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Abstract

Suppose that V is a symplectic space, that is, a finite-dimensional vector space endowed with
a nondegenerate alternating bilinear form. A subspace L of V is said to be Lagrangian if L
coincides with its orthogonal complement. This thesis aims to construct a simple algorithm
to compute the Lagrangians of F2n

2 as a vector space over the field F2 up to a permutation of
coordinates. There will first, however, need to be a discussion of the classical linear groups to
achieve such a goal. In particular, we will include a discussion of the symplectic groups.

ii



Acknowledgements

First and foremost, I would like to sincerely thank my supervisor Dr. M. Kotchetov for agreeing
to supervise me on this project. His advice and guidance have proven to be invaluable to the
completion of this thesis. I would also like to thank all of my friends and family for their
continuous support and encouragement whilst I was preparing the contents of this thesis. Last
but not least, I would like to thank all of the staff and Faculty in the Department of Mathematics
and Statistics at Memorial University for providing me with a nurturing environment to pursue
my studies. I am truly grateful to those who have offered me aid of any kind on this journey.

iii



Contents

1 Introduction 1
1.1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Alternating Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Symmetric Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Classical Linear Groups 10
2.1 The General Linear and Special Linear Groups . . . . . . . . . . . . . . . . . . . 10

2.1.1 Transvections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The Symplectic Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The Structure of Sp(V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The Orthogonal Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 The Structure of O(V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Theorems of Witt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Binary Linear Codes 27
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Hamming Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Parity Check Matrices of Binary Linear Codes . . . . . . . . . . . . . . . 30

3.2 Dual Codes of Binary Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 MacWilliams’ Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Self-Dual Binary Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Lagrangian Binary Self-Dual Codes . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Code 45

iv



Chapter 1

Introduction

A vector space V over a field F equipped with a nondegenerate alternating form B is called a
symplectic space and, loosely speaking, symplectic geometry is devoted to the study of (V,B)
[6, p. 21]. For a given symplectic space (V,B), define a Lagrangian subspace L of V to be a
vector subspace of V such that L⊥ = L with respect to B. The term “Lagrangian subspace”
was supposedly first introduced by a mathematical physicist named Viktor Maslov in 1965 and
the related notion of a Lagrangian submanifold has since proven to be invaluable to the study of
virtually every physical system [1, p. 402–403]. In this thesis, we propose a simple algorithm for
computing the Lagrangian subspaces of V = F2n

2 as a vector space over F2 up to a permutation
of coordinates. We first, however, need to establish some theory concerning the classical linear
groups. The most fundamental of which is the general linear group. We first study abstract
bilinear forms and then specialize to alternating and symmetric forms, the theory of which
will be needed in the discussion of their relevant isometry groups. Unless otherwise stated, we
assume for this chapter that V is an n-dimensional vector space over a field F.

1.1 Bilinear Forms

We now begin with our discussion of bilinear forms, following the relevant theory in chapters 2
and 4 in [6].

Definition 1.1. A function B : V × V → F is a bilinear form on V if for any w ∈ V , the
maps

Lw : V → F, v 7→ B(w, v),

Rw : V → F, v 7→ B(v, w)

are F-linear.

If B is a bilinear form on V and B = {v1, . . . , vn} is a basis for V , then the matrix B̂ given

by B̂ij = B(vi, vj) for all i, j is called the matrix of B relative to B. Note that if u, v ∈ V with
u =

∑
i

xivi and v =
∑
i

yivi, then

B(u, v) = B

(∑
i

xivi,
∑
j

yivi

)
=

∑
i,j

xiB(vi, vj)yi = ûT B̂v̂ (∗)

where û and v̂ are the column vectors of u and v relative to B.

1



1.1. BILINEAR FORMS 2

Conversely, suppose B̂ = [bij] is an n×n matrix over F and B = {v1, . . . , vn} is a basis for V .

Then B̂ determines a bilinear form B on V by first defining B on the basis B via B(vi, vj) = bij
for all i, j and then extending B to a map V × V → F by linearity, as in equation (∗).

Suppose now that B = {v1, . . . , vn} and B′ = {u1, . . . un} are two bases for V . For each j,
write uj =

∑
i

aijvi. We then have that for a bilinear form B on V with corresponding matrix

B̂B relative to B,
B(ui, uj) =

∑
k,l

akiB(vk, vl)alj = (AT B̂A)ij

where A = [aij]. Thus, B̂B′ = AT B̂BA. Note that A is invertible since its columns represent a
basis for V . Thus, any two representing matrices of a bilinear form are equivalent under the
equivalence relation ∼ on n× n matrices over F given by

X ∼ Y ⇐⇒ X =MTYM for some M ∈ GL(n,F).

For a bilinear form B on V , define the left and right radicals of V under B respectively as

radL(V ) = {v ∈ V | for all w ∈ V, B(v, w) = 0},
radR(V ) = {v ∈ V | for all w ∈ V, B(w, v) = 0}.

We say that B is nondegenerate if radL(V ) = {0}, or equivalently radR(V ) = {0} thanks to
the following proposition.

Denote by F× the multiplicative group of F consisting of all non-zero elements of F.

Proposition 1.1. Let B be a bilinear form on V with a representing matrix B̂. Then B is
nondegenerate if and only if det B̂ ∈ F×.

Proof. Choose a basis B = {v1, . . . , vn} for V and let B̂ be the matrix corresponding to B
relative to B. Let v ∈ radL(V ) and write v =

∑
j

λjvj. Then for all 1 ≤ i ≤ n,

B(v, vi) = B

(∑
j

λjvj, vi

)
=

∑
j

λjB(vj, vi) = 0.

Hence, the row vector v̂T satisfies v̂T B̂ = 0 and thus B is nondegenerate ⇐⇒ det B̂ ̸= 0.

In general, for any subset S ⊂ V and any bilinear form B on V define

⊥L (S) = {v ∈ V | for all w ∈ S,B(v, w) = 0},
⊥R (S) = {v ∈ V | for all w ∈ S,B(w, v) = 0}.

It is evident that ⊥L (S) and ⊥R (S) are subspaces of V and in the case when S = V , we
recover the definition of, respectively, the left and right radicals of V .

Proposition 1.2. If B is a nondegenerate bilinear form on V and W ⊂ V is a subspace, then

dim ⊥L (W ) = dim V − dim W.
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Proof. Denote by V ∗ the set of F-linear maps V → F. Then V ∗ is an F-vector space (called
the dual space of V ) under pointwise addition and scalar multiplication given by

(f + g)(v) = f(v) + g(v) and (λf)(v) = λ(f(v)), for all v ∈ V and λ ∈ F.

Fix a basis {v1, . . . , vm} ofW and extend it to a basis B = {v1, . . . , vn} of V . For each 1 ≤ i ≤ n,
define v∗i ∈ V ∗ by

v∗i (vj) = δij,

extending v∗i by linearity. Then, {v∗i }ni=1 is a basis for V ∗ (called the dual basis of B) and in
particular, dim V = dim V ∗.

Now, define fi ∈ V ∗ by fi(v) = B(vi, v) for all v ∈ W . We claim that {f1, . . . , fn} is a basis
for V ∗. Since dim V ∗ = n, it suffices to show that f1, . . . , fn are linearly independent. Indeed,

if there are λ1, . . . , λn ∈ F such that
n∑

i=1

λifi = 0, then

B

( n∑
i=1

λivi, v

)
=

n∑
i=1

λifi(v) = 0 for all v ∈ V

=⇒
n∑

i=1

λivi = 0 by nondegeneracy.

Hence, λi = 0 for all 1 ≤ i ≤ n and so {fi}ni=1 is a basis for V ∗. Note then that for any f ∈ V ∗,
there exists v ∈ V such that f(u) = B(v, u) for all u ∈ V . Consider now the map

ψ : V → W ∗, v 7→ Lv|W ,

where Lv(u) = B(v, u) for all u ∈ V . For each f ∈ W ∗, extend f to a map f ′ : V → F by
setting f ′(vi) = 0 for i > m, extending by linearity. Then, f ∈ V ∗ and so there exists v ∈ V
such that for any u ∈ V , f ′(u) = B(v, u) and in particular, f = Lv|W . Therefore ψ is surjective.
It is evident that ψ is linear and by definition, ker ψ =⊥L (W ). Hence, W ∗ ∼= V/ ⊥L (W ) and
in particular,

dim V = dim W + dim ⊥L (W ).

Remark 1.1. We may replace ⊥L (W ) with ⊥R (W ) in Proposition 1.2. The argument is
essentially the same as in the case of ⊥L (W ).

Corollary 1.3. If B is a nondegenerate bilinear form on V and W ⊂ V is a subspace, then

⊥R

(
⊥L (W )

)
= W =⊥L

(
⊥R (W )

)
.

Proof. By definition, W ⊂⊥R

(
⊥L (W )

)
and by Proposition 1.2,

dim ⊥R

(
⊥L (W )

)
= dim V − dim ⊥L (W )

= dim V − (dim V − dim W )

= dim W.

Similarly, W =⊥L

(
⊥R (W )

)
.
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Definition 1.2. Let V1 and V2 be F-vector spaces each equipped with a bilinear form, say B1

on V1 and B2 on V2. An F-isomorphism τ : V1 → V2 is an isometry if for all u, v ∈ V1,

B1(u, v) = B2(τu, τv).

If such an isometry exists, (V1, B1) and (V2, B2) are said to be isometric. In this case, we may
also say that V1 and V2 are isometric provided there is no confusion about the associated forms.

Proposition 1.4. With notation as in Definition 1.2, (V1, B1) and (V2, B2) are isometric if

and only if there are bases for V1 and V2 relative to which B̂1 = B̂2.

Proof. Let B1 = {v1, . . . , vn} be a basis for V1 and suppose τ : V1 → V2 is an isometry. Since

τ is an isomorphism, B2 = {τv1, . . . , τvn} is a basis for V2. We then have that the matrix B̂1

relative to B1 is equal to the matrix B̂2 relative to B2. Conversely, suppose there are bases
{v1, . . . , vn} and {w1, . . . , wn} of V1 and V2 respectively, relative to which B̂1 = B̂2. Define

τ : V1 → V2, vi 7→ wi

for each 1 ≤ i ≤ n, extending by linearity. Then τ is an isomorphism. For u, v ∈ V1, write
u =

∑
i

xivi and v =
∑
j

yiwi. Then

B1(u, v) = B1

(∑
i

xivi,
∑
j

yiwi

)
=

∑
i,j

xiyjB1(vi, vj).

But B1(vi, vj) = B2(wi, wj) so we have

B1(u, v) =
∑
i,j

xiyjB2(wi, wj)

=
∑
i,j

xiyjB2(τvi, τvj)

= B2(τu, τv).

Thus, τ is an isometry.

If u, v ∈ V satisfy B(u, v) = 0 for a bilinear form B on V , we say that u is orthogonal to
v and write u ⊥ v. If u ⊥ v =⇒ v ⊥ u, then B is said to be reflexive. Note that in this
case, ⊥L (W ) =⊥R (W ) for any W ⊂ V and so we instead write W⊥. Furthermore, we say
subspaces U and W are orthogonal if for all u ∈ U and all w ∈ W , B(u,w) = 0. If U and W
intersect trivially, denote their direct sum by U k W . If W is a subspace, then W⊥ is called
the orthogonal complement of W . The restriction B|W×W is a nondegenerate form on W if
and only if W ∩W⊥ = {0}. We define the radical of W to be rad W = W ∩W⊥, that is,
the radical of (W, B|W×W ), and say that W is a nondegenerate subspace of V relative to B if
rad W = {0}.

Proposition 1.5. Suppose B is a reflexive bilinear form on V and W ⊂ V is a nondegenerate
subspace relative to B. Then V is the (internal) direct sum

V = W ⊕W⊥.

Proof. Let v ∈ V and define Lv : V → F by Lv(u) = B(v, u). Consider the restriction

fv = Lv|W .
Since fv ∈ W ∗ and W is nondegenerate, there exists w′ ∈ W such that fv(w) = fw′(w) for all
w ∈ W (as in the proof of Proposition 1.2). Thus fv−w′(w) = 0 for all w ∈ W =⇒ v−w′ ∈ W⊥

and since v = w′+(v−w′), we have V = W⊕W⊥, the sum being direct sinceW∩W⊥ = {0}.
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1.1.1 Alternating Forms

We now discuss a specific type of bilinear form that is of particular interest. Namely, alternating
bilinear forms or, simply, alternating forms. Such forms will play a vital role in the subsequent
chapters.

Definition 1.3. Let B be a bilinear form on V . We say that B is an alternating form on V
if for every v ∈ V , B(v, v) = 0.

Observe that if B is an alternating form on V and u, v ∈ V , then

B(u+ v, u+ v) = B(u, u) +B(v, v) +B(u, v) +B(v, u) = 0

and so B(u, v) = −B(v, u). Therefore, B is skew symmetric. If the characteristic of F is not 2,
then the converse is true.

It should also be noted that if B is an alternating form on V and B(u, v) = 0 for some
u, v ∈ V (i.e. u is orthogonal to v), then B(v, u) = −B(u, v) = 0. Therefore v is orthogonal to
u and so any alternating form is reflexive.

Suppose B is an alternating form on V which is not identically zero. Then there are
u, v ∈ V such that B(u, v) = λ ̸= 0. If u = av for some a ∈ F, then B(u, v) = aB(v, v) = 0,
a contradiction. Hence, u and v are linearly independent. We may assume that λ = 1 by
replacing u with 1

λ
u. We call (u, v) a hyperbolic pair and the subspace W spanned by u and v

a hyperbolic plane. Note that the restriction B|W×W has representing matrix[
0 1
−1 0

]
relative to (u, v) and so W is a nondegenerate subspace.

Theorem 1.6. If B is an alternating form on V , then there are hyperbolic planes W1, . . . ,Wk

such that
V = W1 k · · · k Wk k rad V.

Proof. Induction on n = dim V . If n = 1, then V is spanned by some nonzero v ∈ V and so for
any u,w ∈ V with u = av and w = bv, B(u,w) = abB(v, v) = 0. Thus, V = rad V . Suppose
that the result holds on spaces of dimension less than n. If V is of dimension n and B is not
identically zero, then there exists u, v ∈ V with B(u, v) = 1 as discussed above. Then if W1 is
the hyperbolic plane spanned by u and v, we have that B|W1×W1 is nondegenerate. Therefore,
V = W1 k W⊥

1 by Proposition 1.5 and thus, dim W⊥
1 = dim V − dim W = n − 2. Therefore,

by the induction hypothesis, there exists hyperbolic planes W2, . . . ,Wk such that

W⊥
1 = W2 k · · · k Wk k rad W⊥

1 .

Note that rad V = V ⊥ = (W1 k W⊥
1 )⊥ = W⊥

1 ∩ (W⊥
1 )⊥ = rad W⊥

1 and hence,

V = W1 k · · · k Wk k rad V.

In the case when B = 0, V = rad V and so the result is also true.

Corollary 1.7. If B is a nondegenerate alternating form on V , then dim V is even.
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Proof. By definition, rad V = {0}. Combining this with Theorem 1.6, we have

V = W1 k · · · k Wk

with each Wi a hyperbolic plane. Therefore, dim V = 2k.

Definition 1.4. If B is a nondegenerate alternating form on V , then we call (V, B) (or simply
V if the form is understood) a symplectic space.

1.1.2 Symmetric Forms

We now turn our attention to another particular type of bilinear form. Namely, symmetric
bilinear forms or, simply, symmetric forms. We will assume for the remainder of this chapter
that char F ̸= 2.

Definition 1.5. We say a bilinear form B on V is symmetric if for all u, v ∈ V ,

B(u, v) = B(v, u).

For our purposes, we define an inner product on a vector space V over a field F of any
characteristic to be either a nondegenerate symmetric bilinear form on V , or a nondegenerate
alternating form on V . In fact, such forms characterize all reflexive forms on V thanks to the
following proposition.

Proposition 1.8. Let V be a vector space over a field F of any characteristic. A bilinear form
B on V is reflexive if and only if B is either symmetric or alternating.

Proof. We have already seen that symmetric and alternating forms are reflexive. Suppose then
that B is reflexive. Let u, v, w ∈ V and set x = B(u, v)w −B(u, w)v. Then,

B(u, x) = B(u, v)B(u, w)−B(u, w)B(u, v) = 0

and so u ⊥ x. Therefore, x ⊥ u and so

B(u, v)B(w, u)−B(u, w)B(v, u) = 0. (∗)

Letting u = v, we find that

B(v, v)[B(w, v)−B(v, w)] = 0. (∗∗)

Now, suppose to the contrary that B is neither alternating nor symmetric. Then, there exists
x, y, z ∈ V such that B(x, x) ̸= 0 and B(y, z) ̸= B(z, y). Equation (∗∗) implies that

B(y, y) = 0 = B(z, z), B(x, y) = B(y, x), and B(x, z) = B(z, x).

Now, equation (∗) gives B(y, x)B(z, y) − B(y, z)B(x, y) = 0 =⇒ B(x, y) = 0 = B(y, x).
Moreover, B(z, x)B(y, z)−B(z, y)B(x, z) = 0 =⇒ B(x, z) = 0 = B(z, x). Hence,

B(x+ z, y) = B(z, y) ̸= B(y, z) = B(y, x+ z).

Thus, by equation (∗∗), we have

B(x+ z, x+ z)[B(y, x+ z)−B(x+ z, y)] = 0

⇐⇒ B(x+ z, x+ z) = 0.
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But,

B(x+ z, x+ z) = B(x, x) +B(x, z) +B(z, x) +B(z, z)

= B(x, x) ̸= 0.

a contradiction.

If B is a symmetric form on V , define its associated quadratic form by

Q : V → F, v 7→ B(v, v).

We then have that for all a ∈ F and v ∈ V ,

Q(av) = a2Q(v).

Furthermore, if u ∈ V ,

Q(u+ v) = B(u+ v, u+ v) = Q(u) +Q(v) + 2B(u, v).

Since char F ̸= 2, we have

B(u, v) =
1

2
[Q(u+ v)−Q(u)−Q(v)].

Hence symmetric forms and quadratic forms are equivalent over fields of characteristic other
than 2.

Proposition 1.9. If B is a symmetric form on V which is not identically zero, then its asso-
ciated quadratic form satisfies

Q(v) ̸= 0

for some v ∈ V .

Proof. Suppose to the contrary that Q is identically zero. Then if u, v ∈ V ,

B(u, v) =
1

2
[Q(u+ v)−Q(u)−Q(v)] = 0,

a contradiction.

A set {v1, . . . vk} ⊂ V is orthogonal (relative to B) if i ̸= j =⇒ B(vi, vj) = 0. If in
addition {v1, . . . , vk} forms a basis, then it is called an orthogonal basis.

Theorem 1.10. If B is a symmetric form on V , then V has an orthogonal basis.

Proof. If B is identically zero, then every basis for V is orthogonal. Assume that B is nonzero.
We argue by induction on n = dim V . If n = 1, there is nothing to prove. Assume the result
holds for spaces of dimension less than n. Suppose V is of dimension n. By proposition 1.9,
there exists v1 ∈ V such that Q(v1) ̸= 0. Then the subspaceW generated by v1 is nondegenerate
and so V = W kW⊥ by Proposition 1.5. Furthermore, dim W⊥ = n−1 by Proposition 1.2 and
so there exists an orthogonal basis {v2, . . . , vn} for W⊥ and thus {v1, . . . , vn} is an orthogonal
basis for V .

Let B be a symmetric form on V . We say v ∈ V \ {0} is isotropic if Q(v) = 0. Otherwise,
v is said to be anisotropic. If V contains an isotropic vector, then V , B and Q are said to
be isotropic. By convention, we take 0 to be anisotropic. Call V totally isotropic if every
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v ∈ V \ {0} is isotropic. If the image of V under Q is F, say that B and Q are universal. If B
is nondegenerate, call (V,B) a quadratic space.

If a subspace W ⊂ V is totally isotropic and u,w ∈ W , then u+ w is isotropic and so

B(u,w) =
1

2
[Q(u+ w)−Q(u)−Q(w)] = 0.

Thus, W ⊂ W⊥. Conversely, if W ⊂ W⊥ and w ∈ W , then w ⊥ w =⇒ Q(w) = 0 and so W
is totally isotropic. Therefore, we have the characterization that a subspace is totally isotropic
if and only if it is contained in its orthogonal complement.

Proposition 1.11. If (V,B) is a quadratic space and B is isotropic, then B is universal.

Proof. Let v ∈ V be isotropic. Since B is nondegenerate, there exists w ∈ V such that
B(v, w) ̸= 0. We may assume that B(v, w) = 1

2
, replacing w with w

2B(v,w)
if need be. For any

a ∈ F, set u = (a−Q(w))v + w. Then,

Q(u) =
(
a−Q(w)

)2
Q(v) +Q(w) + 2

(
a−Q(w)

)
B(v, w)

= Q(w) + a−Q(w)

= a.

Recall that if V is equipped with an alternate form B, a subspace of V is a hyperbolic plane
if it has a basis {u, v} such that B(u, v) = 1. Similarly if B is symmetric, a hyperbolic plane
is a subspace W of V such that there exists a basis {u, v} for W satisfying Q(u) = Q(v) = 0
and B(u, v) = 1. Again, we call (u, v) a hyperbolic pair. Note that in the symmetric case, the
representing matrix of B relative to (u, v) is given by[

0 1
1 0

]
.

Proposition 1.12. Suppose (V,B) is a quadratic space with dimV = 2. Then V is a hyperbolic
plane if and only if V is isotropic.

Proof. Clearly, if V is a hyperbolic plane then it has a hyperbolic pair (u, v) as a basis and both
u and v are isotropic vectors in V . Suppose now that V is isotropic and choose v ∈ V \ {0}
with Q(v) = 0. Since B is nondegenerate, v /∈ V ⊥ and so there exists w ∈ V such that
B(v, w) = a ̸= 0. If w = λv for some λ ∈ F, then B(v, w) = λQ(v) = 0 ⇐⇒ λ = 0. This
cannot happen since w ̸= 0 and hence, {v, w} is a basis for V . We may assume without loss of
generality that a = 1 (again by replacing w with 1

a
w if need be). Let u = w − 1

2
Q(w)v. Then,

Q(u) = Q(w) +
(1
2
Q(w)

)2
Q(v)−Q(w)B(w, v) = Q(w)−Q(w) = 0.

Note that {u, v} is also basis for V and that

B(u, v) = B(w, v)− 1

2
Q(w)B(v, v) = 1.

Thus (u, v) is a hyperbolic pair.
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Proposition 1.13. Suppose (V,B) is a quadratic space, W ⊂ V is a subspace with radW ̸= 0,
and W ′ is a complement to rad W so that W = rad W k W ′. If {w1, . . . , wk} is a basis for
rad W , then there exists a subspace U = ⟨u1, . . . , uk⟩ such that

(i) W ∩ U = {0}.
(ii) W ⊕ U is nondegenerate.
(iii) For 1 ≤ i ≤ k, (wi, ui) is a hyperbolic pair for Hi = ⟨wi, ui⟩.
(iv) W ⊕ U = W ′ k H1 k H2 k · · · k Hk.

Proof. Induction on k = dim rad W . First note that rad W = rad W ⊕ rad W ′ and thus
rad W ′ = {0} and so W ′ is a nondegenerate subspace. Define f : W → F via

f(wi) = δi1 for 1 ≤ i ≤ n, f |W ′ = 0,

and extending f by linearity so that f ∈ W ∗. Then, as in the proof for Proposition 1.2, we
may find v1 ∈ V so that f = Lv1 where Lv1(w) = B(v1, w). We then have that v1 ⊥ W ′ and
for 1 ≤ i ≤ n, B(v1, wi) = δi1. If a ∈ F, then

B(v1 + aw1, w) = B(v1, w) + aB(w1, w) = B(v1, w)

so we may replace v1 with v1 + aw1. Notice that

Q(v1 + aw1) = Q(v1) + a2Q(w1) + 2aB(v1, w1) = Q(v1) + 2a.

Taking a = −1
2
Q(v1) and relabelling, we may assume that Q(v1) = 0. Hence, (w1, v1) is a

hyperbolic pair and so V = H1 k H⊥
1 where H1 = ⟨w1, v1⟩ (by Proposition 1.5). If k = 1, take

U = ⟨v1⟩ so that W ⊕ U = ⟨w1⟩ ⊕W ′ ⊕ ⟨v1⟩ = W ′ k H1 as desired. Suppose that k > 1. Let

S = W ′
k ⟨w2, . . . wk⟩ ⊂ H⊥

1 .

Since W ′ is nondegenerate, rad S = ⟨w2, . . . , wk⟩ and in particular, dim rad S = k − 1. Thus,
there exists v2, . . . , vk ∈ V such that for 2 ≤ i ≤ k, vi ⊥ W ′ and (wi, vi) is a hyperbolic pair for
Hi = ⟨wi, vi⟩. Moreover, S ∩ ⟨v2, . . . , vk⟩ = {0} and

S ⊕ ⟨v2, . . . vk⟩ = W ′
k H2 k H3 k · · · k Hk.

Take U = ⟨v1, . . . vk⟩. Then W ∩ U = {0} and

W ⊕ U = W ′
k H1 k H2 k · · · k Hk.



Chapter 2

Classical Linear Groups

A group is a classical group if it is isomorphic to either the general linear group, the symplectic
group, the orthogonal group, or the unitary group [11, p. 239]. This definition is hardly strict as
some prefer to encompass other related groups such as SL(V ) and PSL(V ). This chapter first
includes a brief discussion of the general linear and special linear groups following chapter 1 of
[6]. Then, we introduce the symplectic group and the theory concerning such groups. Finally,
we study the orthogonal group, leading to two famous theorems of Witt. The theory developed
in this chapter will be vital for what is to come in the third chapter.

2.1 The General Linear and Special Linear Groups

Let V be an n-dimensional vector space over a field F and for v1, . . . , vk ∈ V , denote their span
by ⟨v1, . . . , vk⟩.

Definition 2.1. The general linear group of V is the group

GL(V ) = {τ : V → V | τ is linear and invertible}

with group operation given by composition, i.e., GL(V ) is the automorphism group of V .

If we fix a basis for V , then any linear map V → V is represented by a matrix over F, and
the composition of linear maps corresponds to matrix multiplication. Thus, we have that have
that GL(V ) is isomorphic to the group GL(n,F) of invertible n× n matrices over F.

Consider now the determinant homomorphism

det : GL(V ) → F×

between the general linear group of V and the multiplicative group F× of F. The kernel of the
determinant homomorphism, ker(det), is a subgroup of GL(V ) which is of particular interest.
We denote this subgroup by SL(V ) and call it the special linear group. We then have that

SL(V ) = {τ ∈ GL(V ) | det τ = 1}.

Remark 2.1. Note that SL(V ) is normal in GL(V ) as it is the kernel of a homomorphism.

10
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We also define the projective special linear group of V , denoted PSL(V ), to be the quotient
of SL(V ) by its center. That is,

PSL(V ) = SL(V )/Z(SL(V )).

In the case when dimV ≥ 2, every PSL(V ) group is simple with the exceptions of when
dimV = 2 and |F| is either 2 or 3 (see [6, Theorem 1.13]).

If |F| = q is finite, then denote GL(n,F) by GL(n, q) and similarly for the matrix groups
SL(n,F) and PSL(n,F). We now compute the order of these groups.

Proposition 2.1. Suppose that |F| = q is finite. Then

|GL(n, q)| =
n−1∏
i=0

(qn − qi) = q
(n−1)n

2

n∏
i=1

(qi − 1).

Proof. Since an n×n matrix A over F lies in GL(n, q) if and only if the rows of A form a basis
for V , the problem reduces to counting the number of ordered bases of V . Let {v1, . . . , vn} be
an ordered basis of V . There are qn vectors in V so after excluding the zero vector, there are
qn − 1 choices for v1. We then choose v2 such that v2 /∈ ⟨v1⟩. This gives qn − q choices for v2
as there are q vectors in ⟨v1⟩. In general, for 0 ≤ i < n, there are qn − qi choices for vi+1. The
result then follows.

Proposition 2.2. Suppose that |F| = q is finite. Then

|SL(n, q)| = |GL(n, q)|
q − 1

.

Proof. Consider the subgroup D of GL(n, q) consisting of diagonal block matrices of the form[
a 0
0 In−1

]
,

where a ∈ F× and In−1 is the (n−1)×(n−1) identity matrix. Then D ∼= F× and so |D| = q−1.
Let A ∈ GL(n, q) and λ = det A. Then the matrix

B =

[
λ 0
0 In−1

]
lies in D and AB−1 ∈ SL(n, q) and so GL(n, q) = SL(n, q)D. Moreover, SL(n, q) ∩D = {In}
and since SL(n, q) is normal in GL(n, q) (as previously noted), we have that

GL(n, q) = SL(n, q)⋊D

is an inner semidirect product. Thus,

|GL(n, q)| = |SL(n, q)| · |D|.

To compute the order of PSL(n, q), we make use of the following result.
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Lemma 2.3. The center of SL(n,F) is given by

Z(SL(n,F)) = {λIn | λ ∈ F×, λn = 1}.

Proof. Let k, l ∈ {1, . . . , n} be distinct and consider the elementary matrix

Xkl = In + Ekl,

where Ekl is a matrix unit. Since k ̸= l, we have that Xkl ∈ SL(n,F). Therefore if
A = [aij] ∈ Z(SL(n,F)), then

AXkl = XklA.

Note that right multiplication by Xkl adds the k
th column of A to the lth column of A and left

multiplication by Xkl adds the l
th row of A to the kth row of A. Thus if i ̸= k and j ̸= l, we

have that

ail + aik = ail

akj + alj = akj.

Therefore, aik = alj = 0. Moreover,

akl + akk = akl + all

and so akk = all. Since k and l were arbitrary, we have that A is of the form

A = λIn

with the property that λn = 1 as det A = 1.

We are now equipped to compute the order of PSL(n,F).

Proposition 2.4. Suppose that |F| = q is finite. Then

|PSL(n, q)| = |SL(n, q)|
gcd(n, q − 1)

Proof. We make use of the fact that the multiplicative group of a finite field is cyclic. Since
PSL(n, q) is the quotient of SL(n, q) by its center, it suffices to compute |Z(SL(n, q))|. Note
that Z(SL(n, q)) ∼= {λ ∈ F× | λn = 1}, the subgroup of F× consisting of all nth roots of unity.
Let d = gcd(n, q − 1). We claim that if λ ∈ F×, then λn = 1 if and only if λd = 1. Given that
d divides n, there exists k ∈ Z so that n = dk. Then if λd = 1, we have that λn = (λd)k = 1.
Conversely, suppose λn = 1. Note that there exists a, b ∈ Z such that

d = an+ b(q − 1).

Then, λd = (λn)a(λ(q−1))b = 1 and so in fact, Z(SL(V )) ∼= {λ ∈ F× | λd = 1}, the cyclic
subgroup of order d.
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2.1.1 Transvections

We now introduce the notion of a transvection which will help us both in the study of SL(V ).
The contents explored here will also prove to be useful in the following section.

Definition 2.2. A subspace W of an n-dimensional vector space V is called a hyperplane if
dim W = n − 1. If τ ∈ GL(V ), τ ̸= idV , then τ is called a transvection if there exists a
hyperplane W such that τ |W = idW and τv − v ∈ W for all v ∈ V . We say that W is the fixed
hyperplane of τ .

Suppose that τ is a transvection with fixed hyperplane W . Take v1 ∈ V \W and choose a

basis {v2, . . . , vn} forW . For 2 ≤ i ≤ n, τvi = vi. Write τv1 =
n∑

i=1

xivi. Given that τv1−v1 ∈ W ,

we have that

τv1 − v1 =
n∑

i=2

yivi =
n∑

i=1

xivi − v1

and thus,

(x1 − 1)v1 =
n∑

i=2

(yi − xi)vi.

The right-hand side of this equation lies in W yet v1 /∈ W so we must have that x1 = 1.
Therefore, the matrix representing τ relative to {v1, . . . , vn} is upper triangular with ones
along the main diagonal and so det τ = 1 =⇒ τ ∈ SL(V ).

Proposition 2.5. If u, v ∈ V are linearly independent, then there exists a transvection τ such
that τu = v.

Proof. Choose a hyperplane W in V so that u /∈ W but u − v ∈ W . There is a linear map
τ : V → V satisfying τ |W = idW and τu = v. If x ∈ V , then there exists λ ∈ F and w ∈ W
such that x = λu+ w. Then,

τx− x = λv + w − (λu+ w) = −λ(u− v) ∈ W.

Hence, τ is a transvection.

Proposition 2.6. Let W1 and W2 be two distinct hyperplanes in V and v ∈ V \ (W1 ∪W2).
Then there exists a transvection τ such that τv = v and W2 is the image of W1 under τ .

Proof. Since W1 and W2 are distinct hyperplanes in V , we have that V = W1 +W2. Therefore,
dim W1 ∩W2 = dim W1 + dim W2 − dim V = n− 2 and hence W = W1 ∩W2 + ⟨v⟩ is another
hyperplane. Write v = x+y where x ∈ W1 and y ∈ W2. Then x /∈ W2 =⇒ W1 = W1∩W2+⟨x⟩
and y /∈ W1 =⇒ W2 = W1 ∩W2 + ⟨y⟩ and thus V = W1 ∩W2 + ⟨x, y⟩. We then have that
x /∈ W . Otherwise, y = v − x ∈ W and we would have that V ⊂ W . Now, define τ : V → V
via τ |W = idW and τx = −y, extending τ by linearity. We then have that τ is a transvection
as in the proof of Proposition 2.5. Furthermore, τv = v since v ∈ W and also,

τ(W1) = τ(W1 ∩W2 + ⟨x⟩) = W1 ∩W2 + ⟨y⟩ = W2.

We now show that SL(V ) is generated by transvections. To do this, we require the following
two lemmas.
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Lemma 2.7. For a transvection τ on V with fixed hyperplane W , we have that τ−1 is also a
transvection on V with fixed hyperplane W .

Proof. Note that τ ̸= idV =⇒ τ−1 ̸= idV . For w ∈ W , we have that τw = w =⇒ w = τ−1w
and so τ−1|W = idW . If v ∈ V , then τv − v = u ∈ W and so τ−1v − v = −u ∈ W .

Lemma 2.8. Suppose that U is a subspace of V , v ∈ V \U , and that T is a transvection on U
with fixed hyperplane W ′. Then there is a transvection τ on V with fixed hyperplane W such
that T = τ |U and v ∈ W .

Proof. Choose a basis B1 = {v1, . . . , vm} for U such that B1 \ {v1} is a basis for W ′. Set
vm+1 = v and extend B1 to a basis B = B1 ∪ B2 for V where B2 = {vm+1, . . . , vn}. Let W be
the subspace of V spanned by B \ {v1} and define τ : V → V via

τ |U = T, τvi = vi for m < i ≤ n,

and extending by linearity. Then τ |W = idW and if x =
n∑

i=1

λivi ∈ V , then

τx− x =
n∑

i=1

λi(τvi)−
n∑

i=1

λivi

=
n∑

i=1

λi(Tvi − vi) ∈ W ′ ⊂ W.

Hence, τ is a transvection on V with fixed hyperplane W .

Theorem 2.9. SL(V ) is generated by the set of transvections on V .

Proof. We saw earlier that every transvection lies in SL(V ). It remains to show that every
σ ∈ SL(V ) is a product of transvections. Let σ ∈ SL(V ). Choose a hyperplane W in V and
let v ∈ V \ W . If v and σv are linearly independent, then by Proposition 2.5 there exists
a transvection τ1 such that τ1σv = v. Otherwise, there exists a transvection τ0 such that v
and τ0σv are linearly independent and then find a transvection τ ′1 such that τ1σv = v where
τ1 = τ ′1τ0. In either case, we have that τ1σv = v with τ1 a product of transvections. Note that
v /∈ τ1σ(W ). If τ1σ(W ) = W , then set τ2 = idV . Otherwise, there exists a transvection τ2 such
that τ2τ1σ(W ) = W and τ2v = v by Proposition 2.6. Set ρ = τ2τ1σ =⇒ ρv = v. If we set
v1 = v and choose a basis {v2, . . . , vn} for W so that B = {v1, . . . , vn} is a basis for V , then,
relative to B, ρ has a representing matrix of the form[

1 0
0 A

]
where A is a matrix representing ρ|W relative to B \ {v1}. Since ρ ∈ SL(V ), we have that

det ρ = 1 · det A = 1

and so ρ|W ∈ SL(W ). We now argue by induction on n = dim V . If n = 2, then we can see
from the matrix representing ρ that ρ = idV and so σ = τ−1

1 τ−1
2 is a product of transvections by

Lemma 2.7. Suppose that n > 2. By the induction hypothesis, ρ|W is a product of transvections
on W and by Lemma 2.8, each transvection on W extends to a transvection on V whose fixed
hyperplane contains v. Therefore, ρ is a product of transvections on V and hence σ = τ−1

1 τ−2
2 ρ

is a product of transvections.
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2.2 The Symplectic Group

About two centuries ago, symplectic geometry provided a lens for physicists to study classical
mechanics through [12, p. xiii]. However, the study of symplectic geometry has since proven to
be rich and highly appreciated as a field in its own right. The symplectic group was formerly
called the “abelian linear group”, attributed to Abel who first studied this group. In the modern
day, this terminology is highly ambiguous since abelian groups generally refer to groups whose
elements commute under the given operation. The term “symplectic”, as we know it today,
was coined by Hermann Weyl and was a supplement for the term “complex” for which Weyl
was formerly using [14, p. 165].

In this section, we assume that V is a vector space over F with dimension n = 2k for some
k ∈ N and that B is a nondegenerate alternating form on V , i.e., (V,B) is a symplectic space.
We call the isometries of V (relative to B) symplectic and a symplectic basis for V is a basis
{u1, v1, u2, v2, . . . , uk, vk} for V where each (ui, vi) is a hyperbolic pair such that V decomposes
into an orthogonal direct sum of the subspaces spanned by such pairs. Note that Theorem 1.6
guarantees the existence of a symplectic basis. We now embark on our study of the symplectic
group following chapter 3 of [6].

Definition 2.3. The symplectic group on V is the subgroup of GL(V ) given by

Sp(V ) = {τ ∈ GL(V ) | τ is symplectic}.

If |F| = q is finite and a basis has been fixed, we denote the matrix group Sp(n,F) by
Sp(n, q).

We also define the projective symplectic group, denoted PSp(V ), to be the quotient of Sp(V )
by its center. That is,

PSp(V ) = Sp(V )/Z(Sp(V )).

Much like the projective special linear group, PSp(V ) is simple with few exceptions. It is known
that PSp(V ) is always simple with the exceptions of PSp(2, 2), PSp(2, 3), and PSp(4, 2) (see
[6, Theorem 3.11]).

Proposition 2.10. Let B be a symplectic basis for V and suppose τ ∈ GL(V ) is represented,

relative to B, by the matrix A. Then τ ∈ Sp(V ) if and only if B̂ = AT B̂A.

Proof. Let u, v ∈ V with corresponding coordinate vectors û and v̂ relative to B. Then

B(u, v) = B(τu, τv)

ûT B̂v̂ = (Aû)T B̂(Av̂)

ûT B̂v̂ = ûT (AT B̂A)v̂.

Corollary 2.11. If V is a hyperbolic plane, then Sp(V ) = SL(V ).

Proof. From our discussion of alternating forms, we may assume that B is represented by the
matrix [

0 1
−1 0

]
.
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Let A ∈ GL(2,F) and write

A =

[
a b
c d

]
.

By Proposition 2.10, A ∈ Sp(2,F) ⇐⇒ B̂ = AT B̂A where

AT B̂A =

[
0 ad− bc

−(ad− bc) 0

]
.

Thus, A ∈ Sp(2,F) ⇐⇒ det A = 1 ⇐⇒ A ∈ SL(2,F).

2.2.1 The Structure of Sp(V )

We are now prepared to examine the relation between transvections and the general structure
of the group Sp(V ).

Proposition 2.12. Let τ ∈ Sp(V ) be a transvection with fixed hyperplane W . Then there
exists α ∈ F× and u ∈ W such that for all v ∈ V ,

τv = v + αB(v, u)u.

Proof. By Proposition 1.2, dim W⊥ = 1 and consequently dim (W⊥)⊥ = n − 1. Furthermore,
W ⊂ (W⊥)⊥ and so in fact, W = (W⊥)⊥. Suppose now that W⊥ = ⟨u⟩. Note that u ∈ (W⊥)⊥

=⇒ u ∈ W . Choose x ∈ V \W so that V = ⟨x⟩ ⊕W . Let z = τx − x and note that z ∈ W
and z ̸= 0 (as τx ̸= x). Define

f : V → F, λx+ w 7→ λ.

Note that f is linear =⇒ f ∈ V ∗ and so, as in the proof of Proposition 1.2, we may find y ∈ V
such that f(v) = B(v, y) for all v ∈ V . Then for every v = λx+ w ∈ V ,

τv = λτx+ w

= λ(z + x) + w

= f(v)z + v

= B(v, y)z + v.

Note that if w ∈ W , we then have that τw = w = B(w, y)z +w and hence B(w, y) = 0 and so
y ∈ W⊥. Write y = au for some a ∈ F×. Since τ ∈ Sp(V ), we also have that

B(w, x) = B(τw, τx)

= B(w, x+ z)

= B(w, x) +B(w, z)

and hence B(w, z) = 0 for all w ∈ W and so z ∈ W⊥. Write z = bu for some b ∈ F× and let
α = ab. Then,

τv = v +B(v, y)z

= v + abB(v, u)u

= v + αB(v, u)u.
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Remark 2.2. Proposition 2.12 tells us that any transvection τ ∈ Sp(V ) is completely deter-
mined by the scalar α and the vector u. We call τ a symplectic transvection and write τ = τu,α.

Suppose now that α ∈ F× and u ∈ V \ {0}. Define

τ : V → V, v 7→ v + αB(v, u)u

and write τ = τu,α. If we set W = u⊥ = {v ∈ V | B(v, u) = 0}, then τv − v = αB(v, u)u ∈ W
and for any w ∈ W , τw = w+αB(w, u)u = w. Hence τ is a transvection with fixed hyperplane
W . Moreover,

B(τx, τy) = B(x+ αB(x, u)u, y + αB(y, u)u)

= B(x, y) + αB(y, u)B(x, u) + αB(x, u)B(u, y) + α2B(x, u)B(y, u)B(u, u)

= B(x, y) + αB(y, u)B(x, u)− αB(x, u)B(y, u)

= B(x, y).

Therefore, τu,α ∈ Sp(V ) and so the converse of Proposition 2.12 is true. We denote by T the
subgroup of Sp(V ) generated by such transvections, i.e.,

T = ⟨τu,α | u ∈ V \ {0}, α ∈ F×⟩.

Proposition 2.13. Let the group Sp(V ) act naturally on V , i.e., for τ ∈ Sp(V ), v ∈ V ,

τ · v = τv.

Then T acts transitively on V \ {0}.

Proof. Let v, w ∈ V \ {0} be distinct. If B(v, w) ̸= 0, take α = 1
B(v,w)

and u = v − w. Then

τu,α(v) = v +
B(v, v − w)

B(v, w)
(v − w)

= v +
B(v, v)−B(v, w)

B(v, w)
(v − w) = w.

If B(v, w) = 0, choose f ∈ V ∗ so that f(v), f(w) ̸= 0. As in the proof of Proposition 1.2, there
exists u ∈ V such that f(v) = B(v, u) and f(w) = B(w, u). Since B(v, u), B(w, u) ̸= 0, there
exists τ, τ ′ ∈ T such that τv = u and τ ′u = w. We then have that τ ′τv = w.

Proposition 2.14. Let the group Sp(V ) act naturally on V × V , i.e., for τ ∈ Sp(V ),
(u, v) ∈ V × V ,

τ · (u, v) = (τu, τv).

Then T acts transitively on the set

S = {(u, v) ∈ V × V | B(u, v) = 1},

i.e., the set of all hyperbolic pairs.

Proof. Suppose that (u1, v1), (u2, v2) ∈ S. By Proposition 2.13, there exists τ ∈ T such that
τu1 = u2. Let v3 = τv1. We then have that τ · (u1, v1) = (u2, v3) ∈ S. If we can find σ ∈ T



2.2. THE SYMPLECTIC GROUP 18

such that σu2 = u2 and σv3 = v2, then στ · (u1, v1) = σ · (τu1, τv1) = (u2, v2) and we are done.
If B(v3, v2) ̸= 0, let α = 1

B(v3,v2)
, u = v3 − v2, and σ = τu,α. Then,

σv3 = v3 + αB(v3, u)u

= v3 +
B(v3, v3)−B(v3, v2)

B(v3, v2)
(v3 − v2)

= v2.

Moreover, B(u2, u) = B(u2, v3) − B(u2, v2) = 0 and so σu2 = u2. Suppose that B(v3, v2) = 0.
Note that B(u2, u2 + v3) = B(u2, v3) = 1 =⇒ (u2, u2 + v3) ∈ S. Also, B(v3, u2 + v3) = −1 and
so, as in the case of B(v3, v2) ̸= 0, we may find σ1 ∈ T such that σ1v3 = u2+v3 and σ1u2 = u2.
Note also that B(u2 + v3, v2) = 1 and so, as in the case of B(v3, v2), we may find σ2 ∈ T such
that σ2(u2 + v3) = v2 and σ2u2 = u2. Write σ = σ2σ1. Then,

σ · (u2, v3) = σ2 · (σ1u2, σ1v3)
= σ2 · (u2, u2 + v3)

= (u2, v2).

We are now ready to show that in fact Sp(V ) = T , i.e., Sp(V ) is generated by symplectic
transvections.

Theorem 2.15. The group Sp(V ) is generated by symplectic transvections.

Proof. Induction on k where dim V = 2k. If k = 1, then Sp(V ) = SL(V ) by Corollary 2.11
and SL(V ) is generated by transvections by Theorem 2.9. Suppose k > 1. Choose a hyperbolic
pair (u, v) ∈ V and let W = ⟨u, v⟩. By Proposition 1.5, we have that

V = W k W⊥.

Let σ ∈ Sp(V ) =⇒ σ · (u, v) is a hyperbolic pair and so there exists τ ∈ T such that
τσ · (u, v) = (u, v) by Proposition 2.14. Thus, τσ|W = idW and so τσ|W⊥ ∈ Sp(W⊥). Since
dim W⊥ = 2(k − 1), we have that τσ|W⊥ is a product of symplectic transvections on W⊥ by
the induction hypothesis. If τw,α is a symplectic transvection appearing in said product, then
τw,α extends to a symplectic transvection V → V via the mapping

v 7→ v + αB(v, w)w.

The fixed hyperplane of this transvection contains W and since τσ|W = idW , we have that
τσ ∈ T and hence σ ∈ T .

Remark 2.3. Due to Theorem 2.15 and Theorem 2.9, we have that Sp(V ) is a subgroup of
SL(V ).

In general, if a group G acts on a set X and x ∈ X, we define the stabilizer of x to be

StabG(x) = {g ∈ G | g · x = x}.

We also define the orbit of x to be

OrbG(x) = {g · x | g ∈ G}.
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StabG(x) is subgroup of G for all x ∈ X and the Orbit-Stabilizer Theorem states

|OrbG(x)| = [G : StabG(x)].

We use these notions to assist in computing the order of Sp(V ) when V is over a finite field. We
then compute its center, concluding our discussion of the symplectic group. We first, however,
require the following lemma.

Lemma 2.16. Let (u, v) be a hyperbolic pair and W = ⟨u, v⟩. Then

StabSp(V )((u, v)) ∼= Sp(W⊥).

Proof. Note that σ ∈ StabSp(V )((u, v)) if and only if σ|W = idW . By Proposition 1.5,

V = W k W⊥

and so every τ ′ ∈ Sp(W⊥) extends to τ ∈ Sp(V ) such that τ |W = idW . The result follows.

Theorem 2.17. Suppose that |F| = q is finite. Then if dim V = n = 2k,

|Sp(n, q)| = qk
2

k∏
i=1

(q2i − 1).

Proof. We may choose any one of the qn−1 nonzero vectors in V to serve as the first vector u in
a hyperbolic pair. For v ∈ V , define Ru(v) = B(v, u). The number of vectors orthogonal to u is
then the cardinality of kerRu. We may find w ∈ V such that B(u,w) = 1 and so B(u, λw) = λ
for any λ ∈ F and hence Ru is surjective. Thus,

dim kerRu = dim V − dim imRu = n− 1.

Thus, there are qn−1 vectors that are orthogonal to u and, consequently, the number of choices
for the second vector in a hyperbolic pair is

qn − qn−1

q − 1
= qn−1.

Hence, there are qn−1(qn−1) distinct hyperbolic pairs in V ×V . Let (u, v) be a hyperbolic pair
and setW = ⟨u, v⟩. By Lemma 2.16, StabSp(V )((u, v)) ∼= Sp(W⊥) = Sp(n−2, q) and by Propo-
sition 2.14, Sp(V ) acts transitively on the set S of hyperbolic pairs and so OrbSp(V )((u, v)) = S.
Thus, by the Orbit-Stabilizer Theorem,

|Sp(n, q)| = qn−1(qn − 1) · |Sp(n− 2, q)|. (∗)

We now argue by induction on k. If k = 1, then by Corollary 2.11, Sp(2, q) = SL(2, q) and
hence |Sp(2, q)| = q(q2 − 1) by Proposition 2.2. Assume that

|Sp(n− 2, q)| = q(k−1)2
k−1∏
i=1

(q2i − 1).

The result then follows from equation (∗).
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Proposition 2.18. The center of Sp(V ) is

Z(Sp(V )) = {−idV , idV }.

Proof. For τu,α ∈ Sp(V ) and v ∈ V , τu,α(v) = v ⇐⇒ B(v, u) = 0, i.e., v is orthogonal to u.
Let σ ∈ Z(Sp(V )). If v ⊥ u, then

τu,α(σv) = στu,α(v) = σv

and thus σv ⊥ u, i.e., σ(u⊥) = u⊥ where u⊥ = {v ∈ V | B(v, u) = 0}. Note that rad u⊥ = ⟨u⟩
as dim rad u⊥ = 1. Now, let w ∈ radu⊥ =⇒ w ∈ (u⊥)⊥ and σw ∈ u⊥. If x ∈ u⊥, then x = σy
for some y ∈ u⊥ and so

B(σw, x) = B(σw, σy) = B(w, y) = 0.

Hence, σ(⟨u⟩) = ⟨u⟩ and consequently, σu = λuu for some λu ∈ F. Choose a basis v1, . . . , vn
for V and set v = v1 + · · ·+ vn =⇒ σ(v) = λvv. On the other hand,

σ(v) =
n∑

i=1

σvi =
n∑

i=1

λvivi.

Thus, λ = λv = λvi for all 1 ≤ i ≤ n and so σ = λ idV . We then have that for all u,w ∈ V ,

B(u,w) = B(σu, σw) = λ2B(u,w) =⇒ λ ∈ {−1, 1}.

Corollary 2.19. Suppose that |F| = q is finite. Then

|PSp(n, q)| = |Sp(n, q)|
gcd(2, q − 1)

.

Proof. If char F = 2, i.e., q = 2m for some m ∈ N, then −idV = idV =⇒ |Z(Sp(n, q))| = 1.
Otherwise, |Z(Sp(n, q))| = 2. Since PSp(V ) = Sp(V )/Z(Sp(V )), the result is immediate.

2.3 The Orthogonal Group

We now turn our attention to when B is a nondegenerate symmetric bilinear form on V . Recall
that, in this case, the pair (V,B) is called a quadratic space. We further assume for this section
that charF ̸= 2 and that dim V = n ≥ 2. We call the group of isometries of V (relative
to B) the orthogonal group and denote it by O(V ). Such isometries are called orthogonal
transformations.

Note that τ ∈ GL(V ) lies in O(V ) if and only if Q(τv) = Q(v) for all v ∈ V , where Q is
the quadratic form associated to B. Also, if τ ∈ GL(V ) is represented by the matrix A relative
to some basis B of V , then, as in Proposition 2.10, τ ∈ O(V ) if and only if

AT B̂A = B̂,

where B̂ is the representing matrix for B relative to B. Consequently, we have that

(detA)2 · det B̂ = det B̂
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and thus detA ∈ {−1, 1}. If τ ∈ O(V ) satisfies det τ = 1 call τ a rotation. Otherwise, call τ a
reversion.

Suppose that u ∈ V \{0} is such that Q(u) ̸= 0, i.e., u is anisotropic (note that Proposition
1.9 ensures the existence of such a u ∈ V ). Define a linear map σu : V → V by

σu(v) = v − 2
B(v, u)

Q(u)
u.

Then for all v, w ∈ V ,

B(σu(v), σu(w)) = B

(
v − 2

B(v, u)

Q(u)
u, w − 2

B(w, u)

Q(u)
u

)
= B(v, w)− 4

B(w, u)

Q(u)
B(v, u) + 4

B(v, u)B(w, u)

Q(u)2
B(u, u)

= B(v, w).

Therefore, σu ∈ O(V ). We call the map σu a reflection along u or, simply, a reflection.

Note that since u is anisotropic, ⟨u⟩ is a nondegenerate subspace and so V = ⟨u⟩k ⟨u⟩⊥ by
Proposition 1.5. If we set u1 = u and choose a basis {u2, . . . , un} for ⟨u⟩⊥, then, relative to the
basis {u1, . . . , un}, σu is represented by the matrix[

−1 0
0 In−1

]
since σu(u) = −u and v ⊥ u =⇒ σu(v) = v. Therefore σu is a reversion of order 2.

The existence of reversions in O(V ) implies that the image of the determinant homomor-
phism is, in fact, equal to {−1, 1}. Denote the kernel of det : O(V ) → F× by SO(V ). Then,

O(V )/SO(V ) ∼= {−1, 1}

and so SO(V ) has index 2 inside O(V ). We call SO(V ) the special orthogonal group.

2.3.1 The Structure of O(V )

We now wish to study the structure of O(V ) which will give us a sense of what orthogonal
transformations “look like”. This will lead us to a famous theorem attributed to Cartan and
Dieudonné which says that every orthogonal transformation is a product of at most n reflec-
tions. Elie Cartan provided a proof for a special case of this theorem in 1937 which was later
generalized by Dieudonné [3, p. 202]. It should be emphasized however that this theorem does
not hold over fields of characteristic 2. Now, following chapter 6 of [6], we begin with some
preparation that will be needed in proving this theorem.

Proposition 2.20. If τ ∈ O(V ), then ker(τ − idV ) = im(τ − idV )
⊥.

Proof. Let v ∈ ker(τ − idV ) and w ∈ V . Then,

B(v, (τ − idV )w) = B(v, τw)−B(v, w)

= B(v, τw)−B(τv, τw)

= −B(τv − v, τw)

= 0.
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On the other hand, if v ∈ im(τ − idV )
⊥ and w ∈ V , then,

B((τ − idV )v, τw) = B(τv, τw)−B(v, τw)

= B(v, w)−B(v, τw)

= −B(v, τw − w)

= 0.

Thus, (τ − idV )v ∈ rad V = {0}.

For τ ∈ O(V ), im(τ − idV ) is totally isotropic if and only if im(τ − idV ) ⊂ im(τ − idV )⊥ and
so, by Proposition 2.20, im(τ−idV ) ⊂ ker(τ−idV ) which happens if and only if (τ−idV )2 = 0V .
Furthermore, if v ∈ V \ {0}, then (τ − idV )v is isotropic if and only if

0 = B(τv − v, τv − v)

= 2[B(v, v)−B(τv, v)]

= −2B(τv − v, v),

i.e., τv − v ⊥ v.

Once the following lemma is established, we will be equipped with the tools to prove the
theorem of Cartan and Dieudonné which will conclude our discussion of the structure of O(V ).

Lemma 2.21. Let τ ∈ O(V ) with (τ − idV )
2 ̸= 0V . Then there exists a nonzero anisotropic

vector v ∈ V \ {0} such that z = τv − v is anisotropic. Moreover, if z ̸= 0, then σzτv = v.

Proof. Suppose to the contrary that for every nonzero anisotropic vector v ∈ V \ {0}, τv − v
is isotropic. Then, τv − v ⊥ v and hence τv − v ∈ rad ⟨τv − v, v⟩ =⇒ ⟨τv − v, v⟩ is a
degenerate subspace. Since V is nondegenerate, it follows that dim V ≥ 3. Now, suppose
w ∈ V is isotropic. By Proposition 1.9, there exists a nonzero anisotropic vector x ∈ ⟨w⟩⊥ and,
for a fixed a ∈ F×, set u = w + ax. Then,

Q(u) = Q(w) + a2Q(x) + 2aB(w, x)

= a2Q(x)

̸= 0

and so u is a nonzero anisotropic vector. Therefore, τu− u ⊥ u and so

0 = B(τw + aτx− w − ax, w + ax)

= B(τw − w,w) + a[B(τx− x,w) +B(τw − w, x)] + a2B(τx− x, x)

= B(τw − w,w) + a[B(τx− x,w) +B(τw − w, x)].

Since a ∈ F is arbitrary, we must have that

B(τx− x,w) +B(τw − w, x) = 0 =⇒ B(τw − w,w) = 0,

i.e., τw − w ⊥ w. Therefore, by the preceding remarks as well as Proposition 1.9, im(τ − idV )
is totally isotropic and so (τ − idV )

2 = 0V , a contradiction. Hence, there exists an anisotropic
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vector v ∈ V \ {0} such that z = τv − v is anisotropic. If z ̸= 0, then

σzτv = σz(z + v)

= −z + v − 2
B(v, z)

Q(z)
z

= v − Q(z) +B(2v, z)

Q(z)
z

= v − B(τv + v, τv − v)

Q(z)
z

= v

since B(τv + v, τv − v) = B(τv, τv)−B(τv, v) +B(v, τv)−B(v, v) = 0.

We now prove the anticipated theorem following [6, p.48].

Theorem 2.22 (Cartan-Dieudonné). Let V be a quadratic space of dimension n. Then every
τ ∈ O(V ) is a product of at most n reflections.

Proof. Induction on n. If n = 1, then O(V ) = {−idV , idV }. We view idV as being a product of
zero reflections and −idV is itself a reflection since any nonzero v ∈ V \{0} is a basis for V and
−idV (v) = −v = σv(v) =⇒ −idV = σv. Suppose the result holds for spaces of dimension less
than n and assume to the contrary that τ ∈ O(V ) is not a product of at most n reflections. We
first show that (τ − idV )

2 = 0V . If not, we may, by Lemma 2.21, choose a nonzero anisotropic
vector v ∈ V \ {0} such that z = τv − v is anisotropic.

If z = 0, then τv = v so τ maps ⟨v⟩⊥ onto itself. Thus by the induction hypothesis, τ |⟨v⟩⊥
is a product of at most n − 1 reflections in O(⟨v⟩⊥), each of which extends to a reflection in
O(V ) fixing v. Hence, τ is a product of at most n− 1 reflections.

Suppose then that z ̸= 0. By Lemma 2.21, v is fixed by σzτ and so, as above, σzτ
is a product of at most n − 1 reflections in O(⟨v⟩⊥), each of which extends to a reflection
in O(V ). Thus, τ is a product of at most n reflections. Thus, in either case, we obtain a
contradiction and therefore, (τ − idV )

2 = 0V ⇐⇒ im(τ − idV ) ⊂ ker(τ − idV ) is totally
isotropic. Observe that ker(τ − idV ) is itself totally isotropic. Otherwise, there exists a nonzero
anisotropic v ∈ ker(τ − idV ) =⇒ τv = v and so, as in the case of z = 0, we see that τ is a
product of at most n− 1 reflections. Therefore,

ker(τ − idV ) ⊂ ker(τ − idV )
⊥ = im(τ − idV )

by Proposition 2.20. Hence,

im(τ − idV ) = ker(τ − idV ) = ker(τ − idV )
⊥.

Denote the space of fixed points of τ by Fix(τ), i.e.,

v ∈ Fix(τ) ⇐⇒ τv = v ⇐⇒ v ∈ ker(τ − idV ).

We then have that

n = dim ker(τ − idV ) + dim ker(τ − idV )
⊥ = 2dimFix(τ).
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Note that τ |Fix(τ) = idFix(τ). Furhtermore, the natural action of τ on the quotient space
V/Fix(τ) coincides with the identity map on V/Fix(τ). To see this, let v ∈ V . Then,

τ · (v + Fix(τ)) = τv + Fix(τ)

= [v + Fix(τ)] + [τv − v + Fix(τ)]

= v + Fix(τ)

since τv− v ∈ im(τ − idV ) = Fix(τ). Now, Let k = dim Fix(τ). Choose a basis {v1, . . . , vk} for
Fix(τ) and extend it to a basis {v1, . . . vn} for V . For 1 ≤ j ≤ k, we have that τvj = vj. For
k < j ≤ n, we have that τvj − vj ∈ Fix(τ) and so there exists λ(1, j), . . . , λ(k, j) ∈ F such that

τvj = vj +
k∑

i=1

λ(i, j)vi.

Therefore, det τ = 1 and so τ ∈ SO(V ). Let σ ∈ O(V ) be a reflection =⇒ στ /∈ SO(V ). If στ
is not a product of at most n reflections, then repeating the above argument would yield that
στ ∈ SO(V ), a contradiction. Thus, στ is a product of at most n reflections and hence τ is a
product of at most n+ 1 reflections. If τ is a product of n+ 1 reflections, then we would have
that det τ = (−1)2k+1 contradicting the fact that τ ∈ SO(V ). Thus, τ is a product of at most
n reflections, contradicting our hypothesis on τ .

2.3.2 Theorems of Witt

We conclude this chapter with two theorems due to Witt, namely, Witt’s Cancellation Theorem
and Witt’s Extension Theorem, keeping in mind that we are still under the assumption that
(V, B) is a quadratic space of dimension n ≥ 2 over a field of characteristic different from two.
Witt’s Cancellation Theorem was proved in his famous 1937 paper “Theorie der quadratischen
Formen in beliebigen Körpern” [15] which was, oddly enough, the same year that Cartan
presented his proof of a special case to the above theorem concerning the structure of O(V ).
Witt’s Cancellation Theorem has since proven to be vital to the entire study of quadratic forms
over fields [8, p. 12]. After proving Witt’s Cancellation Theorem (following [6, p.40]), we will
prove Witt’s Extension Theorem (following [6, p.41]) which will play an important role in our
case.

Theorem 2.23 (Witt’s Cancellation Theorem). Suppose that U1 and U2 are nondegenerate
isometric subspaces of a quadratic space (V, B). Then U⊥

1 and U⊥
2 are also isometric.

Proof. Induction on dim U1. Suppose that U1 = ⟨u1⟩ and U2 = ⟨u2⟩. Then both Q(u1) and
Q(u2) are nonzero by nondegeneracy. We may assume that there is an isometry σ : U1 → U2

such that σu1 = u2 and so Q(u1) = Q(u2). We then have that

Q(u1 + u2) = 2Q(u1) + 2B(u1, u2)

Q(u1 − u2) = 2Q(u1)− 2B(u1, u2).

We then have that one of Q(u1 + u2) and Q(u1 − u2) are nonzero. Otherwise,

B(u1, u2) = Q(u1) = −B(u1, u2)

contradicting the fact that Q(u1) ̸= 0. Suppose then that Q(u1 + u2) ̸= 0. We have that

B(u1 + u2, u1 − u2) = Q(u1)−Q(u2) = 0,
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i.e., u1 + u2 ⊥ u1 − u2 and so the reflection σu1+u2 ∈ O(V ) satisfies

σu1+u2(u1 − u2) = u1 − u2.

Hence,

σu1+u2(u1) =
1

2
σu1+u2((u1 + u2) + (u1 − u2))

=
1

2
[−(u1 + u2) + (u1 − u2)]

= −u2

and, consequently, σu1+u2 maps ⟨u1⟩ onto ⟨u2⟩ and ⟨u1⟩⊥ onto ⟨u2⟩⊥. Therefore, U⊥
1 and U⊥

2

are isometric via the restriction of σu1+u2 to U⊥
1 .

If Q(u1 − u2) ̸= 0, then the reflection σu1−u2 ∈ O(V ) satisfies

σu1−u2(u1 + u2) = u1 + u2.

Hence,

σu1−u2(u1) =
1

2
σu1−u2((u1 + u2) + (u1 − u2))

=
1

2
[(u1 + u2)− (u1 − u2)]

= u2

and, consequently, σu1−u2 maps ⟨u1⟩ onto ⟨u2⟩ and ⟨u1⟩⊥ onto ⟨u2⟩⊥. Therefore, U⊥
1 and U⊥

2

are isometric via the restriction of σu1−u2 to U⊥
1 .

Suppose now that dim U1 > 1 and that the result holds for spaces of lower dimension.
Choose a nonzero anisotropic vector u1 ∈ U1 \ {0} and let W1 be the orthogonal complement
of u1 in U1, i.e.,

W1 = {v ∈ U1 | B(v, u1) = 0}.

Then, U1 = ⟨u1⟩ kW1. Let σ : U1 → U2 be an isometry and set u2 = σu1, W2 = σ(W1). Then,
U2 = ⟨u2⟩ k W2 and

V = U1 k U⊥
1 = U2 k U⊥

2

=⇒ V = ⟨u1⟩ k W1 k U⊥
1 = ⟨u2⟩ k W2 k U⊥

2 .

As in the case of dim U1 = 1, one of Q(u1 + u2) and Q(u1 − u2) are nonzero and so there
is a reflection Φ ∈ O(V ) that maps ⟨u1⟩ onto ⟨u2⟩. Consequently, W1 k U⊥

1 and W2 k U⊥
2

are isometric via the restriction ϕ = Φ|W1kU⊥
1
. Therefore, ϕσ−1 is as isometry W2 → ϕ(W1).

Furthermore, U⊥
2 and ϕ(U⊥

1 ) are the orthogonal complements of W2 and ϕ(W1), respectively,
insideW2kU⊥

2 . Thus, U
⊥
2 and ϕ(U⊥

1 ) are isometric by induction, say through τ : ϕ(U⊥
1 ) → U⊥

2 .
Then, τϕ|U⊥

1
is an isometry U⊥

1 → U⊥
2 .

Theorem 2.24 (Witt’s Extension Theorem). If U1 and U2 are subspaces of a quadratic space
(V, B) and σ : U1 → U2 is an isometry, then there exists an isometry τ ∈ O(V ) such that
τ |U1 = σ.
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Proof. Suppose first that U1 and U2 are nondegenerate. By Witt’s Cancellation Theorem 2.23,
there exists an isometry ϕ : U⊥

1 → U⊥
2 . Since V = U1 k U⊥

1 = U2 k U⊥
2 , we may define an

isometry τ ∈ O(V ) by τ(u+ u′) = σu+ ϕu′ for all u ∈ U1, u
′ ∈ U⊥

1 and hence, τ |U1 = σ.

Suppose then that U1 is degenerate. Let U ′
1 be a complement to rad U1 so that

U1 = rad U1 k U ′
1.

By Proposition 1.13, there is a subspace W1 ⊂ V such that U1 ⊕W1 is nondegenerate and

U1 ⊕W1 = U ′
1 k H1 k H2 k · · · k Hk,

where each Hi is a hyperbolic plane with, say, hyperbolic pair (ui, vi) and k = dim rad U1. We
claim that σ maps rad U1 onto rad U2. Let x ∈ σ(rad U1) and u

′ ∈ U2. Then, x = σw for some
w ∈ rad U1 and u′ = σu for some u ∈ U1. Then, B(x, u′) = B(w, u) = 0 =⇒ x ∈ rad U2.
Conversely, if y ∈ rad U2, then y = σw for some w ∈ U1 and for any u ∈ U1, we have
B(y, σu) = 0 ⇐⇒ B(w, u) = 0. Hence, y ∈ σ(rad U1) and thus U ′

2 = σ(U ′
1) is a complement

to rad U2 and so there exists a subspace W2 ⊂ V such that U2 ⊕W2 is nondegenerate and

U2 ⊕W2 = U ′
2 k H ′

1 k H ′
2 k · · · k H ′

k,

where each H ′
i is a hyperbolic plane with, say, (σui, v

′
i) as a hyperbolic pair. Extend σ to

σ′ : U1 ⊕W1 → U2 ⊕W2 by setting σ′(vi) = v′i, extending by linearity. Since σ′ is an isometry
and U1 ⊕ W1 is nondegenerate, there exists τ ∈ O(V ) such that τ |U1⊕W1 = σ′ and hence,
τ |U1 = σ.

Remark 2.4. It should be noted that Witt’s Cancellation Theorem 2.23 and Witt’s Extension
Theorem 2.24 both hold over fields of any characteristic in the case when B is a nondegenerate
alternating form. See [6, Theorem 12.10] for Witt’s Extension Theorem. Witt’s Cancellation
Theorem follows from 1.6.

Corollary 2.25. Any two maximal (in the sense of inclusion) totally isotropic subspaces of V
have the same dimension and every totally isotropic subspace is contained in one of maximal
dimension.

Proof. Let U ⊂ V be a totally isotropic subspace of maximal dimension m. If W ⊂ V is totally
isotropic, then there exists an isometry σ from W to a subspace of U . By Witt’s Extension
Theorem 2.24, there exists τ ∈ O(V ) such that τ |W = σ. Then,W ⊂ τ−1(U), a totally isotropic
subspace of dimension m.



Chapter 3

Binary Linear Codes

Coding theory is a vast field of practical importance that makes use of elegant mathematical
theory [2, p. vii]. A frequent question in coding theory is how to construct a code or structure
a code such that it satisfies imposed mathematical or practical constraints [10, p. vii]. This
chapter analyzes a small subset of the classes of codes and considers their construction. In
particular, this chapter introduces linear codes and aims to tie the structure of these codes
together with the theory studied thus far.

3.1 Preliminaries

Following the relevant theory from chapters 1, 4 and 5 of [2], we introduce some basic notions
and results.

Definition 3.1. Let A and B be non-empty finite sets. A word in B is an element

(b1, . . . , bn) ∈ B × · · · ×B

for some n ∈ N. We write b1 · · · bn instead of (b1, . . . , bn) and say that b1 · · · bn has length n.
We denote the set of all words in B by ω(B). A coding is a map K : A → ω(B). We call A
the source alphabet, B the code alphabet, and for each a ∈ A, the element K(a) a code word.
Elements of A are called source symbols. If |B| = 2, K is called a binary code and elements of
ω(B) are called binary words.

A coding K : A→ ω(B) induces a map K∗ : ω(A) → ω(B) by setting

K∗(a1 · · · an) = K(a1) · · ·K(an).

We call K∗ the coding of source messages and say that K is uniquely decodable provided that
K∗ is injective.

We now introduce a fundamental class of codes and consider their construction. Namely,
the so-called instantaneous codes.

Definition 3.2. A coding K : A → ω(B) is called instantaneous if for all a, α ∈ A, a ̸= α,
and all b ∈ ω(B), K(a) ̸= K(α) b.

Suppose now that A = {a1, . . . , an} is a source alphabet and B is a code alphabet of
cardinality k ≥ 2. We wish to construct an instantaneous code K : A → ω(B). Assign an

27
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arbitrary word of length d1 ≥ 1 to a1. Now, fix d2 ≥ d1 and note that the number of words
of length d2 is kd2 and therefore, the number of words b of length d2 such that b = K(a1) β is
kd2−d1 . Thus, we may choose an arbitrary word for a2 of length d2 such that K(a2) ̸= K(a1) b
for any word b in B since kd2 − kd2−d1 ≥ 1.

If we fix d3 ≥ d2, then there are kd3−d1 + kd3−d2 words b of length d3 such that either
b = K(a1) β1, or b = K(a2) β2. Therefore if we want to assign a word to a3 such that this is
not the case, we require that

kd3 − kd3−d1 − kd3−d2 ≥ 1

⇐⇒ k−d1 + k−d2 + k−d3 ≤ 1.

Analogously, we require that
n∑

i=1

k−di ≤ 1

in order to construct our instantaneous code K. Indeed, this inequality is both a sufficient and
necessary condition to construct an instantaneous code.

The following theorem connects uniquely decodable codes with instantaneous codes in the
sense that for every uniquely decodable code K1 with source alphabet A = {a1, . . . , an} and
code alphabet B, there exists an instantaneous code K2 : A→ ω(B) such that for all 1 ≤ i ≤ n,
K1(ai) and K(σ · ai) have the same lengths for some permutation σ ∈ Sn.

Theorem 3.1 (McMillan’s Theorem). Let K be a uniquely decodable coding with source alphabet
{a1, . . . , an} and code alphabet B of cardinality k ≥ 2. Then,

n∑
i=1

k−di ≤ 1,

where di is the length of K(ai).

Proof. For each 1 ≤ i ≤ n, there are ki words of length i in B. Since K∗ is injective, the
number of source messages aj1 · · · ajr such that dj1 + · · ·+ djr = i is bounded by ki. Now, let

c =
n∑

i=1

k−di .

We claim that for each r ∈ N,

cr =
n∑

i1,...,ir=1

k−(di1+···+dir ).

The case r = 1 is satisfied by the definition of c. Assume the result holds for cr−1. Then,

cr =

( n∑
i1,...,ir−1=1

k−(di1+···+dir−1
)

)( n∑
ir=1

k−dir

)

=
n∑

i1,...,ir=1

k−(di1+···+dir−1
) k−dir
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as desired. Collect the summands k−i in cr for which i = di1 + · · · + dir . As mentioned, the
number of such summands is bounded by ki. Furthermore, i ≤ rd, where d = max (d1, . . . , dn).
We then have that

cr ≤
rd∑
i=1

k−i ki = rd.

Hence, cr

r
≤ d for all r ∈ N ⇐⇒ c ≤ 1.

3.1.1 Hamming Distance

We now introduce a crucial notion in coding theory, namely, that of Hamming distance. We will
consider the role of this notion in an important area of coding theory known as error detection
and correction. We begin with some rudimentary definitions.

Definition 3.3. A coding K with source alphabet A is called a block coding of length n if K
is injective and for all a ∈ A, K(a) has length n.

Remark 3.1. Let K be a block coding of length n with source alphabet A and let α ∈ ω(A)
have length m. Then, the length of K∗(α) is n · m. In particular, n divides the length of
K∗(α). Moreover, if x, y ∈ ω(A), then K∗(x) = K∗(y) =⇒ x and y have the same length,
say k. Write x = x1 · · ·xk and y = y1 · · · yk. If x ̸= y, then there exists 1 ≤ i ≤ k such that
xi ̸= yi =⇒ K(xi) ̸= K(yi) =⇒ K∗(x) ̸= K∗(y) and hence K is uniquely decodable.

Remark 3.2. The condition that a block coding has length n for each of its code words is
necessary to conclude that it is uniquely decodable. For example, define K : {a, b, c} → ω({0, 1})
by

K(a) = 0, K(b) = 1, K(c) = 01.

Then K is injective yet K∗(ab) = 01 = K∗(c).

Definition 3.4. Let a = a1 · · · an and b = b1 · · · bn be two words in a set. We define the
Hamming distance between a and b as

d(a, b) = |{i ∈ {1, . . . , n} | ai ̸= bi}|.

Proposition 3.2. For any set A and any n ∈ N, the Hamming distance is a metric on the set
ωn(A) of words of length n in A. That is to say, (ωn(A), d) is a metric space.

Proof. Clearly, d(a, a) = 0, d(a, b) > 0 for a ̸= b, and d(a, b) = d(b, a). Suppose now that
d(a, b) = k and d(b, c) = l. Write a = a1 · · · an and similarly for b and c. Then, there are
indices I = {i1, . . . , ik} and J = {j1, . . . , jl} such that ai ̸= bi for all i ∈ I and bj ̸= cj for all
j ∈ J . We then have that ai = bi whenever i /∈ I and bj = cj whenever j /∈ J . Consequently,
ai = ci whenever i /∈ I ∪ J and thus, d(a, c) ≤ k + l.

Definition 3.5. The minimum distance of a nontrivial (nonconstant) block code K is

d(K) = min{d(a, b) | a and b are code words and a ̸= b}.

We now introduce the notions of error detection and correction as well as some results to
illustrate how minimum distance is used to measure a code’s ability to detect or correct errors.

Definition 3.6. A block code K is said to detect t errors if for all distinct code words a and b,

d(a, b) > t.
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It then follows that a nontrivial block code K detects t errors if and only if d(K) > t.

Definition 3.7. A block code K is said to correct t errors if for all distinct code words a and
b and any word c in the code alphabet satisfying 1 ≤ d(a, c) ≤ t, we have that d(a, c) < d(b, c).

Proposition 3.3. A nontrivial block code K corrects t errors if and only if d(K) > 2t.

Proof. Suppose that K is of length n and that K corrects t errors. Assume to the contrary
that d(K) ≤ 2t. Let a and b be code words with d(a, b) = d(K) = k. Then, there are indices
I = {i1, . . . , ik} such that ai ̸= bi for all i ∈ I. Define a word c = c1 · · · cn in the code alphabet
by setting

ci =

{
ai if i = i2j for some 1 ≤ j < k

bi if i ̸= i2j for all 1 ≤ j < k

for each 1 ≤ i ≤ n. We then have that d(a, c) = ⌊k+1
2
⌋ ≤ k+1

2
≤ t + 1

2
=⇒ d(a, c) ≤ t.

However, d(b, c) = ⌊k
2
⌋ ≤ d(a, c), a contradiction. Suppose now that d(K) > 2t. Let a and b

be distinct code words and suppose c is a word in the code alphabet such that 1 ≤ d(a, c) ≤ t.
We then have that

2t < d(a, b) ≤ d(a, c) + d(c, b)

and hence,
d(b, c) > 2t− d(a, c) ≥ d(a, c).

3.1.2 Parity Check Matrices of Binary Linear Codes

Many important binary codes can be described by a system of linear equations over F2. We
now turn our attention to this class of codes.

Formally, a block code K of length n is called a binary linear code if im K ⊂ Fn
2 is a

subspace. However, this definition is quite tedious. Since K maps bijectively onto its image,
elements of the source alphabet can be identified with the vectors lying in im K. It is therefore
convenient to instead adopt the common definition of a binary linear code as being a subspace
K ⊂ Fn

2 . It should then be understood that in this setting, code words correspond to elements
of K.

Definition 3.8. The Hamming weight of a word a = a1 · · · an in F2 is

w(a) = |{i ∈ {1, . . . , n} | ai ̸= 0}|.

The minimum weight of a binary linear code K is

w(K) = min {w(x) | x ∈ K, x ̸= 0}.

Proposition 3.4. If K is a binary linear code, then d(K) = w(K).

Proof. Suppose that a is a code word of Hamming weight w(K). Then, w(K) = d(a, 0) ≥ d(K).
Now, choose code words a and b with d(a, b) = d(K). Then, d(a, b) = w(a+ b) ≤ w(K).

Corollary 3.5. A binary linear code K detects t errors if and only if w(K) > t. K corrects t
errors if and only if w(K) > 2t.

We now introduce the notion of a parity check matrix, which will then lead us to arguably
the most important class of binary linear codes, namely, Hamming codes.
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Definition 3.9. A matrix H over F2 is called a parity check matrix for a binary linear code
K if K coincides with the set of solutions to the homogeneous system Hx = 0.

Proposition 3.6. A binary linear code K corrects single errors if and only if every parity check
matrix of K has nonzero, pairwise distinct columns.

Proof. Let ei ∈ Fn
2 be the i-th standard basis vector. Suppose that K corrects single errors,

i.e., w(K) > 2. If H is a parity check matrix for K with a zero column, say the i-th column,
then Hei = 0 and so ei is a code word which contradicts w(K) > 2. Moreover, if i ̸= j are such
that the i-th and j-th columns of H are the same, then H(ei + ej) = 0. Therefore, ei + ej is a
code word which again contradicts w(K) > 2. Suppose then that every parity check matrix H
of K has nonzero, pairwise distinct columns. Then for all i, j ∈ {1, . . . , n}, i ̸= j, both ei and
ei + ej are not code words. Thus, every code word a satisfies w(a) > 2 =⇒ w(K) > 2.

Definition 3.10. A binary linear code is called a Hamming code if for some m ∈ N, it has an
m× n parity check matrix H such that 2m − 1 = n and each v ∈ Fm

2 \ {0} is a column of H.

Consider the case when m = 3. To construct a Hamming code of length 7, we need a 3× 7
parity check matrix H whose columns consist of all nonzero v ∈ F3

2. Note that the choice of
such a matrix is not unique since applying any elementary row operation to H or permuting
any of the columns of H would yield an appropriate matrix. Here, we use the binary expansion
of the integers 1, . . . , 7 for columns 1, . . . , 7 of H. This gives

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
Thus, our Hamming code is precisely the solution set to Hx = 0. This Hamming code is called
the Hamming (7, 4)-code.

For each code word x1 · · ·xn in a binary linear code K, choose xn+1 ∈ F2 such that

n+1∑
i=1

xi = 0.

The set K ′ of all words of the form x1 · · ·xn+1 is again a binary linear code (of length n + 1)
called the extension of K. Note then that the extension of the Hamming (7, 4)-code has a
parity check matrix given by

H =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .
The set of solutions to Hx = 0 is called the extended Hamming (8, 4)-code.

Definition 3.11. Let K be a binary linear code and suppose v1, . . . , vk form a basis for K. The
matrix

G =

v1...
vk


whose rows are comprised of the vectors v1, . . . , vk is called a generator matrix for K.
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For example, the Hamming (7, 4)-code has

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


as a parity check matrix. H has rank 3 and so the nullity of H is 7−3 = 4. A generator matrix
for this code is given by

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 .

3.2 Dual Codes of Binary Linear Codes

We focus now on the case when K is a binary linear code of an inner product space, i.e., K is
a subspace of an inner product space (Fn

2 , B).

3.2.1 MacWilliams’ Identity

We assume for the rest of this section that K is a binary linear code of an inner product space
(Fn

2 , B). This allows us to define the notion of a dual code. Note that thanks to Proposition
1.8 and the fact that we are working in characteristic 2, we may assume that B is symmetric.

Definition 3.12. The dual code K⊥ of K is the orthogonal complement of K in Fn
2 . That is,

K⊥ = {v ∈ Fn
2 | for any w ∈ K, B(v, w) = 0}.

Recalling that the orthogonal complement in V of any subspace of V is again a subspace,
we see that the dual code is again a binary linear code.

For 0 ≤ i ≤ n, define Ai = |{x ∈ K | w(x) = i}|. We call the sequence (A0, . . . , An) the
weight distribution of K and the polynomial

WK(x, y) =
n∑

i=0

Aix
iyn−i

the weight enumerator of K. Note that if AK(x) =
n∑

i=0

Aix
i, then WK(x, y) = ynAK(

x
y
) and

AK(x) = WK(x, 1) so either polynomial can be recovered from the other.

We now provide an important result in coding theory which shows that the weight enumer-
ator of K⊥ is completely determined by the weight enumerator of K in the case when the inner
product is given by the ordinary dot product. We must first establish the following lemma and
introduce some notation. In what follows, u · v denotes the dot product of vectors u = u1 · · ·un
and v = v1 · · · vn in Fn

2 defined by

u · v =
n∑

i=1

uivi.

Furthermore, ∥a∥ denotes the image of a ∈ F2 under the mapping

F2 → Z, 0 7→ 0, 1 7→ 1.
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Lemma 3.7. For any v ∈ K and any w ∈ Fn
2 ,

1

|K|
∑
v∈K

(−1)∥v·w∥ =

{
1 if w ∈ K⊥

0 if w /∈ K⊥ .

Proof. If w ∈ K⊥, then ∥v · w∥ = 0 for all v ∈ K and so∑
v∈K

(−1)∥v·w∥ = |K|.

Suppose then that w /∈ K⊥, say v ∈ K satisfies v ·w = 1. Let v1, . . . , vk be all code words of K
orthogonal to w. Then, (vi+v) ·w = 1 and if u ∈ K is any other code word such that u ·w = 1,
then (u+ v) · w = 0 =⇒ u+ v = vi for exactly one i ∈ {1, . . . , k}. Thus,

∑
v∈K

(−1)∥v·w∥ =
k∑

i=1

(−1)∥vi·w∥ +
k∑

i=1

(−1)∥(vi+v)·w∥ = 0.

Theorem 3.8 (MacWilliams’ Identity). The weight enumerator of the dual code K⊥ satisfies
the following identity

WK⊥(x, y) =
1

|K|
WK(y − x, y + x).

Proof. Note that the weight enumerator WK(x, y) can be written in terms of Hamming weights
as

WK(x, y) =
n∑

i=0

Aix
iyn−i =

∑
v∈K

xw(v)yn−w(v).

Consequently, we have

WK(y − x, y + x) =
∑
v∈K

(y − x)w(v)(y + x)n−w(v)

=
∑
v∈K

n∏
i=1

[ y + (−1)∥vi∥x ],

where each v ∈ K is written as v1 · · · vn. Now, by Lemma 3.7, the weight enumeratorWK⊥(x, y)
can be written as

WK⊥(x, y) =
∑
v∈K⊥

xw(v)yn−w(v)

=
∑
v∈Fn

2

(
1

|K|
∑
u∈K

(−1)∥u·v∥
)
xw(v)yn−w(v)

=
1

|K|
∑
u∈K

∑
v∈Fn

2

(−1)∥u·v∥xw(v)yn−w(v).

We now use induction on n to show that, for a given u = u1 · · ·un ∈ Fn
2 ,∑

v∈Fn
2

(−1)∥u·v∥xw(v)yn−w(v) =
n∏

i=1

[ y + (−1)∥ui∥x ],



3.2. DUAL CODES OF BINARY LINEAR CODES 34

completing our proof of the Theorem. If n = 1, then∑
v∈{0,1}

(−1)∥u·v∥xw(v)yn−w(v) = y + (−1)∥u∥x.

Suppose that the equation holds for Fn−1
2 . Let A = {v ∈ Fn

2 | vn = 0}, Ac be the complement
of A in Fn

2 , and u
′ = u1 · · ·un−1. Then,∑

v∈Fn
2

(−1)∥u·v∥xw(v)yn−w(v) =
∑
v∈A

(−1)∥u·v∥xw(v)yn−w(v) +
∑
v∈Ac

(−1)∥u·v∥xw(v)yn−w(v)

=
∑

v∈Fn−1
2

(−1)∥u
′·v∥xw(v)yn−w(v) +

∑
v∈Fn−1

2

(−1)∥u
′·v∥(−1)∥un∥xw(v)+1yn−(w(v)+1)

= y
∑

v∈Fn−1
2

(−1)∥u
′·v∥xw(v)y(n−1)−w(v) + (−1)∥un∥ x

∑
v∈Fn−1

2

(−1)∥u
′·v∥xw(v)y(n−1)−w(v)

= [ y + (−1)∥un∥x ]
n−1∏
i=1

[ y + (−1)∥ui∥x ] =
n∏

i=1

[ y + (−1)∥ui∥x ].

Note that our proof of Theorem 3.8 relies heavily on the definition of the dot product. In
particular, we make use of the fact that for vectors u = u1 · · ·un and v = v1 · · · vn in Fn

2 ,

(−1)∥u·v∥ =
n∏

i=1

(−1)∥uivi∥,

noting that the above equation holds despite the fact that ∥ · ∥ is not additive. A natural
question is whether MacWilliams’ Identity holds for more general inner products.

If we define the dual of a code K with respect to an arbitrary nondegenerate bilinear
form (not necessarily symmetric) to be ⊥R (K), then it is claimed in [13, Theorem 11] that
MacWilliams’ Identity holds for any nondegenerate bilinear form. However, this is, unfortu-
nately, not true as pointed out in [5, Example 28]. The counterexample constructed there is as
follows. Let

A =

[
1 1
0 1

]
∈ GL(F2

2)

and define a bilinear form B : F2
2 × F2

2 → F2 by B(u, v) = uTAv where u, v ∈ F2
2 are written

as column vectors. Consider the code K generated by the first standard basis vector e1, i.e.,
K = ⟨e1⟩. Then, WK(x, y) = y2 + xy. The dual code K⊥ of K with respect to B is then the
subspace generated by e1 + e2. Thus, WK⊥(x, y) = x2 + y2. We compute

1

|K|
WK(y − x, y + x) =

1

2
[(y + x)2 + (y − x)(y + x)] = y2 + xy.

Therefore, MacWilliams’ Identity fails in this case and hence we cannot say that it holds in
general for nondegenerate bilinear forms.

Notice that in the above example, B is not symmetric. The next question to ask is whether
MacWilliams’ Identity holds for inner products, i.e., nondegenerate symmetric forms or nonde-
generate alternating forms. The answer to this question is again, unfortunately, no. We now
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construct a counterexample. We will make use of the fact that if A is an invertible n×n matrix
over a field F, u, v ∈ Fn are column vectors, and adjA denotes the adjugate matrix of A, then

det(A+ uvT ) = detA+ vT (adjA)u

which may be called Cauchy’s formula for the determinant of a rank-one pertubation according
to [7, p.26].

Given k ∈ Z, let [k] denote the image of k under the quotient map Z → F2. Define
ω : Fn

2 × Fn
2 → F2 by

ω(u, v) =
n∑

i=1

uivi +

( n∑
i=1

ui

)( n∑
i=1

vi

)
= u · v + [w(u)][w(v)],

for all u = u1 · · ·un and v = v1 · · · vn in Fn
2 . We first show that ω is alternating and nondegen-

erate whenever n is even. To show that ω is bilinear, it suffices to show that for all u, v ∈ Fn
2 ,

[w(u+ v)] = [w(u)] + [w(v)]. Write u = u1 · · ·un, v = v1 · · · vn, and let

k = |{i ∈ {1, . . . , n} | ui = 1 = vi}|,
l = |{i ∈ {1, . . . , n} | ui = 0 = vi}|.

Observe that n = w(u) + w(v) − k + l. Then, w(u + v) = n − k − l = w(u) + w(v) − 2k and
the result follows.

We now show that ω is alternating and nondegenerate for even n. For any v ∈ Fn
2 ,

ω(v, v) = [w(v)] + [w(v)] = 0 which shows that ω is alternating. For 1 ≤ i ≤ n, let ei be
the i-th standard basis vector. Then, ω(ei, ej) = δij + 1. Therefore, the matrix representing
ω relative to {ei}ni=1 has the form ω̂ = In + eeT , where In is the n × n identity matrix and
e = e1 + · · · + en is the word of all 1’s. Thus, by Cauchy’s formula for the determinant of a
rank-one perturbation,

det ω̂ = det (In + eeT )

= det In + eT Ine

= 1 + [w(e)].

Hence, ω is nondegenerate whenever n is even.

Before constructing our counterexample, note that if 1 ≤ i ≤ n is fixed, then any v ∈ Fn
2

can be written in the form

v = λei +
k∑

j=1

eij ,

where λ ∈ F2 and {eij}kj=1 are pairwise distinct with i ̸= ij for all 1 ≤ j ≤ k. We then have
that

ω(ei, v) = λω(ei, ei) +
k∑

j=1

ω(ei, eij) =

{
1 if k is odd

0 if k is even
.

We now begin the construction. Consider the code K ⊂ F4
2 generated by e1. By the above

remark, we may easily compute the dual code

K⊥ = {0, e1, e1 + e2 + e3, e1 + e2 + e4, e1 + e3 + e4, e2 + e3, e2 + e4, e3 + e4}.
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Now, the weight enumerator for K is WK(x, y) = y4 + xy3 and the weight enumerator for K⊥

is WK⊥(x, y) = y4 + xy3 + 3x3y + 3x2y2. However, we find that

1

|K|
WK(y − x, y + x) =

1

2
[(y + x)4 + (y − x)(y + x)3]

=
1

2
[2y4 + 6xy3 + 2x3y + 6x2y2]

= y4 + 3xy3 + x3y + 3x2y2 ̸= WK⊥(x, y).

Therefore, MacWilliams’ identity fails in this case and hence we cannot say that it holds in
general for inner products.

3.2.2 Self-Dual Binary Linear Codes

We have introduced the dual code of a binary linear code. We now introduce a class of binary
linear codes induced by this notion, namely, self-dual codes.

Definition 3.13. A binary linear code K is called self-dual if K = K⊥.

It should be noted that if K is self-dual, then by Proposition 1.2, we have

dim V = dim K + dim K⊥

and so V has even dimension and dim K = 1
2
n.

We may also wish to note that if K is self-dual with respect to the dot product, then
Theorem 3.8 gives

WK(x, y) =
1

|K|
WK(y − x, y + x).

Many important codes are self-dual. For example, if we equip F8
2 with the dot product,

then the extended Hamming (8, 4)-code is self-dual. To see this, let K denote the extended
Hamming (8, 4)-code and recall that a parity check matrix for K is given by

H =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


and hence a generator matrix for K is given by

G =


1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0

 .
Note that in the case of the dot product, a generator matrix for a code is a parity check matrix
for its dual. Thus, G is a parity check matrix for K⊥ and an easy computation shows that the
nullity of G is 4 and that GGT = 0 =⇒ K⊥ = K.

If one wishes to classify self-dual codes, then there should be a notion of equivalence of codes.
Although there are many ways to formulate what it means for two codes to be equivalent, we
only introduce a standard one.
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Let K ⊂ Fn
2 be a binary linear code. The symmetric group Sn acts on Fn

2 by permuting
coordinates, i.e., for σ ∈ Sn and v = v1 · · · vn ∈ Fn

2 ,

σ · v = vσ−1(1) · · · vσ−1(n).

If K ′ is another binary linear code, then we say K and K ′ are equivalent if there exists a
σ ∈ Sn such that σ · K = K ′. In fact, if B is an Sn-invariant inner product on Fn

2 , i.e.,
B(σ · u, σ · v) = B(u, v) for any σ ∈ Sn, then Sn acts on the set C of all self-dual codes. This
is because v ∈ K⊥ ⇐⇒ σ · v ∈ σ ·K⊥ and hence, σ ·K⊥ = (σ ·K)⊥.

Given a binary linear code K, define the automorphism group of K to be the subgroup of
Sn given by

Aut(K) = {σ ∈ Sn | σ ·K = K}.

We then see that the number of codes equivalent to K is

|Sn|
|Aut(K)|

=
n!

|Aut(K)|
.

Hence, if C is the collection of self-dual codes that are pairwise inequivalent, then the number
of distinct self-dual codes is

Tn =
∑
K∈C

n!

|Aut(K)|
.

We then obtain the following formula which is known as a mass formula

Tn
n!

=
∑
K∈C

1

|Aut(K)|
. (∗)

If we can determine Tn, then the left-hand side of equation (∗) gives us a stopping condition for
an algorithm to find inequivalent self-dual codes. We will compute Tn in the following section
for symplectic forms. It should first, however, be noted that in the case of the dot product,

Tn =

1
2
n−1∏
i=1

(2i + 1)

as shown in [9, Corollary 19 p. 630]. We provide an alternative proof of this in the next section.

3.3 Lagrangian Binary Self-Dual Codes

In this final section, we will consider binary self-dual codes of a symplectic space, i.e., codes
K ⊂ Fn

2 satisfying K = K⊥ with respect to a nondegenerate alternating form on Fn
2 . Such

codes are examples of Lagrangians, i.e., subspaces of a symplectic space that coincide with
their orthogonal complement. We first give a gentle introduction to Lagrangian subspaces of a
general finite-dimensional symplectic space (V, ω).

The following proposition concerns the existence of Lagrangians and gives a characterization
of such subspaces. In what follows, V is a finite-dimensional symplectic space. In the spirit of
symmetric bilinear forms, we call a subspace W ⊂ V satisfying W ⊂ W⊥ a totally isotropic
subspace.
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Remark 3.3. Although we have already seen that a symplectic space has even dimension, the
following proposition provides an alternative way to see this. Given that V has a Lagrangian
L, we have

dim V = dim L+ dim L⊥ = 2dim L.

Proposition 3.9. A subspace of V is Lagrangian if and only if it is totally isotropic and
maximal (in the sense of inclusion). In particular, there exists a Lagrangian subspace of V .

Proof. Choose a maximal totally isotropic subspace L of V . Suppose to the contrary that
L ̸= L⊥. Then, there exists v ∈ L⊥ \ L =⇒ L⊕ ⟨v⟩ is a totally isotropic subspace containing
L, contradicting the maximality of L. Conversely, suppose L is a Lagrangian subspace of V
and that M ⊂ V is a totally isotropic subspace containing L. Then,

L ⊂M =⇒ M⊥ ⊂ L⊥ = L ⊂M.

Thus, M = M⊥, i.e., M is Lagrangian. But then dimM = dimL by the remark above and
hence, M = L.

We denote the set of all Lagrangian subspaces of V by Lag(V ). After establishing the
following lemma, we will compute |Lag(F2n

q )| for any prime power q. In particular, taking
q = 2 tells us the number of binary self-dual codes of (F2n

2 , ω).

Lemma 3.10. The group Sp(V ) acts on Lag(V ) naturally, i.e., for τ ∈ Sp(V ) and L ∈ Lag(V ),
τ · L = τ(L) ∈ Lag(V ). Moreover, this group action is transitive.

Proof. Clearly, the mapping satisfies the axioms of a group action. We show that if τ ∈ Sp(V )
and L ∈ Lag(V ), then τ(L) ∈ Lag(V ). If τv, τu ∈ τ(L), then ω(τv, τu) = ω(v, u) = 0 since
u, v ∈ L = L⊥. Conversely, if v ∈ τ(L)⊥, then v = τu for some u ∈ V . Let τw ∈ τ(L). Then,
ω(v, τw) = 0 = ω(u,w) =⇒ u ∈ L⊥ = L =⇒ v ∈ τ(L). We now proceed to show that Sp(V )
acts transitively. As previously noted, dim V is even, say 2n. Then, any L1, L2 ∈ Lag(V ) are
of dimension n and are hence isomorphic, say via σ : L1 → L2. Since L⊥

i = Li, i = 1, 2,
we have u, v ∈ L1 =⇒ ω(u, v) = 0 = ω(σu, σv) and so in fact σ is an isometry. Thus,
by Witt’s Extension Theorem 2.24 (see also Remark 2.4), there exists τ ∈ Sp(V ) such that
τ |L1 = σ =⇒ τ · L1 = L2.

Theorem 3.11. Let V = F2n
q for any prime power q. Then, |Lag(V )| =

n∏
i=1

(qi + 1).

Proof. By Theorem 1.6, there is a basis {u1, . . . , un, v1, . . . , vn} of V such that

ω(ui, vj) = δij = −ω(vj, ui),
ω(ui, uj) = 0 = ω(vi, vj),

and thus, the matrix representing ω relative to this basis is

ω̂ =

[
0 In

−In 0

]
.

Let ei be the i-th standard basis vector and set L = ⟨e1, . . . en⟩. Then, L is Lagrangian as
eTi ω̂ ej = 0 for all i, j ∈ {1, . . . , n}. Let S be the stabilizer of L in Sp(V ). Since Sp(V ) acts
transitively on Lag(V ), we have

|Lag(V )| = [Sp(V ) : S ] =
|Sp(V )|

|S|
.
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Recall from Proposition 2.10 that a matrix M ∈ GL(V ) lies in Sp(V ) ⇐⇒ MT ω̂ M = ω̂. We
may express M as a 2× 2 block matrix whose entries are n× n matrices, say,

M =

[
A B
C D

]
.

Then, M ∈ Sp(V ) if and only if[
AT CT

BT DT

] [
C D
−A −B

]
=

[
0 In

−In 0

]
which gives the following system of matrix equations:

AT C − CT A = 0

AT D − CT B = In

BT D −DT B = 0.

If we impose further that M ∈ S, then Mei ∈ L for all 1 ≤ i ≤ n =⇒ C = 0. Therefore,
D = (AT )−1 and B = AE, where E = BT D. Hence, we see that S is of the form

S =

{[
A AE
0 (AT )−1

] ∣∣∣∣A ∈ GL(n, q), ET = E

}
.

Notice that if E is any n× n symmetric matrix and A ∈ GL(n, q), then[
A 0
0 (AT )−1

] [
In E
0 In

]
=

[
A AE
0 (AT )−1

]
.

Thus, if we let

G =

{[
A 0
0 (AT )−1

] ∣∣∣∣A ∈ GL(n, q)

}
, H =

{[
In E
0 In

] ∣∣∣∣ET = E

}
,

we have that S decomposes into an inner semidirect product S = G ⋊ H. Now, the order of
H is the number of n× n symmetric matrices over Fq. There are qi choices for the i-th row of
such a matrix and so,

|H| =
n∏

i=1

qi = q
n(n+1)

2 .

Furthermore, G ∼= GL(n, q) and so, by Proposition 2.1,

|G| = q
(n−1)n

2

n∏
i=1

(qi − 1).

Thus, |S| = |G| · |H| and so the result follows from Theorem 2.17.

Corollary 3.12. If V = Fn
2 is equipped with the dot product, then the number of binary self-dual

codes of V is

Tn =

1
2
n−1∏
i=1

(2i + 1).
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Proof. Denote the dot product of two vectors u, v ∈ V by u · v and for k ∈ Z, write [k] for
the image of k under the quotient map Z → F2. Any subspace of V that is self-dual with
respect to the dot product must consist entirely of vectors v ∈ V with [w(v)] = 0, i.e., of even
Hamming weight. Otherwise, v ·v = 1 and the space would not be self-dual. Moreover, we may
assume that n is even, otherwise no subspace of V would be self-dual. Hence, the alternating
form ω on V defined by ω(u, v) = u · v + [w(u)][w(v)] is nondegenerate. Let ei be the i-th
standard basis vector and set e = e1 + · · · + en, i.e., the word consisting of all 1’s. Then,
the space of even Hamming weight vectors is given by ⟨e⟩⊥ and, by the nondegeneracy of ω,
we have (⟨e⟩⊥)⊥ = ⟨e⟩ = rad ⟨e⟩⊥. Then, ⟨e⟩⊥/⟨e⟩ is a symplectic space with respect to the
induced symplectic form ω̄ defined by ω̄(ū, v̄) = ω(u, v), where ū, v̄ ∈ ⟨e⟩⊥/⟨e⟩ are the cosets
with representatives u and v respectively. Thus, the number of binary self-dual codes of V is
the number of Lagrangians of ⟨e⟩⊥/⟨e⟩. Since dim (⟨e⟩⊥/⟨e⟩) = n − 2, the result follows from
Theorem 3.11.

In terms of practicality, we would like a way to construct the basis appearing in the proof of
Theorem 3.11. This can be achieved recursively in a process which may be called the symplectic
Gram-Schmidt process. It goes as follows. Choose a nonzero u1 ∈ V and find v1 ∈ V with
ω(u1, v1) = 1. Set W1 = ⟨u1, v1⟩. Then, V = W1 k W⊥

1 . Choose a nonzero u2 ∈ W⊥
1 and find

v2 ∈ W⊥
1 with ω(u2, v2) = 1. Set W2 = ⟨u2, v2⟩. Then, V = W1 k W2 k W⊥

2 . Iterating this
process, we find that V = W1 k · · · k Wn, where each Wk = ⟨uk, vk⟩ is a hyperbolic pair and
hence, {u1, v1, . . . , un, vn} is a symplectic basis for V .

We observed in the proof of Theorem 3.11 that the subspace L = ⟨e1, . . . , en⟩ generated by
the standard basis vectors {ei}ni=1 is Lagrangian. Given that Sp(V ) acts transitively on Lag(V ),
we may determine all Lagrangian subspaces of V by computing the orbit of L. If V = F2n

2 , then
once Lag(V ) has been computed, we may determine the classes of inequivalent Lagrangians by
computing the S2n-orbit of Lag(V ). This can be accomplished through GAP [4] using a naive
algorithm. Let us demonstrate this for the case when ω is the inner product on F2n

2 defined by
ω(u, v) = u · v + [w(u)][w(v)].

First, we construct a symplectic basis {fi}2ni=1 for V as follows. Let f1 = e1 and f2 = e2 be
the standard basis vectors. Then, ω(f1, f2) = 1. For k ≥ 3 define

fk =

{
ek +

∑k−1
i=1 fi if k is odd

ek +
∑k−1

i=1 (fi + ei) if k is even
.

Note that if k > 2 is odd, then

fk = ek +
k−1∑
i=1

fi

= ek + fk−1 +
k−2∑
i=1

fi

= ek + ek−1 +
k−2∑
i=1

(fi + ei) +
k−2∑
i=1

fi

=
k∑

i=1

ei.
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Furthermore, if k > 2 is even, then

fk = ek +
k−1∑
i=1

(fi + ei)

= ek + fk−1 +
k−2∑
i=1

fi +
k−1∑
i=1

ei

= ek + ek−1 + 2
k−2∑
i=1

fi +
k−1∑
i=1

ei

= ek−1 +
k∑

i=1

ei.

In fact, the above formulas hold when k = 1, 2 as well by the definition of f1 and f2. Note also
that ⟨f1, . . . , f2n⟩ = ⟨e1, . . . , e2n⟩ so {fi}2ni=1 is in fact a basis. We now show that if k > 2 is odd
and m < k is odd, then fk, fk+1 ∈ ⟨fm, fm+1⟩⊥ and that ω(fk, fk+1) = 1. Indeed,

ω(fk, fm) = ω

( k∑
i=1

ei,
m∑
i=1

ei

)
= 1 + 1 = 0

and

ω(fk, fm+1) = ω

( k∑
i=1

ei, em +
m+1∑
i=1

ei

)

= ω

( k∑
i=1

ei, em

)
+ ω

( k∑
i=1

ei,
m+1∑
i=1

ei

)
= (1 + 1) + (0 + 0) = 0

which shows that fk ∈ ⟨fm, fm+1⟩⊥. Now,

ω(fk+1, fm) = ω

(
ek +

k+1∑
i=1

ei,

m∑
i=1

ei

)

= ω

(
ek,

m∑
i=1

ei

)
+ ω

(k+1∑
i=1

ei,
m∑
i=1

ei

)
= (0 + 1) + (1 + 0) = 0

and

ω(fk+1, fm+1) = ω

(
ek +

k+1∑
i=1

ei, em +
m+1∑
i=1

ei

)

= ω(ek, em) + ω

(
ek,

m+1∑
i=1

ei

)
+ ω

(k+1∑
i=1

ei, em

)
+ ω

(k+1∑
i=1

ei,
m+1∑
i=1

ei

)
= (0 + 1) + (0 + 0) + (1 + 0) + (0 + 0) = 0
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which shows that fk+1 ∈ ⟨fm, fm+1⟩⊥. Finally,

ω(fk, fk+1) = ω

( k∑
i=1

ei, ek +
k+1∑
i=1

ei

)

= ω

( k∑
i=1

ei, ek

)
+ ω

( k∑
i=1

ei,

k+1∑
i=1

ei

)
= (1 + 1) + (1 + 0) = 1.

Hence, {fi}2ni=1 is a symplectic basis for V with respect to ω.

Now, as we saw in the proof of Theorem 3.11, ω is represented by the matrix

ω̂ =

[
0 In
In 0

]
relative to the basis F = {f1, f3, . . . f2n−1, f2, f4, . . . , f2n}. Therefore, if each fi and ei are
represented by row vectors, then the change of basis matrix from F to E = {ei}2ni=1 given by

P =



f1
f3
...

f2n−1

f2
f4
...
f2n


respects the identity ω̂F = P ω̂E P

T . These are all the tools needed for our naive algorithm.
Code written in GAP [4] (see A) produced the following matrices for n = 1, 2, 3, 4. The row
spaces of these matrices are representatives of each of the inequivalent classes of Lagrangians.

n = 1 : [
1 1

]
,
[
1 0

]
n = 2 : [

1 1 0 0
0 0 1 1

]
,

[
1 0 0 0
0 1 1 0

]
,

n = 3 : 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0

 ,
1 0 1 1 0 1
0 0 1 1 1 0
0 1 0 1 0 1


n = 4 :

1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0

 ,

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0

 ,

1 0 1 1 1 1 0 1
0 0 1 1 1 1 1 0
0 1 0 1 1 1 0 1
0 0 0 1 1 0 0 0

 ,

0 1 0 0 0 1 0 1
1 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 1 1

 ,

1 1 1 0 1 0 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0


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G., Some remarks on non projective frobenius algebras and linear codes, 2019. arXiv:
1903.08410 [math.RA].

[6] Grove, L. C., Classical Groups and Geometric Algebra. American Mathematical Society,
2002.

[7] Horn, R. A. and Johnson, C. R., Matrix Analysis, 2nd edition. Cambridge University
Press, 2013.

[8] Lam, T. Y., Introduction to Quadratic Forms over Fields. American Mathematical Soci-
ety, 2005.

[9] MacWilliams, F. J. and Sloan, N. J. A., The Theory of Error-Correcting Codes. North-
Holland, 1977.

[10] Pless, V. and Huffman, W., Handbook of Coding Theory. Elsevier, 1998.

[11] Rotman, J. J., An Introduction to the Theory of Groups, 4th edition. Springer, 1999.

[12] Silva, A. C. da, Lectures on Symplectic Geometry. Springer, 2001.

[13] Szabo, S. and Wood, J. A., Properties of dual codes defined by nondegenerate forms,
Journal of Algebra Combinatorics Discrete Structures and Applications, 2017.

[14] Weyl, H., The Classical Groups. Their Invariants and Representations, 2nd edition.
Princeton University Press, 1997.

43

%5Curl%7Bhttps://www.gap-system.org%7D
https://arxiv.org/abs/1903.08410


BIBLIOGRAPHY 44

[15] Witt, E., Theorie der quadratischen formen in beliebigen körpern, J. reine angew. Math.
176, 1937.



Appendix A

Code

The following code, written in GAP [4], is used to compute representatives of each of the
inequivalent classes of Lagrangians of F2n

2 for small values of n.

V := GF(2)^(2*n);

J := NullMat(2*n, 2*n, GF(2));

for i in [1..n] do

J[i][n + i] := Z(2)^0;

J[n + i][i] := Z(2)^0;

od;

G := Sp(2 * n, 2, J);

B := Basis(V);

LB := [];

for k in [1..n] do

Add(LB, B[k]);

od;

L := VectorSpace(GF(2), LB);

L_Orbit := Orbit(G,L);

f := [B[1], B[2]];

sumf := f[1] + f[2];

sume := B[1] + B[2];

for k in [3..2*n] do

Add(f, B[k] + sumf + sume * ((k + 1) mod 2));

sumf := sumf + f[k];

sume := sume + B[k];

od;

P := NullMat(2*n, 2*n, GF(2));

for k in [1..n] do

P[k] := f[2*k - 1];

P[k + n] := f[2*k];

od;

45
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LG := [];

for l in L_Orbit do

mat := BasisVectors(Basis(l)) * P;

Add(LG, VectorSpace(GF(2), mat));

od;

action := function(l, sigma);

return VectorSpace(GF(2),

BasisVectors(Basis(l)) * PermutationMat(sigma, 2*n, GF(2)));

end;

S_2n := SymmetricGroup(2*n);

gens := GeneratorsOfGroup(S_2n);

S_Orbit := OrbitsDomain(S_2n, LG, gens, gens, action);

rep := [];

for i in [1..Size(S_Orbit)] do

Add(rep, BasisVectors(Basis(S_Orbit[i][1])));

od;
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