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Abstract

Distillation column significantly affects the overall energy efficiency of a process plant.

Poor performance of a column can result from faults, such as reflux failure, change in

tray efficiency, change in feed temperature, etc. Flooding is one of the severe conse-

quences of the faults attributed to a distillation column. During flooding, products go

off-specification, and there is a tendency for a complete shutdown of the production

process. In recent years, machine learning (ML) methods have been widely employed

in process engineering for their ability to discover important patterns in data. One

of the applications of ML is in predicting distillation column flooding. The super-

vised ML methods can predict flooding by forecasting the pressure drop across the

column. The challenges of applying supervised ML methods for predicting flooding

in distillation columns include a lack of large volumes of flooding data, the potential

for overfitting, and long training time in some cases. A large amount of flooding data

combined with normal operation data is needed to train the supervised ML algorithms

for flooding detection. Therefore, it is important to identify flooding data sets from

the operational data. However, flooding data sets are rare compared to normal data

sets, which leads to an imbalanced data set. In this research, we address the data

scarcity issue surrounding the application of supervised ML for flooding prediction

by utilizing time-series generative adversarial networks, a framework that uses deep

learning algorithms to generate synthetic data by preserving the temporal order in

the original data. Additional flooding data sets are generated using this framework.

Supervised ML algorithms are trained and tested to forecast the pressure drop of the

column. Classification of the column data (i.e., flooding or not flooding) is done using

clustering. This method is compared with predicting flooding using popular unsu-

pervised ML methods such as principal component analysis (PCA) and autoencoders;

these are unaffected by the data imbalance. Results show that by applying supervised

ML algorithms to the sensor data of the distillation column, flooding conditions can
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be detected 19 minutes in advance and up to 60 minutes before it fully develops.

This outperforms the PCA and autoencoders, which are popular unsupervised ML

methods.
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Chapter 1

Introduction

1.1 Background

Distillation column is an important unit operation in chemical and process industries,

playing a pivotal role in separating complex mixtures into their individual components

or fractions [1]. According to Nicholas Cheremisinoff [1], the distillation process is very

energy intensive and can contribute to more than 50% of plant operating costs. Thus,

there is great interest in operating distillation columns as efficiently and reliably as

possible [2].

Poor performance of a distillation has a high effect on the overall performance of

a process plant. This poor performance is a result of process faults such as reflux

failure, change in tray efficiency, change in feed temperature, etc. These faults affect

the column purity, temperature, and pressure profiles of a distillation column [3].

A fault is an anomaly that causes the system to deviate from the normal operating

conditions [4]. Faults can cause a loss of efficiency during operation and, in the worst

cases, a loss of asset availability. Flooding is one of the severe consequences of the

faults attributed to a distillation process. Flooding is an abnormal situation in which

the distillation column stops generating a separation due to build-up of liquid in the

column, consequently leading to the products going off specification [5]. Once fully

developed, flooding causes a significant increase in the differential pressure across the

distillation column as a result of liquid accumulation and a reduction in the separation

performance of the distillation column. When unchecked, flooding can disrupt the
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entire production process of a chemical plant by causing limited production operation

or complete shutdown of the production process [6].

To avoid the degradation in the performance of a distillation column, there is a

need to anticipate and predict flooding so that corrective measures can be taken to

avoid its full development. This can be done by providing early warnings of flooding

risk to process operators some minutes before the completely developed flooding event.

Machine Learning (ML) algorithms are gaining ground in process engineering ap-

plications due to the large amount of industry-generated data, and these data are

available from physical sensors [7]. Data collected from the physical sensors can be

combined and processed into meaningful data through machine learning algorithms.

The processed data can be used for training data-driven models to capture the process

conditions [8]. Application of machine learning algorithms to process industry include

but are not limited to online prediction, process monitoring, and process fault detec-

tion [9]. Examples of these applications are but are not limited to support vector

machine (SVM) based on experimental data to predict flooding in packed-columns

[10], data-based gaussian process combined with empirical flooding equations to cal-

culate flooding curves [11], a combination of clustering and change point algorithms

using refinery data for real-time fault detection [12], usage of bayesian recurrent neural

networks (RNN) to detect foaming in amine distillation column [13] and application of

transfer learning using a neural network (NN) trained with data from a first-principle

dynamic simulator to detect anomalies on industrial data [14].

1.2 Problem Statement

Flooding in distillation columns is a critical operational issue that can impair separa-

tion efficiency and safety. Most traditional methods for detecting flooding often lack

the precision and adaptability required for real-time monitoring. These traditional

detection methods are also insufficient in dynamic environments where process con-

ditions frequently change. As a result, there is a need for more advanced and reliable

techniques, such as ML to predict and mitigate the risk of flooding in distillation

columns.

A significant challenge in applying supervised ML methods to flooding detection

is the data imbalance caused by insufficient flooding data, which reduces the model’s
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accuracy and reliability. Without a balanced dataset of normal operational data

and flooding data, supervised ML models struggle to identify flooding conditions

effectively, limiting their utility in industrial fault detection. This research addresses

this gap by generating synthetic flooding data to balance the dataset, enabling the

practical application of supervised learning techniques for reliable flooding detection

in distillation columns.

1.3 Motivation

Detecting flooding in distillation columns can significantly enhance operational safety

and efficiency. However, real-world flooding events are rare and challenging to sim-

ulate repeatedly under controlled conditions, leading to limited data availability for

training ML models. This data scarcity creates a bottleneck for adopting supervised

ML techniques, as unbalanced datasets often result in biased models with poor gen-

eralizability. By generating synthetic flooding data to counteract this imbalance, this

research aims to open new avenues for deploying machine learning in industrial process

monitoring, contributing to safer and more efficient distillation operations.

1.4 Research Objectives

One of the significant effects of flooding in a distillation column is an increase in

the pressure drop between the distillation column stages due to the accumulation of

liquid in the column. This research aims to detect flooding early in a distillation

column by monitoring the pressure drop through supervised learning methods. Using

supervised learning methods for flooding detection requires sufficient flooding data

and normal operational data so that the supervised learning methods can accurately

capture the dynamics of the distillation column during normal operation and before

flooding occurs in the column. However, the lack of sufficient flooding regime data

leads to a case of data imbalance between normal operation data and flooding data,

with flooding data being the minority, thereby making supervised learning methods

unsuitable for such tasks. However, unsupervised learning methods such as principal

component analysis (PCA) and Autoencoders are not affected by data imbalance

problems caused by insufficient flooding data. Hence, they are more suitable for this
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task. This work focuses on detecting flooding in a distillation column in case of

insufficient flooding regime data. The following are the objectives of this research:

• detect flooding in a distillation column using data-driven approaches such as

PCA and Autoencoders. Such methods do not suffer from data imbalance caused

by insufficient flooding regime data,

• overcome the data imbalance problem by generating synthetic flooding regime

data,

• develop supervised learning methods for early flooding detection in a distillation

column through pressure drop forecast,

• develop additional variables that can be used as indicators to better detect

flooding in a distillation column.

1.5 Thesis Structure

The structure of this thesis is shown in Fig.1.1. This thesis consists of five chapters.

The first chapter presents the background of this study to justify the need to conduct

this research. It also summarizes what this research aims to achieve by giving the

objectives of the study. Also, it describes the software used to carry out this study.

The rest of the thesis is organized as follows: Chapter 2 provides an extensive literature

review of fault detection and diagnosis in process systems. This includes various

methods of detecting and diagnosing faults in process systems. An extensive review

of flooding in a distillation column is also presented in this chapter. This includes

the concept of flooding, the causes of flooding, and various ways of detecting flooding

in a distillation column. An overview of machine learning is also presented in this

chapter. This includes an overview of different machine learning methods and the

mathematical formulation of the machine learning methods used in this work. Chapter

3 presents the research methodology used in this work. This includes approaches

used in this research to detect flooding in a distillation column and the appropriate

mathematical formulations associated with the approaches. The case study considered

in this research and the results obtained are presented in Chapter 4. Finally, Chapter

5 concludes this thesis by summarizing the findings and highlighting the contributions

of this research. Recommendations for future works are also given in this last chapter.
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Figure 1.1: Summary of the structure of the thesis.

1.6 Software Used

The algorithms used in this research and their applications have been demonstrated

using real-life and generated data using Python [15], a high-level, interpreted, open-

source programming language. Multiple packages and libraries have been incorporated

during the analysis, such as numpy [16] to implement multidimensional arrays and

matrices, along with mathematical functions to operate on them. Pandas [17], for data

manipulation and analysis through the provision of data structures and operations.

Scitkit-learn [18] for predictive data analysis using efficient tools. Scipy [19], which

contains modules for optimization, linear algebra, integration, and signal processing.

The visualization of the results of this study is presented using matplotlib [20], a

comprehensive library for creating static, animated, and interactive visualizations.



Chapter 2

Literature Review

This chapter aims to provide a comprehensive overview of existing literature related

to this study. This chapter presents an overview of process fault detection and diag-

nosis. Followed by an overview of flooding in a distillation column, its causes, and

various ways of detection. Subsequently, an overview of machine learning methods is

presented. Discussion about different machine learning methods used in this research

and their mathematical formulations are also presented. Finally, this chapter also in-

troduces a time-series generative adversarial network. It is a deep-learning framework

for generating synthetic time series data by preserving the temporal order of the data.

The mathematical formulations of this framework are also presented.

2.1 Fault Detection & Diagnosis

Modern control systems have grown exceedingly complicated as a result of the integra-

tion of many functions and components to meet advanced performance requirements

[21]. Systems become prone to faults in their daily operations due to this complex-

ity. The reliance on human operators to handle such unexpected occurrences and

emergencies is getting increasingly problematic owing to various variables [22]. It is

problematic since the diagnostic activity encompasses multiple malfunctions such as

process unit failures, deterioration, parameter drifts, etc. The scale and complexity

of contemporary industrial plants complicate matters even further. For example, the

number of process variables in a large processing plant may exceed a few thousand



7

variables collected repeatedly every few seconds [23]. Also, catastrophic accidents can

occur due to human operators’ poor decisions based on inadequate information from

sensor failures or bias. 76.1% of accidents were caused by human error [24]. Therefore,

fault detection and diagnostics (FDD) tools are important.

A typical process monitoring and management system comprises fault detection,

fault identification, fault diagnosis, and process recovery. Fault detection determines

whether there is an unpermitted deviation of at least one characteristic property or

parameter of the process from the standard condition (i.e., fault) and the time of

detection of the fault. Whereas fault identification determines a fault’s size and time-

variant behavior, followed by the kind of fault, its location, and time of detection.

Also, fault diagnosis is used to isolate the fault and extract additional knowledge like

fault type, size, and root cause. Process recovery is related to removing the effect of

the fault and returning the process to normal functioning [25]. Fault identification

is often considered partly under detection and partly under fault diagnosis, and the

entire process is referred to commonly as FDD as illustrated in Fig.2.1.

Figure 2.1: Schematic illustration of a process monitoring loop.

The fault detection step indicates whether a process variable is in the normal

operating range. Early detection of an operational deviation increases the ability to

diagnose faults before they reach a critical stage. This mitigates the risk and ensures

the safety of an operation. The same applies to flooding in a distillation column. Fault

diagnostic focuses on classifying the faults and inferring the root cause. A quick and

correct diagnosis makes it easier for operators to get to the root of the problem, thus

eliminating any cascading events that may lead to accidents. Many FDD methods

have been developed throughout the last decades. Each technique has advantages and

disadvantages that are dictated by factors such as domain-specific knowledge required,

historical data availability, reliability, generality, and computing complexity [22].
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2.2 Methods for Fault Detection & Diagnosis

Fault detection in process industries is a challenging task. It requires timely detection

of anomalies, which can be a result of failures or malfunction of sensors or actuators,

including changes in process variables within a system. Fault detection has been

classified broadly into three major classes: model-based, data-based, and knowledge-

based approaches [26].

2.2.1 Model-Based Methods

The model-based methods use a model of the system that mathematically describes

the relationship among the various variables in the process. Deriving an accurate

model of a complex industrial system can be difficult and time-consuming; this is a

downside to the model-based approach.

2.2.1.1 Residual Generation

In model-based approaches, there is a need for the generation of residual signals from

the mathematical model of the system as illustrated in Fig.2.2, which is then used as

a fault indicator [27]. Residual is based on a deviation between measurements and

model-equation-based computations.

Figure 2.2: Schematic illustration of model-based approach [28].
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Fig.2.2 represents a schematic illustration of this approach, consisting of two parts:

residual generation and evaluation. The residual generator compares the system’s data

to the results of the process model and publishes the discrepancies as residuals. The

residual evaluator gets the residuals and decides if the status of the process is faulty

or normal [29].

The true relationship among process variables may be nonlinear. However, most

model-based methods assume linear relationships among process variables. The plant

model is a mathematical representation of the system. It is often developed based

on first principles, for example, the conservation of mass, energy, and momentum.

Running the model and the real system with the same input, the output should be

the same, and the residual must be zero. In practice, however, the residual vector

may always have a non-zero value due to noise or model-plant mismatch. A threshold

is specified to indicate the faulty region. Different tools have been proposed for FDD

using the constructed model to generate residual signals, including parameter estima-

tion, observer-based, and parity-relations approaches [30]. Generally, the faults are

either additive faults or multiplicative faults [31]. The additive faults, such as sensors

or actuators bias, can be modeled as follows:

x(t+ 1) = Ax(t) + Bu(t) + Bf f(t) + Bdd(t) + Bnn(t) (2.1)

y(t) = Cx(t) +Du(t) +Df f(t) +Ddd(t) +Dnn(t) (2.2)

Where A, B, C, and D are the system state space matrices associated with the

state matrix x(t) and output matrix u(t). f is associated with the fault matrices, d

for disturbance matrices and n for noise matrices. On the other hand, other faults

are represented by multiplicative faults, and they are modeled as follows:

x(t+ 1) = (A+ ∆A)x(t) + (B + ∆B)u(t) (2.3)

y(t) = (C + ∆C)x(t) + (D + ∆D)u(t) (2.4)

2.2.1.2 Parameter Estimation

Process faults usually result in changes in the model parameters or the state variables.

The parameter estimation approach is acceptable if the process failures are related
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to changes in model parameters. This means that it is appropriate for multiplicative

fault scenarios. The residuals are calculated using the nominal model parameters and

estimated model parameters. The parameters are estimated using standard techniques

[32–34], and developed based on a recursive concept to reduce the computational

burden. If the changes in physical parameters are greater than those detected in

training data, faults are indicated. Least squares methods provide a powerful tool by

monitoring the parameter estimates online [35].

2.2.1.3 Observer-based Methods

The Observer-based technique is appropriate if the faults are related to changes in

actuators or sensors, i.e., it is particularly useful for identifying and isolating additive

faults. The observer-based method reconstructs the output of the system from the

measurements or a subset of the measurements with the aid of observers. The differ-

ence between the measured outputs and the estimated outputs is used as the vector

of residuals. Reconstruction of the unmeasured states from the measurable input and

output can be done using Luenberger observer or Kalman Filter [36]. Kalman filters,

or observers, are widely used for state estimation. The main concern of the observer-

based technique is the generation of a set of residuals that detect and uniquely identify

different faults. These residuals should be robust in the sense that the decisions are

not corrupted by such unknown inputs as unstructured uncertainties like process and

measurement noise and model uncertainties [27]. Hence, the residuals are determined

as the difference between the estimated and measured plant output.

2.2.1.4 Parity Relation Methods

The parity relation methods are popular for residual generation in the field of model-

based FDD. Parity equations are rearranged and usually transformed variants of the

input-output or state-space models of the plant. The essence is to check the parity

(consistency) of the plant models with sensor outputs (measurements) and known

process inputs. In the parity space, residual generation, the dynamics of the residual

signals regarding the faults and unknown inputs are presented in the form of algebraic

equations. Hence, most of the problem solutions are achieved in the framework of

linear algebra [37]. They are used to estimate the residuals of a linear regression model,

and they have been shown to produce unbiased estimates with minimal variance [38].
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In the open loop process, the parity-relation vector is formed from a linear combination

of sensor outputs and applied inputs, and the values are interpreted from measures

using the observers. The residuals should be zero in normal operating conditions where

the system shows no fault. However, The existence of noise and model uncertainty

prohibit the residual from becoming zero. Many approaches have been developed to

address the parity relations for FDD, such as dynamic parity relations [39], building

parity relations using the state-space model [40], etc. One of the key assumptions of

this technique is that the model is linear. As a result, this technique becomes less

suited for monitoring batch operations since operating conditions vary constantly, and

non-linearity is common in large-scale production plants.

The major advantage of model-based methods is clearly capturing the process’s

dynamics. In addition, costly hardware redundancy is eliminated. However, these

approaches rely on the accuracy of the model. Furthermore, working with non-linear

systems makes analysis and modeling more complex. Moreover, the process of creating

a model may be time- and resource-consuming. Hence, the model-based category

becomes less suitable in large-scale process monitoring and existing systems [27]. In

the absence of an explicit model of a system and if measurement signals are the only

resources, the data-driven implicit models are suitable [26].

2.2.2 Data-Based Methods

Data-driven techniques are widely applied in the process industry for process mon-

itoring and diagnosis purposes [41]. Data-driven methods involve data analysis and

machine learning techniques to identify system anomalies, defects, or faults. These

methods do not require a thorough knowledge of the process dynamics. Hence, they

leverage historical and real-time data to detect deviations from normal operating con-

ditions, often providing early warnings of potential issues. Process data acquired

under normal and abnormal operating circumstances is utilized for fault detection

and diagnosis. As a result, the efficacy and accuracy of these methodologies are de-

termined by the availability and quality of the supplied data. The advancements

in control and data acquisition systems allow for the collection of vast amounts of

process data. Data is extracted, loaded, and transformed for process monitoring,

fault detection, and further analysis. These approaches are classified as qualitative,
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such as expert systems and trend analysis, and quantitative, which includes statisti-

cal methods, artificial neural networks (ANN), and support vector machine (SVM)

[27]. The statistical methods depend on statistical parameters such as the mean and

standard deviation of observations. There are two types of methods: univariate and

multivariate.

2.2.2.1 Univariate Methods

Univariate methods are applicable for monitoring a single process variable. The She-

whart Chart (x̄ Chart) is the most popular approach used for single variable control

[42]. The upper and lower control limits are estimated as follows:

UCL = µ+ Tσ

LCL = µ− Tσ

where µ and σ are the mean and the standard deviation of the process variable during

the normal operation. A threshold of T is used to define the normal operating range,

as it is usually set to 3. Exceeding these limits indicates a process fault. Other control

charts for a single process variable, such as Exponential Moving Average (EWMA)

[43] and Cumulative Sum (CUSUM) [44], also employ several time frames to increase

fault detection efficiency and minimize false alarm and missed alert rates. CUSUM

accumulates deviations from a target value, enhancing sensitivity to small shifts in

process parameters while EWMA applies weights to data points, emphasizing recent

observations, useful for detecting small and gradual changes. While useful in many

scenarios, univariate statistical methods have several disadvantages, particularly when

applied to complex systems with multiple interrelated variables. A single control chart

is required to monitor each variable, neglecting the correlation effect between process

variables. Therefore, they are inappropriate for monitoring the modern complex and

dynamic processes. They do, however, increase complexity and need additional pro-

cessing time. Also, they require proper tuning for the hyper-parameter. Univariate

methods are preferred because they are relatively easy to implement. However, the

methods cannot account for multicollinearity, where two or more variables are highly

correlated. They can become cumbersome and less effective as the number of variables
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increases. In systems with many variables, monitoring each individually becomes im-

practical. Multivariate methods provide a more scalable solution by summarizing the

information from all variables into a few components or indices.

2.2.2.2 Multivariate Methods

Multivariate approaches are essential for monitoring and diagnosing systems where

multiple interrelated variables must be considered simultaneously. These methods

analyze the relationships between variables, capturing complex patterns and interac-

tions that univariate methods might miss. They are more resistant to false alarms

than univariate methods. They also display the process data in a reduced dimen-

sional space. Both of those offer reliable fault detection and process monitoring at

lower computing costs. Examples of these methods are principal component analysis

(PCA) [45, 46], partial least squares (PLS) [21, 47, 48], Fisher discriminant analysis

(FDA) [49], and independent component analysis (ICA) [50]. The popularity of these

algorithms is based on their ease of implementation and capability of tackling some

problems, which include dimensionality reduction of data and extraction of critical

features from the data. PCA reduces the dimensionality of data by transforming the

original variables into a smaller set of uncorrelated variables called principal compo-

nents. These components capture most of the variance in the data. Detection indices

such as T 2-statistic and Q-statistic are used to monitor the variability captured by the

principal components and in the residuals, respectively. PLS is a regression technique

that models the relationship between input and output variables by extracting latent

variables that explain both sets. ICA separates a multivariate signal into additive,

statistically independent components. It’s particularly useful when the underlying

source signals are independent but not necessarily uncorrelated. FDA, also known as

Linear Discriminant Analysis (LDA), is a statistical method for pattern recognition,

classification, and dimensionality reduction. It is particularly effective in scenarios

where there are two or more classes, and the goal is to separate them by finding a

linear combination of features that best separates the classes.

Although data-driven process monitoring systems are simple to use and effective

in detecting faults early, the diagnosis is imperfect. This is due to the difficulty of in-

terpreting measured variable contributions in a larger process with multiple variables.

A system may be unable to detect a small magnitude fault [51]. Also, a smearing
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effect due to matrix multiplication to calculate variables’ contribution can lead to

ambiguity in FDD [52]. This adds more complexity to the operator to accurately

detect the cause of the process fault. Additionally, since data-driven methods typi-

cally only use one data source, these methods lose a lot of information derived from

various sources, like the event log or expert knowledge. Therefore, to overcome these

limitations, researchers focus more on feature extraction, knowledge integration, and

methods integration. Also, data-driven methods rely heavily on the availability and

quality of historical and real-time data. Poor quality, incomplete, or noisy data can

significantly reduce the accuracy and reliability of fault detection models. Missing

data or errors in data collection can lead to incorrect fault detection, either missing

actual faults (false negatives) or incorrectly identifying normal behavior as faults (false

positives). While data-driven methods aim to reduce the need for extensive domain

knowledge, they still often require significant expertise for data preprocessing, feature

selection, and model tuning [53].

2.2.3 Knowledge-Based Methods

Knowledge-based methods for fault detection leverage human expertise, rules, and

domain-specific knowledge to identify faults and anomalies in systems. These meth-

ods are often implemented using expert systems, rule-based systems, and model-

based approaches. A comprehensive description of the process, expert knowledge, a

causal model, or fault-symptom scenarios may all be used to create qualitative mod-

els for knowledge-based approaches [21]. When a thorough mathematical model is

unavailable, and a system has relatively few inputs, outputs, and states, these ap-

proaches are appropriate [21]. According to [54], the most common knowledge-based

methods in FDD are qualitative simulation (QS), expert systems, fault tree analysis

(FTA), signed digraphs (SDG), and Bayesian networks (BN). Qualitative simulation

is a method used for fault detection that focuses on understanding the behavior of

a system through qualitative descriptions rather than precise numerical data. This

approach is particularly useful when quantitative models are difficult to obtain, or

the system is too complex for detailed quantitative analysis. They can accurately

anticipate how the system would behave under normal conditions and when there

are various faults, which can be vital diagnostic information. Steady-state qualita-

tive simulation (QSIM) [55] is a common method of QS. QSIM interprets a system’s
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dynamic behavior using qualitative differential equations. By value and direction, it

expresses the qualitative state of a variable. Value refers to an ordered collection of

remarkable values that generally describe variables’ values, whereas direction denotes

a change in direction [55]. This technique has certain drawbacks, such as intrinsic

ambiguity and the absence of temporal information. [56] introduced a fuzzy QSIM

algorithm that enabled the inclusion of more quantitative information, such as the

rate-of-change of variables and the relative strengths of qualitative relationships.

2.2.3.1 Expert System

An expert system is an organized knowledge system that imitates a human expert to

address issues in a particular field [57]. Expert systems use a set of rules and facts to

mimic the decision-making abilities of human experts. Over time, plant operators gain

theoretical and practical knowledge to determine the origin of a probable issue and

recommend appropriate repair procedures. An expert system can be used to automate

this procedure. Four elements are often found in an expert system: knowledge base,

inference engine, knowledge management, and user interface [58]. Rule-based systems

are a type of expert system that uses a set of predetermined rules to detect faults.

These rules are typically derived from domain knowledge and expert insights. A rule-

based expert system for fault detection in chemical processes was proposed by [59].

[60] developed an expert system for FDD in a power station. An expert system for

a refinery’s cracking unit was implemented with the inclusion of static rules, time-

varying rules, and bidirectional heuristics by [58]. The aforementioned expert systems

used rule-based diagnostic knowledge, which is simple to create and does not need

intricate quantitative domain knowledge. However, it could have drawbacks, including

limited resolution, fusion explosion, and the inability to capture knowledge effectively

about processes that change in space and time. Also, rule management can become

complex as the number of rules grows.

2.2.3.2 Fault Tree Analysis

Fault tree analysis (FTA) is another popular method for fault detection and reliabil-

ity assessment. FTA is a top-down, deductive failure analysis technique that uses a

tree-like model of the various logical relationships between system failures and their

causes. Basic and intermediate events are propagated graphically and hierarchically
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to the top event representing the hazard. Various issues, such as equipment break-

down, component contamination, or human factors, are considered the basic events.

An aberrant symptom is the intermediate events. Different logic gates (e.g., AND,

OR, and XOR) are used to conduct the propagation, providing a more adaptable

representation of causal information. A general fault tree analysis consists of the fol-

lowing four steps: (i) system definition, (ii) fault tree construction, (iii) qualitative

evaluation, and (iv) quantitative evaluation [61]. Prior to the construction of the fault

tree, a complete understanding of the system is required. In fact, a system description

is also a part of the analysis documentation[61]. The fault tree construction usually

starts by asking questions such as what could cause a top-level event. In answering

this question, other events connected by logic nodes are generated. The tree is ex-

panded in this manner till one encounters events (primary events) that need not be

developed further [62]. After constructing the fault tree, the next step in the analysis

is evaluating the fault tree. A top-down analysis may be used to determine the under-

lying cause of an undesirable occurrence, whereas a down-to-up analysis can be used

to determine the effects of a fundamental event. Qualitative evaluation is concerned

with the development of minimal cut sets, defined as a collection of primary failures,

all of which are necessary and sufficient to cause the system failure by the minimal

cut-set in question [27]. Converting the fault tree into the smallest cut sets and rank-

ing their consistency is a typical strategy. The set of primary events required for

the occurrence of the top event is known as the minimal cut set [63]. A quantitative

version of the FTA may be created if the historical statistics data is provided [64].

Although this approach is simple to develop, it requires a significant amount of effort

and is prone to mistakes.

2.2.3.3 Signed Directed Graphs

Given the structural and functional aspects of a process, the behavior of the process

can be derived. Simulation is concerned with this form of derivation. Diagnosis

is the inverse of simulation. Diagnosis is concerned with deducing structure from

the behavior. This kind of deduction needs reasoning about the cause-and-effect

relationships in the process. Cause-effect relations or models can be represented in the

form of signed directed graphs (SDGs). SGD is another popular qualitative technique

for process fault diagnostics. A digraph is a graph with directed arcs between the
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nodes, while an SDG is a graph in which the directed arcs have a positive or negative

sign attached to them [27]. They employ nodes and directed links to describe the

process’s variables, as well as the causal linkages between them. Each node has a sign

to describe its status. The direction of the link represents the cause-effect relation.

The tail is connected to the cause, while the tip points toward the effect. The massive

knowledge represented in SDG is obtained by deep mathematical models, including

differential and algebraic equations [65]. The use of differential equations to develop

SDGs for fault diagnosis was proposed by [66]. SDGs are an extremely effective visual

representation of qualitative models. They are the most extensively used method for

causal knowledge-based process fault identification [67]. Knowledge-based models can

identify the underlying cause of a process issue immediately after it has been identified.

2.2.3.4 Bayesian Network

Bayesian Network (BN) is another widely used method for representing knowledge

and reasoning. It has both qualitative and quantitative components. The qualitative

section is a directed acyclic graph (DAG), with nodes representing random variables

and links representing causation relationships between them. A link connects a parent

node to a child node. The term “leaf node” describes a node without any children,

while the term “root node” describes a node without any children. Root nodes are

assigned marginal probabilities, while the rest of the network is assigned conditional

probabilities. The Bayes theorem, shown below, states that the posterior probabili-

ties for unobservable nodes can be estimated by propagating observable observations

throughout the network once they become available.

P (XE|XO) =
P (X1, · · · , Xn)∑
O P (X1, · · · , Xn)

(2.5)

where XO denotes the observed nodes, while XE denotes the nodes that need to

be estimated. The main advantage of this approach is the ability to diagnose faults

accurately even though various uncertainties are presented [68]. Also, its robustness is

not affected by the quality or availability of data. It enables the incorporation of prior

process information in qualitative and quantitative forms, such as causal relationships

and probabilities. BN for fault detection and diagnosis was proposed earlier by [69].

However, the time dependency essential for describing how aberrant events originate

and propagate was not considered. The dynamic BN was used to overcome this
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limitation. [70] proposed a dynamic BN that incorporates the hidden Markov Model

for fault diagnosis. A dynamic Bayesian network (DBN) approach has been developed

for systems with missing data [71]. It is important to note that the majority of the

aforementioned algorithms call on conditional probability distributions of node states

under relevant fault circumstances, which are difficult to provide. [72] created new

indices to assess the abnormality probability at each node and anticipated that nodes

in actual fault propagation paths would have a greater faulty likelihood. As a result,

the fault propagation path may be found by looking for nodes across the network that

have a high risk of being anomalous.

2.3 Distillation Column Flooding

2.3.1 Distillation Column Description

In a typical distillation column, the feed stream, consisting of a mixture of components

to be separated, is fed into a tall cylindrical vessel standing vertically. This vessel is

popularly referred to as the “distillation column.” Inside the vessel are structures

designed to cause intimate radial mixing, i.e., mixing at any given vertical level and

the contact area between a stream of vapor flowing up and a stream of liquid flowing

down. These structures can take the form of trays or stages, or they can be packed.

The function of these internal structures is to make possible vapor/liquid contacting

and mass transfer [2].

Fig.2.3 gives the illustration of a distillation column. The part of the distilla-

tion column above the feed point is commonly called the “Enriching Section” or the

“Rectification Section.” The part of the distillation column below the feed point is

known as the “Stripping Section.” Liquid flows down the column, exits the bottom

of the stripping section, and flows into the reboiler. The reboiler is a special type of

heat exchanger that uses steam or some other heat transfer fluid to heat the liquid

in the reboiler to its boiling point. The vapor generated by this boiling liquid exits

the reboiler and is fed back into the stripping section of the column. Excess liquid in

the reboiler overflows a weir and exits the process as the “Bottoms Product,” some-

times referred to as the “Bottoms.” The vapor from the reboiler flows up the column,

countercurrent to the liquid flowing down the column.
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Figure 2.3: Schematic illustration of a distillation column [2].

The components in the feed stream are separated according to their relative boiling

points. Components with a lower boiling point tend to become enriched in the vapor

traveling up the column. Components with a higher boiling point tend to become

enriched in the liquid traveling down the column. Eventually, the vapor enriched in low

boiling components exits the rectification Section on the top of the distillation column.

This vapor is condensed back to a liquid by cooling in a condenser heat exchanger.

The condensed liquid is collected in the reflux drum. As described previously, a

portion of the condensed liquid is fed back into the rectification section to become the

liquid flowing down the column. The rest of the liquid exits the process as the “Top

Product” or the “Distillate.”
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2.3.2 Concept of Flooding

Flooding is a common problem that can occur in a distillation column. Liquid flows

downward over the structured packing in a distillation column countercurrent to the

upward-flowing vapor. The vapor must follow a tortuous path, but the void space in

the packing is predominantly filled with vapor. The vapor is said to be in a continuous

phase. The upward flow of the vapor exerts an aerodynamic drag on the falling liquid.

This drag force acts in opposition to the force of gravity and slows the flow of the

falling liquid [5]. When the relative flowrates of the vapor and liquid are such that

the drag force is greater than or equal to the gravity force, then the liquid stops

flowing down the column. This condition is called flooding. Flooding can begin at

any vertical location in the column.

Flooding is generally defined as the condition of column inoperability due to ex-

cessive retention of liquid inside the column [73]. Flooding is an inherently unstable

condition. Once the column reaches the flood condition, continued steady operation

becomes impossible.

2.3.3 Symptoms of Flooding

Flooding is the most common capacity limitation in distillation. It is characterized

by the accumulation of liquid in the column. This accumulation propagates upward

from the lowest flooded region. Accumulating liquid backs up into the tray (or packed

section) above, and so on, until the whole column fills with liquid or until an abrupt

change in tray design or flow conditions (e.g., feed point) is reached. Flooding may

or may not propagate above that point. Flooding can be recognized by one or more

of the following symptoms:

1. Excessive column differential pressure

2. Sharp rise in column differential pressure

3. Reduction in bottom stream flow rate

4. Rapid rise in entrainment from column top tray

5. Loss of separation (as can be detected by temperature profile or product anal-

ysis)
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The high-pressure drop observed during flooding is caused by the accumulation

of liquid, which characterizes flooding [74, 75]. The high-pressure drop indicates

liquid accumulation. The pressure drop may not significantly rise when the liquid

accumulation is small. Typical scenarios include flooding near the top of the tower

(only a few trays or a short packing length accumulates liquid), flooding in vacuum-

packed towers (accumulation is channeled, and the vapor bypasses the accumulation

region), and flooding at low liquid rates (slow liquid accumulation). Hence, a sharp

rate of rise of pressure drop with vapor rate may be an even more sensitive flooding

indicator than the magnitude of pressure drop [73]. As vapor loads are raised, so does

the tray pressure drop. Upon flooding, the pressure drop rise accelerates due to liquid

accumulation. In many cases, the pressure drop will rise once it starts, even when

vapor loads are not further raised.

Reduction of bottom flow is a common indicator of flooding [76, 77]. Liquid

accumulates in the column upon flooding, so less reaches the bottom. This can be

seen by a fall in the bottom level. Most frequently, the bottom level is controlled by

manipulating the bottom flow rate so the level stays constant, but the bottom flow rate

will decline. While a reduction in bottom flow indicates flooding, many distillation

columns may flood without a significant decline in bottom flow. For example, if

flooding occurs in the rectifying section, while most of the feed is liquid, the bottom

section may continue to operate normally without a significant decline in the bottom

flow rate. Also, if the flood point is well above the bottom, there may be a significant

delay from the onset of flooding to the time the bottom flow is significantly reduced,

which makes accurate measurements of the flooding conditions difficult. Generally, a

reduction of the bottom stream flow rate is a good indicator of flooding in columns

that flood near the bottom and in columns that are relatively short [77], particularly

if flooding occurs between the feed point and the bottom.

A rapid rise in entrainment is another common flooding indicator [76, 78, 79].

As liquid accumulates in the column, it builds up to the top and is entrained in

the column overhead stream. In towers whose overhead stream goes to a knockout

drum or to the bottom of another tower, this entrainment can be recognized as a

buildup or rapid rise of a liquid level in the drum or bottom of the downstream

column. In most distillation columns, the tower overhead goes to a condenser, and

the condenser outlet stream continues to a reflux drum. The reflux drum usually

has a level control that manipulates either the distillate or the reflux rate. When
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the drum level controls the distillate rate, the entrainment rise is often indicated as

a significant increase in the distillate rate for no apparent reason. When the drum

level controls the reflux rate, the entrainment is often indicated as a rise in reflux for

no corresponding increase in boil-up rate and/or an increase in reflux flow rate that

does not result in an increase in heat input required to maintain the same bottom

column temperatures. The increased reflux is unable to descend down the tower due

to the flooding near the top, so it entrains back into the overhead, returns as more

additional reflux, and never reaches the bottom of the column. The reflux valve often

opens widely due to the recirculation of entrainment around the tower overhead loop

[80]. This indicator is particularly useful when the pressure drop rise is not sharp.

However, this indicator may fail to indicate a stripping section flood that does not

propagate to the rectifying section.

As flooding approaches, the rate of liquid entrained by the vapor sharply rises. As

the entrainment accelerates, efficiency and separation plunge. The loss of separation is

best recognized from laboratory analyses of column products. Another good indicator

of separation loss is the column temperature profile. Liquid accumulation is often

indicated as a temperature rise above the flooded tray because the accumulating

liquid is richer in heavy and because the flooded trays no longer achieve an efficient

separation. A rise in temperature may also occur below the flooded section because

the reduced downflow of liquid from the flooded section leads to the heating up of

this section and because the higher pressure drop increases the boiling point of the

liquid [73]. For best results, the application of this method requires a good knowledge

of the normal and flooded temperature profiles under similar feed conditions [81].

2.3.4 Causes of Flooding

Flooding in a distillation column is characterized by liquid accumulation in the col-

umn. There are different mechanisms that can cause this liquid accumulation in the

column.

1. Entrainment: An increase in the vaporization rate of the reboiler will cause

more vapor to be boiled up, which increases vapor flow upward the column and

subsequently carry-over of liquid from the tray below to the tray above [73].

This causes the liquid to be entrained in the vapor. Upon further increase in
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the vapor flow rate, massive entrainment of the liquid begins causing liquid

accumulation and subsequently flooding in the tray above. The schematic of

the flow on a tray of a distillation column is shown in Fig.2.4.

Figure 2.4: Schematic of a distillation column tray.

2. Downcomer restriction: The downflow of liquid in a distillation column can

be impeded by restrictions in the downcomers [82]. A downcomer must be

sufficiently large to transport all of the liquid downflow. Excessive friction losses

in the downcomer entrance and/or excessive flow rate of vapor venting from

the downcomer in counter-flow will impede liquid downflow, initiating liquid

accumulation (termed downcomer choke flooding) on the tray above [73]. Also,

aerated liquid backs up in the downcomer because of tray pressure drop, liquid

height on the tray, and frictional losses in the downcomer apron. All of these

increase with increasing liquid rate. Tray pressure drop also increases as the

vapor rate rises. When the backup of aerated liquid exceeds the (tray spacing +

weir height), i.e., fills up the downcomer, liquid accumulates on the tray above,

causing downcomer backup flooding.

3. Internal damage: Damages to trays or defective internal components can also

lead to liquid accumulation on distillation column trays, which can result in loss

of active areas.
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2.4 Flooding Detection

Based on the literature, previous research on ways of detecting flooding focused on

four main aspects: Visual detection [80], liquid holdup measurements [73], acoustic

signal analysis [83], and pressure monitoring [84]. Other approaches involve using

machine learning methods [85, 86].

2.4.1 Visual Detection

Flooding can be detected by visually observing the buildup of liquid on the surface of

distillation column packings. This approach is a simple flooding monitoring method

if the column used is transparent [87]. Sight glasses can also be used to visually

indicate flooding [76, 80]. Sight glasses are expensive, increase the leakage potential,

and may lead to a chemical release if the glass breaks. Supplying a light source

that will permit observation can also be an issue. For these reasons, this technique

is not commonly used in commercial columns. It is mainly used when the column

processes non-hazardous material at near ambient pressure [73]. The problem with

visual observation is that there is often a delay in reaction, and by the time flooding

is noticed, damage or loss has already taken place. In addition, hysteresis effects have

been observed to delay column recovery [88, 89]. With hysteresis, flooding persists

until the flowrate is reduced to a level much lower than the critical flowrate, making

restoration of normal column operation more difficult.

2.4.2 Liquid holdup Measurements

Flooding can also be detected by noticing the increased liquid holdup using a gamma

or x-ray scan. Gamma scanning is one technique particularly suitable for flooding

detection. It is powerful in diagnosing flooding, identifying the flooded regions, and

often also providing insight into the nature of the flood [73]. Gamma scanning is a

procedure whereby a process column is non-disruptively examined by moving a sealed

radioactive source emitting gamma-ray in conjunction with a radiation detector along

the exterior of the interposed column. This is illustrated in Fig.2.5.
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Figure 2.5: Distillation column scanning with gamma rays [90].

Throughout the investigation, the radioactive material remains permanently en-

capsulated within a special source housing and makes no contact either with the col-

umn or the process material. A source holder with an appropriate collimator is used

to direct the radiation beam to the column. The absorbed or transmitted gamma ray

intensity indicates the real quantity and nature of the material that exists between the

detector and the source. Gamma scanning of distillation columns employs radioactive

sources in the 500- to 2500-keV range [91]. The relation that describes the gamma

rays transmitted through a material [91–94] is

I = I0e
−µρx (2.6)

where I is the radiation intensity in keV, as seen by the detector; I0 is the radiation

intensity of the source in keV; ρ is the density of the medium; x is the thickness of the

medium, and µ is the absorption coefficient, which depends on the gamma-ray source

and the medium material.

By using a constant distance between the source and the detector during the

scanning process, the measured radiation intensity will vary only when the internal

material density changes, where the relation between the radiation intensity and the

absorber material density is inversely proportional. The intensity of transmitted ra-

diation is stored graphically on a computer through a data acquisition system (DAS).

Radioactive sources used for distillation column investigations should be capable of

penetrating the wall thickness of the column and the medium of interest. Hence, the
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radioactive sources used are normally cobalt-60 and cesium-137 [73].

Gamma scanning has been used to detect flooding, diagnose faults in a distilla-

tion column, and troubleshoot, optimize, and maintain the operation of distillation

columns [90, 95, 96]. However, the purchase and maintenance costs are relatively high

[6].

2.4.3 Acoustic Signal Detection

Flooding in a distillation column can also be detected using acoustic signal analysis.

This basically involves attaching audio or sound recorders to the outside of the dis-

tillation column, the sound waves or acoustic signals generated due to propagations

in the column are extracted, analyzed using different methods, and classified to know

the state of the column. An illustration of this approach is shown in Fig.2.6.

Figure 2.6: Schematic of acoustic signal analysis on a distillation column [97].

Hansuld et al. [83] proposed using microphones as an inexpensive, non-intrusive,

online method of detecting flooding onset. This was done by attaching piezoelec-

tric microphones to the outside of the column to monitor operations. Sound waves

produced from the propagations of pressure imbalances in the column through fluid

media deformed the piezoelectric material, thereby generating voltage signals [98].

The sound waves were analyzed using advanced signal analysis, such as standard

deviation and entropy. The entropy and standard deviation results validated that

acoustic signals can be used non-intrusively to monitor column operations and detect

flooding.
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Zhang et al. [97] also used acoustic signals to determine fluid flow states in distil-

lation columns. This was done by performing an audio recording on three sieve tray

distillation columns. Firstly, acoustic signals that are related to different fluid flow

states were recorded in various columns. Then, the characteristic parameters of these

acoustic signals were extracted and fused from the time, frequency, and cepstrum

domains. Finally, a multi-classification support vector machine (MSVM) model was

coupled with the characteristic parameters to recognize the fluid flow states in dis-

tillation columns. The results show that acoustic signals can recognize various fluid

flow states in a distillation column, including flooding states.

Another application of using acoustic signals to detect flooding in a distillation

column was implemented by Wang et al. [99] by combining acoustic signal analysis

with k-nearest neighbor (KNN) classification algorithm to discover the running states

of a distillation column. The acoustic signals were collected under normal and abnor-

mal operations in the column. A dual-domain feature extraction method was used to

extract features from the signals, which were then analyzed and compared in a generic

way. The classification of the acoustic signals was done using the KNN model. The

results obtained show high flooding identification accuracy.

Based on the different ways of using acoustic signals to detect flooding in the

distillation column, the downside of the method is that acoustic signals are vulnerable

to the surrounding environment, especially in industrial columns [6].

2.4.4 Pressure Monitoring

Flooding in distillation columns is characterized by an increase in the differential

pressure across the column [75]. Hence, flooding can be detected by monitoring the

pressure drop of a distillation column. A distillation column operates within a certain

pressure range under normal conditions. This pressure is influenced by factors such

as the feed flow rate, temperature, and composition. Trays or packing materials are

where the liquid and vapor phases come into contact for separation. A typical pressure

drop across these internals for a normal operating condition exists. If flooding occurs

in the column, it disrupts the normal flow patterns. This can lead to a significant

increase in pressure drop across the trays or packing. As a result, the pressure at

certain points in the column, such as above the flooded section, would be higher

than expected. Pressure sensors are strategically placed at different points along
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the distillation column. These sensors continuously monitor the pressure at their

respective locations. The pressure readings from the sensors are fed into a control

system or an alarm system. It triggers an alarm if the pressure readings exceed

predefined thresholds or deviate significantly from expected values. When an alarm is

triggered, operators are alerted to investigate the issue. They can then take corrective

actions, such as adjusting the feed rates, temperatures, or reflux ratios, to alleviate

the flooding and restore normal operation.

In the literature, pressure drop monitoring for flooding detection can also be done

differently. Such as Parthasarathy et al. [84] used the differential pressure drop

across a distillation column and neural network model to develop a flooding indicator.

The approaches involve determining whether a flooding model could be developed

for the column unit with the available data. Consequently, model development and

online implementation were done while special tests were conducted on the process to

evaluate the models’ performance and select the best predictor model. However, using

only a differential pressure model would not detect flooding in a reliable manner.

Also, Pihlaja and Miller [100] verified the pressure monitoring approach in a dis-

tillation column equipped with a specific pressure sensor. This was done by sensing a

differential pressure signal along a distillation flow path. This is followed by filtering

the differential pressure signal, where the filtered signal is responsive to a phase in-

version along the flow path. A flooding indicator was generated as a function of the

filtered differential pressure signal. The flooding indicator is responsive to the onset

of a flooding condition based on phase inversion such that a change in the flooding

indicator indicates the onset of a flooding condition.

2.4.5 Machine Learning Approach

Recently, machine learning (ML) methods are currently being used to detect flooding

in distillation columns. This involves using machine learning algorithms to learn pat-

terns and distributions of column data during the onset of flooding. This approach

builds on the usage of the flooding indicators to detect flooding in a distillation col-

umn.

Oeing et al. [85] tested different supervised ML algorithms to detect flooding in a

spinning band distillation column (SBDC). The SBDC consists of a DN25 glass column
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with a solid rotating internal (spinning band) manufactured by Normag-Pfaudler, Il-

menau, Germany. The SBDC has a thin gap for the countercurrent liquid-vapor flow

between the spinning band and the wetted glass wall of the column. The rotation

of the spinning band is used to induce an intensified mass transport between liquid

and vapor to achieve a better separation efficiency with a higher rotation speed. In-

creasing the band speed increases pressure drop due to higher loading and higher

vapor velocities in the column. Depending on the band speed, liquid loads, and vapor

velocity at a certain point, the liquid accumulates, which results in flooding. The

accumulation of liquid at a specific location negatively affects the desired separation

process. In the case of the SBDC, the pressure drop is massively influenced by the

spinning band speed. The complex hydrodynamics of the system with rotating inter-

nal and two-phase flow is arduous to model. Hence, they predict the pressure drop

and classify the current operating point with the help of a trained ML algorithm with

historical data. This made it possible to get information about certain parameter sets

and classifications even before the undesired state, like the flooding point, is in op-

eration. The prediction of the pressure drop was done using different supervised ML

algorithms, and the classification of the operating point was done using a clustering

algorithm. Linear regression, random forest, extra trees, adaboost, gradient boosting,

and a combination of adaboost and extra trees are the supervised ML algorithms that

were used to predict the pressure drop. The result shows that the gradient boost

algorithm outperforms other algorithms in predicting the pressure drop and also in

predicting flooding in the SBDC.

Also, Ochoa-Estopier et al. [86] applied a trained binary classification random

forest model to predict the risk of reaching a pre-flooding operation state in a Total-

Energies refinery located in France. This approach does not rely on direct pressure

measurements of the flooded sections to detect flooding. Instead, it relies on real-time

measurements such as flowrates, liquid levels, temperatures, top and bottom column

pressure, and domain indicators. These measurements and other developed flood-

ing indicators used as additional variables are used to train the binary classification

random forest model. The process engineers developed two flooding indicators as addi-

tional variables for the training. The first indicator was formulated based on flooding

correlation. It was developed as a binary variable. The second flooding indicator was

developed in the refinery by the process experts. It is a variable obtained empirically

by correlating the evolution of pressures and temperatures at selected column points
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during a 30-minute period preceding the flooding event. Although sensitive details

about the indicator were not disclosed, the formulation was based on the temperature-

pressure relationship. Data labeling was done using a labeling procedure to classify

the data collected into Normal, Flooding, Pre-flooding, and Post-flooding. Once the

label Flooding is assigned at time t, the Pre-flooding label is consequently assigned

to all available instances between t− 60 min and t. Similarly, the Post-flooding label

is assigned to all available instances between time t and t + 8 h. Their objective is

to build a model that can warn the operator of the risk of flooding (i.e., pre-flooding

conditions) following a period of normal operation. Hence, data that belong to Post-

flooding and Flooding classes were not included in the model and thus were removed

from the dataset. A binary numerical variable, called flooding index FI, was intro-

duced to treat the classes as numerical values within the model. FI is equal to zero

for the points labeled as Normal and equal to one for points labeled as Pre-flooding.

This led to a significant imbalance between the Normal and Pre-flooding classes. In

this case, the Pre-flooding class is the minority class and the most important class as

well. A resampling procedure was used to tackle class imbalance between normal and

pre-flooding by duplicating the Pre-flooding data points n times while the Normal

data points were selected randomly until a desired ratio was achieved. The binary

classification random forest model was trained and tested, and the results obtained

show that flooding events can be detected in advance while keeping a low number of

false negative predictions.

2.5 Machine Learning

Most of the aforementioned methods are traditional methods for detecting and pre-

venting flooding. Though they can provide some flooding indications, they often lack

the precision and adaptability required for real-time monitoring. These conventional

methods can be insufficient where process conditions frequently change, such as in

a dynamic industrial environment. As a result, there is a growing need for more

advanced and reliable techniques to predict and mitigate the risk of flooding in dis-

tillation columns. Machine learning (ML), a subset of artificial intelligence [101],

provides promising solutions to this problem. ML methods are intelligent solutions in

process monitoring and fault detection. These methods aid in shifting from reliance

on the human element, which is prone to mistakes, to automated and contemporary
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functioning. ML algorithms are gaining ground in process engineering applications

due to the large amount of data generated by the industry, and these data are available

from physical sensors [7]. Data collected from the physical sensors can be combined

and processed into meaningful data through ML algorithms. The processed data can

be used for training data-driven models so as to capture the process conditions [8].

ML can be classified as supervised, unsupervised, or reinforcement learning [102].

2.5.1 Supervised Learning

In supervised learning, the goal is to learn a mapping from inputs to outputs given

a set of labeled input-output pairs of data [103]. Supervised learning is mainly used

for classification or prediction, where the model is trained on well-labeled input data.

Then, the model is able to classify unseen data into the desired label or forecast

the future value. Examples of the algorithms to achieve this task of regression or

classification are linear regression [104], support vector machines (SVMs) [105], and

decision tree-based models such as random forest, AdaBoost or gradient boosting

regressor [106–108].

Linear regression is straightforward and easy to implement. It can also be reg-

ularised to prevent overfitting and can be updated easily using new data through

stochastic gradient descent [109]. However, linear regression performs poorly in the

presence of nonlinear relationships and cannot capture complex patterns due to lack

of flexibility [110].

SVMs can handle both classification and regression problems. SVMs use a mech-

anism called kernel to calculate the distance between two observations and then find

a decision boundary that maximizes the distance between the closest members of sep-

arate classes. In this method, a hyperplane, which is the decision boundary, needs to

be defined. SVMs can model nonlinear decision boundaries [109]. They have a lot

of kernels to choose from and are fairly robust against overfitting. However, SVMs

are memory intensive and tricky to tune due to selecting the right kernel. Also, they

don’t scale well with large datasets.

The tree ensembles have the ability to handle large amounts of data and can pro-

vide good accuracy due to the combination of multiple estimators [106]. The regressor

trees can be combined with bagging or boosting techniques to control overfitting and
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improve accuracy by building a group of estimators [111]. They are fairly robust to

outliers and can learn nonlinear relationships.

One high-impact area of progress in supervised learning in recent years involves

deep networks, which are multilayer networks of threshold units, each of which com-

putes some simple parameterized function of its inputs [112, 113]. Deep learning

systems make use of gradient-based optimization algorithms to adjust parameters

throughout such a multilayered network based on errors at its output [114].

2.5.2 Unsupervised Learning

Unsupervised learning is that in which only inputs are known to the learning algo-

rithm. The data is unlabelled, meaning it has not been organized into groups or

factors. Unsupervised learning involves finding interesting patterns in the input data

[103].

Principal component analysis (PCA) and partial least square (PLS) regression

are popular unsupervised learning algorithms as they are easy to implement and can

be combined with regression models for online predictions of high dimensional data

[9]. The popularity of these algorithms is based on their ease of implementation and

capability of tackling some problems, which include dimensionality reduction of data

and extraction of key features from the data. The major disadvantages of PCA include

loss of information if the number of principal components in PCA is not carefully

chosen, the independent variables become less interpretable since the original dataset

will be transformed into principal components, and data normalization is a must in

PCA; hence, it tends to be biased towards features with high variance.

Clustering is also a popular method to find patterns in unlabeled data based

on their similarity. Clustering can be hierarchical (finding successive clusters using

previously established clusters) or partitional (determining all clusters at a time)

[115]. Agglomerative clustering is an example of hierarchical clustering, while k-

means and k-medoids algorithms are examples of partitional clustering. K-means

is the most popular clustering algorithm because it is easy to implement, fast, and

flexible. However, it requires the user to specify the number of clusters a priori, and

it is sensitive towards outliers. K-means is limited to spherical clusters only, it cannot
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handle overlapping or arbitrary clusters [109] hence, DBSCAN, which is a density-

based clustering algorithm, is being used to discover arbitrary-shaped clusters in data

[116].

2.5.3 Reinforcement Learning

Reinforcement learning (RL) is a type of ML where an agent learns to make decisions

by performing actions in an environment to maximize cumulative reward [117]. Unlike

supervised learning, RL does not require labeled input/output pairs and learns from

the consequences of actions. This means that instead of training examples that indi-

cate the correct output for a given input, the training data in reinforcement learning

are assumed to provide only an indication as to whether an action is correct or not;

if an action is incorrect, there remains the problem of finding the correct action [118].

In reinforcement learning, an agent takes incremental actions, assesses the reward for

that action, and either continues forward or changes direction as a consequence of

the reward. These techniques are a form of human learning emulation, modeling how

a person learns through trial and error using a limited framework of knowledge, like

how a toddler learns to balance upright and walk by experiencing movements that

work and do not work.

Other popular ML algorithms include probability-based techniques such as Gaus-

sian processes [119] and artificial neural networks (ANN). For ANN, Gated recurrent

units (GRU) and long short-term memory units (LSTM) have proven effective for

time series data. LSTM has the ability to handle long-term dependencies and capture

complex patterns in sequential data. LSTM cells can avoid the vanishing or explod-

ing gradient problem, allowing them to learn from longer sequences without losing

or amplifying the information [120]. The drawback of LSTM is that it is computa-

tionally expensive, and as a result of the extra parameters in LSTM, it requires more

time to train. LSTM cells are more prone to overfitting, necessitating regularization

techniques such as dropout, weight decay, or early stopping. Due to the vast choices

of ML models, it is a common practice to test different models and compare their

performances.

ML models rely heavily on good-quality data for accurate predictions, and the

scarcity of samples seriously harms the performance of these models. According to

Zhuo and Ge [121], the approach to handle a situation like this can be classified into
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two aspects: algorithm and data. For classification tasks, algorithm approaches are

to design classifiers that can handle few samples, and semi-supervised learning such

as semi-supervised ladder network [122] can be used to learn precise data distribution

of the unlabeled samples. Also, as a means to trade off the minority class and gain

better accuracy across all classes, an imbalance learning algorithm [123] and cost-

sensitive gated neural networks [124] can be implemented. Data approaches deal

with generating synthetic or virtual samples that can be used for augmenting the

dataset, the augmented dataset can then be used to train classifiers. One of the

ways of generating synthetic samples is over-sampling; an example can be seen in

[125]. For regression tasks where a continuous target variable is being considered,

Torgo et al. [126] proposed a resampling strategy that uses synthetic minority over-

sampling technique (SMOTE) related approach for under-sampling and oversampling

within a regression context for a case of rare extreme value prediction. However,

other approaches for more effective data augmentation are deep learning-based, and a

representative is the generative adversarial networks (GAN), which was first proposed

in 2014 for image generation [127]. GAN has been proven to generate better samples

used for data augmentation in fault detection [128, 129].

One of the applications of ML is time series forecasting, where the variables are

time-stamped or dependent on time order. Generating synthetic samples for time

series data requires an algorithm that will take the temporal order of that data into

consideration, i.e., the temporal dynamics should be preserved. Moniz et al. [130]

proposed a resampling strategy for imbalanced time series data where an interval

of the data is important to the user but severely underrepresented in the training

data. This resampling strategy changed the original data distribution to meet the

user criteria. An effective form of generating virtual time series samples is proposed

by Yoon et al. [131], where GAN is used to generate time series data through a

framework called time-series generative adversarial networks (TimeGAN).

2.6 Choice of Machine Learning Algorithms

Due to the availability of different ML algorithms, several algorithms must be tested

to choose the best for a specific objective. The ML algorithms considered in this work

are described below with their mathematical formulations.
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2.6.1 Linear Regression

Linear Regression is considered in this work because of its easy way of implementation.

It provides the simplest form of a regression problem. The implementation of a linear

regression model is given below according to [132]:

Consider data D = {(yi, xi) : i = 1, 2, . . . , n} where yi is the ith response, measured

on a continuous scale; xi = (xi1, ..., xip)
t ∈ Rp is the associated predictor vector; and

n (� p) is the sample size. The linear model is specified as

yi = β0 + β1xi1 + . . .+ βpxip + εi with εi ∼ N (0, σ2) (2.7)

for i = 1, 2, . . . , n

In matrix form,

y = Xβ + ε with ε ∼ N (0, σ2I) (2.8)

where y = [y]n×1 is the n-dimensional response vector; X = (xij)n×(p+1) with

xi0 = 1 is often called the design matrix; ε = [εi]n×1 is a random error component

matrix; and β = [βi]1×(p+1) is the unknown constant matrix that must be estimated

There are several estimation methods available for linear models, including least

squares, maximum likelihood, bayesian approach, robust estimation, ridge regression,

and so on [104] to estimate the unknown parameters β and σ2 with the most popular

method being the least square method.

The least-squares criterion, which minimizes the distance from the observed re-

sponse to the predicted values is given by

S(β) =
n∑
i=1

(
yi − β0 −

p∑
j=1

xij

)2

= (y −Xβ)t(y −Xβ) (2.9)

Differentiating with respect to β gives

∂S(β)

∂β
= −2(Xty −XtXβ) (2.10)
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Setting Eq. 2.10 to 0 yields the normal equation

Xty = XtXβ

Let us assume that X is of full column rank p. Thus, the Gram matrix XtX must

be positive definite (p.d.). The least squares estimator (LSE) β̂ exists as a unique

solution to the normal equation and is given by

β̂ = (XtX)−1Xty (2.11)

Subsequently, the vector of fitted values; ŷ is

ŷ = Xβ̂ = X(XtX)−1Xty = Hy (2.12)

where H = X(XtX)−1Xt is often called the hat matrix or the projection matrix.

The difference between the observed value yi and the corresponding fitted value ŷi

is the residual ei = yi − ŷi. The n residuals may be conveniently written in matrix

notation as

e = y − ŷ = y −Hy = (1−H)y (2.13)

Moreover, the minimized least-squares criterion leads to

S(β̂) = ‖e‖2

which is often referred to as the residual sum of squares or the sum of squares for

error (SSE), a natural unbiased estimator of σ2 is given by

σ̂2 =
SSE

n− (p+ 1)
(2.14)

2.6.2 Random Forests

Random Forest is an ensemble method that builds multiple decision trees and averages

their predictions [133]. Random forest as defined in [134] is a generic principle of

classifier combination that uses tree-structured based {h(x,Θk), k = 1, . . .} where the

{Θk} are independent identically distributed random vectors, and each tree casts a
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unit vote for the most popular class at input x. Random forests can be used for both

regression and classification tasks [134].

Every Decision Tree is made by randomly selecting the data from the available

data. For example, a Random Forest for each Decision Tree (as in Random Subspaces)

can be built by randomly sampling a feature subset and/or by the random sampling

of a training data subset for each Decision Tree (the concept of Bagging) as illustrated

in Fig.2.7.

Figure 2.7: Illustration of random forests algorithm.

.

In a Random Forest, the features are randomly selected in each decision split. The

correlation between trees is reduced by randomly selecting the features that improve

the prediction power and result in higher efficiency. The advantages of random forests

include [133]

• Overcoming the problem of overfitting

• Training data are less sensitive to outliers
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• Variable importance and accuracy is generated automatically

• Eliminates the need for pruning the trees since parameters can be set easily.

The steps below explain the implementation of the random forests algorithm as

given in [133]. let TK(x) be the k-th tree in the forest.

1. By Sampling N randomly, If the number of cases in the training set is N but

with replacement from the original data. This sample will be used as the training

set for growing the tree

2. For M number of input variables, the variable m is selected such that m� M

is specified at each node, m variables are selected at random out of the M , and

the best split on this m is used for splitting the node. During the forest growing,

the value of m is held constant.

3. Each tree is grown to the largest possible extent. No pruning is used.

4. Voting will take place by averaging the decision tree such that

RF (x) =
1

N

N∑
k=1

TK(x)

5. Finally, select the most voted prediction result as the final prediction result.

Random Forest generally exhibits a significant performance improvement as com-

pared to a single tree classifier. The generalization error rate that it yields compares

favorably to Adaboost. However, it is more robust to noise [133]

2.6.3 Extra Trees

Extremely Randomized Trees or Extra Trees (ET) algorithm is an ensemble approach

based on a large number of decision trees [135]. The idea behind the ensemble tech-

nique is to combine the decisions of distinct models and make a judgment based on

that combination, which essentially results in better performance compared to the

achievements of a single decision or model. The ensemble technique is used in a vast

number of applications for classification and regression tasks [136].
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The Decision trees-based ensemble technique can achieve high performance when

the base learners are independent, and that can be attained through randomization.

When growing the trees, randomization entails better tree diversity and facilitates

reducing the correlation [137]. One might say that ensemble learning methodologies

work on the principles of the divide-and-conquer approach (or the wisdom of the

crowd) to achieve enhanced performance. In supervised ML tasks, we can get a

stable and more robust classifier (model) with precise predictions using an ensemble

technique because it reduces the factors, i.e., noise, bias, and variance. However, an

ensemble learner can cause a notable rise in computational costs due to the need to

train a number of individual classifiers.

The ET algorithm consists of a number of Decision trees, where each tree is com-

posed of a root node, child/split nodes, and leaf nodes, as shown in Fig.2.8. Given a

dataset X at the root node, ET selects a split rule based on a random subset of features

and a partially random cut point. In each child node, this procedure is repeated until

reaching a leaf node. Furthermore, the three most important parameters of ET can be

outlined as the number of trees in the ensemble (k), the number of attributes/features

to select randomly (f), and the minimum number of samples/instances required to

split a node (nmin).

Figure 2.8: Illustration of the Extra Trees Algorithm.

As an ensemble of individual trees, the ET algorithm is similar to the regular

Random forests, but with two key differences. First, the entire learning sample is

used to train each tree instead of training a bootstrap sample. Second, the top-down

splitting of nodes in the tree is with completely random splits, not the best splits
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[135]. A random cut-point is used instead of calculating the locally optimal cut-point

for each attribute being considered based on gini impurity or information gain. This

value is selected from a uniform distribution within the attribute’s empirical range (in

the training set of the tree). Subsequently, the split that produces the highest score

of all the randomly generated splits is selected for splitting the node. Since finding

the best split at every node for each attribute or feature is highly time-consuming

when growing a Decision tree, the process of ET makes it much faster to train than

an ordinary Random forest algorithm. Also, ET outperforms Random Forests when

there are noisy points in the data [138].

Furthermore, in the testing process, a test sample proceeds through each of the

Decision Trees and to each child node, choosing the best splits and forwarding the test

sample to the tree’s right/left child node before a leaf node is reached. The leaf node

determines the class for the test sample in any Decision Tree, and the final prediction

is called the majority of votes by the (k) decision trees of the ET algorithm (Fig. 2.8).

The generalization error of the ML model can be declared as the sum of unique

errors, i.e., bias and variance. A high bias can give rise to underfitting, which can be

calculated as the ability to generalize unseen data accurately. In other circumstances,

a high variance can arouse overfitting, which is provoked by the intense sensitivity of

the model to inconsequential variations in the training set. The ET algorithm has the

ability to strongly reduce bias and variance error better than any other randomization

method, i.e., random forest. The variance is minimized by the selection of the cut-

point and the explicit randomization of the subset of attributes, whereas the bias is

minimized due to the complete use of the original training set to learn the individual

Decision Tree [135].

Furthermore, a major advantage of ET during implementation is that it does not

need immense concentration towards the selection of hyperparameter values. The ET

model is quite robust to noise from an individual DT such that, typically, there is no

need to prune. The general working steps of the ET algorithm [138] are summarized

in Table 2.1. In practice, the number of trees k (step 4) is considered to be the single

parameter that needs to be taken care of while constructing the ET mode.
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Table 2.1: Steps towards Extra Trees Algorithm

1: Construct a training set of size S
2: Randomly select n learning samples without replacement from training set

S(Bootstrap=False)
3: Build a tree from the entire learning sample. At each node:

3.1: Randomly select f features without replacement.
3.2: Split the node by random cut-points.

4: Repeat, k times, steps 2-3
5: Aggregate the results of each tree to assign the respective class (majority voting)

2.6.4 Gradient Boosting

The common ensemble techniques like random forests rely on simple averaging of

models in the ensemble [134]. The family of boosting methods is based on a different,

constructive strategy of ensemble formation. The main idea of boosting is to add

new models to the ensemble sequentially. At each particular iteration, a new weak,

base-learner model is trained with respect to the error of the whole ensemble learned

so far [139].

In gradient boosting machines, or simply GBMs, the learning procedure consecu-

tively fits new models to provide a more accurate estimate of the response variable.

The principle idea behind this algorithm is to construct the new base learners to be

maximally correlated with the negative gradient of the loss function associated with

the whole ensemble. The loss functions applied can be arbitrary, but to give a better

intuition, if the error function is the classic squared-error loss, the learning procedure

would result in consecutive error-fitting [140]. In general, the choice of the loss func-

tion is up to the researcher, with both a rich variety of loss functions derived so far

and the possibility of implementing one’s own task-specific loss [139].

For a dataset (x, y)Ni=1, where x = (x1, . . . , xd) refers to the explanatory input

variable and y to the corresponding label of the response variable. The goal is to

reconstruct the unknown functional dependence x
f−→ y with estimate f̂(x) such that

some specified loss function ψ(y, f) is minimised:

f̂(x) = y

f̂(x) = argmin
f(x)

ψ(y, f) (2.15)



42

If we rewrite the estimation problem in terms of expectations, the equivalent for-

mulation would be to minimize the expected loss function over the response variable

Ey(ψ[y, f(x)]), conditioned on the observed explanatory data x:

f̂(x) = argmin
f(x)

Ex[

expected y loss︷ ︸︸ ︷
Ey(ψ[y, f(x)]) |x]︸ ︷︷ ︸

expected over the whole dataset

(2.16)

The response variable y can come from different distributions. This naturally leads

to a specification of different loss functions ψ. In particular, if the response variable

is binary, i.e., y ∈ 0, 1, one can consider the binomial loss function. If the response

variable is continuous, i.e., y ∈ R, one can use the classical L2 squared loss function

or the robust regression Huber loss.

To make the problem of function estimating tractable, we can restrict the function

search space to a parametric family of functions f(x, θ). This would change the

function optimization problem into the parameter estimation one:

f̂(x) = f(x, θ̂) (2.17)

θ̂ = argmin
θ

Ex[Ey(ψ[y, f(x, θ)])|x] (2.18)

Typically, the closed-form solutions for the parameter estimates are not available.

To perform the estimation, iterative numerical procedures are considered. In practice,

given some specific loss function ψ(y, f) and/or a custom base-learner h(x, k), the

solution to the parameter estimates can be difficult to obtain [139]. To deal with

this, it was proposed to choose a new function h(x, θt) to be the most parallel to the

negative gradient {gt(xi)}Ni=1 along the observed data:

gt(x) = Ey

[
∂ψ(y, f(x)

∂f(x)
|x
]
f(x)=f̂ t−1(x)

(2.19)

Instead of looking for a general solution for the boost increment in the function

space, one can simply choose the new function increment to be the most correlated

with −gt(x). This permits the replacement of a potentially very hard optimization
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task with the classic least-squares minimization one:

(ρ, θt) = argmin
ρ, θ

N∑
i=1

[−gt(xi) + ρh(xi, θ)]
2 (2.20)

To summarize, the complete formulation of the gradient boosting algorithm as

originally proposed by Friedman [140] is given in Table 2.2.

Table 2.2: Gradient Boost Algorithm

Inputs:
• input data (x, y)Ni=1

• number of iterations M
• choice of loss-function ψ(y, f)
• choice of the base-learner model h(x, k)
Algorithm:

1: initialize f̂0 with a constant
2: for t = 1 to M do
3: compute the negative gradient gt(x)
4: fit a new base learner function h(x, θt)
5: find the best gradient descend step-size ρt

ρt = argminρ
N∑
i=1

ψ[yi, f̂t−1(xi) + ρh(xi, θt)]

6: update the function estimate:

f̂t ← f̂t−1 + ρth(x, θt)
7: end for

2.6.5 Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNs) with long short-term memory (LSTM) have emerged

as an effective and scalable model for several learning problems related to sequential

data [141]. Earlier methods for attacking these problems have either been tailored

toward a specific problem or did not scale to long-term dependencies. LSTMs, on the

other hand, are both general and effective at capturing long-term temporal dependen-

cies. They do not suffer from the optimization hurdles that plague simple recurrent

networks (SRNs) [142]. LSTMs have been used to advance the state of the art for

many difficult problems such as handwriting recognition [143], acoustic modeling of

speech [144], and analysis of audio [145], among others.
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The central idea behind the LSTM architecture is a memory cell, which can main-

tain its state over time, and nonlinear gating units, which regulate the information

flow into and out of the cell. A variety of LSTM cell configurations have been de-

scribed since the first LSTM introduction in 1997 [146]. A simple RNN cell (Fig.2.9a)

was extended by adding a memory block, which is controlled by input and output

multiplicative gates. Fig.2.9b demonstrates the LSTM architecture of the jth cell cj.

The heart of a memory block is a self-connected linear unit sc, also called a “constant

error carousel” (CEC). CEC protects LSTM from vanishing and exploding gradient

problems of traditional RNNs. An input and output gates consist of corresponding

weight matrices and activation functions. The input gate with weighted input netin

and output yin is capable of blocking irrelevant data from entering the cell. Simi-

larly, the output gate with weighted input netout and yout shapes the output of the

cell yc. Overall, it can be concluded that LSTM cells consist of one input layer,

one output layer, and one self-connected hidden layer. The hidden unit may contain

“conventional” units that can be fed into subsequent LSTM cells.

Figure 2.9: (a) An original LSTM unit architecture: a memory cell and two gates;
(b) LSTM cell with forget gate; (c) modern representation of LSTM with forget gate.

Nevertheless, a standard LSTM cell also met some constraints due to the linear

nature of sc. It was identified that its constant growth may cause saturation of the

function h and convert it into an ordinary unit. Therefore, an additional forget gate

layer was included [147]. A new gate allows unneeded information to be erased and

forgotten. Fig.2.9b shows a new cell architecture. In addition, in late works, gates are
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included in the cell, and LSTM architecture of frequent occurrence is demonstrated

in Fig.2.9c.

The feedforward behaviour of the most commonly used configuration can be de-

scribed by Eqs. (2.21 - 2.26). The cell input xt at time t concatenates with an output

of a cell ht−1 at the previous time step t − 1. The resulting vector goes through the

input node (gt) and forgets (ft), input (it), and output gates (ot).

gt = C̃t = tanhW (g)xt + U (g)ht−1 + b(g) (2.21)

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (2.22)

it = σ(W (i)xt + U (fi)ht−1 + b(i)) (2.23)

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (2.24)

Then, the forget gate decides whether to keep cell data Ct−1 from a previous time

step or block it. The current cell memory state and output of the cell are defined by:

Ct = gt � it + ft � Ct−1 (2.25)

ht = ot � tanhCt (2.26)

where U (∗) is the input weight matrix, W (∗) is the hidden layer weight matrix, σ is an

activation function and symbol � denotes a pointwise or Hadamard multiplication.

Weight increment during backpropagation can be found using the equation below:

W new = W old − λ · δW old (2.27)

where λ is a Stochastic Gradient Descent (SGD) coefficient and deltas δW =
T∑
t=1

δgateSt · xt, δU =
T∑
t=1

δgateSt+1 · ht, δb =
T∑
t=1

δgateSt+1. Deltas of gateSt are to be

found using the following equations [148]:

δht = ∆t + ∆ht (2.28)

δCt = δht � ot � (1− tanh2(Ct)) + δCt+1 � ft+1 (2.29)

δgt = δCt � it � (1− g2t ) (2.30)
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δit = δCt � gt � (1− it) (2.31)

δft = δCt � Ct−1 � ft � (1− ft) (2.32)

δot = δht � tanhCt � ot � (1− ot) (2.33)

δxt = W T · δgateSt (2.34)

δh−1 = UT · δgateSt (2.35)

2.6.6 K-Means Clustering

Clustering is a generic tool for finding groups or clusters in multivariate data based

on their similarities [149]. Several algorithms have been proposed in the literature for

clustering. The k-means clustering algorithm is the most commonly used because of

its simplicity [150]. K-Means is one of the simplest unsupervised learning algorithms

that solve the well-known clustering problem. The procedure follows a simple and

easy way to classify a given data set through a certain number of clusters (assume k

clusters) fixed a prior [151].

The main idea is to define k centroids, one for each cluster. These centroids should

be placed in a cunning way because different location causes different results. So, the

better choice is to place them as far away from each other as possible. The next step

is to take each point belonging to a given data set and associate it with the nearest

centroid. When no point is pending, the first step is completed, and an early group

is done. At this point, it is necessary to re-calculate k new centroids as centers of the

clusters resulting from the previous step. After these k new centroids, a new binding

has to be done between the same data points and the nearest new centroid. A loop

has been generated. As a result of this loop, it may be noticed that the k centroids

change their location step by step until no more changes are done. In other words,

centroids do not move anymore.

K-means clustering algorithm aims at minimizing a squared error objective func-

tion (this is the sum of squared distances of samples to their closest cluster, i.e.,

inertia) [151]:

W (S,C) =
K∑
k=1

∑
i∈Sk

‖yi − ck‖2 (2.36)
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where S is a K-cluster partition of the entity set represented by vector yi (i ∈ I)

in the M -dimensional feature space consisting of non-empty non-overlapping clusters

Sk each with a centroid ck (k = 1, . . . , K).

The algorithm is composed of the following steps:

1. Place k points in the space represented by the objects that are being clustered.

These points represent the initial group of centroids.

2. Assign each object to the group that has the closest centroid

3. When all objects have been assigned, recalculate the positions of the k centroids.

4. Repeat Step 2 and 3 until the centroids no longer move.

There have been a number of different proposals in the literature for choosing the

right K after multiple runs of K-Means. The oldest method for determining the true

number of clusters in a dataset is the elbow method [152]. It is a visual method.

The idea is that Start with K = 2, and keep increasing it in each step by 1, the

number of clusters reached just before additional clusters start leading to smaller

change in inertia (i.e. an elbow where the distortion in inertia goes down slowly) is

the appropriate number of clusters.. This is the K value.

2.7 Time-series Generative Adversarial Networks

Generative adversarial networks (GAN) have become one of the most popular tech-

nologies in the field of deep learning. GAN was proposed in 2014 by Ian J. Goodfellow

et al. [127]. The basic principle of GAN is illustrated in Fig.2.10; it consists of two

network components: a generator (G) and a discriminator (D).

G is a network that generates samples; it receives a random noise z and generates

samples using noise denoted as G(z) = Xsynthetic. D is a network that determines

whether a sample is real or not. An output of 1 must be a real sample, while an

output of 0 means a synthetic sample. The real sample Xreal and the synthetic sample

Xsynthetic are fed to the D together during the training. The goal of G is to generate

real samples to deceive D, while the goal of D is to separate the samples generated
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Figure 2.10: GAN architecture

by G from the real samples as much as possible. Therefore, G and D constitute a

dynamic game playing, whose training process can be expressed as Eq. 2.37

min
G

max
D

V (D,G) = EX∼pdata(X)[logD(X)] + Ez∼pz(z)[log(1−D(G(z)))] (2.37)

where D and G represent generator and discriminator; V (D,G) represents the

value function of generator and discriminator; E represents mathematic expectation;

z and X represent noise and real data; pz(z) and pdata(X) represent the distribution

of noise and real data.

In the best case, G will produce a sample G(z) that looks like a real sample. For

D, it is difficult to determine whether the sample generated by G is real or not, so

its output is 0.5. So far, a generative model has been built, which can be used to

generate a synthetic sample like a real one.

Time-series Generative Adversarial Networks (TimeGAN) is a generative model

variant based on GAN for time-series data [153]. TimeGAN was proposed in 2019

by Yoon et al. [131]. TimeGAN is trained adversarially and jointly via a learned

embedding space with supervised and unsupervised losses. TimeGAN consists of four

network components: an embedding function, a recovery function, a sequence gen-

erator, and a sequence discriminator. Hence, TimeGAN has two parts: one is an

autoencoder, and the other is GAN, as shown in Fig.2.11. Based on the guidance of
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Figure 2.11: The diagram of TimeGAN [153].

the discriminator, the generator can generate a synthetic sample that achieves real fea-

ture distribution. TimeGAN combines this architecture with an autoencoder, which

reduces the dimensionality of data into a hidden space and then recreates the data us-

ing hidden features. Autoencoder allows GAN to learn temporal dynamics in smaller

dimensions. The hidden features generated by the generator and the hidden features

generated by the encoder from the real data constitute supervised learning, enabling

the generator to capture the temporal dynamics on the real data, i.e. p(Xt|X1:t−1). In

this way, a generative model is obtained that can explicitly learn both the temporal

characteristics and the relationships among multiple features. The implementation of

the TimeGAN described below was proposed by Yoon et al. [131].

2.7.1 Embedding and Recovery Functions

The embedding and recovery functions provide mappings between feature and latent

space, allowing the adversarial network to learn the underlying temporal dynamics

of the data via lower-dimensional representations. Let HS and HX denote the latent

space vectors corresponding to feature space S and X . The embedding function:

e : S ×
∏

tX → HS ×
∏

tHX takes static and temporal feature to their latent code
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hS , h1:T = e(s, x1:T ). e can be implemented via a recurrent network

hS = eS(s) ht = eX (hs, ht−1, xt) (2.38)

where eS : S → HS is an embedding network for static features and eX : HS ×HX ×
X → HX is a recurrent embedding network for temporal features. In the opposite

direction, the recovery function r : HS×
∏

tHX → S×
∏

t S takes static and temporal

codes back to their feature representations s̃, x̃1:T = r(hs, h1:T ). r can be implemented

through a feedforward network at each step

s̃ = rS(hs), x̃t = rX (ht) (2.39)

where rS : HS → S and rX : HX → X are recovery networks for static and temporal

embeddings.

2.7.2 Sequence Generator and Discriminator

The Generator first outputs into the embedding space instead of producing synthetic

output directly in the feature space. Let ZS ,ZX denote vector spaces over which

known distributions are defined, and from which random vectors are drawn as input

for generating into HS ,HX . The generating function g : ZS ×
∏

tZX → HS ×
∏

tHX
takes a tuple of static and temporal random vectors to synthetic latent codes ĥS , ĥ1:T =

g(zS , Z1:T ). g can be implemented through a recurrent neural network.

ĥS = gS(ZS), ĥt = gX (ĥS , ĥt−1, zt) (2.40)

where gS : ZS → HS is an generator network for static features and gX : HS ×HX ×
ZX → HX is a recurrent genertor for temporal features. Random vector zS can be

sampled from a distribution of choice, and zt follows a stochastic process such as

Gaussian distribution and Wiener process.

Finally, the discriminator also operates from the embedding space. The discrimi-

nation function d : HS ×
∏

tHX → [0, 1] ×
∏

t[0, 1] receives the static and temporal

codes, returning classifications ỹS , ỹ1:T = d(h̃S , h̃1:T ). The h̃∗ notation denotes either

real (h∗) or synthetic (h̃∗) embeddings; similarly, the ỹ∗ notation denotes classifications

of either real (y∗) or synthetic (ỹ∗) data. d can be implemented via a bidirectional
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recurrent network with a feedforward output layer.

ỹS = dS(h̃S), ỹt = dX ( ~ut, ~ut) (2.41)

where ~ut = ~cX (ĥS , ĥt, ~ut−1) and ~ut = ~cX (ĥS , ĥt, ~ut+1) respectively denote the sequences

of forward and backward hidden states, ~cX , ~cX are recurrent functions and dS , dX are

output layer classification functions. Similarly, there are no restrictions on architecture

beyond the generator being autoregressive.

2.7.3 Joint Training

As a reversible mapping between feature and latent spaces, the embedding and recov-

ery functions should enable accurate reconstructions s̃, x̃1:T of the original data s, x1:T

from their latent representations hS , h1:T . Therefore, the first objective function is

the reconstruction loss given by

LR = Es,x1:T∼p[‖s− s̃‖2 +
∑
t

‖xt − x̃t‖2] (2.42)

In TimeGAN, the generator is exposed to two types of inputs during training,

as shown in Fig.2.12. First, in pure open-loop mode, the generator which is au-

toregressive receives synthetic embeddings h̃S , h̃1:t−1 (i.e., its own previous outputs)

in order to generate the next synthetic vector h̃t. Gradients are then computed on

the unsupervised loss to allow maximizing (for the discriminator) or minimizing (for

the generator) the likelihood of providing correct classifications ŷS , ŷ1:T for both the

training data hS , h1:T as well as for synthetic output ĥS , ĥ1:T from the generator,

LU = Es,x1:T∼p[log yS +
∑
t

log yt] + Es,x1:T∼p̂[log(1− ŷS) +
∑
t

log(1− ŷt)] (2.43)

Relying solely on the discriminator’s binary adversarial feedback may not be suf-

ficient incentive for the generator to capture the stepwise conditional distributions in

the data. An additional loss was introduced to further discipline learning to achieve

this more efficiently. In an alternating fashion, we can also train in closed-loop mode,

where the generator receives sequences of embeddings of actual data h1:t−1 (i.e., com-

puted by the embedding network) to generate the next latent vector. Gradients
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Figure 2.12: (a) Block diagram of component functions and objectives. (b) Training
scheme; solid lines indicate forward propagation of data, and dashed lines indicate
backpropagation of gradients [131].

can now be computed on a loss that captures the discrepancy between distributions

p(Ht|HS ,H1:t−1) and p̂(Ht|HS ,H1:t−1). Applying maximum likelihood yields the

familiar supervised loss:

LS = Es,x1:T∼p[
∑
t

‖ht − gX (hS , ht−1, zt)‖2] (2.44)

Where gX (hS , ht−1, zt) approximates Ezt∼N [p̂(Ht|HS ,H1:t−1, zt)] with one sample

zt—as is standard in stochastic gradient descent. In sum, at any step in a training se-

quence, the difference between the actual next-step latent vector (from the embedding

function) and synthetic next-step latent vector (from the generator—conditioned on

the actual historical sequence of latent) is assessed. While LU pushes the generator to

create realistic sequences (evaluated by an imperfect adversary), LS further ensures

that it produces similar stepwise transitions (evaluated by ground-truth targets).



Chapter 3

Research Methodology

This chapter presents the justification for using machine learning methods to detect

flooding in a distillation column, followed by the methodology employed in this work

for flooding detection. This involves the approaches for preprocessing the collected

sensor data of the distillation column. Subsequently, the approaches and mathemat-

ical formulations used for early flooding detection in a distillation column are pre-

sented. Due to the data imbalance between the normal operating data and flooding

regime data, with flooding regime data being the minority as stated in the objec-

tives statement in Section 1.4, unsupervised machine learning methods such as PCA

and Autoencoders are considered for flooding detection. The data imbalance cre-

ated by the insufficient flooding regime data does not affect these methods. Also,

supervised learning methods are considered for flooding detection by forecasting the

pressure drop of the column so that with accurate classification of the forecasted pres-

sure drop, possible risk of flooding can be detected before it happens, leaving ample

time for operators to make engineering decisions before the full development of flood-

ing. However, sufficient flooding regime data is needed to use supervised learning for

flooding prediction. This data imbalance problem is solved using Time-series gener-

ative adversarial networks (TimeGAN) to generate synthetic flooding regime data to

balance the data.

In summary, three methods are considered for early flooding detection in the

distillation column. PCA and Autoencoder are considered unsupervised ML methods,

while pressure drop forecasting is considered an approach for different supervised ML

methods. The overview of the research methodology is illustrated in Fig.3.1.
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Figure 3.1: Overview of the research methodology for flooding detection using machine
learning methods.

3.1 Rationale for Machine Learning Approaches

3.1.1 Challenges of Traditional Detection Method

Traditional flooding detection methods in distillation columns have commonly relied

on static thresholds or physical observation, often based on factors such as liquid

holdup or pressure differentials. While effective to an extent, these conventional tech-

niques pose limitations, especially in real-time or dynamic operational environments

where conditions may fluctuate rapidly. Static threshold-based approaches can strug-

gle to adapt to variations in process parameters, leading to delays in detection and

potential safety risks. Additionally, manual monitoring is labor-intensive and suscep-

tible to human error, particularly in high-demand industrial settings. These limita-

tions underscore the need for an automated, adaptive detection method capable of

accurately identifying flooding events in real time.
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3.1.2 Advantages of Machine Learning for Flooding Detec-

tion

ML offers unique advantages for flooding detection, addressing many of the constraints

posed by traditional approaches. ML algorithms excel in recognizing complex pat-

terns and correlations within large datasets, enabling them to detect early indicators

of flooding that may not be evident through conventional methods. Unlike fixed

thresholds, ML models can adapt to the specific operating conditions of a distilla-

tion column, learning from historical and real-time data to provide more reliable and

timely predictions. This adaptability is crucial in industrial settings where variability

in feed composition, temperature, and pressure can significantly impact process sta-

bility. By leveraging ML, the detection system can respond dynamically to changes,

offering a robust and efficient solution for early flooding detection.

3.1.3 Addressing Data Imbalance through Machine Learning

A critical challenge in applying ML to flooding detection is the scarcity of flooding

event data, leading to a significant class imbalance in the dataset. This imbalance

hinders the performance of supervised learning algorithms, as models trained on imbal-

anced data may exhibit bias toward the majority class (non-flooding events), reducing

their ability to correctly identify flooding occurrences. To address this issue, synthetic

flooding data generation has been incorporated into the data preparation process, al-

lowing for a balanced dataset that improves model training and performance. The

addition of synthetic data enables the supervised ML model to learn from a wider va-

riety of flooding scenarios, enhancing its capability to accurately detect rare flooding

events. Through techniques such as using advanced methods like Generative Adver-

sarial Networks (GANs) or data augmentation, the dataset can achieve a balanced

representation of flooding and non-flooding cases, allowing the supervised ML model

to deliver consistent, reliable detection.



56

3.1.4 Selection of Specific Machine Learning Algorithms

The selection of specific ML algorithms further contributes to the effectiveness of

flooding detection in this study. Given the complexity of distillation column oper-

ations, models that handle regression tasks well—such as random forest, boosting

algorithms, and neural networks are particularly suitable. Random forests, for ex-

ample, are interpretable and perform well with large data, making them an excellent

choice for initial testing and baseline comparisons. Neural networks, particularly deep

learning models, offer powerful capabilities in feature extraction and complex pattern

recognition, which are invaluable in identifying subtle trends and pre-flooding condi-

tions. By choosing algorithms with proven robustness in handling complex patterns

and time dependencies in data, this study ensures that the selected ML models can

effectively manage the intricacies of flooding detection while maximizing accuracy and

responsiveness.

3.2 Data Collection & Preprocessing

The first step is data collection and preprocessing. This involves the collection of

data from the sensors of an industrial distillation column. These data give informa-

tion about the mass and energy balances in the distillation column and are deemed

important to the distillation process. The data must characterize the temperature

measurements in the column trays, flow rates, differential pressure across the column,

heat duties, and other necessary measurements. Data preprocessing is important for

any data-based analysis to ensure that data truly represent the different events of the

process. Plant shutdowns occur in the process industry for different reasons, maybe

planned reasons, such as repairs and maintenance, or unplanned reasons, such as haz-

ardous accidents or chemical spillage. In this analysis, the shutdown period of the

plant is determined, and data related to this period are removed since they don’t

represent the dynamics of the plant during operation.

Also, missing data are filled using the forward fill method, which simply is a

method for handling missing or incomplete data. The forward fill method involves

carrying forward the last observed value to fill the missing gaps in the incomplete

data. This filling method was used due to its ease of implementation and because

there is little missing data in the considered features. These missing data are random
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and exist sporadically in the dataset.

An exponentially weighted moving average (EWMA) is applied to the data to

ensure the data is free from sensor noise. The EWMA can be vıewed as a dynamic

control mechanısm to help keep a process mean on target whenever dıscrete data are

sequentially available [154]. It is also a popular method for estimating the long-term

trend of a time series while giving more weight to recent observations [85]. It is

implemented according to Eqn.3.1 below

ŷt = αyt + (1− α)ŷt−1 (3.1)

where ŷt is the EWMA at time t, yt is the observation at time t, and α is the smoothing

parameter, typically a value between 0 and 1. It determines the weight of the current

observation versus the previous EWMA value. A higher value of α gives more weight

to recent observations, while a lower value gives more weight to historical observations,

ŷt−1 is the previous EWMA value.

3.3 Flooding Detection using Unsupervised Learn-

ing Methods

In this distillation column, PCA and autoencoders are the unsupervised learning

methods considered for early flooding detection.

3.3.1 Flooding Detection using PCA

3.3.1.1 PCA Formulation

Principal component analysis (PCA) is a linear dimensionality reduction technique

that produces a lower-dimensional representation in a way that preserves the correla-

tion structure between the process variables and is optimal in terms of capturing the

variability in the data [155]. It determines a set of orthogonal vectors called loading

vectors, ordered by the amount of variance explained in the loading vectors’ direction.

The formulation of PCA used in this work to detect flooding in a distillation column

is described below.
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Given a training set of n observations and m process variables stacked into a

matrix X as shown below

X =


x11 x12 .. x1m

x21 x22 .. x2m

: : .. :

xn1 xn2 .. xnm

 (3.2)

The loading vectors are calculated by singular value decomposition (SVD) [156].

1√
n− 1

X = UΣV T (3.3)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices, and the matrix Σ ∈ Rn×m

contains the non-negative real singular values of decreasing magnitude along its main

diagonal (σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0), and zero off-diagonal elements. The loading

vectors are the orthonormal column vectors in the matrix V , and the variance of the

training set projected along the ith column of V is equal to σ2
i . Solving Eqn 3.3 is

equivalent to solving an eigenvalue decomposition of the sample covariance matrix S,

S =
1√
n− 1

XTX = V ∧ V T (3.4)

where the diagonal matrix ∧ = ΣTΣ ∈ Rm×m contains the non-negative real eigenval-

ues of decreasing magnitude (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0) and the ith eigenvalue equals

the square of the ith singular value (i.e λi = σ2
i ).

In order to optimally capture the variations of the data while minimizing the effect

of random noise corrupting the PCA representation, the loading vectors corresponding

to the a largest singular values are typically retained. Selecting the columns of the

loading matrix P ∈ RM×a to correspond to the loading vectors associated with the first

a singular values, the projection of the observations in X into the lower-dimensional

space is contained in the score matrix,

T = XP (3.5)

And the projection of T back into the m-dimensional observation space,
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X̂ = TP T (3.6)

The difference between X and X̂ is the residual matrix E:

E = X − X̂ (3.7)

The residual matrix captures the variations in the observation space spanned by

the loading vectors associated with the m− a smallest singular values. The subspace

spanned by X̂ and E are called the score space and residual space, respectively. The

subspace in the matrix E has a small signal-to-noise ratio, and removing this space

from X can produce a more accurate representation of the process X̂.

Hence, the measured vector matrix X can be expressed using PCA as the sum of

two orthogonal parts, approximated vector X̂, and residual vector E as illustrated in

Fig.3.2.

Figure 3.2: Representation of an observed data X as a sum of approximate and error
part using PCA.

A new observation (column) vector in the testing set, x ∈ Rm can be projected into

the lower-dimensional score space ti = xTPi where Pi is the ith loading vector. The

transformed variable ti is also called the ith principal component of x. To distinguish

between the transformed variables and the transformed observation, the transformed
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variables will be called principal components, and the individual transformed obser-

vations will be called scores.

By appropriately determining the number of loading vectors a, to maintain the

PCA model, several techniques exist for determining the value of the reduction order

a. The method used in this research is the cumulative percent variance (CPV) test

described by I. Karimi and K. Salahshoor [157]. This is due to its simplicity and wide

applications. This method is described by the equation below.

CPV% =

a∑
j=1

λj

m∑
j=1

λj

=

a∑
j=1

λj

trace(∧)
(3.8)

The value of a is selected to make the CPV larger than a pre-determined threshold.

The threshold considered in this research is 95%.

3.3.1.2 Hotelling’s T 2 Statistic

To detect faults (Such as flooding in a distillation column), Hotelling’s T 2 and the

squared prediction error (SPE) monitoring statistics are used to detect flooding as a

fault for new measurements. By including in the matrix P the loading vectors associ-

ated only with the a largest singular values, the T 2 statistic for the lower dimensional

space can be computed [21]

T 2 = xTPΣ−2aP
Tx (3.9)

where Σa contains the first a rows and columns of Σ. The T 2 statistic measures the

variations in the score space only. The threshold for the T 2 statistic is given as

T 2
α =

a(n− 1)(n+ 1)

n(n− a)
Fα(α,n−a) (3.10)

where a is the number of principal components, n is the number of measured observa-

tions, α is the confidence level, and Fα(α,n−a) is the F distribution with the appropriate

degrees of freedom and confidence level.
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3.3.1.3 Squarred Prediction Error (SPE) or Q Statistic

The portion of the observation space corresponding to the m − a smallest singular

values can be monitored more robustly using the SPE or Q statistic. The SPE is a

squared 2-norm measuring the deviation of the observations to the lower-dimensional

PCA representation. It is computed below

r = I − PP T

SPE = rT r (3.11)

where r is the residual vector, a projection of the observation x into the residual space.

The threshold of the SPE is computed below

Qα = θ1

[
h0Cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

] 1
h0

(3.12)

where

θi =
n∑

j=a+1

σ2i
j , h0 = 1− 2θ1θ3

3θ22
(3.13)

Cα is the normal deviate corresponding to the (1−α) percentile at a given signif-

icance level α.

3.3.1.4 PCA For Flooding Detection

PCA can detect flooding in a distillation column, where a PCA model is first con-

structed using process data obtained under normal operating conditions (non-flooding

conditions). Then, the model is used along with one of the detection indices, such

as T 2 or Q statistic, to detect flooding for new data samples (Flooding data) if the

detection index falls outside the control limits, which are defined by the thresholds

associated with these indices. Table 3.1 summarizes the procedures for this detection.
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Table 3.1: PCA Steps for Flooding detection

1: Given:
• A training flooding-free data set that represents the normal process operation
• A testing data set (that contains flooding events)
• A fixed false alarm probability α

2: Data Preprocessing
• Scale the data to zero mean and unit variance

3: Build PCA model using the training flooding-free data
• Compute the covariance matrix S
• Calculate the eigenvalues and eigenvectors of S
• Sort the eigenvalues in decreasing order
• Determine how many principal components to be used and obtain the loading vector P
• Express the data matrix as a sum of approximate and residual

4: Compute the Flooding detection indices
• Compute the T 2 statistic and the threshold T 2

α

• Compute the SPE or Q statistic and the threshold Qα

5: Test the new data
• Scale the flooding data
• Express the data matrix as a sum of approximate and residual using the loading vector P
• Compute the T 2 statistic and the Q statistic

6: Check for flooding
• if T 2 ≥ T 2

α, declare flooding
• if Q statistic ≥ Qα, declare flooding

3.3.2 Flooding Detection using Autoencoder

An autoencoder is a self-supervisory neural network used to learn efficient codings of

unlabelled data. It learns a representation for a set of input data by training the neural

network to ignore insignificant data (i.e., often termed as “noise”) [158]. A typical

autoencoder comprises an input, output, and several hidden layers. An autoencoder

consists of two parts: an encoder and a decoder, generally implemented by neural

networks. The encoder and decoder can be viewed as two functions h = f(x) and x̂ =

g(h), the f(x) maps data point x from data space to feature space, while g(h) produces

a reconstruction of data point x by mapping h from feature space to data space [159].

The main goal of the autoencoder is to make the output vector similar to the original

space by minimizing the reconstruction error between them. The operations of an

autoencoder can be divided into Encoding, Decoding, and Reconstruction Loss as

illustrated in Fig.3.3.
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Figure 3.3: A typical illustration of an Autoencoder [158].

3.3.2.1 Encoding

In the encoding operation of an autoencoder, input data x is a m high dimensional

vector (i.e., x ∈ Rm) that is mapped to a low dimensional bottleneck layer represen-

tation h after removing any insignificant feature. This bottleneck layer is the feature

space. In the encoding operation, the input vectors xi ∈ Rm are compressed into d

(d < m) numbers of neurons that make up the hidden layer. The activation of the

neuron i in the hidden layer of the encoder is given by:

hi = fθe(x) = f(
n∑
j=1

W input
ij xj + binputi ) (3.14)

where x is the input vector, θe is the parameters {W input, binput}, W is the encoder

weight matrix with size m × d, b is a bias vector of dimensionality d and f is the

activation function. Hence, the input vector is encoded into a lower-dimensional

vector.
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3.3.2.2 Decoding

In the decoding operation, the bottleneck layer representation of h is used to generate

the output x̂ that maps back from the feature space into the reconstruction of x, i.e.,

the resulting hidden representation hi is then decoded back to the original input space

Rm. The mapping function is as follows.

x̂i = gθd(x) = g(
n∑
j=1

W hidden
ij hj + bhiddeni ) (3.15)

where W is the decoder weight matrix, b is the bias, g is the activation function of

the decoder and x̂ represent the reconstructed input sample. The parameter set of

the decoder is θd = {W hidden, bhidden}. it is important to note that W hidden and bhidden

of the decoder maybe unrelated to the W input and binput of the encoder.

3.3.2.3 Reconstruction loss

The autoencoder is trained by minimizing a reconstruction loss. This loss is the

difference between the output (reconstructed input) and the input, as shown below.

J(θ) =
1

n

n∑
i=1

‖x̂− x‖22 (3.16)

where θ = (θe; θd) = (W input, binput;W hidden, bhidden). The above optimization problem

can be solved using a gradient or stochastic gradient descent algorithm.

3.3.2.4 Autoencoder For Flooding detection

A fault or anomaly can be defined as an observation diverging from the majority of the

data [158]. Flooding is a type of anomaly that can be detected in a similar way. As

the normal data in the test dataset (Flooding dataset) meet the normal profile, which

is built in the training phase of the autoencoder, the corresponding reconstruction

error is smaller, whereas the anomalous data (flooding data) will have a relatively

higher reconstruction error. As a result, by thresholding the reconstruction error, we

can easily classify the flooding data:



65

D(xi) =

{
normal for εi < threshold

flooding for εi ≥ threshold
(3.17)

where D(xi) is the decision function to classify sample xi as flooding or normal,

εi is the reconstruction error of the i(th) sample. The threshold can be obtained by

taking a standard deviation shift in the mean of the reconstruction loss for the normal

operating dataset.

Autoencoder can be used to detect flooding in a distillation column by following

the steps below.

Step 1: Data Preprocessing: Normalizing the data to prescale all the features

into a specific interval is necessary. In this research work, data normalization was

done according to the Eqn. 3.18 to convert all the features into the range of [0, 1].

Xnorm =
X −Xmin

Xmax −Xmin

(3.18)

Step 2: Window Data Generation: This step is needed to create batches

of time series data from the original dataset using a rolling or sliding window. For a

dataset with sample size T , suppose that the number of increments between successive

sliding windows is one period, then the entire dataset can be partitioned into N =

T–m + 1 subsamples. The first rolling window contains observations for period 1

through m, the second rolling window contains observations for the period 2 through

m+ 1, and so on, as shown in Fig.3.4.

Figure 3.4: Window data generation for training the Autoencoder.
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Step 3: Autoencoder Training: In the training phase, the normal operating

dataset was used to train the autoencoder by minimizing the reconstruction loss.

Therefore, by training the autoencoder, normal profiles of the operating data can be

built.

Step 4: Setting threshold: After training the autoencoder, the error was ob-

tained between the output (reconstructed input) and the input. In this work, a stan-

dard deviation above the mean of the reconstructed errors was set as the threshold.

Step 5: Flooding detection: In this step, the flooding dataset (testing dataset)

was fed into the autoencoder model. The reconstruction error was utilized as the

anomalous scores. Therefore, any data whose score is larger than the threshold will

be determined as a flooding data sample based on the decision function in Eqn. 3.17.

The framework for flooding detection using autoencoder following the aforemen-

tioned steps is shown in Fig. 3.5.

Figure 3.5: A block diagram of Flooding detection using Autoencoder.
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3.4 Flooding Detection using Supervised Learning

Methods

The differential pressure across the distillation column is one of the important fea-

tures to monitor for flooding. During flooding, there is a rapid rise in the pressure

drop across the column. For early flooding detection in a distillation column, the ML

models must accurately forecast the pressure drop for increasing and high-pressure

drop cases in the column. This approach is divided into two parts: pressure drop

forecasting and pressure drop classification, as indicated by the dotted sections in

Fig.3.6. The pressure drop forecasting part deals with generating synthetic flooding

data and training supervised learning methods to forecast the pressure drop across the

column, while the pressure drop classification part deals with determining the operat-

ing state of the column using the historical pressure drop, i.e., grouping the pressure

drop into normal operating state or flooding state. The mathematical formulations

of TimeGAN and the supervised learning methods considered are already discussed

in section 2.7 and section 2.6 of Chapter 2 of this thesis, respectively. The cluster-

ing algorithm (k-means) formulation is also discussed in section 2.6. The progression

of the approaches used for early flooding detection using pressure drop forecast is

summarized in the steps below:

Step 1: Data Preprocessing: To achieve this, the plant data are collected

and pre-processed by filling up any missing data and are filtered using exponential

weighted moving average (EWMA) according to Eqn. 3.1 to remove noisy signals.

Step 2: Feature Selection: The variables for the pressure drop forecast are

chosen using a correlation plot and engineering judgment based on literature and the

mode of operation of the distillation column. The correlation coefficient measures the

degree of association between two variables. It is a statistical measure of the strength

and direction of a relationship between two variables. For two variables X and Y , a

sample correlation coefficient between them is given by the equation below.

rxy =

∑
(xi − x̄)(yi − ȳ√∑

(xi − x̄)2
∑

(yi − ȳ)2
(3.19)
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Figure 3.6: A block diagram of flooding detection using supervised learning methods
to forecast the pressure drop across the trays of a distillation column.

where xi and yi are individual data points, x̄ and ȳ are the means of variables X

and Y , rxy is the coefficient of correlation between X and Y . rxy ranges from +1 to

−1. When rxy is +1, it indicates a perfect positive linear relationship between X and

Y . When rxy is -1, it indicates a perfect negative linear relationship between X and

Y . When rxy is 0, it indicates no linear relationship between X and Y .

Correlation analysis is used to select features with a strong linear relation with

pressure drop, and such features are useful for forecasting the pressure drop across the
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distillation column. The correlation coefficient rxy does not convey all there is to know

about the association between two variables, as nonlinear associations can exist that

are not revealed by this statistical measure. Hence, engineering judgment based on

literature coupled with the mode of operation of the distillation column is used to also

select features that have an effect on the pressure drop. This approach is sufficient to

select variables that can be used to forecast pressure drop in the distillation column.

Step 3: Synthetic Flooding Data Generation: Training ML models for flood-

ing prediction requires sufficient flooding regime data so that the models can capture

the dynamics of the column before flooding. For this case of insufficient flooding

regime data, synthetic flooding data are generated using time-series generative adver-

sarial networks (TimeGAN), a framework proven effective in generating virtual time

series data samples. The implementation of TimeGAN is discussed in Section 2.7

of this thesis. The TimeGAN is trained to generate more flooding regime data to

augment the original dataset.

Step 4: Data Transformation: To preserve the temporal dynamics of the

multivariate time series data during training, supervised learning methods can be

applied to time series data by transforming the data using sliding window method

[160]. This is a way of framing time series forecasting as a supervised learning problem.

The sliding window method transforms the data by preserving the past and future

measurements for each data point, making the data points independent and identically

distributed (iid). For this case, the future pressure drop will be predicted based on

the past pressure drop data and other selected parameters according to Eqn. 3.20.

(∆pt+1,∆pt+2, . . .) = f(. . . ,∆pt−1,∆Xi,t−1, . . . ,∆pt,∆Xi,t, . . .) (3.20)

A transformation like this requires selecting two parameters: window size and

response size. The window size is the time window of the past data, and the response

size is the forecast window of the data. The application of this transformation results

in many additional columns to the dataset.

Step 5: Training Supervised Learning Models: Different ML methods are

then trained to forecast the pressure drop of the column. The performance of these

models can be known using error metrics such as mean absolute error (MAE), root

mean squared error (RMSE), and coefficient of determination (R2) of the model.
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MAE =

n∑
i=1

|yi − ŷi|

n
(3.21)

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(3.22)

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(3.23)

where yi is the ith observed variable, ŷi is the ith predicted variable, n is the total

number of observed samples, ȳ is the mean of the observed variable.

Step 6: Determination of Operating States: Forecasting the pressure drop

alone is insufficient for early flooding detection. Hence, pressure drop monitoring uses

a clustering algorithm to classify the historical pressure drop into operating states

(normal or flooding). This is done by transforming the historical times series pressure

drop data using Eqn.3.20. This made each sample of the transformed pressure drop in-

dependent and identically distributed because each sample contains past, present, and

future pressure drop values. Time series data can be decomposed into four features:

trend, noise, seasonality, and level. Due to the absence of noise in the transformed

pressure drop data and flooding not occurring in specific intervals (seasonality), only

trend and level can be extracted from the transformed pressure drop to ensure good

visualization and interpretability of the clusters. The two chosen features are repre-

sented by slope (trend: increase or decrease in the data point) and median (level of

the data point). The clustering algorithm is then applied to the extracted features

(slope and mean) of the transformed pressure drop data for classification into normal

or flooding state. This trained clustering algorithm is used on the forecasted pressure

drop to classify the pressure drop into a normal or flooding operating state for early

warning of possible flooding in the distillation column.



Chapter 4

Results and Discussion

4.1 Case Study and Data Collection

The distillation column studied in this work is an industrial debutanizer that takes

the bottoms of de-ethanizer as feed to separate C3/C4s from naphtha range materials.

Plant data are collected from the sensors of the debutanizer. The data collected are

available every minute and contain 46 variables, such as the pressure drop across the

column, heat duties, feed flow, feed temperature, etc. For this case study, 525, 000

sample points are collected with less than 1% as flooding regime data (the rest are

normal operation data). This leads to a case of data imbalance, with flooding data

being the minority.

4.2 Data Preprocessing

The collected data are preprocessed by filling up missing data using forward fill

method. Fig.4.1 and Fig.4.2 show the plot of some features collected from the sensors

of the distillation column.
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Figure 4.1: Plot of some features collected from the sensors of the industrial distillation
column. The horizontal axis corresponds to the index of each time-series sample of
the data.

From the observed plots, it can be seen that the feed flow to the distillation column

reduced to 0 kbpd at around 240,000 till 340,000 sample points. This reduction in

feed flow results from plant shutdown during the affected period. The plant shutdown

period data were removed since operational information can not be gotten from such

data. Only data samples that describe the operational dynamics of the distillation

column are considered.
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Figure 4.2: Plot of some features collected from the sensors of the industrial distillation
column. The horizontal axis corresponds to the index of each time-series sample of
the data.

EWMA was applied to the data based on Eqn. 3.1 to remove sensor noise from the

collected data. To choose the value of α for the EWMA, it is important to obtain the

metrics of different values of α and their effect on the collected data. Signal-to-noise

ratio (SNR) and mean squared error (MSE) are used for this evaluation. SNR is the

measured strength of the desired signal relative to noise; it is measured in decibels

(dB). The smaller the MSE, the greater the SNR and the better the denoising effect

[161].

SNR = 10 log


N∑
n=1

f(n)2

N∑
n=1

[f(n)− f̂(n)]2

 (4.1)
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MSE =

√
N∑
n=1

[f(n)− f̂(n)]2

N
(4.2)

where f(n) is the signal containing noise, f̂(n) is the denoised signal, N is the

length of the signal.

Figure 4.3: Metrics evaluation for denoising the data.

Fig.4.3 shows the plot of SNR and MSE for different values of α for the EWMA. It

can be observed from the plot that as the SNR increases for the α, the MSE reduces.

Since EWMA can be used to estimate the long-term trend of a time series of data

while giving more weight to recent measurements or observations, α of 8 is selected for

denoising the data as a trade-off between the noise level in the data and maintaining

the dynamics while denoising the data.

Some of the features after denoising are visualized in Fig.4.4 and Fig.4.5. For easy
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visualization, the effect of the EMWA is shown for the first 500 sample points of some

features of the data collected from the distillation column.

Figure 4.4: Sample plots of some denoised features of the collected data. The hori-
zontal axis corresponds to the index of each time-series sample of the data.
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Figure 4.5: Sample plots of some denoised features of the collected data. The hori-
zontal axis corresponds to the index of each time-series sample of the data.

4.3 Flooding in the Distillation Column

The concept of flooding can be visualized from a major flooding event that occurred

in the distillation column. Fig.4.6 shows some important features during a major

flooding event in the distillation column. The pressure drop across the column is being

used to monitor flooding events. Normal operating conditions within the column are

for pressure drop below 3 psi (dp < 3) while flooding becomes noticeable when the

pressure drop is above 3.5 psi (dp > 3.5).

From Fig.4.6, the pressure drop deviated from the normal operating range at 9:26

on the day of a major flooding event, and flooding became noticeable at 10:20. The

increase in the vaporization rate of the reboiler caused more vapor to be boiled up,

this increases the vapor flow upward the column causing the pressure drop to rise as

a result of entrainment of liquid in the rectifying section of the distillation column.
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Figure 4.6: Plot of some features in the distillation column during a flooding event.
The horizontal axis corresponds to the day and time of the each time-series data
sample.

This entrainment caused an irregularity in the distillate flow, which led to an

increase in the distillate flow for some minutes before encountering a significant de-

crease in the flow of distillate, leading to a significant rise in the reflux flow back to

the column, causing accumulation of liquid in the column. This effect can be seen in

the decline in the quality of the bottom product. The continuous high vaporization

rate of the reboiler causes a further spike in the pressure drop, as seen in Fig.4.7. At
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this point, there is an overflow in the reflux drum level (maintained 100% level) due

to the liquid accumulation in the column.

Figure 4.7: Plot of some features in the distillation column during a flooding event.
The horizontal axis corresponds to the day and time of the each time-series data
sample.

Further decrease is noticeable in the quality of the bottom product until there is

a reduction in the heat duty of the reboiler, after which the quality of the bottom

product improves. The effect of this flooding event is later seen on the distillate

product quality at 13:05 in Fig.4.7 when there is a decrease in the quality of distillate

product C4.

This cause-and-effect relationship can be represented with a simple signed directed

graph as shown in Fig.4.8. An increase in the reboiler duty (RD) leads to a high

vaporization rate (VFR) in the column, subsequently causing liquid accumulation
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(LA). This accumulation of liquid leads to an occurrence of flooding (FO). Also, this

caused the differential pressure (PD) across the column to rise. Accumulation of liquid

in the column leads to a high level in the reflux drum (RDL), which prompts more

liquid to be returned to the column, which is an indication of high reflux flowrate

(RF) and, at the same time, a decrease in the distillate flowrate (DFR) causing the

decrease in the distillate product quality at the long run. This occurrence leads to

a decrease in the bottom product quality (BPQ) in the short run, as noticed in the

collected data.

Figure 4.8: A signed directed graph illustrating the cause and effect of flooding oc-
currence in the distillation column.

4.4 Flooding Detection using PCA

A PCA model was developed for flooding detection in the distillation column using the

sample data collected at the nominal operating conditions. All variables collected are

used for the PCA model since the results obtained using all variables are better than

selecting a few variables for the PCA analysis. Hence, feature selection wasn’t done

for PCA. The data collected was scaled to zero mean and unit variance. 16 principal

components account for 95.36% variation in the original data and are sufficient to
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build a PCA model, as shown in Fig.4.9. The monitoring charts for the PCA model

developed based on the nominal data, the T 2 statistic plot, and the Q statistic or

SPE plot obtained for the model at the nominal operating conditions are shown in

Fig.4.10.

The control limits were obtained based on 99% confidence interval. It can be

seen from Fig.4.9 that the monitoring statistics for the PCA model (T 2 statistic and

Q statistic) resulted in some false alarms for the training data. Hence, for flooding

detection, flooding is declared after the violation of the control limits for continuous

successive sampling time to reduce the occurrence of false alarms.

Figure 4.9: Determination of the principal components using cumulative percent-
variant test.

The flooding data of a major flooding event in the distillation column is used on

the trained PCA model to detect flooding. The flooding data is scaled using the mean

and variance of the normal operating data to capture the deviation in the variance

using the trained PCA model. The T 2 statistic and the Q statistic of the PCA model
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for the flooding data are shown in Fig.4.11 and Fig.4.12, respectively.

Flooding was detected using the T 2 statistic at 9:50 on the day of a major flooding

event as shown in Fig.4.11 and at 9:20 using the Q statistic as shown in Fig.4.12.

The Q statistic detected flooding earlier compared to the T 2 statistic. Based on the

flooding data, the buildup of flooding started at 9:40, and flooding became noticeable

and pronounced at 10:21 on the day of a major flooding event. Hence, the Q statistic

of the PCA model detected flooding 10 minutes earlier before the buildup of flooding

and 51 minutes before flooding became pronounced in the distillation column. This

is the earliest detection of flooding using PCA.

Figure 4.10: PCA monitoring chart for training (nominal operating) data.
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Figure 4.11: Flooding detection using T 2 statistic on the testing (flooding) data. The
horizontal axis indicates the day and time of each time-series data sample.

Figure 4.12: Flooding detection using Q statistic on the testing (flooding). The
horizontal axis indicates the day and time of each time-series data sample.
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The contribution plot of the PCA model based on the time of detection of the

Q statistic is shown in Fig.4.13. This shows how each feature contributed to the

monitoring statistics at the point of detection. This point of detection is at 9:30 on

the day of a major flooding event as detected by the Q statistic.

Figure 4.13: Contribution of each feature of the column data to PCA monitoring
statistics at the time of detection (9:30) on the day of a major flooding event in the
distillation column.
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The pressure across the column (‘Pressure Drop’), the temperature of the over-

head product (‘Overhead Product Temp’), flow of feed to the reboiler (’Feed Flow To

Reboiler’), flow of the distillate (‘Distillate Flow’), Feed Flow to the column (‘Feed

Flow’) and temperature of the feed to the column (‘Feed Temp’) contributed signifi-

cantly to the Q statistic at this point of flooding detection. This also gives an insight

into some of the variables that contributed significantly to the flooding occurrence.

Some of these variables are in agreement with the cause-and-effect analysis given in

section 4.3. These variables are considered during feature selection for supervised

learning methods.

4.5 Flooding Detection using Autoencoders

4.5.1 Detection using Conventional Autoencoder

A conventional Autoencoder is built for flooding detection using neural network layers.

Due to a lot of hyperparameters in an autoencoder, such as the number of neurons

in the layers, activation function, learning rate, batch size, etc. A randomized grid

search of these hyperparameters was conducted using k-fold cross-validation with k=3

by utilizing the scikit-learn library. The autoencoder is built with the combination of

hyperparameters, which gave the best result. The encoding layers of the autoencoder

contain 3 hidden layers of 32, 24, and 20 neurons, respectively, which are used to en-

code features of the normal operating data from a higher dimension of 45 features to

a lower dimension of 20 encoded features. Also, a decoder is built to reconstruct the

original inputs (45 features) from the low dimensional encoded features (20 features)

using 2 hidden layers of 24 and 32 neurons and then the output layer of 45 neurons for

the reconstructed inputs. The rectified linear unit (ReLU) activation function is used

for each layer. The nominal operating data of the distillation column is normalized to

a feature range of (0, 1). Selecting the appropriate number of neurons for the hidden

layers in a neural network is critical, as it directly impacts the model’s learning ca-

pacity, accuracy, and generalization ability. While there is no universal rule, several

approaches and guidelines are typically followed to ascertain the optimal number of

neurons for each hidden layer. Empirical testing and experimentation where various

configurations are tested and performance is evaluated on a validation set. By exper-

imenting with different neuron counts and assessing metrics such as mean absolute
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error and coefficient of determination, the optimal configuration can be identified.

This iterative process is often aided by grid search or random search techniques to

systematically explore different values and select the best-performing architecture.

The autoencoder is trained on 80% of the nominal operating data and validated on

the remaining 20% data by minimizing a mean absolute error loss function, which

is the difference between the inputs and the reconstructed inputs (outputs) as de-

scribed in Section 3.3.2. Table 4.1 below summarizes the hyperparameters used for

the autoencoder.

Table 4.1: Parameters used for the Autoencoder

Parameters Values

Activation function ReLU

Epochs 50

learning rate 0.001

Optimizer Adam

Batch size 160

Loss function MAE

Neurons at the bottleneck layer 20

The minimization of the loss during training and validation for different numbers

of epochs is shown in Fig.4.14. To prevent overfitting, an early stopping was imposed

on the autoencoder to stop training if there was no reduction in the loss of the vali-

dation data after 5 successive epochs.
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Figure 4.14: Plot of the loss against epochs during training and validation of the
autoencoder.

After training, the trained autoecoder is used to reconstruct the entire nominal

operating data to obtain a detection threshold. This threshold is taken as a standard

deviation shift in the mean of the reconstruction error. Fig.4.15 shows the plot of the

reconstruction errors of the nominal operating data. 90% of the reconstructed errors

of the nominal operating data fall below the chosen threshold.
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Figure 4.15: Reconstruction errors of the training data using autoencoder. The hori-
zontal axis indicates the index of the time-series data sample.

For flooding detection, the flooding data of a major flooding event is used on

the autoencoder; the autoencoder detects flooding based on the principle that for

normal operating data, the reconstruction error is smaller, whereas, for anomalous

data such as flooding data, the reconstruction error will be higher. Fig.4.16 shows the

reconstruction error of the flooding data.

The autoencoder detected flooding at 9:45 using the flooding data of the day of

a major flooding event. At this point, there was already a buildup of flooding in

the distillation column before flooding became pronounced and noticeable at 10:21.

Hence, the conventional autoencoder detected flooding 5 minutes after the buildup of

flooding in the distillation column and 36 minutes before flooding became pronounced

and noticeable. This late detection is due to the neural network’s inability to handle

the distillation column’s time series data. Hence, there is a need to use neural networks

capable of handling time series data such as LSTM.
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Figure 4.16: Flooding detection using the trained autoencoder on the testing (flood-
ing) data. The horizontal axis represents the day and time of the time-series data
sample.

4.5.2 Detection using LSTM Autoencoder

The hidden layers of the encoder and decoder can be replaced with LSTM layers to

improve the performance of learning the best parameters to reconstruct the inputs

while considering the temporal correlation of the time series data of the distillation

column. The hyperparameter tuning of the LSTM autoencoder was done using ran-

domized grid search to get the best possible combination of hyperparameters that

will give a better result. 2 layers of LSTM, each of 30 and 20 neurons, respectively,

are used as the encoder layer to encode important features of the inputs from high

dimension of 45 to a low dimension of 20. The encoded features from the LSTM

encoder are passed through a repeat vector to symmetrical 2-layers of LSTM, each of

20 and 30 neurons as the decoder layer. The LSTM-decoder reconstructs the inputs

from the encoded features. The rectified linear unit (ReLU) activation function is

used for each layer. Table 4.2 gives the parameters of the LSTM autoencoder.
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Table 4.2: Parameters used for the LSTM Autoencoder.

Parameters Values

Activation function ReLU

Epochs 50

learning rate 0.002

Optimizer Adam

Batch size 128

Loss function MAE

Sequence length 30

The nominal operating data of the distillation column was normalized to a feature

range of (0, 1). The LSTM-Autoencoder was trained on 80% of the nominal operat-

ing data and validated on the remaining 20% data by minimizing the loss function,

which is the difference between the inputs and the reconstructed inputs (outputs) as

described in Section 3.3.2. The minimization of the loss during training and valida-

tion for different numbers of epochs is shown in Fig. 4.17. To prevent overfitting, an

early stopping was imposed on the LSTM autoencoder to stop training if there was

no reduction in the loss of the validation data after 3 successive epochs.

The trained LSTM-Autoecoder was used to reconstruct the entire nominal oper-

ating data to obtain the detection threshold. This threshold is taken as a standard

deviation shift in the mean of the reconstruction error. Fig. 4.18 shows the plot of the

reconstruction errors of the nominal operating data. 95% of the reconstructed errors

of the nominal operating data fall below this chosen threshold.

For flooding detection, the flooding data of the major flooding event is used on the

LSTM-Autoencoder, and the LSTM-Autoencoder is used to reconstruct the flooding

data. The reconstruction errors of the flooding data are shown in Fig.4.19.
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Figure 4.17: Plot of the loss against epochs during training and validation of the
LSTM-Autoencoder.

Figure 4.18: Reconstruction errors of the training data using LSTM-Autoencoder.
The horizontal axis indicates the index of the each time-series data sample.
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Figure 4.19: Flooding detection using the LSTM-Autoencoder on the testing (flood-
ing) data. The horizontal axis indicates the day and time of each time-series data
sample.

The LSTM-Autoencoder detected flooding at 9:27 using the flooding data of the

day of a major flooding event. This is an improvement on the detection of the con-

ventional autoencoder. Since flooding buildup in the column started around 9:40 and

became pronounced or noticeable at 10:21, the LSTM-Autoencoder detected flooding

13 minutes earlier before the buildup of flooding and 54 minutes before flooding be-

came pronounced in the distillation column. The improvement of flooding detection

of the LSTM-Autoencoder over the conventional autoencoder is because LSTM can

handle time series data and has the ability to handle complex dependencies within

sequential data.
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4.6 Flooding Detection through Pressure drop Fore-

cast

4.6.1 Feature Selection

The features used for the pressure drop forecast are selected using engineering knowl-

edge (based on literature and mode of operation of the distillation column) and corre-

lation matrix. From literature and engineering knowledge, reflux ratio is an important

feature of a distillation column. It is the ratio between the boil-up rate and the takeoff

rate, i.e., the ratio of the reflux rate to the distillate rate. It is not part of the features

collected from the distillation column. Hence, it is calculated using Eqn. 4.3 and

added to the features.

R =
L

D
(4.3)

where R is the reflux ratio, L is the mass or molar flow rate of the liquid reflux

returned to the column, and D is the mass or molar flow rate of the distillate stream

leaving the distillation column.

The correlation matrix with pressure drop for the features is shown in Fig.4.20.

The correlation plot indicates a strong positive correlation (indicated by deep-orange

color) between pressure drop and some variables, such as reflux ratio, reboiler duty,

temperature measurements, etc. Also, the pressure drop has a strong negative cor-

relation (indicated by the deep blue color) with variables such as bottom product

concentration (RVPs), reflux drum level, tray 31 temperature, etc. If two indepen-

dent variables have a strong correlation, one of such variables must be chosen to

prevent the problem of co-linearity [9]. Such cases can be seen from the correction

matrix as the reboiler duty has a strong positive correlation with some features such

as ‘Nap split temp,’ ‘Reflux Flow,’ ‘Total Reboiler Duty,’ etc. Hence, the reboiler

duty is sufficient to represent most of the features for the pressure drop forecast. The

reboiler duty (‘Reboiler Duty’) is selected as a feature since it strongly correlates with

pressure drop and gives information about the heat duty in the column.

The reflux ratio (‘Reflux Ratio’) is also retained as a feature since it indicates

the amount of reflux back to the column compared to the amount collected as the
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distillate. Feed Flow (‘Feed Flow’) gives the feed flow entering the column. Hence, it

is retained as a feature.

Figure 4.20: Correlation matrix for the column data, the right-hand parameter indi-
cates the correlation coefficient.

A pressure-compensated temperature indicator (TI) is placed on tray-7 to manipu-

late reboiler duty to maintain a constant bottom quality and on tray-31 to manipulate

the reflux rate to maintain a constant distillate quality. Hence, tray-7 and tray-31
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temperatures (‘Tray 7 Temp’, ‘Tray 31 Temp’) are selected as a feature for pressure

drop forecast, and they also have a strong correlation with pressure drop. The over-

head product temperature (‘Overhead Product Temp’) is also retained as a feature

since it gives information about the top product in the column and has a strong pos-

itive correlation with the pressure drop. The liquid level in the reflux drum (‘Reflux

Drum Level’) is also selected to forecast the pressure drop as it gives information

about the accumulation of liquid in the reflux drum.

A measure of the distillate C4 product quality(‘Debut Dist C4’) and bottom prod-

uct quality (‘LVN RVP’) are also selected for the forecast since they are affected during

flooding. Finally, the pressure drop (‘Pressure Drop’) is selected since it describes the

pressure drop trend in the distillation column. A total of 10 features are selected

to build ML models to forecast the pressure drop for early flooding detection in the

distillation column.

4.6.2 Synthetic Flooding Data Generation

After selecting the needed features, synthetic flooding regime data are generated us-

ing TimeGAN as described in Section 2.7 to combat the issue of data imbalance.

The dynamics of the column when transitioning from normal operating conditions to

flooding conditions is essential and needs to be captured by the TimeGAN model.

This transition is the pre-flooding condition, where the TimeGAN model can capture

the dynamics prior to flooding. Hence, samples up to 60 minutes before flooding are

chosen as the pre-flooding samples. The flooding regime data is chosen to contain

40 minutes of data from the normal operating data, the pre-flooding samples, and 35

minutes after the buildup of flooding just before its full development in the column.

This flooding regime data is illustrated in Fig.4.21. This will enable the transition

from normal operating conditions to the buildup of flooding conditions to be captured

effectively in the synthetic flooding data.

The flooding regime data are normalized to a feature range of (0, 1) and are pre-

processed in time batches using the sliding window described in Section 3.3.2.4. Each

batch of the flooding regime data has 31 sequence lengths of time-series data. The

TimeGAN was trained continuously by feeding the real flooding regime data batch-

wise. 24 batches of the data are used to carry out stochastic gradient descent op-

timization to update the parameters of the TimeGAN model. A learning rate of
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0.0003 is used for this optimization. The dynamics of the flooding regime data will

be captured and generated in similar batches to the training data. Hence, each time

batch of the synthetic flooding data is independent and identically distributed (i.i.d.).

Similarly, each batch of the generated flooding data has 31 timesteps. A sample batch

of the real flooding regime data and the generated data from the TimeGAN is shown

in Fig.4.22.

Figure 4.21: Sample plot of normalized original flooding regime data used for training
the TimeGAN model to generate synthetic flooding data.
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It is important to state that the graphical comparison shown in Fig.4.22 is not

a form of evaluation of the generated synthetic flooding data. Generated time-series

data are difficult to evaluate graphically, but they can be evaluated statistically and

based on their predictive properties. These forms of evaluation are considered in this

work to evaluate the synthetic samples that the TimeGAN model generated.

Figure 4.22: Visualization of a sample batch of normalized real and synthetic flooding
regime data.

To be sure that the TimeGAN is generating virtual samples that are similar to

the real samples, the generated data are evaluated based on their distribution using

principal component analysis (PCA) and t-distributed stochastic neighbor embedding

(t-SNE) plots as shown in Fig. 4.23 by flattening the temporal dimension. This visu-

alizes how closely the distribution of generated samples resembles that of the original

in 2-dimensional space. PCA is to validate the linear distribution in 2-dimensional

space, while t-SNE is for the non-linear distribution in 2-dimensional space. The

original data (in blue) and the generated data (in red) align closely and are almost

perfectly in sync, as observed in the plots.
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Figure 4.23: Validating the synthetic flooding data diversity and distribution with
the real flooding data using PCA and t-SNE plot.

For the synthetic samples to be useful, the sampled data should inherit the pre-

dictive characteristics of the original. In particular, we expect TimeGAN to excel in

capturing conditional distributions over time. Therefore, using the synthetic dataset,

we train a post hoc sequence-prediction model (by optimizing a 2-layer LSTM) to

predict next-step temporal vectors over each input sequence. This simply involves

using a 2-layer LSTM model to predict the next step in the time-series sequence of

data. For example, the sequence length of each batch of the data generated by the

TimeGAN is 31. The LSTM sequence prediction layer will be trained on the 30 pre-

vious sequence lengths so as to predict the final sequence length in each batch. This

way, the synthetic samples can be evaluated based on their predictive characteristics.

Then, the trained sequence prediction model is evaluated on the original dataset. This

is a case of train-synthetic test-real (TSTR) evaluation. This evaluation is compared

with training the LSTM sequence-prediction model on the original flooding regime

data and evaluating the model on the same original flooding data: a case of train-real

test-real (TRTR) evaluation. The two evaluation methods should have similar results

if the synthetic dataset is similar to the original dataset.

Also, to verify the usefulness of the synthetic dataset, the original dataset is aug-

mented with the synthetic dataset. The augmented data is used to train the LSTM

sequence-prediction model, and then the trained model is evaluated on the original
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dataset. The performance of the trained models for each of the evaluations is mea-

sured in terms of the mean absolute error (MAE), root mean square error (RMSE),

and coefficient of determination (R2) and are shown in Table 4.3

Table 4.3: Predictive evaluation of the synthetic flooding regime data.

Model MAE RMSE R2

TSTR 0.0727 0.0911 0.6071

TRTR 0.067 0.0765 0.7166

Augmented 0.0500 0.0710 0.7500

From the results obtained, the synthetic flooding regime data generated using

TimeGAN inherit the predictive characteristics of the original data, and its augmen-

tation with the original flooding data leads to a reduction in error and better training

of the sequence-prediction model. Hence, the trained TimeGAN model can be used

to generate more synthetic flooding regime samples to augment the column dataset

and eliminate the issue of data imbalance. The TimeGAN model is used to gener-

ate 51 flooding regime events to augment the original data. The generated synthetic

flooding data has 6,168 batches, each batch having 31 sequence lengths of synthetic

flooding data. The ratio of flooding data to normal operating data before and after

augmentation with synthetic flooding regime data is recorded in Table 4.4.

Table 4.4: Flooding and normal operating data ratio in the dataset before and after
augmentation with synthetic flooding regime data.

Augmentation Flooding [%] Normal [%] Total Samples

Before 0.40 99.60 250, 000
After 43.37 56.63 441, 208

4.6.3 Model Training for Pressure drop Forecast

To prepare the data for supervised learning. The data has to be transformed based on

Eqn. 3.20 given in Section 3.4. The window size and the response size must be chosen

for this transformation. The window size is the number of past time steps in the

sliding window transformation, while the response size is the number of future time
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steps in the transformation. The sliding window parameters are chosen using a grid

search to investigate the window size between 5 minutes and 20 minutes. In contrast,

the response size is investigated between 15 mins and 35 mins using random forest as

a reference model for a regression analysis. Since a transformation like this leads to

additional columns in the dataset, the aim is to have a small window size and a long

response size while maintaining a good prediction. This helps to optimize storage

and to reduce computational time during training. The result of this investigation is

shown in Table 4.5. From the results obtained, there is a decrease in the performance

of the model as the window size increases. This is due to the increase in the number of

features used as predictors. Also, the model’s performance is reduced for each window

size as the response size increases. A window size of 5 minutes might be too small to

capture the dynamics of the distillation column; the chosen window size is 10 minutes,

and the response size is 20 minutes. This combination of window and response size

gives good prediction accuracy while trying to minimize training time and optimize

memory usage. Hence, the pressure drop forecasting is done for a 20-minute forecast.

Table 4.5: Investigated window and response size for data transformation using the
sliding window method.

RandomForest window size = 5 window size = 10 window size = 15 window size = 20
response size RMSE R2 RMSE R2 RMSE R2 RMSE R2

15 0.0345 0.9826 0.0386 0.9783 0.0391 0.9778 0.0393 0.9772
20 0.0378 0.9789 0.0403 0.9763 0.0379 0.9789 0.0397 0.9768
25 0.0392 0.9774 0.0397 0.9770 0.0421 0.9741 0.0408 0.9755
30 0.0429 0.9728 0.0417 0.9746 0.0421 0.9739 0.0448 0.9707
35 0.0444 0.9711 0.0450 0.9704 0.0451 0.9702 0.0437 0.9721

Different supervised ML algorithms are compared for a 20-minute pressure drop

forecast. These algorithms include linear regression, random forest, extra trees, gra-

dient boosting, and LSTM. The training is done using k-fold cross-validation using

k = 3. The training dataset is split into k disjoint equally sized subsets. The train-

ing of the models is conducted on k − 1 datasets, while the validation is done on a

single subset. This training is repeated k times, always with different validation sets.

This gives a more robust approach to knowing the model’s performance across the

dataset. Hyperparameters of the tree regressors were optimized using a randomized

grid cross-validation search with k = 3. The LSTM is also optimized by considering

the number of neurons in the layer and the training epochs. Table 4.6 shows the mean

result of the model’s performance on the validation set. From the results obtained,
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all the supervised learning models have good results on the validation data, each with

R2 > 0.95. It takes longer to train the gradient boosting model and random forest

model compared to other models.

Table 4.6: Performance of different supervised ML algorithms on the validation data
set for pressure drop forecast.

Algorithm R2 RMSE Training time [s]

Linear Regression 0.9844 0.0322 5.97

Random forest 0.9964 0.0154 9970.69

Extra trees 0.9979 0.0118 1463.47

Gradient Boosting 0.9864 0.03 12028.81

LSTM 0.9886 0.0283 2553.09

4.6.4 Operating States Determination

The time series pressure drop data are classified based on the last 10 minutes measure-

ments and 20 minutes forecast window to determine the operating condition of the

column, i.e., flooding or not flooding. The pressure drop data is transformed based

on Eqn. 3.20 to have the same form as the data used for training. Each transformed

data point is independent and identically distributed with a total window size of 30

minutes. The trend and level of each data point’s 30 minutes window are determined

from the slope of a linear fit and the median of the 30 minutes window for each data

point, respectively. Flooding is associated with an increase in pressure drop. Hence,

the data is filtered for positive slopes. These features are used to identify meaningful

clusters in the pressure drop data by using k-means algorithm. As the algorithm is

a distance-based method, prior data scaling is performed before implementing the

algorithm, and the data is transformed back to the original values for visualization.

The elbow method described in [151] as illustrated in section 2.6.6 is used to

determine the number of clusters in the data. The k-means algorithm is applied by

varying the number of clusters and obtaining the sum of squared distances of samples

to their closest cluster, which is the inertia. The number of clusters reached just before

additional clusters start leading to a smaller change in inertia (i.e., an elbow where

the distortion in inertia goes down slowly) is the appropriate number of clusters. This
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result is shown in Figure 4.24. The elbow is found at six clusters, after which the

change in inertia becomes smaller. The k-means algorithm is implemented on the

extracted features of the historical pressure drop for a 6 number of clusters. The

visualization is shown in Fig.4.25 by plotting the median against the slope to show

the cluster centers. Prior scaling of the extracted features (median and slope) was

done before implementing the k-means algorithm. The data was transformed back to

the original values for visualization purposes.

Figure 4.24: Elbow method to determine the number of clusters for k-means clustering
algorithm.

Figure 4.25: Plot of the median against the slope and the resulting decomposed time-
series historical pressure drop data clusters.
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Low/moderate pressure drops characterize normal operation; hence, clusters 1, 3,

4, and 5 indicate the normal operating state in the pressure drop since most of the data

lies around the region of zero or low slope. Clusters 2 and 6 describe the operating

states in which the pressure drop is increasing. These clusters represent the possible

flooding state of the column since an increase in pressure drop and high-pressure drop

characterizes flooding.

4.6.5 Model Testing and Flooding Prediction

We must use all the available models in our arsenal for early flooding detection to

know a suitable model for flooding detection. Hence, all the models are evaluated

on the holdout testing dataset. This holdout testing data is collected on the day of

a major flooding event in the distillation column and has not been exposed to the

models during training. The performance of the trained model on the testing data is

shown in Table 4.7.

Table 4.7: Performance of the supervised ML algorithms on the holdout-testing data
set for pressure drop forecast.

Algorithm R2 RMSE

Linear Regression 0.9617 0.0285

Random forest 0.9414 0.0352

Extra trees 0.9583 0.0297

Gradient boosting 0.9605 0.0289

LSTM 0.9190 0.0412

The trained-supervised ML models (to forecast pressure drop) in conjunction

with the trained clustering algorithm (to classify the forecasted pressure drop) are

needed for efficient and accurate flooding prediction in the distillation column. This

is achieved by using the supervised ML model to forecast the pressure drop for 20

minutes ahead and then using the clustering algorithm to classify the forecasted pres-

sure drop into a normal operating state or flooding state. The time at which the

different supervised ML methods detected flooding is shown in Table 4.8.
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Table 4.8: Time of flooding detection of trained-supervised ML models to forecast the
pressure drop across the column using the holdout testing data. Time is given before
flooding starts building up in the column and before flooding becomes pronounced
(full development of flooding in the column).

Algorithm Detection Time [mins] Time [mins]

Time Before flooding Before pronounced flooding

LSTM 9:21 19 60

Random forest 9:22 18 59

Extra trees 9:22 18 59

Gradient Boosting 9:32 8 49

Linear Regression 9:37 3 44

From the results given in Table 4.8, LSTM has the earliest detection time by

predicting flooding as early as 19 minutes before flooding occurred in the distillation

column and 60 minutes before flooding became pronounced (causing an overflow in

the reflux drum) in the distillation column after its full development. Random forest

and extra trees predicted flooding 18 minutes before flooding in the column and 59

minutes before the flooding became pronounced. This early detection will give the

operators ample time to make engineering decisions to prevent the full development

of flooding in the column. The linear regression has the least detection time, just

3 minutes before flooding occurs in the distillation column, and this detection time

might be too late for operators to make engineering decisions in order to prevent

flooding or to avoid its full development.

The trained-supervised ML models having the best results (LSTM, Random for-

est, Extra trees), i.e., predicting flooding early, are further evaluated based on their

performance for early flooding detection as shown in Fig.4.26. Fig.4.26 shows the com-

parison between the 20 minutes pressure drop forecast given by the trained-supervised

ML models at 7:02 on the day of a major flooding event in the column and the actual

pressure drop observed for the forecasted 20 minutes. The forecasted pressure drop is

decomposed and classified by the trained clustering algorithm into a normal operating

or flooding cluster. As shown in Fig.4.26, the forecast given by the supervised learning

models almost matched the trend of the actual pressure drop observed in the column

for the next 20 minutes. The forecast classification indicates that the column will

operate normally for the next 20 minutes as the extracted features from the forecast
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fall in the normal operating clusters.

Figure 4.26: Sample illustration of the pressure drop forecast by the supervised ML
algorithms for flooding prediction at 7:02 on the day of a major flooding event in
the distillation column. The right-hand figure shows the classification of the pressure
drop forecast.

To further evaluate the performance of the trained-supervised ML models, a sam-

ple forecast at 9:15 is shown in Fig.4.27. The trained-supervised ML models are able

to capture the increasing trend in the pressure drop for the next 20 minutes. This can

be validated by the noticeable increase in pressure drop observed in the distillation

column through the next 20 minutes. This upward trend in pressure drop shows that

the trained ML algorithms captured the dynamics of the distillation column. At this

time, the models are still forecasting a normal operating state in the column for the

next 20 minutes.

At 9:21 on the day of a major flooding event, the LSTM model predicted a possible

flooding state. This is 19 minutes prior to the build-up of flooding in the distillation

column. Fig.4.28 shows the forecast of the trained-supervised ML models. The models

captured the continuous increase in the pressure drop as validated by the actual

pressure drop observed in the column for the next 20 minutes. The extracted features

from the LSTM fall under the flooding clusters. This is an indication of possible

flooding based on the 20-minute forecast. The extracted features from the forecast

of the random forest and the extra trees model are closer to the edge of the normal
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clusters, as shown in Fig.4.28.

Figure 4.27: Sample illustration of the pressure drop forecast by the supervised ML
algorithms for flooding prediction at 9:15 on the day of a major flooding event in the
distillation column.

Figure 4.28: Sample illustration of the pressure drop forecast by the supervised ML
algorithms for flooding prediction on the day of a major flooding event in the distilla-
tion column at 9:21 on the day of a major flooding event (19 minutes before flooding
occurs in the column).
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At 9:22, which is 18 minutes prior to flooding, the trained-supervised learning

models are forecasting a possible flooding event based on the extracted features from

their forecast, as shown in Fig.4.29. The models predicted a continuous rise in the

pressure drop, as validated by the actual pressure drop observed in the column. At this

time of detection, the pressure drop is within the normal operating range (dp < 3.5psi).

Still, the forecast gives insight into flooding that will happen soon and the pressure

drop that will keep increasing. This early prediction by the ML algorithms will give

the operators early warning risk of possible flooding within the distillation column

and enough time to make engineering decisions to prevent flooding or before it fully

develops.

Figure 4.29: Sample illustration of the pressure drop forecast by the supervised ML
algorithms for flooding prediction on the day of a major flooding event in the distilla-
tion column at 9:22 on the day of a major flooding event (18 minutes before flooding
occurs in the column).

The results shown in Fig.4.26, 4.28 and 4.29 illustrate that the Long Short-Term

Memory (LSTM) method produces discrepancies between the actual and predicted

pressure drops, suggesting some limitations in its accuracy for precise pressure drop

prediction. However, these discrepancies are consistent across the model, suggesting a

bias rather than random error, which can still provide valuable trends for early flooding

detection. The LSTM model’s proficiency in capturing flooding events earlier than

other models can be attributed to its architecture, which is designed to learn temporal
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patterns and dependencies within time series data. In the context of pressure drops,

this ability allows LSTM to recognize subtle, preceding indicators of flooding that

might go unnoticed with conventional methods or models without temporal learning

capabilities. Thus, while it may not accurately predict exact pressure drop values, the

LSTM captures key signals leading up to flooding events, enabling timely detection

of emerging flooding trends.

4.6.6 Additional Variables as Predictors

Additional predictors for pressure drop forecast can be developed based on the op-

eration of the distillation column. These variables are developed to check for an

improvement over the previous results obtained for the early detection of flooding in

the distillation column through pressure drop forecast. For this case, three approaches

are considered.

4.6.6.1 Temperature-Pressure Difference Indicators

Based on the operation of the distillation column, a pressure-compensated tempera-

ture indicator is placed on tray-7 to manipulate reboiler duty to maintain a constant

bottom quality. Also, on tray-31, to manipulate the reflux rate to maintain a constant

distillate quality. A flooding indicator can be developed based on the temperature of

these two trays and the pressure drop across the column, as shown below

dTdPi =
Ttray,i − Tovhd

∆P
, i = 7, 31 (4.4)

where Ttray,i is the temperature of ith tray (tray-7, tray-31), Tovhd is the temperature

of the overhead product, ∆P is the pressure drop across the column, dTdPi is the

indicator variable for the ith tray (tray-7, tray-31).

Two indicators were developed for tray-7 and tray-31 and can also be used as

predictors for pressure drop forecast. Fig.4.30 shows the plot of the indicators and

the pressure drop on the day of a major flooding event. It can be seen that the

two developed indicators have an inverse relationship with pressure drop. They react

sharply in an opposite direction to changes in pressure drop.
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These two indicators are added to the 10 selected features and are used as pre-

dictors for the pressure drop forecast to detect flooding. This was carried out using

the same procedure as before. Table 4.9 gives the performance on the validation set

of the ML algorithms trained on these new sets of predictors. The results show that

the trained ML algorithms perform well on the validation dataset with a coefficient

of determination (R2) greater than 0.5. Hence, all the trained models are tested on

the holdout testing data (These data samples have not been exposed to the models

during training), and the results are shown in Table 4.10.

Though the trained ML algorithms have good performance on the validation data

set and the holdout-testing data, there is a need to evaluate the models further using

the flooding data collected on the day of a major flooding event to determine how early

flooding can be predicted in the distillation column when these developed indicators

are added to the selected features.
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Figure 4.30: Plot of pressure drop and the temperature-pressure indicators during a
major flooding event. The horizontal axis indicates the day and time of each time-
series data sample.
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Table 4.9: Performance of different supervised ML algorithms on the validation data
set for pressure drop forecast using the developed indicators as additional variables.

Algorithm R2 RMSE

Linear Regression 0.9850 0.0316

Random forest 0.9886 0.0275

Extra trees 0.9897 0.0262

Gradient boosting 0.9861 0.0304

LSTM 0.9882 0.0283

Table 4.10: Performance of different supervised ML algorithms on the holdout-testing
data set for pressure drop forecast using the developed indicators as additional pre-
dictors.

Algorithm R2 RMSE

Linear Regression 0.9640 0.0276

Random forest 0.9428 0.0348

Extra trees 0.9599 0.0291

Gradient boosting 0.9601 0.0290

LSTM 0.9144 0.0424

The combination of these trained-supervised learning models and the trained clus-

tering model is used to detect flooding using the flooding data obtained on the day

of a major flooding event. The detection time is shown in Table 4.11. There is a

slight improvement in the detection of linear regression as it tends to detect flooding

earlier with the developed indicator than without the developed indicators. However,

there is a significant lateness in the detection of Extra trees. There is no significant

improvement in the overall earliest detection time. The LSTM gives the earliest de-

tection time at 9:21, 19 minutes before the occurrence of flooding, and 60 minutes

before its full development. This is also the best result obtained without using the

developed indicators.
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Table 4.11: Time of flooding prediction as given by the trained-supervised ML algo-
rithms with the developed indicators as additional predictors.

Algorithm Detection Time [mins] Time [mins]

Time Before flooding Before pronounced flooding

LSTM 9:21 19 60

Random forest 9:22 18 59

Gradient Boosting 9:32 8 49

Extra trees 9:36 4 45

Linear Regression 9:36 4 45

A sample pressure drop forecast at 9:21 is given in Fig. 4.31. This is at 19 minutes

before flooding in the distillation column. The trend of the 20-minute pressure drop

forecast given by the trained algorithms agrees with the actual pressure drop observed

in the column. The clustering model determines the operating state of the distillation

column for the next 20 minutes based on the extracted features of the pressure drop

forecast given by the models. As seen in Fig.4.31, the forecast given by the LSTM

detected flooding at this time since the extracted features fall into the flooding clusters

as given by the clustering model.

Figure 4.31: Pressure drop forecast at 9:21 (19 minutes before flooding) by the su-
pervised ML algorithms for flooding prediction using the developed indicators as ad-
ditional predictors.
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4.6.6.2 Time-difference Variables (Gradients)

For the pressure drop forecast, 10 features, including the pressure drop, were selected

as predictors. These selected features can be converted to gradient variables with

respect to time according to Eqn. 4.5.

∆Xi =
Xi,t −Xi,t−1

∆t
(4.5)

where Xi are the selected features, t is the time step, ∆t is the time change, which is

taken as 1 minute, and ∆Xi is the gradient variable of the selected variable.

These gradient variables are used as the predictors for the pressure drop forecast.

Table 4.12 gives the performance on the validation set of the ML algorithms trained on

these gradient variables. The models perform well on the validation dataset. Hence,

the models are tested on the holdout testing data (These data samples have not been

exposed to the models during training), and the results are shown in Table 4.13.

The combination of these trained-supervised learning models and the trained clus-

tering model is used to detect flooding using the flooding data. This dataset was not

exposed to the supervised learning models during training. The detection time is

shown in Table 4.14.

Table 4.12: Performance of different supervised ML algorithms on the validation data
set for pressure drop forecast using gradient variables.

Algorithm R2 RMSE

Linear Regression 0.9851 0.0309

Random forest 0.9874 0.0285

Extra trees 0.9879 0.0279

Gradient boosting 0.9859 0.0301

LSTM 0.9875 0.0283
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Table 4.13: Performance of different supervised ML algorithms on the holdout-testing
data set for pressure drop forecast using gradient variables.

Algorithm R2 RMSE

Linear Regression 0.9691 0.0256

Random forest 0.9674 0.0263

Extra trees 0.9666 0.0266

Gradient boosting 0.9662 0.0267

LSTM 0.9635 0.0283

Table 4.14: Time of flooding prediction as given by the trained-supervised ML algo-
rithms for gradient variables as predictors.

Algorithm Detection Time [mins] Time [mins]
Time Before flooding Before pronounced flooding

LSTM 9:31 9 50
Random forest 9:36 4 45
Extra trees 9:37 3 44
Gradient Boosting 10:12 - 9
Linear Regression 10:16 - 5

There is no improvement on the previous results obtained using the selected fea-

tures as predictors. Flooding buildup started at 9:40 on the day of a major flooding

event; the previous results show that LSTM gives the earliest detection time at 9:21,

19 minutes before flooding, and 60 minutes before flooding became pronounced in

the distillation column. The best result obtained from using the gradient variables

as predictors is the detection at 9:31, which shows no improvement over the previous

results.

A sample pressure drop forecast at 9:31 is shown in Fig.4.32. This forecast is given

9 minutes before flooding and 50 minutes before flooding fully develops in the column.

The models predicted an increased pressure drop for the next 20 minutes. However,

only the forecast given by the LSTM can detect flooding, as given by the clustering

algorithm, which determines the operating state of the column based on the forecast

given.
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Figure 4.32: Pressure drop forecast at 9:31 (9 minutes before flooding) by the super-
vised ML algorithms for flooding prediction using the gradient variables as predictors.

4.6.6.3 Material and Energy Balance Indicators

Due to the type of sensor data collected from the distillation column, two variables

were developed based on material and energy balance for the distillation column. The

variables are based on the errors resulting from the distillation column’s total material

and energy balance. The total material balance and the energy balance are done based

on the available features of the distillation column according to the equations below.

Mbal = F + (B +D) (4.6)

Ebal = FTf − (BT7 +DT31) +
QR

Cp,s
(4.7)

where F is the feed flow rate, B is the bottom flow rate, D is the distillate flow rate,

T7 is the temperature of tray-7, T31 is the temperature of tray-31, QR is the heat load

on the reboiler, Cp,s is the specific heat capacity of naptha used as a scaling value,

Mbal and Ebal are the material balance indicator and the energy balance indicator

respectively.

These two indicators are added to the 10 selected features and are used for the
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pressure drop forecast to detect flooding in the distillation column. The ML algo-

rithms are trained on this new set of predictors, and the performance of the ML

algorithms on the validation data set is shown in Table 4.15. The trained ML models

have a good performance on the validation data set with a coefficient of determination

(R2) greater than 0.95.

Table 4.15: Performance of different supervised ML algorithms on the validation data
set for pressure drop forecast using the material and energy balance indicators as
additional predictors.

Algorithm R2 RMSE

Linear Regression 0.9805 0.0357

Random forest 0.9845 0.0318

Extra trees 0.9856 0.0307

Gradient boosting 0.9823 0.0340

LSTM 0.9851 0.0316

The trained ML models are then tested on the holdout-testing data (This testing

data set wasn’t exposed to the models during training). The performance of the

models on the holdout-testing data set is shown in Table 4.16.

Table 4.16: Performance of different supervised ML algorithms on the validation data
set for pressure drop forecast using the material and energy balance indicators as
additional predictors.

Algorithm R2 RMSE

Linear Regression 0.9600 0.0291

Random forest 0.9425 0.0349

Extra trees 0.9586 0.0296

Gradient boosting 0.9578 0.0299

LSTM 0.9207 0.0412

In conjunction with the trained clustering model, the trained-supervised learning

models are used to detect flooding using the flooding data. This dataset was not

exposed to the supervised learning models during training. The detection time is
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shown in Table 4.17. The results show no improvement in the early flooding prediction

time of the trained-supervised ML algorithms using the additional material and energy

balance indicators. The LSTM gives the earliest detection time at 9:31, which is 9

minutes before flooding and 50 minutes before flooding fully develops in the distillation

column on the day of a major flooding event. This is 10 minutes late compared to

the normal case of not using the material and energy balance indicators.

Table 4.17: Time of flooding prediction as given by the trained-supervised ML algo-
rithms using the material and energy balance indicators as additional predictors.

Algorithm Detection Time [mins] Time [mins]

Time Before flooding Before pronounced flooding

LSTM 9:29 11 52

Random forest 9:52 - 29

Gradient Boosting 10:20 - 1

Linear Regression 10:20 - 1

Extra trees 10:22 - -

A sample pressure drop forecast at 9:29 is shown in Fig. 4.33. This forecast is

given 11 minutes before flooding and 52 minutes before flooding fully develops in the

column. The models predicted an increased pressure drop for the next 20 minutes.

However, only the forecast given by the LSTM can detect flooding, as given by the

clustering algorithm, which determines the operating state of the column based on

the forecast given.
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Figure 4.33: Pressure drop forecast at 9:29 (11 minutes before flooding) by the su-
pervised ML algorithms for flooding prediction using the material and energy balance
indicators as additional predictors

4.7 Performance Comparison of the ML models

The detection time of the different methods used for flooding detection is given in

Table 4.18 using the flooding data collected on the day of the major flooding event in

the distillation column as a case study. The conventional autoencoder has the lowest

performance in the early detection of flooding in the distillation column. Forecasting

the pressure drop using the LSTM model has the best performance since it gives the

earliest flooding prediction time. This will create ample time to notify the operators

of early flooding risk so that preventive measures can be taken to prevent the full

development of the flooding event. Generally, the supervised ML methods, despite

being trained with synthetic augmented data, perform better than the unsupervised

ML methods.
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Table 4.18: Time of flooding detection by different ML methods. The pressure drop
forecast is for supervised ML methods.

Method Detection time Before Before Pronounced

Flooding [min] Flooding [min]

Pressure Drop Forecast (LSTM) 9:21 19 60

Pressure Drop Forecast (Random Forest) 9:22 18 59

Pressure Drop Forecast (Extra Trees) 9:22 18 59

LSTM Autoencoder 9:27 13 54

PCA-based 9:30 7 50

Conventional Autoencoder 9:45 - 36



Chapter 5

Conclusion & Future work

5.1 Conclusion

One of the most important unit operations in chemical and process industries asso-

ciated with energy consumption is the distillation column. Poor performance of the

distillation column can be attributed to faults such as flooding. Flooding is an abnor-

mal situation that causes liquid build-up in the column, leading to products going off

specifications. If left unchecked, the entire production process of the chemical plant

can be disrupted.

In this thesis, different ways of early flooding detection in a distillation column

for a case of insufficient flooding regime data using ML methods were studied. Early

detection of flooding is important so that process operators can take corrective mea-

sures to avoid its full development. The method involves the use of unsupervised

learning methods such as PCA and Autoencoders to detect flooding and also super-

vised learning methods to forecast the pressure drop of the distillation column for

flooding detection. Using supervised ML algorithm requires sufficient and effective

normal operation and flooding data. However, the plant data used in this thesis has

limited flooding data, leading to a case of data imbalance with flooding data being

the minority. To address this problem, we presented a way of balancing the ratio of

normal operation data to flooding data by utilizing time-series generative adversarial

networks, known as TimeGAN, to generate synthetic flooding data. The synthetic

flooding regime data generated by the TimeGAN are evaluated to confirm that they
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capture the statistical and predictive properties of the original time-series flooding

regime data. From the results obtained, it can be concluded that TimeGAN is ef-

fective in generating virtual time-series data that can be used for time-series data

scarcity cases.

The results show that early flooding detection in a distillation column is better

achieved using supervised ML methods through pressure drop forecasting than un-

supervised ML methods. For the supervised ML methods, the trained LSTM model

for pressure drop forecast can detect flooding 19 minutes in advance and 60 minutes

before flooding fully develops in the distillation column, providing early warning risk

of possible flooding events and ample time for the process operators to take correc-

tive measures to prevent the full development of flooding in the distillation column.

However, for unsupervised learning, the LSTM Autoencoder can detect flooding 13

minutes in advance.

In summary, it can be concluded for this case study that

• time-series generative adversarial networks (TimeGAN) is an efficient tool to

generate synthetic flooding data to address the issue of flooding data scarcity

or data imbalance.

• supervised learning methods performed better than unsupervised learning meth-

ods in the early detection of distillation column flooding.

• flooding can be detected 19 minutes in advance, based on the result of using

LSTM to forecast the pressure drop across the column.

5.2 Future work

The following recommendations are proposed for better prediction of flooding by ap-

plying machine learning algorithms to a distillation column where there is insufficient

flooding regime data.

• Other types of Machine learning, such as semi-supervised learning methods, can

be tested for an improvement over the results of the supervised learning methods

for pressure drop forecast.
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• Flooding indicators based on empirical correlations can be developed as addi-

tional predictors for the supervised learning models to forecast the pressure drop

across the column.
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