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Abstract

Quantile regression (QR) is a natural extension to the classic linear regression. It

models the conditional quantiles of the continuous response variable instead of mod-

eling the conditional mean. Often times we encounter discrete response variables,

such as counts or other kind of categorical variables. Due to the discontinuity of

counts, traditional QR creates systematic bias when applied to count data and hence

is not directly applicable. Jittering with uniform random perturbations is one of the

options to smooth the discrete response. In this thesis, we propose a new QR model

for count data, which improves the existing uniform jittering method. The proposed

approach involves artificially adding Tweedie or Beta random perturbations to orig-

inal count response, generating pseudo-continuous QR response. Through proper

selection of perturbation parameters, jittering can provide better parameter esti-

mation of the regression parameters as compared with the existing methods. We

employ the Asymmetric Laplace Distribution (ALD) to determine the optimal per-

turbation parameters through the Monte-Carlo Expectation Maximization (MCEM)

and Metropolis-Hasting (MH) sampler. Our proposed method for QR model pro-

vides consistent estimators of the QR coefficients. The estimators follow asymptotic

normal distribution as sample size goes to infinity. Simulation studies show much

improved performance when sample sizes are small to moderate. As an illustration,

the proposed method was applied to analyze a fishery data.
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Lay Summary

Quantile regression (QR) is a natural extension to the classic linear regression. It

models the conditional quantiles of the continuous response variable instead of mod-

eling the conditional mean. Often times we encounter discrete response variables,

such as counts or other kind of categorical variables. Direct application of traditional

QR to count data creates systematic bias and leads to invalid inference. Jittering is

a method used to QR for count data. By adding a small amount of random pertur-

bations (jittering) to response, the QR technique can be applied to count data. In

this thesis, we generate random perturbations from Tweedie or Beta distributions to

smooth the discrete response. We use the Asymmetric Laplace Distribution (ALD)

to form a pseudo likelihood function and then apply Monte-Carlo Expectation Max-

imization (MCEM), and Metropolis-Hasting (MH) sampler to find the parameters

that optimize performance of jittering.
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Nomenclature

System of names and terms, and rules for forming mathematical and statistical terms

that appear in this thesis are as follows, unless specifically stated otherwise:

• Random variable: X

• Vectors: x (lower case bold letters). The subscript [n] denotes the vector di-

mension where the notation x[n] is used.

• Random vector: X (upper case bold letters). The subscript [n] denotes the

vector dimension where the notation X [n] is used.

• Matrix or random vector: X [n×p] (upper case bold letters). The subscript [n×p]

denotes the matrix dimensions.

• Transpose operator: T or ′ (e.g., XT or X ′)

• Probability distribution function (PDF): fY (y), where the Y subscript denotes

the variables on which the function is computed. The shortened notation f(y)

is used where there is no risk of ambiguity.

• Cumulative distribution function (CDF): FY (y), where the Y subscript denotes

the variables on which the function is computed. The shortened notation F (y)

is used where there is no risk of ambiguity.

• Quantile level: τ , where τ ∈ (0, 1) (e.g., 0.25th quantile is the first quartile Q1).
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• Quantile function: QY (τ), where the Y subscript denotes the variables on which

the quantile is computed. The shortened notation Q(τ) is used where there is

no risk of ambiguity.

• i-th vector element: xi

• i-th matrix row: xi

• Null vector: 0

• Identity vector: 1

• Identity matrix: I

• Population size: N

• Sample size: n

• Number of regressors: p

• Mean regression parameter: β = (β1, ..., βp).

• Mean regression estimator: β̂ = (β̂1, ..., β̂p).

• Quantile regression parameter: βτ = (βτ1, ..., βτp) or β(τ) = (β1(τ), ..., βp(τ)).

• Quantile regression estimator: β̂τ = (β̂τ1, ..., β̂τp) or β̂(τ) = (β̂1(τ), ..., β̂p(τ)).

• Check loss function: ρτ (u)

• Simple quantile regression model: QY (τ |x) = βτ0 + βτ1x+ ετ

• Multiple quantile regression model: QY (τ |X) = X ′βτ + ετ

xiv



Chapter 1

Introduction

Regression analysis is one of the most frequently used statistical methods. Linearly

modeling the conditional expectation of the response variable is subject to some strict

assumptions, such as normality and homogeneity of the error terms. It is not robust to

outliers and skewed distributions.If assumptions are violated, the conclusion may be

misleading. Koenker and Bassett (1978) proposed quantile regression (QR) method

that models the effect of independent variables on the quantiles of the response dis-

tribution. QR extends the mean regression model to any arbitrary quantiles of the

distribution. It provides a complete picture of the relationship between the response

and the independent variables when quantiles are properly selected. It only requires

the response variable to have a continuous distribution, and is more flexible to analyze

data with non-normal distributions or heterogeneous variances.

In many areas of studies, a relationship between response and independent vari-

ables can only be observed at some specific quantiles. For example in ecology, effects

of ocean temperature on coral polyps growth can only be seen at the higher tempera-

ture, since it causes coral polyps to loose zooxanthellae that live in the polyps’ tissues

(Ding et al., 2022). QR is robust to outliers and is more flexible in modeling real
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data. The method has been widely used in diverse areas of studies, such as medicine,

sociology, finance, etc., (see Peng, 2021; Perillo et al., 2017; C. W. Chen et al., 2012;

Friederichs and Hense, 2007; Hajdu and Hajdu, 2014, among others).

Count data are frequently encountered in areas where events across different

sectors were recorded and hence needed to be modeled, such as healthcare, economics

and environmental sciences. Poisson distribution is most frequently used to model

count data. In QR analysis, continuity of response distribution is an important con-

dition due to the continuous nature of quantiles of a distribution. Naively using

traditional QR method designed for continuous data to count data leads to system-

atic bias of estimation, (see Rampichini et al., 2015; Geraci and Farcomeni, 2022;

Harding and Lamarche, 2019; Padellini and Rue, 2018; Machado and Silva, 2005).

Manski (1975) firstly introduced maximum score estimator of normalized pa-

rameters that only requires weak distributional assumption for consistency and strong

consistency of the estimator was also proved (Manski, 1985). But unfortunately in-

sufficient convergence rate in distribution n−1/3 makes the inference invalid in prac-

tice (see Kim and Pollard, 1990). One solution was initially contributed by Horowitz

(1992), who focused on convergence rate and modified the maximum score estimation

to fit median regression on binary and multinomial responses. This modified estima-

tion enhanced the convergence rate to n−2/5 ∼ n−1/2 depending on the strength of

assumptions, making statistical inference possible with large sample size. Later, Lee

(1992) generalized maximum score estimation to introduce semi-parametric median

regression for ordered discrete response.

As discussed by Koenker (2005) and others, the fact that the sample objective

function is non-differentiable when estimating the conditional quantile function with

counts, makies Taylor expansion not applicable. Discontinuity of objective function

due to positive mass makes the asymptotic distributions of estimator complicated to

obtain. Lu and Fan (2020) proposed generalized linear quantile mixed model, es-
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timating parameters by using Newton-Raphson algorithms. Another strategy is to

smooth the counts directly, leading to a ‘pseudo-continuous’ response. Machado and

Silva (2005) introduced ‘jitterng the counts’ that involves artificially adding some

noises or perturbations to the original counts to smooth the discreteness. Let Y be

a non-negative integer. A random variable U following uniform [0, 1) or [−0.5, 0.5)

is introduced to integer and make Z = Y + U be the QR dependent variable. Valid

statistical inference can still be done with jittering.

In this thesis, we propose to draw random numbers from the Tweedie and Beta

distributions for jittering. These distributions involve location and scale parameters.

The optimal choice of the parameters of Tweedie (µ, ϕ, p) and Beta (a, b) distributions

can be determined by Monte-Carlo Expectation Maximization (MCEM) algorithm.

The results observed from intensive numerical study show the QR model for counts

with Tweedie and Beta noises provides extra flexibility and maintain a decent perfor-

mance in parameter estimation and inference.

The remainder of this thesis is organized as follows: in Chapter 2 we briefly in-

troduce the quantile regression, including those models for discrete data. In Chapter 3

we propose the QR method for counts data and statistical algorithms for choosing

noise parameters. Consistency, asymptotic normal distribution of QR estimators and

corresponding sandwich estimates of variance-covariance matrices are derived in this

chapter. In Chapter 4 we study the performance of different QR methods through

simulation. The proposed QR model is illustrated by analyzing a fishery data. In

Chapter 5 we conclude the thesis with some remarks. Some model developments and

future research are given in the this chapter.

3



Chapter 2

Quantile Regression Models and

Methods

In this chapter, we briefly review concepts in mean regression, which then facilities the

introduction of QR models more clearly. Section 2.1 introduces cumulative density

functions and unconditional quantiles and functions, followed by a technique insight

that defines quantile as a solution of minimization problem. Then, Section 2.2 in-

troduces the conditional quantiles and QR, and provides computational methods to

obtain QR estimates. Section 2.3 explains the theoretical aspects of QR model includ-

ing asymptotic properties and relevant statistical inferences. Finally, some existing

methods of QR model for discrete data will be briefly outlined in Section 2.7.

4



2.1 Unconditional Quantiles and Quantile Functions

2.1.1 CDFs and Unconditional Quantiles

Let X be any real-valued random variable. Its cumulative distribution function

(CDF) , denoted as FX(x),

FX(x) = P (X ≤ x). (2.1)

For continuous random variables the CDF can be expressed as

FX(x) = P (X ≤ x) =

∫︂ x

−∞
fX(t)dt. (2.2)

The τ th quantile of the random variable X is the value x such that P (X ≤

x) = τ , where τ ∈ (0, 1). The quantile function is hence the inverse of the CDF

QX(τ) ≡ F−1
X (τ) = inf{x : FX(x) ≥ τ}. (2.3)

Figure 2.1 shows the CDF and quantiles of random variable X following standard

normal distribution.

Some properties of quantile function F−1(τ) are collected:

1. quantile function F−1(τ) is non-decreasing, if τ1 ≤ τ2, then F−1(τ1) ≤ F−1(τ2);

2. it is right-continuous, for any τ , F−1(τ) = limϵ→0+ F
−1(τ + ϵ);

3. for x ∈ R, F−1(F (x)) ≤ x;

4. for τ ∈ (0, 1), F (F−1(τ)) ≥ τ ;

5. if F is strictly increasing in a neighborhood of Q(τ) = F−1(τ), then F (F−1(τ))

and F−1(F (Q(τ)) = Q(τ), and

6. F (x) ≥ τ if and only if x ≥ F−1(τ).

5



(a) CDF (b) Quantiles

Figure 2.1: CDF and Quantils of Standard Normal Distribution.

2.1.2 Empirical CDFs and Sample Quantiles

Let (X1, ..., Xn) be an i.i.d. random sample of size n from a CDF F , and the empirical

distribution function

Fn(x) =
1

n

n∑︂
i=1

I{Xi≤x}. (2.4)

Then, the τ th sample quantile is defined by

Q̂X(τ) = F−1
n (τ). (2.5)

It is easy to see that Q̂X(0) = F−1
n (0) = min(X1, ..., Xn) is the sample minimum and

Q̂X(1) = F−1
n (1) = max(X1, ..., Xn) is the sample maximum. More generally, sample

quantiles can be obtained through order statistics.

Let (X(1), X(2), ..., X(n)) be the order statistics, then the k/n-th sample quantile is the

k-th order statistics corresponding to the sample, (X1, ..., Xn).

For i.i.d. sample (X1, ..., Xn) drawn from a continuous F with density f , if f(Q(τ)) >

6



0, then
√
n(Q̂(τ)−Q(τ))

=
√
n(F−1

n (τ)− F−1(τ))
D−→ N (0, σ2

τ ),
(2.6)

given stochastic equicontinuity of the empirical processes, see (Andrews, 1986; Walker,

1968). In the limiting distribution,

σ2
τ =

τ(1− τ)
f(Q(τ))2

.

2.1.3 Unconditional Quantiles as a Solution of a Minimization

Problem

The method of inverse CDF is not applicable in two cases: distributions does not

have closed form CDF (e.g., Tweedie), and quantiles of distribution are conditional.

Alternatively, quantiles of distribution can be obtained by minimizing a certain ob-

jective function.

Let Y be a generic random variable and and µ be the population mean that

minimizes the mean squared deviations E(Y − µ)2. The mean of distribution solves

the minimization problem

µ = argmin
c∈R

E(Y − c)2, (2.7)

which shows that mean of a population, as a location of a distribution, can be found

as a solution of a minimization problem.

Use this rationale and apply the multipliers τ and (τ−1) properly, a generalized

method to define quantiles as a certain minimization problem was established by

7



Koenker and Bassett (1978), who defined the check loss function as follows

ρτ (u) = u(τ − I{u<0}) =

⎧⎪⎪⎨⎪⎪⎩
τ · u if u ≥ 0

(τ − 1) · u if u < 0,

(2.8)

where τ ∈ (0, 1) and I(·) is an indicator function that equals 1 if the condition is true,

or 0 otherwise. Check loss function assigns τ as a weight to u: if u is zero or positive,

the weight is τ ; if u is negative, the weight is τ − 1. Let quantile levels τ be 0.25 or

0.50 be examples. For τ = 0.25,

ρ0.25(u) =

⎧⎪⎪⎨⎪⎪⎩
−0.75u, if u < 0

0.25u, if u ≥ 0;

for τ = 0.5,

ρ0.5(u) =

⎧⎪⎪⎨⎪⎪⎩
−0.5u, if u < 0

0.5u, if u ≥ 0

= 0.5|u|.

Two check loss functions are plotted in Figure 2.8, showing that check loss function is

piecewise linear. Let fY (y) be the PDF of a continuous variable Y , and τ be quantile

8



(a) τ = 0.25 (b) τ = 0.5

Figure 2.2: Check Loss Function for Different Quantile levels τ .

level. We are interested in minimizing the following expectation of check loss function

E[ρτ (Y − c)] =
∫︂ ∞

−∞
ρτ (y − c)fY (y)dy

= (τ − 1)

∫︂ c

−∞
(y − c)fY (y)dy + τ

∫︂ ∞

c

(y − c)fY (y)dy

= (τ − 1)

∫︂ c

−∞
(y − c)dFY (y) + τ

∫︂ ∞

c

(y − c)dFY (y)

= (τ − 1)

∫︂ c

−∞
ydFY (y) +

∂

∂c
τ

∫︂ ∞

c

ydFY (y)

− c
ï
(τ − 1)

∫︂ c

−∞
dFY (y) + τ

∫︂ ∞

c

dFY (y)

ò
= τE(Y )−

∫︂ c

−∞
ydFY (y)− cτ − c

∫︂ c

−∞
dFY (y).

(2.9)

Partially differentiating the above equation with respect to c, and setting the partial

differential equation equal to zero,

∂

∂c
E[ρτ (Y − c)] =

∂

∂c

ï
τE(Y )−

∫︂ c

−∞
ydFY (y)− cτ − c

∫︂ c

−∞
dFY (y)

ò
= τ −

∫︂ c

−∞
dFY (y)

= τ − FY (c)
set
= 0,

(2.10)
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hence,

FY (c) = τ ⇒ c = F−1
Y (τ).

E[ρτ (Y − c)] is globally minimized at the point c = F−1
Y (τ) if the response variable

has a continuous distribution.

A special case is the median of distribution, i.e., τ = 0.5th. As we can see in

Figure 2.2b, τ = 0.5 is a special case where the check loss function is symmetric and

can be simplifed as an absolute value function. When τ = 0.5, it follows that the

check loss function ρ0.5(Y −c) = 0.5|Y −c|. Then, the minimization of expected check

function E[ρ0.5(Y − c)] can be written as

argmin
c∈R

E[ρ0.5(Y − c)] ≡ argmin
c∈R

0.5E|Y − c| ≡ argmin
c∈R

E|Y − c|.

Therefore, median of distribution can be alternatively found by minimizing the ex-

pected absolute value of deviation, that is

median(Y ) = argmin
c∈R

E|Y − c|. (2.11)

Let Y = (y1, ..., yn) be a given sample, the τ th sample quantile of Y is the minimizer

of the following function,

Q̂Y (τ) = argmin
c∈R

1

n

n∑︂
i=1

ρτ (yi − c), (2.12)

where τ ∈ (0, 1) is the quantile level.
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2.2 Quantile Regression Model: Estimation

2.2.1 Conditional Quantiles and QR Model

Let Y = {y1, ..., yn} be the observations, and X [n×p] = {x1, ...,xn}T be the design

matrix. The linear mean regression is defined as

yi = x′
iβ + εi, i = 1, ..., n,

where β is a vector of regression coefficients and εi is the i-th error. Under the

assumptions that εi ∼ N(0, σ2) and are iid, by replacing µ in Equation 2.7 with

conditional expectation E[Y |X = x] = x′
iβ. The regression coefficients β can be

estimated through the least squares method

β̂ = argmin
β∈R

1

n

n∑︂
i=1

(yi − x′
iβ)

2. (2.13)

If the squared errors are replaced with errors defined through a check loss func-

tion, the regression model will be extended to quantile regression.

Recall that the τ -th quantile of the response Y , denoted as QY (τ), is estimated

through the minimization problem

Q̂Y (τ) ≡ argmin
q∈R

1

n

n∑︂
i=1

ρτ (Yi − q). (2.14)

Assuming that covariates X = x are collected and the conditional quantile function

QYi(τ |X i) of Yi is to be modeled. We have

Yi = QYi(τ |Xi) + εi, i = 1, 2, · · · , n,
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where ε′is are independent and follow a continuous distribution with the τth quantile

equals 0. The conditional quantile function can be estimated by the minimization

problem

Q̂Y (τ |x) ≡ arg min
qY (τ,X)∈R

1

n

n∑︂
i=1

ρτ (Y − qY (τ,X)), (2.15)

where qY (τ,X) = QY (τ |x). By letting conditional quantile function be QY (τ |x) =

x′βτ , the estimated QR coefficient, denoted as β̂τ , solves the following minimization

problem

β̂τ ≡ arg min
βτ∈R

1

n

n∑︂
i=1

ρτ (yi − x′βτ ), (2.16)

on the sample level. The estimated τ th quantile of yi, denoted as Q̂yi
(τ |xi), is

Q̂yi
(τ |xi) = x′

iβ̂τ . (2.17)

2.2.2 Estimation of QR coefficients

The estimation of the QR coefficients is going through numerical solutions of relevant

minimization problems for most of the practical cases. For a linear QR

QY (τ |X) = X ′βτ , (2.18)

the objective function is

R(βτ ) = dτ (y, ŷ(βτ )) =
n∑︂
i=1

ρτ (yi − x′
iβτ ). (2.19)

It is piecewise linear and continuous, but not continuously differentiable. It has

directional derivatives on all directions though. For a direction w, the directional

12



derivative of R(βτ ) is given by

d

dt
R(βτ ,w) =

d

dt
R(βτ + tw)

⃓⃓⃓⃓
t=0

= −
n∑︂
i=1

[I(yi − x′
iβτ − x′

itw)− I(yi − x′
iβτ − x′

itw < 0)]

⃓⃓⃓⃓
t=0

= −
n∑︂
i=1

ψ∗
t (yi − x′

iβτ ,−x′
iw)x′

iw,

(2.20)

where

ψ∗
t (u, v) =

⎧⎪⎪⎨⎪⎪⎩
τ − I(u < 0) if u ̸= 0,

τ − I(v < 0) if u = 0.

(2.21)

If the directional derivatives are all non-negative, where d
dt
R(β̂τ ,w) ≥ 0 for all w ∈ Rp

with ∥w∥ = 1 at a point β̂τ , then β̂τ minimizes the objective function R(βτ ).

An alternative computational algorithm to obtain the QR estimate when τ =

0.5 is given by Wagner (1959), who showed that the least absolute deviations can be

reformulated as a certain linear programming. Linear programming problem aims to

find a vector x∗ ∈ Rn
+ that minimizes or maximizes the value of a given objective

function among all x∗ ∈ Rn
+ that satisfies a given system of linear equation or inequal-

ity. For other conditional quantiles of a distribution, consider the regression model

in Equation 2.18, and minimization problem in Equation 2.19 can be transformed to

a linear programming problem. Let us denote the [c]+ as the non-negative part of c.

By letting

u = [y −Xβτ ]+

v = [y −Xβτ ]−,
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Koenker (2005) showed that the QR minimization problem can be reformulated as

min
βτ

{τ1Tu+ (1− τ)1Tv|y = Xβτ + u− v, {u,v} ∈ Rn
+}. (2.22)

Furthermore, define

B = [X −XI,−I],

and

ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[βτ ]+

[−βτ ]+

[y −Xβτ ]+

[Xβτ − y]+

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0[p]

0[p]

τ1[n]

(1− τ)1[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

In this standard linear programming problem, the primal formulation is

min
ψ

dTψ

subject to Bψ = y

θ ≥ 0.

Therefore, its dual counterpart becomes

max
d

yTz

subject to BTz ≤ d.
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By a simple rearrangement, the linear programming problem can be reformulated as

max
z
{yTz|XTz = 0, z ∈ [−1,+1]n}.

By adding XT1 and multipytng it by (1 − τ), the above equation XTz = 0 is

equivalent to

(1− τ)XTz + (1− τ)XT1 = (1− τ)XT1.

It follows that the expression of dual problems is

max
z
{yTz|XTz = (1− τ)XT1, z ∈ [0, 1]n}. (2.23)

Overall, the formulation shown in Equation 2.22 is the general formulation of lin-

ear programming for QR. The formulation shown in Equation 2.23 provides extra

computational convenience.

2.3 Quantile Regression Model: Inference

In this section, asymptotic properties of QR estimator, estimated standard errors,

confidence intervals, hypothesis tests and their formulas are discussed.

2.3.1 Asymptotic Properties

Under some regularity conditions, the estimator of QR coefficients converges in dis-

tribution to a normal random vector,

√
n(β̂τ − βτ )

D−→ N (0,Σn), (2.24)
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where Σn is the asymptotic covariance matrix. Let (yi, Xi), i = 1, 2, ..., n be a sample,

the QR model can be written in a linear form as

Qyi(τ |Xi) =

p∑︂
j=1

βτjxij, (2.25)

and

yi =

p∑︂
j=1

βτjxij + ετj.

where ετj follows a continuous distribution with the τ th quantile equals to zero.

For i.i.d. errors case, the distribution of ετ is strictly positive on the given quan-

tile function fετ (F
−1
ετ (τ)) > 0. Davino et al. (2013, pp. 66–71) shows the estimated

QR coefficients β̂τ is asymptotically distributed as

√
n(β̂τ − βτ )

D−→ N (0, ω2(τ)D−1), (2.26)

where

ω2(τ) =
τ(1− τ)

(fετ (F
−1
ετ (τ)))2

is the scale parameter as a function of sparsity function (i.e., s = 1/fετ (F
−1
ετ (τ))), and

the matrix

D = lim
n→∞

1

n

n∑︂
i=1

xi
′xi

is a positive definite matrix. The result yields to the asymptotic covariance matrix of

β̂τ ,

Σβ̂τ
=

1

n
ω2(τ)D−1. (2.27)

It is worth noting that, however, fετ (F−1
ετ (τ)) is the probability density of error term ετ

at point of quantile F−1
ετ (τ), which is unknown. To estimate this density term, Siddiqui

(1960) adapted the inverse density function, 1/fετ = dQετ (τ)/dτ . This function can

be estimated by sample quantiles Q̂ετ (τ + h) and Q̂ετ (τ − h) for sufficiently small h,
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where the sample quantiles are calculated by residuals ε̂τi = yi −
∑︁p

j=1 β̂τjxij. This

gives the estimated scale parameter ω̂. Thus, the estimated covariance matrix of β̂τ

can be obtained as

Σ̂β̂τ
=

1

n
ω̂2(τ)D̂

−1
, (2.28)

where D̂ = 1
n

∑︁n
i=1 xi

′xi.

2.3.2 Standard Errors and Confidence Intervals

Statistical inference of QR coefficients starts from standard errors of its estimated

coefficients βτ since confidence intervals and hypothesis tests are based on a valid

standard error. Standard errors in QR measure the variability or uncertainty of

estimated QR coefficients on different quantiles of the response. The standard errors

link directly to the estimated asymptotic covariance matrix of QR estimators. Let

the estimated covariance matrix Σ̂β̂τ
in Subsection 2.3.1 be a p× p matrix,

Σβ̂τ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
σ̂2
β̂τ1

σ̂β̂τ1
σ̂β̂τ2

· · · σ̂β̂τ1
σ̂β̂τp

σ̂β̂τ2
σ̂β̂τ1

σ̂2
β̂τ2

· · · σ̂β̂τ2
σ̂β̂τp

...
... . . . ...

σ̂β̂τp
σ̂β̂τ1

σ̂β̂τp
σ̂β̂τ2

· · · σ̂2
β̂τp

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.29)

Simply taking the square root of diagonal elements of the estimated asymptotic co-

variance matrix returns the corresponding standard error of QR estimator, that is,

s.e.(β̂τj) = σ̂β̂τj
, j = 1, ..., p. (2.30)

Based on the standard errors, the significance of co-variates effect on dependent

variable can be measured. Confidence interval of a quantile regression coefficient

provides a range of value with a confidence level that the true coefficient would be
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covered, which assesses the statistical significance and reliability of each QR estimator.

The confidence interval of QR coefficient can be constructed by standard errors. For

a confidence level of (1− α), the corresponding confidence interval is given by

C.I. : β̂τj ± zα/2s.e.(β̂τj), j = 1, ..., p. (2.31)

2.3.3 Parametric Hypothesis Tests

Parametric hypothesis tests whether the independent variables significantly affect

the distribution of dependent variable at different quantiles. We introduce some

important hypothesis tests for QR model. Without loss of generality, illustrations are

based on the following QR model,

Qyi(τ |xi) = βτ0 + βτ1xi1 + ...+ βτqxiq + ...+ βτpxip,

where i = 1, ..., n and βτq is the q-th QR coefficient, q = 1, ..., p.

Let null hypothesis be

H0 : βτj = 0,

we reject H0 if |(β̂τj − β0)/s.e.(β̂τj)| > zα/2 and conclude that β̂τj is statistically

significant.

Next, Davino et al. (2013, pp. 84–86) introduced the likelihood ratio (LR)

test to compare the fit of two nested QR models. The LR test evaluates whether

including or excluding some predictors will significantly change the performance of

the QR model. Instead of obtaining likelihood function of QR, the LR test statistic

is estimated by the difference of two sums of the weighted absolute deviations, which

is given by

LR = 2ω−1(Ṽ (τ)− V̂ (τ)). (2.32)
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Inside this LR test statistic, Ṽ (τ) is the absolute deviation of restricted model ex-

cluding some dependent variables, and V̂ (τ) is the one that includes all dependent

variables. The scale parameter ω is given above. The LR follows asymptotically a

χ2 distribution with degrees freedom that equals the numbers of QR coefficients that

are zero. To test whether q QR coefficients equal to zero, let null hypothesis be

H0 : βτ1 = ... = βτq = 0,

and the absolute deviations are obtained as

Ṽ (τ) =
n∑︂
i=1

|yi −
p∑︂

j=q+1

β̂τjxij|,

and

V̂ (τ) =
n∑︂
i=1

|yi −
p∑︂
j=1

β̂τjxij|,

separately. We reject the null hypothesis if 2ω−1(Ṽ (τ)− V̂ (τ)) > χ2
(2,α) at the signif-

icance level α and conclude that the corresponding independent variable should not

be dropped.

The Lagrange multiplier (LM) test is another hypothesis test which is very

similar to LR test. It can more accurately determine which independent variables

can be excluded when values are very small. The LM test statistic

LM = g′[D22]−1g, (2.33)

where g is the gradient of the objective function excluding some independent vari-

ables, and D22 is a sub-matrix of independent variables, both under null hypothesis.

The LM statistic asymptotically follows a χ2 distribution with the degree of freedom
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equaling the numbers of QR coefficients equal to zero. To test the hypothesis

H0 : βτ(q+1) = ... = βτp = 0,

we firstly obtain the gradient of the objective function with respect to regression

coefficient βτ , that is

g =

á
ψ(ε̂τ1)

...

ψ(ε̂τp)

ë
=

á
τ − I(ε̂τ1 < 0)

...

τ − I(ε̂τ5 < 0)

ë
,

where ε̂τi =
∑︁5

j=1 yi − β̂τjxij, j = 1, ..., p. Then, D = X ′X is a matrix in quadratic

form consisted of the independent variables. Partition the matrix,

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︁n
i=1 x

′
i1xi1 ...

∑︁n
i=1 x

′
i1xiq

...
∑︁n

i=1 x
′
i1xi(q+1) ...

∑︁n
i=1 x

′
i1xip

... . . . ...
...

... . . . ...∑︁n
i=1 x

′
iqxi1 ...

∑︁n
i=1 x

′
iqxiq

...
∑︁n

i=1 x
′
iqxi(q+1) ...

∑︁n
i=1 x

′
iqxip∑︁n

i=1 x
′
i(q+1)xi1 ...

∑︁n
i=1 x

′
iq+1)xiq

...
∑︁n

i=1 x
′
iq+1)xi(q+1) ...

∑︁n
i=1 x

′
iq+1)xip

... . . . ...
...

... . . . ...∑︁n
i=1 x

′
ipxi1 ...

∑︁n
i=1 x

′
ipxiq

...
∑︁n

i=1 x
′
ipxi(q+1) ...

∑︁n
i=1 x

′
ipxip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

Ñ
D11 : D12

D21 : D22

é
where sub-matrix D22 consists of independent variables with hypothesised value of

zero. Its inverse D22 = [D22 −D21D11D12]
−1. Then, we reject H0 if g′[D22]−1g >

χ2
(2,α) at level of significance α, and conclude that these independent variables cannot

be dropped.

The Wald test can be also used for variable selection. The advantage is that

if the quadratic form D is very close to zero, the Wald test will drop irrelevant
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independent variables more safely than other tests. The Wald test statistic, denoted

by W , is given by

W = nω−2β̂
′
τ [D

22]−1β̂τ . (2.34)

Notice that the Wald test also follows a χ2 distribution with degrees of freedom

equaling the numbers of QR coefficients that are hypothesised as in H0. To test the

hypothesis that

H0 : βτ1 = ... = βτq = 0,

we have to estimate the value of QR estimators firstly and then let

β̂τ =

á
β̂τ1
...

β̂τq

ë
and

D22 =

á∑︁n
i=1 x

′
i1xi1 ...

∑︁n
i=1 x

′
i1xiq

... . . . ...∑︁n
i=1 x

′
iqxi1 ...

∑︁n
i=1 x

′
iqxiq

ë
,

where the expression of D22 is given above. Then, calculate the inverse matrix

(D22)−1, and the Wald statistic can be obtained. Thus, we rejectH0 if nω−2β̂
′
τ [D

22]−1β̂τ >

χ2
(2,α), at the significance level α, and conclude that these variables cannot be dropped.

2.4 Some Basic Properties of Conditional Quantiles

Equivarience is one of the properties of conditional quantiles. Monotonic trans-

formation of the response or linear transformation of regressors hold some invari-

ance properties. Transformations with equivariance include scale; shift or regression;

reparametrization of design; monotonic transformations. Denote β̂τ (y,X) as a QR
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estimator at the τ th quantile. Some basic properties of equivariance are collected as

follows,

Proposition 2.4.1 (Koenker and Bassett, 1978).

Let A be any p× p non-singular matrix, γ ∈ Rp, and a > 0. Then, for any τ ∈ (0, 1),

1. β̂τ (ay,X) = aβ̂τ (y,X) (Scale equivariance)

2. β̂τ (−ay,X) = −aβ̂1−τ (y,X) (Scale equivariance)

3. β̂τ (y +Xγ,X) = β̂τ (y,X) + γ (shift or regression equivariance)

4. β̂τ (y,XA) = A−1β̂τ (y,X) (equivariance to reparameterization of design).

Proof.

Let

Ψτ (β̂, y,X) =
∑︂

{i:yi≥xT
i β̂}

τ |yi − xTi β̂|+
∑︂

{i:yi<xT
i β̂}

(1− τ)|yi − xTi β̂|

=
n∑︂
i=1

ï
τ − 1 +

1

2
+

1

2
sgn(yi − xTi β̂)

ò
|yi − xTi β̂|

where sgn(u) takes value 1, 0, -1 as u > 0, u = 0, u < 0. Now, note that

1. aΨτ (β̂, y,X) = Ψτ (aβ̂, ay,X)

2. aΨτ (β̂, y,X) = Ψ1−τ (−aβ̂,−ay,X)

3. Ψτ (β̂, y,X) = Ψτ (β̂ + γ, y +Xγ,X)

4. Ψτ (β̂, y,X) = Ψτ (A
−1β̂, y,XA).

The proof is complete.

By Proposition 2.4.1, some transformations of dependent variable can be derived. In

order to illustrate the transformations clearly, let us use a simple linear QR model on
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the τ -th quantile as an example (see Davino et al., 2013, pp. 97–100),

Qy(τ |x) = βτ0 + βτ0x.

The scale equivariance property is useful when modifying the unit of dependent vari-

able, which implies that multiplying dependent variable by positive constant c, the

QR coefficients of the transformed QR model can be obtained multiplying the original

coefficients by c, that is,

Qcy(τ |x) = cQY (τ |x) = cβτ0 + cβτ1x. (2.35)

The properties holds as well if multiplying the dependent variable by a negative

constant d, the QR coefficients of the transformed QR model are complement of

original coefficients, that is,

Qdy(τ |x) = dQy(τ |x) = dβ(1−τ),0 + dβ(1−τ),1x. (2.36)

The shift or regression equivariance property is applied when the expression of de-

pendent variable is a linear combination of independent variables through a certain

slope, say γ. Let y∗ = y + xγ, Kuan (2007) shows that

Qy∗(τ |x) = Qy∗(τ |x) + xγ = βτ0 + (βτ1 + γ)x. (2.37)

The equivariance to reparametrization of design is widely applied in any regression

analysis when the matrix of independent variable x is not designed with full column

rank. The property states that introducing a non-singular matrix A in the QR model,

the new QR coefficients is obtained in a matrix form,

Qy(τ |xA) = A−1xβτ . (2.38)
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The last property is equivariance of monotonic transformation. The equivariance

properties ensure that the statistical inference based on QR model will not be affected

by monotone transformation (C. Chen, 2005). The negative skewness can be reduced

(Manning, 1998) after transforming the response. Let h(·) be a monotonic function.

It follows that for any random variable Y ,

P (Y ≤ y) = P (h(Y ) ≤ h(y)).

This property allows us to converse a linear QR model to non-linear one and vice

versa,

Qh(y)(τ |x) = h(Qy(τ |x)) = h(βτ0 + βτ1x). (2.39)

For instance, let us consider a very common logarithmic transformation for exponen-

tially growing data, where the non-linear QR model is

Qy(τ |x) = eβτ0+βτ1x.

Let h(·) = log(·). The new QR model becomes

Qlog(y)(τ |x) = log(Qy(τ |x)) = log(eβτ0+βτ1x)

= βτ0 + βτ1x,

the relationship between QR response and predictors is linearized.

2.5 Resampling

Resampling works as a numerical method that obtains the asymptotic inference, al-

ternatively validating the asymptotic theorem in practice. Design matrix bootstrap

(Kocherginsky & He, 2007) is a widely used resampling method that involves re-
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peatedly generating a number of samples B with sample size as the original data-set.

The bootstrap procedure obtains samples by random sampling with replacement from

original data-set. Then, performing QR modeling on bootstrap samples to obtain a

set of QR estimate. Consider the jth QR estimator, j = 1, ..., p, the average bootstrap

QR estimator is given by

β̂
B

j (τ) =
1

B

B∑︂
b=1

β̂b,j(τ), (2.40)

and the corresponding standard error is

s.d.(β̂
B

j (τ)) =
1

B − 1

B∑︂
b=1

(β̂b,j(τ)− β̂
B

j (τ)). (2.41)

The standard error of bootstrap QR estimators represents the estimate of asymptotic

standard error of QR estimators. It is useful for the construction of confidence inter-

vals and hypothesis tests. Moreover, the asymptotic variance of the jth independent

variable can be obtained as

V̂
B

j =
1

B

B∑︂
b=1

(︁
β̂
B

b,j(τ)− β̂
B

b,j(τ)
)︁(︁
β̂
B

b,j(τ)− β̂
B

b,j(τ)
)︁′
, j = 1, ..., p. (2.42)

Thus, a confidence interval for the jth independent variable is

CI : β̂
B

j (τ)± zα/2s.d.(β̂
B

j (τ)).

However, although the resampling methods can provide unbiased estimate of stan-

dard error, persistent sample variability and bootstrap resampling variability present,

probably misleading the inference (Efron & Tibshirani, 1998).
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2.6 Goodness of Fit

Goodness of fit test validates how well the predicted quantile of response corresponds

to the observed data. The assessment of goodness of fit for QR model is an extension

of R2 index in mean regression (Koenker & Machado, 1999). For a mean regression

model, a bigger value of

R2 = 1−
∑︁n

i=1(yi − yî)2∑︁n
i=1(yi − yī)2

,

implies a better model fitting.

In QR, Gujarati (2003) derived such an index using the ratio of model-related

sum of residuals and total sum of residuals. Let

Q̂yi
(τ |xi) =

p∑︂
j=1

β̂jxij,

where βĵ is the jth QR estimator. The residual absolute sum of weighted residuals is

Θτ0 =
n∑︂
i=1

ρτ (yi − Q̂yi
(τ |xi)),

and the total sum of weighted difference between observed value and sample quantile

Q̂yi
(τ) is

Θτ1 =
n∑︂
i=1

ρτ (yi − Q̂yi
(τ)).

then, the pseudo R2 can be obtained by comparing the above two sums of weighted

difference, which is given by

pseudo R2 = 1− Θτ0

Θτ1

. (2.43)

Notice that since 0 ≤ Θτ0 ≤ Θτ1, pseudo R2 ∈ [0, 1]. The greater the pseudo R2, the

better the QR model fitting.
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(a) Discrete points (b) Duplicated points

Figure 2.3: Inverse CDF of discrete data. Blue and red indicate the undefined quan-
tiles of data

2.7 Existing Smoothing Methods of QR for Discrete

Data

The above sections discussed estimating QR model on continuous data. However,

traditional QR model is not directly applicable for discrete data due to discontinuity

of CDF and potential duplicated values (Jentsch & Leucht, 2015). Figure 2.3 pro-

vides two examples for illustration. Figure 2.3a displays the inverse CDF of data

(0, 1, 2, 3, 4, 5) with probabilities of (0.1, 0.2, 0.25, 0.15, 0.2, 0.1), respectively. As we

can see the inverse CDF of discrete data is step-wise, with horizontal steps and ver-

tical jumps. The blue areas highlight the flat sections of CDF between jumps, which

present the CDF does not increase. Within these flat sections, the quantile of data

cannot be uniquely defined by the inverse CDF, as any point in the flat section (blue

rectangle) is the corresponding quantile of data. Therefore, the vertical jumps do not

indicate the behaviours of data between those points uniquely so that quantiles can-

not be defined. On the other hand, discrete distribution will violate the one-to-one

mapping on quantiles of data points if duplicated values appear. See Figure 2.3b as
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an example, consider data (1, 2, 2, 3, 4) with probabilities of (0.2, 0.15, 0.15, 0.3, 0.2),

respectively, where value of 2 is duplicated. The quantile for cumulative probability

between the first occurrence of 2 and the second occurrence of 2 is obscure since the

duplicated values across entire range of the cdf, which can be found in red highlighted

area. Therefore, a direct application of traditional QR method introduces systematic

error into the model, posing challenges on estimating parameters and further infer-

ence.

The remainder of this chapter briefly introduces some existing methods of QR

for discrete data. The first and second methods smooth the objective function so

that the conditional quantile function can be continuous. The third one smooths the

counts response directly, which makes the estimation follow traditional QR model.

2.7.1 Asymptotic Maximimun Likelihood Estimator

Efron (1992) proposed an approach of asymptotic maximum likelihood estimator for

QR cooping with counts. This method smooths the objective function of QR to define

the estimator of parameters. Newey and Powell (1987) introduced the approach of

asymptotic maximum likelihood estimator, which estimates the conditional location

function for counts that connect to conditional expectiles. Assume that the dependent

variable is exponential to independent variables, and let (yi,xi)
n
i=1 be the counts

sample. Efron (1992) proposed an asymptotic maximum likelihood estimator by

solving an objective function as follows

βAML
w = arg min

β∈Rp

n∑︂
i=1

(︁
yix

′
iβ − exp(x′

iβ)− ln(yi!)
)︁
wI
(︁
yi>exp(x′

iβ)
)︁
, (2.44)

where w > 0 and I(·) is an indicator function equals to 1 if the statement is true or

0 elsewhere. It is worth noting that when w = 1, Equation 2.44 becomes the Poisson

pseudo-likelihood estimator. Moreover, Efron (1992) found that the τ th regression
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quantile can be obtained by w such that

τ =
1

n

n∑︂
i=1

I
(︁
yi ≤ exp(x′

iβ
AML
w )

)︁
. (2.45)

The advantage of this method is that the percentile of count data is easy to es-

timate, since the percentile is not restricted to be integers. Thus, the asymptotic

properties of estimator follows the traditional QR estimator. However, since I
(︁
yi ≤

exp(x′
iβ

AML
w )

)︁
= 1 if yi = 0, the asymptotic maximum likelihood regression per-

centile cannot be calculated for value of τ that smaller than the proportion of zeros

in the data. This implies the potential limitation of asymptotic maximum likelihood

estimator that cannot estimate the QR model when data is zero-inflated, such as

zero-inflated Poisson and zero-inflated negative binomial distributed responses.

2.7.2 Mid-Quantile Regression for Discrete Responses

Geraci and Farcomeni (2022) introduced a QR method to handle discrete data. Their

QR model is built on mid-quantiles of discrete responses, which is the same idea as

mid-p-value that offers a unifying theorem for quantile estimation (Lancaster, 1961).

Their proposed approach introduces a two-step estimator which can be applied to

different type of discrete data. Parzen (1993) introduced mid-cumulative distribution

function (mid-CDF) that modifies the standard CDF of discrete variable. Let FY (y)

be the CDF of discrete random variable Y , the mid-CDF is defined as

GY (y) ≡ Pr(Y ≤ y)− 0.5 · Pr(Y = y), (2.46)

which is a step function due to discontinuity of Y . Let Sy = (y1, ..., ys) be a set of

possible values of Y , ordered from smallest to largest, with probability of p1, ..., ps,

respectively. Defining the mid-probabilities π1 = p1/2 and πj = G(yj) =
∑︁j−1

j=1 pu +
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pj/2,

HY (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 if p < π1,

yj if p = πj, j = 1, . . . , s,

(1− γ)yj + γyj+1 if p = (1− γ)πj + γπj+1, 0 < γ < 1, j = 1, . . . , s− 1,

ys if p > πs,

is called the mid-quantile function (mid-QF) (Ma et al., 2011). On the sample level,

Equation 2.46 can be written as

ĜY (y) = F̂ Y (y)− 0.5 · m̂Y (y), (2.47)

where m̂Y (y) = n−1
∑︁n

i=1 I(Yi = y). Two advantages of mid-quantiles are posed by

Geraci and Farcomeni (2022). The first one is that mid-quantiles can be considered

as fractional order statistics (Stigler, 1977), thus smoothing the discrete data based

on the order statistics. Compared to traditional sample quantiles, the approach of

mid-quantiles is more sensitive to identify the difference between discrete distribu-

tions. Therefore, the impact of duplicated values on quantifying quantile of discrete

distributions is significantly reduced. Furthermore the mid-quantiles can be relabeled

so that the quantiles can be obtained. Then, based on the mid-CDF and mid-quantile

function, conditional mid-CDF can be defined as

GY |X(y|x) ≡ FY |X(y|x)− 0.5 ·mY |X(y|x), (2.48)

where Y is a random variable in R and X is a p-dimensional vector of covariates.

Let πj = GY |X(yj|x), the conditional mid-quantile function can be defined as the

piece-wise linearly connecting inversion G−1
Y |X(πj|x), j = 1, ..., s. The quantile-specific
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regression model can be defined using the above as

HT (Y )|X(τ |X) = x′βτ , (2.49)

where βτ is a vector of unknown QR coefficients for a given quantile level τ and T (·)

is a known monotone and differentiable link function.

The estimation of parameters proceeds in two steps. In the first step, estimating

mid-cdf as shown in Equation 2.47 using sample with modified

F̂ Y |X(y|x) =
n−1

∑︁n
i=1 I(Yi ≤ y)Kλ(Xi, x)

δ̂X(x)
,

whereKλ is kernel with bandwidth λ and δ̂X(x) is the kernel estimator of the marginal

density of X. Then, the second step involves minimizing their proposed objective

function to obtain estimator. Defining function Gc
Y |X(y|x) as a function interpolat-

ing sample points (zi, G
c
Y |X(zi|x)) where zi denotes the distinct value in SY and the

ordinates has been obtained in the first step. To estimate βτ in Equation 2.49, the

proposed objective function is defined as

ψn(β; τ) =
1

n

n∑︂
i=1

{︁
τ −Gc

Y |X(T
−1(x′

iβ|xi)
}︁2
. (2.50)

The mid-QR estimator is the solution of minimizing the objective function,

β̂τ = arg min
β∈Rp

ψn(β; τ). (2.51)

The approach of mid-QR is an extension of inverse CDF technique for marginal

quantiles proposed by De Backer et al. (2020) for fitting QR models for censored

data. The asymptotic properties follow the traditional QR model for continuous data

(Ma et al., 2011).
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2.7.3 Quantile Regression with Jittered Data

Machado and Silva (2005) proposed a QR method for counts called jittering. Jitter-

ing is a smoothing process that directly smooths the discrete response. This math-

ematical approach was initially proposed by Stevens (1950) in the purpose of better

data visualization, and its mathematical expression was further specified by Pearson

(1950). In order to prevent the data visualizations from over-plotting due to the

identical or very similar values of data, adding some reasonably small and random

offset to each of the original points makes it easier to view the plot and density of

the data. Jittering can be achieved by adding some small random values, negative

or positive, to the data points, which is usually called noises or perturbations. One

condition is to ensure the one-to-one mapping on manipulated data of the original

data. Thus we can see that the idea of jittering is to reach continuity of response

and avoid duplicated values by adding random values to counts. Machado and Silva

(2005) introduced this smoothing approach into QR models, making the conditional

quantile function continuous at any quantile level τ . Since counts are not negative,

the additive noise shall be non-negative. Thus, Machado and Santos Silva construct

pseudo continuous random variables as new QR responses whose quantile has a one-

to-one mapping with the original QR response Y . Let U follow uniform [0, 1), and

Z = Y + U , where the random variable Z is the continuous response for QR. Under

some mild conditions of traditional QR model given by Koenker (2005), let T (·; τ) be

a monotone and differentiable function probably conditional on the quantile of data,

and the conditional jittered QR model is defined as

QT (Z;τ)(τ |X) = X ′βτ (2.52)

where X is vector of predictors, and βτ is a vector of QR coefficients on the quantile

level of τ ∈ (0, 1). On the sample level, let (yi,xi)
n
i=1 be a data set with size of
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n. The continuous response can be constructed by introducing uniform noises u =

(u1, ..., un) into observations and defining zi = yi+ui for i = 1, ..., n, where each triple

of (yi,xi, ui)
n
i=1 is called one ‘jittered sample’. Moreover, the conditional quantile

function of Z follows that

QZ(τ |x) = QY (τ |x) +
τ −

∑︁QY (τ |x)−1
y=0 Pr(Y = y|x)

Pr(Y = QY (τ |x)|x)
. (2.53)

The estimation of QR model with jittered data follows that of traditional one given

by Koenker and Bassett (1978). For sample (zi,xi)
n
i=1 consisted of jittered response

and predictors, the objective function is defined as

Sn(β) =
1

n

n∑︂
i=1

ρτ (T (zi; τ)− x′
iβ). (2.54)

The estimated QR parameters can be obtained by minimizing the Equation 2.54,

which yields the estimator

β̂τ = arg min
β∈Rp

Sn(β). (2.55)

To solve the minimization problem, techniques introduced in Subsection 2.2.2 can

be applied. Also, Geraci (2014) provided an efficient algorithm for obtaining QR

estimates available in R by installing external package ‘lqmm’ and using function

‘lqm.counts’ as follows,

install.package(‘lqmm’)

library(lqmm)

lqm.counts(formula, data, weights = NULL, offset = NULL,

contrasts = NULL, tau = 0.5, M = 50, zeta = 1e-05,

B = 0.999, cn = NULL, alpha = 0.05,

control = list())

For further details on R packages and arguments, see The Comprehensive R Archive
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Network (CRAN) at https://cran.r-project.org/web/packages/lqmm/index.html. To

further enhance the performance of QR model with jittered data, Machado and Silva

(2005) further introduced an efficient technique of averaging-out noises that involves

generating many jittered samples and taking averaged estimate in order to reduce

the bias and variability of QR estimator. This technique will be fully explained

in Chapter 3. Our study focuses on Machado and Santos Silva’s uniform jittering

approach and aims to enrich the choice of additive noises.
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Chapter 3

Proposed QR Model with Optimized

Jittering Approach

In this chapter, we investigate the method of jittering and propose a method to

optimize the performance of this method.

3.1 Extension of Uniform Jittering Method

Jittering method is widely applied when analyzing count data using QR models. In

our simulation studies we found that the jittering with uniform random variable on

a narrow support tends to give worse QR estimates, and the performance of jittering

would be improved if the support of the jittering variable is wider.

As discussed by Machado and Silva (2005), Beta distribution is an alternative

to jitter the counts. If a = b = 1, the random variable following Beta(1, 1) is equiva-

lent to Uniform(0, 1). Those two parameters of Beta distribution allow us to control

the shape of Beta variable, where some specific shape of Beta could lead to a better

fit than some others could do, when Beta-jittering is applied. Another option is to

choose the jittering term from the Tweedie family of distribution, which is shaped by
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its parameters. In order to enrich the jittering method but prevent it from under-

or over-fitting, we introduce an alternative jittering process that utilizes Beta distri-

bution (a, b) and Tweedie distribution (µ, ϕ, p), where p is power. For the Tweedie

distribution, we only consider when 1 < p < 2 (i.e., compound Poisson-Gamma dis-

tribution) for its statistical properties. Parameters of the jittering will be selected

such that the jittering QR model is optimized.

In the remainder of this chapter, we present the process and implementation of

the jittering approaches. Then, we introduce method and algorithms for determining

the distribution parameters. Asymptotic properties of jittering QR estimators using

proposed method will be discussed.

3.2 Jittering with Tweedie and Beta Noise

in this section, we review relevant properties of Tweedie and Beta distributions, fol-

lowed by optimized jittering process and corresponding implementation. For clari-

fication, we name the smoothing processes as ‘Tweedie jittering’ or ‘Beta jittering’,

respectively according to the distribution of perturbation used.

3.2.1 Properties of Tweedie and Beta Distributions

Tweedie distribution and Beta distribution are non-negative distributions that are

chosen for perturbing counts. Both of them provide us with flexibility to generate the

additive noises. Their parameters define the shape of the variables, which could lead

to different performance when jittering.

Tweedie distribution is a member of the exponential dispersion family (Jor-

gensen, 1987). This statistical distribution is well known as its flexibility and wide

applications in all the statistical modelling. Specifically, it is able to model the com-

pound Poisson-Gamma distributed data, where the data are either continuous or
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discrete. One key feature worth mentioning is that the Tweedie distribution is able

to handle the zero-inflated data, where the occurrence of zeros is more frequent than

what standard distributions can accommodate (Saha et al., 2020). This feature pro-

vides us extra flexibility to handle more types of data sets.

As discussed by Jorgensen (1987), the Tweedie distribution has three parame-

ters: mean (µ > 0), dispersion parameter (ϕ > 0), and power parameter (p). For a

random variable Y following Tweedie distribution, the PDF of Y is given by

f(y;µ, ϕ, p) = a(y;ϕ)exp

ï
1

ϕ

ß
y
µ1−p

1− p
− µ2−p

2− p

™ò
, (3.1)

where

a(y;ϕ) =
1

y

∞∑︂
j=1

y−jα(p− 1)jα

ϕj(1−α)(2− p)jj!Γ(−jα)
, and α =

2− p
1− p

, 1 ≤ p ≤ 2, ϕ > 0. (3.2)

Additionally, for p = 0 it yields a normal distribution, p = 1 gives a quasi Poisson

distribution, p = 2 yields a Gamma distribution, and p = 3 yields an inverse Gaussian

distribution. The mean value is E[Y ] = µ and the variance is V ar(Y ) = ϕµp.

Therefore, Tweedie distribution is characterized by the mean-variance relationship.

Even though there is no closed form CDF for Tweedie distribution, when the power

parameter 1 < p < 2, Tweedie distributed random variable can be written as sum of

M gamma variables, where M follows the Poisson distribution (Smyth, 2007).

Proposition 3.2.1 (Compound Poisson-gamma, Smyth, 2007).

Let M be the Poisson distributed random variable with rate parameter λ such that

P (M = k) = e−λλk

k!
, k = 0, 1, 2, . . ., and X be a gamma random variable with shape

parameter α and scale parameter β such that

f(xi;α, β) =
xα−1
i e−xi/β

βαΓ(α)
, xi > 0. (3.3)
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Then, the random variable Y

Y =
M∑︂
i

Xi (3.4)

follows the Tweedie distribution with parameters

µ = λαβ, p =
α + 2

α + 1
, ϕ =

λ1−p(αβ)2−p

2− p
,

or inversely, given the parameters of Tweedie distribution, the parameters of gamma

and Poisson distributions can be written as

λ =
µ2−p

ϕ(2− p)
, α =

2− p
p− 1

, β = ϕ(p− 1)µp−1.

It is well-known that the CDF of the sum of n iid gamma variables is FY (y) =

γ(nα,βy)
Γ(α)

if 0 ≤ Y < ∞ or zero elsewhere, where γ(nα, βy) =
∫︁ y
0
f(t;nα, β)dt is

incomplete gamma distribution (Smyth, 2007). Based on the compound Poisson-

gamma distribution, the CDF of a Tweedie variable can be obtained when 1 < p < 2.

Corollary 3.2.1 (CDF of Tweedie Variable when 1 < p < 2).

By Proposition 3.2.1, let

Y ∼ Twp(µ, ϕ),

by expressing Y =
∑︁M

i=1Xi, where Xi follows Beta(a = (2 − p)/(p − 1), b = ϕ(p −

1)µp−1) and M follows Poisson(λ = (µ2−p)/(ϕ(2− p)), the CDF of Y can be written

as
FY (y) = Pr(Y ≤ y)

=
∞∑︂
k=0

Pr

Å k∑︂
i=1

Xi ≤ y

⃓⃓⃓⃓
M = k

ã
P (M = k)

=
∞∑︂
k=0

1

Γ(α)
γ(kα, βy)

e−λλk

k!
,

(3.5)
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if y ∈ [0,+∞) or 0 otherwise, where P (M = k) is the probability mass function of

the Poisson distribution, and P (
∑︁k

i=1Xi ≤ y|M = k) is the conditional probability

that the sum of k independent Gamma random variables is less than y.

Dunn (2022) (also see Dunn and Smyth, 2005) provided the R package ‘tweedie’

and functions ‘dTweedie’ and ‘pTweedie’ for computing the pdf and cdf of Tweedie

distribution at a certain value, and ‘rTweedie’ for generating Tweedie random variable,

see below,

install.package(‘tweedie’)

library(tweedie)

dTweedie(y, mu, phi, p, LOG=TRUE)

pTweedie(q, mu, phi, p)

rTweedie(q, mu, phi, p)

For further details on R packages and arguments, see The Comprehensive R Archive

Network (CRAN) at

https://search.r-project.org/CRAN/refmans/tweedie/html/dtweedie.html.

Beta distributions are a family of continuous distribution with the support

(0, 1). This attribute simplifies the process of updating beliefs in Bayesian analysis.

This probability distribution is parameterized by two positive parameters, shape one

(a > 0) and shape two (b > 0). Let X be a Beta distributed random variable, and

the PDF of X is given by

f(x; a, b) =
xa−1(1− x)b−1

B(a, b)
, a > 0, b > 0, (3.6)

where B(a, b) =
∫︁ 1

0
ta−1(1 − t)b−1dt is the Beta function, which is a normalization

constant to ensure the total probability integrates to 1. It is interesting that the

Beta distribution can take different shapes including uniform (a = b = 1), uni-modal

(a = 2, b > 2, or a > 2, b = 2), J-shaped (a < 1, b > 2, or a > 2, b < 1), and U-shaped
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(1 < a < 2, 1 < b < 2) (Johnson et al., 1994 - 1995). The mean and variance of Beta

distributed random variables are given by

E[X] =
a

a+ b
and V ar(X) =

ab

(a+ b)2(a+ b+ 1)
.

The CDF of the Beta distribution is the integral of its PDF with respect to the

random variable from 0 to x, that is

F (x; a, b) =

∫︂ x

0

ta−1(1− t)b−1

B(a, b)
dt, (3.7)

if x ∈ (0, 1). Another simplified expression of CDF of Beta distribution is given by

FX(x; a, b) =
B(x; a, b)

B(a, b)
, (3.8)

where B(x; a, b) =
∫︁ x
0
ta−1(1−t)b−1dt is the incomplete beta function (see Paris, 2011).

In R, one may use functions ‘dbeta’ and ‘pbeta’ to compute the PDF and CDF of

Beta distribution at a certain value, and ‘rbeta’ to generate beta distributed random

variable, see below,

dbeta(x, shape1, shape2, ncp = 0, log = FALSE)

pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE,

log.p = FALSE)

rbeta(n, shape1, shape2, ncp = 0)

For further details on R packages and arguments, see The Comprehensive R Archive

Network (CRAN) at

https://search.r-project.org/CRAN/refmans/fitODBOD/html/pBETA.html.
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3.2.2 Tweedie-Jittering and Beta-Jittering

Let Y be a discrete random variable from the set of non-negative integers, and X

be a vector of predictors in Rp. The conditional quantile function QY (τ |x) is not a

continuous function on the quantile because Y has a discrete distribution. Given the

necessary distribution parameters, we choose Tweedie distribution (µ, ϕ, 1 < p < 2)

or Beta distribution (a, b), denoted by fU(u|θ), to generate additive perturbations,

denoted by U , to smooth the counts data Y . From Subsection 2.7.3, we know that

one condition is that the additive noise should ensure the one-to-one relationship on

quantiles of Z and quantiles of Y . Therefore, we set two primary assumptions for Y

and U as follows,

(A1) Y is non-negative random variable, with the support of N0. X is a predictor

variable in Rp, p ∈ N0. Let {(yi,x′
i)}ni=1 be the sample;

(A2) U is a non-negative continuous random variable following fU(u|θnoise). The

distribution parameters θnoise are predetermined such that the practical range

of realization u is [0, 1).

Remark.

Condition A2 is to ensure one-to-one relationship with quantile of jittered response.

The practical range [0, 1) indicates the smallest and largest value of u that we can sam-

ple from fU(u|θnoise) in practice. The Tweedie variable does not automatically satisfy

the condition due to its non-negative support. Therefore, the parameters selection and

handling of exceeded values of Tweedie variables are given in Section 3.3.

Let Z = Y +U be the dependent variable, where Z has a continuous distribution

and

U ∼

⎧⎪⎪⎨⎪⎪⎩
Twp(µ, ϕ) or,

Beta(a, b).
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Suppose that Y is observed, and let y = (y1, ..., yn) be a vector of observations,

since U is random variable, mathematically the QR estimator β̂τ can be obtained by

minimizing a sample objective function with U integrated out, that is,

β̂τ ≡ arg min
β∈Rp

1

n

n∑︂
i=1

∫︂
supp(u)

ρτ (yi + u− xiβ)fU(u)du, (3.9)

where fU(·) denotes the PDF of U (Machado & Silva, 2005). To avoid computational

complexity, the additive noise u = (u1, ..., un) can be generated and directly added

to observation. Let X = x, then the data set with noises are (zi, xi)
n
i=1, where

zi = yi + ui. Therefore, the QR model with response Z can be defined as

QZ(τ |X) = X ′βτ , (3.10)

where βτ is the QR coefficients at the τ th quantile. Our jittering process can be

summarized as

Step 1: Choose distribution parameters, i.e., θ = (µ, ϕ, p) for Tweedie, or θ = (a, b) for

Beta distribution;

Step 2: Generate a set of additive noises of size n, u = (u1, ..., un), from fU(u|θ), where

fU(u|θ) is the PDF of either Tweedie or Beta variable upon choice, and θ is

vector of distribution parameters;

Step 3: Let zi = yi + ui, i = 1, ..., n. Fit the QR model as Equation 3.10 and obtain

the estimated QR parameters βτ by minimizing the objective function of QR

coefficients.

Based on this procedure of jittering method and the distribution of U , it is possible

to obtain QY (τ |x) by QZ(τ |x).

Lemma 3.2.1.
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Under assumption A1 and A2, the conditional quantile of count Y follows

QY (τ |x) = ⌈QZ(τ |x)− 1⌉, (3.11)

where ⌈c⌉ is the ceiling function that returns the smallest integer greater than or equal

to constant c.

Proof. Let U and u be as defined in the step 2 of the jittering process. For non-

negative discrete random variable Y conditional on x, Y − 1 ≤ Z − 1 < Y . Since

quantile function is non-decreasing, it follows that QY (τ |x) − 1 ≤ QZ(τ |x) − 1 ≤

QY (τ |x), where QY (τ |x) is also an integer.

Theorem 3.2.1 (Relationship between Conditional Quantile Functions).

Suppose that a random variable U follows a valid probability density function, denoted

as fU(·), and a corresponding cumulative distribution function, denoted as FU(·),

where parameters are known. Let Z = Y + U , under conditions A1 and A2,

τ =

QY (τ |x)∑︂
y=0

P (Y = y|x) · FU(QZ(τ |x)− y), (3.12)

where Y is non-negative discrete variable, x is vector of co-variates, and 0 < τ < 1

is the quantile.

Proof.

Let Z = Y + U , because U is non-negative, Y is less or equal to Z.

FZ(z) = Pr(Y ≤ z|x) · FU(z − y)

=

⌈z−1⌉∑︂
y=0

Pr(Y = y|x) · FU(z − y),

where ⌈·⌉ is the ceiling function. Note that the last equality sums to Y = ⌈z−1⌉ since

43



when y = ⌈z⌉ = z if z is an integer, FU(z−z) = FU(0) = 0 for non-negative continuous

variable, resulting in the last term of the series being zero. At z = QZ(τ |x), the above

becomes

τ =

QY (τ |x)∑︂
y=0

Pr(Y = y|x) · FU(QZ(τ |x)− y),

by the facts that FZ(QZ(τ |x)) = τ andQY (τ |x) = ⌈QZ(τ |x)−1⌉ by Lemma 3.2.1.

The estimator β̂τ of quantile regression coefficient in Equation 3.10 is the solution of

minimization problem,

β̂τ ≡ arg min
β∈Rp

S(β) ≡ arg min
β∈Rp

1

n

n∑︂
i=1

ρτ (zi − x′
iβ), (3.13)

where ρτ (·) is the check loss function on τ th quantile shown in Equation 2.8. Esti-

mating equation can be derived by differentiating the objective function S(β) with

respect to β and set the derivative to 0. That is,

U(β) =
∂S(β)

∂β
=

1

n

N∑︂
i=1

ρ′τ (zi − x′
iβ)

=
1

n

N∑︂
i=1

(τ − I{zi−x′
iβ<0})xi

=
1

n

N∑︂
i=1

ψτ (zi − xiβ)xi

set
= 0,

(3.14)

where xi = (xi1, xi2, ..., xip)
′, i = 1, ..., n, is a p × 1 vector of co-variates, βτ =

(βτ0, βτ1, ..., βτ,p−1)
′ is a p×1 vector of QR coefficidnts, and ψτ (v) = ρ′τ (v) = τ−I{v<0}

is a discontinuous function. An efficient algorithm to obtain β̂τ by solving the Equa-

tion 3.14 is given by Koenker (2004). The implement is available in statistical software

R by loading external package ‘quantreg’ and using function ‘rq’ as follows:
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install.package(‘quantreg’)

library(quantreg)

rq(x, y, tau=-1, alpha=.1, dual=TRUE, int=TRUE, tol=1e-4,

ci = TRUE, method="score", interpolate=TRUE, tcrit=TRUE, hs=TRUE)

This package will be used for the estimation and inference of QR model in Chapter 4.

Now, a question arise in step 1: how to choose distribution parameters to ensure

the performance of QR estimator and satisfy condition A2? We notice that random

variables from the Beta distribution can satisfy the assumption easily. However, the

support of Tweedie distribution is non-negative, from zero to positive infinity. If the

generated value exceeds 1, the one-to-one relationship with quantile of the response

may be violated. Therefore, we have to restrict the parameters, µ, ϕ, p so that the

generated random variables can be bounded from above by 1. An algorithm to de-

termine the parameters of Tweedie distribution and Beta distribution to enhance the

performance of jittering method as well as to satisfy the conditions will be discussed

in Subsection 3.3.

3.2.3 Average Jittering Estimator

Average jittering QR estimator can be obtained by the technique of averaging out

noises introduced by Machado and Silva (2005), which is also applicable to Beta and

Tweedie jittering method. Recall that Z = Y +U is the actual response depending on

the additive noise generated from either the Tweedie or Beta distribution. The bias

and efficiency of estimators of QR with jittering highly depend on the random noises

generated at that time. To reduce the uncertainty in performance of QR model and

hence improve the efficiency of the QR estimators, the technique of averaging out the

random noises can be applied (Machado & Silva, 2005).

Let (yi,xi) be the sample. Using the jittering method, we repeatedly generatem

sets of random noises U from either Twp(µ, ϕ) or Beta(a, b). Let U (l), l = 1, 2, 3, ...,m,
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be the lth set of random noises generated from the chosen statistical distribution. The

lth jittered QR response is

Z(l) = Y + U (l).

and

β̂
(l)

τ ≡ argmin
β∈Rp

n∑︂
i

ρτ (z
(l)
i − x′

iβ),

where β̂
(l)

τ is the QR estimator obtained from the l-th data-set, (Z(l),X). Then,

average of m coefficient estimators is

β̂
m

τ =
1

m

m∑︂
l=1

β̂
(l)

τ , (3.15)

where β̂
m

τ is denoted as average jittering QR estimator over m jittered samples,

e.g., β̂
50

τ denotes the average jittering estimator when m = 50 jittered samples are

used. According to the simulation results, m ∈ (10, 50) would be a good choice.

The averaged QR estimator β̂
m

τ usually provides lower variance than that without

averaging out the noises. To distinguish the QR methods, we call it the ‘simple

jittering method’ if noise isn’t averaged out, and the ‘average jittering method’ if it

is.

3.2.4 Model Specification and Transformation

The foundation of QR was introduced by Koenker and Bassett (1978) in their seminal

work. However, the linear assumption in traditional QR often restricts its ability to

capture the nuanced dynamics of real data. The non-linear QR model addresses

this restriction by introducing a non-linear function into the QR model. Thus, the

non-linear QR model is

QZ(τ |x) = g(x′βτ ), (3.16)
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where g(·) is a non-linear function. This allows flexibility in interpretation of con-

ditional QR models. Denote a transformation or ‘link’ function as T (Z; τ) probably

depending on the quantile level T (Z; τ) can be the identity, a linear translate (Ma

et al., 2011) and the logarithmic function (Machado & Silva, 2005). Considering

a non-linear data-set, by letting g(·) be an exponential function, the QR model is

specified as follows

QZ(τ |X) = exp(X ′βτ ). (3.17)

However, since the random noises are added to the original counts, the conditional

quantile function model QZ(τ |X) should be bounded from below by the τ th quantile

of the random noise U , denoted as QU(τ). Accordingly, we adjust the QR model by

adding QU(τ) to the non-linear quantile function, that is

QZ(τ |X) = QU(τ) + exp(X ′βτ ). (3.18)

The logarithmic transformation of QR response depending on quantile level τ can be

defined as

T (Z; τ) =

⎧⎪⎪⎨⎪⎪⎩
log(Z −Qτ (U)) for Z > QU(τ),

ζ for Z ≤ QU(τ),

(3.19)

where ζ is a small positive number. This transformation is valid due to the property

of equivariance of QR model and that T (Z; τ) is monotone. Alternatively, one may

also specify a QR model as

QZ(τ |X) = QU(τ) +X ′βτ , (3.20)
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and the corresponding linear transformation is

T (Z; τ) =

⎧⎪⎪⎨⎪⎪⎩
Z −Qτ (U) for Z > QU(τ),

ζ for Z ≤ QU(τ).

(3.21)

Then, after transforming or linearly translating the QR response, the corresponding

linear QR model is defined as

QT (Z;τ)(τ |X) = X ′βτ , (3.22)

where T (Z; τ) is the linearly transformed jittered QR response of Z, defined as above.

The estimate of QR coefficients

β̂τ ≡ argmin
β∈Rp

n∑︂
i

ρτ (T (zi; τ)− x′
iβ). (3.23)

Hence, the average jittering QR estimate can be obtained from m jittered samples

(Z(l),X), l = 1, ...,m, by applying the averaging-out noises technique. Suppose that

β̂
(l)

τ ≡ argmin
β∈Rp

n∑︂
i

ρτ (T (z
(l)
i ; τ)− x′

iβ), (3.24)

and the average jittering QR estimates is

β̂
m

τ =
1

m

m∑︂
l=1

β(l)
τ . (3.25)

Based on the relationship between variables, transformation of response can be

applied, which gives simplification to result interpretations. Moreover, as discussed

by C. Chen (2005), statistical inference on QR model is not affected by monotone

transformation of response. Thus, asymptotic properties of the model can be derived
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following Koenker and Bassett (1978). The corresponding variance-covariance matri-

ces of QR estimates and natural sandwich estimators will be discussed in Section 3.4.

3.3 Optimal Choice of Noise Parameters

Geraci and Bottai (2006) initially estimated QR model by using the asymmetric

Laplace distribution (ALD). The close connection between ALD and the QR model

provides us an option of optimally selecting the jittering distribution.

3.3.1 Asymmetric Laplace Distribution for Independent Ob-

servations

The ALD is a generalization of the Laplace distribution that allows different scale

parameters on the positive and negative halves of the real line. By varying the

distribution parameters, one can customize the shape of ALD to model asymmetric

and skewed data.

A random variable Y is said to be asymmetric Laplace distributed if it has the

probability density function

f(y|µ, σ, τ) = τ(1− τ)
σ

exp

{︄
−ρτ
Å
y − µ
σ

ã}︄
where the support of Y is the real line, −∞ < µ < ∞ is the location parameter,

σ > 0 is the scale parameter, 0 < τ < 1 is the skewness parameter, and ρτ (u) =

u
(︁
τ−I(u ≤ 0)

)︁
is the check loss function and I(·) is the indicator function. For an i.i.d.

sample (y1, y2, ..., yn) from an ALD with some specific parameters, the corresponding
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likelihood function of ALD is obtained as

L(µ, σ, τ ; y) =
n∏︂
i

τ(1− τ)
σ

exp

{︄
−ρτ
Å
yi − µ
σ

ã}︄
∝ 1

σ
exp

{︄
−

n∑︂
i

ρτ

Å
yi − µ
σ

ã}︄
,

where τ ∈ (0, 1).

3.3.2 Estimation of QR Model Using ALD

Consider a data-set in the form of (yi,x′
i), for i = 1, 2, ..., n. Recall that a linear QR

model is

Qyi(τ |xi) = x′
iβτ , i = 1, 2, ..., n (3.26)

where βτ is the QR coefficient parameter at the τ th quantile. The regression coefficient

βτ minimizes the objective function

β̂τ = arg min
βτ∈Rp

ß n∑︂
i∈(i:yi≥x′

iβτ )

τ |yi − x′
iβτ |+

n∑︂
i∈(i:yi<x′

iβτ )

(1− τ)|yi − x′
iβτ |
™
, (3.27)

and the log-likelihood function of ALD takes the form

l(µ, σ, τ) = log τ + log(1− τ)− log σ −
n∑︂
i

ρτ

Å
yi − µ
σ

ã
= log τ + log(1− τ)− log σ

−
Å n∑︂
i∈(i:yi≥µ)

τ |yi − µ|+
n∑︂

i∈(i:yi<µ)

(1− τ)|yi − µ|
ã
,

(3.28)

whose negative logarithm is a linear function of the absolute residuals, and whose

mode (peak value) corresponds to the τ th conditional quantile of the dependent vari-

able. Therefore, given that σ is always positive, maximizing the above log-likelihood

function is equivalent to minimizing the summation of absolute errors, just with dif-
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ferent weights assigned to the positive or negative residuals based on the quantile

level τ . Therefore, treating the skewness parameter τ of ALD as the quantile level of

QR model, the connection between ALD and QR is established.

Let µi = xi
′βτ , i = 1, 2, ..., n. Then the likelihood function is

L(βτ , σ;y, τ) ∝
n∏︂
i=1

σ−1 exp

{︄
−ρτ
Å
yi − µi
σ

ã}︄
∝ σ−1 exp

{︄
−

n∑︂
i

ρτ

Å
yi − µi
σ

ã}︄
∝ σ−1 exp

{︄
−

n∑︂
i

ρτ

Å
yi − xTi βτ

σ

ã}︄ (3.29)

and hence the log-likelihood function is

l(βτ , σ;y, τ) = log τ + log(1− τ)− log σ −
n∑︂
i

ρτ

Å
yi − xTi βτ

σ

ã
.

As the maximization of log-likelihood l(βτ , σ;y, τ) over a domain βτ ∈ Rp is equiva-

lent to minimizing −l(βτ , σ;y, τ) over the same domain, we have

arg max
βτ∈Rp

l(βτ , σ;y, τ) ≡ arg min
βτ∈Rp

−l(βτ , σ;y, τ)

= arg min
βτ∈Rp

− log τ − log(1− τ) + log σ +
n∑︂
i

ρτ

Å
yi − x′

iβτ
σ

ã
= arg min

βτ∈Rp

n∑︂
i

ρτ

Å
yi − x′

iβτ
σ

ã
= arg min

βτ∈Rp

n∑︂
i

yi − x′
iβτ

σ

ï
τ − I

Å
yi − x′

iβτ
σ

< 0

ãò
≡ arg min

βτ∈Rp

n∑︂
i

(yi − x′
iβτ )

ï
τ − I

Å
yi − x′

iβτ < 0

ãò
= arg min

βτ∈Rp

n∑︂
i

ρτ (yi − x′
iβτ ),

(3.30)
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where the 4th and 5th equality are equivalent by the fact that I((yi−x′
iβτ )/σ < 0) =

I((yi − x′
iβτ ) < 0) since σ is always positive.

3.3.3 Treating Additive Noise as Random Effect

We can treat additive noise as random effect. When additive noise is i.i.d., the QR

estimators can be obtained from a minimization problem when integrating out the

random noise U . Let fU(u|θ) denote the distribution of U , the QR estimator

β̂τ ≡ arg min
b∈Rp

1

n

∫︂
u∈R

n∑︂
i

ρτ (yi + u− xib)fu(u|θ)du, (3.31)

where θ is a vector of distribution parameters. The only implementation issue is that

the parameters of Tweedie or Beta distribution are undetermined. Therefore, we aim

to find the parameters of distribution of U that minimize the objective function as

far as possible under given assumptions.

Definition 3.3.1. Denote the optimal parameters as θNoise. Distribution parameters

are said to be optimal if they satisfy condition A2 and

min
b∈Rp

1

n

∫︂
u∈R

n∑︂
i

ρτ (yi + u− xib)fu(u|θNoise)du

≤ arg min
b∈Rp

1

n

∫︂
u∈R

n∑︂
i

ρτ (yi + u− xib)fu(u|θ)du,
(3.32)

where θ are any other distribution parameters.

The noises generated from such a distribution smooth the discrete QR response as

well as reduces the possible value of sum of absolute deviations, leading to less vari-

ation of QR estimators.

θNoise can be determined by treating them as missing part of data. Let

(zi,x
′
i, ui), i = 1, ..., n, be the complete data-set, where x′

i are covariates, and ui

are the missing part. According to the connection between QR model and ALD, we
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assume that the conditional distribution of jittered response zi = yi + ui given ui,

follows the ALD with parameters (µi, σ, τ),

fZi|U(zi|βτ , ui, σ) =
τ(1− τ)

σ
exp

{︄
−ρτ
Å
zi − µi
σ

ã}︄
, (3.33)

where µi = Qτ (U)+T
−1(x′

iβτ ) is inverse transformation function of linear predictors

of τ -th quantile. Also, we assume that the error term ϵi are independent, and ui and

ϵi are independent of each other. Therefore, the joint distribution of Zi and Ui can

be written as

f(zi, ui|βτ , σ, τ,θ) = fZi|Ui
(zi|βτ , ui, σ)fUi

(ui|θ). (3.34)

Let z = {z1, z2, ..., zn} and u = {u1, u2, ..., un}. The likelihood of complete dataset

{z,u} is obtained as

f(z,u|βτ , σ, τ,θ) =
n∏︂
i

fZi|Ui
(zi|βτ , ui, σ)fUi

(ui|θ). (3.35)

Based on the joint distribution, the likelihood of jittered QR response z can be

obtained. It is equivalent to find the marginal pdf of z by simply integrating the

missing part u out, which gives the marginal pdf of z as

L(βτ , σ, τ,θ; z) = f(z|βτ , σ, τ,θ)

=

∫︂
f(z,u|βτ , σ, τ,θ)du

=

∫︂ n∏︂
i

fZi|Ui
(zi|β, ui, σ)fU(ui|θ)dui,

(3.36)

and the corresponding log-likelihood function is

l(βτ , σ, τ,θ; z) =

∫︂ n∑︂
i=1

log fZi|Ui
(zi|β, ui, σ) + log fUi

(ui|θ)du. (3.37)
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We know that in order to estimate the QR parameters, we can alternatively maximize

the likelihood of ALD. Therefore, the MLEs of distribution parameter of U that

maximize L(βτ , σ, τ,θ; z) also minimize Equation 3.31. Denote such MLEs as θ̂
ALD

.

θNoise = θ̂
ALD

are determined to be the optimal parameters to generate additive

noises for jittering the counts. We have to mention that even though maximizing the

likelihood also returns the MLEs of βτ , asymptotic theorems are not applicable to

this estimate. To utilize the asymptotic properties and technique of averaging noises

out, estimate β̂τ can be only obtained by using methods in Section 3.2.

3.3.4 Computational Algorithms

To efficiently obtain the MLEs of parameters βτ , σ,θ, denoted by β̂τ , σ̂, θ̂, respec-

tively, we apply some computational algorithms. Theoretically, even though the re-

sponse Z is not observed data, it is still possible to solve the MLEs, as Z has an ALD

and Z = Y +U . We use f(·|·) to denote a generic conditional PDF. The log-likelihood

function

l(Ω; z) = log f(z|Ω) = log

∫︂
f(z, u|Ω)du

= log

∫︂
f(z, u|Ω)
f(u|z; Ωold)

f(u|z; Ωold)du

= logE
ï
f(z, u|Ω)
f(u|z; Ωold)

⃓⃓⃓⃓
z; Ωold

ò
≥ E
ï
log

Å
f(z, u|Ω)
f(u|z; Ωold)

ã⃓⃓⃓⃓
z; Ωold

ò
(Jensen’s inequality)

= E[log f(z, u|Ω)|z; Ωold]− E[log f(u|z; Ωold)|z; Ωold]

= Q(Ω|Ωold)− E[log f(u|z; Ωold)|z; Ωold],

(3.38)

where Θ = (βτ , σ, τ,θ). Denote the last equality by g(Ω|Ωold), we have

l(Ω; z) ≥ g(Ω|Ωold),
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for all Ω. The Jensen’s inequality becomes equality when Ω = Ωold since the term in-

side expectation becomes constant. Therefore, any value of Θ that increases g(Θ|Θold)

beyond g(Θold|Θold) must also increase l(Θ; z) beyond l(Θold; z). Thus, M-step in each

iteration finds such a Θ by maximizing Q(Θ|Θold) over Θ is equivalent to maximizing

g(Θ|Θold) over Θ. However, since the likelihood function includes Tweedie or Beta dis-

tribution, the E-step does not have a closed form, and the estimation of parameters is

not straight-forward. To obtain the MLEs, we apply Monte Carlo Expectation Max-

imization (MCEM) algorithm (Levine and Casella, 2001; also see Geraci and Bottai,

2006). The MCEM algorithm is an extension of the classical Expectation Maximiza-

tion (EM), which incorporates Monte Carlo methods. This algorithm is particularly

useful in estimation problems where the expectation is difficult to compute. Unlike

classical EM algorithm method, the E-step of MCEM algorithm avoid the intractable

integrals, which also benefits the following M-step. This iterative algorithm can be

realized by introducing a sampler and some computational steps.

The MCEM algorithm consists of three components: Monte Carlo simulation

(MC-step), expectation computation (E-step), and maximization (M-step). In each

iteration, the MC-step generates large number of random variables from the density of

latent variables conditional on observed data and current parameters, and the E-step

computes the expected value based on the simulated samples, instead of comput-

ing the expected value directly. The last M-step involves maximizing the expected

likelihood found from the E-step. Similar to Geraci and Bottai (2006) who applied

MCEM algorithm to estimate the random effect quantile regression model (REQR),

we can modify the MC-step, E-step and M-step to fit our target. For the sake of

convenience, let Ω = {βτ , σ, τ,θ} be the set of all parameters involved. Firstly, we
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define the expectation function in E-step for the ith subject at (t+ 1) iteration as

Qi(Ω|Ω(t)) = E[l(Ω; zi, ui)|zi;Ω(t)]

=

∫︂
{log fZ|U(zi|β, ui, σ) + log f(ui|θ)} × f(ui|zi;Ω(t))dui

=

∫︂
{log fZ|U(yi + ui|β, ui, σ) + log f(ui|θ)} × f(ui|zi;Ω(t))dui,

(3.39)

where l(Ω; zi, ui) is log-likelihood of the ith jittered response. The expression of ex-

pectation is written with respect to missing data U and is conditional on Z = z.

Then, a suitable Monte Carlo technique can evaluate the expected value of the above

log-likelihood.

MC-step:

Since the additive noises U are unobserved, a sample vi = {vi1, vi2, ..., vik} with

sample size of k will be taken from the density function of U conditional on observed

data Z so that the MC-step can be completed. Using the relationship of Z = Y +U ,

Bayesian’s theorem gives that

f(u|zi;Ω) =
f(zi|u;βτ , σ)f(u|θ)

f(zi|Ω)

=
f(yi + u|u;βτ , σ)f(u|θ)

f(zi|Ω)

(3.40)

where f(zi|Ω) =
∫︁
u
f(zi, ui|Ω)du and f(u|θ) is the PDF of Tweedie or Beta. Hence,

the density of latent variable U conditional on Z is obtained. In order to draw samples

from the density f(u|zi;Ω) efficiently, Metropolis-Hasting sampling algorithm can be

applied (Hastings, 1970). Let f(u|zi;Ω) be the target distribution, denote v be the

previous draw from the density f(u|zi;Ω), and generate new values v∗ using the

target distribution. Since we would like to restrict the generated value of vij ∈ [0, 1),

the Uniform distribution U [0, 1) can be a good choice for proposal distribution. We

denote q(u|D) as the proposal distribution. Thus, we accept u∗ as a new value with
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probability of Aj(u,u∗), otherwise reject this value. Here, the probability Ak(v,v∗)

is given by

Ak(v,v
∗) = min

ß
1,
f(u∗|zi;Ω)q(u|D)/f(zi|Ω)

f(u|zi;Ω)q(u∗|D)/f(zi|Ω)

™
= min

ß
1,
f(zi|u∗;βτ , σ)f(u∗|θ)q(u|D)

f(zi|u;βτ , σ)f(u|θ)q(u∗|D)

™
.

(3.41)

Since both f(zi) in the numerator and denominator are cancelled out, it is not nec-

essary to know the density of Z. In order to ensure the generated samples are inde-

pendent of one another, we can alleviate this by choosing every hth value in the chain

as our posterior sample, which is called ‘thinning’. Therefore, the MH algorithm for

generating m samples conditional on each zi, i = 1, ..., n is as follows:
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Algorithm 1 Modified Metropolis-Hastings algorithm for MC-step
1: for iteration i = 1, 2, . . . , n do

2: Initialize v(0) ∼ q(u|D), where q(u|D) is uniform [0, 1)

3: for iteration j = 1, 2, . . . , kh do

4: Propose ucand ∼ q(u(j)|u(j−1))

5: Acceptance Probability:

Aj(v
cand|v(j−1)) = min

®
1,
q(u(j−1)|ucand)p(ucand)

q(ucand|u(j−1))p(u(j−1))

´
= min

®
1,
f(zi|ucand;βτ , σ)f(u

cand|θ)q(u(j−1)|D)

f(zi|u(j−1);βτ , σ)f(u
(j−1)|θ)q(ucand|D)

´
6: Generate α ∼ Uniform(0, 1)

7: if α < Aj then

8: Accept the proposal: vij ← vcand

9: else

10: Reject the proposal: vij ← v(j−1)

11: end if

12: end for

13: Choose every hth element of vi = (vi1, ..., vi,kh), to form a vector consists of k

independent samples, i.e., thinning.

14: end for

By applying the above algorithm, we can have independent variables vi = (vi1, ..., vim)

for i = 1, ..., n.

E-step:

Based on the simulated samples, we let z̃ij = yi+ vij, the approximate value of
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expectation for ith subject in Equation 3.39 can be written as

Q∗
i (Ω|Ω(t)) =

1

k

k∑︂
j=1

l(Ω; z̃ij, vij)

=
1

k

k∑︂
j=1

Å
log τ + log(1− τ)− log σ − ρτ

Å
z̃ij − µi

σ

ã
+ log f(ui|θ)

ã
.

(3.42)

Hence, consider all n subjects, the approximately expected value based on the log-

likelihood is obtained as

Q∗(Ω|Ω(t)) =
n∑︂
i=1

Q∗
i (Ω|Ω(t))

=
n∑︂
i=1

1

k

k∑︂
j=1

Å
log τ + log(1− τ)− log σ − ρτ

Å
z̃ij − µi

σ

ã
+ log f(ui|θ)

ã
.

(3.43)

M-step:

In the M-step, we aim to maximize the approximately expected value of log-likelihood

in Equation 3.42. Therefore, the expression or numerical solution of mle of parameters

shall be found so that in each iteration the expectation can be maximized. Firstly, it

is easy to notice that to maximize E∗(Ω|Ω(t)), it is necessary to minimize the term

of ρτ
(︁ z̃ij−µi

σ

)︁
. Thus, the mle of βτ can be obtained as

β̂τ ≡ arg min
β∈Rp

n∑︂
i

1

k

k∑︂
j=1

ρ

Å
z̃ij − T−1(x′

iβ)

σ

ã
≡ arg min

β∈Rp

n∑︂
i

1

k

k∑︂
j=1

ρ(z̃ij − T−1(x′
iβ)),

(3.44)

where the last equivalent holds since σ is always positive. After applying transfor-

mation, Equation 3.44 is equivalent to estimate the QR parameters, and thus, any

software for QR estimation can be used. Secondly, to find the MLEs σ̂, we set the
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derivative of E∗(Ω|Ω(t)) with respect to σ be zero, that is,

∂E∗(Ω|Ω(t))

∂σ
=

n∑︂
i=1

1

k

k∑︂
j=1

ï
− 1

σ
+
z̃ij − T−1(x′

iβ))

σ2

Å
τ − I{︁ z̃ij−T−1(x′

i
β)

σ

}︁ãò
=

n∑︂
i=1

1

k

k∑︂
j=1

ï
− σ + (z̃ij − T−1(x′

iβ)))

Å
τ − I{︁

z̃ij−T−1(x′
iβ))
}︁ãò

set
= 0

(3.45)

which yields the mle of σ,

σ̂ =
1

nk

n∑︂
i=1

k∑︂
j=1

ρ(z̃ij − T−1(x′
iβτ̂ )). (3.46)

Thirdly, the MLEs of θ is the solution to the equation that the derivative ofQ∗(Ω|Ω(t))

with respect to θ equals zero. In Equation 3.42, only the last term involves θ. There-

fore, θ̂ is just the MLE based on the simulated samples vi = {vi1, ..., vik} in MC-step.

In R, efficient algorithms to obtain the MLEs of parameters are available. For MLEs

of Tweedie distribution, Dunn and Smyth (2005) proposed R package

library(tweedie)

tweedie.profile(formula, p.vec, smooth=FALSE, do.plot=FALSE,

do.ci=smooth, eps=1/6, method="series", conf.level=0.95,

phi.method=ifelse(method == "saddlepoint", "saddlepoint", "mle"))

and for mle of Beta distribution Millard (2013) proposed R package

install.package(‘EnvStats’)

library(EnvStats)

ebeta(x, method = "mle")

Regarding the above discussions, to obtain the maximum likelihood estimate of the

parameter θ for the τ th quantile, we can apply the following iterative procedure.
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Algorithm 2 MCEM Algorithm

1: Initialize the parameter Ω(t) = {β(t)
τ , σ

(t),θ(t)}. Set t = 0 and substitute Ω(t) to

Equation 3.42;

2: Draw a sample v
(t)
i = {v(t)i1 , v

(t)
i2 , ..., v

(t)
ik } from the density f(ui|yi,Ω(t)), for i =

1, ..., n, independently, by using any sampler, i.e., Metropolis-Hasting sampling

algorithm;

3: Maximize the expected value of Q∗(Ω|Ω(t)). Let z̃(t)ij = yi+v
(t)
ij , solve a minimiza-

tion problem and let

β̂
(t+1)

τ ≡ argmin
β∈Rp

n∑︂
i

1

k

k∑︂
j=1

ρ(z̃
(t)
ij − T−1(x′iβ)), (3.47)

and

σ̂(t+1) =
1

nk

n∑︂
i=1

k∑︂
j=1

ρ(z̃
(t)
ij − T−1(x′iβτ̂

(t+1)
)), (3.48)

then, let θ(t+1) be the maximum likelihood estimate of density f(v(t)i |θ);

4: Set t = t+ 1 and repeat step 1-3 until the parameter Ω reaches the convergence.

Remark. The sensitivity of MH sampler depends on the burn-in size and sample

size. The MH sampler may generate variability of estimates, but a large burn-in size

will address this problem as well as is required to ensure the convergence of generated

samples. Take the computational cost into account, we use a burn-in sample size of

5000 and constant MC sample size of 5000. Various sample sizes ki for different

subjects, i = 1, ..., n, is also applicable. It is feasible to use other sampling techniques,

i.e., Gibbs sampler.

Now, the last issue is the exact upper bound of generated noises ui ∼ f(u|θNoise).

Unfortunately, letting θNoise = θ̂
ALD

does not automatically guarantee the generated
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values of noise are all less than 1 in practice. There are approximately 1% ∼ 5% of

noises that equal or are greater than 1. In order to satisfy A2, we have to manually

adjust them. Since the proportion of these ‘unwanted’ noises is very small, we shall

re-generate a new value once the ‘unwanted’ value occurs, until it is less than 1. This

approach ensures the generated noises approximately follow the Tweedie distribution.

Finally, it is possible to guess the initial parameters. For β(0)
τ , we can let it be the

estimates obtained from QR model using existing uniform jittering method. For

Tweedie distribution, the initial parameters can be chosen if most of random samples

are less than 1 by some previous experiments, for example, previous experiments show

µ(0) = 0.5, ϕ(0) = 0.2, p(0) = 1.5 are good initial parameters. For beta distribution, we

can simply set a(0) = 1, b(0) = 1.

3.4 Asymptotic Properties of Proposed Estimators

In this section, we derive asymptotic properties and distributions for estimates ob-

tained from the proposed method. To ensure that the statistical inference is valid,

the following regularity conditions are given with modifications (Machado & Silva,

2005; J. Powell, 1986).

(A3) The regressors have bounded second moment, i.e., E[∥xi∥2] < ∞. The re-

gressors X ′ = (1, . . . , xk) can be partitioned as (1, x′(c)) where x′(c) ∈ Rkc ,

1 ≤ kb ≤ k − 1, satisfying P (x′(c) ∈ B) = 0 for any countable subset B of Rkb ;

(A4) Let Z = Y + U , where U is a Tweedie or Beta random variable, independent

of X and Y . Denoting T (·; τ) as a known monotone transformation, possibly

depending on τ , the following restriction on the QR of Z given X holds:

QT (Z;τ)(τ |X) = X ′βτ for τ ∈ (0, 1),
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and parameter β lies in a compact set C in Rp. Furthermore, if β(c)
τ denotes the

components of βτ corresponding to the continuous covariates x′(c), then βτ ̸= 0;

(A5) The error terms ετi = zi − x′
iβτ are continuously distributed given xi, with

conditional density f(ε|xi) satisfying the conditional quantile restriction, i.e.

∫︂ Qε(τ |xi)

−∞
f(λ|xi)dλ = τ,

where τ is the quantile level of interest, and Qε(·|·) denotes the conditional

quantile function of ε given X on the τ th quantile of distribution;

(A6) The regressors and density of T (Z; τ) satisfy a “local identification” condition,

that is, the matrix

D = E[fT (Z;τ)(X ′βτ |X)XX ′]

is positive definite.

3.4.1 Consistency and Asymptotic Normality of Simple Jit-

tering QR Estimator

Under jittering process, QR models are fit to Z but no longer Y , where Z is con-

tinuous. So, asymptotic properties of jittering QR estimator will simply follow the

standard QR given by Koenker (2005). Based on the consistency of simple jittering

estimator of median QR shown by (J. Powell, 1986), that of proposed QR model can

be proved.

Theorem 3.4.1 (Consistency of Simple Jittering QR Estimator).

The (yi,xi, ui)
n
i=1 are a random sample of (Y,X, U). Let the QR estimators be the

solution of a minimization problem

β̂τ ≡ arg min
β∈Rp

1

n

n∑︂
i=1

ρτ (zi − x′
iβ).
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Under conditions A1 to A6, β̂τ is consistent with the true QR coefficients, βτ , i.e.,

β̂τ
P−→ βτ .

Proof.

Also see J. Powell (1986) for median regression. We denote βτ as the vector of

true QR coefficients. To prove the consistency of QR estimators clearly, it is more

convenient to subtract the objective function of true QR coefficients, Sn(βτ ), off the

minimization problem because it will not affect the minimization solution. That is,

we define

β̂τ ≡ argmin
β∈Rp

Sn(β)− Sn(βτ )

= argmin
β∈Rp

1

n

n∑︂
i=1

ρτ (T (zi; τ)− x′
iβ)− ρτ (T (zi; τ)− x′

iβτ )

= argmin
β∈Rp

1

n

n∑︂
i=1

ρτ (ετi − x′
iδτ )− ρτ (ετi)

where δτ ≡ β − βτ . By the triangle and Cauchy-Schwarz inequalities, we have

−∥xi∥ · ∥δτ∥ ≤ |ετi − x′
iδτ | − |ετi| ≤ ∥xi∥ · ∥δτ∥.

Therefore, the normalized minimand is the average value of i.i.d. random variables

with finite first and second moments under assumption A2. By Khintchine’s Law of

Large Numbers, which strengthens the traditional Weak Law of Large Numbers, we
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have

Sn(β)− Sn(βτ )
p−→ S̄n(δτ )

≡ E[Sn(β)− Sn(βτ )]

= E
ï
1

n

n∑︂
i=1

ρτ (ετi − x′
iδτ )− ρτ (ετi)

ò
= E[ρτ (ετi − x′

iδτ )− ρτ (ετi)]

= E[(ετi − x′
iδτ )(τ − I(ετi − x′

iδτ < 0))− ετi(τ − I(ετi < 0))]

= E[E[(ετi − x′
iδτ )(τ − I(ετi − x′

iδτ < 0))− ετi(τ − I(ετi < 0))|xi]]

= E[E[(ετi − x′
iδ)(τ − I(ετi − x′

iδτ < 0))− (ετi − x′
iδτ )(τ − I(ετi < 0))|xi]]

= E[E[(ετi − x′
iδτ )((τ − I(ετi − x′

iδτ < 0))− (τ − I(ετi < 0)))|xi]]

= E
ï
2

∫︂ 0

x′
iδτ

(λ− x′
iδτ )f(λ|xi)dλ

ò
,

where the equation E[E[x′
iδτ (τ − I(ετi < 0))|xi]] = 0 is added to the second-to-last

equality. Also, the last equality is well defined for both positive value and negative

value of x′
iδτ (J. Powell, 1986). It is easy to check that the limit of S̄n(δτ ) = 0 at

δτ = β−βτ = 0 and is non-negative elsewhere. Since β−βτ is convex for all n, the

probability limit of S̄n(β−βτ ) is zero as well. Therefore, if β = βτ is a unique local

minimum, it is also a unique global minimum. Notice that since

∂S̄(δτ )

∂δτ
= −2E

ï
xi

∫︂ 0

x′
iδτ

f(λ|xi)dλ
ò
,

∂S̄(0)

∂δτ
= 0,
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and,

∂2S̄(δτ )

∂δτ∂δ
′
τ

= 2E[xix
′
if(x

′
iδτ |xi)],

∂2S̄(0)

∂δτ∂δ
′
τ

= 2E[xix
′
if(0|xi)],

which is positive definite by condition A4. This implies that δτ = 0 is a unique local

minimum of S̄(δτ ), and yields that it is the unique global minimum of it. Therefore,

βτ converges in probability to βτ0, i.e.,

β̂τ
P−→ βτ .

Hence, it shows consistency of β̂τ .

Theorem 3.4.2 (Asymptotic Distribution of Simple Jittering QR Estimators).

Let (yi,xi
T , ui), i = 1, ..., n, be a set of random samples from the population (Y,X, U).

Let Z = Y + U be the response and

QT (Z;τ)(τ |X) = X ′βτ ,

where T (·) is a suitable monotonic transformation function. If the QR estimator, β̂τ ,

is defined by the minimization of check loss function,

β̂τ = arg min
β∈Rp

S(β) = arg min
β∈Rp

n∑︂
i=1

ρτ (T (zi; τ)− x′
iβ)),

where zi = yi + ui and ρτ (u) = u(τ − I(u < 0)), then, under conditions A1 to A6,

the asymptotic distribution of the estimator βτ̂ is

√
n(β̂τ − βτ )

D−→ N (0,D−1AD−1). (3.49)
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with A = τ(1− τ)E[XX ′] and D = E[fT (Z;τ)(X
′βτ |X)XX ′], where fT (Z; τ)(·|·) is

the conditional density of T (Z; τ) given X.

Proof.

Let Z be continuous and the QR model QT (Z;τ)(τ |X) = X ′βτ . The estimator βτ̂

minimize the sample objective function S(β) =
∑︁n

i=1 ρτ (T (zi; τ) − x′
iβ). Since the

continuity assumption is satisfied in the jittering process, the asymptotic property

of the QR estimator simply follows that of standard QR model, which is given and

proven by Koenker (2005).

Corollary 3.4.1.

Under conditions A1 to A6, the approximate covariance matrix of β̂τ can be obtained

from the asymptotic normal distribution, that is,

Cov(β̂τ ) =
1

n
D−1AD−1. (3.50)

3.4.2 Consistency and Asymptotic Normality of Average Jit-

tering QR Estimator

In this section, we will discuss the asymptotic properties and distribution of QR

estimators with the application of averaging-out noises technique.

Theorem 3.4.3 (Consistency of Average Jittering QR Estimators).

The (yi,xi, ui)
n
i=1 are a random sample of (Y,X, U). Let (yi + u

(l)
i ,xi)

n
i=1 be jittered

sample and

β̂
m

τ =
1

m

m∑︂
l=1

β̂
(l)

τ , n→∞,

where β̂
(l)

τ is the QR estimator based on (yi+u
(l)
i ,xi) and m is fixed number of jittered

samples. Then, under conditions A1 to A6, the average-jittering QR estimator β̂
m

τ
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is consistent with true QR coefficients , βτ , i.e.,

β̂
A

τ
P−→ βτ .

Proof.

For l = 1, 2, ...,m, the consistency of each QR estimator β̂
(l)

τ follows the result of

Theorem 3.4.1 such that β̂
(l)

τ
P−→ βτ . Therefore, for each l ∈ (1, ...,m),

lim
n→∞

Pr(|β̂
(l)

τ − βτ | < δ) = 0,

hence there exists a Nl such that if n > Nl, then

Pr(|β̂
(l)

τ − βτ | > δ) <
ϵ

m

for all ϵ > 0. By triangle inequality, we have

|β̂
A

τ − βτ | =
⃓⃓⃓⃓
1

m

m∑︂
l=1

β̂
(l)

τ − βτ

⃓⃓⃓⃓
≤ 1

m

m∑︂
l=1

|β̂
(l)

τ − βτ |.

Then,

Pr(|β̂
m

τ − βτ | > δ) = Pr

Å⃓⃓⃓⃓
1

m

m∑︂
l=1

β̂
(l)

τ − βτ

⃓⃓⃓⃓
> ϵ

ã
≤ Pr

Å
1

m

m∑︂
l=1

|β̂
(l)

τ − βτ | > δ

ã
≤

m∑︂
l=1

Pr

Å
|β̂

(l)

τ − βτ | > ϵ

ã
< ϵ,

if n ≥ N = max1≤l≤m{Nl}. Thus, Pr(|β̂
A

τ −βτ | > δ) converges to zero as n→∞.
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Recall the procedure of average jittering, m − 1 jittered samples are additionally

generated for averaging the estimates. Therefore, the asymptotic covariance matrix

of (β̂
A

τ − βτ ) can be written as the weighted sum of D−1AD−1 and asymptotic

covariance matrix of estimator for different jittered samples with a certain speed

of convergence. Fixing the distribution parameters of U when averaging noise out,

asymptotic normal distribution of normalized difference can be obtained as follows,

Theorem 3.4.4 (Asymptotic Normality of Average Jittering QR Estimator).

The dataset {yi,xi, ui}ni=1 are a random sample taken from the population {Y,X, U}

and are satisfying all the above conditions. Let βτ be the true QR coefficients. Then,

the averaging jittered QR estimator follows normal distribution asymptotically such

that
√
n(β̂

m

τ − βτ )
D−→ N (0,V m), as n→∞, (3.51)

where β̂
m

τ is the averaging jittered QR estimator, and

V m =
1

m
D−1mD−1 +

Å
1− 1

m

ã
D−1BD−1, (3.52)

where m = 1, 2, ... is the number of jittered samples, matrix A and D are given in

Theorem 3.4.2, and

B = E
ßï
− τ 2 +

QY (τ |X)∑︂
y=0

P (Y = y|X)FU(zτ − y)2
ò
XX ′

™
(3.53)

where FU is the CDF of U . Substituting CDFs of U and rearranging terms, we have

1. For U ∼ Twp(µ, ϕ), 1 < p < 2, and U ∈ [0,∞),

B = E
ßï
− τ 2 +

QY (τ |X)∑︂
y=0

P (Y = y|X)

ïÅ ∞∑︂
k=0

1

Γ(α)
γ(kα, β(zτ − y))

e−λλk

k!

ã2òò
XX ′

™
,

where λ = µ2−p

ϕ(2−p) ,α = 2−p
p−1

and β = ϕ(p− 1)µp−1.
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2. For U ∼ Beta(a, b), and U ∈ (0, 1)

B = E
ßï
τ(1− τ)− fY |X(QY (τ |X))Å

QZ|U(τ |X)−QY (τ |X)−
Å
B(QZ|U(τ |X)−QY (τ |X); a, b)

B(a, b)

ã2ãò
XX ′

™
.

Proof.

Machado and Silva (2005) shows that for fixed value of m, the asymptotic normality

of averaging jittered QR estimator follows the result from Theorem 3.4.2 since the

product of D−1AD−1 is already the asymptotic covariance matrix of each
√
n(β̂

(l)

τ −

βτ ), where l = 1, 2, ...,m. Then, it remains to evaluate the m(m − 1) asymptotic

covariance matrix of the estimator for different sets of jittered sample.

Let ωij = ω(yi, u
(l)
i ,xi) ≡

[︁
τ − I{yi+u(l)≤T−1(x′

iβτ )}
]︁
xi, so that

√
n(β̂

(l)

τ − βτ) = − 1√
n

n∑︂
i=1

D−1ωij + op(1).

Because E(ωilωik) = 0 for l ̸= k,

E

(︄
1√
n

n∑︂
i=1

D−1ωil

)︄(︄
1√
n

n∑︂
i=1

D−1ωik

)︄′

= D−1E(ωilω
′
ik)D

−1.

It remains to evaluate E(ωilωik) for l ̸= k. To simplify the notation, put zτi ≡

T−1(x′
iβτ ) ≡ Qz(τ |xi) and yτi ≡ QY |xi

(τ) ≡ ⌈Qz(τ |xi) − 1⌉. Apply the law of total

expectation in propability theory, the relevant factor in the expectation E(ωilω
′
ik)
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conditional on X = x is

E
î
(τ − I{y + u(l) ≤ zτ})(τ − I{y + u(k) ≤ zτ})|x

ó
= τ 2 − τE

î
I{y + u(l) ≤ zτ}|x

ó
− τE

î
I{y + u(k) ≤ zτ}|x

ó
+ E
î
I{y + u(l) ≤ zτ}I{y + u(k) ≤ zτ}|x

ó
= E
î
I{y + u(l) ≤ zτ}I{y + u(k) ≤ zτ}|x

ó
− τ 2

= EY |x
î
E
î
I{u(l) ≤ zτ − y}I{u(k) ≤ zτ − y}|x, y

óó
− τ 2

= EY |x
[︁
FU(zτ − y)2

]︁
− τ 2. (*)

where FU(·) is the distribution of U . Now, it remains to find the expression of CDF

of U , FU(zτ − y)2. We derive for two cases where U taken from Tweedie distribution

and Beta distribution one by one.

For U following Tweedie distribution, i.e., U ∼ Twp(µ, ϕ), where distribution

parameters µ, ϕ, p are known, by Proposition 3.2.1, the cdf of Tweedie variables can

be written in compound Poisson-Gamma distribution. We substitute the value of

(zτ − y) to the cdf of Tweedie distribution shown in Equation 3.5, giving the support

of Tweedie distribution [0,+∞), the cdf is written as

FU(zτ − y)2 = I{y≤zτ}

Å ∞∑︂
k=0

1

Γ(α)
γ(kα, β(zτ − y))

e−λλk

k!

ã2
,

and the corresponding expectation is

EY |x
[︁
FU(zτ − y)2

]︁
=

⌈zτ−1⌉∑︂
y=0

P (Y = y|x)
ï
I{y≤zτ}

Å ∞∑︂
k=0

1

Γ(α)
γ(kα, β(zτ − y))

e−λλk

k!

ã2ò
=

yτ∑︂
y=0

P (Y = y|x)
ïÅ ∞∑︂

k=0

1

Γ(α)
γ(kα, β(zτ − y))

e−λλk

k!

ã2ò
.

71



Subtracting τ 2, we get the desired result that Tweedie distributed additive noise is

used. The formulas to obtain parameters of compound Poisson-Gamma, i.e., λ, α, β,

can be found in Proposition 3.2.1.

For U following the Beta distribution, i.e., U ∼ Beta(a, b), where the distribu-

tion parameters a, b are known, the cdf of Beta distribution can be expressed by using

beta function and incomplete beta function. We substitute (zτ − y)2 to Equation 3.8,

the simplified cdf of Beta distribution. Since the support of Beta distributed random

variable is [0, 1], the CDF is written as

FU(zτ − y)2 = I{y<zτ−1} + I{zτ−1≤y≤zτ}

Å
B(zτ − y; a, b)

B(a, b)

ã2

,

and the expectation

EY |x
[︁
FU(zτ − y)2

]︁
= P (Y < zτ − 1|x) + P (Y = ⌈ zτ − 1⌉|x)

Å
B(zτ − yτ ; a, b)

B(a, b)

ã2

= P (Y < yτ |x) + P (Y = yτ |x)
Å
B(zτ − yτ ; a, b)

B(a, b)

ã2
= τ − P (Y = yτ |x)(zτ − yτ ) + P (Y = yτ |x)

Å
B(zτ − yτ ; a, b)

B(a, b)

ã2
= τ − P (Y = yτ |x)

ï
zτ − yτ −

Å
B(zτ − yτ ; a, b)

B(a, b)

ã2ò
,

where P (Y < zτ |x) = τ − P (Y = yτ |x)(zτ − yτ ) follows the Equation 2.53 with

terms rearrangement. Subtracting τ 2, we get the desired result when Beta distributed

additive noise is used. Note that Machado and Silva (2005), proved the uniform

perturbation case.

Remark. Compare the asymptotic normal distributions of simple jittering estimator

and average estimator in Theorem 3.4.2 and 3.4.4, respectively, changing noise dis-

tribution does not change the asymptotic covariance matrix of QR estimators using
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simple jittering method, but it does matter for that using average jittering method.

Therefore, changing noise distribution requires modifications on Theorem 3.4.4.

Corollary 3.4.2. Under conditions A1 to A6, covariance matrix of β̂
A

τ can be ob-

tained from the asymptotic normal distribution, that is,

Cov(β̂
A

τ ) =
1

n

ï
1

m
D−1AD−1 +

Å
1− 1

m

ã
D−1BD−1

ò
. (3.54)

3.4.3 Consistent Estimator of Asymptotic Covariance Matri-

ces

The variance-covariance matrix can be consistently estimated, see Machado and Silva

(2005). Assume that the following assumptions are satisfied.

(A7) T−1(·) is twice continuously differentiable, that is, obtaining T (1) ≡ ∂T−1(z;τ)
∂z

and T (2) ≡ ∂2T−1(z;τ)
∂z2

are valid;

(A8) Two expectations

(a)E[|T−1(x′
iβτ )|||xi||2], and

(b)E
ï

sup
||β−βτ ||≤δ

|T (1)(x′
iβτ )|l||xi||2

ò
for l = 1, 2 and for some δ > 0,

exist;

(A9) There is a sequence cn of real numbers in (0, 0.5) such that cn = op(1) and

sup1≤i≤n |T−1(x′
iβ̂τ )− T−1(x′iβτ)|
cn

= op(1).
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Note that if sup1≤i≤n ∥xi∥ = Op(1), Theorem 3.4.2 actually implies that

sup
1≤i≤n

|x′
iβ̂τ − x′iβτ | = Op(

1√
n
),

Since the first derivative of transformation function T (1)(·) is continuous and Γ is

compact, we have

sup
1≤i≤n

|T−1(x′
iβ̂τ )− T−1(x′iβτ)| = Op(

1√
n
).

and cn should converge to zero more slowly than 1/
√
n , i.e., cn

√
n → ∞. We have

the following theorems.

Theorem 3.4.5 (Consistent Estimator of Matrix A).

Let the set {zi,xi, ui} be a sample from the data set {Z,X,U}, where i = 1, 2, ..., n.

Let

Ân =
τ(1− τ)

n

n∑︂
i=1

xix
′
i. (3.55)

Under conditions from A1 to A9, Ân converges in probability to A, i.e.,

Ân
P−→ A

as n→∞.

Proof.

Let xi be a sample from the data set. Under the conditions, samples xi are i.i.d..

It follows that the product of xix
′
i are also i.i.d., since each xix

′
i is a function of

xi. Then, the Law of Large Number (LLN) is applicable. Denote a(i)jk as the (j, k)th

element of product xix
′
i. It indicates that for any element ajk of product xix

′
i, the

sample mean 1
n

∑︁n
i=1 a

(i)
jk converges in probability to the expectation E[ajk] as n→∞.

74



Hence,
1

n

n∑︂
i=1

xix
′
i
P−→ E[XX ′],

as n→∞. Multiplying by the constant τ(1− τ), where τ ∈ (0, 1), it follows that

τ(1− τ)
n

n∑︂
i=1

xix
′
i
P−→ τ(1− τ)E[XX ′],

as n→∞. By letting Ân = τ(1−τ)
n

∑︁n
i=1 xix

′
i, Ân is a consistent estimator of matrix

A.

To construct consistent estimators of matrices B, two lemmas about inequality

of indicator functions of non-negative real numbers are given.

Lemma 3.4.1.

Let I{·} be an indicator function. For any non-negative a, b, c ∈ R, it follows that

|I{a≤b} − I{a≤c}| ≤ I{|a−c|≤|b−c|} (3.56)

Proof.

We prove by identity.

Case 1: a ≤ b and a ≤ c.

L.H.S. I{a≤b} = 1 and I{a≤c} = 1, which indicates that |I{a≤b} − I{a≤c}| = 0 ≤

R.H.S.;

Case 2: a > b and a > c.

L.H.S. I{a≤b} = 0 and I{a≤c} = 0, which indicates that |I{a≤b} − I{a≤c}| = 0 ≤

R.H.S.;

Case 3: c < a ≤ b.

L.H.S. I{a≤b} = 1 and I{a≤c} = 0, which indicates that |I{a≤b} − I{a≤c}| = 1;
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R.H.S. The inequality c < a ≤ b is equivalent to a− c ≤ b− c. Since both a− c

and b−c are non-negative, it follows that |a−c| ≤ |b−c|. Therefore, I{|a−c|≤|b−c|} = 1,

hence, L.H.S. = R.H.S. in case 3;

Case 4: b < a ≤ c.

L.H.S. I{a≤b} = 0 and I{a≤c} = 1, which indicates that |I{a≤b} − I{a≤c}| = 1;

R.H.S. The inequality c < a ≤ b is equivalent to a − c > b − c. Since a − c is

either zero or negative, and b − c is negative, it follows that |a − c| ≤ |b − c|. Thus,

I{|a−c|≤|b−c|} = 1, hence, L.H.S. = R.H.S. in case 4;

Thus, consider all cases, the inequality of indicator function

|I{a≤b} − I{a≤c}| ≤ I{|a−c|≤|b−c|}

holds.

Lemma 3.4.2.

Let I{·} be an indicator function. For any real number a1, a2, b, c ∈ [0,+∞), it follows

that

|I{a1≤b}I{a2≤b} − I{a1≤c}I{a2≤c}| ≤ I{|a1−c|≤|b−c|} + I{|a2−c|≤|b−c|} (3.57)

Proof.

Notice that by applying the triangle inequality, we have

L.H.S = |I{a1≤b}I{a2≤b} − I{a1≤c}I{a2≤c}|

= |I{a1≤b}I{a2≤b} − I{a1≤c}I{a2≤b} − I{a1≤c}I{a2≤c} + I{a1≤c}I{a2≤b}|

≤ |I{a1≤b}I{a2≤b} − I{a1≤c}I{a2≤b}|+ |I{a1≤c}I{a2≤c} − I{a1≤c}I{a2≤b}|

≤ |I{a1≤b} · 1− I{a1≤c} · 1|+ |1 · I{a2≤c} − 1 · I{a2≤c}|

≤ I{|a1−c|≤|b−c|} + I{|a2−c|≤|b−c|} = R.H.S,
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where the last two inequalities hold by Lemma 3.4.1.

Theorem 3.4.6 (Consistent Estimator of Matrix B).

Let the set {yi,xi, ui} be a sample, where i = 1, 2, ..., n. Consider the asymptotic

normality of
√
n(β̂

m

τ −βτ ) and the expression of matrix B is given in Theorem 3.4.4.

Let

ω̂i ≡
[︁
τ − I{yi+u(l)i ≤T−1(x′

iβ̂τ )}

]︁
xi

with elements

ω̂il ≡
[︁
τ − I{yi+u(l)i ≤T−1(x′

iβ̂τ )}

]︁
xij

and

B̂n ≡
1

n

n∑︂
i=1

ω̂iω̂
′
i (3.58)

with elements

B̂n(l, k) =
1

n

n∑︂
i=1

ï
τ 2 − 2τFU(Q̂Z(τ |xi)− yi) + FU(Q̂Z(τ |xi)− yi)2

ò
xilxik,

where FU(·) denotes the CDF of additive noise U . Under conditions A1 to A9, B̂n

converges in probability to the matrix B, i.e.,

B̂n
P−→ B, (3.59)

as n → ∞. Furthermore, given the CDF of U , the specific expression of B̂n can be

alternatively obtained as
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1. If U ∼ T wp(µ, ϕ), where parameters µ, ϕ, p are known then

B̂n ≡B̂
Tw

n =
1

n

n∑︂
i=1

τ 2 + I{ẑτi−yi≥0}

×
ï
− 2τ

∫︂ Q̂Z(τ |xi)−yi

0

a(u;ϕ) exp

ß
1

ϕ

Å
u
µ1−p

1− p
− µ2−p

2− p

ã™
du

+

Å∫︂ Q̂Z(τ |xi)−yi

0

a(u;ϕ) exp

ß
1

ϕ

Å
u
µ1−p

1− p
− µ2−p

2− p

ã™
du

ã2ò
;

(3.60)

2. If U ∼ Beta(a, b), where parameters a, b are known, then

B̂n ≡B̂
Beta

n =
1

n

n∑︂
i=1

τ 2 + (1− 2τ)I{yi<ẑτi−1}

+ I{Q̂Z(τ |xi)−1≤Yi≤Q̂Zi
(τ |xi)}

ïÅ∫︂ Q̂Z(τ |xi)−yi

0

ua−1(1− u)b−1

B(a, b)
du

ã2
− 2τ

∫︂ Q̂Z(τ |xi)−yi

0

ua−1(1− u)b−1

B(a, b)
du

ò
.

(3.61)

Remark. Equation 3.60 and 3.61 involve integrating the PDF of Tweedie and Beta

variables with respect to U when obtaining the consistent estimator B̂n. The numeri-

cal solutions corresponding to integrals can be calculated by the R functions ptweedie

and pbeta.

Proof.

Recall Theorem 3.4.4, the expression of matrix B is given by

B ≡ E(ωiω
′
i),

where

ωi = ω(yi, u
(l)
i ,xi) ≡

[︁
τ − I{yi+u(l)i ≤T−1(x′

iβτ )}

]︁
xi.
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Let ˜︁Bn ≡
1

n

n∑︂
i=1

ωiω
′
i.

Since 1
n

∑︁n
i=1ωilω

′
ik

P−→ ωiω
′
i, by the law of large numbers, we have

˜︁Bn
P−→ B.

Then, it remains to show that B̂n − ˜︁Bn
P−→ 0. Let

ω̂il ≡
[︁
τ − I{yi+u(l)i ≤T−1(x′

iβ̂τ )}

]︁
xi.

and

B̂n ≡
1

n

n∑︂
i=1

ω̂ilω̂
′
ik.

For the sake of simplicity, in the following context, we will denote T−1(x′
iβτ ) and

T−1(x′
iβ̂τ ) as zτi and ẑτi , respectively.
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Let us turn to the upper bound of ||B̂n− B̃n||. We firstly rewrite this term as

1

n

n∑︂
i=1

|ω̂iω̂
′
i − ωiω

′
i|

=
1

n

n∑︂
i=1

||xi||2
⃓⃓⃓⃓
τ 2 − τI{yi+u(l)i ≤ẑτi}

− τI{yi+u(k)i ≤ẑτi}
+ I{yi+u(l)i ≤ẑτi}

I{yi+u(k)i ≤ẑτi}

− τ 2 + τI{yi+u(l)i ≤zτi}
+ τI{yi+u(k)i ≤zτi}

− I{yi+u(l)i ≤zτi}
I{yi+u(k)i ≤zτi}

⃓⃓⃓⃓
=

1

n

n∑︂
i=1

||xi||2
⃓⃓⃓⃓
τI{yi+u(l)i ≤zτi}

− τI{yi+u(l)i ≤ẑτi}
+ τI{yi+u(k)i ≤zτi}

− τI{yi+u(k)i ≤ẑτi}

+ I{yi+u(l)i ≤ẑτi}
I{yi+u(k)i ≤ẑτi}

− I{yi+u(l)i ≤zτi}
I{yi+u(k)i ≤zτi}

⃓⃓⃓⃓
≤ 1

n

n∑︂
i=1

||xi||2

×
Å⃓⃓⃓⃓
τI{yi+u(l)i ≤zτi}

− τI{yi+u(l)i ≤ẑτi}

⃓⃓⃓⃓
(*)

+

⃓⃓⃓⃓
τI{yi+u(k)i ≤zτi}

− τI{yi+u(k)i ≤ẑτi}

⃓⃓⃓⃓
(**)

+ |I{yi+u(l)i ≤ẑτi}
I{yi+u(k)i ≤ẑτi}

− I{yi+u(l)i ≤zτi}
I{yi+u(k)i ≤zτi}

⃓⃓⃓⃓ã
. (***)

Now, focusing on the last inequality, by Lemma 3.4.1, the first term (∗) is bounded

above by

I{|yi+u(l)i −zτi |≤|ẑτi−zτi |}
.

We only have to show the first of these terms are op(1), since the proof of second term

and third term are analogous. To simplify notation, let ∆i ≡ ẑτi − zτi . For any η > 0
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and any ε,

P

ï
1

n

n∑︂
i=1

||xi||2I{|yi+u(l)i −zτi |≤|∆i|}
> η

ò
≤ P

ï
1

n

n∑︂
i=1

||xi||2I{|yi+u(l)i −zτi |≤|ε|} > η

ò
+ P

ï
sup
1≤i≤n

|∆i| > ε

ò
.

By the Markov’s inequality, and the fact that conditional on X = x,

E
[︁
I{|yi+u(l)i −zτi |≤|ϵ|}

]︁
≤ 2ϵ,

we can show that P
(︁
1
n

∑︁n
i=1 ||xi||2I{|yi+u(l)i −zτi |≤|ϵ|} > η

)︁
goes to 0 with ε.

Then, we have to show that ∆i = op(1) uniformly in i. Note that condition A8

states that E
[︁
sup||β−βτ ||≤δ |T (1)(x′

iβ)|l||xi||2
]︁

for l = 1, 2 and for some δ > 0, which

implies that

sup
1≤i≤n

sup
||β−βτ ||≤δ

|T (1)(x′
iβ)| × ||xi|| = op(1).

Thus, by mean-value expansion,

sup
1≤i≤n

|ẑτi − zτi | = op(1).

Under condition A9, this convergence must be faster than cn; that is, for some suffi-

ciently large n,

P

ï
sup
1≤i≤n

|ẑτi − zτi | ≤ ϵcn

ò
≥ 1− δ

for any δ > 0 and ε > 0. Hence, ∆i = op(1). The proof of the second term (∗∗)

is analogous to that of (∗). Now we turn to the third term (∗ ∗ ∗). Note that by
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Lemma 3.4.2, it is bounded above by

I{|yi+u(l)i −zτi |≤|ẑτi−zτi |}
+ I{|yi+u(k)i −zτi |≤|ẑτi−zτi |}

.

The remaining proof to show the sum is op(1) is then analogous to that of the first term

(∗) and the second term (∗∗). Use the same rationale, I{|yi+u(l)i −zτi |≤|ẑτi−zτi |}
= op(1)

and I{|yi+u(k)i −zτi |≤|ẑτi−zτi |}
= op(1) and it immediately follows that the sum of them is

op(1) as well. Therefore, all the starred terms are op(1), and for n sufficiently large,

B̂n − ˜︁Bn
P−→ 0.

Recall that ˜︁Bn
P−→ B, by Slutsky’s Theorem,

B̂n
P−→ B,

as n → ∞. Thus, B̂n is a consistent estimator of matrix B. The proof of general

expression of B̂n is complete.

The remainder of proof shows the specific expression of consistent estimator

B̂n, which is based on the given statistical distributions of noise U . A more specific

expression helps compute numerical solution of covariance estimate when simulating

the study. By the fact that B̂n ≡ 1
n

∑︁n
i=1 ω̂ilω̂

′
ik, to simplify the notation, put
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ẑτi ≡ T−1(x′
iβ̂τ ) ≡ Q̂z(τ |xi). We expand 1

n

∑︁n
i=1 ω̂ilω̂

′
ik as

1

n

n∑︂
i=1

(τ − I{yi + u
(l)
i ≤ ẑτi})(τ − I{yi + u

(k)
i ≤ ẑτi})

=
1

n

n∑︂
i=1

[︁
τ 2 − τI{yi + u

(l)
i ≤ ẑτi} − τI{yi + u(k) ≤ ẑτi}

+ I{yi + u
(l)
i ≤ ẑτi}I{yi + u

(k)
i ≤ ẑτi}

]︁
=

1

n

n∑︂
i=1

[︁
τ 2 − τI{u(l)i ≤ ẑτi − yi} − τI{u(k) ≤ ẑτi − yi}

+ I{u(l)i ≤ ẑτi − yi}I{u
(k)
i ≤ ẑτi − yi}

]︁
=

1

n

n∑︂
i=1

[︁
τ 2 − 2τFU(ẑτi − yi) + τFU(ẑτi − yi)2

]︁
.

The last two equalities hold because 1
n

∑︁n
i=1 I{u

(l)
i ≤ ẑτi−yi} converges in probability

to E[I{u(l)i ≤ ẑτi − yi}] as n→∞ by the law of large numbers. Since U follows some

specific distributions, E[I{u(l)i ≤ ẑτi − yi}] ≡ P (U ≤ ẑτi − yi) ≡ FU(ẑτi − yi). The

convergence of the term 1
n

∑︁n
i=1 I{u

(k)
i ≤ ẑτi − yi} is analogous. Substituting the cdf

that integrates the pdf of U , we get desired results.

Finally, we obtain the consistent estimator of matrix D. Although the consis-

tent estimator D̂n is complicated to obtain, J. L. Powell (1984) proposed an approach

to estimate D̂n. In particular, the probability density at Z = z equals to the proba-

bility that Z is greater or equal to ⌊z⌋ and smaller than ⌊z + 1⌋, where ⌊c⌋ is a floor

function that returns the largest integer smaller than or equals to c. Thus, the condi-

tional density function of Z at QZ(τ |xi) can be written as the conditional expectation

of an indicator function

I{⌊QZ(τ |xi)⌋ ≤ Zi < ⌊QZ(τ |xi) + 1⌋. (3.62)

For the monotonic transformation, the density of T (Z; τ) at x′
iβτ can be obtained by
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multiplying it by some Jacobian matrix of the transformation function to the density

function of Z at QZ(τ |xi). Since the floor function is not continuous, Machado and

Silva (2005) defined the alternative continuous function to approximate the floor

function as follows,

Fn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⌊x⌋ − 1

2
+ x−⌊x⌋

2cn
if x− ⌊x⌋ < cn and x ≥ 1

⌊x⌋ if cn ≤ x− ⌊x⌋ < 1− cn or x < 1

⌊x⌋+ 1
2
+ x−⌊x⌋−1

2cn
if x− ⌊x⌋ ≥ 1− cn.

By Theorem 3.4.2, we can see that the distribution of U is orthogonal to the matrix

D, which actually leads to an identical estimator D̂n given by Machado and Silva

(2005).

Theorem 3.4.7 (Consistent Estimator of Matrix D, Machado and Silva, 2005).

Let

D̂n ≡
1

n

n∑︂
i=1

wîxix
′
i,

with

ŵi ≡ T (1)(x′
iβ̂τ I(Fn(Q̂Zi

(τ |x)) ≤ Zi < Fn(Q̂Zi
(τ |x) + 1)),

where Q̂Zi
(τ |x) ≡ T−1(x′

iβτ ) is the estimated τ th conditional quantile of Z, and

continuous function Fn(·) is given above. Under all conditions A1 to A9,

D̂n
P−→D,

as n→∞. Hence, D̂n is a consistent estimator of matrix D.

Proof.

Let ˜︁Dn =
1

n

n∑︂
i=1

ωixix
′
i,
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with

ωi = T (1)(x′
iβτ ) {Fn(zτ ) ≤ Zi < Fn(zτ + 1)} ,

where zτ is used as shorthand for T−1(x′
iβτ ) = QZ(τ |xi). Notice that as n passes to

∞, Fn(x)→ ⌊x⌋. Thus, by dominated convergence, as n→∞,

E[ωixix
′
i]→ E

[︁
T−1(x′

iβτ )) {⌊zτ⌋ ≤ Zi < ⌊zτ + 1⌋}xix′
i

]︁
,

with a simple change of variable, it equals E
[︁
fT (x

′
iβτ )xix

′
i

]︁
. The law of large numbers

then yields ˜︁Dn
P−→D.

The remainder of proof shows D̂n − ˜︁Dn
P−→ 0 so that D̂n

P−→ D, see Machado and

Silva (2005).

Before we end this chapter, the sandwich estimator of variance-covariance ma-

trices of simple jittering estimators and average jittering estimators are given. They

are practically useful in statistical inference on jittering QR model with finite sample,

where variation of sample estimate can be estimated more easily.

Corollary 3.4.3.

By the Slutsky’s theorem, the sandwich estimator of variance-covariance matrix ofˆ︃Cov(√n(β̂τ − βτ )) is

ˆ︃Cov(√n(β̂τ − βτ )) = D̂
−1
ÂD̂

−1
, (3.63)

and the nature sandwich form estimator of variance-covariance matrix ofˆ︃Cov(√n(β̂mτ − βτ )) is

ˆ︃Cov(√n(β̂mτ − βτ )) =
1

m
D̂

−1
ÂD̂

−1
+

Å
1− 1

m

ã
D̂

−1
B̂D̂

−1
, (3.64)
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where m is the number of jittered samples.

Corollary 3.4.4.

The sandwich estimator of variance-covariance matrices for β̂τ and β̂
m

τ are

ˆ︃Cov(β̂τ ) = 1

n
D̂

−1
ÂD̂

−1
, (3.65)

and ˆ︃Cov(β̂mτ ) = 1

n

Å
1

m
D̂

−1
ÂD̂

−1
+

Å
1− 1

m

ã
D̂

−1
B̂D̂

−1
ã
, (3.66)

respectively.
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Chapter 4

Numerical Study

In order to evaluate the small sample performance of our QR method, we conduct

two simulation studies: counts from discrete distributions, and that from truncated

continuous distributions.

4.1 True QR Coefficients and Estimates

Due to non-linearity of the quantiles, the true coefficients of QR model may vary

with quantiles, and hence may not be the value we set. In practice, true value can be

obtained from a sufficiently large sample with size N where we call it pseudo popula-

tion, denoted by βτ , which is asymptotically equivalent to true parameter according

to Theorem 3.4.2. Therefore, let (Y pop
[N ] ,X

pop
[N×p]) be a generated population under the

conditions and consist of QR response and matrix of predicts. The mechanism of

defining true QR coefficients and obtaining QR estimates is summarized as follows,

1. True QR coefficients βτ : Generate population with large size N . True values
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βτ are obtained using corresponding QR method,

Y pop =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
y1

y2
...

yN

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , Xpop =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x11 x12 · · · x1p

x21 x22 · · · x2p
...

... . . . ...

xN1 xN2 · · · xNp

⎞⎟⎟⎟⎟⎟⎟⎟⎠
QR method
=======⇒ βτ . (4.1)

2. QR estimates β̂
(k)

τ in the k-th simulation run: Let (y
(k)
i ,x

(k)
i )ni=1 be a size n

random sample selected from the generated population in the k = 1, ..., S-

th simulation run. The estimates β̂
(k)

τ are obtained from that sample using

corresponding QR method,

y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
y
(k)
1

y
(k)
2

...

y
(k)
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x
(k)
11 x

(k)
12 · · · x

(k)
1p

x
(k)
21 x

(k)
22 · · · x

(k)
2p

...
... . . . ...

x
(k)
n1 x

(k)
n2 · · · x

(k)
np

⎞⎟⎟⎟⎟⎟⎟⎟⎠
QR method
=======⇒ β̂

(k)

τ . (4.2)

To carry out simulations, we set the number of replications used in both simulations

as S = 1000.

Assessments of proposed QR method are based on bias, mean squared error

(MSE), asymptotic standard error (SE) and sample standard deviation (SD). The

rejection rate (RR) and power (1− β) are for assessment of hypothesis tests. Notice

that the relative efficiencies (REF) of estimators can be calculated with MSEs directly,

which are not included in the tables.
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4.2 Simulation Study I: QR with Discrete Distributed

Data

In the 1st simulation we assess the performance of QR method when modeling the

counts from four discrete distributions: Poisson, negative binomial (NB), zero-inflated

Poisson (ZIP), and zero-inflated negative binomial (ZINB) distributions. We simu-

lated the proposed QR method on Poisson and negative binomial data to account for

different variance structures.

4.2.1 Data and Simulation Setup

Pseudo population (yi,xi)
N
i=1 is generated from the aforementioned discrete distribu-

tions conditional on predictors. Sample with size n is randomly selected from the

population. Data generation for Poisson model and negative binomial model are

straightforward. We discuss a little details about sampling from zero-inflated Poisson

model and zero-inflated negative binomial model. Erdman and Sinko (2008) intro-

duced that for each observation i, two data generation processes run simultaneously,

where the result of a Bernoulli trial determines the process. Process 1 is selected with

probability φi ∈ [0, 1] and process 2 with probability 1−φi, where φi is called propor-

tion of zero inflation. Thus, process 1 generates only zeros, and process 2 generates

discrete variables from g(yi|xi), where g(yi|xi), i = 1, 2, ..., denotes either Poisson or

negative binomial model. Then, we generate the ith observation

yi ∼

⎧⎪⎪⎨⎪⎪⎩
0 with probability φi

g(yi|xi) with probability 1− φi.
(4.3)

For fixed proportion of zero inflation, let φi = φ. Also, by letting φ = 0, the zero-

inflated distribution becomes its regular version (i.e., non zero-inflation).
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To compare the simulation results clearly, we generate count variable Y ac-

cording to the same non-linear conditional mean

µi = exp(β0 + xi1β1 + xi2β2), (4.4)

where β = (β0, β1, β2)
′ is vector of regression coefficients. The first predictor is

initially sampled from beta distribution,

x∗i1 ∼ Beta(5/3, 5/3),

and then centered and scaled, i.e., xi1 = (x∗i1 − x̄∗i1)/s.d.(x∗1). The second predictor is

a dummy variable,

xi2 =

⎧⎪⎪⎨⎪⎪⎩
1 with probability 0.5

0 with probability 0.5.

Four experiments for QR response Y following distributions below are simulated:

Case 1. Poisson distribution with rate λi = µi;

Case 2. Zero-inflated Poisson distribution with rate λi = µi, and the proportion of zero

inflation of 0.2;

Case 3. Negative binomial distribution with mean µi and variance σ2
i = µi + 0.5µ2

i .

Case 4. Zero-inflated negative binomial distribution with mean µi, variance σ2
i = µi +

0.5µ2
i , and the proportion of zero inflation of 0.2.

Figure 4.1 provides an overview of count data following four different discrete dis-

tributions. The red curves indicate quantiles of distribution on τ = (0.25, 0.5, 0.75).

As we can see, all counts are exponentially increasing with x1, especially for those

following negative binomial and zero-inflated negative binomial. Over-dispersion is

displayed as well (see Fig. 4.1c and Fig. 4.1d). Also, a number of zero values are
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(a) Case 1. Pois. (b) Case 2. Zero-inflated Pois.

(c) Case 3. N.binomial (d) Case 4. Zero-inflated n.binomial

Figure 4.1: Count Y with respects to x1 generated from four discrete distributions.
Red lines indicate quantiles of distributions on τ = (0.25, 0.5, 0.75)
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clearly shown at the bottom of graphs of zero-inflated distributions (see Fig. 4.1b and

Fig. 4.1d), which affect the quantiles of distribution on lower levels, i.e., τ = 0.25.

In the simulation, we set β0 = β1 = 1 and β2 = 0. The zero effect allows us to

investigate the finite-sample behaviour of hypothesis tests based on simple jittering

estimate β̂τ and average jittering estimate β̂
A

τ . Also, their asymptotic covariance

matrices can be estimated. In this simulation, we set a large population with size of

N = 50000 and sample with size of n = (200, 500), and τ = (0.25, 0.5, 0.75).

To estimate the asymptotic covariance matrix, a sequence cn should be de-

cided. It can be shown that predictors x1 and x2 are Op(1). We choose the sequence

cn = 0.5 ln(ln(n))/
√
n to satisfy the condition A9 since its limit

lim
n→∞

0.5 ln(ln(n))/
√
n

1/
√
n

= lim
n→∞

0.5 ln(ln(n))

(4.5)

increases without bound as n → ∞ but very slowly due to double logarithmic func-

tions. It is also worth-noting that the choice of sequence cn is not unique as long as

the condition is satisfied, but restricted by the behaviours of predictors and corre-

sponding transformation if any.

For our optimized jittering methods, distribution parameters are obtained by

using the MCEM algorithm introduced in Section 3.3. Constant MC sample size of

5000 and burn-in size of 2500 are used. To ensure the independence of samples from

MC-step in each iteration, thinning with h = 5 is preferred.

4.2.2 QR Methods and Transformations

The performance of jittering approaches and ordinary QR method are compared.

Also, The performance of simple jittering methods and average jittering methods are

compared. To see the performance of average jittering technique, jittered sample
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size of m = (50, 150) are used. Therefore, QR methods and their acronyms used in

simulation are as follows:

1. Ordinary quantile regression method (ORD);

2. Simple uniform-jittering quantile regression method (UJ);

3. Average uniform-jittering quantile regression method with jittered samples m =

50 (AUJ50);

4. Simple Tweedie-jittering quantile regression method (TJ);

5. Average Tweedie-jittering quantile regression method with jittered samples m =

50 (ATJ50);

6. Average Tweedie-jittering quantile regression method with jittered samples m =

150 (ATJ150);

7. Simple Beta-jittering quantile regression method (BJ);

8. Average beta-jittering quantile regression method with jittered samples m = 50

(ABJ50); and

9. Average beta-jittering quantile regression method with jittered samplesm = 150

(ABJ150).

Since the data are exponential, different transformations of response are applied for

all regression methods. For ordinary quantile regression method, we simply apply

the logarithmic transformation of counts. Since no additional noises are added, the

transformation is unconditional to quantile level τ .

T (Y ; τ) =

⎧⎪⎪⎨⎪⎪⎩
log(Y ) if Y > 0

log(ς) if Y ≤ 0,

(4.6)
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where ς is small positive number and τ is the quantile. The QR model is specified as

QT (Y ;τ)(τ |x) = x′βτ , (4.7)

where βτ is the vector of QR coefficients. For jittering and average-jittering methods,

logarithmic transformation is applied to the jittered response, Z = Y + U , that is,

T (Z; τ) =

⎧⎪⎪⎨⎪⎪⎩
log(Z −QU(τ)) if Z > QU(τ)

log(ς) if Z ≤ QU(τ),

(4.8)

and the corresponding QR model is

QT (Z;τ)(τ |x) = x′βτ , (4.9)

where U is additive noise following unif[0, 1) for uniform jittering method, Twp(µ, ϕ)

for Tweedie jittering method, and Beta(a, b) for beta jittering methods.

4.2.3 Comparison of Different QR Methods

In this section S = 1000 simulation runs of QR for counts using different methods

will be analyzed. We report average bias (bias), mean squared error (MSE) and

relative efficiency (REF ) of the estimates of βτ0, βτ1 and βτ2 of QR model by us-

ing seven methods mentioned in Section 4.2.2. Also, results from the simulations

of four discrete distributions (Poisson, negative binomial, zero-inflated Poisson and

zero-inflated negative binomial) are reported in following Tables.

Table 4.1 and Table 4.1A report the biases and MSEs of the estimators using

different methods when counts follow Poisson, negative binomial and corresponding

zero-inflated distributions, respectively with samples size n = (200, 500). Ordinary
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QR method gives large biases and MSEs and low relative efficiencies of estimators

especially on low quantiles, implying a serious systematic bias due to discreteness.

Also, ordinary method is unable to estimate the QR parameters for both zero-inflated

Poisson and zero-inflated negative binomial distribution on τ = 0.25 due to massive

zeros.

Estimators from both proposed jittering methods are approximately 10% ∼

50% more efficient than that of uniform-jittering methods depending on the distri-

butions and quantiles. This is as expected because the proposed method aims to

optimize the model fit so that the performance of the estimator obtained by the pro-

posed jittering methods is improved. Also, it is interesting to see that the biases and

MSEs of estimators using our optimized jittering method are small at low quantile of

zero-inflation.

Now, let us compare Tweedie and Beta jittering methods and their average

jittering versions. The biases of estimators between regular jittering methods and av-

erage jittering methods are slightly different, whereas the average jittering methods

can provide extra 10% ∼ 80% higher efficiency of estimator across four combinations

of distribution and quantiles. This outcome is similar to Machado’s study (2005)

whose efficiency of estimator is higher when averaging out noises. However, increas-

ing the value of m does not always lead to a significant improvement of efficiency.

For example, when we increase m from 50 to 150, the biases and MSEs of estimators

are only slightly improved by 1% ∼ 5% roughly. Therefore, recommended number of

jittered sample is m = 50. In short, average jittering methods are suggested to use

in order to obtain more efficient estimates. The Tweedie and Beta jittering methods,

as well as their average jittering version, exhibit similar performance. Beta jittering

method provides slightly higher estimator efficiency on average. But importantly, the

algorithm runtime of Beta jittering method are always shorter than that of Tweedie

jittering method. Therefore, Beta jittering method is much more flexible to use in
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practice.

Table 4.1A in Appendix shows the biases, MSEs and REFs of estimators when

Y follows Poisson, negative binomial and corresponding zero-inflated versions, re-

spectively, with sample size n = 500. The performance of different QR methods are

similar to those observed from Table 4.1 but with some differences. The increase in

sample size significantly reduces the biases and mean squared errors of estimators

observed from all jittering methods but maintains the relative efficiencies.

In a nutshell, Tweedie and Beta jittering methods grant QR the ability to

model counts, with better performance than uniform jittering methods. Applying

the technique of averaging-noise out and increasing sample size improve the efficiency

and reduce bias of estimator.

Table 4.1: Bias (bias) and mean squared errors (MSE) of the estimators of β0, β1, and
β2 using different methods (OQR, TJQR, ATJQR, BJQR, ABJQR, UJQR, AUJQR)
at three quantiles (0.25, 0.5, 0.75). Sample size n = 200.

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

Case 1. Poisson

0.25 ORD 0.6291 2.8557 -0.4424 1.4117 -0.0062 0.4466

UJ 0.0293 0.0177 -0.0048 0.0098 -0.0306 0.0174

AUJ 0.0226 0.0119 -0.0052 0.0055 -0.0334 0.0161

TJ 0.0213 0.0191 -0.0026 0.0099 -0.0369 0.0210

ATJ50 0.0082 0.0113 0.0010 0.0052 -0.0256 0.0152

ATJ150 -0.0091 0.0078 0.0031 0.0030 -0.0011 0.0109

BJ 0.0185 0.0185 -0.0033 0.0101 -0.0267 0.0198

ABJ50 0.0112 0.0107 -0.0083 0.0048 -0.0237 0.0146

ABJ150 -0.0067 0.0079 0.0031 0.0031 0.0033 0.0121

Continued on next page
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Table 4.1 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

0.5 ORD -0.0262 0.0193 0.0182 0.0121 0.0166 0.0176

UJ 0.0127 0.0088 0.0027 0.0058 -0.0152 0.0105

AUJ -0.0137 0.0071 0.0097 0.0042 0.0092 0.0083

TJ 0.0018 0.0082 0.0022 0.0054 -0.0130 0.0098

ATJ50 -0.0072 0.0061 0.0001 0.0029 0.0028 0.0081

ATJ150 -0.0036 0.0058 0.0142 0.0029 -0.0071 0.0069

BJ 0.0024 0.0084 0.0031 0.0049 -0.0147 0.0094

ABJ50 0.0027 0.0065 0.0088 0.0039 -0.0210 0.0087

ABJ150 -0.0051 0.0063 0.0109 0.0039 -0.0032 0.0081

0.75 ORD -0.0050 0.0075 0.0050 0.0038 -0.0039 0.0120

UJ -0.0196 0.0103 0.0057 0.0061 0.0165 0.0131

AUJ -0.0194 0.0089 0.0093 0.0051 0.0145 0.0116

TJ -0.0168 0.0069 0.0064 0.0038 0.0074 0.0085

ATJ50 -0.0209 0.0055 0.0055 0.0028 0.0175 0.0069

ATJ150 -0.0066 0.0054 0.0042 0.0027 0.0000 0.0068

BJ -0.0237 0.0064 0.0055 0.0039 0.0177 0.0085

ABJ50 -0.0181 0.0054 0.0052 0.0051 0.0147 0.0118

ABJ150 -0.0158 0.0052 0.0072 0.0030 0.0062 0.0071

Case 2. Zero-inflated Poisson

0.25 ORD - - - - - -

UJ -0.1541 0.1699 -0.1316 0.1492 -0.0400 0.2872

AUJ -0.0876 0.1047 -0.1211 0.0949 -0.0549 0.1598

TJ -0.1386 0.1641 -0.1143 0.1285 -0.0334 0.2301

Continued on next page
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Table 4.1 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

ATJ50 -0.0519 0.1141 -0.1206 0.0894 -0.0562 0.1549

ATJ150 -0.0643 0.1120 -0.1261 0.0893 -0.1156 0.1539

BJ -0.0956 0.1592 -0.0900 0.1247 -0.0834 0.2551

ABJ50 -0.0544 0.1053 -0.1199 0.0921 -0.0694 0.1580

ABJ150 -0.0424 0.1020 -0.1040 0.0904 -0.0306 0.1541

0.5 ORD -0.1346 0.3638 0.1346 0.2808 -0.0137 0.0742

UJ 0.0027 0.0210 0.0013 0.0105 -0.0080 0.0254

AUJ -0.0047 0.0163 -0.0026 0.0086 0.0089 0.0205

TJ -0.0039 0.0197 -0.0037 0.0094 0.0149 0.0246

ATJ50 -0.0080 0.0151 -0.0007 0.0074 -0.0076 0.0189

ATJ150 -0.0198 0.0150 0.0007 0.0063 0.0056 0.0179

BJ -0.0078 0.0191 -0.0045 0.0099 0.0070 0.0204

ABJ50 0.0113 0.0147 0.0078 0.0074 -0.0429 0.0203

ABJ150 -0.0065 0.0136 -0.0016 0.0072 0.0303 0.0183

0.75 ORD 0.0178 0.0195 -0.0214 0.0118 0.0178 0.0240

UJ -0.0262 0.0110 0.0140 0.0061 0.0179 0.0134

AUJ -0.0226 0.0093 0.0101 0.0052 0.0206 0.0123

TJ -0.0191 0.0093 0.0206 0.0054 0.0033 0.0132

ATJ50 -0.0061 0.0078 0.0121 0.0042 -0.0066 0.0117

ATJ150 -0.0060 0.0075 -0.0099 0.0035 -0.0051 0.0111

BJ -0.0411 0.0087 0.0302 0.0049 0.0213 0.0114

ABJ50 -0.0274 0.0094 0.0183 0.0054 0.0045 0.0111

ABJ150 -0.0274 0.0079 0.0111 0.0040 0.0166 0.0103

Continued on next page
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Table 4.1 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

Case 3. Negative binomial

0.25 ORD 0.0556 0.4045 -0.0444 0.0455 -0.0141 0.6098

UJ -0.0236 0.0542 0.0215 0.0335 -0.0477 0.0782

AUJ 0.0289 0.0254 0.0183 0.0128 -0.0801 0.0545

TJ 0.0281 0.0351 -0.0126 0.0199 -0.0516 0.0650

ATJ50 0.0275 0.0245 -0.0052 0.0101 -0.0523 0.0473

ATJ150 0.0116 0.0332 0.0011 0.0131 -0.0053 0.0599

BJ 0.0327 0.0331 -0.0061 0.0191 -0.0527 0.0604

ABJ50 -0.0057 0.0215 0.0036 0.0105 -0.0260 0.0436

ABJ150 0.0206 0.0213 -0.0091 0.0103 -0.0387 0.0324

0.5 ORD -0.0928 0.1605 0.1094 0.1604 -0.0418 0.0800

UJ -0.0061 0.0233 -0.0071 0.0170 0.0019 0.0367

AUJ -0.0060 0.0191 0.0126 0.0118 0.0016 0.0350

TJ 0.0061 0.0204 0.0145 0.0109 -0.0404 0.0347

ATJ50 0.0014 0.0152 0.0124 0.0092 -0.0348 0.0309

ATJ150 0.0012 0.0145 0.0119 0.0087 0.0255 0.0283

BJ 0.0036 0.0201 0.0118 0.0121 -0.0314 0.0398

ABJ50 0.0098 0.0164 0.0112 0.0096 -0.0252 0.0288

ABJ150 0.0054 0.0160 0.0115 0.0086 -0.0151 0.0256

0.75 ORD -0.0345 0.0276 -0.0246 0.0175 0.0559 0.0527

UJ -0.0465 0.0188 0.0084 0.0110 -0.0018 0.0299

AUJ -0.0539 0.0162 0.0046 0.0082 0.0272 0.0291

TJ -0.0197 0.0150 0.0089 0.0097 -0.0033 0.0255

Continued on next page
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Table 4.1 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

ATJ50 -0.0143 0.0147 0.0072 0.0087 -0.0029 0.0246

ATJ150 -0.0084 0.0124 -0.0068 0.0067 -0.0126 0.0213

BJ -0.0089 0.0138 0.0031 0.0090 -0.0135 0.0267

ABJ50 -0.0175 0.0151 0.0141 0.0071 -0.0190 0.0269

ABJ150 -0.0271 0.0141 0.0144 0.0070 -0.0068 0.0257

Case 4. Zero-inflated negative binomial

0.25 ORD - - - - - -

UJ -0.0503 0.1441 0.0010 0.1157 0.0049 0.2509

AUJ -0.0403 0.0841 0.0078 0.0822 -0.031 0.1539

TJ 0.0122 0.0939 0.0410 0.0955 -0.0615 0.1758

ATJ50 0.0259 0.0617 0.0645 0.0643 -0.0367 0.1064

ATJ150 -0.0211 0.0585 0.0435 0.0591 -0.0299 0.0923

BJ 0.0278 0.0914 0.0393 0.0750 -0.0591 0.1846

ABJ50 0.0331 0.0626 0.0296 0.0635 -0.0382 0.1243

ABJ150 -0.0121 0.0610 0.0156 0.0617 0.0000 0.1121

0.5 ORD -0.5316 2.5768 0.3500 1.3772 0.0144 0.8754

UJ 0.0223 0.0559 0.0061 0.0314 -0.0531 0.0966

AUJ -0.0093 0.0381 0.0047 0.0175 -0.0211 0.0765

TJ 0.0315 0.0366 -0.0096 0.0179 -0.0178 0.0686

ATJ50 0.0213 0.0270 -0.0190 0.0126 -0.0030 0.0535

ATJ150 -0.0129 0.0268 0.0122 0.0115 -0.0022 0.0516

BJ 0.0179 0.0343 -0.0050 0.0181 -0.0256 0.0694

ABJ50 0.0119 0.0321 -0.0020 0.0116 -0.0284 0.0592

Continued on next page
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Table 4.1 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias MSE Bias MSE Bias MSE

ABJ150 0.0111 0.0310 -0.0018 0.0111 0.0258 0.0551

0.75 ORD -0.0472 0.0289 0.0202 0.0237 0.0208 0.0396

UJ -0.0700 0.0302 0.0264 0.0180 0.0268 0.0460

AUJ -0.0495 0.0272 0.0318 0.0189 -0.0117 0.0439

TJ -0.0128 0.0236 -0.0048 0.0196 0.0156 0.0444

ATJ50 -0.0124 0.0223 0.0050 0.0119 0.0045 0.0380

ATJ150 -0.0217 0.0195 0.0138 0.0165 0.0099 0.0419

BJ -0.0146 0.0221 0.0047 0.0134 0.0045 0.0403

ABJ50 -0.0217 0.0209 -0.0062 0.0130 0.0020 0.0363

ABJ150 -0.0156 0.0203 0.0066 0.0113 -0.0097 0.0361

4.2.4 The Estimation of Variances

In this section, we evaluate the variance estimation. The sample standard devia-

tions of optimized jittering estimator β̂τ and average-jittering estimator β̂
(50)

τ and

corresponding asymptotic standard errors are reported in Table 4.2 and 4.2A in Ap-

pendix, respectively for sample sizes of n = 500 and n = 200. We focus on the results

observed from the Table where n = 500 is used, since the asymptotic properties are

much more clearly evaluated with larger sample size. The coverage probabilities, the

percentages of simulation runs when the true QR coefficients falls into (1−α)×100%

Wald confidence intervals constructed based on sandwich estimator of asymptotic co-

variance matrix using formulas in Corollary 3.65 and 3.66, are recorded. Table 4.2

reports the comparison of coverage probabilities of estimators, denoted by P1−α, to
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nominal level of confidence 1− α, respectively according to the sample sizes n = 500

and n = 200. We set levels of confidence with α = (0.01, 0.05, 0.1).

Table 4.2 and Table 4.2A report the comparison of standard deviations of 1000

estimates of the proposed quantile regression models and their corresponding esti-

mated standard errors when counts follow different distributions, respectively based

on sample sizes n = (500, 200). Across four discrete distributions, the difference be-

tween most standard deviations and estimated SEs are small and acceptable. This

shows that the standard errors obtained by estimated variance-covariance matrix are

reliable to construct confidence intervals and conduct parametric hypothesis tests.

However, on lower quantile of counts when following zero-inflated negative binomial,

we observe that the estimated standard errors are moderately larger than correspond-

ing sample standard deviations of estimator. Consider the percentage of excessive ze-

ros, the result is not surprising. On the other hand, when smaller sample size n = 200

is used, the estimated standard errors of estimator using all methods are much larger

than corresponding sample standard deviations. See Table 4.3, the coverage prob-

abilities of βτ2 are much higher than their due nominal levels at lower quantile of

zero-inflated negative binomial (case 4). For other distributions, most values of P0.99,

P0.95 and P0.90 are close to the corresponding nominal levels.

In conclusion, the proposed estimators are asymptotically normally distributed

and inferences are reliable. Compare to results observed in Table 4.3A, the coverage

probability calculated based on larger sample size n = 500 is much more accurate

than sample size n = 200 is used.
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Table 4.2: Standard deviations (s.d.) of 1000 estimates of QR parameters βτ0, βτ1 and
βτ2 and 1000 sample averages of estimated asymptotic standard errors (s.e.) when
counts follow different Poisson, negative binomial and zero-inflated distributions are
reported by using different QR methods (TJ, ATJ50, BJ, ABJ50) based on sample
size n = 500.

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

Case 1. Poisson

0.25 TJ 0.0609 0.0609 0.0450 0.0466 0.0655 0.0682

ATJ50 0.0691 0.0634 0.0433 0.0418 0.0600 0.0639

BJ 0.0791 0.0810 0.0570 0.0594 0.0855 0.0850

ABJ50 0.0641 0.0656 0.0427 0.0454 0.0731 0.0757

0.50 TJ 0.0499 0.0512 0.0452 0.0455 0.0598 0.0635

ATJ50 0.0470 0.0462 0.0382 0.0418 0.0589 0.0635

BJ 0.0572 0.0590 0.0443 0.0445 0.0632 0.0662

ABJ50 0.0528 0.0535 0.0396 0.0400 0.0588 0.0612

0.75 TJ 0.0478 0.0499 0.0371 0.0381 0.0601 0.0599

ATJ50 0.0452 0.0456 0.0332 0.0331 0.0584 0.0562

BJ 0.0494 0.0509 0.0376 0.0384 0.0571 0.0608

ABJ50 0.0469 0.0459 0.0335 0.0335 0.0554 0.0555

Case 2. Zero-inflated Poisson

0.25 TJ 0.2343 0.2348 0.2128 0.2072 0.2247 0.2515

ATJ50 0.1945 0.2091 0.1824 0.1934 0.1853 0.2319

BJ 0.2154 0.2180 0.2098 0.1965 0.2208 0.2542

ABJ50 0.1925 0.2108 0.1876 0.1846 0.1850 0.2453

0.50 TJ 0.0795 0.0810 0.0578 0.0598 0.0907 0.0958

ATJ50 0.0759 0.0790 0.0532 0.0540 0.0898 0.0927

Continued on next page
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Table 4.2 – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

BJ 0.0765 0.0851 0.0534 0.0573 0.0904 0.0964

ABJ50 0.0675 0.0714 0.0426 0.0491 0.0828 0.0867

0.75 TJ 0.0679 0.0658 0.0481 0.0498 0.0691 0.0721

ATJ50 0.0639 0.0617 0.0452 0.0478 0.0637 0.0722

BJ 0.0566 0.0617 0.0431 0.0466 0.0688 0.0723

ABJ50 0.0538 0.0570 0.0392 0.0432 0.0627 0.0685

Case 3. Negative binomial

0.25 TJ 0.1089 0.1101 0.0834 0.0856 0.1678 0.1711

ATJ50 0.1059 0.1062 0.0620 0.0670 0.1481 0.1509

BJ 0.1052 0.1142 0.0845 0.0847 0.1557 0.1588

ABJ50 0.0925 0.0977 0.0603 0.0678 0.1311 0.1398

0.50 TJ 0.1013 0.1024 0.0691 0.0724 0.1197 0.1221

ATJ50 0.0948 0.0101 0.0675 0.0712 0.1114 0.1149

BJ 0.0891 0.0947 0.0669 0.0718 0.1197 0.1275

ABJ50 0.0866 0.0945 0.0637 0.0713 0.1163 0.1265

0.75 TJ 0.0811 0.0825 0.0715 0.0789 0.0968 0.9930

ATJ50 0.0759 0.0762 0.0620 0.0670 0.0881 0.0899

BJ 0.0788 0.0816 0.0621 0.0641 0.1069 0.1126

ABJ50 0.0710 0.0784 0.0539 0.0607 0.0997 0.1088

Case 4. Zero-inflated negative binomial

0.25 TJ 0.1847 0.1989 0.1624 0.1821 0.2089 0.2187

ATJ50 0.1558 0.1723 0.1511 0.1678 0.1756 0.1949

BJ 0.1754 0.1917 0.1672 0.1804 0.2162 0.2311

Continued on next page
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Table 4.2 – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

ABJ50 0.1495 0.1621 0.1552 0.1699 0.1781 0.1964

0.50 TJ 0.0905 0.0943 0.0714 0.0689 0.1321 0.1398

ATJ50 0.0890 0.0868 0.0607 0.0597 0.1209 0.1222

BJ 0.1057 0.1100 0.0744 0.0707 0.1535 0.1601

ABJ50 0.1048 0.1097 0.0619 0.0613 0.1477 0.1512

0.75 TJ 0.1021 0.1068 0.0821 0.0867 0.1432 0.1479

ATJ50 0.0949 0.1015 0.0803 0.0861 0.1240 0.1398

BJ 0.1034 0.1050 0.0767 0.0794 0.1301 0.1311

ABJ50 0.0934 0.0997 0.0757 0.0793 0.1143 0.1162

Table 4.3: Converage probabilities of 1000 estimates of QR parameters βτ0, βτ1 and
βτ2 when counts follow Poisson, negative binomial and zero-inflated distributions are
reported by using different QR methods including simple Tweedie-jittering method,
average Tweedie-jittering method, simple Beta-jittering method, and average Beta-
jittering method. Nominal levels at α = (0.01, 0.05, 0.1), sample size n = 500.

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

Case 1. Poisson

0.25 TJ 0.985 0.931 0.887 0.995 0.935 0.889 0.989 0.947 0.891

ATJ50 0.970 0.963 0.906 0.988 0.942 0.886 0.990 0.951 0.912

BJ 0.991 0.956 0.897 0.988 0.945 0.892 0.985 0.950 0.893

ABJ50 0.989 0.949 0.897 0.992 0.952 0.988 0.982 0.955 0.903

0.50 TJ 0.982 0.943 0.905 0.883 0.955 0.905 0.992 0.947 0.893

ATJ50 0.990 0.950 0.917 0.990 0.950 0.913 0.991 0.952 0.908

Continued on next page
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Table 4.3 – continued from previous page

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

BJ 0.988 0.949 0.894 0.985 0.943 0.892 0.990 0.954 0.902

ABJ50 0.987 0.947 0.897 0.986 0.944 0.902 0.992 0.948 0.906

0.75 TJ 0.985 0.958 0.895 0.986 0.953 0.889 0.992 0.953 0.901

ATJ50 0.988 0.952 0.891 0.983 0.943 0.905 0.987 0.953 0.906

BJ 0.986 0.932 0.890 0.988 0.938 0.878 0.992 0.948 0.904

ABJ50 0.987 0.936 0.897 0.986 0.958 0.911 0.987 0.945 0.893

Case 2. Zero-inflated Poisson

0.25 TJ 0.992 0.965 0.910 0.990 0.953 0.904 0.986 0.942 0.895

ATJ50 0.992 0.957 0.905 0.986 0.945 0.896 0.988 0.946 0.905

BJ 0.995 0.957 0.911 0.994 0.964 0.912 0.988 0.947 0.895

ABJ50 0.994 0.955 0.907 0.991 0.961 0.914 0.988 0.949 0.900

0.50 TJ 0.992 0.958 0.909 0.993 0.958 0.906 0.991 0.953 0.914

ATJ50 0.993 0.960 0.906 0.985 0.943 0.897 0.991 0.949 0.908

BJ 0.998 0.966 0.915 0.990 0.974 0.915 0.984 0.954 0.914

ABJ50 0.994 0.966 0.912 0.996 0.962 0.916 0.989 0.939 0.904

0.75 TJ 0.988 0.945 0.891 0.981 0.943 0.892 0.986 0.947 0.913

ATJ50 0.987 0.954 0.893 0.983 0.958 0.906 0.988 0.947 0.899

BJ 0.994 0.952 0.910 0.994 0.960 0.912 0.988 0.948 0.897

ABJ50 0.986 0.956 0.910 0.994 0.962 0.912 0.986 0.946 0.896

Case 3. Negative binomial

0.25 TJ 0.995 0.957 0.908 0.987 0.941 0.890 0.987 0.947 0.897

ATJ50 0.993 0.943 0.885 0.995 0.955 0.906 0.991 0.952 0.902

BJ 0.998 0.960 0.910 0.994 0.960 0.884 0.990 0.953 0.906
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

ABJ50 0.998 0.968 0.916 0.994 0.958 0.906 0.987 0.942 0.899

0.50 TJ 0.993 0.960 0.911 0.986 0.940 0.899 0.990 0.948 0.910

ATJ50 0.995 0.965 0.915 0.985 0.930 0.885 0.990 0.952 0.899

BJ 0.999 0.962 0.912 0.984 0.940 0.898 0.984 0.949 0.901

ABJ50 0.988 0.962 0.910 0.996 0.960 0.902 0.984 0.946 0.905

0.75 TJ 0.990 0.951 0.902 0.991 0.952 0.908 0.987 0.950 0.892

ATJ50 0.988 0.946 0.890 0.994 0.966 0.916 0.900 0.951 0.902

BJ 0.994 0.942 0.889 0.980 0.939 0.898 0.988 0.948 0.906

ABJ50 0.983 0.948 0.900 0.984 0.965 0.901 0.991 0.949 0.902

Case 4. Zero-inflated negative binomial

0.25 TJ 0.996 0.959 0.910 0.993 0.956 0.907 0.992 0.954 0.906

ATJ50 0.996 0.954 0.905 0.991 0.953 0.895 0.995 0.956 0.921

BJ 0.988 0.940 0.900 0.976 0.939 0.886 0.990 0.962 0.907

ABJ50 0.990 0.938 0.900 0.986 0.966 0.888 0.994 0.952 0.902

0.50 TJ 0.987 0.941 0.893 0.987 0.951 0.898 0.987 0.952 0.902

ATJ50 0.985 0.939 0.888 0.980 0.950 0.885 0.987 0.947 0.899

BJ 0.996 0.966 0.994 0.996 0.946 0.902 0.990 0.946 0.896

ABJ50 0.992 0.960 0.906 0.996 0.958 0.903 0.989 0.954 0.903

0.75 TJ 0.991 0.952 0.907 0.982 0.942 0.891 0.992 0.944 0.903

ATJ50 0.980 0.945 0.905 0.985 0.945 0.905 0.988 0.946 0.903

BJ 0.986 0.958 0.916 0.984 0.946 0.904 0.986 0.944 0.895

ABJ50 0.986 0.954 0.906 0.986 0.944 0.898 0.987 0.946 0.898
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4.2.5 Performance of Statistical Testing

Calculating the rejection rate and power of a test is essential to evaluate the effec-

tiveness and reliability of different statistical tests.

Table 4.4: Rejection rates of S = 1000 null hypotheses based on the quantile regres-
sion parameters βτ2 are reported when using different quantile regression methods
TJ, ATJ50, BJ, and ABJ50. Nominal levels α = (0.01, 0.05, 0.1) and sample sizes
n = (200, 500).

n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Case 1. Poisson

0.25 TJ 0.010 0.047 0.083 0.012 0.063 0.109

ATJ50 0.016 0.039 0.087 0.010 0.049 0.098

BJ 0.015 0.054 0.111 0.015 0.050 0.107

ABJ50 0.010 0.065 0.090 0.012 0.045 0.097

0.50 TJ 0.013 0.049 0.091 0.008 0.053 0.097

ATJ50 0.006 0.045 0.088 0.009 0.048 0.092

BJ 0.018 0.059 0.098 0.010 0.046 0.098

ABJ50 0.015 0.064 0.096 0.008 0.052 0.094

0.75 TJ 0.014 0.047 0.109 0.008 0.047 0.099

ATJ50 0.014 0.045 0.089 0.013 0.047 0.104

BJ 0.019 0.063 0.102 0.008 0.046 0.096

ABJ50 0.008 0.053 0.100 0.013 0.055 0.107

Case 2. Zero-inflated Poisson

0.25 TJ 0.008 0.039 0.073 0.014 0.058 0.105

ATJ50 0.015 0.048 0.078 0.012 0.054 0.095

Continued on next page
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Table 4.4 – continued from previous page

n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

BJ 0.011 0.042 0.072 0.012 0.053 0.105

ABJ50 0.010 0.041 0.072 0.012 0.051 0.100

0.50 TJ 0.010 0.049 0.101 0.009 0.047 0.086

ATJ50 0.006 0.049 0.095 0.009 0.051 0.092

BJ 0.010 0.043 0.085 0.015 0.044 0.089

ABJ50 0.005 0.035 0.085 0.011 0.061 0.095

0.75 TJ 0.016 0.060 0.096 0.015 0.053 0.097

ATJ50 0.010 0.044 0.088 0.012 0.053 0.101

BJ 0.019 0.058 0.104 0.012 0.053 0.104

ABJ50 0.018 0.058 0.103 0.015 0.054 0.104

Case 3. Negative binomial

0.25 TJ 0.015 0.049 0.088 0.013 0.053 0.103

ATJ50 0.008 0.043 0.083 0.009 0.048 0.098

BJ 0.008 0.045 0.084 0.010 0.047 0.094

ABJ50 0.010 0.040 0.081 0.013 0.058 0.105

0.50 TJ 0.018 0.056 0.097 0.010 0.052 0.090

ATJ50 0.008 0.044 0.089 0.010 0.048 0.101

BJ 0.014 0.062 0.106 0.014 0.051 0.097

ABJ50 0.011 0.040 0.089 0.016 0.054 0.095

0.75 TJ 0.010 0.044 0.105 0.013 0.050 0.102

ATJ50 0.021 0.068 0.107 0.010 0.049 0.098

BJ 0.018 0.050 0.098 0.011 0.052 0.094

ABJ50 0.016 0.046 0.100 0.009 0.051 0.098

Continued on next page
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Table 4.4 – continued from previous page

n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Case 4. Zero-inflated Negative binomial

0.25 TJ 0.004 0.037 0.078 0.008 0.046 0.094

ATJ50 0.005 0.041 0.079 0.005 0.044 0.083

BJ 0.007 0.035 0.078 0.010 0.038 0.093

ABJ50 0.007 0.028 0.054 0.006 0.041 0.094

0.50 TJ 0.014 0.050 0.095 0.013 0.048 0.098

ATJ50 0.010 0.053 0.092 0.013 0.053 0.101

BJ 0.019 0.047 0.091 0.010 0.054 0.104

ABJ50 0.015 0.066 0.110 0.011 0.046 0.097

0.75 TJ 0.023 0.064 0.104 0.008 0.056 0.097

ATJ50 0.010 0.047 0.096 0.012 0.056 0.097

BJ 0.018 0.061 0.106 0.015 0.055 0.104

ABJ50 0.015 0.056 0.098 0.012 0.053 0.102

Table 4.4 reports the comprehensive overview of the percentage of rejecting the null

hypothesis H0 : βτ2 = 0 vs. H0 : βτ2 ̸= 0 using different jittering methods across four

discrete distributions at nominal levels of α = (0.01, 0.05, 0.10), respectively, where

the sample sizes are n = (200, 500). The rejection rates of H0, when n = 200, are

found to be mildly further away from the nominal levels, especially for the lower

quantile of zero-inflated negative binomial distribution (Case 4). When the sample

size is increased to n = 500, the rejection rates of H0 using all methods on lower

quantile of zero-inflated distributions are also close to the corresponding nominal

levels. Therefore, the statistical tests associated with our QR methods are both

effective and reliable.
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Next, we conduct a series of power analyses to assess the performance of the

statistical test when testing null hypothesis H0 : βτ1 = 0 vs. H0 : βτ1 ̸= 0. The

five true values represent the effect size. The objective is to check the capacity

of a statistical test to correctly reject a false null hypothesis, with the given size

of effect. Firstly. Table 4.5 and 4.5A report the rejection rates of null hypothesis

H0 : βτ1 = 0 against alternative regarding QR parameter βτ1 with varying effect size

of (0.2, 0.4, 0.6, 0.8, 1.0) and with sample sizes n = (200, 500). The results find all QR

methods (TJ, TJ50, BJ, BJ50) give an increasing power of the test with the effect size,

which implies an enhanced probability of correctly identifying an effect. Many of them

even reach the power of 100% when effect size is 1.0. The power of the test associated

with average jittering (ATJ50, ABJ50) are much higher than simple jittering (TJ,

BJ), especially on lower quantile of distribution. More specifically, for Poisson and

negative binomial distributions, the powers of the test using all proposed methods are

all greater than 80% and continue to increase across three quantiles. This solidifies

the capacity of the test to identify from small to large effects when the observations

follow Poisson and negative binomial distributions. When the observations follow

zero-inflated Poisson (Case 3) and zero-inflated negative binomial (Case 4), however,

the powers of test using all proposed methods become lower especially on low quantile

τ = 0.25. The possible reason regarding the lower power is that the excessive zeros

make the standard errors significantly larger, making effect harder to detect. This

evidence can be found in Table 4.2. Also, the presence of massive zeros dilutes the

observable effect size. On the low quantile of zero-inflated distribution, the dependent

variable Y often equals zero regardless of the value of predictor X, making identifying

an effect becomes difficult. On the other hand, insufficient sample size also contributes

to the worse statistical test’s capacity of identifying an effect. When we increase the

sample size to n = 500, the variability of regression estimator decreases, and the

powers of the test associated with proposed methods are significantly increased for
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all distributions. In most of the cases the tests are able to 100% correctly reject a

false null hypothesis, detecting small to large effects. It is worth noting that after the

sample size increases, the threshold of effect size at which the test demonstrates high

efficacy in detecting effects (i.e., 1− β ≥ 80%) becomes 0.6, which is a medium effect

size (Cohen, 1988, p. 25), the power of the test associated with proposed method can

detect a medium effect size with n = 500 even though excessive zeros are present.

In conclusion, the hypothesis test associated with proposed methods is capable

of fairly controlling the type I error. The performance of hypothesis test that detects

an effect is generally good. By increasing sample sizes n and jittered samples size

m, hypothesis test associated with proposed methods can detect much smaller effect

size. Therefore, the parametric hypothesis tests underpinning the proposed methods

demonstrate reliable efficacy for hypothesis test.

Table 4.5: Power of S = 1000 hypotheses test (i.e., 1− β) as related to the quantile
regression parameters βτ1 are reported by using different quantile regression methods
TJ, ATJ50, BJ, and ABJ50. Nominal level α = 0.05 and sample size n = 200.

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

Case 1. Poisson

0.25 TJ 0.862 1.000 1.000 1.000 1.000

ATJ50 0.947 1.000 1.000 1.000 1.000

BJ 0.842 1.000 1.000 1.000 1.000

ABJ50 0.942 1.000 1.000 1.000 1.000

0.50 TJ 0.922 1.000 1.000 1.000 1.000

ATJ50 0.977 1.000 1.000 1.000 1.000

BJ 0.933 1.000 1.000 1.000 1.000

ABJ50 0.976 1.000 1.000 1.000 1.000

Continued on next page
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Table 4.5 – continued from previous page

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

0.75 TJ 0.932 1.000 1.000 1.000 1.000

ATJ50 0.989 1.000 1.000 1.000 1.000

BJ 0.921 1.000 1.000 1.000 1.000

ABJ50 0.981 1.000 1.000 1.000 1.000

Case 2. Zero-inflated Poisson

0.25 TJ 0.232 0.467 0.620 0.713 0.755

ATJ50 0.356 0.512 0.688 0.720 0.788

BJ 0.212 0.464 0.645 0.711 0.748

ABJ50 0.323 0.492 0.683 0.735 0.794

0.50 TJ 0.729 0.997 0.999 1.000 1.000

ATJ50 0.764 1.000 1.000 1.000 1.000

BJ 0.703 0.990 0.999 1.000 1.000

ABJ50 0.779 1.000 1.000 1.000 1.000

0.75 TJ 0.847 0.999 1.000 1.000 1.000

ATJ50 0.875 1.000 1.000 1.000 1.000

BJ 0.853 0.998 1.000 1.000 1.000

ABJ50 0.873 1.000 1.000 1.000 1.000

Case 3. Negative binomial

0.25 TJ 0.370 0.898 0.991 0.997 1.000

ATJ50 0.388 0.916 1.000 1.000 1.000

BJ 0.387 0.896 0.993 0.998 1.000

ABJ50 0.415 0.919 1.000 1.000 1.000

0.50 TJ 0.599 0.978 1.000 1.000 1.000

Continued on next page
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βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ATJ50 0.629 1.000 1.000 1.000 1.000

BJ 0.614 0.980 1.000 1.000 1.000

ABJ50 0.634 1.000 1.000 1.000 1.000

0.75 TJ 0.657 0.995 1.000 0.997 1.000

ATJ50 0.639 1.000 1.000 0.999 1.000

BJ 0.622 0.993 1.000 0.997 1.000

ABJ50 0.659 1.000 1.000 0.997 1.000

Case 4. Zero-inflated Negative binomial

0.25 TJ 0.095 0.204 0.361 0.494 0.589

ATJ50 0.125 0.315 0.552 0.732 0.823

BJ 0.073 0.219 0.357 0.489 0.580

ABJ50 0.123 0.309 0.545 0.718 0.810

0.50 TJ 0.309 0.816 0.976 0.992 0.997

ATJ50 0.375 0.845 0.975 0.995 0.999

BJ 0.339 0.783 0.968 0.994 0.998

ABJ50 0.376 0.843 0.974 0.994 0.999

0.75 TJ 0.506 0.941 0.989 0.998 1.000

ATJ50 0.555 0.955 1.000 1.000 1.000

BJ 0.558 0.945 1.000 1.000 1.000

ABJ50 0.491 0.957 0.991 0.996 1.000
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4.3 Simulation Study II: QR with Truncated Data

In the 2nd simulation we investigate the performance of the QR methods when fitting

truncated data whose errors follow normal, student’s t and Chi-squared distributions,

respectively. Truncation is a fundamental method to bound a number at a particular

value and round it down to a given degree of accuracy. In this simulation, truncation

is used as a specific data processing and keeps integer part as the degree of accuracy.

Notice that a truncation function operates differently from a floor function, denoted

by ⌊·⌋, when rounding negative numbers. For example, for the truncation function

denoted by trunc(·), we have trunc(3.8) = 3 = ⌊3.8⌋ but trunc(−4.9) = −4 ̸=

−5 = ⌊−4.9⌋. Truncation is a popular data processing method in real world. By

eliminating decimal points and the digits that follow, the use of storage space and

processing speed can be optimized. Floating-point arithmetic is an example that

represents subsets of real numbers using an integer with a fixed precision (Muller

et al., 2010). Therefore, understanding the performance of QR methods on truncated

data is highly in demand.

In this section, the application of linear transformation is demonstrated. The

comparison of bias, mean squared error and relative efficiency of QR estimator using

different methods are reported.

4.3.1 Data and Simulation Setup

Counts data are generated by truncating continuous data with errors following stan-

dard normal, student’s t and Chi-squared distributions. We first generate continuous

data, for i = 1, ..., n,

yci = βτ0 + βτ1xi1 + βτ2xi2 + εi, (4.10)
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where yci denotes the continuous observation, β′ = (β0, β1, β2) is the vector of linear

regression coefficients and

xi1 ∼ Uniform (5, 15),

xi2 =

⎧⎪⎪⎨⎪⎪⎩
1 with probability 0.2

0 with probability 0.8.

Then, apply the truncation function and let yi = trunc(yci ) be the count. The sample

(yi, xi1, xi2)
n
i=1 is selected from the population in each of the simulation runs. The

error term follows the three different distributions:
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(a) Case 1. Standard Normal (b) Case 2. Student’s t with df = 2 (c) Case 3. Chi-squared with df = 3

Figure 4.2: Truncated Y with respect to x1 generated from linear models whose error term follows normal, student’s t and
Chi-squared distributions, respectively. Red lines indicate quantiles of distributions on τ = (0.10, 0.25, 0.5, 0.75, 0.90)
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Case 1. Normal distribution. Assume the mean and variance are 0 and 1, respectively,

ε ∼ N (0, 1);

Case 2. Student’s t distribution. Assume the degree of freedom is 2, ε ∼ Student’s t2;

Case 3. Chi-squared distribution. Assume the degree of freedom is 3, ε ∼ X 2
3 .

Figure 4.2 plots the relationship of truncated Y and first independent variable x1

where the error term follows standard normal, student’s t df = 2, and Chi-squared

df = 3 distributions, respectively. The five red lines in each graph indicate the

(0.1, 0.25, 0.5, 0.75, 0.9)-th quantiles of corresponding distribution. As we can see in

Fig 4.2a, the error term following standard normal distribution is symmetric and re-

veals the homoscedasticity. In Fig 4.2b, the error term follows student’s t distribution

is also symmetric, but has a significantly heavier tail than normal distribution. In

Fig 4.2c, Chi-squared distributed error term shows right skewness, with the distribu-

tion of error concentrated on the left side and exhibiting a long tail to the right side.

We will fit the QR model to these data sets and show the performance of proposed

QR model against outliers, extreme values and skewness.

In this simulation, population size N = 50000 is used to obtain the true

QR coefficients and β0 = 1, β1 = 1, β2 = 0. Note that same as simulation I,

since β2 = 0 does not contribute any effect in the resulting QR model, βτ2 = 0.

S = 1000 iterations are run to assess the performance of proposed QR models on the

τ = (0.1, 0.25, 0.5, 0.75, 0.9)− th quantile of data set.

4.3.2 QR Methods and Transformations

The following QR methods are used in the simulation for comparison:

1. Ordinary quantile regression method (ORD);

2. Mid-quantile regression method (MID);
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3. Simple uniform jittering method (UJ);

4. Average uniform jittering method with m = 50 jittered samples (AUJ50);

5. Simple Tweedie jittering method (TJ);

6. Average Tweedie jittering method with m = 50 jittered samples (ATJ50);

7. Simple Beta jittering method (BJ); and

8. Average Beta jittering method with m = 50 jittered samples (ABJ50).

Firstly the performance of optimized jittering method is compared with other meth-

ods. We report bias, mean squared error and relative efficiency of estimators using all

the above QR models. Then, average value of approximate standard error of S = 1000

QR estimates and their standard deviations are compared.

Let zi = yi + ui be the i-th QR response, for i = 1, ..., n,

T (zi; τ) =

⎧⎪⎪⎨⎪⎪⎩
zi −QU(τ) if zi ≥ QU(τ),

ς if zi < QU(τ).

(4.11)

where ς is a small positive number and QU(τ) is the τ th quantile of U following either

Tweedie or Beta distribution. On the sample level, the QR model is specified as

QT (z;τ) = x′βτ ,

where βτ is a vector of QR coefficients.

4.3.3 Comparison of Different QR Methods

The results of S = 1000 simulation iterations of QR models with different error

distributions are analyzed.
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Table 4.6: Biases (bias), mean squared errors (MSE) and relative efficiencies (REF )
of estimators βτ0, βτ1, and βτ2 on five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) of data
when error follows normal, student’s t and Chi-squared are reported for different
methods (ORD, MID, TJ, ATJ50, ATJ150, BJ, ABJ50, ABJ150). Sample size n =
200.

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

Case 1. ε ∼ N (0, 1)

0.10 ORD 0.1609 -0.0661 0.2487 1.000 -0.0036 -0.0018 0.0032 1.000 0.0507 0.0301 0.1108 1.000

MID - - - - - - - - - - -

UJ 0.1935 -0.0661 0.2375 1.047 -0.0165 -0.0018 0.0027 1.185 -0.2966 0.0301 0.0880 1.259

AUJ50 0.0252 -0.0661 0.1743 1.426 -0.0009 -0.0018 0.0016 2.000 0.0496 0.0301 0.0879 1.261

TJ -0.0046 -0.0661 0.2388 1.041 0.0035 -0.0018 0.0025 1.28 0.0094 0.0301 0.1054 1.051

ATJ50 0.0093 -0.0661 0.1593 1.561 -0.0044 -0.0018 0.0014 2.286 0.0241 0.0301 0.0911 1.216

BJ -0.0036 -0.0661 0.2277 1.092 0.0020 -0.0018 0.0020 1.600 -0.0080 0.0301 0.1032 1.074

ABJ50 0.0089 -0.0661 0.1497 1.661 -0.0049 -0.0018 0.0010 3.200 0.0229 0.0301 0.0805 1.376

0.25 ORD -0.0166 -0.0047 0.1572 1.000 0.0034 0.0009 0.0015 1.000 0.0049 0.0057 0.0709 1.000

MID -0.1858 -0.0047 0.1389 1.132 0.0054 0.0009 0.0010 1.500 -0.0020 0.0057 0.0646 1.098

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

UJ -0.0513 -0.0047 0.1381 1.138 0.0035 0.0009 0.0012 1.250 0.0392 0.0057 0.0707 1.003

AUJ50 -0.0221 -0.0047 0.1289 1.220 0.0023 0.0009 0.0012 1.250 0.0033 0.0057 0.0503 1.410

TJ 0.0029 -0.0047 0.1535 1.024 0.0013 0.0009 0.0017 0.882 0.0128 0.0057 0.0675 1.050

ATJ50 0.0027 -0.0047 0.1055 1.490 0.0024 0.0009 0.0010 1.500 -0.0250 0.0057 0.0491 1.444

BJ -0.0017 -0.0047 0.1438 1.093 -0.0000 0.0009 0.0012 1.250 -0.0137 0.0057 0.0637 1.113

ABJ50 -0.0068 -0.0047 0.1042 1.509 0.0002 0.0009 0.0009 1.667 -0.0143 0.0057 0.0471 1.505

0.50 ORD -0.0475 -0.0331 0.1396 1.000 0.0065 -0.0004 0.0012 1.000 -0.0283 0.0079 0.0652 1.000

MID 0.1362 -0.0331 0.1351 1.033 0.0009 -0.0004 0.0010 1.200 0.0036 0.0079 0.0501 1.301

UJ 0.0137 -0.0331 0.1323 1.055 -0.0006 -0.0004 0.0011 1.091 0.0281 0.0079 0.0629 1.037

AUJ50 -0.0181 -0.0331 0.1002 1.393 0.0024 -0.0004 0.0008 1.500 -0.0263 0.0079 0.0471 1.384

TJ -0.0299 -0.0331 0.1245 1.121 -0.0001 -0.0004 0.0011 1.091 0.0034 0.0079 0.0599 1.088

ATJ50 -0.0388 -0.0331 0.1077 1.296 0.0033 -0.0004 0.0010 1.200 0.0055 0.0079 0.0444 1.468

BJ -0.0000 -0.0331 0.1233 1.132 -0.0000 -0.0004 0.0010 1.200 -0.0066 0.0079 0.0559 1.166

ABJ50 -0.0370 -0.0331 0.1041 1.341 0.0043 -0.0004 0.0009 1.333 -0.0092 0.0079 0.0403 1.618

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

0.75 ORD -0.0371 -0.0564 0.1777 1.000 -0.0054 -0.0011 0.0017 1.000 0.0175 0.0100 0.0746 1.000

MID 0.0728 -0.0564 0.1455 1.221 -0.0086 -0.0011 0.0012 1.417 0.0224 0.0100 0.0757 0.985

UJ 0.0722 -0.0564 0.1706 1.042 -0.0067 -0.0011 0.0015 1.133 -0.0361 0.0100 0.0609 1.225

AUJ50 0.0116 -0.0564 0.1206 1.473 -0.0023 -0.0011 0.0010 1.700 0.0059 0.0100 0.0503 1.483

TJ -0.0336 -0.0564 0.1590 1.118 0.0013 -0.0011 0.0013 1.308 0.0388 0.0100 0.0662 1.127

ATJ50 -0.0354 -0.0564 0.1025 1.734 0.0004 -0.0011 0.0010 1.700 0.0234 0.0100 0.0598 1.247

BJ -0.0093 -0.0564 0.1588 1.119 0.0015 -0.0011 0.0014 1.214 -0.0447 0.0100 0.0665 1.122

ABJ50 -0.0242 -0.0564 0.1013 1.754 0.0003 -0.0011 0.0009 1.889 0.0211 0.0100 0.0572 1.304

0.90 ORD 0.0429 -0.0117 0.2254 1.000 -0.0041 0.0002 0.0028 1.000 -0.0172 0.0029 0.1133 1.000

MID - - - - - - - - - - - -

UJ -0.0390 -0.0117 0.2167 1.040 0.0038 0.0003 0.0020 1.400 -0.0091 0.0029 0.1055 1.074

AUJ50 0.0166 -0.0117 0.1544 1.460 -0.0015 0.0003 0.0014 2.000 -0.0270 0.0029 0.0725 1.563

TJ 0.0087 -0.0117 0.2165 1.041 -0.0015 0.0003 0.0019 1.474 -0.0099 0.0029 0.0756 1.499

ATJ50 -0.0114 -0.0117 0.1648 1.368 0.0003 0.0003 0.0013 2.154 0.0017 0.0029 0.0783 1.447

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

BJ 0.0072 -0.0117 0.2155 1.046 -0.0013 0.0003 0.0019 1.474 -0.0098 0.0029 0.1064 1.065

ABJ50 -0.0113 -0.0117 0.1629 1.384 0.0003 0.0003 0.0014 2.000 0.0016 0.0029 0.0742 1.527

Case 2. ε ∼ student’s t2

0.10 ORD -0.0634 0.0422 1.0538 1.000 -0.0008 0.0009 0.0097 1.000 -0.0707 0.0065 0.5574 1.000

MID 0.0977 0.0422 1.0306 1.023 -0.0094 0.0009 0.0088 1.102 -0.1409 0.0065 0.4195 1.329

UJ 0.0706 0.0422 1.1157 0.945 -0.0027 0.0009 0.0107 0.907 -0.0712 0.0065 0.5564 1.002

AUJ50 0.0547 0.0422 0.9339 1.128 -0.0067 0.0009 0.0086 1.128 -0.0594 0.0065 0.4296 1.297

TJ 0.0657 0.0422 0.9987 1.055 -0.0095 0.0009 0.0089 1.090 -0.0465 0.0065 0.4451 1.252

ATJ50 0.0565 0.0422 0.8646 1.219 0.0007 0.0009 0.0079 1.228 -0.0642 0.0065 0.3800 1.467

BJ 0.0648 0.0422 0.9965 1.058 -0.0090 0.0009 0.0087 1.115 -0.0482 0.0065 0.4441 1.255

ABJ50 -0.0544 0.0422 0.8634 1.221 0.0006 0.0009 0.0077 1.260 -0.0628 0.0065 0.3790 1.471

0.25 ORD -0.0624 0.0353 0.2771 1.000 0.0030 -0.0002 0.0037 1.000 -0.0888 0.0133 0.1372 1.000

MID 0.1757 0.0353 0.2640 1.050 -0.0263 -0.0002 0.0023 1.609 0.0321 0.0133 0.1306 1.051

UJ 0.0637 0.0353 0.2723 1.018 -0.0032 -0.0002 0.0037 1.000 -0.0426 0.0133 0.1387 0.989

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

AUJ50 0.0038 0.0353 0.2015 1.375 0.0009 -0.0002 0.0018 2.056 -0.0745 0.0133 0.1117 1.228

TJ 0.0609 0.0353 0.2627 1.055 -0.0034 -0.0002 0.0031 1.194 -0.0370 0.0133 0.1173 1.170

ATJ50 0.0358 0.0353 0.2264 1.224 -0.0027 -0.0002 0.0024 1.542 0.0599 0.0133 0.0843 1.628

BJ -0.0460 0.0353 0.2708 1.023 0.0031 -0.0002 0.0025 1.480 0.0297 0.0133 0.1108 1.238

ABJ50 0.0352 0.0353 0.2259 1.227 -0.0025 -0.0002 0.0021 1.762 0.0594 0.0133 0.0802 1.711

0.50 ORD -0.1324 0.0165 0.1785 1.000 0.0071 0.0018 0.0017 1.000 -0.0060 0.0205 0.0931 1.000

MID -0.0350 0.0165 0.1749 1.021 0.0042 0.0018 0.0014 1.214 0.03160 0.0205 0.0787 1.183

UJ 0.0145 0.0165 0.1679 1.063 -0.0015 0.0018 0.0015 1.133 -0.0172 0.0205 0.0730 1.137

AUJ50 -0.0177 0.0165 0.1386 1.288 0.0032 0.0018 0.0012 1.417 -0.0187 0.0205 0.0699 1.187

TJ -0.0124 0.0165 0.1502 1.188 0.0027 -0.0018 0.0016 1.062 0.0355 0.0205 0.0923 0.899

ATJ50 -0.0532 0.0165 0.1205 1.481 0.0027 0.0018 0.0013 1.308 0.0026 0.0205 0.0598 1.388

BJ -0.0120 0.0165 0.1499 1.191 0.0026 0.0018 0.0015 1.133 0.0343 0.0205 0.0917 0.905

ABJ50 -0.0140 0.0165 0.1201 1.486 0.0020 0.0018 0.0012 1.417 0.0025 0.0205 0.0589 1.409

0.75 ORD -0.1281 0.0186 0.3044 1.000 0.0132 0.0004 0.0026 1.000 -0.0511 0.0231 0.1275 1.000

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

MID -0.0852 0.0186 0.2484 1.225 0.0077 0.0004 0.0020 1.000 0.0530 0.0231 0.1038 1.228

UJ -0.0820 0.0186 0.3017 1.009 0.0079 0.0004 0.0026 1.300 0.0173 0.0231 0.1299 0.982

AUJ50 -0.0827 0.0186 0.2091 1.456 0.0089 0.0004 0.0019 1.368 -0.0202 0.0231 0.1214 1.050

TJ 0.0364 0.0186 0.2897 1.051 -0.0025 0.0004 0.0025 1.040 0.0135 0.0231 0.1214 1.050

ATJ50 -0.0110 0.0186 0.2059 1.478 0.0001 0.0004 0.0019 1.368 0.0256 0.0231 0.1210 1.054

BJ 0.0342 0.0186 0.2875 1.059 -0.0022 0.0004 0.0025 1.040 0.0124 0.0231 0.1272 1.312

ABJ50 -0.0104 0.0186 0.2051 1.484 0.0001 0.0004 0.0018 1.444 0.0248 0.0231 0.1194 1.068

0.90 ORD -0.0193 0.0890 1.0314 1.000 0.0025 -0.0028 0.0093 1.000 0.1427 0.0440 0.5735 1.000

MID - - - - - - - - - - - -

UJ -0.0135 0.0890 1.0797 0.955 -0.0040 -0.0028 0.0100 0.930 -0.0192 0.0440 0.5562 1.031

AUJ50 -0.0564 0.0890 0.8667 1.190 0.0031 -0.0028 0.0077 1.208 0.1387 0.0440 0.4893 1.172

TJ -0.0734 0.0890 0.9721 1.061 -0.0072 -0.0028 0.0088 1.057 -0.0262 0.0440 0.5412 1.060

ATJ50 -0.0878 0.0890 0.7798 1.323 0.0145 -0.0028 0.0073 1.274 0.0315 0.0440 0.4884 1.174

BJ -0.0726 0.0890 0.9715 1.062 -0.0069 -0.0028 0.0086 1.081 -0.0251 0.0440 0.5406 1.061

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

ABJ50 -0.0894 0.0890 0.7786 1.325 0.0044 -0.0028 0.0073 1.274 0.0311 0.0440 0.4814 1.191

Case 3. ε ∼ X 2
2

0.10 ORD 0.0580 0.0295 0.2202 1.000 -0.0010 0.0020 0.0020 1.000 0.0314 0.0016 0.0893 1.000

MID - - - - - - - - - - - -

UJ -0.0441 0.0295 0.2180 1.010 0.0066 0.0020 0.0016 1.250 0.0288 0.0016 0.0883 1.011

UJ50 0.0072 0.0295 0.1348 1.634 0.0018 0.0020 0.0012 1.667 0.0232 0.0016 0.0551 1.621

TJ 0.0321 0.0295 0.2145 1.027 -0.0014 0.0020 0.0018 1.111 0.0012 0.0016 0.0884 1.01

ATJ50 -0.0386 0.0295 0.1310 1.681 -0.0018 0.0020 0.0010 2.000 -0.0011 0.0016 0.0533 1.675

BJ 0.0342 0.0295 0.2173 1.013 -0.0018 0.0020 0.0019 1.053 -0.0015 0.0016 0.0897 0.996

ABJ50 -0.0377 0.0295 0.1316 1.673 0.0046 0.0020 0.0011 1.818 -0.0016 0.0016 0.0544 1.642

0.25 ORD -0.0746 -0.0424 0.2468 1.000 0.0052 -0.0023 0.0022 1.000 0.0470 0.0218 0.1113 1.000

MID -0.1237 -0.0424 0.2025 1.219 0.0093 -0.0023 0.0016 1.375 0.1285 0.0218 0.0804 1.384

UJ -0.0705 -0.0424 0.2589 0.953 0.0070 -0.0023 0.0022 1.000 0.0168 0.0218 0.1005 1.150

AUJ50 -0.0569 -0.0424 0.1806 1.367 0.0059 -0.0023 0.0017 1.294 0.0253 0.0218 0.0840 1.325

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

TJ 0.0744 -0.0424 0.2410 1.024 -0.0051 -0.0023 0.0019 1.158 -0.0361 0.0218 0.1100 1.012

ATJ50 0.0345 -0.0424 0.1732 1.425 -0.0029 -0.0023 0.0014 1.571 -0.0287 0.0218 0.0778 1.431

BJ 0.0753 -0.0424 0.2414 1.022 -0.0053 -0.0023 0.0020 1.100 0.0371 0.0218 0.1106 1.006

ABJ50 0.0360 -0.0424 0.1753 1.408 -0.0037 -0.0023 0.0015 1.467 0.0293 0.0218 0.0787 1.414

0.50 ORD 0.0805 -0.0216 0.4956 1.162 -0.0038 -0.0018 0.0069 1.000 -0.0450 0.0181 0.2298 1.000

MID 0.1827 -0.0216 0.3170 1.563 -0.0177 -0.0018 0.0028 2.464 -0.0177 0.0181 0.1566 1.467

UJ 0.0262 -0.0216 0.4887 1.014 -0.0001 -0.0018 0.0048 1.438 0.0287 0.0181 0.1216 1.037

AUJ50 0.0369 -0.0216 0.4027 1.231 0.0008 -0.0018 0.0040 1.725 -0.0318 0.0181 0.2081 1.104

TJ 0.0673 -0.0216 0.4908 1.010 -0.0021 -0.0018 0.0044 1.568 0.0229 0.0181 0.2175 1.057

ATJ50 -0.0109 -0.0216 0.4266 1.162 0.0052 -0.0018 0.0038 1.816 -0.0347 0.0181 0.1948 1.180

BJ 0.0001 -0.0216 0.4842 1.024 -0.0015 -0.0018 0.0043 1.605 0.0218 0.0181 0.2136 1.076

ABJ50 0.0056 -0.0216 0.4309 1.15 0.0006 -0.0018 0.0039 1.769 0.0123 0.0181 0.1755 1.309

0.75 ORD 0.0621 0.0471 1.1255 1.000 -0.0043 0.0055 0.0110 1.000 0.1243 0.0042 0.5406 1.000

MID -0.4472 0.0471 1.1112 1.013 0.0398 0.0055 0.0102 1.078 -0.0119 0.0042 0.5020 1.077

Continued on next page
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Table 4.6 – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

UJ -0.0339 0.0471 1.0230 1.100 -0.0009 0.0055 0.0104 1.058 0.0204 0.0042 0.5384 1.004

AUJ50 0.0725 0.0471 1.1119 1.012 -0.0093 0.0055 0.0107 1.028 0.0148 0.0042 0.5115 1.057

TJ 0.0399 0.0471 1.1225 1.003 -0.0022 0.0055 0.0106 1.038 0.0146 0.0042 0.5314 1.017

ATJ50 0.1380 0.0471 1.1112 1.013 -0.0098 0.0055 0.0097 1.134 0.0125 0.0042 0.5055 1.069

BJ 0.0825 0.0471 1.0980 1.025 -0.0066 0.0055 0.0099 1.111 -0.0273 0.0042 0.5335 1.013

ABJ50 -0.0683 0.0471 1.0389 1.083 0.0058 0.0055 0.0099 1.111 0.0093 0.0042 0.5087 1.063

0.90 ORD -0.0843 -0.0403 3.3425 1.000 -0.0143 0.0085 0.0324 1.000 0.0260 0.0239 1.5954 1.000

MID 0.0915 -0.0403 3.0554 1.094 0.0304 0.0085 0.0267 1.213 0.0173 0.0239 1.4367 1.110

UJ -0.0636 -0.0403 3.5619 0.938 -0.0049 0.0085 0.0319 1.016 0.0925 0.0239 1.4421 1.106

AUJ50 -0.0770 -0.0403 3.1195 1.071 -0.0082 0.0085 0.0273 1.187 0.0777 0.0239 1.4403 1.108

TJ 0.0668 -0.0403 3.2948 1.014 -0.0112 0.0085 0.0297 1.091 0.0178 0.0239 1.3594 1.174

ATJ50 0.0531 -0.0403 2.6741 1.250 -0.0102 0.0085 0.0242 1.339 0.0819 0.0239 1.5419 1.035

BJ 0.0535 -0.0403 3.1760 1.052 -0.0099 0.0085 0.0288 1.125 -0.0740 0.0239 1.4209 1.123

ABJ50 -0.0490 -0.0403 2.7923 1.197 -0.0028 0.0085 0.0256 1.266 0.0278 0.0239 1.4336 1.113
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Table 4.6 and Table 4.6A report the biases, mean squared errors and relative efficien-

cies of estimators using all QR methods where the error term follows normal, student’s

t and Chi-squared distributions, respectively with sample size n = (200, 500). The

table finds that the biases of estimator using different methods are comparable, and

small for βτ1 and βτ2. In most of the cases, the jittering methods (UJ, AUJ50, BJ,

ABJ50, TJ, ATJ50) provides less biased QR estimators than other methods, and the

presence of bias of estimator can be slightly improved by using technique of averaging

noises out. Comparing the mean squared error and relative efficiency of estimator

using different methods, the proposed methods outperform ordinary method and uni-

form jittering methods. Meanwhile, mid-QR method sometimes gives more efficient

estimator than our simple jittering methods and performs very stably across quan-

tiles of data with different error, and hence the strength of mid-QR is emphasized.

However, it sometimes fails to estimate QR parameters on extreme quantiles (e.g.,

τ = (0.1, 0.9)) due to quantile level out of estimable range. Also, check both mean

squared error and relative efficiency of the estimator, the proposed simple jittering

methods (TJ, BJ) and average jittering methods (ABJ50, ATJ50) are still able to

provide more efficient estimators for QR coefficients. We also found that the Beta

jittering gives an efficient estimator more frequently than Tweedie jittering method.

Considering its better performance and lighter computational burden, Beta distribu-

tion seems to be a better choice for jittering the counts. On the other hand, estimator

obtained by using proposed methods (TJ, BJ, ATJ50, ABJ50) are found to be more

efficient on the lower quantile (τ = 0.1) and upper quantile (τ = 0.9) of the student’s

t distribution and upper quantile (τ = 0.9) of Chi-squared distribution. The proposed

jittering methods are robust against heavy tails and skewness. From Table 4.6A we

find that the biases and mean squared errors of estimators obtained by using different

methods are significantly reduced for βτ0, βτ1 and βτ2 by increasing the sample size.

In short, the proposed methods provide consistent estimators for data with
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small and moderate sample size. By applying the technique of averaging-out noise

and increasing the sample size, the performance of the methods can be improved.

The proposed jittering methods are robust to varying patterns of error term.

4.3.4 The Estimation of Variances

The estimated standard errors and corresponding standard deviations of 1000 estima-

tors obtained using proposed methods (BJ, TJ, ABJ50, ATJ50) are compared with

those obtained from

Qyc(τ |x) = x′γτ , (4.12)

where γτ denotes the QR coefficient based on continuous response yc before the

truncation.
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Table 4.7: Standard deviations (s.d.) of 1000 estimates of quantile regression param-
eters βτ0, βτ1 and βτ2 and 1000 sample averages of estimated asymptotic standard
errors (s.e.) based on truncated data by using different quantile regression methods
and Standard deviations (s.d.∗) of 1000 estimates of quantile regression parameters
γτ0, γτ1 and γτ2 based on original continuous data are reported. Quantile levels
τ = (0.1, 0.25, 0.5, 0.75, 0.9), sample size n = 200.

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

Case 1. ε ∼ N (0, 1)

0.1 TJ 0.4787 0.4995 0.4674 0.0464 0.0489 0.0465 0.3315 0.3645 0.3145

ATJ50 0.3984 0.4245 0.4255 0.0365 0.0393 0.0398 0.2985 0.2985 0.2998

BJ 0.4776 0.4994 0.4564 0.0451 0.0473 0.0440 0.3214 0.3524 0.2834

ABJ50 0.3842 0.4137 0.4175 0.0356 0.0392 0.0395 0.2832 0.2832 0.2979

0.25 TJ 0.3831 0.3898 0.3621 0.0367 0.0381 0.0356 0.2567 0.2791 0.2655

ATJ50 0.3326 0.3376 0.3468 0.0311 0.0324 0.0314 0.2168 0.2354 0.2355

BJ 0.3803 0.3833 0.3529 0.0359 0.0370 0.0326 0.2528 0.2761 0.2387

ABJ50 0.3225 0.3280 0.3344 0.0306 0.0311 0.0324 0.2153 0.2222 0.2285

0.50 TJ 0.3622 0.3611 0.3674 0.0334 0.0311 0.0318 0.2321 0.2398 0.2202
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

ATJ50 0.3311 0.3122 0.3311 0.0314 0.0299 0.0314 0.2014 0.2099 0.2100

BJ 0.3521 0.3529 0.3225 0.0322 0.0336 0.0308 0.2369 0.2469 0.2329

ABJ50 0.3213 0.3036 0.3317 0.0307 0.0289 0.0308 0.2011 0.2133 0.2168

0.75 TJ 0.3975 0.3934 0.3516 0.0367 0.0365 0.0325 0.2115 0.2109 0.2280

ATJ50 0.3198 0.3256 0.3357 0.0311 0.0321 0.0333 0.2401 0.2398 0.2410

BJ 0.3987 0.3831 0.3639 0.0375 0.0365 0.0345 0.2542 0.2612 0.2612

ABJ50 0.3182 0.3267 0.3462 0.0302 0.0311 0.0329 0.2390 0.2260 0.2365

0.9 TJ 0.4067 0.4645 0.4166 0.0446 0.0456 0.0416 0.3289 0.3298 0.2825

ATJ50 0.4067 0.4044 0.4156 0.0398 0.0399 0.4001 0.2784 0.2784 0.2924

BJ 0.4654 0.4630 0.4167 0.0441 0.0444 0.0409 0.3269 0.3282 0.2817

ABJ50 0.4045 0.4011 0.4198 0.0388 0.0389 0.4000 0.2732 0.2737 0.2916

Case 2. ε ∼ Student′s t2

0.10 TJ 0.9994 1.0221 1.0147 0.0946 0.0967 0.1001 0.6376 0.6451 0.6589

ATJ50 0.9302 0.9265 0.9545 0.0895 0.0902 0.0889 0.6187 0.6199 0.6275
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

BJ 0.9987 1.0230 1.0167 0.0934 0.0958 0.1005 0.6364 0.6295 0.6590

ABJ50 0.9299 0.9158 0.9676 0.0880 0.0894 0.0873 0.6140 0.6136 0.6298

0.25 TJ 0.5201 0.5258 0.5179 0.0482 0.0478 0.0493 0.3357 0.3532 0.3231

ATJ50 0.4778 0.4797 0.4698 0.0467 0.0459 0.0478 0.2786 0.2998 0.2898

BJ 0.5196 0.5236 0.5145 0.0504 0.0518 0.0497 0.3324 0.3569 0.3198

ABJ50 0.4765 0.4784 0.4675 0.0460 0.0458 0.0469 0.2776 0.2963 0.3133

0.50 TJ 0.3891 0.4202 0.3667 0.0378 0.0365 0.0376 0.2465 0.2586 0.2534

ATJ50 0.3465 0.3589 0.3564 0.0354 0.0358 0.0365 0.2456 0.2587 0.2515

BJ 0.3881 0.4162 0.3656 0.0388 0.0398 0.0362 0.3016 0.2932 0.2857

ABJ50 0.3432 0.3690 0.3636 0.0348 0.0350 0.0363 0.2434 0.2589 0.2511

0.75 TJ 0.5376 0.5257 0.5198 0.0510 0.0512 0.0489 0.3133 0.3323 0.3411

ATJ50 0.4578 0.4768 0.4689 0.0445 0.0455 0.0445 0.3488 0.3341 0.3321

BJ 0.5365 0.5230 0.5180 0.0508 0.0504 0.0494 0.3123 0.3317 0.3424

ABJ50 0.4539 0.4726 0.4728 0.0434 0.0449 0.0453 0.3457 0.3337 0.3309
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

0.90 TJ 0.9877 1.0099 1.0044 0.0954 0.0989 0.0995 0.7389 0.7088 0.6997

ATJ50 0.9301 1.0577 1.0266 0.0943 0.0952 0.0997 0.6834 0.7056 0.7315

BJ 0.9854 1.0103 0.9912 0.0943 0.0978 0.0924 0.7367 0.6931 0.6993

ABJ50 0.9675 1.0280 1.0172 0.0932 0.0982 0.0982 0.6955 0.7004 0.7315

Case 3. ε ∼ X 2
3

0.10 TJ 0.4653 0.4401 0.3735 0.0428 0.0408 0.0326 0.3000 0.3045 0.2478

ATJ50 0.3611 0.3561 0.3434 0.0325 0.0326 0.0163 0.2336 0.2405 0.2396

BJ 0.4661 0.4407 0.3756 0.0437 0.0418 0.0332 0.3004 0.3059 0.2499

ABJ50 0.3617 0.3563 0.3446 0.0338 0.0335 0.0348 0.2340 0.2410 0.2381

0.25 TJ 0.4846 0.4869 0.4448 0.0451 0.0455 0.0422 0.3298 0.3436 0.3024

ATJ50 0.4156 0.4410 0.4448 0.0378 0.0416 0.0422 0.2796 0.3105 0.3024

BJ 0.4858 0.4874 0.4448 0.0455 0.0464 0.0422 0.3308 0.3452 0.3024

ABJ50 0.4177 0.4416 0.4448 0.0389 0.0422 0.0422 0.2794 0.3117 0.3024

0.50 TJ 0.6977 0.7078 0.6729 0.0667 0.0678 0.0641 0.4661 0.4843 0.4640
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

ATJ50 0.6534 0.6661 0.6729 0.0622 0.0638 0.0641 0.4403 0.4689 0.4640

BJ 0.6962 0.7062 0.6729 0.0657 0.0673 0.0641 0.4568 0.4915 0.4640

ABJ50 0.6568 0.6614 0.6729 0.0628 0.0633 0.0641 0.4190 0.4614 0.4640

0.75 TJ 1.0827 1.1151 1.0739 0.1031 0.1064 0.1024 0.7083 0.7510 0.7550

ATJ50 1.0456 1.0731 1.0952 0.0985 0.1026 0.1027 0.7319 0.7580 0.7557

BJ 1.1452 1.1218 1.0639 0.0998 0.1074 0.1074 0.7303 0.7679 0.7399

ABJ50 1.0175 1.0862 1.0733 0.0967 0.1033 0.1019 0.7135 0.7536 0.7400

0.90 TJ 1.8135 1.8885 1.8229 0.1721 0.1833 0.1725 1.1664 1.2163 1.1946

ATJ50 1.6323 1.8818 1.7098 0.1654 0.1801 0.1614 1.2403 1.1657 1.2897

BJ 1.7794 1.9720 1.7719 0.1695 0.1981 0.1704 1.1603 1.1852 1.1668

ABJ50 1.7713 1.8964 1.7585 0.1702 0.1743 0.1691 1.1982 1.1438 1.2514
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Table 4.7 and Table 5.7A report the estimated standard errors and sample stan-

dard deviations of 1000 estimates using proposed methods based on truncated data,

and sample standard deviations of estimators based on original continuous data, de-

noted by s.d.∗, when errors follows normal, student’s t, Chi-squared distributions,

respectively with sample size n = (200, 500). First of all, we compare the estimated

standard errors and sample standard deviation of QR estimators. Overall, the table

finds that the estimated standard errors of estimates using proposed methods (BJ,

TJ, ABJ50, ATJ50) are very close to their corresponding sample standard deviations

regardless of error distributions. The estimated standard error obtained from the

sandwich estimator of covariance matrix is reliable across small sample size. It is also

worth-noting that when error follows t distribution, the sample standard deviations

of estimates using all proposed methods are much larger on extreme quantiles of data,

say when τ = (0.1, 0.9). Such a U-shaped relationship of quantile level and variablity

of estimates is caused by heavy tails of t distribution with small degree of freedom.

Similarly, large sample standard deviations of estimates are also found on upper quan-

tiles of data with Chi-squared distributed errors, as the Chi-squared distribution is

notably right-skewed. Despite the challenges posed by heavy tailed and large error

values from t and Chi-squared distribution, the proposed methods is still able to of-

fer reliable estimated variability of estimator with small sample size. The estimated

standard errors and sample deviations of estimates using average jittering methods

(ABJ50, ATJ50) are slightly smaller than using simple jittering methods (BJ, TJ).

The results also reveal that the the estimated standard error of estimates based on

truncated data is close to that of estimates based on original continuous data in most

of cases. Table 5.7A shows clearly that the sample standard deviation and estimated

standard error of estimators using all methods are getting lower, particularly for those

on the lower and upper quantiles of t distribution and upper quantiles of Chi-squared

distribution.
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Table 4.8: Converage probabilities of 1000 estimates of QR parameters βτ0, βτ1 and
βτ2 are reported for different QR methods TJ, ATJ50, BJ, and ABJ50 on the τ =
(0.1, 0.25, 0.5, 0.75, 0.9)th quantile of data. Nominal levels α = (0.01, 0.05, 0.1) and
sample size n = 200 are used.

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

Case 1. ε ∼ N (0, 1)

0.10 TJ 0.983 0.945 0.912 0.981 0.934 0.889 0.993 0.964 0.889

ATJ50 0.982 0.936 0.911 0.985 0.944 0.913 0.996 0.961 0.891

BJ 0.982 0.940 0.888 0.990 0.950 0.902 0.988 0.942 0.906

ABJ50 0.984 0.934 0.906 0.988 0.950 0.912 0.966 0.936 0.884

0.25 TJ 0.986 0.946 0.905 0.991 0.956 0.906 0.985 0.940 0.895

ATJ50 0.994 0.958 0.910 0.987 0.944 0.901 0.995 0.954 0.906

BJ 0.980 0.940 0.900 0.985 0.940 0.895 0.985 0.960 0.915

ABJ50 0.990 0.955 0.905 0.985 0.945 0.885 0.990 0.945 0.915

0.50 TJ 0.987 0.946 0.909 0.991 0.956 0.911 0.990 0.950 0.902

ATJ50 0.986 0.956 0.898 0.988 0.950 0.911 0.992 0.945 0.910

BJ 0.985 0.940 0.910 0.990 0.955 0.910 0.985 0.940 0.910

ABJ50 0.980 0.955 0.885 0.980 0.950 0.910 0.990 0.935 0.900

0.75 TJ 0.989 0.938 0.899 0.991 0.948 0.890 0.985 0.944 0.890

ATJ50 0.989 0.953 0.909 0.990 0.952 0.908 0.983 0.944 0.894

BJ 0.990 0.940 0.898 0.981 0.945 0.891 0.987 0.933 0.888

ABJ50 0.985 0.950 0.905 0.990 0.945 0.910 0.985 0.940 0.886

0.90 TJ 0.990 0.957 0.906 0.995 0.956 0.910 0.985 0.935 0.890

ATJ50 0.987 0.955 0.900 0.994 0.955 0.905 0.995 0.945 0.899

BJ 0.980 0.945 0.903 0.990 0.945 0.885 0.985 0.945 0.895

Continued on next page

137
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

ABJ50 0.985 0.955 0.895 0.990 0.935 0.900 0.980 0.940 0.885

Case 2. ε ∼ T2

0.10 TJ 0.982 0.940 0.890 0.990 0.939 0.893 0.984 0.941 0.889

ATJ50 0.984 0.941 0.889 0.992 0.941 0.904 0.994 0.945 0.891

BJ 0.979 0.939 0.889 0.990 0.945 0.892 0.982 0.943 0.892

ABJ50 0.988 0.940 0.888 0.990 0.943 0.912 0.980 0.935 0.895

0.25 TJ 0.983 0.944 0.982 0.988 0.939 0.891 0.986 0.954 0.905

ATJ50 0.983 0.948 0.911 0.982 0.953 0.883 0.992 0.953 0.907

BJ 0.987 0.942 0.893 0.990 0.942 0.890 0.985 0.956 0.910

ABJ50 0.986 0.950 0.912 0.983 0.950 0.885 0.993 0.956 0.911

0.50 TJ 0.986 0.954 0.903 0.984 0.947 0.886 0.986 0.941 0.902

ATJ50 0.984 0.958 0.904 0.986 0.942 0.883 0.984 0.941 0.901

BJ 0.991 0.960 0.905 0.995 0.960 0.894 0.987 0.935 0.900

ABJ50 0.985 0.956 0.903 0.984 0.945 0.887 0.988 0.963 0.900

0.75 TJ 0.989 0.951 0.892 0.982 0.943 0.905 0.991 0.956 0.906

ATJ50 0.986 0.942 0.904 0.988 0.958 0.913 0.987 0.956 0.893

BJ 0.990 0.950 0.887 0.983 0.938 0.905 0.990 0.960 0.913

ABJ50 0.984 0.935 0.906 0.985 0.963 0.916 0.985 0.960 0.888

0.90 TJ 0.992 0.954 0.892 0.986 0.944 0.912 0.982 0.939 0.895

ATJ50 0.991 0.959 0.894 0.993 0.956 0.909 0.987 0.938 0.885

BJ 0.995 0.960 0.907 0.993 0.961 0.915 0.984 0.939 0.900

ABJ50 0.995 0.955 0.894 0.995 0.956 0.911 0.983 0.956 0.920

Case 3. ε ∼ T2

Continued on next page
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

0.10 TJ 0.983 0.950 0.887 0.991 0.956 0.894 0.990 0.957 0.902

ATJ50 0.991 0.938 0.892 0.989 0.948 0.895 0.991 0.954 0.896

BJ 0.981 0.950 0.885 0.995 0.960 0.884 0.990 0.964 0.905

ABJ50 0.990 0.936 0.888 0.990 0.955 0.896 0.993 0.955 0.895

0.25 TJ 0.987 0.935 0.890 0.985 0.940 0.889 0.986 0.947 0.905

ATJ50 0.985 0.952 0.891 0.992 0.953 0.910 0.991 0.946 0.909

BJ 0.983 0.931 0.886 0.983 0.936 0.885 0.982 0.948 0.903

ABJ50 0.986 0.954 0.888 0.994 0.962 0.914 0.992 0.944 0.912

0.50 TJ 0.984 0.941 0.894 0.985 0.945 0.897 0.985 0.943 0.893

ATJ50 0.984 0.935 0.892 0.983 0.938 0.893 0.987 0.943 0.891

BJ 0.982 0.936 0.893 0.983 0.943 0.889 0.982 0.942 0.899

ABJ50 0.988 0.935 0.884 0.988 0.938 0.885 0.988 0.949 0.907

0.75 TJ 0.992 0.957 0.911 0.991 0.954 0.909 0.995 0.956 0.911

ATJ50 0.994 0.948 0.914 0.992 0.963 0.916 0.987 0.964 0.914

BJ 0.993 0.968 0.919 0.995 0.965 0.918 0.995 0.962 0.914

ABJ50 0.993 0.960 0.914 0.992 0.959 0.918 0.990 0.967 0.914

0.90 TJ 0.993 0.948 0.909 0.995 0.961 0.909 0.984 0.950 0.894

ATJ50 0.996 0.964 0.924 0.998 0.966 0.928 0.988 0.952 0.890

BJ 0.990 0.957 0.918 0.989 0.962 0.914 0.984 0.937 0.892

ABJ50 0.998 0.980 0.948 0.996 0.954 0.916 0.988 0.956 0.904

Table 4.8 and Table 4.8A reports the coverage probabilities of Wald type con-

fidence intervals using different QR methods (TJ, ATJ50, BJ, and ABJ50) on the

τ = (0.1, 0.25, 0.5, 0.75, 0.9)th quantiles with nominal levels α = (0.99, 0.95, 0.90), re-
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spectively and sample size of n = (200, 500). The observed coverage probabilities of

estimates are close to their corresponding nominal levels (0.99, 0.95, 0.90) when small

sample size n = 200 is used and getting enhanced when sample size increased to

n = 500.

4.3.5 Performance of Statistical Tests

This section evaluates the performance of the Wald-type test based on the proposed

methods. Two null hypotheses H0 : βτ2 = 0 and H0 : βτ1 = 0 against complete

alternatives are tested.

Table 4.9: Rejection rates of 1000 simulation runs on H0 : βτ2 = 0 using different QR
methods. Levels of significance α = (0.01, 0.05, 0.1) and sample size n = (200, 500).

n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Case 1. ε ∼ N (0, 1)

0.1 TJ 0.008 0.043 0.109 0.014 0.048 0.094

ATJ50 0.010 0.065 0.105 0.012 0.057 0.098

BJ 0.012 0.056 0.096 0.015 0.055 0.095

ABJ50 0.014 0.054 0.116 0.015 0.050 0.105

0.25 TJ 0.011 0.043 0.093 0.011 0.054 0.102

ATJ50 0.010 0.058 0.095 0.012 0.054 0.106

BJ 0.015 0.040 0.085 0.010 0.048 0.096

ABJ50 0.010 0.055 0.085 0.015 0.055 0.100

0.50 TJ 0.012 0.057 0.101 0.011 0.051 0.105

ATJ50 0.010 0.051 0.101 0.012 0.057 0.104

BJ 0.015 0.065 0.105 0.015 0.045 0.110

ABJ50 0.010 0.060 0.095 0.015 0.055 0.105

Continued on next page
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Table 4.9 – continued from previous page

n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

0.75 TJ 0.015 0.048 0.105 0.010 0.049 0.099

ATJ50 0.013 0.065 0.110 0.011 0.047 0.097

BJ 0.017 0.057 0.109 0.010 0.050 0.100

ABJ50 0.015 0.056 0.105 0.011 0.045 0.095

0.9 TJ 0.012 0.056 0.107 0.012 0.056 0.104

ATJ50 0.010 0.053 0.105 0.012 0.052 0.103

BJ 0.015 0.055 0.111 0.013 0.046 0.094

ABJ50 0.010 0.065 0.110 0.015 0.053 0.107

Case 2. ε ∼ T2

0.10 TJ 0.015 0.058 0.108 0.013 0.047 0.095

ATJ50 0.020 0.044 0.089 0.011 0.051 0.100

BJ 0.017 0.061 0.109 0.011 0.052 0.102

ABJ50 0.018 0.057 0.105 0.013 0.052 0.098

0.25 TJ 0.013 0.056 0.094 0.013 0.058 0.096

ATJ50 0.007 0.044 0.093 0.010 0.046 0.095

BJ 0.014 0.050 0.092 0.015 0.055 0.100

ABJ50 0.005 0.043 0.091 0.009 0.047 0.093

0.50 TJ 0.020 0.059 0.107 0.011 0.052 0.101

ATJ50 0.018 0.058 0.101 0.013 0.054 0.095

BJ 0.020 0.057 0.110 0.015 0.055 0.100

ABJ50 0.012 0.045 0.100 0.015 0.053 0.097

0.75 TJ 0.011 0.048 0.092 0.014 0.044 0.098

ATJ50 0.013 0.042 0.117 0.008 0.047 0.100

Continued on next page
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n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

BJ 0.017 0.046 0.090 0.008 0.046 0.105

ABJ50 0.018 0.040 0.112 0.011 0.048 0.097

0.90 TJ 0.014 0.056 0.115 0.010 0.050 0.096

ATJ50 0.013 0.062 0.115 0.010 0.050 0.097

BJ 0.016 0.061 0.101 0.008 0.050 0.096

ABJ50 0.017 0.045 0.080 0.012 0.050 0.096

Case 3. ε ∼ X 2
3

0.10 TJ 0.010 0.043 0.098 0.008 0.050 0.103

ATJ50 0.009 0.046 0.106 0.014 0.048 0.097

BJ 0.010 0.036 0.095 0.008 0.048 0.102

ABJ50 0.007 0.045 0.105 0.013 0.054 0.104

0.25 TJ 0.014 0.053 0.092 0.013 0.053 0.104

ATJ50 0.009 0.054 0.091 0.013 0.045 0.103

BJ 0.015 0.052 0.097 0.010 0.050 0.099

ABJ50 0.008 0.052 0.092 0.012 0.054 0.104

0.50 TJ 0.015 0.057 0.107 0.014 0.048 0.093

ATJ50 0.012 0.062 0.111 0.012 0.052 0.102

BJ 0.015 0.060 0.100 0.014 0.053 0.099

ABJ50 0.012 0.054 0.091 0.010 0.049 0.103

0.75 TJ 0.006 0.046 0.090 0.009 0.047 0.096

ATJ50 0.013 0.038 0.089 0.008 0.047 0.104

BJ 0.007 0.039 0.089 0.009 0.046 0.102

ABJ50 0.010 0.039 0.088 0.008 0.048 0.098
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n = 200 n = 500

τ Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

0.90 TJ 0.016 0.051 0.106 0.010 0.049 0.010

ATJ50 0.012 0.048 0.110 0.007 0.046 0.098

BJ 0.013 0.063 0.108 0.009 0.053 0.103

ABJ50 0.012 0.044 0.096 0.008 0.047 0.095

Table 4.9 reports the percentages of 1000 tests associated with all methods (BJ,

TJ, ABJ50,ATJ50) to falsely reject null hypothesis H0 : βτ2 = 0 at nominal levels

α = (0.01, 0.05, 0.1) with the sample sizes n = (200, 500). The rejection rates of the

test associated with all methods are close to the corresponding nominal levels when

small size n = 200 is used. After increasing the sample size to n = 500, the rejection

rates of the test associated with all methods are enhanced and they are closer to

corresponding nominal levels.

Next, to check the power of the Wald tests, we set different effect sizes β1 =

(0.2, 0.4, 0.6, 0.8, 1.0).

Table 4.10: Power of S = 1000 hypotheses test (i.e., 1 − β) as related to the QR
parameters βτ1 are reported by for different QR methods TJ, ATJ50, BJ, and ABJ50.
Significance level α = 0.05 and sample size n = 200.

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

Case 1. ε ∼ N (0, 1)

0.10 TJ 0.985 0.960 1.000 1.000 1.000

ATJ50 1.000 0.995 1.000 1.000 1.000

BJ 0.985 0.990 1.000 1.000 1.000

Continued on next page
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βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ABJ50 1.000 1.000 1.000 1.000 1.000

0.25 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.90 TJ 0.989 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.990 1.000 1.000 1.000 1.000

ABJ50 0.999 1.000 1.000 1.000 1.000

Case 2. ε ∼ T2

0.10 TJ 0.538 0.943 1.000 1.000 1.000

ATJ50 0.623 0.956 1.000 1.000 1.000

BJ 0.543 0.945 1.000 1.000 1.000

ABJ50 0.632 0.958 1.000 1.000 1.000

0.25 TJ 0.973 1.000 1.000 1.000 1.000

Continued on next page
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Table 4.10 – continued from previous page

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ATJ50 0.999 1.000 1.000 1.000 1.000

BJ 0.977 1.000 1.000 1.000 1.000

ABJ50 0.999 1.000 1.000 1.000 1.000

0.50 TJ 0.922 1.000 1.000 1.000 1.000

ATJ50 1,000 1.000 1.000 1.000 1.000

BJ 0.933 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 0.932 1.000 1.000 1.000 1.000

ATJ50 0.974 1.000 1.000 1.000 1.000

BJ 0.921 1.000 1.000 1.000 1.000

ABJ50 0.978 1.000 1.000 1.000 1.000

0.90 TJ 0.542 0.932 0.975 0.996 1.000

ATJ50 0.569 0.948 0.986 1.000 1.000

BJ 0.542 0.934 0.977 0.997 1.000

ABJ50 0.571 0.951 0.987 1.000 1.000

Case 3. ε ∼ X 2
3

0.10 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.998 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.25 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.999 1.000 1.000 1.000 1.000

Continued on next page
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Table 4.10 – continued from previous page

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 0.973 1.000 1.000 1.000 1.000

ATJ50 0.990 1.000 1.000 1.000 1.000

BJ 0.978 1.000 1.000 1.000 1.000

ABJ50 0.992 1.000 1.000 1.000 1.000

0.75 TJ 0.613 0.983 1.000 1.000 1.000

ATJ50 0.627 1.000 1.000 1.000 1.000

BJ 0.604 0.988 1.000 1.000 1.000

ABJ50 0.639 1.000 1.000 1.000 1.000

0.90 TJ 0.335 0.683 0.934 0.977 0.995

ATJ50 0.358 0.737 0.938 0.983 1.000

BJ 0.337 0.686 0.935 0.978 0.997

ABJ50 0.364 0.734 0.943 0.979 1.000

Table 4.10 and Table 4.9A report the percentages of 1000 tests associated with

all methods for correctly rejecting null hypothesis βτ1 = 0 when it is not true with

samples sizes n = (200, 500). For normal distributed error, the powers of test related

to βτ1 on five quantiles are greater than 80%. When error follows t distribution, the

power of test associated with all methods become worse only on lower and upper

quantiles of data due to the presence of outliers and extreme values. The probability

mass in the tail is spread out over a wide range of values, making the test focusing

on extreme quantile harder to detect an effect. Similarly, the powers of test on upper

quantiles are getting lower since the test is influenced by the sknewness of Chi-squared

distribution. After we increase the sample, Table 4.9A finds that the powers of test
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related to the regression parameter are mostly greater than 80% on five quantiles of

data. The only exception is that on upper quantile (τ = 0.9) of data with Chi-squared

distributed error when effect size equals 0.2.

In general, the performance of hypothesis testing related to a particular QR

parameter is good.

4.4 Application: Fish Abundance and Commercial

Fishing Activities

In this section we illustrate our methods of QR model for counts by conducting an

analysis on ‘fishing’ data available in R package ‘MASS’ (Venables & Ripley, 2002),

reported by Bailey et al. (2009). The primary intention to collect the fishing data

is to examine the impact of commercial fishing in catching areas on the populations

of deep-sea fish, particularly in the deeper water over time. It is important to study

the fish abundance before and after the commercial activities that helps assess the

ecosystem and manage fisheries sustainably. By fitting different regression models to

the fishing abundance data across two periods, we illustrate the application of our

statistical model in the discipline of fishery science.

4.4.1 Real Data and Explanations

Table 4.11: Overview of the Fishing Dataset

Variable Description Type/Attributes

totabund Total number of fish per site. Integer

meandepth Mean water depth per site in me-

ters.

Integer

Continued on next page
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Table 4.11 – continued from previous page

Variable Description Type/Attributes

sweptarea Adjusted area of the site in square

meters.

Numeric

density Foliage density index. Numeric

site Catch site identifier. Categorical

year Year of data collection (1977-

2002).

Integer

period Time period of data (0=1977-

1989, 1=2000+).

Categorical

Table 4.11 gives an overview of the fishing data set. A total of 147 catch sites are

researched to record the population of deep-sea fish (totabund), mean water depth

(meandepth), adjusted site area in (sweptarea), foliage density index under water

(density) from 1977 to 2002 (year). The commercial fishing activities began in the

year of 2000. Therefore, period distinguishes between data collected where 0 = before

2000, 1 = after 2000. Bailey et al. (2009) initially studied it to understand the long

term change of population of deep-water fish in the North East Atlantic. Hilbe (2014)

then studied the data for the same purpose, using a generalized linear mixed model

and proposed flexible mixture models. The results found that the fish abundance

keeps falling from 800 to 2500 meters, even deeper than the maximum depth of legal

commercial fishing (1600 meters). The findings indicate that the effect of fishery has

already transmitted to very deep offshore areas, leading to concern of over-fishing and

marine reverse management (Bailey et al., 2009). The ecological system is complex

(Pepin et al., 2022), and area and under-water environment are expected to influence

fish populations. We analyze the data using our proposed QR method. The purpose

of this application is bi-fold. We illustrate how the proposed method are used and at
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Figure 4.3: Histogram of fish populations for all 147 catching sites.

the same time try to see if the effect of commercial fishing activities varies over the

distribution of fish abundance. Figure 4.3 displays the histogram of fish populations

for 147 catching sites. The maximum fish abundance is 1230 while the lowest is only

2, showing a significant disparity. Also, the distribution of fish populations is seri-

ously right-skewed, meaning that most of catching site have very low fish counts, and

the majority of populations concentrates in only a few sites. The fishing data might

contain outliers or extreme values for cites whose abundance exceeds 1000. Focus-

ing on the change of fish abundance due to commercial fishing activities, Figure 4.4

includes the box plots for the total fish abundances, and abundance before and af-

ter commercial fishing. The group of box plots shows that the median and upper

quantile of abundance during 1977-1989 is the highest. The wide range of upper and

lower quantiles suggest a large variability within the data. Moreover, the median and

upper quantile of abundance significantly dropped since the start of commercial fish-
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Figure 4.4: Box plots of fish abundance before and after commercial fishing activities.

ing. Overall, the total abundance exhibits high variability, long tail of distribution,

and notable outliers present in total abundance notably. Taking both skewness and

outliers into account, we expect that traditional mean regression model may provide

limited information about impact of fishing activities.

4.4.2 Data Pre-processing and Regression Models

To comprehensively analyze the fish abundance before and after commercial fish-

ing, we introduce interaction terms Density × Period, Meandepth × Period and

Sweptarea × Period into the regression models. Let yi, i = 1, ..., 147, be the abun-

dance of the ith catching site and xi = (Densityi,Meandepthi, Sweptareai, P eriodi,

Densityi×Periodi,Meandepth×Periodi, Sweptareai×Periodi) be a vector of pre-

dictors. We fit QR model using Beta distributed noises ui, where the QR response

is zi = yi + ui. According to the equivariance properties of QR model, logarithmic
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transformation is applied to the jittered response such that T (zi; τ) = log(zi−QU(τ))

if zi−QU(τ) ≥ ς or equals to log(ς) otherwise. Also, since the value of adjusted area

is too large, we scale it by converting the unit from square kilometer (km2) to mega

square kilometer (Mkm2) (e.g., 1 Mkm2 equals 1,000,000 km2). The following QR

model will be used to fit the fish abundance data

QT (zi;τ)(τ |xi) =βτ0 + βτ1Densityi + βτ2Meandepthi + βτ3Sweptareai + βτ4Periodi

+ βτ5Densityi × Periodi + βτ6Meandepth× Periodi

+ βτ7Sweptareai × Periodi.
(4.13)

In order to compare the results and better understand the effect of the commercial

fishing, mean regression model, Poisson regression model and ordinary QR model

are fit based on same predictors and interaction terms. QR models are fit on the

100%× τ = (0.25, 0.5, 0.75)-th percentile of fishing data.

4.4.3 Results and Interpretations

Table 4.12 and Table 4.13 report the estimated parameters, estimated standard errors,

corresponding 95% confidence intervals and p-values of parameters with significance

code (*) at nominal level 0.05, respectively by fitting mean regression model, Poisson

regression model, proposed quantile regression model and ordinary QR model. First

of all, the results obtained from mean regression and Poisson regression provide com-

parable estimated parameters. The negative β̂2 from both models indicate a negative

effect of water depth on the mean value of fish population. Density of foliage plays an

important role in growth of mean fish population. It is interesting that the estimated

β4 is positive. It implies that the start of commercial fishing does not directly lead

to reduction of fish abundance. However, if we take interaction terms into account,

negative estimated β5, β6 and β7 shows that the start of commercial fishing activities
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in those catching sites negatively affects all catching sites. The estimated parameters

suggests that the fish populations in catching sites with higher density of foliage and

larger area are affected heavily, and the commercial fishing only slightly aggravates

the decrease of fish in deep water. The estimates β̂3(0.25) > β̂3(0.5) > β̂3(0.75) > 0

are the three largest, revealing that density of foliage is still demanded the most

for the fish abundance, but the demand decreases with the quantiles of fish abun-

dance. Conversely, the need for aquatic area to support fish life increases with the

quantiles of fish abundance as 0 < β̂3(0.25) < β̂3(0.5) < β̂3(0.75). The estimates

β̂2(0.25) ≈ β̂3(0.5) ≈ β̂3(0.75) ≈ 0 indicates the water depth almost has no effect on

abundance. Moreover, the commercial fishing is harmful to more densely populated

catching sites as β̂4(0.75) < 0. This might be because the fish population are likely

concentrated in highly dense area, which makes the commercial fishing cause more

decrease of fish abundance. Now we study the estimated parameters of interaction

terms on different quantile. The estimates β̂7(0.75) < β̂7(0.5) < β̂7(0.25) < 0 im-

plies that the impact of commercial fishing in large water area increases with fish

abundance. On the other hand, the estimated parameter of βτ6 roughly equals zero

on three quantiles, indicating the impact of commercial fishing on deep-water fish is

almost negligible, regardless of fish abundance. For the interaction between foliage

density index and period, β̂5(0.25) < β̂5(0.5) < 0 suggest that those smaller and

medium fish abundance in dense foliage are vulnerable to commercial fishing. Con-

sidering foliage as a part of aquatic system providing food source and shelters for fish

productivity (Massicotte et al., 2015), fishing activities seem harmful to fish abun-

dance. But an interesting finding is shown on the high quantile of abundance. The

estimate β5(0.75) = 29.7746 > 0 implies that the commercial fishing increasese the

fish abundance at high quantile and in dense foliage water, challenge to our common

assumption. This interesting phenomenon may be explained by theorem of resilience

and transition under ecological change, which introduced resilience or aiding adap-
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tion to changes induced by environmental or social pressure (Woods et al., 2021). If

we assume that the foliage growth are disturbed by commercial fishing, then Woods

et al. (2021) showed that ecological system dependent on fisheries will be resilient or

remain viable to coop with negative environmental change. Ecological disturbances

somehow make the remaining water areas more stabilized after fishing activities, al-

lowing large fish population to utilize the remaining habitat structure to flourish and

grow. Therefore, consider all above, in a long term aspect we suggest to avoid com-

mercial fishing in water with large area to prevent fish species from depopulation.

Fishing activities can be held in dense foliage water with a good maintenance of un-

der water plants, unless the initial fish population is sufficiently large. Choosing deep

water for commercial fishing seems much safer for maintaining the fish abundance.

Therefore, monitoring commercial fishing activities and implementing marine reverse

management are actionable actions to stabilize the fish abundance.

Overall, given that the distribution of fish populations in 147 catching sites is

right-skewed, the results from QR models are much more representative. Also accord-

ing to our study, focusing on only mean fish population provides limited information.

Our model provides a comprehensive overview of impact on fish population made by

commercial fishing while giving a smaller standard errors.
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Table 4.12: Estimated parameters (EP ), their standard errors (SE), corresponding 95% confidence intervals (CI) and
p-values at nominal level α = 0.05 from fitting both the mean regression model and Poisson regression model.

Mean Regression Poisson Regression

βτ EP SE CI p-value EP SE CI p-value

β0 5.1320 0.2878 (4.5626, 5.701) < 0.001* 5.2860 0.0260 (5.2346, 5.3366) < 0.001*

β1 118.60 17.5201 (83.9159, 153.2144) < 0.001* 88.2401 1.1260 (86.0350, 90.4485) < 0.001*

β2 -0.0005 0.0001 (-0.0007, -0.0004) < 0.001* -0.0005 0.0000 (-0.4929, -0.0005) < 0.001*

β3 8.0120 3.1921 (1.7003, 14.3227) 0.013* 8.4780 0.2892 (7.9066, 9.0403) < 0.001*

β4 0.2314 0.04230 (-0.6050, 1.0677) 0.585 -0.0089 0.0440 (-0.5168, 0.0773) 0.839

β5 -16.2300 30.0001 (-75.5446, 43.0895) 0.589 -12.4500 1.6190 (-1.5629, -9.2822) < 0.001*

β6 -0.0001 0.0002 (-0.0002, -0.0004) 0.511 -0.0002 0.0000 (-0.0003, -0.0001) < 0.001*

β7 -8.9260 6.1790 (-21.1416, 3.2904) 0.150 -8.7690 0.8055 (-1.0356, -7.1986) < 0.001*
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Table 4.13: Estimated parameters (EP ), their standard errors (SE), corresponding 95% confidence intervals (CI) and p-
values at nominal level α = 0.05 from fitting both the proposed quantile regression model and ordinary quantile regression
model at three quantiles τ = (0.25, 0.50, 0.75).

Proposed Quantile Regression Ordinary Quantile Regression

τ βτ EP SE CI p-value EP SE CI p-value

0.25 βτ0 5.0764 0.0348 (5.0075, 5.1453) < 0.001* 5.0751 0.4160 (4.2527, 5.8975) < 0.001*

βτ1 112.7303 0.8676 (111.0149, 114.4458) < 0.001* 112.8124 25.3330 (62.7276, 162.8972) < 0.001*

βτ2 -0.0006 0.0000 (-0.0006, -0.0005) < 0.001* -0.0006 0.0001 (-0.0008, -0.0003) < 0.001*

βτ3 7.6326 0.2799 (7.0791, 8.1862) < 0.001* 7.6398 4.6143 (-1.4829, 16.7626) 0.100

βτ4 0.0564 0.0418 (-0.0263, 0.1391) 0.179 0.0591 0.6115 (-1.1499, 1.2681) 0.923

βτ5 -27.4575 1.0666 (-29.5665, -25.3487) < 0.001* -27.4473 43.3684 (-113.1891, 58.2944) 0.5278

βτ6 -0.0000 0.0000 (-0.0001, 0.0001) 0.435 -0.0000 0.0002 (-0.0005, 0.0004) 0.865

βτ7 -5.0724 1.366 (-7.7738, -2.3711) < 0.001* -5.0369 8.9315 (-22.6950, 12.6212) 0.573

0.50 βτ0 5.2413 0.2677 (4.7120, 5.7705) < 0.001* 5.2463 0.2215 (4.8084, 5.6842) < 0.001*

βτ1 105.5414 10.6538 (84.4783, 126.6045) < 0.001* 105.3466 13.4892 (78.6777, 132.0155) < 0.001*

βτ2 -0.0005 0.0000 (-0.0006, -0.0005) < 0.001* -0.0005 0.0001 (-0.0006, -0.0003) < 0.001*

βτ3 7.6711 1.7951 (4.1220, 11.2201) < 0.001* 7.6316 2.4570 (2.7740, 12.4892) 0.0023

Continued on next page
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Table 4.13 continued from previous page

Proposed Quantile Regression Ordinary Quantile Regression

τ βτ EP SE CI p-value EP SE CI p-value

βτ4 0.5289 0.2772 (-0.0190, 1.0769) 0.062 0.5198 0.3256 (-0.1239, 1.1636) 0.113

βτ5 -39.1218 10.6911 (-60.2586, -17.9850) < 0.001* -38.8658 23.0926 (-84.5212, 6.7896) 0.095

βτ6 -0.0000 0.0000 (-0.00005, 0.00007) 0.659 -0.0000 0.0001 (-0.0002, 0.0002) 0.922

βτ7 -9.9233 2.5511 (-14.9669, -4.8797) < 0.001* -9.8604 4.7558 (-19.2629, -0.4579) 0.040*

0.75 βτ0 5.2345 0.4251 (4.3942, 6.0749) < 0.001* 5.2244 0.1470 (4.9338, 5.5150) < 0.001*

βτ1 98.1531 15.6282 (67.2553, 129.0510) < 0.001* 98.4594 8.9517 (80.7615, 116.1574) < 0.001*

βτ2 -0.0006 0.0001 (-0.0007, -0.0005) < 0.001* -0.0006 0.0000 (-0.0007, -0.0005) < 0.001*

βτ3 16.1530 2.0311 (12.1374, 20.1686) < 0.001* 16.1526 1.6305 (12.9290, 19.3762) < 0.001*

βτ4 -0.1610 0.4393 (-1.0295, 0.7075) 0.715 -0.1493 0.2161 (-0.5765, 0.2779) 0.491

βτ5 29.7746 16.2565 (-2.3653, 61.9145) 0.069 29.3029 15.3247 (-0.9948, 59.6006) 0.058

βτ6 0.0004 0.0001 (0.0003, 0.0006) < 0.001* 0.0004 0.0001 (0.0003, 0.0006) < 0.001*

βτ7 -17.3879 2.0762 (-21.4926, -13.2831) <0.001 -17.3844 3.1560 (-23.6241, -11.1447) < 0.001*
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Chapter 5

Concluding Remarks

Traditional QR method is not directly applicable to count data due to discreteness

and non-differentiability of sample objective function. Systematic bias and poor in-

ference could occur, if QR is naively used to model count data. We are inspired by

Machado and Silva (2005)’s uniform jittering method and proposed an optimized jit-

tering method using non-negative continuous variable (Tweedie and Beta) to smooth

the counts. The parameters of noise distribution can be pre-determined by utilizing

the ALD. Technique of averaging noises out is applicable to this alternative jittering

method, which further reduces the variability of QR estimate. The MCEM and MH

algorithms can be used for maximizing the likelihood of the ALD, reducing the com-

putational cost. QR estimator obtained by using this alternative jittering method is

consistent and asymptotically normally distributed, facilitating the statistical infer-

ence on QR model. The simulations in Chapter 4 show that our QR method performs

well. The variability of estimator is much smaller than uniform jittering method.

As a future work, we will discuss the asymptotic equivalence of hypothesis tests

based on continuous data and truncated data. Two hypothesis tests are asymptot-

ically equivalent if their difference in performance of rejection rate or power of the
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test vanishes as the sample size tends to infinity. Again we let continuous yc and

truncated y = trunc(yc) follow the same data generation process as in simulation II.

Consider two QR models as follows,

Model 1: QT (z;τ)(τ |x) = x′βτ , and

Model 2: Qyc(τ |xi) = x′γτ ,
(5.1)

where T (zi; τ) = zi − QU(τ) if zi − QU(τ) > ς and equal to ς otherwise, βτ and γτ

are true parameters of corresponding QR models at τ -th quantile. To evaluate the

asymptotic equivalence of the tests, we examine the powers of the test related to βτ1

and γτ1 by comparing the percentages for the two tests to reject the null hypotheses

H0 : βτ1 = 0 vs. H1 : βτ1 ̸= 0, and

H0 : γτ1 = 0 vs. H1 : γτ1 ̸= 0,
(5.2)

when the null hypothesis is true or not. The corresponding test statistics for j-th

estimator of two models are

tModel 1 =
β̂τj − 0

s.e.(βτj)
and tModel 2 =

γ̂τj − 0

s.e.(γτj)
, (5.3)

respectively. The preliminary results observed from this simulation has been es-

tablished. We will further investigate in the future for a theoretical framework to

understand asymptotic equivalence of tests.

Moreover, we would like to further extend the proposed QR model to fit to

zero-inflated data more accurately. Chapter 4 prompts some possible developments

of our jittering approach. In simulation I, jittering performs worse when there are

excessive zeros, even with a zero-inflation of 20%. Ling et al. (2022) proposed a two-

part QR model with logistic regression to model the zero part. It seems interesting to

mix our proposed QR model with logistic regression, which allows us to model zero
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part with logistic regression and non-zero part with proposed QR model. Moreover,

in the empirical study, the fishing population is assumed to be independent of one

another for illustration purpose. However, geographically if fishing sites share the

same body of water system and environmental conditions or are monitored under

same policies, the fish population in one site will possibly depend on one another.

To enhance the applicability of alternative jittering to real data, we have to modify

the proposed jittering method to adapt dependent counts. Corresponding model

assumptions, estimation and inference will be derived in the future.

159



Bibliography

Andrews, D. (1986). Empirical process methods in econometrics. In R. F. Engle & D.

McFadden (Eds.), Handbook of econometrics (1st ed., pp. 2247–2294, Vol. 4).

Elsevier. https://EconPapers.repec.org/RePEc:eee:ecochp:4-37

Bailey, D., Collins, M., Gordon, J., Zuur, A., & Priede, I. (2009). Long-term changes

in deep-water fish populations in the northeast atlantic: A deeper reaching

effect of fisheries? Proceedings. Biological sciences / The Royal Society, 276,

1965–9. https://doi.org/10.1098/rspb.2009.0098

Chen, C. W., Gerlach, R., Hwang, B. B., & McAleer, M. (2012). Forecasting value-at-

risk using nonlinear regression quantiles and the intra-day range. International

Journal of Forecasting, 28 (3), 557–574. https://doi.org/https://doi.org/10.

1016/j.ijforecast.2011.12.004

Chen, C. (2005). Growth charts of body mass index (bmi) with quantile regression.

Proceedings of the 2005 International Conference on Algorithmic Mathematics

and Computer Science, AMCS’05, 114–120.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum

Associates. https://books.google.ca/books?id=gA04ngAACAAJ

Davino, C., Furno, M., & Vistocco, D. (2013). Quantile regression: Theory and ap-

plications. Quantile Regression: Theory and Applications. https://doi.org/10.

1002/9781118752685

160

https://EconPapers.repec.org/RePEc:eee:ecochp:4-37
https://doi.org/10.1098/rspb.2009.0098
https://doi.org/https://doi.org/10.1016/j.ijforecast.2011.12.004
https://doi.org/https://doi.org/10.1016/j.ijforecast.2011.12.004
https://books.google.ca/books?id=gA04ngAACAAJ
https://doi.org/10.1002/9781118752685
https://doi.org/10.1002/9781118752685


De Backer, M., Ghouch, A., & Keilegom, I. (2020). Linear censored quantile regres-

sion: A novel minimum-distance approach. Scandinavian Journal of Statistics,

47. https://doi.org/10.1111/sjos.12475

Ding, D. S., Patel, A. K., Singhania, R. R., Chen, C. W., & Dong, C. D. (2022). Effects

of temperature and salinity on growth, metabolism and digestive enzymes

synthesis of goniopora columna. Biology, 11 (3), 436. https://doi.org/10.3390/

biology11030436

Dunn, P. K. (2022). Tweedie: Evaluation of tweedie exponential family models [R

package version 2.3.5].

Dunn, P. K., & Smyth, G. K. (2005). Series evaluation of tweedie exponential disper-

sion models. Statistics and Computing, 15 (4), 267–280.

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric

maximum likelihood. Journal of the American Statistical Association, 87 (417),

98–107. https://doi.org/10.1080/01621459.1992.10475180

Efron, B., & Tibshirani, R. J. (1998). Introduction to the bootstrap. Chapman &

Hall/CRC.

Erdman, D., & Sinko, A. (2008). Zero-inflated poisson and zero-inflated negative

binomial models using the countreg procedure.

Friederichs, P., & Hense, A. (2007). Statistical downscaling of extreme precipitation

events using censored quantile regression. Monthly Weather Review - MON

WEATHER REV, 135, 2365–2378. https://doi.org/10.1175/MWR3403.1

Geraci, M. (2014). Linear quantile mixed models: The lqmm package for laplace quan-

tile regression. Journal of Statistical Software, 57 (13), 1–29. https://doi.org/

10.18637/jss.v057.i13

Geraci, M., & Bottai, M. (2006). Quantile regression for longitudinal data using the

asymmetric Laplace distribution. Biostatistics, 8 (1), 140–154. https ://doi .

org/10.1093/biostatistics/kxj039

161

https://doi.org/10.1111/sjos.12475
https://doi.org/10.3390/biology11030436
https://doi.org/10.3390/biology11030436
https://doi.org/10.1080/01621459.1992.10475180
https://doi.org/10.1175/MWR3403.1
https://doi.org/10.18637/jss.v057.i13
https://doi.org/10.18637/jss.v057.i13
https://doi.org/10.1093/biostatistics/kxj039
https://doi.org/10.1093/biostatistics/kxj039


Geraci, M., & Farcomeni, A. (2022). Mid-quantile regression for discrete responses.

Statistical Methods in Medical Research, 31, 096228022110605. https://doi.

org/10.1177/09622802211060525

Gujarati, D. N. (2003). Basic econometrics (International Edition). McGraw-Hill.

Hajdu, T., & Hajdu, G. (2014). Income and subjective well-being: How important is

the methodology? Hungarian Statistical Review, 92, 110–128.

Harding, M., & Lamarche, C. (2019). Penalized estimation of a quantile count model

for panel data. Annals of Economics and Statistics, (134), 177–206. Retrieved

April 24, 2024, from https://www.jstor.org/stable/10.15609/annaeconstat2009.

134.0177

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57 (1), 97–109. https://doi.org/10.1093/biomet/57.

1.97

Hilbe, J. M. (2014). Modeling count data. Cambridge University Press.

Horowitz, J. (1992). A smoothed maximum score estimator for the binary response

model. Econometrica, 60 (3), 505–31. https://EconPapers.repec.org/RePEc:

ecm:emetrp:v:60:y:1992:i:3:p:505-31

Jentsch, C., & Leucht, A. (2015). Bootstrapping sample quantiles of discrete data.

Annals of the Institute of Statistical Mathematics, 68. https://doi .org/10.

1007/s10463-015-0503-3

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994 - 1995). Continuous univariate

distributions (2nd ed.).

Jorgensen, B. (1987). Exponential dispersion models. Journal of the Royal Statistical

Society. Series B (Methodological), 49 (2), 127–162. Retrieved April 23, 2024,

from http://www.jstor.org/stable/2345415

Kim, J., & Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics, 18 (1),

191–219. Retrieved April 25, 2024, from http://www.jstor.org/stable/2241541

162

https://doi.org/10.1177/09622802211060525
https://doi.org/10.1177/09622802211060525
https://www.jstor.org/stable/10.15609/annaeconstat2009.134.0177
https://www.jstor.org/stable/10.15609/annaeconstat2009.134.0177
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:60:y:1992:i:3:p:505-31
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:60:y:1992:i:3:p:505-31
https://doi.org/10.1007/s10463-015-0503-3
https://doi.org/10.1007/s10463-015-0503-3
http://www.jstor.org/stable/2345415
http://www.jstor.org/stable/2241541


Kocherginsky, M., & He, X. (2007). Extensions of the markov chain marginal boot-

strap [Silver Jubilee Issue Dedicated to Richard A. Johnson on his 70th birth-

day]. Statistics & Probability Letters, 77 (12), 1258–1268. https ://doi .org/

https://doi.org/10.1016/j.spl.2007.03.010

Koenker, R. (2004). Quantreg: An r package for quantile regression and related meth-

ods.

Koenker, R. (2005). Quantile regression. Cambridge University Press.

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46 (1), 33–50.

Retrieved April 21, 2024, from http://www.jstor.org/stable/1913643

Koenker, R., & Machado, J. A. F. (1999). Goodness of fit and related inference pro-

cesses for quantile regression. Journal of the American Statistical Association,

94 (448), 1296–1310. Retrieved April 22, 2024, from http://www.jstor.org/

stable/2669943

Kuan, C.-M. (2007). An introduction to quantile regression (Research Report). Insti-

tute of Economics, Academia Sinica.

Lancaster, H. O. (1961). Significance tests in discrete distributions. Journal of the

American Statistical Association, 56 (294), 223–234. https://doi.org/10.1080/

01621459.1961.10482105

Lee, M.-j. (1992). Median regression for ordered discrete response. Journal of Econo-

metrics, 51 (1), 59–77. https : / /doi . org /https : / /doi . org / 10 . 1016 / 0304 -

4076(92)90029-Q

Levine, R., & Casella, G. (2001). Implementations of the mcem algorithm. Journal

of Computational and Graphical Statistics - J COMPUT GRAPH STAT, 10.

https://doi.org/10.1198/106186001317115045

Ling, W., Cheng, B., Wei, Y., Willey, J., & Cheung, Y. (2022). Statistical inference

in quantile regression for zero-inflated outcomes. Statistica Sinica, 32. https:

//doi.org/10.5705/ss.202020.0368

163

https://doi.org/https://doi.org/10.1016/j.spl.2007.03.010
https://doi.org/https://doi.org/10.1016/j.spl.2007.03.010
http://www.jstor.org/stable/1913643
http://www.jstor.org/stable/2669943
http://www.jstor.org/stable/2669943
https://doi.org/10.1080/01621459.1961.10482105
https://doi.org/10.1080/01621459.1961.10482105
https://doi.org/https://doi.org/10.1016/0304-4076(92)90029-Q
https://doi.org/https://doi.org/10.1016/0304-4076(92)90029-Q
https://doi.org/10.1198/106186001317115045
https://doi.org/10.5705/ss.202020.0368
https://doi.org/10.5705/ss.202020.0368


Lu, X., & Fan, Z. (2020). Generalized linear mixed quantile regression with panel

data. PLOS ONE, 15 (8), 1–16. https://doi.org/10.1371/journal.pone.0237326

Ma, Y., Genton, M., & Parzen, E. (2011). Asymptotic properties of sample quantiles

of discrete distributions. Annals of the Institute of Statistical Mathematics, 63,

227–243. https://doi.org/10.1007/s10463-008-0215-z

Machado, J. A. F., & Silva, J. M. C. S. (2005). Quantiles for counts. Journal of the

American Statistical Association, 100 (472), 1226–1237. https://doi.org/10.

1198/016214505000000330

Manning, W. G. (1998). The logged dependent variable, heteroscedasticity, and the re-

transformation problem. Journal of Health Economics, 17 (3), 283–295. https:

//ideas.repec.org/a/eee/jhecon/v17y1998i3p283-295.html

Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of

choice. Journal of Econometrics, 3 (3), 205–228. https://doi.org/https://doi.

org/10.1016/0304-4076(75)90032-9

Manski, C. F. (1985). Semiparametric analysis of discrete response: Asymptotic prop-

erties of the maximum score estimator. Journal of Econometrics, 27 (3), 313–

333. https://doi.org/https://doi.org/10.1016/0304-4076(85)90009-0

Massicotte, P., Bertolo, A., Brodeur, P., Hudon, C., Mingelbier, M., & Magnan, P.

(2015). Influence of the aquatic vegetation landscape on larval fish abundance.

Journal of Great Lakes Research, 41. https://doi.org/10.1016/j.jglr.2015.05.

010

Millard, S. P. (2013). Envstats: An r package for environmental statistics. Springer.

https://www.springer.com

Muller, J.-M., Brisebarre, N., Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond,

G., Revol, N., Stehlé, D., & Torres, S. (2010, January). Handbook of floating-

point arithmetic. https://doi.org/10.1007/978-0-8176-4705-6

164

https://doi.org/10.1371/journal.pone.0237326
https://doi.org/10.1007/s10463-008-0215-z
https://doi.org/10.1198/016214505000000330
https://doi.org/10.1198/016214505000000330
https://ideas.repec.org/a/eee/jhecon/v17y1998i3p283-295.html
https://ideas.repec.org/a/eee/jhecon/v17y1998i3p283-295.html
https://doi.org/https://doi.org/10.1016/0304-4076(75)90032-9
https://doi.org/https://doi.org/10.1016/0304-4076(75)90032-9
https://doi.org/https://doi.org/10.1016/0304-4076(85)90009-0
https://doi.org/10.1016/j.jglr.2015.05.010
https://doi.org/10.1016/j.jglr.2015.05.010
https://www.springer.com
https://doi.org/10.1007/978-0-8176-4705-6


Newey, W., & Powell, J. (1987). Asymmetric least squares estimation and testing.

Econometrica, 55, 819–47. https://doi.org/10.2307/1911031

Padellini, T., & Rue, H. (2018). Model-based quantile regression for discrete data.

Paris, R. (2011, January). Incomplete gamma and related functions.

Parzen, E. (1993). Change pp plot and continous sample quantile function. Com-

munications in Statistics - Theory and Methods, 22 (12), 3287–3304. https :

//doi.org/10.1080/03610929308831216

Pearson, E. S. (1950). On questions raised by the combination of tests based on

discontinuous distributions. Biometrika, 37 (3/4), 383–398. Retrieved April 22,

2024, from http://www.jstor.org/stable/2332389

Peng, L. (2021). Quantile regression for survival data. Annual Review of Statistics

and Its Application, 8, 413–437. https://doi.org/10.1146/annurev-statistics-

042720-020233

Pepin, P., King, J., Holt, C., Gurney-Smith, H., Shackell, N., Hedges, K., & Bundy,

A. (2022). Incorporating knowledge of changes in climatic, oceanographic and

ecological conditions in canadian stock assessments. Fish and Fisheries, 23.

https://doi.org/10.1111/faf.12692

Perillo, A., Mazzoni, L. G., Passos, L., Goulart, V., Duca, C., & Young, R. (2017).

Anthropogenic noise reduces bird species richness and diversity in urban parks.

Ibis, 159. https://doi.org/10.1111/ibi.12481

Powell, J. (1986). Censored regression quantiles. Journal of Econometrics, 32 (1), 143–

155. https://EconPapers.repec.org/RePEc:eee:econom:v:32:y:1986:i:1:p:143-

155

Powell, J. L. (1984). Least absolute deviations estimation for the censored regression

model. Journal of Econometrics, 25 (3), 303–325. https://ideas.repec.org/a/

eee/econom/v25y1984i3p303-325.html

165

https://doi.org/10.2307/1911031
https://doi.org/10.1080/03610929308831216
https://doi.org/10.1080/03610929308831216
http://www.jstor.org/stable/2332389
https://doi.org/10.1146/annurev-statistics-042720-020233
https://doi.org/10.1146/annurev-statistics-042720-020233
https://doi.org/10.1111/faf.12692
https://doi.org/10.1111/ibi.12481
https://EconPapers.repec.org/RePEc:eee:econom:v:32:y:1986:i:1:p:143-155
https://EconPapers.repec.org/RePEc:eee:econom:v:32:y:1986:i:1:p:143-155
https://ideas.repec.org/a/eee/econom/v25y1984i3p303-325.html
https://ideas.repec.org/a/eee/econom/v25y1984i3p303-325.html


Rampichini, C., Grilli, L., & Varriale, R. (2015). Statistical modelling of gained uni-

versity credits to evaluate the role of pre-enrolment assessment tests: An ap-

proach based on quantile regression for counts. Statistical Modelling, 16. https:

//doi.org/10.1177/1471082X15596087

Saha, D., Alluri, P., Dumbaugh, E., & Gan, A. (2020). Application of the poisson-

tweedie distribution in analyzing crash frequency data. Accident Analysis &

Prevention, 137, 105456. https://doi.org/https://doi.org/10.1016/j.aap.2020.

105456

Siddiqui, M. (1960). Distributions of quantiles from a bivariate population. Journal

of Research of the National Bureau of Standards, 64, 145–150.

Smyth, G. K. (2007). Regression analysis of quantity data with exact zeroes ∗. https:

//api.semanticscholar.org/CorpusID:971001

Stevens, W. L. C. (1950). Fiducial limits of the parameter of a discontinuous distribu-

tion. Biometrika, 37 1-2, 117–29. https://api.semanticscholar.org/CorpusID:

2069401

Stigler, S. M. (1977). Fractional order statistics, with applications. Journal of the

American Statistical Association, 72 (359), 544–550. https://doi.org/10.1080/

01621459.1977.10480611

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth)

[ISBN 0-387-95457-0]. Springer. https://www.stats.ox.ac.uk/pub/MASS4/

Wagner, H. M. (1959). Linear programming techniques for regression analysis. Journal

of the American Statistical Association, 54 (285), 206–212. https://doi.org/10.

1080/01621459.1959.10501506

Walker, A. M. (1968). A Note on the Asymptotic Distribution of Sample Quantiles.

Journal of the Royal Statistical Society: Series B (Methodological), 30 (3), 570–

575. https://doi.org/10.1111/j.2517-6161.1968.tb00757.x

166

https://doi.org/10.1177/1471082X15596087
https://doi.org/10.1177/1471082X15596087
https://doi.org/https://doi.org/10.1016/j.aap.2020.105456
https://doi.org/https://doi.org/10.1016/j.aap.2020.105456
https://api.semanticscholar.org/CorpusID:971001
https://api.semanticscholar.org/CorpusID:971001
https://api.semanticscholar.org/CorpusID:2069401
https://api.semanticscholar.org/CorpusID:2069401
https://doi.org/10.1080/01621459.1977.10480611
https://doi.org/10.1080/01621459.1977.10480611
https://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1080/01621459.1959.10501506
https://doi.org/10.1080/01621459.1959.10501506
https://doi.org/10.1111/j.2517-6161.1968.tb00757.x


Woods, P. J., Macdonald, J. I., Bárðarson, H., Bonanomi, S., Boonstra, W. J., Cor-

nell, G., Cripps, G., Danielsen, R., Färber, L., Ferreira, A. S. A., Ferguson,

K., Holma, M., Holt, R. E., Hunter, K. L., Kokkalis, A., Langbehn, T. J.,

Ljungström, G., Nieminen, E., Nordström, M. C., . . . Yletyinen, J. (2021).

A review of adaptation options in fisheries management to support resilience

and transition under socio-ecological change. ICES Journal of Marine Science,

79 (2), 463–479. https://doi.org/10.1093/icesjms/fsab146

167

https://doi.org/10.1093/icesjms/fsab146


Appendix

Table 4.1A: Estimates β̂, biases (bias) and relative efficiencies (REF ) to the es-
timators of β0, β1, and β2 using different methods (ORD, UJ, AUJ50, TJ, ATJ50,
ATJ150, BJ, ABJ50, ABJ150) at three quantiles τ = (0.25, 0.5, 0.75) based on sample
size n = 500.

β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

Case 1. Poisson

0.25 ORD 0.3001 0.8273 -0.1818 0.3931 -0.0491 0.1903

UJ 0.0188 0.0073 -0.0103 0.0040 -0.0103 0.0081

AUJ50 0.0208 0.0048 -0.0090 0.0021 -0.0125 0.0061

TJ -0.0078 0.0069 0.0035 0.0026 0.0022 0.0068

ATJ50 -0.0040 0.0047 0.0022 0.0018 0.0177 0.0051

ATJ150 -0.0035 0.0046 0.0021 0.0017 -0.0168 0.0050

BJ 0.0007 0.0062 -0.0064 0.0032 0.0021 0.0073

ABJ50 -0.0013 0.0041 -0.0044 0.0018 0.0000 0.0053

ABJ150 -0.0011 0.0041 -0.0050 0.0017 0.0005 0.0052

0.5 ORD -0.0017 0.0067 0.0034 0.0044 -0.0039 0.0068

UJ 0.0081 0.0039 -0.0037 0.0023 -0.0090 0.0046

AUJ50 0.0039 0.0029 -0.0029 0.0021 -0.0076 0.0041
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Table 4.1A – continued from previous page

β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

TJ -0.0069 0.0037 -0.0002 0.0020 0.0026 0.0042

ATJ50 0.0020 0.0022 -0.0019 0.0014 -0.0027 0.0034

ATJ150 0.0014 0.0021 -0.0010 0.0013 -0.0025 0.0032

BJ 0.0089 0.0033 0.0008 0.0019 -0.0124 0.0041

ABJ50 0.0080 0.0028 0.0009 0.0015 -0.0098 0.0035

ABJ150 0.0075 0.0026 0.0004 0.0014 -0.0076 0.0035

0.75 ORD 0.0010 0.0053 -0.0021 0.0036 0.0000 0.0055

UJ -0.0058 0.0026 0.0049 0.0014 0.0054 0.0035

AUJ50 -0.0072 0.0021 0.0039 0.0011 0.0103 0.0030

TJ -0.0081 0.0027 0.0005 0.0012 0.0114 0.0053

ATJ50 0.0070 0.0020 -0.0021 0.0011 0.0003 0.0033

ATJ150 -0.0067 0.0019 -0.0007 0.0010 0.0021 0.0031

BJ -0.0085 0.0025 0.0023 0.0014 0.0069 0.0033

ABJ50 -0.0065 0.0022 0.0067 0.0011 0.0040 0.0027

ABJ150 -0.0055 0.0021 0.0017 0.0010 0.0037 0.0025

Case 2. Zero-inflated Poisson

0.25 ORD -1.5599 9.3840 -1.3825 6.2528 -0.0249 0.5656

UJ -0.0056 0.0566 -0.0590 0.0493 -0.0535 0.0945

AUJ50 -0.0258 0.0480 -0.0833 0.0443 -0.0473 0.0755

TJ -0.0310 0.0521 -0.0814 0.0460 -0.0635 0.0899

ATJ50 -0.0411 0.0475 -0.0909 0.0423 -0.0711 0.0830

ATJ150 -0.0298 0.0469 -0.0786 0.0415 -0.056 0.0823

BJ -0.0457 0.0521 -0.0778 0.0511 -0.0333 0.0773
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Table 4.1A – continued from previous page

β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

ABJ50 -0.0500 0.0390 -0.0656 0.0340 -0.0232 0.0530

ABJ150 -0.0401 0.0371 -0.0551 0.0325 -0.0214 0.0515

0.5 ORD -0.0926 0.0764 0.0596 0.0494 0.0343 0.0243

UJ -0.0161 0.0104 0.0120 0.0049 -0.0055 0.0097

AUJ50 -0.0160 0.0060 0.0054 0.0027 0.0050 0.0079

TJ 0.0022 0.0065 0.0025 0.0037 0.0018 0.0080

ATJ50 0.0115 0.0042 -0.0035 0.0020 -0.0200 0.0062

ATJ150 0.0078 0.0040 -0.0019 0.0018 -0.0020 0.0059

BJ 0.0024 0.0070 0.0027 0.0030 -0.0019 0.0097

ABJ50 -0.0038 0.0041 0.0088 0.0019 0.0005 0.0065

ABJ150 -0.0018 0.0038 0.0058 0.0017 0.0010 0.0062

0.75 ORD -0.0073 0.0061 0.0143 0.0044 0.01433 0.0076

UJ -0.0109 0.0044 0.0106 0.0024 0.0044 0.0054

AUJ50 -0.0107 0.0032 0.0117 0.0021 -0.0005 0.0041

TJ -0.0142 0.0046 0.0066 0.0021 0.0112 0.0049

ATJ50 -0.0158 0.0029 0.0092 0.0018 0.0165 0.0045

ATJ150 -0.0124 0.0027 0.0061 0.0018 0.0125 0.0045

BJ -0.0094 0.0038 0.0114 0.0019 0.0147 0.0043

ABJ50 -0.0185 0.0030 0.0109 0.0015 0.0150 0.0037

ABJ150 -0.0164 0.0029 0.0102 0.0014 0.0142 0.0036

Case 3. Negative binomial

0.25 ORD -0.1426 0.3563 0.0178 0.0562 0.1538 0.6351

UJ -0.0323 0.0489 0.0075 0.0313 -0.0044 0.0774
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Table 4.1A – continued from previous page

β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

AUJ50 -0.0036 0.0310 0.0062 0.0152 -0.0303 0.0599

TJ -0.0024 0.0313 0.0013 0.0216 -0.0103 0.0393

ATJ50 -0.0051 0.0149 0.0082 0.0100 -0.0355 0.0284

ATJ50 -0.0053 0.0145 0.0087 0.0097 -0.0361 0.0280

BJ 0.0042 0.0195 0.0050 0.0056 -0.0191 0.0198

ABJ50 0.0011 0.0185 0.0063 0.0029 -0.0147 0.0142

ABJ150 0.0021 0.0184 0.0065 0.0028 -0.0137 0.0140

0.5 ORD 0.0053 0.0323 -0.0137 0.0222 -0.0137 0.0306

UJ 0.0023 0.0101 -0.0096 0.0050 0.0101 0.0183

AUJ50 0.0163 0.0071 -0.0066 0.0039 0.0012 0.0143

TJ 0.0230 0.0078 -0.0102 0.0044 -0.0186 0.0151

ATJ50 0.0204 0.0070 -0.0103 0.0034 -0.0128 0.0125

ATJ150 0.0196 0.0068 -0.0098 0.0033 -0.0106 0.0123

BJ -0.0037 0.0075 -0.0080 0.0043 -0.0119 0.0140

ABJ50 -0.0042 0.0062 -0.0110 0.0035 -0.0054 0.0137

ABJ150 0.0044 0.0061 -0.0090 0.0034 -0.0037 0.0137

0.75 ORD -0.0078 0.0109 -0.0178 0.0084 0.0084 0.0162

UJ -0.0143 0.0060 -0.0108 0.0042 0.0123 0.0108

AUJ50 -0.0248 0.0056 0.0003 0.0036 0.0239 0.0101

TJ -0.0169 0.0061 0.0004 0.0040 0.0058 0.0102

ATJ50 -0.0072 0.0053 0.0070 0.0032 -0.0028 0.0095

ATJ150 -0.0055 0.0052 0.0073 0.0031 -0.0021 0.0093

BJ -0.0071 0.0050 -0.0015 0.0048 0.0064 0.0088
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Table 4.1A – continued from previous page

β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

ABJ50 -0.0060 0.0043 -0.0031 0.0029 0.0012 0.0087

ABJ150 -0.0053 0.0042 -0.0035 0.0027 -0.0011 0.0086

Case 4. Zero-inflated negative binomial

0.25 ORD - - - - - -

UJ -0.0083 0.0574 -0.0104 0.0469 -0.0157 0.0681

AUJ50 -0.0044 0.0405 -0.0369 0.0384 -0.0458 0.0310

TJ 0.0534 0.0287 0.0744 0.0275 -0.0399 0.0512

ATJ50 0.0346 0.0284 -0.475 0.0258 -0.0387 0.0281

ATJ150 0.0268 0.0283 -0.356 0.0256 -0.0356 0.0288

BJ 0.0555 0.0289 0.0734 0.0274 -0.0368 0.0510

ABJ50 0.0272 0.0283 0.0471 0.0254 -0.0466 0.0277

ABJ150 0.0188 0.0282 0.0378 0.0253 -0.0474 0.0270

0.5 ORD 0.3406 1.8217 -0.2705 1.0512 -0.0989 0.3232

UJ 0.0156 0.0200 0.0194 0.0122 -0.0324 0.0347

AUJ50 0.0397 0.0191 -0.0038 0.0075 -0.0179 0.0327

TJ -0.0326 0.0183 0.0091 0.0114 -0.0252 0.0412

ATJ50 -0.0386 0.0172 0.0165 0.0079 -0.0076 0.0328

ATJ150 -0.0386 0.0172 0.0165 0.0079 -0.0076 0.0328

BJ -0.0188 0.0199 0.0078 0.0102 0.0185 0.0356

ABJ50 -0.0194 0.0167 0.0017 0.0071 -0.0218 0.0311

ABJ50 -0.0197 0.0165 0.0014 0.0069 -0.0223 0.0309

0.75 ORD -0.0250 0.0162 0.0013 0.0093 -0.0150 0.0260

UJ -0.0229 0.0110 -0.0051 0.0068 0.0172 0.0171
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β0 β1 β2

τ Method Bias MSE Bias MSE Bias MSE

AUJ50 -0.0336 0.0096 -0.0003 0.0060 0.0201 0.0167

TJ -0.0159 0.0094 0.0192 0.0076 0.0099 0.0167

ATJ50 -0.013 0.0091 0.0172 0.0067 0.0050 0.0153

ATJ150 -0.010 0.0090 0.0170 0.0066 0.0039 0.0152

BJ -0.0210 0.0079 0.0010 0.0042 0.0124 0.0152

ABJ50 -0.0192 0.0057 0.0112 0.0041 0.0070 0.0115

ABJ150 -0.0179 0.0056 0.0121 0.0041 0.0065 0.0113

Table 4.2A: Standard deviations (s.d.) of 1000 estimates of quantile regression param-
eters βτ0, βτ1 and βτ2 and 1000 sample averages of estimated asymptotic standard
errors (s.e.) when counts follow different Poisson, negative binomial and zero-inflated
distributions are reported by using different methods (TJ, ATJ50, BJ, ABJ50) based
on sample size n = 200.

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

Case 1. Poisson

0.25 TJ 0.1369 0.1406 0.0999 0.1058 0.1404 0.1484

ATJ50 0.1065 0.1116 0.0723 0.0812 0.1208 0.1307

BJ 0.1356 0.1391 0.1008 0.1048 0.1383 0.1467

ABJ50 0.1032 0.1129 0.0696 0.0708 0.1187 0.1323

0.50 TJ 0.0906 0.0949 0.0735 0.0725 0.0985 0.1080

ATJ50 0.0802 0.0864 0.0619 0.0658 0.0908 0.1023

BJ 0.0922 0.0958 0.0703 0.0733 0.0961 0.1095

ABJ50 0.0809 0.0862 0.0625 0.0655 0.0914 0.1017
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

0.75 TJ 0.0818 0.0831 0.0616 0.0637 0.0922 0.1015

ATJ50 0.0712 0.0754 0.0531 0.0570 0.0815 0.0938

BJ 0.0770 0.0833 0.0623 0.0628 0.0909 0.1000

ABJ50 0.0712 0.0748 0.0542 0.0571 0.0845 0.0942

Case 2. Zero-inflated Poisson

0.25 TJ 0.3808 0.4406 0.3399 0.3859 0.4788 0.5737

ATJ50 0.3340 0.3904 0.2738 0.3538 0.3898 0.4187

BJ 0.3876 0.4442 0.3417 0.3859 0.4985 0.5917

ABJ50 0.3340 0.3989 0.2790 0.3656 0.3916 0.5218

0.50 TJ 0.1404 0.1511 0.0994 0.1100 0.1665 0.1708

ATJ50 0.1227 0.1369 0.0866 0.0973 0.1475 0.1648

BJ 0.1483 0.1523 0.0997 0.1098 0.1529 0.1730

ABJ50 0.1212 0.1371 0.0863 0.0981 0.1462 0.1648

0.75 TJ 0.0679 0.0658 0.0481 0.0498 0.0691 0.0721

ATJ50 0.0639 0.0617 0.0452 0.0478 0.0637 0.0722

BJ 0.0566 0.0617 0.0431 0.0466 0.0688 0.0723

ABJ50 0.0934 0.1005 0.0713 0.0786 0.1155 0.1224

Case 3. Negative binomial

0.25 TJ 0.1854 0.1955 0.1409 0.1528 0.2599 0.2737

ATJ50 0.1543 0.1648 0.1007 0.1198 0.2113 0.2388

BJ 0.1891 0.1967 0.1484 0.1533 0.2503 0.2728

ABJ50 0.1569 0.1661 0.1126 0.1214 0.2173 0.2405

0.50 TJ 0.1430 0.1584 0.1135 0.1241 0.1921 0.2165
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βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d. s.e. s.d. s.e.

ATJ50 0.1336 0.1494 0.1054 0.1163 0.1825 0.2078

BJ 0.1421 0.1584 0.1197 0.1213 0.1975 0.2154

ABJ50 0.1381 0.1469 0.1081 0.1173 0.1879 0.2080

0.75 TJ 0.1313 0.1446 0.1086 0.1156 0.1799 0.2005

ATJ50 0.1209 0.1337 0.0981 0.1128 0.1710 0.1913

BJ 0.1273 0.1395 0.1051 0.1090 0.1731 0.1972

ABJ50 0.1221 0.1315 0.0933 0.1133 0.1734 0.1911

Case 4. Zero-inflated negative binomial

0.25 TJ 0.3264 0.3413 0.3065 0.3140 0.4450 0.4764

ATJ50 0.2677 0.2809 0.2559 0.2608 0.3651 0.3845

BJ 0.3212 0.3427 0.2912 0.3152 0.4458 0.4749

ABJ50 0.2688 0.2896 0.2576 0.2676 0.3614 0.3886

0.50 TJ 0.2091 0.2164 0.1436 0.1597 0.2816 0.3085

ATJ50 0.1821 0.2081 0.1423 0.1485 0.2718 0.2958

BJ 0.2045 0.2182 0.1549 0.1643 0.2825 0.3080

ABJ50 0.1893 0.2083 0.1481 0.1513 0.2810 0.3038

0.75 TJ 0.1560 0.1631 0.1254 0.1307 0.2010 0.2268

ATJ50 0.1530 0.1641 0.1245 0.1325 0.2193 0.2312

BJ 0.1583 0.1606 0.1259 0.1311 0.2109 0.2264

ABJ50 0.1594 0.1614 0.1163 0.1376 0.2089 0.2352
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Table 4.3A: Converage probabilities of 1000 estimates of quantile regression parame-
ters βτ0, βτ1 and βτ2 at levels of confidence α = (0.01, 0.05, 0.1) are reported by us-
ing different quantile regression methods different methods (TJ, ATJ50, BJ, ABJ50)
based on sample size n = 200.

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

Case 1. Poisson

0.25 TJ 0.990 0.953 0.917 0.989 0.959 0.914 0.996 0.966 0.905

ATJ50 0.979 0.946 0.911 0.993 0.955 0.914 0.984 0.961 0.911

BJ 0.987 0.945 0.897 0.983 0.947 0.902 0.985 0.946 0.892

ABJ50 0.990 0.952 0.912 0.992 0.961 0.911 0.994 0.954 0.912

0.50 TJ 0.988 0.950 0.916 0.988 0.946 0.891 0.985 0.954 0.910

ATJ50 0.993 0.954 0.918 0.994 0.955 0.910 0.991 0.953 0.921

BJ 0.985 0.942 0.898 0.988 0.952 0.910 0.987 0.960 0.914

ABJ50 0.990 0.958 0.911 0.990 0.949 0.903 0.993 0.963 0.920

0.75 TJ 0.991 0.940 0.881 0.982 0.946 0.946 0.986 0.951 0.889

ATJ50 0.987 0.941 0.889 0.983 0.942 0.904 0.987 0.955 0.914

BJ 0.984 0.944 0.890 0.983 0.939 0.894 0.981 0.933 0.900

ABJ50 0.997 0.959 0.904 0.984 0.939 0.890 0.982 0.941 0.908

Case 2. Zero-inflated Poisson

0.25 TJ 0.986 0.956 0.916 0.978 0.936 0.905 0.936 0.971 0.927

ATJ50 0.983 0.951 0.921 0.977 0.937 0.910 0.991 0.975 0.948

BJ 0.985 0.957 0.911 0.974 0.937 0.904 0.989 0.960 0.928

ABJ50 0.991 0.952 0.915 0.993 0.953 0.907 0.995 0.966 0.912

0.50 TJ 0.986 0.955 0.914 0.992 0.951 0.915 0.986 0.941 0.904

ATJ50 0.994 0.949 0.902 0.992 0.956 0.915 0.988 0.947 0.906
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

BJ 0.989 0.952 0.904 0.993 0.954 0.905 0.981 0.944 0.896

ABJ50 0.987 0.951 0.906 0.985 0.951 0.916 0.988 0.939 0.887

0.75 TJ 0.988 0.945 0.891 0.981 0.943 0.892 0.996 0.957 0.913

ATJ50 0.989 0.945 0.898 0.985 0.946 0.888 0.990 0.947 0.895

BJ 0.989 0.951 0.903 0.986 0.954 0.909 0.981 0.941 0.900

ABJ50 0.987 0.933 0.884 0.990 0.958 0.900 0.992 0.947 0.947

Case 3. Negative binomial

0.25 TJ 0.995 0.957 0.908 0.987 0.941 0.890 0.990 0.943 0.895

ATJ50 0.988 0.941 0.893 0.992 0.965 0.915 0.992 0.966 0.912

BJ 0.983 0.948 0.891 0.988 0.942 0.892 0.989 0.960 0.913

ABJ50 0.998 0.968 0.916 0.994 0.958 0.906 0.996 0.952 0.906

0.50 TJ 0.985 0.948 0.889 0.984 0.952 0.912 0.982 0.945 0.897

ATJ50 0.984 0.952 0.916 0.990 0.956 0.912 0.993 0.956 0.911

BJ 0.984 0.942 0.896 0.986 0.946 0.892 0.990 0.936 0.894

ABJ50 0.989 0.954 0.905 0.989 0.953 0.911 0.989 0.963 0.911

0.75 TJ 0.985 0.936 0.897 0.982 0.946 0.896 0.990 0.956 0.904

ATJ50 0.986 0.946 0.893 0.986 0.946 0.910 0.990 0.957 0.914

BJ 0.987 0.949 0.909 0.986 0.934 0.895 0.984 0.944 0.900

ABJ50 0.985 0.944 0.889 0.990 0.957 0.911 0.987 0.946 0.906

Case 4. Zero-inflated negative binomial

0.25 TJ 0.983 0.945 0.911 0.982 0.948 0.907 0.996 0.963 0.923

ATJ50 0.980 0.935 0.894 0.981 0.942 0.890 0.995 0.968 0.923

BJ 0.977 0.941 0.902 0.987 0.947 0.894 0.993 0.964 0.923
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

ABJ50 0.986 0.945 0.900 0.995 0.950 0.909 0.990 0.960 0.920

0.50 TJ 0.986 0.944 0.896 0.990 0.955 0.916 0.986 0.950 0.905

ATJ50 0.985 0.939 0.888 0.980 0.950 0.885 0.995 0.955 0.905

BJ 0.984 0.950 0.897 0.992 0.951 0.912 0.988 0.953 0.908

ABJ50 0.976 0.937 0.896 0.985 0.957 0.911 0.987 0.938 0.897

0.75 TJ 0.991 0.952 0.907 0.982 0.942 0.891 0.996 0.958 0.912

ATJ50 0.992 0.952 0.904 0.983 0.938 0.898 0.990 0.945 0.905

BJ 0.983 0.942 0.887 0.982 0.943 0.897 0.981 0.937 0.893

ABJ50 0.985 0.954 0.903 0.986 0.957 0.914 0.985 0.944 0.895

Table 4.5A: Power of test of 1000 estimates of quantile regression parameters βτ2 at
nominal level α = 0.05 are reported by using different quantile regression methods
(TJ, ATJ50, BJ, and ABJ50) based on sample size n = 500.

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

Case 1. Poisson

0.25 TJ 0.996 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.998 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000
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βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

Case 2. Zero-inflated Poisson

0.25 TJ 0.330 0.666 0.837 0.909 0.910

ATJ50 0.385 0.747 0.915 0.926 0.937

BJ 0.346 0.696 0.834 0.904 0.909

ABJ50 0.389 0.754 0.918 0.932 0.943

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

Case 3. Negative binomial

0.25 TJ 0.744 0.898 0.991 0.997 1.000

ATJ50 0.845 0.899 0.999 1.000 1.000

BJ 0.738 0.896 0.993 0.998 1.000

ABJ50 0.854 0.886 0.998 1.000 1.000
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βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

Case 4. Zero-inflated Negative binomial

0.25 TJ 0.185 0.580 0.885 0.975 0.981

ATJ50 0.301 0.892 0.998 1.000 1.000

BJ 0.189 0.593 0.889 0.964 0.983

ABJ50 0.306 0.899 0.998 1.000 1.000

0.50 TJ 0.673 0.995 1.000 1.000 1.000

ATJ50 0.743 0.999 1.000 1.000 1.000

BJ 0.650 0.994 1.000 1.000 1.000

ABJ50 0.739 1.000 1.000 1.000 1.000

0.75 TJ 0.883 1.000 1.000 1.000 1.000

ATJ50 0.876 1.000 1.000 1.000 1.000

BJ 0.868 1.000 1.000 1.000 1.000

ABJ50 0.889 1.000 1.000 1.000 1.000
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Table 4.6A: Biases (Bias), mean squared errores (MSE) and relative efficiencies
(REF ) of estimators βτ0, βτ1, and βτ2 and bias (Bias∗) of estimators γτ0, γτ1, and
γτ2 on five quantiles τ = (0.10, 0.25, 0.5, 0.75, 0.90) of data when error follows normal,
student’s t and Chi-squared are reported using different methods (ORD, MID, UJ,
AUJ50, TJ, ATJ50, BJ, ABJ50) based on sample size n = 500.

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

Case 1. ε ∼ N (0, 1)

0.10 ORD -0.0644 -0.0590 0.0886 0.0107 0.0011 0.0007 -0.0348 0.0221 0.0382

MID - - - - - - - - - - - -

UJ 0.0541 -0.0590 0.0867 -0.0043 0.0011 0.0007 0.0367 0.0221 0.0454

AUJ50 -0.0158 -0.0590 0.0692 0.0013 0.0011 0.0006 0.0070 0.0221 0.0237

TJ -0.0592 -0.0590 0.9742 0.0016 0.0011 0.0006 -0.0342 0.0221 0.0345

ATJ50 -0.0533 -0.0590 0.0756 0.0035 0.0011 0.0004 -0.0322 0.0221 0.0301

BJ -0.0519 -0.0590 0.0721 0.0018 0.0011 0.0009 -0.0113 0.0221 0.0477

ABJ50 -0.0531 -0.0590 0.0615 0.0065 0.0011 0.0005 -0.0240 0.0221 0.0317

0.25 ORD -0.0427 0.0118 0.0469 0.0041 -0.0019 0.0008 0.0130 -0.0040 0.0264

MID 0.0105 0.0118 0.0554 0.0009 -0.0019 0.0005 0.0496 -0.0040 0.0346
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βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

UJ -0.0246 0.0118 0.0669 0.0025 -0.0019 0.0005 0.0204 -0.0040 0.0260

AUJ50 -0.0258 0.0118 0.0421 0.0024 -0.0019 0.0003 0.0130 -0.0040 0.0213

TJ 0.0156 0.0118 0.0578 -0.0032 -0.0019 0.0006 -0.0089 -0.0040 0.0258

ATJ50 -0.0112 0.0118 0.0502 0.0010 -0.0019 0.0005 0.0055 -0.0040 0.0234

BJ 0.0178 0.0118 0.0556 -0.0023 -0.0019 0.0005 -0.0082 -0.0040 0.0254

ABJ50 -0.0116 0.0118 0.0495 0.0008 -0.0019 0.0004 0.0040 -0.0040 0.0206

0.50 ORD -0.0325 0.0231 0.0467 0.0038 -0.0014 0.0004 0.0376 -0.0027 0.0190

MID 0.0093 0.0231 0.0045 -0.0035 -0.0014 0.0004 0.0058 -0.0027 0.0039

UJ -0.0376 0.0231 0.0582 0.0048 -0.0014 0.0007 0.0285 -0.0027 0.0229

AUJ50 -0.0198 0.0231 0.0346 0.0022 -0.0014 0.0005 0.0141 -0.0027 0.0207

TJ -0.0256 0.0231 0.0687 -0.0004 -0.0014 0.0004 0.0026 -0.0027 0.0239

ATJ50 -0.0161 0.0231 0.0388 0.0022 -0.0014 0.0003 -0.0110 -0.0027 0.0163

BJ -0.0312 0.0231 0.0667 -0.0003 -0.0014 0.0004 -0.0015 -0.0027 0.0204

ABJ50 -0.0317 0.0231 0.0443 0.0003 -0.0014 0.0004 0.0056 -0.0027 0.0188
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βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

0.75 ORD 0.0427 -0.0596 0.0553 -0.0044 -0.0012 0.0006 -0.0098 -0.0045 0.0179

MID 0.0372 -0.0596 0.0363 -0.0039 -0.0012 0.0003 0.0441 -0.0045 0.0205

UJ 0.0434 -0.0596 0.0599 -0.0043 -0.0012 0.0006 -0.0287 -0.0045 0.0286

AUJ50 0.0611 -0.0596 0.0491 -0.0053 -0.0012 0.0004 -0.0238 -0.0045 0.0236

TJ 0.0232 -0.0596 0.0592 -0.0020 -0.0012 0.0005 -0.0060 -0.0045 0.0252

ATJ50 -0.0157 -0.0596 0.0407 0.0009 -0.0012 0.0003 -0.0120 -0.0045 0.0200

BJ 0.0235 -0.0596 0.0507 0.0018 -0.0012 0.0004 -0.0232 -0.0045 0.0264

ABJ50 -0.0134 -0.0596 0.0478 0.0005 -0.0012 0.0004 0.0040 -0.0045 0.0209

0.90 ORD -0.0158 -0.0151 0.0862 0.0022 -0.0014 0.0010 -0.0049 0.0162 0.0457

MID -0.3240 -0.0151 0.1359 -0.0238 -0.0014 0.0012 -0.0173 0.0162 0.0692

UJ -0.0549 -0.0151 0.0972 0.0042 -0.0014 0.0009 -0.0103 0.0162 0.0422

AUJ50 -0.0025 -0.0151 0.0659 0.0029 -0.0014 0.0006 -0.0118 0.0162 0.0298

TJ 0.0169 -0.0151 0.0945 -0.0039 -0.0014 0.0009 0.0372 0.0162 0.0451

ATJ50 -0.0031 -0.0151 0.0612 -0.0015 -0.0014 0.0006 0.0225 0.0162 0.0301
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βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

BJ 0.0164 -0.0151 0.0950 -0.0031 -0.0014 0.0008 0.0369 0.0162 0.0431

ABJ50 -0.0028 -0.0151 0.0608 -0.0014 -0.0014 0.0005 0.0214 0.0162 0.0294

Case 2. ε ∼ T2

0.10 ORD -0.1603 0.0379 0.4796 0.0143 -0.0036 0.0045 -0.0430 -0.0300 0.2071

MID -0.0541 0.0379 0.3827 0.0052 -0.0036 0.0030 0.1586 -0.0300 0.1941

UJ 0.0051 0.0379 0.4195 -0.0038 -0.0036 0.0040 0.0037 -0.0300 0.1931

UJ50 -0.0935 0.0379 0.3830 0.0071 -0.0036 0.0035 -0.0512 -0.0300 0.1818

TJ -0.0591 0.0379 0.3732 0.0021 -0.0036 0.0038 0.0699 -0.0300 0.2201

ATJ50 -0.0201 0.0379 0.3099 0.0029 -0.0036 0.0029 0.0510 -0.0300 0.1540

BJ -0.0618 0.0379 0.3705 0.0016 -0.0036 0.0034 0.0729 -0.0300 0.2182

ABJ50 -0.0196 0.0379 0.3097 0.0027 -0.0036 0.0029 0.0509 -0.0300 0.1573

0.25 ORD -0.0571 -0.0347 0.1090 0.0048 -0.0024 0.0011 -0.0034 0.0191 0.0467

MID -0.0086 -0.0347 0.1134 -0.0013 -0.0024 0.0008 -0.0066 0.0191 0.0518

UJ -0.0622 -0.0347 0.0865 0.0024 -0.0024 0.0011 0.0183 0.0191 0.0474
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Table 4.6A – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

UJ50 -0.0211 -0.0347 0.0955 0.0038 -0.0024 0.0008 -0.0010 0.0191 0.0423

TJ -0.0368 -0.0347 0.1043 0.0043 -0.0024 0.0010 0.0323 0.0191 0.0452

ATJ50 0.0367 -0.0347 0.0879 -0.0024 -0.0024 0.0008 -0.0111 0.0191 0.0419

BJ -0.0364 -0.0347 0.1030 0.0040 -0.0024 0.0009 0.0318 0.0191 0.0443

ABJ50 0.0344 -0.0347 0.0850 -0.0021 -0.0024 0.0007 -0.0235 0.0191 0.0416

0.50 ORD 0.0362 0.0156 0.0598 -0.0032 0.0021 0.0006 -0.0486 -0.0236 0.0320

MID 0.0522 0.0156 0.0119 -0.0055 0.0021 0.0001 0.0089 -0.0236 0.0066

UJ -0.0136 0.0156 0.0624 -0.0023 0.0021 0.0006 -0.0040 -0.0236 0.0328

UJ50 0.0331 0.016 0.0449 0.0029 0.0021 0.0005 -0.0489 -0.0236 0.0286

TJ -0.0399 0.0156 0.0592 0.0027 0.0021 0.0005 0.0110 -0.0236 0.0311

ATJ50 0.0327 0.0156 0.0535 -0.0019 0.0021 0.0005 -0.0101 -0.0236 0.0277

BJ -0.0400 0.0156 0.0587 0.0025 0.0021 0.0005 0.0103 -0.0236 0.0306

ABJ50 0.0154 0.0156 0.0533 -0.0024 0.0021 0.0004 -0.0101 -0.0236 0.0272

0.75 OR 0.1224 -0.0205 0.1248 -0.0111 0.0013 0.0010 -0.0407 0.0102 0.0640
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Table 4.6A – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

MID 0.0908 -0.0205 0.1853 -0.0108 0.0013 0.0015 0.0163 0.0102 0.0924

UJ 0.1306 -0.0205 0.1395 -0.0091 0.0013 0.0012 0.0476 0.0102 0.0563

UJ50 0.0856 -0.0205 0.1303 -0.0065 0.0013 0.0011 0.0301 0.0102 0.0530

TJ -0.0133 -0.0205 0.0998 0.0024 0.0013 0.0009 0.0123 0.0102 0.0514

ATJ50 -0.0286 -0.0205 0.0798 0.0013 0.0013 0.0006 0.0157 0.0102 0.0495

BJ -0.0124 -0.0205 0.0987 0.0010 0.0013 0.0009 0.0149 0.0102 0.0550

ABJ50 -0.0259 -0.0205 0.0785 0.0019 0.0013 0.0006 -0.0182 0.0102 0.0496

0.90 OR 0.0718 0.0503 0.5355 -0.0045 -0.0011 0.0046 -0.0410 0.0313 0.2342

MID -0.1702 0.0503 0.4709 0.0099 -0.0011 0.0039 0.1491 0.0313 0.2608

UJ 0.0310 0.0503 0.4750 -0.0016 -0.0011 0.0039 -0.0116 0.0313 0.2381

UJ50 0.0699 0.0503 0.4390 -0.0044 -0.0011 0.0036 -0.0385 0.0313 0.2013

TJ 0.0642 0.0503 0.4102 -0.0015 -0.0030 0.0037 -0.0271 0.0313 0.2011

ATJ50 0.0180 0.0503 0.3255 -0.0011 -0.0011 0.0029 0.0271 0.0313 0.2029

BJ 0.0611 0.0503 0.4099 -0.0013 -0.0011 0.0037 -0.0299 0.0313 0.2000
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Table 4.6A – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

ABJ50 0.0640 0.0503 0.3135 0.0012 -0.0011 0.0028 0.0280 0.0313 0.1842

Case 3. ε ∼ X 2
3

0.10 OR -0.0173 -0.0071 0.0792 0.0031 0.0013 0.0007 -0.0102 0.0093 0.0398

MID 0.0480 -0.0071 0.0880 -0.0028 0.0013 0.0007 -0.0122 0.0093 0.0326

UJ 0.0097 -0.0071 0.0783 -0.0024 0.0013 0.0006 0.0374 0.0093 0.0335

UJ50 0.0072 -0.0071 0.0538 0.0014 0.0013 0.0005 -0.0049 0.0093 0.0281

TJ 0.0167 -0.0071 0.0786 -0.0011 0.0013 0.0005 0.0125 0.0093 0.0329

ATJ50 -0.0047 -0.0071 0.0467 0.0018 0.0013 0.0003 -0.0067 0.0093 0.0212

BJ 0.0170 -0.0071 0.0792 -0.0013 0.0013 0.0006 0.0133 0.0093 0.0339

ABJ50 -0.0058 -0.0071 0.0479 0.0019 0.0013 0.0004 -0.0092 0.0093 0.0216

0.25 OR -0.0492 0.0161 0.1071 0.0080 0.0015 0.0010 0.0128 0.0122 0.0501

MID -0.0904 0.0161 0.0713 0.0196 0.0015 0.0008 -0.0010 0.0122 0.0414

UJ -0.0515 0.0161 0.0954 0.0070 0.0015 0.0009 0.0239 0.0122 0.0505

UJ50 -0.0356 0.0161 0.0898 0.0064 0.0015 0.0008 0.0190 0.0122 0.0424
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Table 4.6A – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

TJ 0.0174 0.0161 0.0904 -0.0006 0.0015 0.0008 0.0112 0.0122 0.0439

ATJ50 -0.0105 0.0161 0.0840 0.0015 0.0015 0.0006 0.0162 0.0122 0.0405

BJ -0.0315 0.0161 0.0917 0.0018 0.0015 0.0008 0.0246 0.0122 0.0508

ABJ50 0.0114 0.0161 0.0676 -0.0019 0.0015 0.0007 0.0152 0.0122 0.0346

0.50 OR 0.0670 -0.0111 0.2119 -0.0088 -0.0016 0.0020 0.0979 0.0102 0.0957

MID 0.0102 -0.0111 0.1361 0.0009 -0.0016 0.0011 0.0613 0.0102 0.1025

UJ 0.0009 -0.0111 0.1971 0.0021 -0.0016 0.0020 0.0391 0.0102 0.1155

UJ50 -0.0043 -0.0111 0.1659 -0.0019 -0.0016 0.0017 0.0310 0.0102 0.0855

TJ 0.0020 -0.0111 0.1939 -0.0013 -0.0016 0.0017 0.0279 0.0102 0.0823

ATJ50 -0.0089 -0.0111 0.1649 0.0010 -0.0016 0.0014 -0.0182 0.0102 0.0829

BJ -0.0235 -0.0111 0.2120 0.0026 -0.0016 0.0019 0.0296 0.0102 0.0949

ABJ50 -0.0174 -0.0111 0.1630 0.0025 -0.0016 0.0014 0.0182 0.0102 0.0728

0.75 OR -0.1158 -0.0403 0.5035 0.0151 0.0014 0.0054 0.2190 0.0043 0.2319

MID 0.0785 -0.0403 0.4660 -0.0258 0.0014 0.0045 0.0545 0.0043 0.2224
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Table 4.6A – continued from previous page

βτ0 βτ1 βτ2

τ Method Bias Bias∗ MSE REF Bias Bias∗ MSE REF Bias Bias∗ MSE REF

UJ 0.1789 -0.0403 0.5301 -0.0195 0.0014 0.0048 0.0516 0.0043 0.2254

UJ50 -0.0687 -0.0403 0.4764 0.0090 0.0014 0.0041 0.0519 0.0043 0.2621

TJ -0.0379 -0.0403 0.4994 0.0012 0.0014 0.0044 0.0679 0.0043 0.2129

ATJ50 -0.0786 -0.0403 0.4094 0.0084 0.0014 0.0037 0.0012 0.0043 0.2018

BJ -0.1007 -0.0403 0.4882 0.0112 0.0014 0.0044 -0.0490 0.0043 0.2290

ABJ50 0.0504 -0.0403 0.4192 0.0029 0.0014 0.0038 -0.0040 0.0043 0.1933

0.90 OR 0.0497 0.1030 1.4362 -0.0110 0.0058 0.0130 0.2307 0.0252 0.6046

MID -0.1942 0.1030 1.3269 0.0200 0.0058 0.0112 -0.0155 0.0252 0.5340

UJ 0.1823 0.1030 1.6021 -0.0262 0.0058 0.0141 0.1870 0.0252 0.7870

UJ50 0.1258 0.1030 1.3352 -0.0156 0.0058 0.0122 0.2213 0.0252 0.6469

TJ -0.0975 0.1030 1.3519 0.0206 0.0058 0.0111 -0.0119 0.0252 0.5637

ATJ50 -0.0914 0.1030 1.1702 0.0054 0.0058 0.0106 -0.0201 0.0252 0.5948

BJ -0.0531 0.1030 1.1995 0.0156 0.0058 0.0108 0.0045 0.0252 0.6230

ABJ50 0.0909 0.1030 1.0761 -0.0069 0.0058 0.0097 -0.0225 0.0252 0.5963
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Table 5.7A: Standard deviations (s.d.) of 1000 estimates of quantile regression param-
eters βτ0, βτ1 and βτ2 and 1000 sample averages of estimated asymptotic standard
errors (s.e.) based on truncated data by using different quantile regression methods
and Standard deviations (s.d.∗) of 1000 estimates of quantile regression parameters
γτ0, γτ1 and γτ2 based on original continuous data are reported. Quantile levels
τ = (0.1, 0.25, 0.5, 0.75, 0.9) and sample size n = 500 are used.

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

Case 1. ε ∼ N (0, 1)

0.1 TJ 0.3288 0.3241 0.2987 0.0302 0.0299 0.0271 0.2235 0.2148 0.2065

ATJ50 0.2488 0.2598 0.2817 0.0238 0.0253 0.0265 0.1799 0.1796 0.1869

BJ 0.3161 0.3160 0.2921 0.0298 0.0298 0.0275 0.2188 0.2178 0.2032

ABJ50 0.2429 0.2570 0.2717 0.0230 0.0243 0.0258 0.1770 0.1745 0.1824

0.25 TJ 0.2412 0.2401 0.2432 0.0232 0.0235 0.0231 0.1599 0.1606 0.1600

ATJ50 0.2351 0.2132 0.2245 0.0214 0.0205 0.0215 0.1468 0.1489 0.1459

BJ 0.2358 0.2397 0.2339 0.0227 0.0228 0.0225 0.1598 0.1646 0.1569

ABJ50 0.2231 0.2053 0.2185 0.0207 0.0195 0.0208 0.1439 0.1438 0.1491

0.50 TJ 0.2183 0.2356 0.2027 0.0207 0.0224 0.0195 0.1550 0.1410 0.1345
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Table 4.7A – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

ATJ50 0.1967 0.1941 0.2027 0.0184 0.0185 0.0195 0.1374 0.1619 0.1345

BJ 0.2108 0.2108 0.2027 0.0207 0.0221 0.0195 0.1433 0.1599 0.1345

ABJ50 0.2057 0.2190 0.2027 0.0201 0.0208 0.0195 0.1374 0.1481 0.1345

0.75 TJ 0.2266 0.2343 0.2167 0.0219 0.0228 0.0209 0.1683 0.1698 0.1498

ATJ50 0.2015 0.2133 0.2167 0.0194 0.0202 0.0209 0.1411 0.1450 0.1498

BJ 0.2258 0.2415 0.2167 0.0217 0.0229 0.0209 0.1631 0.1657 0.1498

ABJ50 0.2028 0.2031 0.2167 0.0189 0.0194 0.0209 0.1460 0.1407 0.1498

0.9 TJ 0.3089 0.3018 0.2801 0.0291 0.0293 0.0268 0.2055 0.2061 0.1901

ATJ50 0.2487 0.2578 0.2788 0.0248 0.0248 0.0272 0.1745 0.1787 0.1977

BJ 0.3086 0.3013 0.2754 0.0289 0.0289 0.0259 0.2048 0.2060 0.1853

ABJ50 0.2473 0.2558 0.2777 0.0241 0.0244 0.0265 0.1707 0.1754 0.1946

Case 2. ε ∼ t2

0.10 TJ 0.6088 0.6101 0.5974 0.0599 0.0593 0.0598 0.4658 0.4689 0.4420

ATJ50 0.5587 0.6097 0.6066 0.0556 0.0598 0.0587 0.3956 0.4169 0.4199
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Table 4.7A – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

BJ 0.6071 0.6078 0.5847 0.0591 0.0583 0.0579 0.4626 0.4660 0.4373

ABJ50 0.5576 0.6084 0.6171 0.0543 0.0582 0.0587 0.3944 0.4191 0.4225

0.25 TJ 0.3201 0.3256 0.2998 0.0305 0.0326 0.0295 0.2076 0.2202 0.2053

ATJ50 0.2787 0.2934 0.2933 0.0273 0.0289 0.0281 0.1945 0.2097 0.2087

BJ 0.3197 0.3297 0.2992 0.0300 0.0315 0.0285 0.2070 0.2206 0.2066

ABJ50 0.2767 0.2947 0.2944 0.0264 0.0284 0.0276 0.2033 0.2170 0.2048

0.50 TJ 0.2401 0.2585 0.2301 0.0237 0.0252 0.0224 0.1764 0.1771 0.1635

ATJ50 0.2298 0.2314 0.2324 0.0212 0.0223 0.0216 0.1614 0.1598 0.1601

BJ 0.2396 0.2576 0.2279 0.0233 0.0246 0.0217 0.1753 0.1757 0.1702

ABJ50 0.2293 0.2301 0.2301 0.0208 0.0219 0.0211 0.1608 0.1588 0.1586

0.75 TJ 0.3102 0.3127 0.2985 0.0298 0.0301 0.0298 0.2270 0.2282 0.2068

ATJ50 0.2798 0.2856 0.2912 0.0264 0.0272 0.0273 0.2125 0.2085 0.2076

BJ 0.3084 0.3154 0.2980 0.0299 0.0303 0.0285 0.2125 0.2265 0.2048

ABJ50 0.2771 0.2821 0.2908 0.0259 0.0268 0.0270 0.2101 0.2087 0.2092
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Table 4.7A – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

0.90 TJ 0.6401 0.6592 0.6238 0.0615 0.0631 0.0594 0.0431 0.4601 0.4164

ATJ50 0.6221 0.6516 0.5994 0.0630 0.0584 0.0614 0.4376 0.4528 0.4158

BJ 0.6390 0.6580 0.6188 0.0610 0.0626 0.0586 0.4302 0.4595 0.4132

ABJ50 0.6191 0.6189 0.6127 0.0585 0.0597 0.0605 0.4303 0.4521 0.4190

Case 3. ε ∼ X 2
3

0.10 TJ 0.2810 0.2701 0.2128 0.0201 0.0251 0.0202 0.1834 0.1846 0.1452

ATJ50 0.2186 0.2198 0.2128 0.0203 0.0201 0.0202 0.1465 0.1489 0.1452

BJ 0.2813 0.2715 0.2128 0.0264 0.0257 0.0202 0.1840 0.1857 0.1452

ABJ50 0.2195 0.2218 0.2128 0.0209 0.0208 0.0202 0.1474 0.1500 0.1452

0.25 TJ 0.3003 0.3063 0.3153 0.0285 0.0292 0.0279 0.2097 0.2116 0.2019

ATJ50 0.2898 0.2713 0.3153 0.0267 0.0260 0.0279 0.1938 0.1915 0.2019

BJ 0.3013 0.3067 0.3153 0.0283 0.0293 0.0279 0.2123 0.2129 0.2019

ABJ50 0.2692 0.2749 0.3153 0.0278 0.0262 0.0279 0.1859 0.1881 0.2019

0.50 TJ 0.4406 0.4432 0.4323 0.0420 0.0423 0.0412 0.2858 0.3050 0.2945
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Table 4.7A – continued from previous page

βτ0 βτ1 βτ2

τ Method s.d. s.e. s.d.∗ s.d. s.e. s.d.∗ s.d. s.e. s.d.∗

ATJ50 0.4062 0.4156 0.4295 0.0386 0.0396 0.0409 0.2874 0.2822 0.2945

BJ 0.4602 0.4462 0.4320 0.0436 0.0427 0.0421 0.3069 0.3090 0.2976

ABJ50 0.4037 0.4081 0.4286 0.0385 0.0389 0.0411 0.2701 0.2808 0.2873

0.75 TJ 0.7060 0.6990 0.7092 0.0671 0.0666 0.0672 0.4666 0.4786 0.4648

ATJ50 0.6554 0.6674 0.6792 0.0620 0.0635 0.0645 0.4595 0.4665 0.4682

BJ 0.6918 0.6926 0.6702 0.0660 0.0659 0.0640 0.4763 0.4768 0.4693

ABJ50 0.6478 0.6678 0.6726 0.0618 0.0635 0.0644 0.4399 0.4628 0.4601

0.90 TJ 1.0592 0.9758 0.1085 0.0942 0.1103 0.1070 0.7511 0.7870 0.7812

ATJ50 1.0790 1.1191 1.1330 0.1032 0.1062 0.1082 0.7520 0.7847 0.7570

BJ 1.0945 0.9751 1.1173 0.1029 0.0932 0.1064 0.7731 0.7897 0.6877

ABJ50 1.0360 1.1187 0.0989 0.1085 0.1072 0.1021 0.7738 0.7854 0.7422
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Table 4.8A: Coverage probabilities of 1000 estimates of quantile regression parameters
βτ0, βτ1 and βτ2 are reported by using different quantile regression methods TJ,
ATJ50, BJ, and ABJ50, respectively. Nominal levels α = (0.01, 0.05, 0.1) and sample
size n = 500 are used.

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

Case 1. ε ∼ N (0, 1)

0.10 TJ 0.980 0.945 0.896 0.990 0.949 0.899 0.991 0.952 0.905

ATJ50 0.992 0.948 0.916 0.994 0.945 0.887 0.992 0.948 0.910

BJ 0.985 0.945 0.890 0.980 0.940 0.890 0.985 0.945 0.895

ABJ50 0.990 0.955 0.915 0.990 0.945 0.885 0.995 0.940 0.895

0.25 TJ 0.990 0.950 0.910 0.985 0.945 0.898 0.985 0.959 0.900

ATJ50 0.994 0.945 0.896 0.982 0.947 0.905 0.984 0.955 0.909

BJ 0.985 0.950 0.915 0.990 0.940 0.905 0.990 0.955 0.915

ABJ50 0.990 0.940 0.890 0.980 0.940 0.890 0.985 0.945 0.900

0.50 TJ 0.988 0.946 0.905 0.990 0.944 0.895 0.993 0.945 0.893

ATJ50 0.989 0.954 0.903 0.985 0.943 0.908 0.989 0.939 0.897

BJ 0.980 0.950 0.910 0.985 0.954 0.913 0.985 0.955 0.905

ABJ50 0.985 0.953 0.901 0.985 0.947 0.905 0.980 0.937 0.890

0.75 TJ 0.991 0.958 0.900 0.990 0.942 0.899 0.990 0.954 0.903

ATJ50 0.990 0.948 0.898 0.991 0.951 0.902 0.992 0.952 0.905

BJ 0.995 0.960 0.905 0.993 0.953 0.905 0.990 0.960 0.900

ABJ50 0.985 0.945 0.895 0.990 0.935 0.885 0.995 0.952 0.900

0.90 TJ 0.991 0.942 0.899 0.986 0.941 0.991 0.981 0.939 0.888

ATJ50 0.990 0.950 0.905 0.993 0.955 0.903 0.993 0.948 0.897

BJ 0.990 0.943 0.897 0.987 0.943 0.900 0.989 0.954 0.904
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Table 4.8A – continued from previous page

βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

ABJ50 0.991 0.951 0.907 0.992 0.942 0.907 0.995 0.943 0.892

Case 2. ε ∼ T2

0.10 TJ 0.990 0.957 0.905 0.988 0.946 0.895 0.982 0.949 0.897

ATJ50 0.992 0.954 0.903 0.993 0.954 0.908 0.988 0.952 0.901

BJ 0.985 0.950 0.902 0.988 0.954 0.903 0.982 0.935 0.885

ABJ50 0.990 0.953 0.908 0.991 0.953 0.903 0.986 0.950 0.895

0.25 TJ 0.986 0.946 0.894 0.985 0.952 0.912 0.981 0.936 0.910

ATJ50 0.987 0.945 0.904 0.989 0.951 0.902 0.990 0.954 0.901

BJ 0.990 0.955 0.909 0.990 0.960 0.915 0.985 0.951 0.909

ABJ50 0.986 0.946 0.902 0.986 0.950 0.900 0.990 0.960 0.908

0.50 TJ 0.991 0.952 0.902 0.994 0.961 0.914 0.985 0.945 0.893

ATJ50 0.987 0.956 0.904 0.993 0.958 0.903 0.987 0.941 0.895

BJ 0.990 0.950 0.905 0.988 0.952 0.918 0.986 0.946 0.894

ABJ50 0.985 0.952 0.902 0.991 0.952 0.909 0.987 0.939 0.889

0.75 TJ 0.987 0.947 0.895 0.983 0.943 0.904 0.993 0.953 0.906

ATJ50 0.993 0.953 0.906 0.992 0.958 0.895 0.994 0.960 0.908

BJ 0.985 0.944 0.891 0.985 0.965 0.902 0.986 0.953 0.906

ABJ50 0.987 0.948 0.894 0.990 0.954 0.891 0.993 0.959 0.893

0.90 TJ 0.991 0.954 0.905 0.988 0.951 0.897 0.990 0.953 0.908

ATJ50 0.991 0.955 0.908 0.989 0.950 0.896 0.989 0.950 0.904

BJ 0.985 0.956 0.905 0.986 0.950 0.905 0.995 0.957 0.910

ABJ50 0.993 0.954 0.904 0.990 0.946 0.909 0.985 0.950 0.908

Case 3. ε ∼ T2
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βτ0 βτ1 βτ2

τ Method P0.99 P0.95 P0.90 P0.99 P0.95 P0.90 P0.99 P0.95 P0.90

0.10 TJ 0.991 0.952 0.894 0.991 0.951 0.902 0.993 0.950 0.897

ATJ50 0.992 0.954 0.895 0.991 0.942 0.893 0.986 0.952 0.903

BJ 0.990 0.952 0.882 0.986 0.946 0.892 0.992 0.952 0.898

ABJ50 0.993 0.956 0.890 0.993 0.935 0.894 0.987 0.946 0.895

0.25 TJ 0.985 0.941 0.898 0.990 0.943 0.900 0.987 0.942 0.892

ATJ50 0.985 0.944 0.983 0.984 0.940 0.897 0.986 0.945 0.897

BJ 0.987 0.950 0.902 0.988 0.962 0.904 0.986 0.951 0.887

ABJ50 0.990 0.942 0.892 0.982 0.938 0.894 0.986 0.942 0.896

0.50 TJ 0.983 0.947 0.904 0.987 0.944 0.895 0.984 0.951 0.908

ATJ50 0.986 0.955 0.909 0.990 0.957 0.903 0.986 0.946 0.897

BJ 0.987 0.943 0.897 0.981 0.942 0.886 0.982 0.951 0.902

ABJ50 0.983 0.946 0.906 0.984 0.946 0.903 0.990 0.949 0.896

0.75 TJ 0.988 0.947 0.904 0.988 0.950 0.896 0.992 0.954 0.905

ATJ50 0.992 0.945 0.905 0.987 0.947 0.899 0.988 0.947 0.897

BJ 0.988 0.946 0.893 0.986 0.949 0.895 0.991 0.956 0.898

ABJ50 0.992 0.953 0.905 0.992 0.950 0.900 0.994 0.953 0.906

0.90 TJ 0.991 0.948 0.905 0.991 0.953 0.901 0.991 0.952 0.904

ATJ50 0.984 0.956 0.914 0.984 0.958 0.912 0.994 0.951 0.903

BJ 0.992 0.958 0.903 0.991 0.952 0.902 0.991 0.942 0.897

ABJ50 0.992 0.958 0.908 0.996 0.958 0.914 0.994 0.956 0.908
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Table 4.9A: Power of S = 1000 hypotheses test (i.e., 1− β) as related to the quantile
regression parameters βτ1 are reported by using different quantile regression methods
TJ, ATJ50, BJ, and ABJ50. Nominal level α = 0.05 and sample size n = 500 are
used.

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

Case 1. ε ∼ N (0, 1)

0.10 TJ 0.995 0.960 1.000 1.000 1.000

ATJ50 1.000 0.995 1.000 1.000 1.000

BJ 0.995 0.990 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.25 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.90 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

Continued on next page
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Table 4.9A – continued from previous page

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

ABJ50 1.000 1.000 1.000 1.000 1.000

Case 2. ε ∼ T2

0.10 TJ 0.855 1.000 1.000 1.000 1.000

ATJ50 0.917 1.000 1.000 1.000 1.000

BJ 0.858 1.000 1.000 1.000 1.000

ABJ50 0.921 1.000 1.000 1.000 1.000

0.25 TJ 0.998 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.998 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 0.999 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.999 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.90 TJ 0.904 0.998 1.000 1.000 1.000

ATJ50 0.923 1.000 1.000 1.000 1.000

BJ 0.908 0.999 1.000 1.000 1.000

ABJ50 0.919 1.000 1.000 1.000 1.000

Case 3. ε ∼ X 2
3

Continued on next page
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Table 4.9A – continued from previous page

βτ1 = 0.2 βτ1 = 0.4 βτ1 = 0.6 βτ1 = 0.8 βτ1 = 1.0

τ Method

0.10 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.25 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 1.000 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.50 TJ 1.000 1.000 1.000 1.000 1.000

ATJ50 1.000 1.000 1.000 1.000 1.000

BJ 0.999 1.000 1.000 1.000 1.000

ABJ50 1.000 1.000 1.000 1.000 1.000

0.75 TJ 0.932 0.997 1.000 1.000 1.000

ATJ50 0.997 1.000 1.000 1.000 1.000

BJ 0.936 0.998 1.000 1.000 1.000

ABJ50 0.998 1.000 1.000 1.000 1.000

0.90 TJ 0.612 0.963 0.999 1.000 1.000

ATJ50 0.657 0.983 1.000 1.000 1.000

BJ 0.617 0.966 1.000 1.000 1.000

ABJ50 0.664 0.987 1.000 1.000 1.000
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Table 5.9A: Estimates β̂, biases (bias) and relative efficiencies (REF ) to the estima-
tors of β0, β1, and β2 using different methods (OR, MID, TJ, ATJ50, ATJ150, BJ,
ABJ50, ABJ150) at three quantiles (0.25, 0.5, 0.75). Sample size n = 500.

βτ0 βτ1 βτ2

τ Method Bias MSE REF Bias MSE REF Bias MSE REF

Case 1. a) ε ∼ N (0, 2)

0.50 OLS 0.0449 0.1097 1.630 -0.0016 0.0010 1.600 0.0053 0.0477 1.918

ORD -0.0107 0.1788 1.000 0.0008 0.0016 1.000 0.01904 0.0915 1.000

TJ 0.1047 0.1750 1.022 -0.0115 0.0016 1.000 -0.0858 0.0845 1.083

ATJ50 0.1432 0.1476 1.211 -0.0153 0.0013 1.231 -0.0630 0.0675 1.356

BJ 0.1443 0.1871 0.956 -0.0148 0.0015 1.067 -0.0914 0.0955 0.958

ABJ50 0.1403 0.1456 1.228 -0.0150 0.0012 1.333 -0.0990 0.0765 1.196

Case 1. b) ε ∼ N (2, 4)

0.50 OLS -0.0614 0.1080 1.599 0.0007 0.0040 1.725 -0.0540 0.2109 1.644

ORD -0.0412 0.1805 1.000 0.0298 0.0069 1.000 -0.0231 0.3468 1.000

TJ -0.0400 0.1721 0.998 0.0352 0.0074 0.932 0.0085 0.3028 1.145

ATJ50 -0.0112 0.1725 1.111 0.0340 0.0066 1.045 -0.0002 0.2857 1.214

Continued on next page
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Table 5.9A – continued from previous page

τ Method βτ0 βτ1 βτ2

Bias MSE REF Bias MSE REF Bias MSE REF

BJ -0.0677 0.1756 1.061 0.0396 0.0080 0.863 0.0129 0.3052 1.136

ABJ50 -0.0616 0.1704 1.164 0.0228 0.0068 1.015 -0.0247 0.2701 1.284

Case 2. a) ε ∼ Student′s t3

0.50 OLS 0.0826 0.0923 0.728 -0.0036 0.0007 0.714 -0.0017 0.0360 0.742

ORD 0.0500 0.0672 1.000 -0.0056 0.0005 1.000 -0.0201 0.0267 1.000

TJ 0.0258 0.0598 1.124 -0.0030 0.0005 1.000 0.0081 0.0253 1.055

ATJ50 0.0602 0.0447 1.503 -0.0063 0.0004 1.250 -0.0011 0.0190 1.405

BJ 0.0570 0.0604 1.113 -0.0056 0.0005 1.000 -0.0182 0.0288 0.927

ABJ50 0.0743 0.0585 1.149 -0.0070 0.0004 1.250 -0.0073 0.0197 1.355

Case 2. b) ε ∼ Student′s t2

0.50 OLS -0.0533 0.0901 0.639 -0.0019 0.0007 0.714 0.0050 0.0349 0.811

ORD -0.0398 0.0576 1.000 0.0048 0.0005 1.000 0.0532 0.0283 1.000

TJ -0.0606 0.0555 1.038 0.0069 0.0005 1.000 0.0259 0.0258 1.097

ATJ50 -0.0437 0.0533 1.081 0.0050 0.0004 1.250 0.0295 0.0226 1.142
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Table 5.9A – continued from previous page

τ Method βτ0 βτ1 βτ2

Bias MSE REF Bias MSE REF Bias MSE REF

BJ -0.0217 0.0551 1.045 0.0036 0.0005 1.000 0.0196 0.0299 1.252

ABJ50 -0.0454 0.0515 1.118 0.0047 0.0004 1.250 0.0363 0.0218 1.298

Case 3. a) ε ∼ X 2
2

0.50 OLS -0.0913 0.1211 1.042 0.0002 0.0012 0.917 0.0028 0.0521 0.925

ORD -0.0585 0.1263 1.000 0.0016 0.0011 1.000 0.0411 0.0482 1.000

TJ -0.0501 0.1261 1.002 0.0077 0.0011 1.000 0.0252 0.0458 1.052

ATJ50 -0.0440 0.1029 1029 0.0065 0.0009 1.222 0.0164 0.0381 1.265

BJ -0.0518 0.1131 1.117 0.0067 0.0009 1.222 0.0176 0.0475 1.015

ABJ50 -0.0471 0.0988 1.278 0.0058 0.0008 1.375 0.0367 0.0390 1.236

Case 3. b) ε ∼ X 2
1

0.50 OLS 0.1123 0.0712 0.494 -0.0026 0.0005 0.4 0.0040 0.0271 0.557

ORD 0.0633 0.0352 1.000 -0.0057 0.0002 1.000 0.0271 0.0151 1.000

TJ 0.0415 0.0331 1.063 -0.0038 0.0002 1.000 0.0277 0.0142 1.063

ATJ50 0.0406 0.0232 1.517 -0.0042 0.0001 2.000 0.0320 0.0087 1.736
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Table 5.9A – continued from previous page

τ Method βτ0 βτ1 βτ2

Bias MSE REF Bias MSE REF Bias MSE REF

BJ 0.0566 0.0326 1.080 -0.0054 0.0002 1.000 0.0238 0.0151 1.000

ABJ50 0.0610 0.0244 1.443 -0.0062 0.0001 2.000 0.0319 0.0106 1.425
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