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Abstract

Dust is an important observational tracer of gas in molecular clouds and different

dust solvers have led to conflicting conclusions about dust distributions. For this

reason, We model 3 and 10 µm dust grains in supersonic, turbulent molecular cloud

conditions to compare two different numerical methods solving dust coupled to gas

through a drag term. One method models dust and gas as two separate species

(two-fluid) and the other the combination of dust and gas as a single mixture (one-

fluid). Simulations are performed in a 3D periodic box using the Phantom code. The

gas probability distributions are consistent with a log-normal distribution for both

methods and grain sizes. The dust distributions are different in the two methods,

showing discrepancies especially in low densities. The most significant difference

between the two methods is in the dust-to-gas ratio distributions. Both methods peak

at the mean dust-to-gas ratio of 0.01, but the two-fluid method has wider distributions

than the one-fluid method suggesting excess dust concentration in dense filaments.

Filaments are where the one-fluid method results are most accurate, but the narrowing

of the distribution is also caused by the one-fluid limiter used to maintain the terminal

velocity approximation. This artificially makes the mixture more coupled in low-

density regions. Our overall conclusion is that both methods are viable for the study

of dust in molecular clouds, but that the correct method should be chosen based on

the Stokes number regime of the calculation to avoid numerical artefacts.
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Chapter 1

Introduction

Dust plays a crucial role in the dense interstellar medium (ISM) of our Galaxy, serving

as the primary source of opacity and light scattering. Dense molecular clouds are

regions in space with relatively high densities of molecular hydrogen, with mean

densities of nH2 ∼ 100 –1000 cm−3, compared to other types of interstellar medium

(ISM) (Snow and McCall, 2006; Ballesteros-Paredes et al., 2020; Colman et al., 2024).

These clouds have relatively low temperatures, usually around 10 K, and can span

large regions, sometimes hundreds of light years across.

Dense molecular clouds play a significant role in the life cycle of the ISM, acting

as a reservoir of molecular gas that can eventually collapse under gravity to form new

stars in the denser regions. These clouds are primarily composed of molecular gas

(99%), and most of that is molecular hydrogen which is difficult to detect directly

(Habart et al., 2005). The second most abundant element is helium, which is a noble
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gas and invisible. The second most abundant molecule is CO, which has rotational

transitions that are easily excited at typical molecular clouds temperatures and den-

sities, making it useful as a tracer of hydrogen in cold molecular clouds to investigate

molecular cloud properties (Solomon et al., 1979).

These clouds also contain solid dust grains composed of silicates and carbonaceous

materials of sizes from a few micrometers to a few nanometers (Mathis et al., 1977),

which account for about 1% of the mass in molecular clouds (Bohlin et al., 1978).

For a review on interstellar dust grains’ properties, see Draine (2003). Historically,

interstellar dust was first recognized for its ability to obscure starlight. Subsequently,

dust was used as a tracer for studying cold molecular clouds (Lada et al., 1994),

providing more detailed and robust measurements of cloud sizes, masses, and internal

structures compared to CO observations of the same regions within the Milky Way

(Goodman et al., 2009). The advantage of using dust over molecular lines lies in the

fact that dust grains do not require a minimum density to be detectable and remain

effective at high densities, whereas molecular lines can become problematic.

More fundamentally, dust grains play several critical roles in controlling the physics

and chemistry of the interstellar medium (Draine, 2011). One significant chemical ef-

fect is that dust grains provide surfaces on which hydrogen atoms can come together

and react to form molecular hydrogen (H2). In the cold, sparse environment of in-

terstellar space, gas-phase reactions are too slow to efficiently produce H2. However,

dust grains act as catalysts, facilitating the reaction by bringing hydrogen atoms into
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close proximity on their surfaces and allowing them to bond and form H2 molecules.

As a physical effect, dust grains exposed to ultraviolet starlight can significantly heat

the gas by releasing electrons (referred to as “photoelectrons”). When these electrons

are ejected from dust grains, they carry kinetic energy, which is then transferred to

the surrounding gas, resulting in its heating. Conversely, infrared emission from dust

grains serves as an important cooling mechanism, particularly in dense regions. Dust

grains absorb energy from their surroundings, and as they warm up, they can lose

this energy by emitting it as infrared radiation.

Molecular clouds exhibit high turbulence (Solomon et al., 1987; Larson, 1981).

Regardless of the underlying mechanisms driving it, turbulence can lead to the accu-

mulation of gas in filaments and cause the formation of complex, filamentary shapes,

which resemble the intricate, irregular forms observed in molecular clouds (Schneider

et al., 2011). It is a question on whether turbulence can drive variations in the local

dust-to-gas ratio. If so, then this would have implications on derived cloud masses,

as the calibration of H2 column density to integrated CO intensity (X-factor) is often

derived using dust extinction (Pineda et al., 2008; Kong et al., 2015; Liseau et al.,

2015; Lada and Dame, 2020; Lewis et al., 2022).

Several numerical studies have investigated the dynamics of dust grains within

cold, turbulent molecular clouds, revealing variations in dust concentration. Hopkins

and Lee (2016) use meshless finite mass (MFM) (Hopkins, 2015) where two separate

fluids of gas and dust are modeled using two types of particles, and they report a
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variation in dust concentration by more than a factor of 1000 for dust grains larger

than 0.01 µm with their simulation setup. They observed the emergence of dust

filaments even in the absence of gas filaments. In Mattsson et al. (2019a), the gas is

considered on a uniform Cartesian grid (Eulerian approach), while the dust fluid is

handled using inertial particles (Lagrangian approach). Mattsson et al. (2019a) report

large dust-to-gas ratio variations for grain sizes larger than 1 µm, and Mattsson et al.

(2019b) show small-scale clustering (increasing the local grain density by at least a

factor of a few) for nanometer-sized grains. These findings indicate that dust grains

decouple from the gas at these sizes and no longer trace the gas.

In contrast, Tricco et al. (2017) only report significant decoupling only for dust

grains larger than 10 µm, with 0.1 µm dust grains remaining highly coupled to the

gas distribution. This is contrast to the results found by Hopkins and Lee (2016) and

Mattsson et al. (2019a). The key difference between these results is that Tricco et al.

(2017) track the evolution of the barycenter of mass between the gas and the dust

using smoothed particle hydrodynamics (SPH) simulations. The full one-fluid system

of equations governing gas and dust dynamics is mathematically equivalent to the set

of equations in the two-fluid formalism, but involves a change of variables that allows

tracking the evolution of the mixture’s barycenter, relative velocity difference, and

dust concentration. This has been further simplified using the diffusion approximation

(Price and Laibe, 2015), which is grounded in the terminal velocity approximation

(Youdin and Goodman, 2005).
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While suitable for well-coupled dust grains in molecular clouds (small grains in

dense environments), the one-fluid diffusion approximation is inadequate for larger

grains as it underestimates the velocity difference between the dust and gas. This

means that numerical artefacts may appear for large dust grains or in low density

environments where the dust stopping time exceeds the local dynamical time. The

issue with the two-fluid results, where gas and dust are modeled separately, is that

the dust is pressureless. Federrath et al. (2010) demonstrated that pressureless tracer

particles in simulations of supersonic turbulence fail to accurately represent dynamics,

resulting in numerical artifacts. These artifacts manifest as exaggerated concentration

in high-density regions and almost complete absence in underdense regions. Moreover,

Laibe and Price (2012) established that simulations of two-fluid dust and gas mixtures

require sufficient gas resolution to adequately resolve the lengthscale over which dust

grains begin co-moving with the gas (dust “stopping length”).

What is needed is a comparative study where the same simulation is performed

side-by-side using the two-fluid and one-fluid dust methods to determine the condi-

tions in which the two methods agree on their solutions for molecular clouds. Com-

merçon et al. (2023) has recently performed this type of study using the grid-based

code Ramses (Teyssier, 2002). For the two-fluid method, the dust is treated as La-

grangian particles while the gas dynamics are computed on an Eulerian grid. They

find similar results as previous studies. For two-fluid simulations, they find artificial

dust trapping in high-density regions, with the maximum dust enrichment affected
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by the gas resolution. For their one-fluid simulations, they find that the terminal

velocity approximation is well suited for < 10 µm dust grains inside dense filaments,

but does not accurately capture dust dynamics in low density regions. They conclude

that the numerical properties of these two methods needs further study.

Our goal is to evaluate the effectiveness of the two-fluid and one-fluid numerical

methods for the evolution of dust and gas mixtures in supersonic, turbulent molecular

clouds. Our work is very similar to that of Commerçon et al. (2023), with a key

difference that we include a limiter on the stopping time for the one-fluid method.

Ballabio et al. (2018) recommend this limiter to ensure the equations of motion remain

valid within the terminal velocity approximation, particularly in low-density areas

where the stopping time might surpass the dynamical time (Courant time). We

specifically choose dust grain sizes and molecular cloud conditions to try to meet the

numerical requirements of both methods. Everything is performed in the Phantom

SPH code (Price et al., 2018), so that any differences found in our results can be

attributed entirely to the choice of dust solver.

The thesis is organized as follows. The continuum equations described in Chap-

ter 2. The numerical methods is discussed in Chapter 3. The simulation conditions

and results are presented in Chapter 4. Conclusions are given in Chapter 5.
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Chapter 2

Continuum equations

Dust and gas are considered as two continuous fluids. Though the dust is comprised

of individual grains, and their individual properties are important, the dust is treated

as a continuum because the length scales of interest are far above that of individual

grains. The dust behaves as a pressureless fluid suspended within the gas. These fluids

interact and exchange momentum through a drag force, which models the coupling

between the dust and gas.

In the two-fluid set of equations, the dust and gas are treated as distinct continuous

fluids. Each fluid is governed by its own set of equations of motion with additional

terms representing the drag force that couples the two components. In contrast, the

one-fluid description merges the tightly-coupled dust and gas into a single, unified

fluid. This is mathematically the same, but views the combined mixture of gas and

dust from a common point of reference.
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2.1 The two-fluid method

The equations describing the evolution of gas and dust mixtures, where dust is treated

as a pressureless, inviscid fluid in the continuum limit, are given by

dρg
dt
= −ρg(∇ ⋅ vg), (2.1)

dρd
dt
= −ρd(∇ ⋅ vd), (2.2)

dvg

dt
= f + K

ρg
(vd − vg) −

∇Pg

ρg
, (2.3)

dvd

dt
= f − K

ρd
(vd − vg), (2.4)

du

dt
= −

Pg

ρg
(∇ ⋅ vg) +

K

ρg
(vd − vg)2, (2.5)

where d/dt ≡ ∂/∂t+v ⋅∇ is the material (Lagrangian) derivative, the subscripts g and

d refer to the gas and dust, respectively, ρ is the density, v is the velocity, Pg is the

thermodynamic gas pressure, u is the internal energy, and f represents accelerations

acting on both components, such as gravitational acceleration or turbulent driving.

The coefficient K denotes the drag coefficient between the two phases, with dimen-

sions of mass per unit volume per unit time. The gas and dust are coupled through
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the drag terms, which exchange momentum and energy between the gas and the dust

phases.

2.1.1 Equation of sate

The equation set is closed by an equation of state defining the gas pressure. For an

ideal gas, this is given by

Pg = (γ − 1)ρu, (2.6)

where γ is the adiabatic index and the sound speed cs is given by

c2s = γ
Pg

ρg
. (2.7)

The pressure can be related to the gas temperature by using

Pg =
ρkBT

µmH

(2.8)

giving

T = µmH

kB
c2s , (2.9)

where kB is Boltzmann’s constant, µ is the mean molecular weight and mH is the

mass of a hydrogen atom.

In this work, we consider cold, dense molecular clouds for which γ = 1 is a reason-

able approximation. In this case, the sound speed is constant, as is the temperature

of the cloud. Therefore, the gas pressure is calculated according to

Pg = c2sρg, (2.10)

which means the pressure is proportional to the density.
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2.1.2 Stopping time

The stopping time is a characteristic timescale which represents the time required for

the drag to adjust the velocity of a dust grain to match the gas velocity. It can be

calculated according to

ts =
ρgρd

K(ρd + ρg)
. (2.11)

In general, the drag coefficient, K, depends on the properties of both the gas and

dust. The drag regime is determined by the size of the gas molecules’ mean free path,

λg, in comparison to the dust grain size, sgrain (Stepinski and Valageas, 1996). This

comparison is quantified using the Knudsen number,

Kn =
9λg

4sgrain
. (2.12)

For Kn ≥ 1, the drag coefficient is computed using the generalized formula for

Epstein drag from Kwok (1975),

K = ρgρd
4

3

√
8π

γ

s2grain
mgrain

csf, (2.13)

where

mgrain ≡
4

3
πρgrains

3
grain, (2.14)

ρgrain is the intrinsic grain density, and f is a correction factor for supersonic motions

(Kwok, 1975), given by

f ≡
√

1 + 9π

128

∆v2

c2s
. (2.15)
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The Epstein regime is appropriate for molecular clouds, where the mean free path of

the gas is much larger than the size of the dust grains. Under these circumstances,

the stopping time for compact, spherical dust grains is

ts =
ρgrainsgrain

ρcsf

√
πγ

8
, (2.16)

Assuming that all grains have the same intrinsic density, the larger the grain, the

longer the stopping time, and consequently, the smaller grains are the most coupled

to the gas. The degree of coupling between the dust and the gas is characterised by

the Stokes number, which is defined as

St = ts
tdyn

, (2.17)

where tdyn is the typical dynamical time of the system. For St≪ 1, the gas and dust

are dynamically coupled, which implies ∆v≪ cs and f = 1.

2.2 The one-fluid method

The gas-dust evolution equations given by Equations (2.1)–(2.5) can be reformulated

to represent a single fluid moving with the barycentric velocity,

v ≡
ρgvg + ρdvd

ρg + ρd
. (2.18)

The differential velocity between the two phases, ∆v, is defined according to

∆v ≡ vd − vg. (2.19)
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In this approach, the total density, ρ = ρg + ρd, the barycentric velocity, the dif-

ferential velocity, and a prescription for specifying the dust fraction, ϵ = ρd/ρ, can be

used to provide a mathematically equivalent formulation of Equations (2.1)–(2.5). By

using the identities vg = v − (ρd/ρ)∆v and vd = v − (ρg/ρ)∆v, Equations (2.1)–(2.5)

become

dρ

dt
= −ρ(∇ ⋅ v), (2.20)

dϵ

dt
= −1

ρ
∇ ⋅ [ϵ(1 − ϵ)ρ∆v], (2.21)

dv

dt
= f −

∇Pg

ρ
− 1

ρ
∇ ⋅ [ϵ(1 − ϵ)ρ∆v∆v], (2.22)

d∆v

dt
= −∆v

ts
+
∇Pg

(1 − ϵ)ρ
− (∆v ⋅ ∇)v + 1

2
∇[(2ϵ − 1)∆v2], (2.23)

du

dt
= −

Pg

(1 − ϵ)ρ
∇ ⋅ (v − ϵ∆v) + ϵ(∆v ⋅ ∇)u + ϵ∆v2

ts
. (2.24)

The dust-to-gas ratio can be calculated according to ρd/ρg = ϵ/(1 − ϵ).

2.2.1 Terminal velocity approximation

The fluid equations in the one-fluid formalism can be simplified when the stopping

time ts is small compared to the typical dynamical time-scale, i.e., when St < 1. In

12



this regime, the relative velocity between the two phases rapidly approaches zero, that

is, the dust begins co-moving with the gas on a shorter timescale than the dynamical

time. It is worth noting that this assumption is not a requirement for the one-

fluid method but significantly enhances its computational efficiency when St << 1, a

condition typically satisfied by the dust sizes found in molecular clouds. By applying

this terminal velocity approximation, we can neglect the time dependence of the

differential velocity between the gas and dust phases, simplifying Equation (2.23) to

∆v = ts
1 − ϵ

∇P
ρ

. (2.25)

Using this equation for ∆v, and neglecting terms of second order in ts, Equa-

tions (2.20)–(2.24) reduce to

dρ

dt
= −ρ(∇ ⋅ v), (2.26)

dϵ

dt
= −1

ρ
∇ ⋅ (ϵts∇Pg), (2.27)

dv

dt
= f −

∇Pg

ρ
, (2.28)

du

dt
= −

Pg

(1 − ϵ)ρ
∇ ⋅ v, (2.29)

The equations in the terminal velocity approximation have a strong similarity to

the usual hydrodynamic equations, apart from the additional evolution equation for

the dust fraction (Equation 2.27).
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Chapter 3

Numerical method

We use the Phantom smoothed particle hydrodynamics (SPH) code (Price et al.,

2018). Phantom contains numerical methods to solve the gas-dust equations in both

the two-fluid and one-fluid prescriptions. Both methods include the back-reaction of

the dust on the gas.

3.1 Smoothed particle hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a computational technique originally

designed for astrophysical applications. SPH is a mesh-free, Lagrangian approach,

meaning that the computational points (particles) move along with the fluid flow,

allowing the coordinates to change dynamically with the system’s motion. Over the

years, SPH has been extended to a wide range of fields, including fluid dynamics, solid

mechanics, and geophysical simulations, due to its flexibility in handling complex
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boundary conditions and large deformations. One of its key strengths is the ability

to adapt resolution based on local physical properties, like density. This flexibility

ensures computational efficiency, as it allocates more particles to regions with higher

density or where finer detail is needed, while using fewer particles in less critical areas.

The method works by discretizing the fluid into a set of particles with fixed mass

m, which move according to the local fluid velocity v, effectively solving the hydro-

dynamics equations as the particles flow through the medium. The two fundamental

equations representing the position and the conservation of mass in the Lagrangian

time derivative form d/dt ≡ ∂/∂t + v ⋅ ∇, are

dr

dt
= v, (3.1)

dρ

dt
= −ρ(∇ ⋅ v), (3.2)

where r is the particle position and ρ is the density.

3.1.1 Interpolation in SPH

In SPH, the density is calculated using a weighted summation over nearby particles,

as given by

ρa = ∑
b

mbW (∣ra − rb∣, ha), (3.3)

where a and b are particle labels, m is the mass of the particle, W is the smoothing

kernel and h is the smoothing length, determining the rate of fall-off W as a function
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of particle spacing. The summation is over neighboring particles, defined as those

within Rkernh, where Rkern is the dimensionless cutoff radius of the smoothing kernel.

Taking the Lagrangian time derivative of (3.3), one obtains the discrete form of (3.2)

in SPH

dρa
dt
= 1

Ωa
∑
b

mb(va − vb) ⋅ ∇aWab(ha) (3.4)

where Wab(ha) ≡ W (∣ra − rb∣, ha), ∇a denotes the gradient of W taken with respect

to the coordinates of particle a keeping h constant, and Ωa is a term related to the

gradient of the smoothing length given by

Ωa ≡ 1 −
∂ha

∂ρa
∑
c

mc
∂Wac(ha)

∂ha

. (3.5)

In Phantom, Equation (3.4) is used to predict the smoothing length at the next time

step. Since (3.3), (3.4) and (3.5) all depend on the kernel evaluated on neighbours

within Rkern times ha, all three of these summations may be computed simultaneously

using a single loop over the same set of neighbours.

In general, a physical quantity A at a particle position a is interpolated by using

Aa = ∑
b

Ab
mb

ρb
W (∣ra − rb∣, ha). (3.6)

3.1.2 Smoothing kernels

The kernel (weight) function as a function of the smoothing length h and the dimen-

sionless variable q = ∣r − r′∣/h can be written in the form

Wab(ha) ≡
σ

h3
a

f(qab), (3.7)
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where σ is a normalisation constant, and the factor of h3
a gives the dimensions of

inverse volume. The kernel gradient becomes

∇aWab = r̂abFab, where Fab ≡
σ

h4
f ′(q), (3.8)

and the derivative of the kernel with respect to h is

∂Wab(r, h)
∂h

= − σ
h4
[3f(q) + qf ′(q)]. (3.9)

These equations are used in discretising equations of motion in SPH.

In this work, we use the M4 cubic spline given by

f(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 3
2q

2 + 3
4q

3, 0 ≤ q < 1;

1
4(2 − q)3, 1 ≤ q < 2;

0 q ≥ 2.

(3.10)

The cubic spline has a normalization constant σ = 1/π in 3 dimensions. The discrete

form of the continuum normalisation condition, ∫ WdV = 1, becomes

∑
b

mb

ρb
Wab ≈ 1. (3.11)

In general most bell-shaped (Gaussian-like) kernels, such as the cubic spline, fulfill

this criterion.

The smoothing length of a particle is given by

ha = 1.2(
ma

ρa
)
1/3

, (3.12)

where the factor 1.2 is an appropriate choice for the cubic spline (Dehnen and Aly,

2012).
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A “double hump” kernel (Laibe and Price, 2012) is used to calculate the drag

terms in the two-fluid SPH implementation, defining

Dab(ha) =
σ

h3
a

q2abf(qab). (3.13)

The double hump kernels were found to reduce errors in the calculation of drag forces

by a factor of several hundred. This occurs because the kernel is peaked away from

the centre, which is beneficial as there is, in general, no contributing particle at the

centre. In other words, there is no self-contribution as the drag is between pairs of

different types of particles (note that this would be problematic for calculating density

as the self-contribution is most important).

3.1.3 Iterations for h and ρ

The mutual dependence of ρ and hmeans that a root-finding procedure is necessary to

solve both (3.3) and (3.12) simultaneously. The procedure implemented in Phantom

is solving, for each particle, the equation

f(ha) = ρsum(ha) − ρ(ha) = 0 (3.14)

where ρsum is the density computed from (3.3) and

ρ(ha) =ma (
1.2

ha

)
3

, (3.15)

from equation (3.12). Equation (3.14) is solved with Newton-Raphson iterations,

ha,new = ha −
f(ha)
f ′(ha)

(3.16)
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where the derivative is given by

f ′(ha) = ∑
b

mb
∂Wab(ha)

∂ha

− ∂ρa
∂ha

= −3ρa
ha

Ωa (3.17)

The iterations proceed until ∣ha,new − ha∣/ha,0 < ϵh, where ha,0 is the smoothing length

of particle a at the start of the iteration procedure and ϵh is the tolerance. The conver-

gence with Newton-Raphson is fast, and further iterations are avoided by predicting

the smoothing length from the previous timestep according to

h0
a = ha +∆t

dha

dt
= ha +∆t

∂ha

∂ρa

dρa
dt

(3.18)

where dρa/dt is evaluated from Equation (3.4).

Since h and ρ are mutually dependent, the code stores only the smoothing length,

from which the density can be obtained at any time.

3.1.4 Timestep constraint

The timestep is constrained to be less than the maximum stable timestep according

to the Courant condition. For a given particle, a, this is given by

∆tacour ≡ Ccour
ha

cs
(3.19)

where Ccour = 0.3 by default (Lattanzio et al., 1984). The resulting timestep is the

minimum over all particles:

∆t =min
a
(∆ta) (3.20)
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3.2 The two-fluid method in Phantom

In the two-fluid method, the mixture is discretized into two distinct sets of dust and

gas particles. Equations (2.1)–(2.2) are discretized with a density summation over

neighbors of the same type, giving

ρa = ∑
b

mbWab(ha); ha = 1.2(
ma

ρa
)
1/3

(3.21)

for the density of a gas particle, and

ρi = ∑
j

mjWij(hi); hi = 1.2(
mi

ρi
)
1/3

(3.22)

for the density of a dust particle. The indices a and b, refer to quantities computed

on gas particles and i and j refer to quantities computed on dust particles.

The discretized equation of motion for the gas particles can be obtained by writing

the Lagrangian of the system consisting of gas and dust in SPH and using the Euler-

Lagrange equations. Equation (2.3) becomes

dva

dt
= −∑

b

mb

⎡⎢⎢⎢⎢⎣

Pg,a

Ωaρ2a
∇aWab(ha) +

Pg,b

Ωbρ2b
∇aWab(hb)

⎤⎥⎥⎥⎥⎦
− 3∑

j

mj

vaj ⋅ r̂aj
(ρa + ρj)ts,aj

r̂ajDaj(ha),

(3.23)

where the first summation is the pressure gradient, the second summation is the drag

term, Ωa is a term related to the gradient of the smoothing length

Ωa ≡ 1 −
∂ha

∂ρa
∑
b

mb
∂Wab(ha)

∂ha

, (3.24)

and D is a double hump kernel (Section 3.1.2).
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Equation (2.4), the equation of motion for dust particles, is discretized according

to

dvi

dt
= −3∑

b

mb
vib ⋅ r̂ib

(ρi + ρb)ts,ib
r̂ibDib(hb). (3.25)

The internal energy equation (Equation 2.5) is discretized as

dua

dt
=

Pg,a

ρ2aΩa
∑
b

mbvab ⋅ ∇aWab(ha) + 3∑
j

mj

(vaj ⋅ r̂aj)2
(ρa + ρj)ts,aj

Daj(ha), (3.26)

where the two terms are from pressure and drag heating, respectively.

The stopping time, ts,ai, is defined between a pair of gas and dust particles, given

by

ts,ai =
ρaρi

Kai(ρa + ρi)
, (3.27)

where a refers to a gas particle and i a dust particle.

In the two-fluid method, the timestep is also constrained by the stopping time

according to

∆tadrag =min
j
(ts,aj). (3.28)

Laibe and Price (2012) demonstrate the two-fluid method also has a spatial res-

olution requirement in order to correctly predict the dust dynamics. This is given

by

h ≲ csts. (3.29)

The combination of the drag timestep criterion and spatial resolution requirement

mean that these can become prohibitively expensive when the drag is large. That is,

when St < 1, which typically occurs for small dust grains.
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3.3 The one-fluid method in Phantom

In the one-fluid method, only one set of particles is used to represent the mixture of

gas and dust. Discretizing Equations (2.26), (2.28), and (2.29) is straightforward as

there is only one type of particle with no drag terms. Equation (2.26) for the total

density becomes

ρa = ∑
b

mbWab(ha); ha = 1.2(
ma

ρa
)
1/3

. (3.30)

Equation (2.28) is discretized as

dva

dt
= −∑

b

mb

⎡⎢⎢⎢⎢⎣

Pg,a

Ωaρ2a
∇aWab(ha) +

Pg,b

Ωbρ2b
∇aWab(hb)

⎤⎥⎥⎥⎥⎦
, (3.31)

and Equation (2.29) becomes

dua

dt
=

Pg,a

ρ2aΩa
∑
b

mbvab ⋅ ∇aWab(ha). (3.32)

Discretizing Equation (2.27) does not place any constraint that the dust fraction

should be between 0 ≤ ϵ ≤ 1. Mapping the dust fraction to a function whose co-domain

is only defined from [0,1] can prevent ϵ from becoming unphysical. Ballabio et al.

(2018) suggest a parameterization that meets this criterion, given by

ϵ = s2

1 + s2
, (3.33)

such that

s =
√

ϵ

1 − ϵ
. (3.34)

In this formulation, s is then related simply to the ratio of dust to gas densities,
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s =
√
ρd/ρg. By substituting the time derivative of the new parameter,

ds

dt
= 1

2s(1 − ϵ)2
dϵ

dt
, (3.35)

in Equation (2.27), the following can be obtained,

ds

dt
= − 1

2ρ(1 − ϵ)2
⎧⎪⎪⎨⎪⎪⎩
∇ ⋅ [s(1 − ϵ)ts∇Pg] + (1 − ϵ)ts∇Pg ⋅ ∇s

⎫⎪⎪⎬⎪⎪⎭
. (3.36)

The SPH discretization is implemented in the form

dsa
dt
= − 1

2ρa(1 − ϵa)2
∑
b

⎡⎢⎢⎢⎢⎣

mbsb
ρb
(Da +Db)(Pa − Pb)

F̄ab

∣rab∣

⎤⎥⎥⎥⎥⎦
, (3.37)

where Da = ts,a(1 − ϵa), F̄ab = [Fab(ha) + Fab(hb)]/2, and Fab ≡ (σ/h4)f ′(q). This

equation conserves linear and angular momentum, energy, and mass – at least up to

the accuracy of the time stepping algorithm.

In addition, the diffusion equation for the dust fraction (Equation (2.27)), which

models the distribution of dust in the gas fluid, imposes an additional constraint

on the timestep in addition to the Courant timestep (Price and Laibe, 2015). This

timestep criterion is given by

∆t <∆tϵ ≡ C0
h2

ϵtsc2s
, (3.38)

where C0 is a dimensionless safety factor of order unity. Note that this timestep

criterion is inversely proportional to the stopping time, which is opposite the timestep

criterion for the two-fluid method (via Equation (3.28)). Thus, the timestep becomes

limiting as the stopping time becomes large, occurring when dust grains are large.

Ballabio et al. (2018) derive a general form of the timestep criterion accounting for
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gradients in ϵ. As with their recommendation, we use the simpler criterion given by

Equation (3.38) since it avoids calculating these ϵ gradients.

3.3.1 Limiting the stopping time

As mentioned in Section 2.2.1, the one-fluid method relies on the terminal veloc-

ity approximation. This remains accurate when St ≤ 1, a condition typically met

by small dust grains. However, when St > 1, inaccuracies due to assumption viola-

tions can arise. Notably, for medium-sized particles even with initial Stokes numbers

slightly below one, the Stokes number can increase beyond one over time, leading to

a breakdown of the approximation.

Ballabio et al. (2018) suggest limiting the stopping time on particles where St > 1,

replacing the stopping time (ts) by the limited stopping time (t̃s), given by

t̃s =min(ts, h/cs). (3.39)

This restricts changes in the dust fraction for particles that do not adhere to the

terminal velocity approximation, curbing potential errors in dust mass conservation.

Another way to view the limiter is that there is a spatial resolution requirement for

the one-fluid method that is analogous to the resolution requirement for the two-fluid

method (Equation 3.29). That is,

h ≳ csts. (3.40)

The smoothing length must be larger than the coupling scale of gas and dust. For

the two-fluid method, the resolution must be sufficient to resolve the length scale
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over which gas and dust would begin co-moving. For the one-fluid method, the

terminal velocity approximation assumes that the gas and dust are co-moving below

the resolution scale. Violation of this assumption is problematic because it introduces

errors that dominate the physical solution.

3.4 Stokes numbers in SPH

The Stokes number is defined as the ratio of stopping time to dynamical time (Equa-

tion (2.17)). It is a dimensionless quantity that measures the degree of coupling

between the gas and dust. We calculate the Stokes number per particle defined in

terms of the local dynamical time, tdyn = h/cs. It would seem sensible to use the char-

acteristic timescale of the turbulence, tc = L/2Mcs, as the dynamical time, but the

local dynamical time is more important in terms of the numerics of the algorithms,

as will be shown.

Defining the Stokes number in terms of the local dynamical time introduces a

resolution dependence because the dynamical time is proportional to h. This means

that the Stokes number increases as h decreases, even if the density and dust grain

properties are held constant. Therefore, even if the terminal velocity approximation

in the one-fluid method is valid at one resolution, there is always a larger resolu-

tion for which this will no longer be true (see discussion on the one-fluid limiter in

Section 3.3.1).

For the two-fluid method, the problem is reversed. The Stokes number goes down
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as h increases (i.e., decreasing resolution). This means that there is a point where

the spatial resolution requirement is no longer satisfied via Equation (3.29).

Calculating the Stokes number requires the dust stopping time. For the one-

fluid method, this is calculated using Equation (2.16). Each particle carries the total

density (gas plus dust density), so it is trivial to calculate. Note that the one-fluid

method does not apply the supersonic correction given by Equation (2.15).

The Stokes number for the two-fluid method is less straightforward because the

stopping time is calculated per gas-dust particle pair (Equation (3.27)). Each dust

particle has a stopping time with each gas particle it interacts with. We desire a

single Stokes number per dust particle. To estimate a single stopping time for dust

particles, the gas density is interpolated at the location of the dust particle, and the

combined dust plus interpolated gas density is used to calculate a single stopping time

per dust particle. The gas velocity is also interpolated at the location of the dust so

that the supersonic correction term can be calculated, which requires the differential

velocity between the gas and dust.
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Chapter 4

Simulation Conditions and Results

4.1 Simulation conditions

We conduct experiments of driven, isothermal, supersonic turbulence in a periodic

box. We have chosen initial conditions that represents the interior of molecular clouds

specifically corresponds to Stokes numbers around one to explore the properties of

the numerical methods. Simulations are performed using the one-fluid and two-fluid

methods for dust grains of size 3 µm and 10 µm. The intrinsic density of dust grains

is 3 g cm−3, representing a combination of carbonaceous (2.2 g cm−3) and silicate

grains (3.5 g cm−3). The box size is x, y, z ∈ [0, L] with L = 3 pc per side. The initial

density is uniform with a mean total density (gas plus dust) of ρ0 = 10−20g cm−3. This

corresponds to a number density of n ∼ 2.6 × 103 cm−3 for a mean molecular weight

of 2.3. We use an isothermal equation of state (γ = 1) with a sound speed cs = 0.2
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km s−1, corresponding to a temperature of T ≈ 11.5 K. The equation of state is well

represented by an isothermal equation of state for these densities (Scalo et al., 1998;

Bergin and Tafalla, 2007). Simulations are performed using 2563 particles.

The turbulence is driven to keep a root-mean squared (rms) velocity of Mach 10

(M = 10). The simulation is performed for 12 turbulent crossing times, defined as

tc = L/2Mcs ≈ 0.733 M yr. The driving pattern uses a force derived from an Ornstein-

Uhlehnbeck process (Eswaran and Pope, 1988; Schmidt et al., 2009; Federrath et al.,

2010). This is an idealized model that represents the physical processes that gener-

ate the turbulence. The generate turbulence, like supernovae. The autocorrelation

timescale of the driving is 1 tc, meaning that statistically independent snapshots

are produced every turbulent crossover time. The driving is purely solenoidal. All

calculations utilize the same driving pattern.

By using the Stokes number definition (Equation 2.17), with tdyn = h/cs, Equa-

tion (3.12), and the mass per particle defined as ma = ρ0L3/n, where nSPH is the

number of SPH particles, an equation for the initial Stokes number of our turbulence

inside a periodic box setup can be obtained as

St = 0.04332(
ρgrain

3g cm−3
)(

sgrain
0.1µm

)(nSPH

2563
)
1/3
( ρa
10−20 g cm−3

)
−1
( L

3pc
)
−1
. (4.1)

The conditions in Equation (4.1) reflect typical dust grain sizes and conditions for

molecular clouds. Note that this equation assumes that there is no initial velocity,

and that the initial density is uniform, as is the case for our initial conditions. The

Stokes number will change per particle as turbulence develops.
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Via Equation (4.1), dust grains with sizes 3 and 10 µm in these initial conditions

correspond to initial Stokes numbers of St = 1.3 and St = 4.3, respectively. These

Stokes number regimes are specifically chosen to avoid excessively high resolution

requirements for the two-fluid method (via Equation 3.29). For density variations

of 100× increase and decrease around the mean density, which can be expected for

isothermal, supersonic turbulence, this implies Stokes number variations of approxi-

mately 20×. For the one-fluid method, it is thus expected that the terminal velocity

approximation will be reasonably upheld for a significant fraction of particles.

4.2 Results

Our analysis focuses on the time-averaged statistical properties of turbulent dust

and gas. The initial turbulent crossing from t/tc = 0 to t/tc = 2 is excluded from

our analysis as the turbulence is not fully developed during this phase. We perform

averaging over 11 snapshots in the range t/tc = 2–12, each taken 1 tc apart such that

they are statistically independent snapshots.

4.2.1 Gas density

Figure (4.1) shows column-integrated gas densities at t/tc = 2, 3, 4, 5 for 3 µm and 10

µm dust grains using the two-fluid and one-fluid methods. At t/tc = 2, the gas column

densities in both methods are comparable. However, they diverge over time. While

they still show the same large-scale structure, different structures appear on smaller
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Figure 4.1: Column density of the gas with 3 µm dust grains (top panel) and 10 µm

dust grains (bottom panel) in the two-fluid method (top row of each panel) and in

the one-fluid method (bottom row of each panel) at t/tc = 2,3,4,5 from left to right

columns, respectively.
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scales. Though all calculations use the same driving pattern, the chaotic nature of

the turbulence means that individual realizations of the density field will be different

across each calculation.

Figure (4.2) shows the time-averaged, volume-weighted probability density func-

tions (PDFs) of the gas density for 3 µm and 10 µm dust grains. The volume-weighted

PDFs are calculated by interpolating the particle densities for each turbulent turnover

snapshot onto a grid with a resolution of 5123 cells, i.e., twice the number of parti-

cles. The PDFs are not calculated using the particles directly because this would lead

to a mass-weighted PDF. Time averaging helps to mitigate the effects of turbulent

variability and is necessary to ensure statistically meaningful results.

The gas PDFs exhibit a log-normal distribution, characteristic of supersonic,

isothermal turbulence (e.g., Vazquez-Semadeni, 1994; Passot and Vázquez-Semadeni,

1998). They can be fit in log-space to a normal distribution with Table 4.1 giving the

mean and standard deviation of each fit. No significant difference in the gas PDFs

are found between the simulations with 3 µm and 10 µm dust grains, or between the

two-fluid and one-fluid methods.

Table 4.1: Log-normal fits of the gas density PDFs

Size (s) Method Mean Std dev (σ)

3 µm Two-fluid −1.2972 ± 0.0055 1.5930 ± 0.0055

3 µm One-fluid −1.2638 ± 0.0051 1.5580 ± 0.0051

10 µm Two-fluid −1.2748 ± 0.0056 1.5750 ± 0.0056
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Table 4.1: (Continued) Log-normal fits of the gas density PDFs

Size (s) Method Mean Std dev (σ)

10 µm One-fluid −1.2839 ± 0.0053 1.5779 ± 0.0053

4.2.2 Dust density

Figure (4.3) shows the column-integrated dust density at t/tc = 2, 3, 4, 5 for 3

µm and 10 µm dust grains in the two-fluid and one-fluid methods, similar to the gas

density renderings in Figure (4.1). The dust density fields are almost exactly the same

between the two-fluid and one-fluid for both grain sizes at t/tc = 2. The density fields

diverge over time. The large-scale structures remain similar at t/tc = 5, but small-

scale differences are evident. This behaviour was also seen in the column-integrated

gas density.

Figure (4.4) shows the PDFs of dust density for 3 µm and 10 µm dust grains.

The PDFs for both grain sizes peak at similar values. The peaks are located at lower

densities than the gas PDFs, shifted an amount appropriate for the mean dust-to-gas

ratio. For both grain sizes, the high-density tails of the dust PDFs are closely aligned

for both methods, though the two-fluid tail extends to slightly higher densities. The

largest difference is in the low-end tail. The two-fluid results extend several orders

of magnitude lower than the one-fluid results. The implication of this is that the

two-fluid dust density PDFs are more asymmetric than the one-fluid PDFs.
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Figure 4.2: Time-averaged volume weighted PDFs of ln(ρg/ρ0) for 3µm (left) and

10µm (right) in 2563 resolution in one-fluid and two-fluid methods. Shaded regions

represent the standard deviation of the time averaging.
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Figure 4.3: Column density of the 3 and 10 µm dust in the two-fluid and one-fluid

methods at t/tc = 2,3,4,5 (left to right columns, respectively).
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Figure 4.4: Time-averaged volume-weighted PDFs of ln(ρd/ρ0) for 3 mum (left) and

10 µm (right) in 2563 resolution in one-fluid and two-fluid methods. Shaded regions

represent the standard deviation of the time averaging.
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Table 4.2: Log-normal fits of the dust density PDFs

Size (s) Method Mean Std dev (σ)

3 µm Two-fluid −6.9776 ± 0.0270 2.5923 ± 0.0270

3 µm One-fluid −6.1704 ± 0.0190 1.9784 ± 0.0190

10 µm Two-fluid −6.8726 ± 0.0296 2.4853 ± 0.0296

10 µm One-fluid −6.3531 ± 0.0205 2.0863 ± 0.0205

Table (4.2) lists the mean and standard deviations for the dust density PDFs fit to

log-normal distributions. The fitted parameters are consistent for the same method,

although they are different between the one-fluid and two-fluid methods. The mean

values are lower for the two-fluid fits compared to the one-fluid fits, along with a wider

standard deviation. Overall, the dust density PDFs have larger standard deviations

than the gas density PDFs, in addition to larger errors on the fitted parameters. This

means that the dust density PDFs deviate in shape from the gas density PDFs, which

can also be understood as a consequence of the asymmetries in the dust density PDFs

found in Figure (4.4).

4.2.3 Correlation of dust and gas

Figure (4.5) compares the column densities of the gas (top row) and dust (bottom

row) for 3 µm (left panel) and 10 µm (right panel) dust grains in the two-fluid method

(left column of each panel) and the one-fluid method (right column of each panel)
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at t/tc = 5. The large-scale structure of the dust follows the gas in both methods for

both grain sizes. However, the dust column density in the two-fluid method appears

to exhibit sharper density contrasts on the small scale compared to the gas density.

The one-fluid dust density also has sharper density contrasts than the gas, but not

as pronounced as the two-fluid dust density.

   GAS

DUST

Figure 4.5: Column density of the gas (top row) and the dust (bottom row) for 3 µm

and 10 µm dust grains (left and right panels, respectively) in the two-fluid method

(left column of each panel) and the one-fluid method (right column of each panel) at

t/tc = 2 (≈ 1.47 Myr).

Figure (4.6) shows slices of the dust and gas densities at t/tc = 5 for 3 µm and

10 µm dust grains in the two-fluid and one-fluid methods. A similar picture emerges

as with the column-integrated densities, but even more pronounced. The large-scale
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structure of the dust traces the structure of the gas, however the density contrast be-

tween low- and high-density regions in the dust are greater than the gas. This appears

more pronounced for the two-fluid method than the one-fluid method, suggesting that

decoupling occurs more readily for the two-fluid method.

  GAS

DUST

Figure 4.6: Slices of the gas (top row) and the dust (bottom row) densities for 3µm

and 10 µm dust grains (left and right panels, respectively) in the two-fluid method

(left column of each panel) and the one-fluid method (right column of each panel) at

t/tc = 5 (≈ 3.67 Myr).

Figure (4.7) depicts the probability density functions (PDFs) of dust-to-gas ratio

for dust grains of sizes 3 µm and 10 µm. They both peak at approximately the

mean dust-to-gas ratio of 0.01. The PDFs for the two-fluid dust-to-gas ratios are

significantly broader than the PDFs obtained using the one-fluid method. Both PDFs
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are asymmetric, though the two-fluid has a larger skew.
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Figure 4.7: Time-averaged volume-weighted PDFs of log(ρd/ρg) for 3 µm (left) and

10 µm (right) in 2563 resolution in the two-fluid and one-fluid approaches. Shaded

regions represent the standard deviation of the time averaging.

The one-fluid method reaches a maximum dust-to-gas ratio of ∼ 0.03 for 3 µm and

∼ 0.05 for 10 µm dust grains, whereas the two-fluid method reaches a maximum dust-

to-gas ratio of ∼ 0.30 for 3 µm and ∼ 0.39 for 10 µm dust grains. This represents a

local increase from the mean dust-to-gas ratio of 3–5× with the one-fluid method, but

a 30–39× increase with the two-fluid method. This increase requires a corresponding

decrease in the minimum dust-to-gas ratios observed in the results. The minimum

dust-to-gas ratios in the PDFs are not significantly different between 3 and 10 µm

dust grains for the two-fluid method, though the PDFs for the one-fluid are slightly
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broader for 10 µm grains compared to 3 µm grains.

That the dust-to-gas ratio distributions are narrower for the one-fluid results than

the two-fluid results can be understood in context of the stopping time limiter used

with the one-fluid method. The limiter is applied in low-density regions. As seen in

Figure (4.6), there is more dust mass in low-density regions for the one-fluid method

compared to the two-fluid method. This homogenizes the dust throughout the do-

main, yielding a narrow distribution of dust-to-gas ratios.

4.2.4 Stokes number

The Stokes number, St = ts/tdyn (Equation 2.17), is a dimensionless quantity that

measures the degree of coupling between the gas and dust. We calculate the Stokes

number per particle defined in terms of the local dynamical time, tdyn = h/cs, as

described in Section (3.4).

Figure (4.8) shows the probability distribution of the logarithm of Stokes numbers

over the SPH particles at t/tc = 8. Naively, one would expect the two-fluid and one-

fluid Stokes number distributions to be equal since the simulations have the same

grain density, same grain size, same resolution, and gas density distributions (see

Section 4.2.1). This is true below St < 1, with the two-fluid and one-fluid results in

good agreement for both the 3 and 10 µm dust grain calculations. The Stokes number

distributions for 3 µm dust grains peak roughly 3× smaller than the peak for the 10

µm distribution, reflecting the dependence of the Stokes number on grain size (via
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Figure 4.8: PDFs of log(St) for 3 µm (left) and 10 µm (right) in 2563 resolution in

two-fluid and one-fluid approaches at t/tc = 8

the stopping time).

The large spike at St = 1 for the one-fluid results is a consequence of the stopping

time limiter (Equation 3.39). The limiter prohibits stopping times greater than the

dynamical time because of the terminal velocity approximation, thereby artificially

capping the Stokes number at 1. One way to view this is that the dust grains act as

though they have smaller size (sgrain).

Approximately 30% and 75% of the particles are in the St > 1 regime for the 3

and 10 µm dust grain simulations, respectively. Thus, the one-fluid limiter is applied

to approximately 30% and 75% of the particles. This results in artificially enhanced

coupling. In effect, it is as if the calculations have a population of dust grains from
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0.3 to 3 µm or 0.3 to 10 µm, reflecting the maximum Stokes number of the 3 and

10 µm calculations. It is important to note that the limiter is critical for numerical

stability in this regime (see Section 4.2.5).

Conversely, even though the stopping time is not limited for the two-fluid results,

the numerical resolution requirement (St > 1, see Equation 3.29) implies that this is

not upheld for 70% and 25% of particles in the 3 and 10 µm simulations, respectively.

This means that the one-fluid results are most accurate for St < 1 and the two-fluid

results most accurate for St > 1.

The distribution of Stokes numbers can be understood from the dependence on

density (and indirectly smoothing length), as all other conditions remain constant. In

SPH, the mass of each particle is constant. Thus, the smoothing length can be related

to density as h ∝ ρ−1/3 through Equation (3.12), and the dynamical time expressed

in terms of density as tdyn ∝ ρ−1/3. As the stopping time is proportional to inverse

of total density through Equation (2.16), that is, ts ∝ ρ−1, the Stokes number of a

particle therefore scales according to St∝ ρ−2/3.

The expected statistics of the Stokes number distributions can be understood

in relation to the gas density PDF. The standard deviation of the two-fluid Stokes

number distributions, given in natural logarithm to match the gas density distribution

statistics, is 0.87 for 3 µm and 0.89 for 10 µm. The gas density PDFs have standard

deviations of approximately 1.56 for all simulations (Table 4.1). This is close to the

value expected by the St ∝ ρ−2/3 scaling relation, keeping in mind that the Stokes
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number distribution is calculated on the particles and the gas density distribution on

the interpolated grid.

4.2.5 Impact of the Dust Limiter

10 8 6 4 2 0
log( d/ g)

10
4

10
3

10
2

10
1

10
0

PD
F 

lo
g(

d/
g)

3 m

Limited
Non-limited

10 8 6 4 2 0
log( d/ g)

10
4

10
3

10
2

10
1

10
0

PD
F 

lo
g(

d/
g)

10 m

Limited
Non-limited

Figure 4.9: Time-averaged volume weighted PDFs of log(ρd/ρg) for 1µm (left) and

3µm (right) in 2563 resolution in the one-fluid and non-limited one-fluid methods.

Shaded regions represent the standard deviation of the time averaging.

The one-fluid method uses a limiter on the stopping time when St > 1 in order

to maintain the terminal velocity approximation. This artificially keeps the dust in

the St ≤ 1 regime, which in effect causes the dust to be more strongly coupled to

the gas. Despite this seemingly undesirable behaviour, the stopping time limiter is

critical for our calculations since approximately 30% and 75% of particles are in the
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St > 1 regime for the 3 and 10 µm grain size simulations, respectively.

Figure (4.9) shows the PDFs of dust-to-gas ratio for one-fluid simulations with

and without the stopping time limiter. Without the limiter, a spurious peak appears

at very low dust-to-gas ratios. This is entirely numerical in origin. A similar peak

can be found in the results of Tricco et al. (2017). This peak disappears when the

limiter is used. In fact, the limiter also reduces the range of dust-to-gas ratios, as

discussed in Section (4.2.3).

The right-hand tail of the dust-to-gas ratio PDFs are closely aligned between the

limited and non-limited results. The limiter is only applied to regions where St > 1,

implying that if there is agreement in the larger dust-to-gas ratio regions, then this

condition occurs most predominantly inside of dense filaments. The right-hand tails

for the limited and non-limited results are in particularly close agreement for the 3

µm simulations, as a greater fraction (approximately 70%) of the particles stay below

St = 1.

Figure (4.10) shows the mean dust-to-gas ratio as calculated on the particles for

results with and without the limiter. For 3 µm grains, there is a small, but noticeable

increase in the mean dust-to-gas ratio from 1.014% with the limiter to 1.024% without

at t/tc = 12. However, there is a significantly greater difference between the limited

and non-limited results for 10 µm dust grains. With the limiter, the mean dust-to-gas

ratio is 1.022% at t/tc = 12. Without the limiter, the mean dust-to-gas ratio steadily

increases over time, reaching a mean dust-to-gas ratio of 1.14% before experiencing
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Figure 4.10: Mean dust-to-gas ratio calculated on the particles in the one-fluid method

with and without the stopping time limiter for 3µm (left) and 10µm (right) in 2563

resolution.

numerical instability around t/tc ≈ 9.5. This occurs due to the violation of dust mass

conservation, in that, dust mass increases over time due to numerical error.

That numerical instability occurs without the limiter is a consequence of the

dynamical nature of our dusty turbulence calculations. Low-density particles, that

is, particles with St > 1, can experience spurious increase in dust mass. For Ballabio

et al. (2018), these errors occur on the periphery of a protoplanetary disc, which has

little dynamical impact on the interior of the disc. However, in our calculations, the

errors on these low-density particles quickly gets recycled into high-density filaments

because the turbulence is driven for multiple turbulent crossing times. These errors

compound over time. Though the limiter avoids catastrophic numerical failure, it does

introduce some numerical effect on our results. The limiter has the same practical
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effect as changing the dust grain size. As an extreme example, a simulation with 1

cm grains should give results equivalent to simulations with 10 cm grains because in

both cases all particles would be limited to St = 1.
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Chapter 5

Conclusion

We performed simulations of dusty, isothermal turbulence using 3 and 10 µm dust

grains in initial conditions representative of cold, dense molecular clouds. Turbulent

driving was applied to create and sustain supersonic M = 10 turbulence over 12

turbulent crossing times.

Simulations were performed using two-fluid and one-fluid methods. Both treat

the dust as a continuous, pressureless fluid. For the two-fluid dust method, gas and

dust are modelled using distinct sets of particles. These two types of particles are

coupled together through a drag term. For the one-fluid method, a single species of

particle is used that represent the mixture of gas and dust. Particles exchange dust

between them, which changes the dust fraction of each particle. We use the terminal

velocity approximation for the one-fluid method, in which case dust evolution acts like

a diffusion process. The stopping time limiter of Ballabio et al. (2018) was employed
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for numerical stability

The Stokes numbers of the initial conditions for our 2563 particle resolution cal-

culations were St = 1.3 and St = 4.3 for 3 and 10 µm dust grains, respectively. Note

that the Stokes number in our definition uses the local dynamical time, which is the

most relevant timescale for the numerical methods. This Stokes number definition

has a resolution dependence, such that the Stokes number increases with increasing

resolution. We specifically chose 3 and 10 µm dust grains so that the initial conditions

were in the St > 1 regime in order to avoid excessively high resolution requirements

for the two-fluid method (Laibe and Price, 2012).

Our key findings are below.

1. The PDFs of the gas density are log-normal, as is expected for isothermal,

supersonic turbulence. No significant differences are found between the simu-

lations with 3 and 10 µm dust grains, or between the one-fluid and two-fluid

methods. This additionally implies that the back-reaction of the dust on the

gas has negligible impact on the gas density.

2. Dust density PDFs deviate from log-normal distributions. For both the two-

fluid and one-fluid methods, the PDFs peak at values similar to what would be

expected from the peak of the gas density PDF shifted by the initial dust-to-gas

ratio. If the dust was tightly coupled to the gas, then log-normal distributions

would be expected for the dust density PDFs, as they would match the shape

of gas density PDFs. Since they do not, this means that dust decouples from
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the gas in our calculations. The dust density PDFs for the two-fluid method

is broader than for the one-fluid method, suggesting a greater degree of dust

decoupling from the gas. The stopping time limiter in the one-fluid method is

the primary reason for stronger coupling between gas and dust.

3. We do not find evidence for orders of magnitude increase in the dust-to-gas

ratio. PDFs of the dust-to-gas ratio peak at approximately the mean dust-

to-gas ratio of 1:100 for both grain sizes and both dust methods. However,

the dust-to-gas ratio PDFs are different between the two methods. The two-

fluid dust-to-gas ratio PDFs are significantly broader than the one-fluid dust-

to-gas ratio PDFs. The maximum dust-to-gas ratio for the one-fluid results

is approximately a 3× and 5× increase over the initial ratio for 3 and 10 µm

grains, respectively, whereas the two-fluid results reach maximum dust-to-gas

ratios of approximately 30× and 39× increase. This means the dust is more

tightly coupled to the gas in the one-fluid results.

4. The one-fluid method stopping time limiter avoids spurious dust mass growth

due to numerical inaccuracy (see Figure 4.10). Calculations without the limiter

exhibit a secondary peak in the dust-to-gas ratio PDFs at extremely low dust-

to-gas ratios (< 10−5). This low dust-to-gas ratio peak is in excess of the two-

fluid PDFs. This behaviour is even more pronounced for 10 µm dust grains

compared to 3 µm dust grains, which is consequence of a larger fraction of

particles exceeding St > 1. Though necessary to avoid these numerical artefacts
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(or instability), the limiter introduces its own numerical artefacts manifesting

as enhanced dust-gas coupling.

5. There is reason to be cautious about the dust-to-gas ratio increases obtained

with the two-fluid method. The right tail of the dust-to-gas ratio PDFs extends

to higher values in the two-fluid method than in the one-fluid method. How-

ever, this is the regime where the one-fluid method results are most accurate,

as evidenced by the agreement of the right-hand tails of the PDF betweeen

the limited and non-limited one-fluid results. This discrepancy raises concerns

about potential spurious concentrations arising from the two-fluid approach,

especially for particles with St < 1. Such spurious concentrations may occur

due to non-adherence of the two-fluid resolution requirement, which, if not ad-

equately met, can lead to artificially high dust concentrations. These artefacts

may result from insufficient resolution in capturing the coupled dynamics of

dust and gas at smaller scales (inside dense filaments). Note that the turbulent

driving force disperses filaments and artificial concentrations over a turbulent

crossing time, preventing ongoing accumulation of dust over time.

6. The Stokes number of a particle scales according to St∝ ρ−2/3. This means that

changing the numerical resolution affects the Stokes number, as does the adap-

tive particle resolution with respect to density. Note that even if the numerical

requirement around the Stokes number for the one-fluid (St < 1) and the two-

fluid (St > 1) is satisfied in the initial conditions, then it may not continued to
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be satisfied due to changing dynamical conditions. The correct method should

be chosen such that the Stokes number conditions are upheld over the duration

of the calculation to avoid numerical artefacts.

Our overall conclusion is that results obtained from simulations of dusty turbu-

lence can be affected by the numerics of the dust solver. The correct dust solver

should be chosen based on the Stokes number regime of the dust. If the dust solver

is not used in its appropriate Stokes regime, then numerical artefacts can appear

as either spurious dust concentrations (exaggerated dust-to-gas ratios) when using

the two-fluid method, enhanced coupling of dust and gas when using the one-fluid

method with a stopping time limiter, or artificial peaks at low dust-to-gas ratios and

dust mass growth for the one-fluid method without limiter. This aligns with the

findings of Commerçon et al. (2023), who used a grid-based code for their analysis.

In their two-fluid simulations, they observed artificial dust trapping in high-density

regions, with the extent of dust enrichment influenced by the resolution of the gas.

For their one-fluid simulations, they concluded that while the terminal velocity ap-

proximation is well-suited for dust grains smaller than 10µm within dense filaments,

it does not accurately capture dust dynamics in low-density regions.
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Ballesteros-Paredes, J., P. André, P. Hennebelle, R. S. Klessen, J. M. D. Kruijssen,

M. Chevance, F. Nakamura, A. Adamo, and E. Vázquez-Semadeni: 2020, ‘From

Diffuse Gas to Dense Molecular Cloud Cores’. 216(5), 76.

Bergin, E. A. and M. Tafalla: 2007, ‘Cold Dark Clouds: The Initial Conditions for

Star Formation’. 45(1), 339–396.

Bohlin, R. C., B. D. Savage, and J. F. Drake: 1978, ‘A survey of interstellar H I from

Lalpha absorption measurements. II.’. 224, 132–142.

Colman, T., N. Brucy, P. Girichidis, S. C. O. Glover, M. Benedettini, J. D. Soler,

R. G. Tress, A. Traficante, P. Hennebelle, R. S. Klessen, S. Molinari, and M.-A.
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