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Researchers propose using Reconfigurable Intelligent 
Surfaces in machine learning-assisted underwater 
communication, supported by a comprehensive 
bibliometric analysis.

Underwater Communication

Who should read this paper?
This study is for anyone interested in the cutting-edge developments 
of Reconfigurable Intelligent Surfaces (RISs) and their revolutionary 
applications in machine learning-assisted underwater communications. 

Why is it important?
RIS is an emerging technology that uses principles from electromagnetics, 
signal processing, and antenna theory to control the transmission of 
electromagnetic waves in wireless communication channels. When merged with 
machine learning, RISs could revolutionize wireless underwater communication 
by offering a more efficient, cost-effective, and adaptable solution.

The authors examine potential signalling technologies in a RIS-assisted 
underwater environment, including the Internet of Underwater Things 
(IoUWT), various RIS implementation approaches, and hardware architecture. 
They also investigate machine learning-enabled optimization techniques for 
RIS-aided networks. Their pioneering systematic bibliometric analysis on 
RISs gives insight into research trends and citation patterns in the published 
literature on RISs.

The findings will establish a baseline for evaluating the future path for RIS 
publications. They raise awareness of the critical areas of research that 
demand immediate exploration, especially in the application of Artificial 
Intelligence in RISs and the profound influence of RISs on machine learning-
assisted underwater communications.
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ABSTRACT

Underwater communication systems face unique challenges that require advanced research 
and technologies. Environmental factors such as surface scattering, harsh sea conditions, 
water currents, and marine life can disrupt the propagation of acoustic signals. Integrating 
Reconfigurable Intelligent Surfaces (RISs) into underwater communication systems is a 
promising solution to address these challenges. RISs enhance signal propagation by creating 
optimal environments through passive beamforming and phase tuning, reducing scattering and 
absorption. This research proposes integrating RIS technology with machine learning (ML) 
techniques in underwater communication systems, leveraging recent advancements in both 
fields. This paper is the first to combine RIS technology with ML techniques in underwater 
communications while offering a comprehensive bibliometric analysis of RISs.
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1. INTRODUCTION

1.1	Motivation
Reconfigurable Intelligent Surfaces (RISs)
represent a groundbreaking technology that 
merges principles from electromagnetics, signal
processing, and antenna theory to dynamically 
manage the transmission of electromagnetic 
waves in wireless communication channels [1],
[2], [3], [4]. RISs consist of an array of passive
reflecting elements, each capable of independent
tuning to introduce phase shifts to incident signals
[5], [6], [7], [8]. These meticulously designed 
planar structures feature reconfigurable properties
enabled by integrated electronic circuits [9]. By 
programming these circuits, we can control the 
reflection of incoming incident electromagnetic 
waves, creating an innovative and adaptable 
wireless communication environment [10], [11].
The key advantages of RIS technology are: 

1.	 Energy Efficiency: RIS elements consume 
 	 minimal power, enhancing wireless network 
 	 performance without significantly 
 	 increasing power consumption [12].
2.	 Cost-Effectiveness: The technology can be
	 implemented using low-cost materials and 
	 integrated with existing infrastructures, 
 	 providing an economical solution for 
 	 improving wireless communication systems 	
	 [13], [14], [15].
3.	 Spectrum Optimization: RIS technology 
 	 optimizes spectrum use by mitigating 		
	 interference, enhancing the signal-to-noise 
 	 ratio (SNR), and enabling more efficient 
 	 utilization of available frequency resources 	
	 [16].

Overall, RIS technology offers a promising 
approach to creating more efficient, 

cost-effective, and adaptable wireless 
communication networks.

RISs, which are made from cost-effective 
materials, have lightweight and low-profile 
designs that make them easy to deploy in 
modern networks and attach to various surfaces 
such as building facades, walls, ceilings, 
and windows [17]. By optimizing the phase 
shifts of the RISs, the signals transmitted 
via the reflecting channel link can be added 
constructively at the intended receiving user 
or destructively at the interferer, resulting in 
a higher rate compared to not deploying RISs 
[9]. Nonetheless, conventional passive RISs 
can only reflect the incident signal without 
introducing any gain [18]. Also, the capacity 
gain achieved by passive RISs is limited 
because of the multiplicative fading effect, 
which is very significant in communication 
scenarios with strong line-of-sight (LOS) links 
between the base station (BS) and the users 
[14], [19]. To address these issues, active 
RISs have been suggested. In active RISs, the 
incident electromagnetic signal is amplified, 
and its phase shift is favourably adjusted 
simultaneously. Compared with amplify-and-
forward (AF) relays, active RISs operate in 
full-duplex (FD) mode and rely on low-power 
reflection amplifiers instead of power-hungry 
radio frequency chains [20].

RIS technology is recommended for 
underwater communications because of 
its ability to create favourable propagation 
environments using passive beamforming 
and wave manipulation. However, there are 
challenges. This technology can effectively 
address these challenges, such as severe 
scattering and absorption, high path 
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loss, multipath fading, non-line-of-sight 
(NLoS) scenarios, harsh sea conditions, 
and the dynamic nature of the underwater 
environment, by reducing signal scattering and 
absorption [21], [22]. 

Although RIS technology holds great promise 
for underwater communication deployment, 
it also faces several obstacles [23]. These 
obstacles range from the need for physical 
robustness to withstand harsh underwater 
conditions to dynamic reconfiguration in 
response to constantly changing underwater 
topography. Moreover, integrating RISs 
with existing underwater communication 
infrastructure requires careful consideration 
to ensure compatibility and realize the full 
benefits of this technology. Nonetheless, 
RISs remain an effective technology for 
improving signal propagation characteristics 
by concentrating signal power in the desired 
direction, making the communication 
environment reconfigurable [24]. One of the 
most effective approaches to reconfiguring 
RISs in underwater communications is to use 
different machine-learning techniques [1].

1.2 Literature Review
In the literature, there are several works that 
explore the use of RISs in communication 
networks. These works can be categorized into 
three main groups: 

1.	RIS-Assisted Wireless Communication 
 	 Networks: In reference [9], the authors 
 	 discussed the use of an unmanned aerial 
 	 vehicle (UAV) with an active RIS operating 
 	 in the terahertz (THz) band. They considered 	
	 a scenario involving a cellular user and 
 	 multiple device-to-device (D2D) links. 

	 The authors proposed a joint power 		
	 allocation and active RIS precoding 
 	 matrix optimization scheme to maximize 
 	 the uplink sum rate, considering coexisting 
 	 D2D links. Their simulations demonstrated 
 	 that their proposed active RIS-aided 
 	 approach outperformed other schemes, 
 	 achieving the highest sum rate. In [25], 
 	 the authors proposed a dynamic RIS sub- 
	 array structure to enhance the performance 
 	 of a THz downlink multiple-input-multiple- 
	 output (MIMO) communication system. 
 	 They introduced a weighted minimum mean  
	 square error-RIS local search (WMMSE- 
	 LS) scheme with limited RIS phase shift 
 	 accuracy and an adaptive block coordinate 
 	 descent (BCD)-aided joint beamforming 
 	 approach to improve throughput performance
	 for the investigated RIS THz system. In 
 	 [26], the authors developed an RIS- 
	 enhanced uplink user-centric network 
 	 (UNC), where RISs are used to enhance the 
 	 signal quality of uplink transmission for
	 users with minimal additional energy 
 	 consumption. To achieve optimal energy 
 	 efficiency, the authors jointly performed 
 	 reflect beamforming at the RISs and uplink
	 power control at users. The numerical 
 	 results showed that their proposed algorithm 
 	 could achieve significant gains in energy 
 	 and spectral efficiency compared to the 
 	 benchmark algorithm.

2.	RISs and ML-Assisted Wireless 
 	 Communication Networks: In reference 
 	 [27], the authors propose a deep learning 
 	 (DL)-based rate-splitting multiple access 
 	 (RSMA) scheme for RIS-aided THz 
 	 multi-user MIMO systems. Their approach 
 	 involves a hybrid data-model driven DL- 



The Journal of Ocean Technology, Vol. 19, No. 4, 2024  57Copyright Journal of Ocean Technology 2024

	 based RSMA precoding scheme that 
 	 includes passive precoding at the RISs, as 
 	 well as analog active precoding and RSMA 
 	 digital active precoding at the BS. The 
 	 authors tested their scheme and 
 	 demonstrated its advantages, showing 
 	 that the proposed DL-based RSMA scheme 
 	 enhances the robustness against challenge 
 	 state information (CSI) imperfections and 
 	 achieves higher spectral efficiency with 
 	 lower signalling overhead in RIS-aided  
	 THz MIMO systems. In reference [28], 
 	 the authors provide an overview of RISs 
 	 and explain the operations and  
	 implementations of reinforcement learning 	
	 (RL) algorithms for optimizing RIS 		
	 technology parameters. They highlighted the 	
	 significant performance improvements in 
 	 communication systems when RL 
 	 algorithms are implemented for RIS 
 	 technology in wireless communications.
 
3.	RISs in Underwater Communications: 
 	 Several papers in the literature discuss the 
 	 use of reconfigurable intelligent surface
	 (RIS) technology in underwater 
 	 communications [29], [30], [31], [32]. In 
	 the first paper [29], the authors used 
 	 RIS-assisted optical links to minimize the
	 effects of skip zones and enable high- 
	 speed, efficient communication. They also 
 	 proposed an RIS-assisted dual-hop 
 	 underwater wireless optical communication 
 	 system and derived mathematical 
 	 expressions for outage probability and bit  
	 error rate for various modulation techniques.
	 The authors validated their results using 
 	 Monte-Carlo simulations and asymptotic 
 	 analysis. In the second paper [30], they 
 	 focused on analyzing the performance 

 	 of an RIS-assisted underwater optical  
	 communication system using a decode-and- 
	 forward (DF) relaying protocol. The authors 
 	 derived mathematical expressions for the  
	 total outage probability and average bit  
	 error rate (ABER) for various modulation  
	 schemes. Their findings highlighted the 
 	 significant impact of the number of RIS 
 	 elements, detection techniques, and optical 
 	 turbulence on the system’s performance.  
	 In the third paper [31], the authors developed
	 specific hardware to create an acoustic RIS 
 	 system to address challenges in underwater  
	 communications. Their proposed acoustic 
 	 RIS system demonstrated, through 
 	 simulations, the ability to function as an
	 underwater infrastructure enabling 
 	 beamforming capabilities for various 
 	 devices, such as small robots and low- 
	 cost sensors, by efficiently reflecting 
 	 acoustic waves and significantly increasing 
 	 communication data rates and distances. 
 	 In the fourth paper [32], the authors 
 	 designed three key components of the 
 	 acoustic RISs to realize the underwater 
 	 RIS concept, including new acoustic RIS
	 hardware, ultra-wideband beamforming 
 	 (UWB), and a practical operation protocol.  
	 Additionally, the authors developed a 
 	 practical operation protocol to implement 
 	 acoustic RIS functionalities in complex 
 	 underwater environments, and they 
 	 validated their acoustic RIS design through 
 	 COMSOL multi-physics simulations and 	
	 end-to-end Bellhop-based simulations.

Based on the preceding discussions, it is 
evident that prior research has not explored the 
potential of deploying machine learning (ML) 
in RIS-assisted underwater communications. 
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This presents an exciting opportunity to 
harness the combined capabilities of ML and 
RIS technology in underwater communications, 
an area that is ripe for significant research and 
technological advancements.

Therefore, the focus is to combine the benefits 
of ML techniques and RIS technology in 
underwater communications, which poses 
significant propagation challenges. The goal is 
to integrate RIS technology and ML techniques 
in underwater communications, as previous 
literature has yet to do so. Initially, we aimed to 
include a comprehensive bibliometric analysis 
to integrate ML techniques with RIS technology. 
Nevertheless, the total number of publications 
considering RIS and ML techniques was less 
than 300, which is insufficient for a reliable 
bibliometric analysis. As a result, this paper will 
incorporate a detailed systematic bibliometric 
analysis of RISs; as far as we know, it represents 
the first comprehensive systematic bibliometric 
analysis of RISs.

The remainder of this paper is structured 
as follows: Section 2 introduces possible 
signalling technologies in RIS-Assisted 
Underwater Environments. Section 3 provides 
an overview of the Internet of Underwater 
Things (IoUWT). In Section 4, the joint power 
allocation and phase shift optimization are 
introduced, along with different approaches 
to deploying RISs underwater and hardware 
architectures. Section 5 summarizes ML-
enabled optimization techniques for RIS-
aided networks. In Section 6, a systematic 
bibliometric analysis provides insights into 
research directions and citation patterns in 
the RIS field. Finally, Section 7 includes the 
conclusion and suggestions for future work.

2. POSSIBLE SIGNALLING 
TECHNOLOGIES IN RIS-ASSISTED 
UNDERWATER ENVIRONMENT

In RIS-assisted communication systems, 
RISs play a crucial role in shaping the 
electromagnetic signal path between the 
transmitter (Tx) and receiver (Rx). As shown in 
Figure 1, the RIS consists of multiple passive 
reflecting elements that intelligently mould the 
wireless environment. The Smart controller 
allows precise control over each RIS element 
to introduce specific phase shifts, thus steering 
the beam toward the receiver with amplified 
signal strength and minimized interference.

In underwater environments, electromagnetic 
waves struggle to provide a strong signal 
because of challenges such as scattering and 
absorption. Therefore, alternative signalling 
technologies have been suggested to overcome 
these obstacles. Two suitable signalling 
technologies in underwater environments 
are acoustic communication and magnetic 
induction (or magnetic resonance):

1.	 Acoustic Communication. Transmitting 
signals underwater relies on acoustic 
signalling due to the high absorption of 
electromagnetic waves by water, especially 
saline water. This absorption significantly 
reduces the range and quality of 
electromagnetic signals. In contrast, 
acoustic waves can travel much longer 
distances underwater with minimal 
attenuation, making them more practical 
for communication in underwater 
environments. Speakers are used to 
transmit acoustic signals, which are then 
received using hydrophones. These signals 
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have frequencies ranging from a few Hertz 
to a few Megahertz (ultrasound). Acoustic 
signal propagation underwater is affected 
by scattering at uneven surfaces, water 
currents, and fish, resulting in severe 
frequency selectivity and high pass loss 
due to multipath, leading to a low effective 
data rate. While conventional RIS 	
technology has been recommended for  
electromagnetic waves, deploying acoustic 
waves has also been proposed to address 
the challenges alluded to earlier [33].  
In underwater environments using acoustic 
signalling, RISs are deployed to overcome 
the multipath effect, even in line-of-sight 

(LOS) propagation, owing to frequency 
selectivity fading. Recent literature has 
suggested acoustic RIS technology, where 
uneven surfaces are concealed to eliminate  
scattering [34], [35], [36], [37]. 
 
Underwater communications present 
unique challenges that differ from those 
found in land-based environments. Signal 
transmission becomes more complex 
because there are many paths it can take, 
including direct paths, surface reflections, 
and bottom reflections (as shown in Figure 
Furthermore, ambient noise from passing 
vessels and biological noise from marine 

Figure 1: An RIS manipulating the signal propagation between the transmitter (Tx) and the receiver (Rx) to optimize communication 
performance.
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life add to the complexity of signal reception. 
These impediments (when combined) make 
designing reliable communication systems 
for underwater applications challenging.

2.	 Magnetic Induction (or Magnetic  
Resonance). Magnetic induction or 
magnetic resonance involves creating non- 
propagating quasi-static magnetic fields 
using induction coils within resonance 
circuits rather than traditional EM antennas 
[38]. Magnetic induction typically operates 
at low frequencies, ranging from a few 
kHz to around 13.56 MHz, resulting in a 
narrow frequency band. Due to the low 
frequency, the signal wavelength is very 
large and does not experience reflections or 
scattering. Consequently, it is not practical 
to deploy RIS technology alongside 
magnetic induction [39]. Nonetheless, 
utilizing magnetic induction waveguides 

can achieve a similar effect through the 
passive relaying of magnetic fields [40]. 
When passive magnetic induction coils 
align in a wave, they induce secondary 
magnetic fields without consuming power. 
This phenomenon is analogous to pseudo- 
reflections. By adjusting the impedance of 
the resonance circuit of each magnetic 
conduction relay, these pseudo-reflections  
become both tunable and reconfigurable. 
Therefore, passive magnetic induction 
relays represent a unique case of magnetic 
RISs, where each device functions as a  
single reflective element [21].

3. INTERNET OF UNDERWATER THINGS 
(IoUWT)

3.1 Overview of IoUWT
The Internet of Underwater Things is a 

Figure 2: An underwater communication scenario highlighting the signal paths between a transmitter and a receiver, including the challenges 
of surface and bottom reflections, ambient noise, and biological noise.
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concept that aims to create large-scale wireless 
networks connecting devices below the water’s 
surface, like the Internet of Things (IoT) above 
the surface [41]. The IoUWT involves various 
underwater devices such as submarines, 
autonomous underwater vehicles (AUVs), 
sensors, and ships [42]. The main goal is 
to ensure that these devices have reliable 
connectivity in the challenging underwater 
environment, which differs significantly 
from terrestrial networks attributable to their 
impact on signal propagation and path loss. 
This is particularly evident in the underwater 
environment’s conductivity, which varies 
based on salinity, temperature, and pressure, 
significantly affecting the absorption of 
electromagnetic fields, and causing high path 
loss. This limits data rates to below 8 kbit/s for 
distances greater than 10 metres in seawater. It 
is also important to note that the conductivity 
in freshwater is 0.01 S/m and can reach 4-5 
S/m in seawater.

3.2	 Challenges in IoUWT
Underwater communications primarily 
use acoustic waves because they are 
less susceptible to absorption compared 
to electromagnetic and other signalling 
techniques [43]. Acoustic communication 
transmits through pressure variations in 
the water, allowing signals to travel tens 
of kilometres in open water. However, this 
communication method faces challenges 
such as interference from marine life, signal 
scattering, and reflections caused by the 
heterogeneity of the underwater environment, 
including varying water currents with different 
pressures and temperatures. These factors lead 
to multipath propagation, frequency-selective, 
and time-variant channel responses [44]. 

Although some alternative communication 
methods (utilizing very low signal frequencies 
through magnetic induction or optical 
communications) have been proposed, they 
have not yet been implemented due to similar 
path loss issues [41].

3.3	Application of IoUWT
There are various deployment scenarios for 
IoUWT, such as monitoring maritime animals, 
observing seismic activities to predict natural 
disasters like tsunamis, and communicating 
with underwater vehicles [43]. Some networks 
also incorporate floating buoys that gather 
data from submerged sensors. The primary 
challenge in all these scenarios is dealing with 
the time-variant multipath channels when 
using acoustic waves for communication. 
IoUWT is an area of significant research 
interest and has seen substantial advancements 
in recent years [45].

4. APPROACHES FOR RIS DEPLOYMENT 
UNDERWATER AND HARDWARE 
ARCHITECTURE

In this section, we introduce the various methods
for deploying RISs underwater and discuss 
the hardware architecture for RIS-assisted 
networks in underwater communications.

4.1 Approaches for Deploying RISs 
Underwater
For deploying RISs in the underwater medium, 
particularly within the context of IoUWT, the 
approaches that have been considered are:

•	 Stationary Deployment. The simplicity 
 	 and minimal design challenges of this 
 	 method make it particularly beneficial 		
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	 for integrating into IoUWT [46]. One of its 
 	 key advantages is that the static geometrical  
	 configuration ideally leads to relatively  
	 stable communication channels. On 
 	 the contrary, this stability is generally only  
	 applicable for short distances. For longer  
	 distances, especially over 100 metres, the 
 	 rapidly changing channels in the underwater 
 	 medium present significant challenges [47].
• 	 Autonomous Underwater Vehicles (AUVs).  
	 AUVs are expected to support the 
 	 distributed nodes of the IoUWT by moving 
 	 from one node to another like traditional  
	 mobile relaying [48]. Their key role is to
	 improve connectivity and recharge node 
 	 batteries, and they are also well-suited for 
	 carrying RISs, contributing to the smart 
 	 underwater environment. This type of 
 	 mobility can be adjusted to enhance signal 
 	 propagation using the RIS’s phase shifting 
 	 capabilities, in addition to the vehicles’  
	 mobility [21]. The trajectory of the AUVs  
	 in this context is of particular interest, and
	 one challenge related to their mobility 
 	 scenarios is channel prediction. Unlike
	 stationary deployment, the system 
 	 configuration’s geometry is not fixed but 
 	 changing, making communication channels 
 	 time-varying. However, the relatively slow
	 motion of the AUVs results in a long  
	 motion-related coherence time, meaning  
	 that the motion is not critical for the RIS- 
	 equipped AUVs. On the other hand, the  
	 AUVs’ surfaces are likely designed  
	 to reduce friction in water, which could  
	 otherwise be a primary issue for vehicle 
	 control. Therefore, RISs should cover  
	 only relatively small areas to minimize this  
	 effect while maintaining control over the 
	 smart environment [46].

• 	 Floating RISs. The floating deployment  
	 is a strategic option for RISs that hold great 
 	 promise. In this approach, the RISs are 
 	 tethered to the seabed with cables, allowing 
 	 them to be positioned at an optimal depth  
	 between underwater sensors and the  
	 surface. This method limits the maximum 
 	 distance between the RISs and their anchor 
 	 position on the ocean floor. By using this 
 	 strategy, control over the position of the  
	 RISs is maintained, and it also helps 
 	 stabilize the communication channels by 
	 maintaining a certain level of geometrical  
	 configuration [21].

N.B.: These different deployment methods 
limit the adaptability of RISs for underwater 
communication challenges, aiming to 
maximize communication effectiveness within 
underwater constraints.

4.2 Hardware Architecture for RIS-Assisted 
Networks in Underwater Communications
In underwater communications, the hardware 
architecture for RISs is designed for 
autonomous operation. RISs extend beyond 
simply reflecting signals to include advanced 
features such as wireless sensors and 
actuators [23]. 

The proposed architecture is a modified 
version of traditional wireless sensor 
node structures. Each RIS node integrates 
the RIS as a front-end and can also have 
conventional antennas for extra functions 
like active relaying and signal buffering 
[49]. Traditional antennas and RISs work 
in parallel and have the same connections 
to other hardware components. To address 
energy limitations underwater, a power 
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unit with a battery power all components, 
including the tunable reflective elements 
of the RISs. Energy harvesting modules, 
supporting the idea of self-sustainable 
RISs, capture signals not reflected by the 
RISs [50]. This approach, which involves 
simultaneous signal reflection and energy 
harvesting clusters, aligns with potential 
advances in simultaneous wireless 
information and power transfer (SWIPT) 
technology [51].

A processing unit, consisting of a processor 
and memory storage, manages phase shifts 
in the RISs. It operates as a transmitter or 
receiver through a dedicated transceiver, 
allowing communication with other RISs 
[52]. For improved signal processing 
capabilities, the processing unit can link to 
external processors and memory blocks from 
neighbouring RIS patches. 

This architecture aims to reduce the 
computational complexity per Reconfigurable 
Intelligent Surface (RIS) while allowing for 
functional extensions. It ensures that the 
nodes of the RIS in underwater environments 
can not only reflect signals but also have 
advanced functionalities and efficient power 
management systems.

5. ML-ENABLED OPTIMIZATION 
TECHNIQUES FOR RIS-AIDED 
NETWORKS

Machine learning (ML), when used with 
RIS technology, can significantly enhance 
network performance in RIS-aided networks. 
By using various ML-based optimization 
techniques, such as dynamic spectrum 

allocation and interference mitigation, we can 
optimize predictive resource management 
to improve overall network capacity. In 
this context, we will explore several ML 
techniques that can be used within RIS, 
including supervised learning, unsupervised 
learning, reinforcement learning, federated 
learning, graph learning, transfer learning, and 
hierarchical learning.

•	 Supervised Learning. In Supervised 
 	 Learning algorithms, the model learns to 
 	 map input data to the correct output labels  
	 using a labelled dataset. A technique  
	 described in [53] aims to maximize the 
 	 power received in an RIS-enabled 		
	 network. In a scenario involving multiple 	
	 users and a multiple-input single-output 	
	 (MISO) system, the downlink is examined, 	
	 and a deep neural network (DNN) is 		
	 utilized to learn the mapping between the 	
	 users’ locations and the RIS reflecting 	
	 elements. The goal is to enhance the signal 	
	 quality at each predicted user position in 	
	 indoor environments. The proposed DNN  
	 architecture consists of five layers, with
	 each output layer employing a nonlinear
	 function. In another study [54], a  
	 communication link between two nodes is  
	 supported by multiple RISs. Low- 
	 complexity supervised learning algorithms  
	 are used to configure the phase shifts of  
	 the RISs. A multi-layer perceptron neural  
	 network is proposed, which can be trained  
	 with positioning values or instantaneous  
	 channel coefficients. The study explores  
	 centralized and individual training of the 
 	 RISs and their coordination and  
	 computational requirements. Simulation  
	 results in the paper demonstrate the 



64   The Journal of Ocean Technology, Vol. 19, No. 4, 2024 Copyright Journal of Ocean Technology 2024

 	 advantages of using individual neural  
	 networks at the RISs to improve the link  
	 budget performance.
• 	 Unsupervised Learning. Unsupervised 
 	 Learning involves identifying patterns or  
	 structures in data without using explicit  
	 labels. Unsupervised learning techniques  
	 work with unlabelled input data to discover  
	 connections between data points and form  
	 clusters [55]. In a paper referenced as [56], 
	 the authors introduced a low-complexity  
	 unsupervised learning scheme, named a  
	 learning-phase-neural network, to maximize  
	 spectral efficiency in RIS-aided MIMO  
	 networks. Their simulation results  
	 demonstrate that the proposed scheme  
	 significantly improves network performance 
	 in terms of spectral efficiency while  
	 reducing system complexity. Also, in  
	 reference [57], the authors proposed an  
	 unsupervised learning-based joint active  
	 and passive beamforming design for  
	 RIS-aided wireless networks. Their proposal 
 	 involved a deep learning-based algorithm  
	 for joint active and passive beamforming  
	 design. They trained a two-stage neural  
	 network offline without supervision and  
	 implemented it online for real-time 
 	 prediction. Their simulation results showed 
 	 that their proposed scheme significantly  
	 reduces computational complexity compared 
 	 with existing methods in the literature.
• 	 Reinforcement Learning. Reinforcement  
	 Learning (RL) teaches a model to make  
	 sequences of decisions by rewarding  
	 desired actions and punishing undesired 
 	 ones. It includes model-free algorithms  
	 such as Q-learning and deep Q-learning 
 	 (DQN) and model-based algorithms like 
	 dynamic programming [58]. In a study 	

	 referenced as [59], an RIS-assisted cellular  
	 network, supported by an RIS reflector  
	 powered via energy harvesting technologies, 
 	 was considered, and the energy efficiency 
	 optimization problem was investigated.  
	 The study proposed a deep reinforcement  
	 learning algorithm to optimize the BS  
	 transmit power allocation and RIS phase  
	 shift configuration by deploying a neural  
	 network. The simulation results indicated  
	 significant improvements in energy  
	 efficiency when the number of RIS  
	 elements increased from 9 to 25. Besides,  
	 in reference [60], UAVs were integrated  
	 with RISs to passively communicate  
	 information sampled by Internet of Things  
	 Devices (IoTDs) to the BS. The study  
	 aimed to minimize the expected sum  
	 age-of-information (AoI) by optimizing the 
 	 altitude of the UAV, the phase shifts of the
	 RIS elements, and the communication  
	 schedule. The authors developed a  
	 proximal policy optimization algorithm, a  
	 deep reinforcement learning approach,  
	 to solve the optimization problem. Their  
	 numerical results demonstrated the  
	 superiority of the authors’ suggested  
	 scheme over all other counterparts  
	 presented in the literature.
• 	 Federated Learning. Federated Learning  
	 (FL) is an approach to training machine  
	 learning models across multiple  
	 decentralized devices or servers without  
	 directly sharing the data. In a wireless FL  
	 system described in reference [61], many  
	 edge devices synergize to train a shared  
	 model. This process is coordinated by a
	 centralized base station (BS) using over- 
	 the-air computation. The authors used an  
	 RIS to adjust the wireless environment and 
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	 focused on minimizing the gap between  
	 the model’s performance and its optimal  
	 state. They also addressed differential  
	 privacy and transmit power constraints.  
	 To achieve these goals, they jointly  
	 optimized the transmit power of the  
	 devices, the phase shifts of the RIS,  
	 and the artificial noise, using a two-step  
	 alternating minimization framework. Their  
	 research demonstrated that the proposed  
	 scheme outperformed the benchmarks  
	 regarding accuracy and privacy. Reference  
	 [62] introduces a framework for balancing 
	 the accuracy and integrity of over-the-air  
	 FL, utilizing an RIS to optimize multi- 
	 antenna devices and the BS. The system  
	 aimed to minimize the distortion of the  
	 aggregated model by optimizing the  
	 transmit beamformers of the devices, the  
	 receive beamformers of the BS, and the
	 phase shifts of the RIS. The research  
	 considered both perfect and imperfect  
	 channel state information (CSI). Simulations  
	 confirmed that the proposed scheme  
	 achieved a robust design of the beamformers
	 and RIS configuration, even around  
	 imperfect CSI. Furthermore, experimental  
	 results indicated that the framework  
	 achieved accuracy close to the ideal FL.
• 	 Graph Learning. The field of Graph  
	 Learning involves using machine learning  
	 techniques on graph data. Some of these  
	 techniques include graph attention networks 
	 (GAN), graph neural networks (GNN), and
	 graph convolution networks (GCN). In a 
	 study referenced as [63], the authors  
	 addressed the joint optimization problem 
	 involving user scheduling, RIS configuration, 
 	 and base station (BS) beamforming in an  
	 RIS-assisted downlink network with limited 	

	 pilot overhead. The authors found that  
	 GNN, characterized by permutation  
	 invariance and equivalent properties, was
	 an effective approach for scheduling users
	 and optimizing RIS phase shifts, thus  
	 enhancing system performance in terms of
	 throughput while ensuring fairness among 
	 users. The proposed scheme first optimizes  
	 the user schedule and then the RIS phase  
	 shifts using a second GNN. Subsequently,  
	 the BS beamformers are designed based on 
	 the overall effective channel. The results
	 presented by the authors indicated that  
	 their approach utilizes received pilots more
	 efficiently than conventional channel 
 	 estimation-based approaches. In another  
	 study referenced as [64], a smart RIS-THz- 
	 MIMO-NOMA framework was proposed to
	 reconfigure hybrid beams effectively  
	 through the cooperation between access  
	 points (APs) and the RIS. The authors  
	 employed a decentralized partially observable
	 Markov decision process (Dec-POMDP) to
	 optimize the network’s energy efficiency 
	 while meeting diverse user performance  
	 requirements. The authors jointly optimized  
	 the RIS element selection and power  
	 allocation strategy and coordinated discrete  
	 phase-shift control. They proposed a multi-
	 agent deep reinforcement learning (MADRL)
	 algorithm to solve the non-convex and  
	 strongly coupled optimization problem.  
	 Their numerical results demonstrated that 
	 their proposed algorithm outperforms  
	 traditional MADRL algorithms.
• 	 Transfer Learning. Transfer Learning 
	 allows knowledge gained in one problem 
 	 domain to be applied to a different but 
 	 related domain. In the context of RISs, 
 	 transfer learning can be beneficial when 	
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	 there are limited labelled datasets for specific 	
	 conditions. It can be used to expedite the 
 	 training of machine learning algorithms in 
 	 RIS-assisted wireless networks, where fast 
 	 decision-making is crucial. However, low 
 	 sampling efficiency may impede the 
 	 deployment of machine learning in RIS- 
	 assisted wireless communication networks 
 	 [58]. In a study [65], transfer learning was 
 	 used to jointly optimize resource allocation 
 	 for network slicing. The authors proposed a
	 deep transfer reinforcement learning 		
	 (DTRL) scheme for joint radio and cache 
 	 resource allocation for 5G RAN slicing. Their  
	 proposed algorithms were compared with 
 	 bonus deep Q-learning, model-based priority 
 	 proportional fairness, and time-to-live
	 (PPF-TTL) algorithms, and their scheme 
	 achieved lower delay and higher 
 	 throughput. In another study [66], the 
 	 authors addressed interference mitigation in 
 	 a 5G millimeter-wave (mm Wave) 
 	 communication network by using 		
	 beamforming and NOMA techniques to 
 	 improve the network’s aggregate rate. They 
 	 considered jointly optimizing the user-cell 
 	 association and the number of beams to 
 	 maximize the aggregate network capacity. 
 	 Three machine learning-based approaches 
 	 were deployed: Q-learning, transfer 
 	 Q-learning (TQL), and Best SINR 
 	 association with density-based spatial 
 	 clustering of applications with noise (BSDC) 
	 algorithms. The authors compared the 
 	 performance of these approaches under 
 	 mobility and stationary scenarios. 		
	 Moreover, transfer learning can be used in 
 	 machine learning-enabled RIS wireless 
 	 networks to achieve prompt phase-shift 
 	 responses and faster convergence [58].

•	 Hierarchical Learning. Hierarchical 
	 Learning is a powerful approach in 
	 reinforcement learning that enhances 
 	 exploration efficiency by breaking down 
 	 long-term tasks into multiple sub-tasks [67].
	 This method allows for more manageable 
 	 and focused learning processes, leading to 
 	 better performance and faster convergence.  
	 In a comprehensive survey, the authors of
	 [68] discussed various approaches to 
 	 hierarchical reinforcement learning. They 
 	 identified several critical open problems that
	 could inspire future research directions in this
	 field. These open problems highlight the 
 	 potential for further advancements and
	 innovations in hierarchical reinforcement 
 	 learning, motivating researchers to explore  
	 new methodologies and applications.

6. SYSTEMATIC BIBLIOMETRIC ANALYSIS

The integration of Reconfigurable Intelligent 
Surface (RIS) technology and machine 
learning (ML) techniques in underwater 
communications is an emerging area with 
limited existing literature. With fewer than 
300 publications addressing RISs and ML 
techniques simultaneously, conducting a 
comprehensive bibliometric analysis on this 
specific intersection is challenging. 

As a result, this section will present a 
systematic bibliometric analysis focusing 
solely on RISs. To our knowledge, it is the first 
comprehensive systematic bibliometric analysis 
in the field of RIS. This analysis aims to 
provide valuable insights into research trends, 
key contributors, and significant developments 
within the RIS domain, laying the groundwork 
for future studies and innovations.
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6.1 Research Methodology
We used the Scopus database to examine the 
publishing trends and patterns in the global 
literature on RISs. The Scopus database 
is known for indexing and abstracting 
scholarly publications and provides 
extensive bibliometric data through a 
straightforward extraction method, making it 
well-suited for comprehensive analyses [69].

To extract relevant data, we designed a 
comprehensive search strategy that focused 
on specific aspects such as titles, author 
keywords, and abstracts using the advanced 
search feature of the Scopus database with 
the following search query: TITLE-ABS-
KEY (“Reconfigurable Intelligent Surface*” 
OR “Reconfigurable Intelligent Surface 
(RIS)”). 

The initial search yielded 4,632 
publications. After refining the search 
by limiting it to English language 
documents and specific document types
(articles, conference papers, reviews, 
conference reviews, and book chapters),
as well as excluding irrelevant 
documents, the final dataset consisted 
of 4,537 publications. This data was 
downloaded in CSV and Research 
Information System formats for further 
analysis and visualization. 

For data analysis, we utilized Microsoft
Excel, VOSviewer [70], and Biblioshiny 
[71]. Additionally, to ensure the 
accuracy and consistency of the data 
and information, we standardized 
discrepancies in organization names, 
author details, source titles, and 
countries. The accuracy of the data was 

verified by replicating the process with two 
other members of the research group.

6.2 Results and Discussions
In the field of data analysis, various terms are 
used to quantify research output and impact.
TP stands for total publications, TC stands 
for total citations, and TC/TP represents 
the average citation per publication. Table 
1 provides valuable information about 
RIS publications from 2019 to 2024. A 
bibliometric study of RISs reveals that there 
were 4,537 publications and 54,012 citations 
from 625 diverse sources during this period. 
The data indicates an annual growth rate of 
169.59% and an average age of 1.48 years 
for the publications. On average, each paper 
received 11.90 citations and had 72,185 
references. 

Table 1: Main information about data on RIS publications.
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The field of RISs includes a variety of keywords,
with 10,223 keywords and 6,243 author keywords
identified. Collaboration in RIS research is evident, 
with 5,023 contributing authors, including 123 
who have authored only one paper. On average, 
there are 4.43 authors per publication, and 
international co-authorships account for 41.92%
of collaborations. The analysis also shows the types
of research conducted; out of 4,537 publications, 
articles were the most usual form (2,609 
publications), followed by conference papers 
(1,802), reviews (58), conference reviews (38), 
and book chapters (30).

6.3 Yearly Publishing and Citation Trends in 
RIS Literature
Figure 3 provides a detailed overview of the 

research productivity and citation trends for 
Reconfigurable Intelligent Surfaces (RISs) 
from 2019 to 2024. The analysis shows that 
RIS is a relatively new field of study, with 
the first research paper being published in 
2019 (TP = 5) and receiving 4,425 citations, 
resulting in the highest average citation per 
article at 885, TC/TP. There has been an 
exponential increase in publication growth 
over the years, with a significant surge in 
2020, which saw 153 publications and a 
certain number of citations. In 2023, there 
was the highest number of research papers, 
with 1,882 publications and 4,065 citations, 
followed by 1,172 publications and a certain 
number of citations in 2022, 613 publications 
and a certain number of citations in 2021, 

Figure 3: Yearly citation and citation trends.
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and 712 publications and 125 citations in 
2024. The year 2021 recorded the highest 
total citations with a certain number, followed 
by 2020 with a certain number, 2022 with a 
certain number, 2019 with 4,425, and 2023 
with 4,065; the year with the oldest data had 
the highest average number of citations per 
article, while the most recent year experienced 
a decline in the average number of citations 
per article. The decrease in citations can be 
attributed to the additional two to three years 
needed to attain significance and impact. 
The year 2024 had the lowest number of 
publications and citation impact, likely 
because the data were acquired on May 8, 
2024, before the year was complete. 

The significant increase in RIS research 
publications and citations from 2019 to 2024 
underscores the rapid growth and growing 
significance of the field. The collaborative 
aspect of the research, along with the high 
impact of early publications, highlights 
the dynamic and evolving nature of RIS 

studies. As the field continues to develop, 
the findings from this analysis will provide 
a crucial foundation for future research and 
advancements in RIS technology.

6.4 Top Relevant Sources of RIS-related 
Research
Table 2 is an exhaustive overview of the 
primary sources in RISs. From 2019 to 
2024, 625 sources (journals and books) 
have produced 4,537 publications. The 
top ten leading sources have contributed 
approximately 30% of these papers. Among 
them, IEEE Transactions on Vehicular 
Technology (JIF = 6.8) has published 291 
papers with 3,596 citations, followed by IEEE 
Transactions on Wireless Communications 
(JIF = 10.4) with 285 papers and 8,329 
citations. Other prominent sources include 
IEEE Wireless Communications Letters, 
IEEE Communications Letters, and IEEE 
Transactions on Communications. Notably, 
all the top ten sources are from the USA and 
published by IEEE. Besides, the table reveals 

Table 2: Top ten most relevant sources in RISs. (JIF = journal index factor)
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other journals with significant h-index values, 
PY Start, journal impact factors, publisher, and 
country of publication. This overview can help 
researchers identify key publication platforms 
in RISs and concentrate on influential outlets 
for sharing their research.

6.5 Top Prolific Authors on RIS Literature
Table 3 presents a comprehensive review of 
the top ten authors who have made significant 
contributions to the field of RISs between 
2019 and 2024. 

The leading author in the top ten list is Pan C 
from Southeast University, China, with 109 
publications and 3,444 citations. Next is Liu Y 
from Queen Mary University of London, the 
UK, with 98 publications and 3,195 citations. 
Followed closely is Jin S from Southeast 
University, China, with 95 publications 
and 1,825 citations. Yuen C from Nanyang 
Technological University, Singapore, is 
the fourth most productive author with 89 
publications and 6,076 citations, closely 
followed by Alexandropoulos, G.C from 
National and Kapodistrian University of 
Athens, Greece, with 88 publications and 
4,815 citations. Hanzo, L from the University 
of Southampton, the UK, has 64 publications 

and 2,617 citations, making him the least 
productive on the list. Also, Di Renzo, M, 
of Laboratoire des Signaux et Systèmes, 
France, received the highest citation count 
with 6,968 TC for 76 publications, followed 
by Yuen, C from Nanyang Technological 
University, Singapore, with 6,076 citations. 
Notably, Di Renzo, M from Laboratoire 
des Signaux et Systèmes and Yuen, C from 
Nanyang Technological University also have 
impressive citation impacts of 91.68 and 
68.27, respectively. 

Most of the top ten productive authors conduct 
their research in China (4), the UK (2), and one 
each from Singapore, Greece, France, and the 
USA, respectively. This assessment facilitates 
the identification of leading authors who have 
contributed to the field, their affiliations, 
and their impact on literature. As a result, it 
helps scholars comprehend the prominent 
persons and institutions affecting the subject of 
discussion in RIS literature.

6.6 Top Productive Organizations on RIS 
Literature
Table 4 provides an overview of the top 
ten most productive organizations in the 
field of RIS during 2019-2024. The leading 

Table 3: Top ten most prolific authors in RISs. 
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organization was Southeast University in 
China, with 406 publications, 6,706 citations, 
and an average of 16.52 citations per 
publication. Following was the University of 
Electronic Science and Technology of China 
with 215 publications and 4,979 citations, 
Queen Mary University of London with 199 
publications and 6,596 citations, and Beijing 
University of Posts and Telecommunications 
with 182 publications and 2,675 citations.
 
Laboratoire des Signaux et Systèmes in France 
had the lowest number of publications on the 
list (125) but the highest number of citations at 
9,402. Centrale Supélec-Paris-Saclay received 
the highest number of citations with 13,084 
and a TC/TP ratio of 89.62.

Other organizations (e.g., Université Paris-
Saclay and Laboratoire des Signaux et 
Systèmes) had high total citation numbers, 
demonstrating their significant impact in the 
field of RIS. The analysis also indicates that 
the top ten organizations are predominantly 
from China (5), followed by France (4) and 
the UK (1), suggesting that organizations from 
China and France are leading in RIS literature. 
This comprehensive analysis provides valuable 
insights into the importance and global 

distribution of institutions in RIS literature, 
aiding scholars in understanding research trends 
and the contributions of different universities.

6.7 Top Productive Countries on RISs
Please note the following information: Figure 
4 shows the countries with the highest number 
of publications in RISs from 2019 to 2024. 
China had the most publications with 2,301, 
along with 30,258 citations, followed by the 
United Kingdom with 703 publications and 
14,206 citations, the United States with 524 
publications and 8,841 citations, Canada with 
315 publications and 4,210 citations, and 
South Korea with 300 publications and 3,140 
citations. Other significant countries include 
India, France, Singapore, Australia, Greece, 
Germany, Taiwan, Italy, Sweden, Saudi Arabia, 
Turkey, and Finland, each with over 100 
publications. On the other hand, Indonesia, 
the Netherlands, Vietnam, and Zimbabwe 
had the fewest publications, each with five. 
China, Cyprus, Germany, the United Kingdom, 
and South Africa had the highest number of 
citations of 30,258, 29,341, 14,625, 14,206, 
and 10,306, respectively. The average citation 
per publication (i.e., TC/TP) varies across 
the countries. Cyprus, Chile, South Africa, 
Indonesia, and the USA have the highest 

Table 4: Top ten most prolific organizations in RISs. 
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averages of 1,630.06, 722.00, 515.30, 205.20, 
and 205.16, respectively.

This analysis provides valuable insights into the 
global distribution of research efforts, allowing 
scholars to understand the geographical 
contributions to the subject. It also helps 
identify the leading nations in RIS literature.

6.8 Authorship Pattern in RIS Publications
In Figure 5, we can see the classification of 
authorship patterns in RIS publications. The 
analysis shows 18 diverse types of authorship, 
resulting in 4,537 publications. These ranged 

from single publications to as many as 22 
for a single author. The fourth authorship 
pattern contributed to the highest number of 
research papers, totalling 986 publications 
and 9,844 citations, followed by the fifth with 
945 publications and 13,135 citations. Three 
authorship patterns held the third position with 
815 publications and 6,805 citations, while 
the sixth authorship pattern contributed 682 
publications and 8,834 citations.

Meanwhile, the authorship patterns of the 
16th and 21st had the lowest number of 
publications, with only one publication 

Figure 4: Productive country on RIS publications.
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each. Furthermore, patterns 15, 12, 21, 10, 
and 18 had the highest average citations per 
publication, with 229.00, 216.50, 71.00, 45.43, 
and 39.50, respectively. The analysis suggests 
that 99% of researchers in the field are highly 
interested in collaborative work rather than 
pursuing solo research (TP = 123).

6.9 Mapping Author Keyword Co-
occurrence in RIS Literature
Figure 6 portrays the results from a 
comprehensive evaluation of the most 
used author keywords in the field of RISs. 
VOSviewer, a bibliometric software, was used 
to create the illustration. The investigation 
focused on keywords that co-occurred at least 
15 times out of 6,177 instances. In total, 88 
keywords met this threshold and were included 
in the analysis. These top 88 keywords were 
selected based on their overall link strength 
and were categorized into 12 clusters or 
themes, each represented by a distinct colour. 

Each bubble size reflects the frequency of 
keyword usage, and the connections between 
the bubbles show the number of research 
publications featuring these keywords. 
The analysis revealed the top five most 
frequently used keywords by RIS researchers 
to be “Reconfigurable Intelligent Surface,” 
“Wireless Communication,” “Non-Orthogonal 
Multiple Access,” “Energy Efficiency,” and 
“Unmanned Aerial Vehicle.” The figure 
illustrates 12 distinct clusters of keywords, 
each corresponding to a specific research area:

•	 Cluster 1. This cluster is the largest and
	 consists of 24 keywords. The primary 
 	 topics covered in this cluster include 
 	 Wireless Communication, Non Orthogonal 	
	 Multiple Access, Physical Layer Security, 	
	 Internet of Things, Simultaneous Wireless 	
	 Information and Power Transfer, Active 	
	 Reconfigurable Intelligent Surface, 
 	 Simultaneously Transmitting and  

Figure 5: Authorship pattern in RIS publications.
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	 Reflecting Reconfigurable Intelligent 		
	 Surface (STAR-RIS), Fading Channels, 
 	 Quality of Service, Wireless Networks,  
	 Manifold Optimization, Receivers, Sum- 
	 Rate Maximization, Hardware, Interference
	 Cancellation, Mutual Coupling, Protocols,  
	 Backscatter, Fractional Programming, 
 	 Backscatter Communication, Communication 
	 System Security, Jamming, MISO 		
	 Communication, and Full-Duplex (FD).
• 	 Cluster 2. The primary focus of this cluster
	 includes Metasurfaces, Beyond 5G, 
 	 Federated Learning, Intelligent Reflecting 
 	 Surfaces, Metamaterials, Artificial 
 	 Intelligence, Reliability, Smart Radio  
	 Environments, Sensing, and Visible Light  
	 Communication.
• 	 Cluster 3. The significant topics in this 
 	 cluster include Modulation, Symbols, 
 	 Index Modulation, Precoding, Reflection  

	 Coefficient, Index Modulation (IM), 
 	 Orthogonal Frequency Division 
 	 Multiplexing (OFDM), Cell-Free Network, 
 	 and Wideband.
• 	 Cluster 4. The main topics in this cluster
	 include Millimeter Wave, Estimation, 
 	 Compressive Sensing, Training, Location 
 	 Awareness, 6G Mobile Communication, 
 	 Beam. 
• 	 Cluster 5. The main topics in this cluster 
 	 include Reconfigurable Intelligent Surfaces, 
	 Energy Efficiency, Cognitive Radio, 
 	 Convex Optimization, Outage Probability 
 	 (OP), Smart Radio Environment, Imperfect 	
	 Channel State Information (CSI), Multiple- 
	 Input Multiple-Output, Training, Antenna 
 	 Arrays, and Terahertz Communication.
• 	 Cluster 6. The main topics in this cluster 
 	 include Successive Convex Approximation, 
 	 Non-Convex Optimization, Phase Shift 

Figure 6: Mapping co-occurrence and author keywords.
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 	 Optimization, Trajectory Design, Physical- 
	 Layer Security, Secure Communication, 
 	 ISAC, and UAV Communication.
• 	 Cluster 7. The main topics in this cluster 
	 include Intelligent Reflecting Surface (IRS),
	 Positioning, Reflectarray, mmWave 
 	 Communications, and Compressed Sensing.
• 	 Cluster 8. Topics in this cluster are 
 	 Integrated Sensing and Communication, 
 	 Radar, Robust Beamforming, Relay, and 
 	 Active RISs. 
• 	 Cluster 9. Includes topics like Ergodic 
 	 Rate, Coverage Probability, and UAVs. 
• 	 Cluster 10. Covers Unmanned Aerial 
 	 Vehicle (UAV), Deep Reinforcement 
 	 Learning, and SWIPT. 
• 	 Cluster 11. Focuses on mmWave and 
 	 Power Control. 
• 	 Cluster 12. Addresses Cell-free Massive 
 	 MIMO.

Figure 6 provides a comprehensive summary 
of the main ideas and research topics in 
RISs, making it a significant source of 
information. It demonstrates that RISs are 
a rapidly expanding domain with numerous 
practical applications.

6.10 Most Cited Papers on RISs
Table 5 provides an in-depth analysis of the 
top ten most highly cited research papers on 
Reconfigurable Intelligent Surfaces (RISs) 
published between 2019 and 2024. These 
papers have made significant contributions 
and gained substantial recognition in the 
academic community. The papers received 
varying citations, with the highest being 
2,158 and the lowest being 458. Notably, 
three of the publications received over 1,000 
citations. 

Among the top ten papers, four were 
published in “IEEE Transactions on Wireless 
Communications,” two in “IEEE J Sel Areas 
Commun,” and one each in “IEEE Open J 
Commun Soc,” “IEEE Access,” “IEEE Trans 
Commun,” and “IEEE Commun Surv Tutor.”
 
The most cited paper is “Reconfigurable 
Intelligent Surfaces for Energy Efficiency 
in Wireless Communication” by Huang C 
(2019), published in “IEEE Transactions 
on Wireless Communications,” with 2,158 
citations [72]. It is followed by “Wireless 
Communications through Reconfigurable 
Intelligent Surfaces” by Basar E (2019), 
published in “IEEE Access,” with 1,834 
citations [73]. “Smart Radio Environments 
Empowered by Reconfigurable Intelligent 
Surfaces: How it Works, State of Research, 
and the Road Ahead” by Di Renzo M (2020) 
has 1,452 citations [74]. The fourth most 
cited paper is “Wireless Communications 
with Reconfigurable Intelligent Surface: 
Path Loss Modeling and Experimental 
Measurement” by Tang W (2021) with 
736 citations [75], and “Multicell MIMO 
Communications Relying on Intelligent 
Reflecting Surfaces” by Pan C (2020) ranks 
fifth with 616 citations [76].

The least cited paper in the top ten list is 
“Reconfigurable Intelligent Surfaces vs. 
Relaying: Differences, Similarities, and 
Performance Comparison” by Di Renzo M 
(2020) with 458 citations [77]. 

This study aims to highlight impactful 
research in the field of RISs to help 
researchers gain a deeper understanding of 
important topics.
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6.11 Analysis of Trend Topics in RISs
Figure 7 depicts the results from a detailed 
analysis of trends in RIS research. It shows 
the frequency and distribution of different 
themes in RIS research over time. The 
most frequently occurring themes include 
reconfigurable (n = 3,545), Reconfigurable 
Intelligent Surface (n = 2,552), interlocking 
signals (n = 939), beamforming (n = 
859), wireless communications (n = 
856), signal-to-noise ratio (n = 706), 5G 

mobile communication systems (n = 306), 
and wireless networks (n = 265). Other 
significant topics common in RIS research are 
performance, outage probability, reflecting 
elements, optimization problems, propagation 
environment, closed-form expression, 
modulation, task analysis, and job analysis.

The analysis reveals the emerging research 
themes in RISs during 2021, which include 
interlocking signals, reflecting elements, 

Table 5: Top ten most cited research papers on RISs.
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optimization problems, propagation 
environment, closed-form expression, 
and modulation. In 2022, the emerging 
research themes are Reconfigurable 
Intelligent Surface, beamforming, wireless 
communications, signal-to-noise ratio, 5G 
mobile communication systems, wireless 
networks, performance, and outage 
probability. The emerging trends in recent 
years (2023 and 2024) include task analysis, 
job analysis, and backscatter.

This thorough review highlights the dynamic 
nature of RIS research, with themes changing 
over time to address new opportunities and 
challenges in the field.

6.12 Factorial Analysis-MCA Method
Factorial analysis is a method used to 
examine the dimensions and clusters of 
a conceptual structure map derived from 
Multiple Correspondence Analysis (MCA). 
It provides valuable insight into the primary 
patterns of data variation, the impact of 
specific variables, and the interconnections 

among categorical variables. In Figure 8, 
two distinct clusters are visually represented 
with varying colour shades. Each cluster is 
linked to a set of keywords that symbolize a 
specific theme.

Cluster 1 includes keywords such as 
Reconfigurable Intelligent Surface, 
Interlocking Signals, Beamforming, 
Wireless Communications, Signal-to-Noise 
Ratio, MIMO Systems, Optimizations, 
Energy Efficiency, Antennas, Channel 
State Information, Millimeter Waves, Array 
Signal Processing, Channel Estimation, 
Array Processing, Iterative Methods, 
Deep Learning, Fading Channels, X5G 
Mobile Communication Systems, Spectrum 
Efficiency, Internet of Things, Wireless 
Networks, Unmanned Aerial Vehicles 
(UAV), Network Layers, Quality-of-
Service, Bit Error Rate, Optimization, 
Reinforcement Learning, Performance, 
Millimeter-wave Communications, Outage 
Probability, Physical Layer Security, 
Communications Systems, Monte Carlo 

Figure 7: Analysis of trend topics in RISs.
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Methods, Aerial Vehicle, Metasurface, 
Mobile Telecommunication Systems, Signal 
Receivers, Interference, Multiple Inputs, 
Mean Square Error, Multiple Outputs, 
Intelligent Systems, Convex Optimization, 
and Reflecting Surface. This cluster highlights 
the multifaceted nature of RIS technology 
and its potential to revolutionize wireless 
communications through various optimization 
and enhancement techniques.

Cluster 2 is a comprehensive collection 
of topics encompassing Multiple Access, 
Non-Orthogonal Multiple Access, Stars, 
and Resource Management. This cluster 
signifies a central theme associated with 
advanced multiple-access techniques, 
potentially referring to the implementation of 
multiple access-schemes in 5G and resource 
management strategies within the field of RISs.

6.13 Country Collaboration in Publishing 
RIS Literature
The data illustrated in Figure 9 underscores 
the extensive international collaboration in 
RIS research. It shows that Chinese authors 
had the most frequent collaborations with 
other countries among the top ten on the list. 
The highest number of research collaborations 
was observed between China and the United 
Kingdom, resulting in 427 publications. Next 
are the collaborations between China and the 
USA (197 publications), China and Singapore 
(177 publications), China and Australia (145 
publications), and China and Canada (114 
publications). On the other hand, the USA and 
Korea had the lowest level of collaboration, 
with only 54 publications. Noteworthy 
collaborations also existed between the UK 
and the USA, China and France, China and 
Korea, and China and Hong Kong. The map 

Figure 8: Factorial analysis.
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depicts the global nature of RIS research and 
knowledge exchange across diverse cultures. 
This international network of collaborations 
highlights the mutual interest and expertise in 
RIS across different countries. 

The visual representation of these connections 
provides valuable insights into how various 
nations contribute to and benefit from 
RIS research, fostering a rich exchange of 
knowledge and innovation.

7. CONCLUDING REMARKS

In our research, we focused on RISs and 
ML-assisted underwater communications. We 
discussed potential signalling technologies 
in an RIS-assisted underwater environment, 
including IoUWT, various RIS implementation 

Figure 9: Country collaboration map.

approaches, and hardware architecture. 
Furthermore, we explored ML-enabled 
optimization strategies for RIS-aided networks. 
Our systematic bibliometric analysis provided 
an in-depth look at research trends and citation 
patterns in the RIS field. This analysis revealed 
4,537 publications indexed in the Scopus 
database over six years between 2019 and 
2024, highlighting that RISs is a relatively 
new research topic. It also highlighted leading 
figures in the field, trustworthy sources for 
research dissemination, publication and 
citation trends, prolific authors, organizations, 
countries, authorship patterns, key concepts 
and contributions, highly cited articles, and 
level of country collaboration.

The analysis of research publications on RISs 
revealed a remarkable surge in the number 
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of papers over the years, with an astounding 
annual growth rate of 169.59%. The year 2023 
stood out with the highest number of research 
papers (1,882 publications) and citations 
(4,065). Additionally, the study unveiled the 
top three sources favoured by scholars and 
highlighted the three most prolific authors 
in the field. Notably, a strong trend toward 
collaborative authorship emerged, with 
the fourth authorship pattern contributing 
the highest count of research papers (986 
publications) and citations (9,844), signifying 
an overwhelming preference for collaborative 
work (99%) over solo research (1%). It 
is worth emphasizing that our study is a 
pioneering effort to conduct a comprehensive 
bibliometric analysis of the published 
literature on RISs.

Therefore, our research will establish a 
baseline for evaluating the future path for 
RIS publications. The findings of this study 
will not only pave the way for future research 
into the many aspects of this subject but also 
provide valuable insights to guide further 
studies, inspiring new research directions 
and methodologies. This study is significant 
because it relies on high-quality literature 
indexed by the Scopus database. While our 
findings already enhance the understanding 
of research patterns in this domain, including 
additional bibliographic databases like Web 
of Science, PubMed, Dimensions, and Google 
Scholar could impact and supplement our 
research findings. Scholars, practitioners, and 
policy-makers interested in RISs will find the 
analysis presented in this paper beneficial. Our 
research also highlights areas of study that will 
require attention in the future, including the 
application of Artificial Intelligence in RISs 

and the influence of RISs on machine learning-
assisted underwater communications.
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