Dynamic Constraints in Industrial

IoT

by

© Vahidreza Niazmand

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

November 2024

St. John’s Newfoundland

Abstract

In an industrial Internet of Things (IIoT) environment, maintaining high system

efficiency and stability is critical to achieving industrial automation. Deep neural

networks (DNNs) have been integrated into IIoT systems to improve the intelligence

and efficiency of industrial task processing. On the other hand, the execution of DNN

model inference for task processing also imposes a significant computation load on end

devices (e.g., monitoring sensors). To address the challenges of satisfying stringent

task computing/processing requirements (e.g., latency and accuracy) in IIoT envir-

onments, offloading tasks to edge servers offers a promising solution. However, solely

relying on edge-assisted offloading can introduce prolonged communication delays

due to fluctuating wireless channel conditions. To enable efficient processing of a

high volume of sensed industrial data for facility fault diagnosis on industrial washing

machines, in this thesis, we investigate a joint task offloading, DNN model pruning,

and edge computing resource allocation (JOPA) problem under a layered IIoT net-

working architecture. Specifically, we aim to maximize the overall network resource

utilization while guaranteeing diverse and time-varying task processing delays and ac-

curacy requirements for generated processing/computing tasks of the fault detection

service. To capture the network dynamics, we formulate a stochastic optimization

problem with the objective of maximizing the long-term network resource utilization

with per-time-slot constraints on the end-to-end task latency and accuracy. Con-

sidering the network state transitions and the relations between network states and

policies, we transform our problem into a Markov reward process (MRP) formula-

tion where the state transitions are independent of the actions taken. To deal with

ii

the large problem size and dynamic quality-of-service (QoS) constraints, we design a

deep-reinforcement-learning (DRL) solution framework based on the soft actor-critic

(SAC) algorithm, where the actor networks, critic networks, and target networks are

customized to accommodate hybrid actions, achieve robust policy evaluation, and

stabilize the training process, respectively. Extensive simulation results are provided

to demonstrate the effectiveness of the proposed scheme and the advantages over

benchmark approaches in terms of 1) achieving high network resource utilization,

2) balancing the trade-off between resource utilization and QoS satisfaction, and 3)

adapting to the network load variation and dynamic QoS requirements.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Qiang (John)

Ye, for his invaluable guidance, support, and encouragement throughout my research

journey. His expertise and insightful feedback have been instrumental in shaping the

direction and quality of this work. I am truly fortunate to have had the opportunity

to learn from him. I would also like to thank Dr. Kaiyang Liu for being the host

during my last year of study at MUN.

I am also very thankful to Dr. Qiang (John) Ye and the School of Graduate

Studies at Memorial University of Newfoundland for their financial support which

has made this research and my studies possible. Their funding has been crucial in

enabling me to pursue and complete this work.

Lastly, I would like to acknowledge my family and friends for their unwavering

support and motivation during my academic journey.

iv

Contents

AbstractiiAcknowledgementsivList of TablesviiList of Figuresviii1 Edge-Assisted

Task Offloading in IIoT 5

1.1 Binary Offloading . 5

1.2 Partial Offloading . 6

2 Network Resource Allocation in IIoT 8

3 Learning-Assisted Approaches in IIoT 9

3.1 Reinforcement Learning (RL)-Based Solutions 9

3.2 Joint Learning- and Modeling- Assisted Approaches 11

4 Research Issues 12

5 Network Model 16

6 Computation Model 16

6.1 Task Model . 16

6.2 Convolutional Neural Network (CNN) Model Structuring and Deploy-

ment . 19

6.3 Processing Model . 21

7 Communication Model 24

7.1 Queuing Model . 25

8 Local Computing Resource Utilization 28

9 System Bandwidth Utilization 29

v

10 Edge Computing Resource Utilization 30

11 Proposed Joint Optimization Framework 31

12 Problem Transformation 33

13 SAC-Based Solution Design 37

13.1 Customized Actor Network for Hybrid Actions 38

13.2 Dual Critic Networks for Robust Policy Evaluation 39

13.3 Stabilized Target Networks for Reliable Training 40

13.4 Algorithm Design . 41

14 Simulation Setup 45

15 Performance Evaluation 47

16 Performance Comparison 49

17 Concluding Remarks 59

18 Future Research 60

Bibliography61

vi

List of Tables

2 Inference accuracy and pruning rate of pruned models deployed on IGWs. 47

3 Accuracy and delay requirements of tasks associated with their critic-

ality levels . 48

4 Simulation parameters and training hyper-parameters [1, 2] 49

vii

List of Figures

1 A two-layer network architecture with edge computing. 17

2 Data acquisition and task computing/offloading. 18

3 The relation between inference accuracy of a retrained CNN model and

its pruning rate. 21

4 Local processing and transmission scheduling process at each gateway. 26

5 An illustrative example of (a) local computing resource utilization and

(b) bandwidth and edge computing resource utilization within one time

slot for an IGW. 29

6 The proposed SAC-based solution framework. 38

7 Training rewards for the proposed scheme for two instances, V = 1

and V = 6. 54

8 The reward comparison between the proposed scheme (after conver-

gence) and the optimal solution. 55

9 Comparison between JOPA, JOPA, and AGDM in terms of (a) band-

width, (b) edge utilization, (c) local utilization, (d) overall utilization,

(e) offloading ratio, and (f) task dropping ratio 56

10 Comparison of the adaptability between JOPA and AGDM to delay

requirements in (a) and (b), and accuracy requirements in (c) and (d). 57

11 (a) Average inference accuracy, (b) E2E delay 58

viii

List of Symbols

N Total number of sensors

G Total number of IGWs

Mg Number of sensors attached to IGW g

Γ The length of each time slot

τ The length of each mini slot

H Task size in bits

I Task computation intensity in FLoPs per bit

ktm,g Criticality level of task m from IGW g at time slot t

Av Average inference accuracy of instance v

pv Pruning rate of instance v

otm,g Offloading variable of task m from IGW g at time slot t

q The number of mini-slots in each time slot

Cg IGW processing capacity

Ce Edge server processing capacity

ψt
g Uplink channel gain from IGW g to BS

zg Transmission power from IGW g to BS

W Total system bandwidth

ψt
g Uplink channel gain from IGW g to BS

Tmin Minimum delay requirement

Tmax Maximum delay requirement

Amin Minimum accuracy requirement

ix

Amax Maximum accuracy requirement

ctg Edge computing resource dedicated to IGW g at time slot t

J The reward penalty coefficient for dropped tasks

Ψ Number of channel gain values

N (µ, σ2) Normal distribution with mean µ and standard deviation σ

θi Critic network parameters

θî Target network parameters

γ Discount factor

ζ Target network learning rate

α Temperature parameter in SAC

D Replay buffer

x

Introduction

The Internet of Things (IoT) is a networking paradigm that interconnects uniquely

addressable physical network devices through different communication protocols and

Industrial IoT (IIoT) refers to IoT applications in industrial domains [3]. The swift

evolution of the smart industry has stimulated increasing needs for such applications,

including intelligent fault detection and event monitoring [4], where fault detection

refers to the process of identifying malfunctioning or abnormal conditions in indus-

trial equipment, systems or processes using data collected from IoT-enabled devices

and systems. Industrial washing machines, such as dual-bearing rotating machinery

for device cleaning services, function as the primary checkpoint for many different

industrial devices, e.g., rail vehicles. Therefore, it is crucial to predict impending

failures and mitigate unexpected downtime while satisfying the instant maintenance

demands of industrial facilities for improving production efficiency and minimizing

potential costs and dangers imposed by such failures [5]. However, preserving the

working status and stability of an industrial washing system faces technical chal-

lenges. Sensors deployed on washing machines consistently capture sensed data, which

needs to be processed for facility fault diagnosis with high accuracy and low latency.

Traditional methods of fault detection, such as rule-based systems, threshold-based

monitoring, and expert-driven diagnostic models, have intractable defects, including

severe hysteresis, high time consumption, and over-reliance on expertise, which result

in delayed maintenance measures and unexpected downtime [5]. With the enhance-

ment of IIoT and artificial intelligence (AI) technologies, a tremendous volume of

industrial data can be efficiently processed, and impending failures can be accurately

predicted [6, 7, 8]. Conventional AI techniques used for fault detection, such as de-

1

cision trees and statistical methods, have limitations in industrial settings. They

struggle with scalability when handling large, complex IIoT datasets and rely heavily

on manual feature engineering, which is time-consuming and error-prone. Moreover,

these models often fail to capture complex, non-linear patterns in industrial sys-

tems and require frequent retraining to adapt to changing conditions, limiting their

flexibility. Additionally, they are sensitive to noise and uncertainty, leading to inac-

curate fault detection and inefficient fault management [9]. Deep Neural Networks

(DNNs) are advanced AI models with multiple layers that can learn patterns from

large amounts of data, making them highly effective for such complex tasks. For the

considered fault detection service on industrial washing machines, DNNs offer several

advantages: 1) They can perform automatic feature extraction from raw data, elim-

inating the need for manual intervention. 2) DNNs handle large, complex datasets

efficiently and excel at recognizing intricate, non-linear patterns in industrial systems.

3) They also continuously adapt to new fault conditions, making them flexible and

resilient in dynamic environments. 4) DNNs are robust to noise, allowing for more

accurate fault detection with fewer false alarms [10, 11]. The first stage of using DNNs

is training, which involves feeding the sensor data from industrial washing machines

to learn patterns or anomalies that indicate potential faults. Through backpropaga-

tion, a DNN adjusts its internal parameters to minimize detection errors, improving

its ability to predict and diagnose equipment failures accurately. After training, the

data sensed on each washing machine can be fed into a DNN module for processing as

inference tasks. Despite exhibiting high processing accuracy compared to traditional

learning methods, executing DNN inference tasks also demands substantial computa-

tion resources due to extensive floating-point operations (FLOPs) required [12]. As

2

the volume of sensed data in an IIoT environment increases, the computation require-

ments may exceed the onboard processing capacity of a washing device, resulting in

prolonged computation responsiveness.

Computation offloading remains a promising strategy to alleviate the onboard

computation burden [13, 14], which involves transferring computation tasks via wire-

less communication technologies, e.g., cellular long-term evolution (LTE) [15] to re-

mote servers with high-performance computing resources. One typical approach for

enabling computation offloading is cloud computing. Instead of relying on local hard-

ware, cloud computing delivers computation services on-demand from remote data

centers, enabling users to store and process data without needing to manage the un-

derlying infrastructure. This approach offers flexibility, scalability, cost savings, and

the ability to access computing resources with an Internet connection [13]. However,

moving all computing tasks to cloud servers faces challenges such as high energy

consumption and long transmission delays due to the scarcity of network bandwidth

resources, which makes it difficult to meet the low cost, high accuracy, and low latency

requirements of fault detection applications in IIoT environments [16]. Edge comput-

ing is proposed as a promising solution to overcome these limitations. In edge com-

puting, computations are performed closer to the data source, i.e., near the devices

generating the data, which reduces transmission delays, conserves bandwidth, and

lowers energy consumption. This approach achieves faster response times, making

it particularly well-suited for latency-sensitive applications such as fault detection in

industrial systems. However, solely relying on edge-based solutions to offload large

volumes of sensed data may lead to unpredictable service delays due to the time-

varying nature of wireless channels [17]. Consequently, neither a device-only nor

3

an edge-only solution can effectively support DNN task inference with low delay re-

quirements. In this context, an end-edge computing approach emerges as a potential

solution. Distributing computing tasks between local devices and nearby edge servers

improves the utilization of network-wide computing resources. This approach allows

certain tasks to be processed locally on devices with sufficient computation power

while other tasks are offloaded to edge nodes for high-performance processing. This

strategy balances local-level low-latency processing with edge processing of enhanced

computation performance.

This thesis aims to identify and overcome the challenges of task offloading and re-

source allocation when dealing with the strict requirements for bearing fault detection

tasks using edge computing under time-varying network conditions.

The rest of this thesis is organized as follows. In Chapter 2, we delve into the

existing studies on task offloading and resource allocation for edge computing, and AI-

assisted IIoT systems. The system model is described in Chapter 3. In Chapter 4, the

formulation of the joint task offloading, pruned DNN model selection, and computing

resource allocation problem is presented as a stochastic optimization problem with

the aim of maximizing the overall network resource utilization over time. In Chapter

5, the proposed solution is designed and customized to solve the formulated problem.

Extensive simulation results are provided in Chapter 6. Concluding remarks and

future research directions are given in Chapter 7.

Related Work

The research community has actively investigated task offloading and resource

allocation problems in edge-enabled IIoT environments. In the following sections, we

examine key issues and challenges highlighted in the literature, identify remaining

4

research gaps, and outline the specific contributions this thesis makes to address the

gaps.

1 Edge-Assisted Task Offloading in IIoT

The literature presents various strategies for offloading, each with unique trade-offs

among latency, accuracy, and energy consumption. These strategies can generally be

classified into two primary categories, namely binary offloading and partial offloading.

1.1 Binary Offloading

In binary task offloading, entire tasks are either fully executed on the local IIoT

device or completely offloaded to an edge server, depending on resource availability

and network conditions. For instance, the authors in [18] utilize binary task offload-

ing to jointly minimize the total latency (i.e., transmission and processing latency)

and energy consumption (i.e., transmission and processing energy) for the generated

DNN inference tasks. This approach ensures that the latency of each task remains be-

low a predefined upper bound, providing a balance between performance and energy

efficiency.

The challenge of DNN inference in a two-layered network is studied in [1], where

in the first layer, IIoT devices generate several types of DNN inference tasks with

various accuracy requirements that can either be processed locally or offloaded to

an edge server equipped with high computation capacity. Specifically, compressed

DNNs are deployed on IIoT devices for lower computation needs and full-scale DNNs

are placed at the access point (AP) to enhance inference accuracy when tasks are

5

offloaded. The study focuses on minimizing end-to-end delay while ensuring the ac-

curacy requirements of each task are met. The collaborative approach thus balances

device limitations and AP resources to provide a low-latency and high-accuracy ser-

vice across diverse task types.

1.2 Partial Offloading

Partial task offloading includes dividing a task into smaller components, allowing

some parts to be processed locally while others are offloaded to the edge, enabling

finer control over resource allocation and latency management. In [19], partial task of-

floading is used to address the trade-off between end-to-end latency of DNN inference

tasks and energy consumption of IIoT devices under strict delay requirements. The

introduced approach involves DNN partitioning, where DNN layers are divided at a

specific cutting point, where all layers up to the cutting point are processed locally on

an IIoT device, while intermediate results and the cutting point layer information are

transmitted to the edge server to continue the inference from the edge layer onward.

This partitioning technique enables partial task offloading to balance local and edge

processing resources effectively.

The authors in [20] investigate DNN inference acceleration in a decentralized

IIoT network, where IIoT devices generate diverse DNN inference tasks with varying

latency and accuracy requirements. The system includes resource-constrained IIoT

devices that can process DNN tasks either locally or offload them to a fifth-generation

(5G)-empowered edge server to handle a high load of computational tasks. To balance

resource usage and minimize latency, the study incorporates DNN partitioning and

6

early exit mechanisms for flexible, partial task offloading, where early exit mechan-

isms allow DNN inference tasks to terminate at intermediate layers once they reach

a satisfactory accuracy level in their predictions. This process avoids unnecessary

computation in deeper layers, thus reducing inference time and conserving device re-

sources. By enabling tasks to terminate early when sufficient accuracy is achieved,

early exit mechanisms provide a trade-off between processing delay and inference

accuracy, making them particularly suitable for latency-sensitive IIoT applications.

This collaborative approach prioritizes low latency and efficient resource utilization,

especially under varying bandwidth and device-specific resource conditions.

In [21], the authors explore DNN inference using partial task offloading for cog-

nitive big data on IIoT devices within a hierarchical setup, where resource-limited

devices process DNN tasks. The system supports varied accuracy and latency needs

by leveraging a two-stage approach: 1) DNN compression through knowledge distil-

lation to create compact models and 2) acceleration via early exits, allowing tasks

to be completed once they reach a sufficient confidence level. Knowledge distilla-

tion exploits knowledge transfer to compress model by following a teacher-student

paradigm, in which a compact model (student) obtains knowledge from a complex

model (teacher) by learning the output class distributions of the teacher. Moreover,

in this work, certain parts of the DNN are processed locally on end devices, and

the remaining computations are sent to the edge server as needed. This is achieved

through early exit mechanisms, where inference tasks exit the model once they reach

a designated confidence level, thus not requiring full processing on either the local

device or an edge server. This adaptive method balances the trade-off between minim-

izing latency and meeting accuracy requirements, making it ideal for the two types of

7

considered tasks: mission-critical applications, which demand low latency, and cost-

sensitive tasks, which can tolerate slight accuracy reductions for reduced resource

consumption.

2 Network Resource Allocation in IIoT

Resource allocation plays a pivotal role in literature in optimizing task processing and

offloading in IIoT systems, where diverse devices and tasks require efficient distribu-

tion of different network resources (e.g., computing, bandwidth, and energy resources)

to meet strict latency, accuracy, and energy constraints. In IIoT environments, net-

work resources must be carefully allocated between local devices and edge servers to

balance the workload and maximize system performance based on the dynamic net-

work environment. In [22], a joint task offloading and resource allocation scheme is

proposed in an end-edge–cloud architecture to minimize the long-term average system

cost, including total system delay and economic cost affected by inference accuracy of

the DNN models, while guaranteeing system stability and the accuracy requirements

of the tasks at each time slot.

To achieve efficient DNN inference, the authors in [23] formulate a multi-dimensional

computing resource management problem in a three-layered end-edge-cloud architec-

ture, where at the beginning of each time slot, after making the offloading decision,

the edge controller determines how much bandwidth and edge computing resources

should be allocated to each task. The objective is to maximize the average inference

accuracy while satisfying the strict delay requirements of inference tasks. In this

work, the pre-trained DNN models are placed at the end device and edge server to

8

provide low-latency inference services. Considering the heterogeneity of industrial fa-

cilities and the limited resources of IIoT networks, the system provides each task with

two dedicated DNN models with different accuracy levels, which could be selected to

perform the corresponding inference tasks according to the available resources.

The authors in [24] study a two-timescale resource allocation problem in a 5g-

empowered IIoT network, which aims to simultaneously minimize the long-term end-

to-end delay and the grid energy cost, in which the optimization of energy manage-

ment (the utilization of harvested energy and grid energy) is performed in a large

time frame, while the optimization of transmission power allocation is performed in

smaller time slots.

3 Learning-Assisted Approaches in IIoT

AI has become a critical enabler in edge-assisted IIoT environments, supporting effi-

cient task offloading and resource allocation by combining the computation power of

edge servers with real-time intelligent decision-making capabilities. This section re-

views recent advancements in learning-assisted approaches for effective task offloading

and resource allocation in IIoT systems.

3.1 Reinforcement Learning (RL)-Based Solutions

Reinforcement learning-based solutions have gained significant attention for optimiz-

ing task offloading and resource allocation in IIoT environments. By enabling IIoT

devices and edge servers to learn optimal policies from interactions with their en-

vironment, RL-based approaches adapt to dynamic network conditions, varying task

9

requirements, and resource constraints. These solutions use RL algorithms to bal-

ance the trade-offs between local processing and edge offloading, ensuring low latency,

high accuracy, and efficient resource utilization. In [23], the joint task assignment

and DNN model placement problem are first transformed into a Markov Decision

Process (MDP) to handle the complexity of continuous resource allocation under

high-dimensional constraints. This transformation allows the problem to be addressed

through sequential decision-making, where each time slot’s resource allocation choices

affect overall accuracy and delay performance. In the MDP framework, the system

state includes task demands and available resources, while actions represent task as-

signment decisions, DNN model selection, and resource allocation adjustments. By

casting the problem as an MDP, they enable the use of the Twin Delayed Deep

Deterministic Policy Gradient (TD3) algorithm, which effectively learns policies for

dynamically adjusting these decisions to maximize inference accuracy while meeting

delay requirements under resource constraints.

The authors in [12] address the optimization of DNN inference acceleration by

minimizing task delay and maximizing inference accuracy while managing computa-

tional resources. The problem is formulated as a decentralized, partially observable

Markov decision process (Dec-POMDP). The authors employ a multi-agent reinforce-

ment learning (MARL) algorithm to solve this. Each smart device acts as an agent

that makes decisions based on local observations, dynamically selecting the optimal

inference branch and task offloading scheme. The decentralized approach allows each

device to operate independently, making decisions without requiring global informa-

tion, thus enabling efficient and scalable resource utilization and task offloading in a

distributed manner.

10

3.2 Joint Learning- and Modeling- Assisted Approaches

In [1], the authors aim to optimize resource allocation for collaborative DNN infer-

ence in IIoT networks by minimizing service delay while ensuring long-term accuracy

requirements. They frame this as a constrained Markov Decision Process (CMDP),

considering IIoT devices that generate tasks with accuracy demands and offload them

to edge servers based on network conditions. To address the CMDP’s complexity, the

authors transform it into an MDP using Lyapunov optimization. After transforma-

tion, an optimization subroutine is embedded in the proposed algorithm to directly

obtain optimal edge computing resource allocation. Afterward, a DRL approach

is used to optimize decision-making in the resource allocation framework. Specific-

ally, they implement an algorithm based on the Deep Deterministic Policy Gradient

(DDPG) method to handle continuous action spaces, which is suitable for complex

IIoT environments where decisions involve continuous adjustments, like sampling rate

selection and resource allocation.

The authors in [25] employ an artificial bee colony algorithm to acquire the optimal

task offloading decisions, which is a swarm optimization technique that simulates the

multivariate, multimodal functions of bee foraging behavior while also avoiding local

minima. In this algorithm, the location of the bee’s food source represents a possible

solution to the optimization problem, and the amount of nectar from the food source

corresponds to the quality (fitness) of the associated solution. Upon acquiring the

optimal offloading solution, a DDPG-based algorithm is used to provide the band-

width and computation resource allocation decisions with the aim of minimizing the

maintenance cost of the IIoT devices.

11

4 Research Issues

Despite the aforementioned efforts in the literature, the following research issues re-

main worthy of investigation:

1. Most studies on facility fault diagnosis in IIoT consider a networking architec-

ture where IIoT devices are directly connected to base stations (BSs) to enable

task offloading [26, 13]. To deal with an increasing number of IIoT sensors and

further alleviate the communication burden between IIoT devices and the edge

layer, a hierarchical networking architecture is desired where an intermediate

layer of IIoT gateways (IGWs) with high processing capacities can be deployed

in between devices and edge servers for data forwarding and data processing.

2. Most of the IIoT applications consider supporting either a single type of com-

puting task [27] or a heterogeneous set of tasks with diverse requirements [18],

where the task processing requirements are usually assumed stationary. How-

ever, for industrial facility fault diagnosis applications, the processing require-

ments (e.g., accuracy and delay) of each fault detection task vary over time to

reflect the changing criticality level of the task. For instance, as the concentri-

city of the shaft in a washing machine increases, it becomes more susceptible to

damage. Therefore, at different time instants, the criticality level of the same

type of tasks for determining the machine’s health condition can be different to

ensure the machine stability [5].

3. To mitigate the computation burden on IIoT devices, various DNN compression

and acceleration techniques, such as early exiting and knowledge distillation,

12

have been employed in other studies to offer a flexible trade-off between DNN

processing delay and inference accuracy [21]. Among existing compression tech-

niques, DNN model pruning, which removes a portion of least important model

weights and connections, offers certain learning model size reduction, leading

to small memory footprints and great flexibility in balancing inference accuracy

with processing delay [28, 29]. Therefore, deploying pruned instances of DNNs

on IIoT devices with limited computation capacity while maintaining full-weight

models on edge servers with greater computing resources can enhance the over-

all task-processing performance. When the network load is light, offloading

more tasks to the edge can be effective in maximizing the inference accuracy

and communication resource utilization, whereas the pruned models on IIoT

devices can be more leveraged to achieve low processing latency with accept-

able accuracy reduction when the wireless channel conditions are poor and/or

the network is congested. DNN pruning is specifically considered in this work

due to its ability to reduce the model size and computational requirements while

retaining acceptable accuracy levels, making it particularly suitable for resource-

constrained IIoT devices. Unlike techniques such as DNN partitioning, which

requires constant communication between local devices and edge servers for pro-

cessing different portions of the network, pruning enables standalone operation

by deploying lightweight models directly on local devices. This is especially ad-

vantageous in the considered fault detection scenario, where tasks with varying

criticality levels and strict delay requirements must be processed efficiently, even

under fluctuating network conditions. By allowing flexible trade-offs between

accuracy and delay, DNN pruning enhances system adaptability and ensures

13

optimal resource utilization across dynamic IIoT environments.

4. How computing resources are allocated among tasks affects the overall ser-

vice performance. As the generated tasks from different sensors have diverse

delay requirements varying over time, it becomes crucial to dynamically alloc-

ate computing resources at both the local and edge sides in response to the

varying network state and task requirements [17]. The time-varying accuracy

and delay requirements attributed to each task’s criticality level add complex-

ity to the problem by introducing variability in both task prioritization and

resource allocation. These constraints require the system to adaptively balance

trade-offs between local processing and offloading decisions while maintaining

optimal resource utilization under uncertain network conditions. Considering

the communication resources allocated for task offloading, the overall system

resource utilization needs to be maximized to obtain an optimal task processing

policy.

Therefore, in this study, we consider a layered IIoT networking architecture, where

IGWs interconnect different groups of sensors deployed on industrial washing ma-

chines with an edge server. Our objective is to maximize the overall system resource

utilization while guaranteeing time-varying inference accuracy and delay requirements

of generated tasks to enhance the edge computing performance. To capture the net-

work dynamics and the impact of task offloading, model pruning, and computing re-

source allocation on the network-wide resource utilization, we formulate a stochastic

optimization problem, which is then transformed as a Markov reward process (MRP)

with per-time-slot constraints on processing accuracy and delay. Specifically, we bal-

14

ance the trade-off between local task processing and edge processing by taking into

consideration resource utilization, task processing delay, and processing accuracy.

The main technical issue is how to jointly determine an optimal task offloading, local

processing model pruning, and computing resource allocation policy such that the

overall bandwidth and computing resource utilization can be maximized while sat-

isfying task processing accuracy and delay requirements in the long run. To deal

with a high number of generated tasks and accommodate the time-varying nature

of task requirements, we design a soft actor-critic (SAC)-based deep reinforcement

learning (DRL) algorithm to learn a stationary policy by interacting with the net-

work environment, where DNN models are customized to approximate the policy and

value functions [30]. Specifically, our proposed SAC-based algorithm with experience

replay [31] utilizes the stochastic policy gradient method to offer more comprehensive

exploration and better adapts to the time-varying task requirements than the DDPG

method [32].

15

System Model

5 Network Model

As shown in Fig. 1, we consider a two-layer network architecture with edge computing

to support a fault detection service for industrial washing machines [5]. The first layer

comprises N (N ∈ Z+) industrial washing machines situated in a factory environment

for rail vehicle body cleaning, each equipped with one vibration sensor to detect the

operating frequency of the machine for estimating its working status (i.e., normal

or abnormal). Each vibration sensor is operated at a sampling rate of X kHz. All

N sensors are partitioned into G (G ∈ Z+) groups according to their geographical

proximity, and each group, indexed by g (g ∈ {1, 2, .., G}) contains Mg sensors all

connected to IGW g through wired links [5], where
G∑︁

g=1

Mg = N . In the second

layer, one LTE BS is deployed to provide a wide wireless communication coverage

to all G IGWs, where the LTE machine-type (LTE-M) communication technology

is employed for uplink data transmission from each IGW to the BS [33]. The BS

is further connected through wired connections to an edge server with computing

capacity for task processing, as shown in Fig. 1.

6 Computation Model

6.1 Task Model

As depicted in Fig. 2, the sensing data acquisition process on each vibration sensor

includes data sampling and quantization of original vibration signals from the ac-

16

Figure 1: A two-layer network architecture with edge computing.

celerometer using an analog-to-digital converter (ADC)1. The digitalized signals are

further transmitted through wired links, as shown in Fig. 1, to the IGW that the

vibration sensor is associated with [34]. In the data link layer, the data stream from

each sensor arrives at its connected gateway in fixed-size computing tasks to be pro-

cessed for making fault detection decisions. During the network operation stage,

time is partitioned into a sequence of time slots of fixed length Γ, each indexed by

t (t = 0, 1, 2...). We assume that at the beginning of slot t, one task generated from

one vibration sensor arrives at its connected gateway [5]. Therefore, at gateway g, a

1Note that the vibration sensors are assumed to maintain continuous functionality and no data

loss occurs throughout the data acquisition process, as discussed in [5] and [34].

17

total of Mg tasks arrive at the beginning of each time slot. The length of each time

slot is set as the maximum processing delay requirement among all tasks, denoted

by Tmax. Each task is characterized by a triplet ⟨H, I, ktm,g⟩, where H represents the

task size (in bits), I denotes the computation intensity needed to process one bit of

task information (in FLoPs per bit), and ktm,g indicates the criticality level of the task

generated at gateway g from sensor m at time slot t. The criticality level ranges from

0 to 1, with a step increase of 0.2, and a larger ktm,g reflects a higher criticality level

[5]. Every task must meet a specified minimum processing accuracy and a determ-

ined maximum processing delay requirement, and tasks with higher criticality levels

require a higher processing accuracy and a lower processing delay.

Figure 2: Data acquisition and task computing/offloading.

18

6.2 Convolutional Neural Network (CNN) Model Structur-

ing and Deployment

To improve task processing efficiency, we consider deploying and structuring trained

CNN models on each IoT gateway and the edge server connected to the BS to ef-

ficiently utilize the processing capacities of both entities. Specifically, we employ a

CNN architecture, i.e., VGG-16 [35], which is utilized to diagnose facility fault type

based on the collected dataset on bearing vibration signals [5]. VGG-16 consists

of 13 convolutional layers and 3 fully connected layers. A well-trained and com-

plete (full-weight) instance of VGG-16 is deployed on the edge server with sufficient

computing resources for task inference, while V (V ∈ Z+) pruned instances of the

model are deployed on each IGW for more efficient task computation at the price

of reduced processing accuracy. Deploying pruned DNN instances on local devices

provides multiple benefits, including reduced computational load, lower latency, and

energy efficiency by minimizing the reliance on offloading. The availability of mod-

els with varying pruning rates allows dynamic adaptability to task requirements,

enabling a trade-off between accuracy and delay based on task criticality. This ap-

proach enhances scalability and robustness to network variability and supports local-

ized, real-time fault detection, which is crucial for time-sensitive industrial scenarios.

These advantages collectively improve resource utilization and system performance

in IIoT environments. Each instance on IGW g is characterized by a two-dimensional

tuple ⟨Av, pv⟩, where v ∈ {1, 2, ..., V }, Av is the average percentage of task inference

accuracy achieved by pruned CNN instance v with respect to the accuracy of the

complete CNN model, and pv ∈ [0, 1) is the model pruning rate of instance v. Here,

19

the L1-norm pruning technique is used [36], which involves removing a fraction (pv)

of weights with the lowest absolute weight magnitude in the complete CNN model.

The L1-norm pruning is applied to both convolution and fully-connected layers. Each

convolution layer consists of several kernels containing trainable parameters, and the

L1 norm is computed for each kernel as the sum of the absolute values of its weights

[29]. Then, we choose the pv fraction of kernels with the smallest L1 norm and set

the value of their weights to zero. Similarly, we set the pv fraction of the weights

connecting neurons in two consecutive fully connected layers to zero. As indicated

in [29], pv has a linear relationship with the number of FLoPs in both convolution

and fully connected layers, and the number of FLoPs decreases by a factor of pv

after pruning. Therefore, the pruning creates a compressed network with reduced

parameters to save inference operations and achieve high inference efficiency.

Following the pruning process, without subsequent retraining, the inference accur-

acy drops exponentially with the pruning rate [37, 29]. Therefore, each CNN instance

is re-trained after pruning to mitigate accuracy loss. The pruning and retraining of

the CNN instances happen offline before deployment. After retraining, the relation

between accuracy and pruning rate is implicit, which depends on the specific CNN

architecture and the dataset used to train the neural network [1, 29]. Therefore, we

approximate the specific relation between pv and Av based on our employed exper-

imental data, where a polynomial fitting function is used to obtain a closed-form

relation [38]. Similar to [38], the least-square fitting error is minimized to get the

optimal polynomial degree and fitting coefficients in (1).

Av(pv) =
∑︂
i∈N

ai(pv)
i (1)

20

where each ai denotes the optimal fitting coefficients. Based on the testing results, we

choose the degree of 3 as the order of our polynomial fitting function to achieve a bal-

ance between fitting accuracy and computational complexity, as the fitting functions

of higher orders exhibit comparable performance, shown in Fig. 3.

Figure 3: The relation between inference accuracy of a retrained CNN model and its

pruning rate.

6.3 Processing Model

Based on the deployed CNN models, at time slot t, each task can be 1) locally

processed through one pruned CNN instance at its arriving IGW or 2) offloaded to

the edge for processing through the complete CNN model. Denote otm,g ∈ {0, 1} as

the offloading decision variable for task m at IGW g in time slot t, where otm,g = 0

indicates local processing and otm,g = 1 indicates edge processing.

21

• Local processing: We utilize batch task processing to achieve fast inference [39],

where tasks arriving at an IGW from different sensors in one time slot are fed

into one of the deployed neural network instances as a batch of inputs instead

of a single input, and the computations for each input are parallelized across

different computation hardware threads. The computation capacity of the IGW

is equally divided among the tasks chosen for local processing [1], and we assume

the processing units used at the gateways are optimized for parallel processing,

which enables efficient processing and fast inference time [39]. We consider

that IGW g has a fixed processing capacity, denoted by Cg. The ratio of the

computing capacity at IGW g dedicated to locally processing each task at time

slot t is calculated as 1∑︁Mg
m=1(1−otm,g)

. Then, the local processing delay for each

task m at IGW g in slot t is calculated as

Lt
m,g = (1− otm,g)

Mg∑︂
j=1

(1− pvtg)HI(1− otj,g)
Cg

(2)

where pvtg is the pruning rate associated with the choice of local inference model

instance vtg at gateway g in time slot t.

• Edge processing: If a task is offloaded to the edge server through wireless com-

munication between an IGW and the BS, it is processed by an uncompressed

instance of CNN deployed at the edge. Tasks are transmitted in a sequential

manner, and all offloaded tasks in one time slot need to be processed at the

edge server within the slot duration to satisfy their individual maximum pro-

cessing delay requirements. The tasks not satisfying their individual processing

time requirements will be discarded. Therefore, to accommodate task offloading

from multiple sensors at a time slot, we further partition each time slot t into

22

mini-slots of length τ [40, 41, 42]. Each mini-slot is indexed by i (i = 1, 2, ..., q),

where q ∈ N and q = Γ
τ
. The duration of each mini-slot, τ , is set as the time

it takes to transmit one task when the network is at its best condition using

the whole system bandwidth provided, i.e., τ = H
Rmax where Rmax is the max-

imum transmission rate between an IGW and the BS. Then, at each time slot,

a number of mini-slots are allocated to offload each task generated at IGW g

in a statistical multiplexing manner, where the synchronization of time slots

and mini-slots among gateways is managed by the edge server [43] (Please see

subsection 3.2.1 for further explanation). The tasks offloaded from different

IGWs are processed at the edge in parallel, where the total computing capacity

of the edge server, denoted as Ce, is dynamically divided and allocated among

the arriving tasks. ctg ∈ [0, 1] is the decision variable indicating the portion of

the computing capacity at the edge dedicated to tasks from gateway g at time

slot t. In this regard, the processing delay for task m offloaded from gateway g

at time slot t is calculated as

Et
m,g =

otm,gHI

Ce(ctg + ϵ)
(3)

where ϵ ∈ (0, 1) is a small positive number used as a regularization parameter to

avoid division by zero when ctg = 0. By adding ϵ, the division operation remains

well-defined and helps to ensure numerical stability and avoid computational

errors during optimization [44].

23

7 Communication Model

We consider an uplink wireless communication system from the IoT gateways to the

BS for task offloading where the communication links are assumed non-line-of-sight

(NLoS) as the BS is located outside the factory. Similar to [1], the uplink NLoS

channel gain from gateway g to the BS, denoted by ψt
g at time slot t, is modeled as a

three-state discrete-time Markov chain, where the channel gain within one time slot is

assumed stable. The three channel states are named Good, Normal, and Bad, abbre-

viated as G, N, and B, respectively, indicating three categories of channel conditions

ranging from a good state to a poor state. The value of channel gain at each state is

acquired based on real-time measurements, and the one-step channel state transition

probability matrix is given by [1]

P =

⎡⎢⎢⎢⎢⎢⎣
PBB PBN PBG

PNB PNN PNG

PGB PGN PGG

⎤⎥⎥⎥⎥⎥⎦ (4)

where Pxy indicates the transition probability from state x to state y between con-

secutive time slots. Then, the uplink transmission rate for IGW g at time slot t is

calculated as

Rt
g =

Mg

N
W log2

(︃
1 +

Nzgψ
t
g

MgN0W

)︃
(5)

where N is the total number of sensors in the system, W is the total configured

system bandwidth, zg is the transmission power configured at IGW g for uplink task

offloading, which is assumed to be fixed during the network operation stage, and N0

is the Gaussian white noise power spectrum density.

24

As seen from (5), the total system bandwidth W is allocated among IGWs pro-

portional to the number of sensors, Mg, associated with IGW g [1]. Considering

that industrial sensors and gateways are relatively stationary with limited processing

and energy capacities, the bandwidth re-allocation among industrial IoT gateways is

typically conducted at a slow frequency (e.g., in the order of hours) to reduce the

signaling overhead incurred in the re-allocation process [15]. Thus, we assume the

bandwidth allocated to each gateway remains unchanged during each network oper-

ation stage [1]. Based on the above analysis, the offloading delay for task m arriving

from IGW g at time slot t is given by

Ωt
m,g =

otm,gH

Rt
g

. (6)

Considering task processing results are usually small in size, the latency of transmit-

ting the processing results back from the edge server to each IGW can be negligible

[5, 45].

In IIoT scenarios where wireless communication resources for task offloading are

often limited, task transmission latency can be longer than task inter-arrival time at

an IGW [45], leading to task queuing before being offloaded. In the following, we

present our modeling of task queuing at each IGW.

7.1 Queuing Model

At each IGW, a transmission queue is established to buffer tasks for offloading, which

is designated to accommodate tasks arriving from all sensors connected to the IGW,

as shown in Fig. 4. The tasks at each queue are prioritized based on their criticality

levels, and the tasks with higher criticality levels are preemptively queued for trans-

25

Figure 4: Local processing and transmission scheduling process at each gateway.

mission over those with lower levels. If several tasks have the same criticality level,

the queuing among them will be determined randomly.

Based on the preceding discussions, the queuing delay for each task depends on

the prioritized ordering of tasks in the transmission queue of a gateway. Denote δtg

(δtg ∈ {1, 2, ..., q}) as the number of mini-slots allocated to transmit one task from

IGW g at time slot t, where δtg = ⌈R
max

Rt
g
⌉. Note that δtg is the same for all the tasks to

be offloaded from gateway g at time slot t, though it may vary across different time

slots. The time-varying nature of δtg and the ordering of tasks in the transmission

queues highlights the necessity of employing statistical multiplexing. Tasks unable

to be accommodated for transmission or whose delay requirements are violated will

26

be dropped from the queue. Therefore, the transmission queuing delay for task m at

IGW g is a summation of the transmission delay of the tasks queued before task m,

given by

Bt
m,g = otm,gδ

t
gτ

[︃
stm,g +

(btm,g − 1)

2

]︃
(7)

where stm,g is the number of tasks with a higher criticality level than task m and btm,g

is the number of tasks with the same criticality level as task m queued for offloading

at IGW g, calculated, respectively, as

stm,g =

Mg∑︂
j=1

h(j,m, g, t)otj,g (8)

and

btm,g =

Mg∑︂
j=1

µ(j,m, g, t)otj,g. (9)

In (8) and (9), h(j,m, g, t) and µ(j,m, g, t) are two helper functions defined as

h(j,m, g, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ktj,g > ktm,g

0, otherwise

(10)

and

µ(j,m, g, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ktm,g = ktj,g and j ̸= m

0, otherwise.

(11)

After being transmitted to the BS, the tasks will arrive at the edge server. In the

process of task offloading, the task processing delay at the edge server is much smaller

than the task transmission delay [45]. Therefore, no queuing delay is considered for

task processing at the edge server.

27

Problem Formulation

We present our research problem formulation on joint task offloading, pruned

model selection, and computing resource allocation. Our objective is to maximize

the long-term utilization of system radio bandwidth and computing resources while

meeting the diverse inference accuracy and delay requirements of individual tasks,

which change over time with the task criticality levels. We balance the trade-off

between local task processing and edge processing by taking into consideration the

resource utilization, the task processing delay, and task processing accuracy. Next,

we determine, in every time slot t, the local computing resource utilization at any

IGW g, the edge computing resource utilization, and the bandwidth utilization for

processing tasks offloaded from IGW g, respectively.

8 Local Computing Resource Utilization

We define the local computing resource utilization of each IGW as the proportion of

time spent in one slot processing the tasks at the IGW. As illustrated in Fig. 5(a), at

each IGW, the tasks not offloaded are processed in parallel using batch processing,

where the entire computing resources of the IGW are divided equally among the

tasks (see section 3.3 for further details.) Consequently, by referring to (2), the local

computing resource utilization for processing the tasks at gateway g in time slot t is

calculated as the local processing delay of each task over the time slot duration Γ,

given by

utl,g =

Mg∑︂
m=1

(1− pvtg)HI(1− otm,g)

CgΓ
. (12)

28

Figure 5: An illustrative example of (a) local computing resource utilization and (b)

bandwidth and edge computing resource utilization within one time slot for an IGW.

9 System Bandwidth Utilization

At each IGW, the tasks chosen to be offloaded first enter the transmission queue and

are then transmitted sequentially using the portion of the system bandwidth allocated

to that IGW, as illustrated in Fig. 4. Specifically, at the beginning of any time slot t,

the transmission of a task starts, followed by a sequence of tasks to be transmitted in

the slot, as shown in Fig. 5(b). If a task cannot be transmitted within the duration

of a time slot, it gets discarded. The overall utilization of bandwidth for IGW g at

29

time slot t is calculated as the duration of time used to transmit the offloaded tasks

within the slot, given by

utb,g =

Mg∑︂
m=1

Ωt
m,g

Γ
. (13)

10 Edge Computing Resource Utilization

After transmission, the offloaded tasks are processed at the edge server, where the

total computing resources are allocated to process the tasks from different gateways.

The tasks offloaded from any IGW g are sequentially processed according to the order

of their arrivals. Therefore, the utilization of the computing resources on the edge

server dedicated to IGW g is the summation of the edge processing delay for all the

tasks offloaded from IGW g divided by the length of the time slot Γ, given by

ute,g =

Mg∑︂
m=1

Et
m,g

Γ
. (14)

Based on the preceding analysis, the summation of the local processing, commu-

nication, and edge processing utilization for all G IGWs at time slot t is represented

as

ut =
G∑︂

g=1

utl,g + ute,g + utb,g. (15)

Note that the presence of idle time in the local processing units, as observed in Figure

4.1 (a), is inherently accounted for in formulating the objective function, which aims

to maximize overall resource utilization. Specifically, the local computing resource

utilization at each gateway g in a given time slot t is defined as the proportion of

total computing resources actively used for task processing relative to the available

capacity. Therefore, idle time is effectively reduced, and thus, the aggregated utiliza-

30

tion, which sums local, bandwidth, and edge resource utilization, is also diminished.

This mechanism ensures that the optimization process inherently penalizes idle local

resources by prioritizing configurations (e.g., offloading decisions, pruned model se-

lection) that better utilize the available computational capacity.

11 Proposed Joint Optimization Framework

Conducting more local processing with pruned learning models can increase task

processing efficiency with a lower delay but a reduced processing accuracy, while a

higher task inference accuracy and communication resource utilization can be achieved

through edge processing at the cost of local resource underutilization and a longer

latency. Therefore, the main research issue is to determine the optimal task offload-

ing, pruned local model selection, and computing resource allocation policies such

that the overall communication and computing resource utilization can be maxim-

ized in the long run with task processing accuracy and delay requirements satisfied.

To this end, our problem is presented as a stochastic optimization formulation, given

in (P1), where η is a large positive number, Tmin and Tmax represent the minimum and

maximum task processing delay requirements, respectively, among all tasks, corres-

ponding to the highest and lowest criticality levels of tasks, Amax and Amin denote the

maximum and minimum task inference accuracy requirements, respectively, among

all tasks, and Dt
m,g represents the end-to-end delay for task m at gateway g in time

slot t, calculated as

Dt
m,g = Lt

m,g + Et
m,g + Ωt

m,g +Bt
m,g. (16)

31

(P1) : max
otm,g ,c

t
g ,v

t
g

E

{︄
1

η

η∑︂
t=1

ut

}︄

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ Dt
m,g ≤

[︁
Tmax − ktm,g(T

max − Tmin)
]︁
,∀m, g (17a)[︁

Amin + (Amax − Amin)ktm,g

]︁
(1− otm,g) ≤ Avtg(pvtg)(1− o

t
m,g) ≤ 1,∀m, g (17b)

G∑︂
g=1

[︄
ctg

Mg∏︂
m=1

(1− otm,g)

]︄
= 0 (17c)

G∑︂
g=1

ctg = 1 (17d)

ctg ∈ [0, 1],∀g (17e)

Et
m,g ≤ Ωt

m,g,∀m, g (17f)

otm,g ∈ {0, 1},∀m, g (17g)

pvtg ∈ (0, 1],∀g (17h)

The objective of (P1) is to maximize the stochastic average of the aggregated band-

width and computing resource utilization for all the IGWs and the edge server, where

E indicates the expectation operator, and the optimization variables are task offload-

ing decision otm,g, computing resource allocation decision ctg, and pruned local inference

model selection vtg. Constraint (16a) indicates that the end-to-end delay of task m

generated from gateway g cannot exceed the upper bound varying between Tmin and

Tmax when ktm,g takes values between 0 and 1. Similarly, constraint (16b) indicates

that the inference accuracy of the chosen pruned local processing model vtg is limited

by a lower bound changing in between Amin and Amax as ktm,g varies. Constraint

(16c) indicates that no edge computing capacity is dedicated to the gateways that do

not have any offloading tasks, and constraint (16d) shows that the edge computing

capacity is divided and allocated among the gateways for processing the offloaded

32

tasks. Constraint (16f) indicates that the edge processing delay of an offloaded task

is smaller than or equal to its transmission delay to ensure task processing without

queuing delay at the edge server. Any task offloaded from gateway g violating (16a),

(16b), and/or (16f) is dropped from the edge server.

12 Problem Transformation

The problem (P1) is formulated in a centralized way where the edge server acts as

the agent to make task offloading, local pruned model selection, and computing re-

source allocation decisions. Note that the uplink channel state information acquired

from the model presented in (4) is assumed to be available to the edge server at the

beginning of each time slot [1]. For the centralized agent to make decisions, each

gateway updates with the edge server the task criticality levels at each time slot.

The time used to transmit each task criticality level is usually small in size and is

thus neglected [5]. In the proposed system, to capture the network state transitions

and model the relation between states and policies, we describe the problem (P1) as

a Markov reward process (MRP) formulation where the state transitions are inde-

pendent of the actions taken [30]. The MRP is particularly valuable for simplifying

and structuring complex decision-making scenarios that involve sequential decisions

over time. It accounts for both immediate and future consequences, explicitly models

the stochastic nature of environments, and incorporates uncertainty into the formu-

lation. This approach provides a robust framework for understanding and optimizing

decision-making processes in dynamic and uncertain contexts. The MRP formulation

33

is represented by a four-dimensional tuple at time slot t, which includes a set of net-

work states St, a set of actions At, state transition probabilities, P(St+1|St), and a

reward function, R(St,At), defined on states and actions. Specifically, to capture the

dynamics of the system, St is designed to include the uplink wireless channel gains

from all gateways to the base station and the criticality levels of all generated tasks

at time slot t, denoted by

St = {ψt
g | ∀g} ∪ {ktm,g | ∀m, g}. (1)

Furthermore, the action set At comprises the decision variables for task offloading,

model pruning, and edge computing resource allocation, formally defined as

At = {otm,g | ∀m, g} ∪ {vtg | ∀g} ∪ {ctg | ∀g}. (2)

The state transitions from t to (t + 1) include the updates on channel gains for all

gateways and the criticality levels of the generated tasks, and thus, the state transition

probability is given by

P(St+1| St) =
G∏︂

g=1

P(ψt+1
g | ψt

g) ·
G∏︂

g=1

Mg∏︂
m=1

P(kt+1
m,g| ktm,g) (3)

=
G∏︂

g=1

P(ψt+1
g | ψt

g) ·
G∏︂

g=1

Mg∏︂
m=1

P(kt+1
m,g).

In (20), the first equality holds due to the independence of the channel gain values

among different gateways and the independence of the channel gain values from the

task criticality levels, and the second equality holds due to the criticality levels of

tasks at one time slot are independent of the levels in the previous time slots, as they

vary randomly over consecutive time slots [5]. Note that channel gain values evolve

according to the transition probability matrix presented in (4). Given the balanced

34

sample distribution in the dataset, we assume that different criticality levels occur

with equal probability. Consequently, at each time slot, the criticality level of each

task is determined by sampling from a uniform distribution. This approach ensures

a fair representation of all criticality levels throughout the analysis.

Solving the MRP problem is to determine a set of optimal policies (i.e., probabil-

ities of choosing actions given network states), denoted by π∗(A|S), that maximizes

the accumulated system reward over time, where S and A represent steady states

and actions as t approaches infinity. Accordingly, a reward function is designed by

considering the overall network resource utilization and the satisfaction of E2E delay

and inference accuracy requirements at each time slot. Hence, we present the reward

function as

rt = ut −

[︄∑︁G
g=1

∑︁Mg

m=1(1− βt
m,g)

N

]︄
J (4)

where βt
m,g is an indicator function, defined as

βt
m,g =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if (16a), (16b), and (16f) hold

0, otherwise.

(5)

In (21), J is a large positive number and is multiplied by the ratio of dropped tasks

in time slot t. If the requirements in (16a), (16b), and/or (16f) are not satisfied, then

a negative reward is received as a penalty, which changes according to the number of

dropped tasks, and if all the requirements are satisfied, then the reward reflects the

overall system resource utilization.

In (P1), the state and action dimensions are calculated as N + G and N + 2G,

respectively, where the action space contains a set of continuous variables ctg ranging

between 0 and 1 and two sets of discrete variables. The action space size can be

35

estimated as 2NV GZG, where Z is a large positive number estimating the number

of values ctg can take when discretized, and the state space size of the problem is

calculated as ΨGKN , where Ψ and K are the numbers of configurable channel gain

values and criticality levels, respectively. As the dimensions increase with the num-

ber of sensors N and the number of gateways G, both the state and action spaces

grow exponentially, resulting in higher computational complexity. The conventional

algorithms, such as Epsilon-Greedy [46] and Upper Confidence Bound (UCB) [47],

used for solving MRP problems where the state transition probabilities are independ-

ent of the actions taken under the current states, may not be efficient in solving a

complex problem with large action and state spaces where an optimal solution needs

to be obtained at the beginning of each time slot[48].

36

Solution Design

13 SAC-Based Solution Design

Solving the transformed MRP problem with large state and action spaces and dy-

namic constraints necessitates the design of an advanced algorithm [49]. We propose

to use a DRL-based approach to approximate the functional relation between each

state-action pair and the corresponding reward using DNNs [10]. Particularly, DRL

learns an effective policy through trial and error by interacting with the network en-

vironment [50]. In our formulated MRP problem, the task offloading and local pruned

model selection are discrete decision variables, while the edge computing resource al-

location decisions are continuous. Furthermore, since the state transition probability

is independent of the actions taken, the state space needs to be thoroughly and ef-

ficiently explored to obtain optimal actions. To address these challenges, we build

our algorithms based on SAC, which is an actor-critic learning framework used for

accommodating continuous RL actions and offers the following advantages [51].

• Enhanced Exploration: SAC employs a stochastic policy, sampling actions

according to a learned probability distribution, which inherently encourages

exploration. The stochastic policy helps the learning agent thoroughly explore

the high-dimensional action space with complex network dynamics, in contrast

to the deterministic policy that relies on added noise for exploration.

• Improved Sample Efficiency: SAC is sample-efficient, achieving high per-

formance with reduced environment interactions. This efficiency is attributed

37

Figure 6: The proposed SAC-based solution framework.

to the improved exploration and stability provided by entropy regularization

and dual Q-learning (i.e., using two critic networks to mitigate overestimation

bias in estimating the value function).

Based on the aforementioned advantages, we propose an SAC-based joint task of-

floading, DNN pruning, and computing resource allocation (JOPA), which includes

the design of the following three main functional components.

13.1 Customized Actor Network for Hybrid Actions

JOPA is built on the SAC algorithmic framework, tailored to address the formulated

MRP with a hybrid action space. Different from the conventional SAC, which is

38

designed for continuous actions, our approach adapts SAC to handle a combination

of continuous and discrete actions. We customize the actor network πϕ to generate

decisions for task offloading, pruned model selection, and edge computing resource al-

location. The actor network first produces mean µ and log standard deviation log(σ).

Then, the log standard deviation is exponentiated to get standard deviation σ for

sampling continuous actions from a normal distribution N (µ, σ2). Using log stand-

ard deviation ensures that the standard deviation obtained after exponentiation is

always positive. Directly using standard deviation could lead to potential instability

if small or negative values are produced, especially when training with gradients [31].

The samples are then processed to obtain the hybrid decision variables: 1) Binary

task offloading decisions associated with N sensors are obtained by normalizing the

N action variables to the range of [0, 1] using the Sigmoid function and the round-

ing function consecutively; 2) The G categorical actions for pruned model selection

corresponding to G gateways are similarly normalized and rounded to the range of

[0, V − 1]; 3) The G continuous action variables corresponding to the edge comput-

ing resource allocation decisions for tasks arrived from G gateways, respectively, are

computed using the Softmax function, ensuring adherence to constraint (16d) in (P1).

13.2 Dual Critic Networks for Robust Policy Evaluation

In SAC, the Q-value of each state-action pair is estimated based on the maximum

value over the set of possible actions. However, an estimated Q-value can be overly

optimistic because the algorithm often selects the action with the highest Q-value

estimate, which could be erroneously high due to noise or errors in the approxim-

39

ation. By incorporating two critic networks (Qθ1 and Qθ2), our algorithm reduces

overestimation bias, a key consideration when dealing with mixed actions for a more

reliable assessment of the expected return (long-term accumulated reward). By using

the minimum of the two estimates, SAC becomes more conservative in its Q-value

approximation, reducing the chance of overestimation. The critic networks process

state St and action At, outputting an estimated return value for the state-action

pair. This dual-network design enhances the robustness of our algorithm, preventing

suboptimal convergence and ensuring that the solution space is thoroughly explored.

13.3 Stabilized Target Networks for Reliable Training

When updating Q-values, there is a risk of instability since the target values are based

on the current frequently updated Q-values. This leads to high variance in target es-

timates, especially in the early stages of training when the agent is exploring. High

variance can cause the learning process to become unstable or even diverge. To stabil-

ize training, we employ two target networks, denoted by θ̂1 and θ̂2, to reduce variance

during updates and minimize the chance of overestimation. Our approach initial-

izes these networks as copies of the critic networks, ensuring consistency throughout

training, given by:

θ̂i ← θi, i ∈ {1, 2}. (6)

To mitigate the high variance issue and stabilize training, the algorithm uses the

minimum of the two target values to update the critic networks, which reduces bias

in the critic function update. Furthermore, the target networks are updated using a

soft update rule, changing more slowly than the critic networks. This helps smooth

40

the target values and avoid instability caused by rapidly changing Q-values (See

subsection 5.1.4 for more details).

13.4 Algorithm Design

Fig. 6 shows the key steps (Step 1 to Step 9) in our proposed SAC-based JOPA

algorithmic framework. As shown in Algorithm 1, the JOPA is trained in a time-

slotted manner. First, the learning agent at the edge server obtains experience by

interacting with the environment. At time slot t, based on the current network

state St, the task offloading, pruned model selection, and edge computing resource

allocation actions are determined using the actor network (Steps 1-3). Then, the

edge computing resource allocation actions are executed on the edge server, while

the pruned model selection and task offloading actions are transmitted to and are

executed at the IGWs (Step 4). The corresponding reward rt is calculated, and the

next state St+1 is observed from the environment to create the state transition tuple

(St,At, rt,St+1) stored in the experience replay memory D for training the actor and

critic networks (Steps 5-7). Once enough tuples are collected in the experience replay,

a batch of transition tuples is randomly sampled from the experience replay memory

to train the actor and critic networks, and update the target networks accordingly

(Steps 8 and 9). We first update the critic networks by minimizing the mean squared

loss function defined as:

L(θi) = E(St,At,rt,St+1)∼D
[︁
Qθi(St,At)− y

]︁2
, i ∈ {1, 2} (7)

where y is the target value calculated using the target networks, given by

y = rt + γ min
i∈{1,2}

Q̂θi
(St+1,At+1). (8)

41

In (25), γ is the discount factor. When γ is closer to zero, more recent rewards are

considered, undermining future rewards, while the agent values future rewards more

when γ is set closer to 1. Next, we update the actor network by minimizing the loss

calculated as:

L(ϕ) = ESt∼D,At∼πϕ

[︃
α log πϕ(At|St)− min

i∈{1,2}
Qθi(St,At)

]︃
(9)

where α log πϕ(At|St) is the entropy term incorporated into the policy objective to

ensure that the policy not only aims to maximize the expected reward but also main-

tains high entropy (a measure of randomness or unpredictability in the policy’s action

distribution). This approach helps prevent premature convergence to sub-optimal

policies by encouraging continuous exploration of the action space. The entropy term

is weighted by a temperature parameter α, which balances the trade-off between ex-

ploration and exploitation where higher α results in more stochasticity in the policy’s

action distribution and, therefore, more exploration. Note that the rounding function

is not differentiable, and therefore, the actions before rounding are used to calculate

the loss. The final step is to softly update the target networks by

θ̂i ← ζθi + (1− ζ)θ̂i, i ∈ {1, 2}, (10)

where ζ is the learning rate parameter for the target networks. The detailed process

of JOPA is listed in Algorithm 1, showing how the edge server as the learning agent

interacts with the IGWs to conduct SAC-based training. After the training process

is completed, the trained model is implemented in the edge server to execute the

optimal online actions based on real-time network states.

The time complexity analysis of Algorithm 1 is provided in the following. At each

time slot t, the state St is fed to the actor network, and the actions are obtained with

42

Algorithm 1: SAC-based algorithm for joint task offloading, DNN pruned

model selection, and edge computing resource allocation (JOPA)

Initialize: network configuration and service parameters

Initialize: replay buffer D, actor, critic, and target networks

1 for time slot t ∈ {1, 2, ..., η} do

2 Observe state St and obtain mean and log standard deviation from the

actor network;

3 Exponentiate log standard deviation to derive standard deviation σ;

4 Using activation functions, obtain the actions At = {ctg, otm,g, v
t
g|∀m, g};

5 for each IGW g ∈ {1, 2, ..., G} do

6 Execute ctg on the edge server and send vtg to IGW g for execution;

7 for each task m ∈ {1, 2, ...,Mg} do

8 Send otm,g to IGW g for execution;

9 Observe reward rt and the next state St+1;

10 Store transition (St,At, rt,St+1) in D;

11 if size of D ≥ batch size then

12 Sample a batch of transitions from D;

13 Compute target values using (25);

14 Update critic networks by minimizing the loss in (24);

15 Update the actor network by minimizing the policy loss defined in

(26); Soft update target networks using (27);

the time complexity of O(N +G). Based on the number of actions, the execution of

the actions take O(N + G) time. Considering that the actor network has an input

43

size of (N +G) and an output size of (N +2G), updating happens in O(N +G) time.

Likewise, training the critic and target networks happens in O(N +G) time since the

input size is (2N+2G) and the output size is 1. As N =
∑︁G

g=1Mg and it takes η time

slots to solve the problem, therefore the time complexity for Algorithm 1 in terms of

its input variables is O(ηGMmax
g), where Mmax

g = max
g
{Mg}.

44

Simulation Results

Computer simulations are conducted to demonstrate the performance of the pro-

posed JOPA algorithm and the advantages over existing schemes.

14 Simulation Setup

We consider a smart factory environment in our simulation, featuring 5 lanes of wash-

ing brushes, each connected to one IGW. To evaluate the scalability of the proposed

scheme, we consider five scenarios with 100, 125, 150, 175, and 200 vibration sensors,

where the sensors installed on the washing brushes in each lane detect vibration sig-

nals, which are then digitized. The digitized data can be processed either locally

on the connected IGW or be offloaded to an edge server connected to a BS outside

the factory for further processing. Each IGW connects to the BS through the LTE

Cat-M2 technology, with the uplink transmission power set as 1 W and the comput-

ing power providing 768 GFLoPS/s processing rate. The total available spectrum

bandwidth for uplink transmissions from the IGWs to the BS is set as 5MHz [2, 15].

The three channel conditions Good (G), Normal (N), and Bad (B) correspond

to channel gains 6× 10−13, 4× 10−13, and 2× 10−13, respectively, with the transition

probability matrix set as [1]:

P =

⎡⎢⎢⎢⎢⎢⎣
PBB PBN PBG

PNB PNN PNG

PGB PGN PGG

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0.3 0.7 0

0.25 0.5 0.25

0 0.7 0.3

⎤⎥⎥⎥⎥⎥⎦ . (11)

The duration of a time slot in the simulation is set to 1s, and, consequently, Rmax is

calculated as 5.68 Mbit/s, with q and τ values being 347 and 0.0028, respectively. The

45

bearing vibration signal is collected at a 4 kHz sampling rate with 16-bit quantization.

The task data is the digitized 1s vibration signal sampled during the previous time

slot, so the task data size is the data volume of a 1s signal [2, 15] , which is calculated as

the product of the raw sampling rate and the quantization bits of the signal, resulting

in a task data size of 32 kb. The edge server connected to the BS is simulated by

an NVIDIA RTX 3070 GPU with 20.31 TFLoPs/s computing power for parallel edge

processing. To perform fault diagnosis tasks, the edge server is equipped with a full-

weight, well-trained VGG-16 model [35], and each IGW is equipped with 6 pruned

models. The corresponding accuracy and pruning rate for each model can be found

in Table 2, and the optimal polynomial fitting function is given by

Av(pv) = −1.729× 10−5(pv)
3 + 0.001953(pv)

2 − 0.1313(pv) + 101. (12)

Considering that VGG-16 requires 10 GFLOPS for inference, the task processing

intensity is 3.12× 106. According to (3), a task must be dropped if otm,g = 1 and ctg is

zero. Therefore, we set ϵ such that when ctg is zero, the edge processing delay is equal

to the length of a time slot, resulting in a value of 5× 10−13 (See section 3.2 for more

details.)

Algorithm 1 is implemented using Python 3.10 with PyTorch 2.1.0 and CUDA

for parallel DNN training on GPUs. The DNNs forming the SAC-based module

deployed on the edge server consist of 3 fully-connected hidden layers, each with 1024

neurons. Based on the formulation in (P1), the accuracy lower-bound and delay

upper-bound associated with each criticality level are detailed in Table 3. Other

important simulation parameters and training hyper-parameters are summarized in

Table 4. The performance of the proposed scheme is evaluated and compared with a

46

Table 2: Inference accuracy and pruning rate of pruned models deployed on IGWs.

Pruning Rate Inference Accuracy

0.1 99.76

0.3 98.03

0.5 97.52

0.7 95.17

0.8 94.77

0.9 92.21

version without pruned model selection for local processing (V = 1) and an accuracy-

guaranteed collaborative DNN inference scheme [1]. The performance evaluation and

comparison focus on network resource utilization, satisfaction with time-varying QoS

requirements (delay and accuracy), and task-dropping ratio.

15 Performance Evaluation

To evaluate the convergence of JOPA in solving (P1), we train the DNNs for the two

instances of the proposed scheme, i.e., V = 6 and V = 1, across the five scenarios

mentioned in section 6.1. We utilize the Optuna package for hyperparameter tuning,

running 100 experiments with different hyperparameters for each scenario to obtain

the best results. In each experiment, we train the DNNs for 10,000 time slots (i.e.,

η = 10, 000) in an online manner by interacting with the environment. The training

results for both instances of the proposed scheme are illustrated in Fig 7. The

training results show that the rewards for both instances fluctuate at the beginning

47

Table 3: Accuracy and delay requirements of tasks associated with their criticality

levels

Criticality level Accuracy lower-bound Delay upper-bound

0.0 0.920 (Amin) 1.0s (Tmax)

0.2 0.934 0.82s

0.4 0.948 0.64s

0.6 0.962 0.46s

0.8 0.976 0.28s

1.0 0.990 (Amax) 0.1s (Tmin)

of the training due to exploration. However, they gradually stabilize as the training

progresses. It is also evident that as the total number of sensors increases, the time

to converge for both scheme instances also increases. When V = 1, the algorithm

generally converges more quickly than the case of V = 6 because the action space size

is significantly reduced by a factor of V G. In comparison, when V = 6, the algorithm

achieves a higher reward, indicating a higher overall network resource utilization and a

lower task-dropping rate at the end of the training, which benefits from the flexibility

of having the pruned model selection for local processing.

To further validate the performance gap of JOPA, we compare the rewards of

the proposed scheme after convergence with that of an optimal solution obtained by

exhaustive search where the computing resource allocation action space is discretized

into 20 values. All combinations of action variables are tested to obtain the optimal

solution, and the action achieving the highest reward is selected as optimal. We

48

Table 4: Simulation parameters and training hyper-parameters [1, 2]

Parameter Value

Noise power spectrum density (N0) [2] 10−18W/Hz

Temperature parameter (α) 10−5

Maximum delay requirement (Tmax) 1s

Target learning rate (ζ) 10−5

Minimum delay requirement (Tmin) 0.1s

Discounting factor (γ) 0.99

Maximum accuracy requirement (Amax) 0.99

Batch size 512

Minimum accuracy requirement (Amin) 0.92

Penalty coefficient (J) 99

Replay buffer size 10,000

consider a light-loaded network scenario with 3 gateways and 6 sensors for tractab-

ility to obtain the optimal solution within a reasonable time. As shown in Fig. 8,

JOPA achieves a near-optimal solution with a small performance gap. The reward

fluctuations of JOPA are due to the sampled actions from a continuous space for the

computing resource allocation.

16 Performance Comparison

We compare the performance of JOPA with two benchmark schemes: 1) the proposed

scheme without pruned model selection (JOPAV1) and 2) an accuracy-guaranteed

49

delay minimization (AGDM) scheme with static task requirements [1]. Both AGDM

and JOPAV1 utilize a mid-pruned model, characterized by an accuracy of 95.17% and

a pruning rate of 0.7, for local processing. In the AGDM scheme, the task criticality

levels for each IGW are initialized randomly but remain unchanged.

We compare the performance of the three schemes in terms of network resource

utilization, adaptability to network load conditions, dynamic delay/accuracy require-

ments, and trade-off between QoS satisfaction and resource utilization.

• Network resource utilization: Figs. 9(a) and 9(b) show that the JOPA

consistently achieves the highest mean bandwidth and edge computing resource

utilization, followed by JOPAV1 and AGDM. This is because the JOPA has

consistently higher task offloading rates, shown in Fig. 9(e), and lower task

dropping rates, shown in Fig. 9(f), as the network load increases. Unlike JOPA

and JOPAV1, despite an increase in network load and offloading rate, AGDM

only has a minimal increase in bandwidth and edge utilization. This is due to

its highest dropping rate, which reduces its effective utilization of bandwidth

and edge computing resources. In a high network load condition, by offloading

more tasks while maintaining lower dropping rates, JOPA also performs better

than the JOPAV1 in edge and bandwidth utilization. In In Figs. 9(a) and 9(b),

the differences among the three schemes are initially negligible but becomes

more notable as the network load (N) increases. In Fig. 9(c), AGDM prior-

itizes local task processing to minimize the overall processing latency, showing

consistently high local processing resource utilization over different settings.

50

The JOPA achieves higher local processing resource utilization when the net-

work load is low due to its flexibility in selecting less pruned models to achieve

a better time utilization of local resources and higher task processing accur-

acy. As the network load increases, JOPA tends to offload more tasks to the

edge, as shown in Fig. 9(e) thereby reducing the local side of the resource

utilization. On the other hand, JOPAV1 shows consistently high local resource

utilization over different network load conditions, balancing a trade-off between

local processing and edge utilization. Fig. 9(d) provides a comparison of overall

resource utilization among the three schemes, by aggregating local computing,

edge computing, and bandwidth utilizations. JOPA consistently achieves the

highest overall resource utilization, followed by JOPAV1 and AGDM. While all

three schemes perform similarly under low network load conditions, the differ-

ences become more obvious as the numbers of gateways and sensors increase.

Especially under a medium or high network load, the JOPA’s strategy of bal-

ancing task offloading with local processing achieves higher overall utilization

than the other two schemes.

• Adaptability to network loads and dynamic QoS requirements: Fig.

9(f) shows that JOPA effectively satisfies the accuracy and delay requirements

with no task dropping under the network capacity. When the network load (N)

keeps increasing, the task dropping happens due to the violation of accuracy and

delay constraints as a result of exceeding the network capacity. However, the

JOPA maintains the lowest task-dropping rate (below the target task-dropping

rate limit of 1% [52]), leveraging its adaptability to time-varying delay and ac-

51

curacy requirements and its flexibility of pruned local processing model selection

to balance the trade-off between accuracy and delay. In contrast, without the

flexibility of local model selection, the JOPAV1 exceeds the tolerable limit when

N increases beyond 175. The adaptability of the proposed JOPA to the dynamic

delay and accuracy requirements is demonstrated in Figs. 10(a)-(d), where the

JOPA outperforms the AGDM in adaptively satisfying the dynamically chan-

ging QoS requirements over time, leading to a much reduced task dropping rate

shown in Fig. 9(f). The AGDM exhibits a much higher task-dropping rate

without adapting to the dynamic delay and accuracy requirements.

• Trade-off between QoS satisfaction and resource utilization: A bal-

anced trade-off between resource utilization and QoS satisfaction (i.e., delay

and accuracy) is achieved, as shown in Figs. 11(a) and 11(b). While achieving

the highest overall resource utilization and the lowest task-dropping rate, JOPA

achieves slightly higher task processing accuracy than JOPV1 and AGDM, at

the cost of sacrificing some delay performance, whereas the AGDM aims at

achieving the minimum average E2E task processing delay with certain ac-

curacy guarantee. For JOPA and JOPAV1, as the network load increases, a

significant portion of tasks are offloaded to the edge server to maintain a con-

sistently high average accuracy using the full-weight model while achieving high

bandwidth and edge computing resource utilization. The JOPA and JOPAV1

consistently achieves higher average accuracy than AGDM, as shown in Figs.

11(a) and 11(b) by offloading more tasks to the edge server and maintaining a

low task dropping rate with the satisfaction of the varied strict accuracy and

52

delay requirements corresponding to different criticality levels, listed in Table

3.

53

(a) G=5, N=100 (b) G=5, N=125

(c) G=5, N=150 (d) G=5, N=175

(e) G=5, N=200

Figure 7: Training rewards for the proposed scheme for two instances, V = 1 and

V = 6.

54

Figure 8: The reward comparison between the proposed scheme (after convergence)

and the optimal solution.

55

(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison between JOPA, JOPA, and AGDM in terms of (a) bandwidth,

(b) edge utilization, (c) local utilization, (d) overall utilization, (e) offloading ratio,

and (f) task dropping ratio

56

(a) (b)

(c) (d)

Figure 10: Comparison of the adaptability between JOPA and AGDM to delay re-

quirements in (a) and (b), and accuracy requirements in (c) and (d).

57

(a) (b)

Figure 11: (a) Average inference accuracy, (b) E2E delay

58

Conclusion and Future Research

17 Concluding Remarks

In this thesis, we have investigated joint task offloading, DNN model pruning, and

computing resource allocation under a layered IIoT networking architecture to sup-

port diverse and dynamic QoS requirements of a fault detection service for industrial

washing machines. We have formulated the problem as a stochastic optimization

problem to maximize the overall radio bandwidth and computing resource utilization

on the IGWs and the edge server while guaranteeing the per-slot time-varying E2E

delay and inference accuracy requirements. To capture the network state transitions

and the relations between states and policies, our problem is transformed as an MRP

formulation which has large state and action spaces growing with the numbers of

IGWs and IIoT sensors. To solve the MRP problem efficiently, we have developed a

DRL-based solution, i.e., the JOPA algorithm, where the SAC algorithmic framework

is customized to thoroughly explore the state and action spaces to obtain an improved

solution. In the designed SAC framework: 1) The actor network is customized to sup-

port a mix of discrete and continuous actions. 2) Dual critic networks are employed

to minimize the chance of Q-value overestimation. 3) Dual target networks are lever-

aged to enhance the training stability. Extensive simulations have been conducted

to evaluate the performance of the JOPA algorithm and its advantages over two

benchmark schemes. It is demonstrated that our proposed solution achieves superior

performance in terms of maximizing the network resource utilization, satisfying the

dynamic QoS requirements, and adapting to the varying network load. The proposed

59

scheme provides an efficient and robust solution framework for tackling a complex

multi-dimensional resource allocation problem in an AI and edge computing-assisted

IIoT environment.

18 Future Research

The research presented in this thesis opens several directions for future work, which

can enhance the understanding of IIoT systems.

• In our current experiment, the available radio bandwidth is uniformly and stat-

ically allocated to individual IGWs. A valuable direction for future research

could be to explore dynamic radio bandwidth allocation strategies based on

network conditions or service demands. Evaluating such approaches requires

optimization in the long run, which could provide deeper insights into the per-

formance and robustness of IIoT systems.

• This thesis focused on a single task type with fixed task size and computa-

tion intensity. However, real-world IIoT environments contain tasks that may

vary significantly in size, complexity, and resource needs. Future research could

examine the system’s adaptability to handling heterogeneous task types and

explore how diverse computation loads affect task offloading and resource alloc-

ation strategies.

60

References

[1] Wen Wu, Peng Yang, Weiting Zhang, Conghao Zhou, and Xuemin Shen.

Accuracy-guaranteed collaborative DNN inference in industrial IoT via deep re-

inforcement learning. IEEE Transactions on Industrial Informatics, 17(7):4988–

4998, 2021.

[2] Shaobo Mao, Man Hon Cheung, and Vincent W. S. Wong. Joint energy allocation

for sensing and transmission in rechargeable wireless sensor networks. IEEE

Transactions on Vehicular Technology, 63(6):2862–2875, 2014.

[3] Alp Bayar, Umut Şener, Kerem Kayabay, and P. Erhan Eren. Edge computing

applications in industrial IoT: A literature review. In José Ángel Bañares, Jörn

Altmann, Orna Agmon Ben-Yehuda, Karim Djemame, Vlado Stankovski, and

Bruno Tuffin, editors, Economics of Grids, Clouds, Systems, and Services, pages

124–131, Cham, 2023. Springer Nature Switzerland.

[4] Kesavan Gunasekaran, V. Vinoth Kumar, A. C. Kaladevi, T. R. Mahesh, C. Ro-

hith Bhat, and Krishnamoorthy Venkatesan. Smart decision-making and commu-

nication strategy in industrial internet of things. IEEE Access, 11:28222–28235,

2023.

[5] Weiting Zhang, Dong Yang, Youzhi Xu, Xuefeng Huang, Jun Zhang, and Mi-

kael Gidlund. DeepHealth: A self-attention based method for instant intelligent

predictive maintenance in industrial internet of things. IEEE Transactions on

Industrial Informatics, 17(8):5461–5473, 2021.

61

[6] Nipun Setia. The blockchain-powered edge computing platform for developing

smart internet of things (IoT) applications. In 2023 2nd International Conference

on Futuristic Technologies (INCOFT), pages 1–6, 2023.

[7] David Hästbacka, Jari Halme, Laurentiu Barna, Henrikki Hoikka, Henri Pet-

tinen, Martin Larrañaga, Mikael Björkbom, Heikki Mesiä, Antti Jaatinen, and

Marko Elo. Dynamic edge and cloud service integration for industrial IoT and

production monitoring applications of industrial cyber-physical systems. IEEE

Transactions on Industrial Informatics, 18(1):498–508, 2022.

[8] Tie Qiu, Jiancheng Chi, Xiaobo Zhou, Zhaolong Ning, Mohammed Atiquzzaman,

and Dapeng Oliver Wu. Edge computing in industrial internet of things: Archi-

tecture, advances and challenges. IEEE Communications Surveys & Tutorials,

22(4):2462–2488, 2020.

[9] Megha Sharma, Abhinav Tomar, and Abhishek Hazra. Edge computing for

industry 5.0: Fundamental, applications, and research challenges. IEEE Internet

of Things Journal, 11(11):19070–19093, 2024.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533, 2015.

[11] Enrico Zio. Prognostics and health management methods for reliability predic-

tion and predictive maintenance. IEEE Transactions on Reliability, 73(1):41–41,

2024.

62

[12] Chongwu Dong, Muhammad Shafiq, Maryam M. Al Dabel, Yanbin Sun, and

Zhihong Tian. DNN inference acceleration for smart devices in industry 5.0

by decentralized deep reinforcement learning. IEEE Transactions on Consumer

Electronics, 70(1):1519–1530, 2024.

[13] Samira Chouikhi, Moez Esseghir, and Leila Merghem-Boulahia. Computation

offloading for industrial internet of things: A cooperative approach. pages 626–

631, 2023.

[14] Shunpu Tang, Lunyuan Chen, Ke He, Junjuan Xia, Lisheng Fan, and Arumugam

Nallanathan. Computational intelligence and deep learning for next-generation

edge-enabled industrial IoT. IEEE Transactions on Network Science and Engin-

eering, 10(5):2881–2893, 2023.

[15] R. Sultan, A. Refaey, and W. Hamouda. Resource allocation in CAT-M and

LTE-A coexistence: A joint contention bandwidth optimization scheme. In 2020

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),

London, ON, Canada, pages 1–6, 2020.

[16] Xiangjie Kong, Yuhan Wu, Hui Wang, and Feng Xia. Edge computing for in-

ternet of everything: A survey. IEEE Internet of Things Journal, 9(23):23472–

23485, 2022.

[17] Siqi Zhang, Na Yi, and Yi Ma. A survey of computation offloading with task

types. IEEE Transactions on Intelligent Transportation Systems, 25(8):8313–

8333, 2024.

63

[18] Chengfang Ling, Kai Peng, Shangguang Wang, Xiaolong Xu, and Victor C. M.

Leung. A multi-agent DRL-based computation offloading and resource allocation

method with attention mechanism in MEC-enabled iiot. IEEE Transactions on

Services Computing, pages 1–15, 2024.

[19] Xiaojie Zhang, Motahare Mounesan, and Saptarshi Debroy. EFFECT-DNN:

Energy-efficient edge framework for real-time DNN inference. In 2023 IEEE

24th International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM), pages 10–20, 2023.

[20] Chongwu Dong, Muhammad Shafiq, Maryam M. Al Dabel, Yanbin Sun, and

Zhihong Tian. DNN inference acceleration for smart devices in industry 5.0

by decentralized deep reinforcement learning. IEEE Transactions on Consumer

Electronics, 70(1):1519–1530, 2024.

[21] Weiwei Fang, Feng Xue, Yi Ding, Naixue Xiong, and Victor C. M. Leung.

EdgeKE: An on-demand deep learning IoT system for cognitive big data on in-

dustrial edge devices. IEEE Transactions on Industrial Informatics, 17(9):6144–

6152, 2021.

[22] Wenhao Fan, Shenmeng Li, Jie Liu, Yi Su, Fan Wu, and Yuan’An Liu. Joint task

offloading and resource allocation for accuracy-aware machine-learning-based

IIoT applications. IEEE Internet of Things Journal, 10(4):3305–3321, 2023.

[23] Weiting Zhang, Dong Yang, Haixia Peng, Wen Wu, Wei Quan, Hongke Zhang,

and Xuemin Shen. Deep reinforcement learning based resource management for

64

DNN inference in industrial IoT. IEEE Transactions on Vehicular Technology,

70(8):7605–7618, 2021.

[24] Yanhua He, Yun Ren, Zhenyu Zhou, Shahid Mumtaz, Saba Al-Rubaye, Ant-

onios Tsourdos, and Octavia A. Dobre. Two-timescale resource allocation for

automated networks in IIoT. IEEE Transactions on Wireless Communications,

21(10):7881–7896, 2022.

[25] Bo Zhang and Chenghao Wang. Deep reinforcement learning-based predictive

maintenance task offloading and resource allocation. In IEEE 23rd International

Conference on Communication Technology (ICCT), pages 659–664, 2023.

[26] Sixian Qin, Yingyang Chen, Shuai Wang, Zhixuan Xie, Miaowen Wen, and Der-

rick Wing Kwan Ng. Integrating edge intelligence and industrial IoT via learning-

communication balancing power allocation. In IEEE International Conference

on Communications, pages 861–866, 2024.

[27] Abhijeet Mahapatra, Santosh K. Majhi, Kaushik Mishra, Rosy Pradhan,

D. Chandrasekhar Rao, and Sandeep K. Panda. An energy-aware task offload-

ing and load balancing for latency-sensitive IoT applications in the fog-cloud

continuum. IEEE Access, 12:14334–14349, 2024.

[28] Yifan Chen, Zhuoquan Yu, Christine Mwase, Yi Jin, Xin Hu, Lirong Zheng, and

Zhuo Zou. Self-aware collaborative edge inference with embedded devices for

task-oriented IIoT. In IEEE 98th Vehicular Technology Conference (VTC2023-

Fall), pages 1–5, 2023.

65

[29] S. Vadera and S. Ameen. Methods for pruning deep neural networks. IEEE

Access, 10:63280–63300, 2022.

[30] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[31] F. Zhang, G. Han, L. Liu, M. Mart́ınez-Garćıa, and Y. Peng. Deep reinforcement

learning based cooperative partial task offloading and resource allocation for

IIoT applications. IEEE Transactions on Network Science and Engineering,

10(5):2991–3006, September-October 2023.

[32] T. Lillicrap et al. Continuous control with deep reinforcement learning. In Proc.

Int. Conf. Learn, San Juan, Puerto Rico, 2016. Representations.

[33] N. H. Mahmood, N. Marchenko, M. Gidlund, and P. Popovski. Wireless Networks

and Industrial IoT. Springer, New York, NY, USA, 2020.

[34] X. Wang, S. Lu, W. Huang, Q. Wang, S. Zhang, and M. Xia. Efficient data

reduction at the edge of industrial internet of things for PMSM bearing fault

diagnosis. IEEE Transactions on Instrumentation and Measurement, 70:1–12,

2021.

[35] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint, 2014.

[36] X. Liu, W. Xia, and Z. Fan. A deep neural network pruning method based on

gradient L1-norm. In 2020 IEEE 6th International Conference on Computer and

Communications (ICCC), China, 2020, pp, 2070-2074. Chengdu.

66

[37] W. Kang, D. Kim, and J. Park. DMS: Dynamic model scaling for quality-aware

deep learning inference in mobile and embedded devices. IEEE Access, 7:68048–

16805, 2019.

[38] Z. Chen, Z. Chen, J. Lin, S. Liu, and W. Li. Deep neural network accelera-

tion based on low-rank approximated channel pruning. IEEE Transactions on

Circuits and Systems I: Regular Papers, 67(4):1232–1244, April 2020.

[39] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo. Throughput maximization

of delay-aware DNN inference in edge computing by exploring DNN model par-

titioning and inference parallelism. IEEE Transactions on Mobile Computing,

22(5):3017–3030, May 2023.

[40] Y. Bian, Y. Sun, M. Zhai, W. Wu, Z. Wang, and J. Zeng. Dependency-aware

task scheduling and offloading scheme based on graph neural network for MEC-

assisted network. In 2023 IEEE/CIC International Conference on Communica-

tions in China (ICCC Workshops), pages 1–6, August 2023.

[41] Tiantian Yang, Rong Chai, and Liping Zhang. Latency optimization-based joint

task offloading and scheduling for multi-user MEC system. In 29th Wireless and

Optical Communications Conference (WOCC), pages 1–6, 2020.

[42] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang, and X. Shen. Joint RAN slicing and

computation offloading for autonomous vehicular networks: A learning-assisted

hierarchical approach. IEEE Open Journal of Vehicular Technology, 2:272–288,

2021.

67

[43] F. Kelly. Notes on effective bandwidths. Stochastic networks: theory and applic-

ations, 4:141–168, 1996.

[44] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint, 2014.

[45] L. Zeng, E. Li, Z. Zhou, and X. Chen. Boomerang: On-demand cooperative deep

neural network inference for edge intelligence on the industrial internet of things.

IEEE Network, 33(5):96–103, 2019.

[46] Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended ϵ-

greedy exploration. arXiv preprint arXiv:2006.01782, 2020.

[47] Peter Auer. Using upper confidence bounds for online learning. In Proceed-

ings 41st annual symposium on foundations of computer science, pages 270–279.

IEEE, 2000.

[48] H. Tran-Dang, K. H. Kwon, and D. S. Kim. Bandit learning-based distributed

computation in fog computing networks: A survey. IEEE Access, 2023.

[49] Francesco Pase, Marco Giordani, Giampaolo Cuozzo, Sara Cavallero, Joseph

Eichinger, Roberto Verdone, and Michele Zorzi. Distributed resource allocation

for urllc in iiot scenarios: A multi-armed bandit approach. In IEEE Globecom

Workshops (GC Wkshps), pages 383–388, 2022.

[50] Xiaolan Liu, Jiadong Yu, Jian Wang, and Yue Gao. Resource allocation with

edge computing in IoT networks via machine learning. IEEE Internet of Things

Journal, 7(4):3415–3426, 2020.

68

[51] Weiting Zhang, Dong Yang, Wen Wu, Haixia Peng, Ning Zhang, Hongke Zhang,

and Xuemin Shen. Optimizing federated learning in distributed industrial IoT:

A multi-agent approach. IEEE Journal on Selected Areas in Communications,

39(12):3688–3703, 2021.

[52] Saúl Langarica, Christian Rüffelmacher, and Felipe Núñez. An industrial internet

application for real-time fault diagnosis in industrial motors. IEEE Transactions

on Automation Science and Engineering, 17(1):284–295, 2020.

69

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Edge-Assisted Task Offloading in IIoT
	Binary Offloading
	Partial Offloading

	Network Resource Allocation in IIoT
	Learning-Assisted Approaches in IIoT
	Reinforcement Learning (RL)-Based Solutions
	Joint Learning- and Modeling- Assisted Approaches

	Research Issues
	Network Model
	Computation Model
	Task Model
	Convolutional Neural Network (CNN) Model Structuring and Deployment
	Processing Model

	Communication Model
	Queuing Model

	Local Computing Resource Utilization
	System Bandwidth Utilization
	Edge Computing Resource Utilization
	Proposed Joint Optimization Framework
	Problem Transformation
	SAC-Based Solution Design
	Customized Actor Network for Hybrid Actions
	Dual Critic Networks for Robust Policy Evaluation
	Stabilized Target Networks for Reliable Training
	Algorithm Design

	Simulation Setup
	Performance Evaluation
	Performance Comparison
	Concluding Remarks
	Future Research

	Bibliography

