
Generating Automatic Mario Levels With a

Genetic Algorithm

by

© Shawn Douglas Sabraw

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Supervisor: Dr. David Churchill

Department of Computer Science

Memorial University of Newfoundland

November 2024

St. John’s Newfoundland

Abstract

Procedural Content Generation (PCG) is one of the key features of modern entertain-

ment, showcased in a vast set of applications such as, animation, film, and of course

many diverse genres of games. Using the fundamental elements of levels such as the

environment, enemies, and player, procedural content generation has the capability

to construct levels, maps, and even entire games. This thesis concentrates on the

application of a Genetic Algorithm (GA) to autonomously create levels for 2-D plat-

former games, exemplified by games like Super Mario. These generated auto-levels

are compared through randomization, parameter tweaks and level space restrictions.

We successfully uncovered insights in PCG indicating that the generation of complex

levels is intrinsically linked to the appropriate investment of generation time and a

balanced utilization of essential level tiles. Notably, our findings highlight the impor-

tance of these factors in achieving optimal level design. To enhance the complexity

of the generated levels, we have introduced a “least-block” fitness function. This

novel approach not only sheds light on positive aspects but also identifies areas for

improvement, distinguishing between cluttered and sparse generated levels.

ii

In loving memory to my poppy, Douglas Gerald Summers, who

believed in me and encouraged me to go further in my academic

career. I will never stop missing you and I know you would have been

so proud to see this finished.

iii

Acknowledgements

This journey started in a meeting with Dr. David Churchill where multiple paths

going forward were laid out, the substantial decision of which path to take came

down solely to me. I would like to give my appreciation and the highest thanks to my

supervisor and esteemed professor, Dr. David Churchill, my mother, Natalie Sabraw,

and of course my father, Dion Sabraw for their guidance and continuing support over

the following years from that meeting. My sister, Chantal Brokenshire, my brother-

in-law, Burke Brokenshire, and my niece and nephew, Hazel and Frederick, along

with all of my family have helped encourage and motivate each step on this path

and I appreciate them immensely. Along this new chapter in the journey, I’d gain

colleagues and friends walking a similar path to mine, who offered me support in the

most crucial of times. I’d like to thank Caroline Strickland, Rory Campbell, Rick

Kelly, Lucas Critch, and Rob Bishop. Thank you, everyone, for all of your support,

and thank you, the reader, for taking some time to examine a glimpse into the path

I’ve chosen.

iv

Contents

Abstract ii

Dedication iii

Acknowledgements iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Platformer Games . 2

1.1.1 AutoPlay Levels . 5

1.2 Procedural Content Generation . 10

1.3 Thesis Outline . 12

2 Background 14

2.1 Algorithmic Approaches . 14

2.2 Genetic Algorithms for PCG . 15

2.3 Generating Content . 18

v

2.4 Purpose . 20

3 Custom 2-D Game Engine 21

3.0.1 ECS . 23

3.0.2 Scenes . 24

3.0.3 Benefits . 25

4 Genetic Algorithm 27

4.0.1 Representation . 28

4.0.2 Parameters . 29

4.0.3 Domain-Specific Parameters 31

4.0.4 Exploration . 32

4.0.5 Evaluation . 32

5 Experiments and Results 34

5.1 Level Representation . 35

5.2 Evaluation Metrics . 38

5.3 Experiment Levels . 39

5.4 Results . 42

5.5 Least Blocks . 43

6 Conclusions and Future Work 47

Bibliography 49

vi

List of Tables

3.1 Level Blocks used in the creation of our platformer levels. 25

4.1 Parameters used in the lifetime of a Genetic Algorithm. 30

5.1 Numbering Scheme and Parameters for the GA Levels. 36

vii

List of Figures

1.1 A screenshot of Donkey Kong (1981).1 Click this figure to play the

video that this screenshot references.2 2

1.2 A screenshot of Mario Maker 2 (2019). Click this figure to play the

video that this screenshot references.3 4

1.3 A screenshot of an AutoPlay level. Click this figure to play the video

that this screenshot references.4 . 6

1.4 A diagram of a Rube Goldberg machine project. Click this figure to

see the project that this screenshot references.5 7

1.5 A screenshot of a Mario AutoPlay Level Synced to the song “Can Can”.

Click this figure to play the video that this screenshot references.6 . . 8

1.6 A screenshot of a Mario AutoPlay level generated by the algorithms

presented in this thesis. Click this figure to play the video that this

screenshot references.7 . 9

2.1 A diagram representing the implementation of the FI-2Pop algorithm. 16

2.2 A simple diagram representing a grammatical evolution scheme. . . . 17

2.3 A diagram highlighting the difficulty curve of a game. 19

viii

3.1 A screenshot of the game engine. 22

4.1 A model showing how level entities are represented as a genotype. . . 29

4.2 A model showcasing a simple level design and as a genotype. 29

5.1 A snapshot of “0-0-0” a cluttered level with 0% extra blanks. 34

5.2 A “0-0-0.7” level with a grid overlay. As you can see, multiple blocks

are allowed vertically in a single column, for all row numbers. It has a

70% blank rate, introducing many more blanks than its counterparts.

It is completely unrestricted. 37

5.3 A “9-1-0.3” level with a grid overlay. As you can see, only a single block

is allowed vertically in a single column, utilizing rows from number 0 to

9. It has 30% blank rate, including less blanks than its counterparts.

It is restricted to a single block per column. 37

5.4 A snapshot of “0-0-0.3” a cluttered level with 30% extra blanks. A

path was carved through the clutter of blocks in a downward curve

which created a hole. 39

5.5 A snapshot of “0-0-0.7” a cluttered level with 70% extra blanks. Many

new paths open up, which push our character through the level. . . . 40

5.6 A snapshot of “9-1-0” a sparse level with 0% extra blanks. Notice how

each column has only 1 block and opens the level up much more. . . . 40

5.7 A snapshot of “9-1-0.3” a sparse level with 30% extra blanks. The level

is opened up much more and has a linear path of progression. 41

5.8 A snapshot of “9-1-0.7” a sparse level with 70% extra blanks. The

sparse level is even further so with many more blank spaces. 41

ix

5.9 Maximum Individual Right Movement Fitness over 1000 generations. 42

5.10 Maximum Individual Right Movement Fitness with Least Blocks tie-

breaker over 1000 generations. 44

5.11 A distance comparison between the Furthest Right fitness and with

least blocks enabled for all levels. 45

5.12 A distance comparison between the Total Distance fitness tiebreaker

and with least blocks enabled for all levels. 45

x

Chapter 1

Introduction

The demand for Artificial Intelligence (AI) has reverberated within all industries and

continues to increase. We see various types of AI systems put in place to learn and

generate data used in crucial decisions from linguistics to medicine, and of course

games [35]. These systems are highlighted in implementations such as ChatGPT

[31] for natural language processing, where an AI analyzes language, infers meaning

and context to then respond to the user and exhibit intelligent behaviour. Within

medicine, we see AI systems used in chemotherapy regimens, risk prediction, and

early detection of diseases, including cancers [9]. In contemporary gaming, AI plays

a crucial role in shaping various aspects, such as character movement and behaviour,

music composition, art generation, and even level design. Its integration significantly

contributes to enhancing and creating engaging game content [29]. Level design is

crucial for a video game’s success as a level is the environment in which all of the

entities in the game interact.

1

1.1 Platformer Games

Figure 1.1: A screenshot of Donkey Kong (1981).1 Click this figure to play the video

that this screenshot references.2

Platforming games, or platformers, are defined by a specific set of gameplay fea-

tures and mechanics. These encompass precise character movement and jumping,

granting players control over navigating a two-dimensional or three-dimensional en-

vironment while avoiding hazards, surmounting obstacles, or reaching elevated plat-

forms. The intricately designed levels incorporate platforms and obstacles at diverse

heights and distances, demanding players to showcase agility and timing. The in-

clusion of power-ups and collectibles further enhances gameplay, requiring players to

1https://www.youtube.com/watch?v=rYNMatF5hcU
2All following screenshots similar to figure 1.1, can be clicked in order to view their respective

video.

2

https://www.youtube.com/watch?v=rYNMatF5hcU
https://www.youtube.com/watch?v=rYNMatF5hcU

gather items for scoring, advancing through levels, or enhancing their character’s abili-

ties. Enemies and bosses, the hostile entities populating the levels, introduce elements

of combat or evasion. Lastly, puzzles contribute an additional layer of challenge, and

the overall game structure includes a sense of progression, whether it follows a linear

or non-linear path.

Before the term “Platformer games” emerged, there existed a game genre referred

to as “Maze games”, reminiscent of titles like Pac-Man. This genre underwent con-

tinuous evolution, reaching a milestone with the release of Space Panic in 1980 for

arcades. Space Panic introduced elements like ladders, platforms, and notably, grav-

ity [33]. While some argue that Space Panic marked the true beginning of Platformer

games, the title officially belongs to Donkey Kong, launched in 1981. Donkey Kong,

as displayed in Figure 1.1, introduced a crucial element for platformers — jumping.

The immense popularity of Donkey Kong played a pivotal role in establishing and

popularizing the new genre of Platformer games [4]. Donkey Kong’s triumph paved

the way for the inception and sustained prosperity of the Mario franchise [4]. This

journey began with the release of Super Mario Bros. in 1985 and continues to thrive,

evident in the recent launch of a new Nintendo Switch game, Super Mario Bros. Won-

der. Notably, this latest instalment has achieved the title of the fastest-selling Super

Mario game in history [18].

Super Mario Maker and Super Mario Maker 2, as referenced in Figure 1.2; released

in 2015 and 2019 respectively, are games that allow the player to not only play new

Mario levels but create and then share them with people online. To create these levels

the player is shown a library filled with all the different assets throughout Mario games

including, blocks, mechanics, music, enemies, and more. The player takes the assets

3

Figure 1.2: A screenshot of Mario Maker 2 (2019). Click this figure to play the video

that this screenshot references.3

and can place them down on a 2D-grid space in any way they can think up to create

a level, they can then test their level at any time and finally publish the level to be

downloaded and accessed through its Course ID. Over 2 years from its release in 2019

to April 13, 2021, there have been over 26 million user-made stages created, and in

this seemingly boundless library of levels, the users have created their own genres

[30].

With the continuous rise in the number of created levels, there is also a rise in

difficulty and complexity within most of these levels. The level designers like to create

tough levels and challenges for players to complete. As players continue to conquer

the newest challenges, the challenges continue to get more complex. These difficult

3https://www.youtube.com/watch?v=5WkaKoQRwjg

4

https://www.youtube.com/watch?v=5WkaKoQRwjg
https://www.youtube.com/watch?v=5WkaKoQRwjg

stages are called Kaizo or Troll levels [17]. To be deemed Kaizo, the level must

be extremely difficult with a less than 1% win rate, but still have a linear sense of

progression where there are multiple puzzles, usually with a single clear solution. A

troll level, is extremely difficult with a non-linear sense of progression, less of a puzzle

and more random and chaotic mechanics.

1.1.1 AutoPlay Levels

On the other side of the genre spectrum, there are Automatic levels; Figure 1.3 as

an example, which are usually the complete opposite of Kaizo or Troll levels. Auto-

Play(Automatic) levels are stages where the level guides the player’s character through

itself by the use of in-game mechanics and physics. We refer to these automatic levels

as AutoPlay levels to highlight that there is usually no player interaction with the

controls required at all. These levels typically aim to evoke a wow-factor by propelling

the character swiftly through narrow gaps, perilously challenging environments, or by

orchestrating a song generated as the character bounces and interacts with various

blocks throughout the level.

An AutoPlay Level could be thought of as a Rube Goldberg machine, but in the

context of a 2D platformer game. A Rube Goldberg machine is a series of linked

systems which interact with each other to solve a simple problem in a very elaborate

or humorous way. These machines are derived from an American cartoonist, Rube

Goldberg’s cartoons in which he depicts hilariously complicated machines to solve very

simple everyday problems, such as opening a can, wiping your face with a napkin, and

much more [16]. Other research done in level generation have also taken inspiration

5

Figure 1.3: A screenshot of an AutoPlay level. Click this figure to play the video that

this screenshot references.4

from Rube Goldberg machines seen in Figure 1.4, by utilizing a “domino effect”

created by stringing together systems and structures based in the game Angry Birds.

Abdullah et al. [1] has been able to generate levels that act similar to a Rube

Goldberg machine, starting a chain reaction from a singular starting point all the

way to completing the level.

Aside from letting a chain reaction solve a very challenging and complicated level,

there are other motivations for creating these AutoPlay levels. Some level creators

look to push the bounds of what is possible in the game’s physics engine, others want

to make a very enjoyable or comedic adventure, and some creators will even want to

showcase music in their levels by using the blocks to emulate the music, exhibited in

4https://www.youtube.com/watch?v=O8i09c3Kwmc

6

https://www.youtube.com/watch?v=O8i09c3Kwmc
https://www.youtube.com/watch?v=O8i09c3Kwmc

Figure 1.4: A diagram of a Rube Goldberg machine project. Click this figure to see

the project that this screenshot references.5

Figure 1.5.

There are a few sub-types of AutoPlay levels such as: no press, press forward, and

RNG (Random Number Generator). No press levels are the ones we will be using

in this thesis, where the entire level controls the flow and carries the player to the

finish line. Press Forward or Press Button levels are where the player must hold a

single button down either to make the character jump, or move in a singular direction

constantly and that interaction acts as the catalyst to eventually get the player to

the end of the level.

Finally, an RNG or troll-AutoPlay level is a level that works only sometimes,

these are usually the chaotic type of maps that will throw the character around and

5https://www.vernier.com/experiment/pep-16_rube-goldberg-machine/

7

https://www.vernier.com/experiment/pep-16_rube-goldberg-machine/
https://www.vernier.com/experiment/pep-16_rube-goldberg-machine/

Figure 1.5: A screenshot of a Mario AutoPlay Level Synced to the song “Can Can”.

Click this figure to play the video that this screenshot references.6

8

https://www.youtube.com/watch?v=Xey9yqwXECE

Figure 1.6: A screenshot of a Mario AutoPlay level generated by the algorithms

presented in this thesis. Click this figure to play the video that this screenshot

references.7

9

https://www.youtube.com/watch?v=m95ur6hykKU

potentially they get to the end via the chaotic interactions and chance.

Throughout these types of Mario levels you will see the same type of mechanics

and interactions because of the specific block types used. In order to propel, move,

or bounce Mario, level blocks must be able to interact with Mario in some way. Some

interactions that could bounce Mario upward would be a shell, Note block, or enemy

once Mario collides with the top of that entity. Another type of interaction for lateral

movement could be a conveyor, cloud, ice, or moving platform where the character

is pushed or advanced in the direction the block is directing as shown in one of our

levels in Figure 1.6.

1.2 Procedural Content Generation

Procedural Content Generation (PCG) is the technique of generating content algo-

rithmically and is a highly sought-after system for game designers in the gaming

industry [14]. In games, PCG abstracts decisions for game designers by letting the

program adjust and fine-tune parameters to create a plethora of content, reducing the

burden on game developers, and is commonly used for procedural dungeons, levels,

and maps. The strategy of combining PCG with AI is to create an AI tool that assists

a developer in their work.

Map and content generation play a pivotal role in the gaming industry, with con-

tinuous advancements and innovations. Notable examples that showcase the diverse

applications of Procedural Content Generation (PCG) include Minecraft, No Man’s

Sky, Diablo 4, and Spelunky.

6https://www.youtube.com/watch?v=Xey9yqwXECE
7https://www.youtube.com/watch?v=m95ur6hykKU

10

https://www.youtube.com/watch?v=Xey9yqwXECE
https://www.youtube.com/watch?v=m95ur6hykKU

Spelunky, a roguelike8 platformer, stands out for its unique gameplay, art style,

and world design. In this game, players dig downward, navigating traps and enemies

to accumulate wealth and progress. PCG is integral to Spelunky’s success, delivering

a challenging and endlessly replayable experience.

Diablo 4, an action/adventure massively multiplayer online role-playing, employs

PCG to dynamically generate dungeons, altering layouts, monster placements, and

treasure drops. This use of PCG enhances the game’s adaptability and replay value,

providing players with a fresh and unpredictable dungeon-crawling experience.

No Man’s Sky, an open-world survival game, presents an expansive and virtually

infinite universe. Each solar system, planet, and its elements, including weather,

flora, and fauna, are procedurally generated. This showcases the versatility of PCG,

enabling the creation of a vast and diverse gaming environment that encourages ex-

ploration and discovery.

Minecraft, another open-world survival game, integrates PCG into nearly every

aspect of gameplay. This includes world generation, where the game creates terrain,

biomes, and biome-specific structures. Resource distribution also relies on PCG,

ensuring ores, minerals, flora, fauna, chests, and loot items are appropriately and

accurately dispersed based on the generated world location. Additionally, structures

like villages, mineshafts, and dungeons are incorporated into intricate cavern systems

with multi-level terrain, influenced by the surrounding biomes. This underscores the

critical role of PCG in almost every facet of the game.

These examples underscore the significance of PCG across different genres, demon-

8A subgenre of role-playing games, usually containing elements such as permadeath and random-
ized levels.

11

strating its ability to enhance difficulty, replayability, and the overall gaming experi-

ence. From the challenging depths of Spelunky to the dynamically evolving dungeons

in Diablo 4 and the boundless universe of No Man’s Sky, PCG continues to drive

innovation and creativity in game development.

There are even competitions to create PCG AIs and research into general content

generation for levels [32]. The undertaking of creating a AAA9 game takes a consid-

erable amount of time. AI is a probable way of speeding up that development time

and also increasing efficiency overall [8].

Our system will generate content, specifically automatic levels for a platformer

game with the likeness of Mario. A platformer game is a video game in which the

player controls a character and navigates them through an environment with multiple

interactions such as, running, jumping, climbing, or attacking. An automatic Mario

level is an environment where the player does not move the character at all, but the

level; with the help of physics and other mechanics, moves the character to the end

of the level usually in some interesting fashion. The full extent of the experiment and

platformer will be explained in section 3.

1.3 Thesis Outline

In Chapter 2, we delve into the background and previous research in the AI for games

domain, specifically focusing on Procedural Content Generation (PCG) and Genetic

Algorithms, alongside other notable algorithms used in PCG. Chapter 3 will thor-

oughly examine our Custom 2-D Game Engine, detailing its significance and usage

9A grading given to high-budget, conspicuous video game titles, usually created by larger game
studios.

12

in our experiments concerning level generation. Moving on to Chapter 4, we decon-

struct the Genetic Algorithm, elucidating its efficacy as a PCG tool and elucidate

on the algorithmic representation of our generated levels. Chapter 5 will detail the

conducted experiments, elaborating on the level naming convention’s rationale and

its significance, along with the evaluation metrics employed and the resultant find-

ings. Finally, Chapter 6 will summarize the conclusions drawn from our research and

explore potential future directions.

13

Chapter 2

Background

In analogous research within the realm of Procedural Content Generation (PCG),

the primary objective commonly revolves around utilizing artificial intelligence (AI)

for the purpose of level generation. We see some researchers try a more open and

generic approach to include more types of games and levels [36, 37, 19]. However,

performance and processing complexity are always the most common issues we face

in this area [39, 38]. In this section, we will explore some related work to better

understand other researchers’ objectives and the issues they faced.

2.1 Algorithmic Approaches

When designing levels, it has been found that designers find a lot of value in utilizing

AI as a tool [12]. An AI could be programmed to adhere to a predefined set of rules or

constraints, producing levels in a manner consistent with a developer’s specifications.

Alternatively, the AI could be granted the freedom to explore, generating levels or

games that were never envisioned before.

14

A Genetic Algorithm (GA) is an example of an AI system which replicates the

idea of evolution by reworking rules and constraints to achieve a goal, which will be

explained in detail in Chapter 4. With level design as a goal, a GA would be able to

evolve multiple different levels based on a designer’s discretions. Utilizing this AI as

a tool would allow designers to improve the GA’s decision by intermittently giving

human input into generating levels. The genetic algorithm allows for some constraints

to be followed, but also for exploration, which is perfect for the goal of the experiment

we conducted for this thesis, further explained in Chapter 4 and 5.

By combining AI and PCG, developers can create a toolset which generates com-

plex content. Due to the vast genres of games, currently, it is implausible to make

a single AI tool that can produce all content necessary for compiling multiple game

content of different genres. It is better suited for developers to create an AI for a

single goal and complete it efficiently.

2.2 Genetic Algorithms for PCG

All through the field of PCG and surrounding area, many algorithms are being used

in an attempt to generate levels, games, and even player-AI interaction. The genetic

algorithm is a popular choice for generating levels, but researchers have taken many

different approaches with their restrictions and classifications.

A very common genetic algorithm type seen throughout the related area of ex-

periments is the Feasible-Infeasible Two-Population (FI-2Pop) [21]. This GA is the

implementation of two types of populations. One keeps track of the worst evalu-

ated individuals (infeasible) and the other, the best individuals (feasible), this is

15

Figure 2.1: A diagram representing the implementation of the FI-2Pop algorithm.

highlighted in Figure 2.1. This proves advantageous as it enables the infeasible pop-

ulation to explore boundary regions without undergoing evaluation by the objective

function, potentially revealing the location of the global maximum.

Grammatical Evolution (GE) is another approach used by some researchers in

this area [25, 34]. A grammar is a way to programmatically link a set of rules or

instructions to a context-free medium such as an integer or integer string as shown

in Figure 2.2. This idea allows very complex levels to be simplified enough to viably

be used in search-based algorithms without having a very hefty processing time.

16

Figure 2.2: A simple diagram representing a grammatical evolution scheme.

The challenge in the context of video game rule generation involves creating al-

gorithms that, given a level, can generate rules to ensure the level’s viability. [20].

In [20], they explore the inverse of that problem to create a game based on a set of

rules. Their genetic algorithm searches for feasible games/levels that do not break

the constraints of the rules.

Similar to that of inverting the rule generation problem, [15] decided to use a

genetic algorithm and a state machine in tandem with a Mario level to create a

perfect bot for each level given to it. The genetic algorithm will continue to explore

different possible transitions in the state machine to find the best possible individual

for the level.

17

2.3 Generating Content

Procedural Content Generation is widely employed across various methods to com-

putationally generate content for games. These methods encompass applications in

reinforcement learning, machine learning, and even deep learning, leveraging neu-

ral networks [24]. These types of methods are used for generating music/sounds,

textures/art, text, and particularly video game levels, which constitute the primary

focus of this thesis. Many PCG methods reliant on search algorithms employ evolu-

tionary algorithms [39]. In this thesis, we have chosen Genetic Algorithms for their

ability to produce superior solutions to optimization and search challenges. While

it’s conceivable to apply a simple search algorithm to this problem, the main obsta-

cle lies in the immense size of the problem space. Using a simple search algorithm

would necessitate iterating through every game tile against every possible placement

on the screen, across every screen included for generation. The search space is over-

whelmingly vast, which is where a genetic algorithm excels. Unaided, a GA can

navigate through the staggeringly large search space and deliver an optimal solution

for generating level content.

PCG has been investigated using diverse approaches in the surrounding research

related to this thesis. An interesting and popular idea with PCG is the ability to

generate content based on difficulty [5, 3, 38] or a Difficulty Curve shown in Figure

2.3. These papers delved into the inquiry of defining difficulty in games requiring

simplification to generate content around it. Usually, the difficulty would be deter-

mined by ideas such as: how many floor tiles there are, the number of obstacles, or

enemies. A formula would have to be derived from such ideas and then used as an

18

evaluation for the produced content.

Figure 2.3: A diagram highlighting the difficulty curve of a game.

A similar topic to PCG based on difficulty was that of rhythm. Rhythm is the

idea of how much interactivity a player has with the game over a specific period.

Researchers use this idea to generate content based on a rhythm set or group [25, 22,

37]. A rhythm group is a set of actions the player must complete to beat the level.

A typical rhythm would be fewer interactions at the beginning, and progressively

ramping up as the level continues, usually dipping down throughout the level.

A closely related topic to PCG rhythm is patterns. This is where content for a

level is created in pre-defined formations and generated together [6, 7, 26]. The usage

of patterns works well in tandem with rhythms since specific jumps or interactions

are included in the patterns.

19

In [11], they discuss the idea of scene stitching. This is where similar parts of a

level containing the same type of mechanics are “stitched” together in a way to make

the resulting level feasible. They use a genetic algorithm in comparison to a greedy

algorithm to compare the system with a given set of mechanics.

To generate complex and lengthy mazes, [2] combined a genetic algorithm with

cellular automata. Their genetic algorithm would evolve the rules that control the

cellular automata that end up generating a playable maze. To get mazes with in-

teresting and lengthy paths, the genetic algorithm’s evaluation step fine-tunes the

cellular automata with more complex rules.

2.4 Purpose

This thesis aims to examine the interaction between Procedural Content Generation

(PCG) and Genetic Algorithms (GA) in creating auto-play Mario levels. In previous

studies, an external agent was often required to test generated levels. Such agents

could include human players controlling the character or algorithms like A* search,

designed to find the optimal path through the generated level. However, in our

research on auto-play levels, no external agent is necessary because the level itself

functions as the agent. This approach reduces the processing and testing time required

for evaluating the generated levels.

20

Chapter 3

Custom 2-D Game Engine

One of the initial and significant challenges in designing experiments for this thesis

was determining how to effectively implement algorithms into the game. Somehow

obtaining the source code of Mario, along with all associated assets, and integrating

an algorithm directly within that environment proved impractical. Consequently, a

more viable solution was pursued. The decision was made to address this challenge

by creating a custom 2-D game engine; referenced in Figure 3.1, capable of playing

and simulating a 2-D platformer game similar to Mario. This engine provided the

flexibility to seamlessly apply algorithms to various aspects of the game, facilitating

the experimentation process.

The custom 2-D game engine is written entirely in C++ and built from scratch.

The architecture is designed following the Entity-Component-System (ECS) model,

where each aspect of the design is modular and controlled independently. The engine

utilizes an external library, the Simple and Fast Multimedia Library (SFML), which

manages the loading and rendering of textures as well as user input. SFML is one of

21

Figure 3.1: A screenshot of the game engine.

the best graphical libraries when targeting a wide variety of different machines [23].

SFML combined with the ECS design allows for the creation of many types of 2-D

games.

The entities (blocks) used in generating levels are comprised of a 64x64pixels

texture. Each block’s texture representation is rendered on a grid, constrained to

the given size parameters and loaded inside a single scene. The game engine contains

many different scenes for different experiments, levels, or even entirely different games.

The subsequent section will delve further into the specifics of each component within

the custom 2-D game engine.

22

3.0.1 ECS

Entity-Component-System is a very popular architecture design pattern used in many

recent interactive systems, specifically games. It offers solutions to many issues with

other programming designs that are centralized around Object-Orientated Program-

ming (OOP) [13]. Modularity is the main selling point for ECS. As the name implies,

ECS is broken down into three sections:

1. Entity: This is the representation of an object within the game, which encap-

sulates a collection of Components.

2. Component: A module containing a trait or aspect of an entity, such as size,

health, colour, etc.

3. System: These contain the overall game logic on how entities interact and their

components altered.

Since the components are modular, they can be switched, removed, and updated at

any time by one of the systems. With this powerful approach, ECS can address and

improve on the main issues with similar architecture: computer code modularity and

the overall engine performance [28]. This is why ECS was chosen to be the primary

architecture design of the custom 2-D game engine.

With this design, many new game objects and components to go along with them

can be created without affecting any underlying code. This also allows for the creation

of new experiments through the use of different systems. The main systems in the

game engine include:

23

1. Update: The main update loop, deals with updating all systems and maintains

the flow of the game.

2. Lifespan: Each entity has a lifespan which when finished, starts the clean-up

process.

3. Movement: Controls all entities’ movement and even player movement with

input from the keyboard.

4. Collision: Deals with entity collision logic and handles the physics of what

happens to each entity.

5. Animation/Render: Deals with animating and drawing each entity to the screen

depending on its position and status.

3.0.2 Scenes

The custom 2-D game engine can have many different scenes and each one being a

different game or another level. A scene is simply a container to keep specific entities

and game logic in. This GA experiment will be contained in a singular scene modelled

after the game Mario. In this scene, multiple levels can be loaded in or even created

through the use of the GA, which will be explained further in section 4.

The main entities inside this scene are known as blocks. Blocks are simple 64x64

pixels entities which interact with the player and are used to build the entire game

level. There are five main types of blocks, used in the creation of a level: Bricks,

Conveyors, Ice, Bounce, and None. Bricks have a normal amount of friction and

are immovable and impassable. Conveyors move the player in a straight vector and

24

Blocks Name Mechanic

Bricks High friction

Conveyors Add speed

Ice Low friction

Bounce(Note) Bounce the player up

None No collision

Table 3.1: Level Blocks used in the creation of our platformer levels.

increase that player’s velocity. Ice has very little friction. Bounce blocks will attempt

to bounce the player up, increasing their upwards velocity on contact. None blocks are

designed to act as air, completely passable and invisible. The blocks we used to create

our levels for example in Table 3.1, focus on interacting with Mario and applying

vertical and horizontal velocities that can be strung together to progress Mario from

the left to the right side of the current scene. Most of all of these interactions take

place within the Collision and Movement systems, both dealing with the physics

system. Incorporating a modular physics system allowed for the use of not only

gravity, but also to give blocks specific properties, such as friction, movement, and

triggers. Since the player is also an entity, its physics such as velocity and air friction

is mutable as well.

3.0.3 Benefits

The game engine can load autoplay Mario levels and play them in a loop while

recording the results however, one of the strong capabilities of the game engine is

headless mode and simulation. The game engine can forget about framerate and

25

instead of loading every single system and displaying it all in real-time, a simulation

can skip all unnecessary systems and run the levels as fast as the computer’s processor

will let it. The necessary systems include movement and collision while ignoring the

rendering or animations.

With headless mode, the ability to simulate all the levels makes it now possible to

test hundreds or thousands of levels all at once, which creates a perfect environment

to use a genetic algorithm. Speed is one of the most important hurdles to overcome

due to the search space of a game level being so unfathomably big.

Another benefit of using a custom engine with the ECS design is the ability to

add a GA as just another modular system. This enables the GA to access all required

information to evaluate each level’s viability and execute different simulations without

going through the rendering segment.

26

Chapter 4

Genetic Algorithm

GAs are a type of evolutionary algorithm that was created to mimic the process of

evolution and apply it to numerical optimization problems. It is based on Darwin’s

theory of Natural Selection in which positive traits are reinforced and replicated as

time goes on [27]. Apart from initialization, the three main parts that make up a

genetic algorithm are:

1. Selection: The selection process involves choosing individuals to serve as parents

for the next generation. Elitism ensures that a certain number of percentage of

the best individuals (those with the highest fitness) are selected.

2. Crossover: The “elite” individuals are then combined by exchanging data to

produce new offspring.

3. Mutation: Here is where the individuals’ data is altered slightly. This step is

very important as it causes the algorithm to explore different possibilities in

search of the global optima instead of getting stuck in local optima.

27

Algorithm 1 Genetic Algorithm Pseudocode

procedure GeneticAlgorithm

Population← RandomIndividuals; ▷ INITIALIZE

while CurrentEvaluation ̸= Goal do ▷ REPEAT UNTIL TERMINATION

Evaluate(Population); ▷ EVALUATE

Parents← SelectElite(Population); ▷ SELECT

Offspring ← Combine(Parents) ▷ COMBINE

Offspring ←Mutate(Offspring) ▷ MUTATE

NewPopulation← Offspring ▷ NEXT POPULATION

4. Evaluation: A quantitative function is used to evaluate each individual, these

are known as fitness functions. This step allows the selection process to choose

the best individuals.

4.0.1 Representation

The phenotype of a game level in our game engine is a singular map consisting of

virtually limitless screens of open space. The space can be filled by blocks or level

entities and is 10 blocks high and 20 blocks long per screen. To encode these levels

to a genotype, we convert this genetic algorithm’s individuals to an integer array,

highlighted in Figure 4.1 and 4.2. Each different number of the array corresponds to

an entity type defined in the algorithm for each block. It is difficult to apply crossover

to a level because Mario levels can be very different without a proper place to splice

them together. For this, we splice one half of a level to the opposite half of the other.

Mutation simply alters a block type from one to another, depending on the mutation

28

Figure 4.1: A model showing how level entities are represented as a genotype.

Figure 4.2: A model showcasing a simple level design and as a genotype.

rate and some other parameters. The evaluation of each level will depend on the

fitness function and tie-breakers and is discussed further in section 4.0.5.

4.0.2 Parameters

The main parameters of a genetic algorithm; highlighted in Table 4.1, are: Gen-

eration Limit, Population Size, Elitism Percentage, Crossover Rate, and Mutation

Rate. The Generation Limit serves as a strict constraint on the number of iterations

the genetic algorithm undergoes. This not only ensures that the algorithm runs for

a sufficient duration but also helps eliminate any unnecessary runtime beyond the

specified limit which could lead to over generation of a level. A Phenotype is the

actual representation of the population and Genotype is the computational represen-

tation of the population. Knowing the lengths of these can help in designing which

29

Parameter Description

Generation Limit The amount of total generations through the lifetime of

a genetic algorithm.

Phenotype Length The length of the actual representation of the popula-

tion.

Population Size The total amount of Genotype representations of the

Phenotype.

Elitism Percentage Amount of highest evaluated selectees from the popula-

tion.

Crossover Rate Percentage of parent elite selectees to be melded to-

gether and produce child pairs.

Mutation Rate Percentage of random mutation applied to the new pop-

ulation chromosomes.

Table 4.1: Parameters used in the lifetime of a Genetic Algorithm.

data type to use when designing the genetic algorithm. Ideally, it would be nice to

reduce the Genotype representation to the most simplest data type possible for an

increase in processing speed. Population Size controls how many individual Genotype

representations we run through the entire process. As Crossover and Mutation takes

place, at the beginning of each generation, the Population Size should usually be

the same. Elitism Percentage represents the amount of the population whose traits

that we would like to keep, crossover and then mutate for the next generation. This

parameter makes sure that we are always exploiting our population to improve it, by

only taking the best individuals. Crossover Rate denotes the percentage of the elite

30

population which is then combined in a way to produce hopefully better individuals

for the next generation. Finally, Mutation Rate acts as the percent chance for a sin-

gular individual in the population to be changed just slightly. This parameter helps

introduce some randomness and exploration to our algorithm. Through trial and

error, we tweak these parameters to help us find and navigate through local maxima

in hopes of eventually finding the global maximum of our goal.

4.0.3 Domain-Specific Parameters

A single screen size of a Mario level is approximately 25 blocks wide and 19 blocks

high. This means a permutation of 475 blocks out of all available blocks per screen

is possible to create. This is a huge search space for all types of possible Mario

levels. This is also the main reason why there are so many local optima in this space.

Exploration by mutation is the best way to combat the overwhelming local maxima.

The mutation step is the main system for introducing exploration, where the Mario

level blocks are altered randomly. For this huge search space, the GA needs a high

mutation rate, but there are a few other restrictions and parameters to help search

through this space.

By setting a requirement for row and column sizes, the genetic algorithm does not

have to worry about unnecessary blocks. Instead of generating a lot of unnecessary

blocks that the player would never touch, this focuses the route the player would take

to a single path.

31

4.0.4 Exploration

In the scope of a Mario level, exploration allows for the discovery of wonderful level

designs which may have never been used [5]. Exploration for this GA utilizes a few

parameters which modify the random chance of generating blocks and even change

the landscape of levels by introducing harsher fitness functions.

The blank rate adjusts how often a block does not appear. Through mutation,

each block is altered to another type of block and possibly a “none” block, which is

invisible and intangible. However, the blank rate adds another layer of randomness

to the mutation, by having the possibility of not even selecting from the block pool

and instantly being assigned as a “none” block. This is introduced to create more

space for movement within the generated map.

4.0.5 Evaluation

Fitness functions and tie-breakers are how the GA evaluates each generated individ-

ual. The main fitness functions tune the algorithm to produce levels, which focus on

moving the player automatically using the game’s incorporated blocks and physics.

The parameters for each experiment permitted adjustments to the allocated physical

game space, memory, time, and randomness within each generation. The fitness func-

tion for this genetic algorithm is simply how far the player makes it to the right. The

tie-breaker is total distance including moving left, up, down, and right. So overall,

the further right the player makes it, the more viable the level is. In another set of

experiments another tie-breaker, “least-blocks” is introduced, to help rid the level of

clutter and more unnecessary blocks.

32

The fitness functions and tie-breakers in the algorithm are completely modular.

This allows us to create a list of fitness functions where the first one has the most

important value to evaluation and the following lesser. Each fitness function adds

more complexity to the level, but it also increases the number of generations for the

genetic algorithm for the tie-breakers to have any real effect.

The evaluation takes place after all individual levels in the population have been

simulated. Some researchers have rid their experiment of simulation altogether, by

instead using a more direct fitness function that evaluates generated levels based on

their criteria [10]. This would be ideal to cut out simulation altogether and only focus

on processing evaluations however, this would not work for evaluating an automatic

Mario level without adding another layer of complexity and searching for a path with

A* or something equivalent.

33

Chapter 5

Experiments and Results

Figure 5.1: A snapshot of “0-0-0” a cluttered level with 0% extra blanks.

Our experiments aim to employ a genetic algorithm for generating auto-play levels

in platformer games. We seek to assess the impact of varying parameters and fitness

34

functions within an expansive game environment. To compare the levels, most of

the controlling parameters are kept the same such as the mutation rate, except the

number of required rows and columns, which separates the levels into two major

groups, cluttered and sparse. Figure 5.1 exhibits the base of our experiments, which

is a cluttered level that is expensive to generate resource-wise. The other variations

which separate the experiments further are the blocks’ percentage of mutating into

blanks or Blank Rate, as well as an important fitness function tie-breaker called “Least

Blocks”, which ends up having some negative connotations clarified later.

5.1 Level Representation

Levels for platforming games have traditionally been represented as a grid of tiles,

whith each (x,y) location in this grid being given an integer value associated with a

type of tile that can be placed in that grid cell (brick, ice, etc). Our initial experiments

showed that simply attempting to create a level by letting a Genetic Algorithm modify

this large set of tiles resulting in processing times that were far too long, and the levels

it generated looked dense and cluttered (Fig 5.1), nothing like standard human levels,

which are much more sparse.

To alleviate this problem, one of the contributions of this thesis is the introduction

of a numbering scheme for level representation that allows us to specify how dense or

sparse our levels should be on average, in order to constrain the search space of the

genetic algorithm and allow processing times to be much more feasible. In order to

define our experiments, we need to introduce a numbering scheme which promptly

and accurately describes each level. We propose a numbering scheme in the format

35

Table 5.1: Numbering Scheme and Parameters for the GA Levels.

Level # Req. Rows Req. Columns Mut. Rate Blank Rate

1 0 0 0.7 0

2 0 0 0.7 0.3

3 0 0 0.7 0.7

4 9 1 0.7 0

5 9 1 0.7 0.3

6 9 1 0.7 0.7

R-C-B where R denotes the number of required rows per screen space of the level.

C represents the amount of required column blocks per column. The two main level

types are cluttered, represented as “0-0”, which means 0 rows and 0 columns are

required; basically it is unrestricted as shown in Figure 5.2, and sparse, represented

as “9-1”, which means for each row number (i.e. row 0, row 1, to row 9) per column,

only 1 block may be filled in as shown in Figure 5.3. Finally, B then explains how

many blank blocks are applied to the level, this is symbolized by “0.0”, “0.3”, and

“0.7” for “0%”, “30%”, and “70%” respectively. This blank rate creates the mutation

rate of blocks to be influenced more toward blank blocks by increasing the chance of

the mutation to blanks instead of other block types.

Table 5.1 showcases this scheme for each level type. The reason why we need

the main definition between level types of cluttered and sparse is to highlight that

decluttering the level of unnecessary blocks will allow for more movement within the

level and a faster generation time. One of our hypotheses for our experiments later in

this thesis is that cluttered levels will just take too long to declutter a level by itself

36

Figure 5.2: A “0-0-0.7” level with a grid overlay. As you can see, multiple blocks are

allowed vertically in a single column, for all row numbers. It has a 70% blank rate,

introducing many more blanks than its counterparts. It is completely unrestricted.

Figure 5.3: A “9-1-0.3” level with a grid overlay. As you can see, only a single block

is allowed vertically in a single column, utilizing rows from number 0 to 9. It has

30% blank rate, including less blanks than its counterparts. It is restricted to a single

block per column.

37

and therefore lead to potentially unwanted results.

5.2 Evaluation Metrics

Fitness function evaluations are the central metric used by GAs in determining the

next generation of individuals for their population. Therefore, modulating and manip-

ulating the different fitness functions are perfect for steering the GA to our required

goal. There are three main fitness functions used in our experiments, Right Move-

ment, Total Distance, and Least Blocks with their priority in the same order. Right

Movement and Total Distance are functions that keep track of how far right the player

moves and how much the player moves in all directions respectively by increasing the

final evaluation for each positive movement.

The most important part of the fitness function heuristic is how much the player

has moved to the right, because that is where we want the level to grow. In order

for the level to start on the left side of the screen and grow towards the right, the

player must be moved in that exact same motion and end up to the furthest right

position possible. By adding in the total distance, it incentivizes more verticality

as we build the level moving to the right. This improves the evaluation by firstly

checking which level made it the furthest horizontally and tie-breaking those scores

by the most vertical fluctuations.

After multiple generations, the Least Blocks function will filter out unused blocks

from each level by applying a negative value on each block that exists in the map.

Each level is loaded into a simulation after mutation and crossover. When simulating

the levels, they do not need to be rendered and can therefore be processed at much

38

faster speeds than normal. The levels are evaluated with the fitness functions, the

priority initially being how far right the player has moved. In our results, we can

examine that in most cases, just moving to the right is easily accomplished, but very

dull. We wanted to see more lateral movement in the generated levels, which is when

the Total Distance tie-breaker was introduced. This incentivized lateral movement

for the GA and helped guide it closer to our overall goal.

5.3 Experiment Levels

Figure 5.4: A snapshot of “0-0-0.3” a cluttered level with 30% extra blanks. A path

was carved through the clutter of blocks in a downward curve which created a hole.

After the evaluation of each level in the population, they must be compared for

crossover and elitism. The levels are compared based on their fitness values in priority

39

Figure 5.5: A snapshot of “0-0-0.7” a cluttered level with 70% extra blanks. Many

new paths open up, which push our character through the level.

Figure 5.6: A snapshot of “9-1-0” a sparse level with 0% extra blanks. Notice how

each column has only 1 block and opens the level up much more.

40

Figure 5.7: A snapshot of “9-1-0.3” a sparse level with 30% extra blanks. The level

is opened up much more and has a linear path of progression.

Figure 5.8: A snapshot of “9-1-0.7” a sparse level with 70% extra blanks. The sparse

level is even further so with many more blank spaces.

41

of the order of fitness functions. In evaluating Right Movement, a cluttered level (0-

0) consisting unrestricted rows and columns might underperform a sparse level (9-1)

which consists of a single block per column. However, in evaluating Total Distance,

it is more likely a 0-0 level would get the player stuck in a repetitive movement loop

and therefore outperform a 9-1 level.

5.4 Results

Figure 5.9: Maximum Individual Right Movement Fitness over 1000 generations.

The experiments ran for 1000 generations with a population of 300 individual

42

levels. There is a clear early distinction between 9-1 and 0-0 levels. The 9-1 levels

quickly ascend in fitness values and finish as the highest, preforming significantly

better than the 0-0 levels. The justification for the significant distinction is the

number of blocks that needed to be mutated and influenced. While creating a path

through the level, most of the blocks above and below the player are completely

untouched and unnecessary, so to change them through mutation or other means is

a waste of processing time. This was solved by restricting the level generation to one

block per column (the 9-1 levels). Due to the density of the level, the one outlier 0-0-0

(0% extra blanks) was able to get so far was by generating an essentially solid level

where the player just slid across the top row, resulting in very uninteresting behavior,

which is the antithesis of autoplay levels. These results are highlighted in Figure 5.9,

where the 9-1 levels are trending up at a high acceleration towards their maximum

fitness and except for the outlier, the 0-0 levels are very slow on the incline.

5.5 Least Blocks

For our experiments, we ran another category using the “least-blocks” tie-breaker.

The tie-breaker got rid of much of the excess blocks throughout all of the levels and

appears to help the majority of the levels reach a higher fitness value much faster.

As seen in Figure 5.10 in comparison to Figure 5.9, the 9-1-0.3 level completed it’s

generations at a 20% lower fitness and level 9-1-0.7 finished at a 30% lower fitness.

The change in slope, which would be how fast the level was generated, which was

at approximately 0.372 Fitness points per Generation, now is at approximately 0.2

Fitness points per Generation. One of the major inconsistencies that we can see is

43

Figure 5.10: Maximum Individual Right Movement Fitness with Least Blocks tie-

breaker over 1000 generations.

our outlier from before “0-0-0” is now much slower in the refinement process and it

doesn’t even finish anywhere near the other 0-0’s. The other 0-0 levels are improving

rapidly and finish as high as the 9-1 levels. The rationale behind these results is

for the 9-1 levels, are now too sparse and unable to make sufficient mutations to

ramp up their fitness values. The “0-0-0” level should be helped, however, the “least-

blocks” tie-breaker creates enough room for the player to be moved but still stuck

in the clutter of blocks. The conclusion we can draw from these results, helps us

understand that there has to be a median number of blocks which is required for

each screen, relying on the overall level and game. For this platformer, it appears

44

Figure 5.11: A distance comparison between the Furthest Right fitness and with least

blocks enabled for all levels.

Figure 5.12: A distance comparison between the Total Distance fitness tiebreaker and

with least blocks enabled for all levels.

the 9-1 levels with an extra blank value between 0 and 0.3 perform the best with or

without the “least-blocks” tie-breaker. Figure 5.11 and 5.12 show the final results

of the experiments from the Furthest Right Distance fitness function and the Total

Distance tie-breaker respectively. We can see from these that in any case the 9-1

45

levels out preform the 0-0 levels with or without the “least-blocks” tie-breaker.

46

Chapter 6

Conclusions and Future Work

In this thesis we have shown that genetic algorithms are a tool that can be used

to successfully generate plausible autoplay levels, that without the player controlling

the character, the level can navigate the character through itself in an complex way.

By implementing higher mutation rates for the levels, the GAs resulted in higher

evaluated levels. Also, by introducing the R-C-B scheme, it allowed us to effectively

reduce the search space for the GAs, resulting in much faster generation of higher-

evaluation levels. Finally, the blank rate parameter did not appear to help the more

sparse 9-1 levels, but it did help the 0-0 level when the Least Blocks tie-breaker was

used.

A premise for further research in this field would include experimenting with

crossover for different level types. Unlike other GA experiments, levels are much

harder to crossover with significant impact. Splicing two levels together horizontally

or vertically does not make much sense if they have different paths. An idea would

be to splice levels together where their paths collide or at least come very close to

47

overlapping. However, this would have to include tracking the path or all possible

paths a player could take through the level. In the future, it would be beneficial to

generate something like a multi-screen level in sections. This would allow the GA to

focus on the successive screen’s blocks without having to mutate and crossover the

blocks before it, and could even create better and more complex pathways to lead to

new types of autoplay levels.

48

Bibliography

[1] F. Abdullah, P. Paliyawan, R. Thawonmas, T. Harada, and F. A. Bachtiar. An

angry birds level generator with rube goldberg machine mechanisms. In 2019

IEEE Conference on Games (CoG), pages 1–8, 2019.

[2] C. Adams and S. Louis. Procedural maze level generation with evolutionary cel-

lular automata. In 2017 IEEE Symposium Series on Computational Intelligence

(SSCI), pages 1–8, 2017.

[3] D.-F. H. Adrian and S.-G. C. A. Luisa. An approach to level design using

procedural content generation and difficulty curves. In 2013 IEEE Conference

on Computational Inteligence in Games (CIG), pages 1–8, Niagara Falls, ON,

Canada, 2013. IEEE.

[4] J. Bycer. Game Design Deep Dive: Platformers. CRC press, 2019.

[5] J. Classon and V. Andersson. Procedural generation of levels with control-

lable difficulty for a platform game using a genetic algorithm. Master’s thesis,

Linköping University, 2016.

49

[6] K. Compton and M. Mateas. Procedural level design for platform games. In

Proceedings of the Second Artificial Intelligence and Interactive Digital Enter-

tainment Conference, pages 109–111, 01 2006.

[7] S. Dahlskog and J. Togelius. Patterns as objectives for level generation. In

Second Workshop on Design Patterns in Games, 05 2013.

[8] R. G. de Pontes and H. M. Gomes. Evolutionary procedural content generation

for an endless platform game. In 2020 19th Brazilian Symposium on Computer

Games and Digital Entertainment (SBGames). IEEE, nov 2020.

[9] Z. Dlamini, F. Z. Francies, R. Hull, and R. Marima. Artificial intelligence (ai)

and big data in cancer and precision oncology. Computational and Structural

Biotechnology Journal, 18:2300–2311, 2020.

[10] L. Ferreira, L. Pereira, and C. Toledo. A multi-population genetic algorithm for

procedural generation of levels for platform games. In Proceedings of the Com-

panion Publication of the 2014 Annual Conference on Genetic and Evolutionary

Computation. ACM, jul 2014.

[11] M. Green, L. Mugrai, A. Khalifa, and J. Togelius. Mario level generation from

mechanics using scene stitching. pages 49–56, 08 2020.

[12] M. Guzdial, N. Liao, J. Chen, S.-Y. Chen, S. Shah, V. Shah, J. Reno, G. Smith,

and M. O. Riedl. Friend, collaborator, student, manager: How designof an

ai-driven game level editor affects creators. In Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems. ACM, may 2019.

50

[13] T. Härkönen. Advantages and implementation of entity-component-systems.

2019.

[14] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Procedural content

generation for games: A survey. ACM Trans. Multimedia Comput. Commun.

Appl., 9(1), feb 2013.

[15] N. C. Hou, N. S. Hong, C. K. On, and J. Teo. Infinite mario bross ai using genetic

algorithm. In 2011 IEEE Conference on Sustainable Utilization and Development

in Engineering and Technology (STUDENT), pages 85–89, 2011.

[16] R. G. Inc. All about rube: A cultural icon. https://www.rubegoldberg.org/

all-about-rube/a-cultural-icon/, 2023. Accessed: 2023-07-27.

[17] M. R. Johnson. Playful work and laborious play in super mario maker. Digital

Culture & Society, 5(2):103–120, 2019.

[18] C. Kerr. Super mario bros. wonder hits 4.3 million sales

in two weeks. https://www.gamedeveloper.com/business/

super-mario-bros-wonder-hits-4-3-million-sales-in-two-weeks, Nov.

2023. Accessed: 2023-11-13.

[19] A. Khalifa and M. B. E. Fayek. Automatic puzzle level generation: A general

approach using a description language. In Sixth International Conference on

Computational Creativity, 2015.

[20] A. Khalifa, M. Green, D. Perez Liebana, and J. Togelius. General video game

rule generation. pages 170–177, 08 2017.

51

https://www.rubegoldberg.org/all-about-rube/a-cultural-icon/
https://www.rubegoldberg.org/all-about-rube/a-cultural-icon/
https://www.gamedeveloper.com/business/super-mario-bros-wonder-hits-4-3-million-sales-in-two-weeks
https://www.gamedeveloper.com/business/super-mario-bros-wonder-hits-4-3-million-sales-in-two-weeks

[21] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood. On a feasible–infeasible

two-population (FI-2pop) genetic algorithm for constrained optimization: Dis-

tance tracing and no free lunch. European Journal of Operational Research,

190(2):310–327, oct 2008.

[22] A. Ko lodziejek and D. Szajerman. Procedural generation of game levels based on

a genetic algorithm and taking the player’s experience into account. In Computer

Game Innovations, pages 59 – 69, 2018.

[23] A. le Clercq and K. Almroth. Comparison of rendering performance between

multimedia libraries allegro, sdl and sfml, 2019.

[24] J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yannakakis, and J. Togelius. Deep

learning for procedural content generation. Neural Computing and Applications,

33(1):19–37, Oct. 2020.

[25] A. B. Moghadam and M. K. Rafsanjani. A genetic approach in procedural content

generation for platformer games level creation. In 2nd Conference on Swarm

Intelligence and Evolutionary Computation, pages 141–146, Kerman, Iran, 2017.

IEEE.

[26] F. Mourato, F. Birra, and M. Próspero dos Santos. The challenge of auto-

matic level generation for platform videogames based on stories and quests. In

D. Reidsma, H. Katayose, and A. Nijholt, editors, Advances in Computer Enter-

tainment, pages 332–343, Cham, 2013. Springer International Publishing.

[27] F. Mourato, M. P. dos Santos, and F. Birra. Automatic level generation for

platform videogames using genetic algorithms. In Proceedings of the 8th Inter-

52

national Conference on Advances in Computer Entertainment Technology - ACE

11. ACM Press, 2011.

[28] M. Muratet and D. Garbarini. Accessibility and serious games: What about

entity-component-system software architecture? In International Conference on

Games and Learning Alliance, pages 3–12. Springer, 2020.

[29] M. J. Nelson and M. Mateas. Towards automated game design. In R. Basili

and M. T. Pazienza, editors, AI*IA 2007: Artificial Intelligence and Human-

Oriented Computing, pages 626–637, Berlin, Heidelberg, 2007. Springer Berlin

Heidelberg.

[30] Nintendo. Hack’n time attack 20th ”final battle! guru guru kuppa castle” deliv-

ered! https://www.nintendo.co.jp/switch/baaqa/pc/information/index.

html, 2021. Accessed: 2023-05-19.

[31] OpenAI. Chatgpt. https://openai.com/chatgpt, 2023. Accessed: 2023-11-13.

[32] S. PSnodgrass. Probabilistic foundations for procedural level generation. 2014.

[33] retrogamedeconstructionzone. What was the first platformer, space panic or

donkey kong? https://www.retrogamedeconstructionzone.com/2020/07/

what-was-first-platformer-space-panic.html, July 2020. Accessed: 2023-

11-13.

[34] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’Neill. Evolving

levels for super mario bros using grammatical evolution. In 2012 IEEE Con-

53

https://www.nintendo.co.jp/switch/baaqa/pc/information/index.html
https://www.nintendo.co.jp/switch/baaqa/pc/information/index.html
https://openai.com/chatgpt
https://www.retrogamedeconstructionzone.com/2020/07/what-was-first-platformer-space-panic.html
https://www.retrogamedeconstructionzone.com/2020/07/what-was-first-platformer-space-panic.html

ference on Computational Intelligence and Games (CIG) IEEE, pages 304–311,

Granada, Spain, 2012. IEEE.

[35] S. B. Sirisha and G. Sharma. Towards the era of intelligent machines: Artificial

intelligence. 2019.

[36] N. Sorenson and P. Pasquier. Towards a generic framework for automated video

game level creation. In Applications of Evolutionary Computation, pages 131–

140. Springer Berlin Heidelberg, 2010.

[37] N. Sorenson, P. Pasquier, and S. DiPaola. A generic approach to challenge

modeling for the procedural creation of video game levels. IEEE Transactions

on Computational Intelligence and AI in Games, 3(3):229–244, 2011.

[38] E. K. Susanto, R. Fachruddin, M. I. Diputra, D. Herumurti, and A. A. Yunanto.

Maze generation based on difficulty using genetic algorithm with gene pool. In

2020 International Seminar on Application for Technology of Information and

Communication, pages 554–559, Semarang, Indonesia, 2020. IEEE.

[39] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne. Search-based procedural

content generation: A taxonomy and survey. Computational Intelligence and AI

in Games, IEEE Transactions on, 3:172 – 186, 10 2011.

54

	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Platformer Games
	AutoPlay Levels

	Procedural Content Generation
	Thesis Outline

	Background
	Algorithmic Approaches
	Genetic Algorithms for PCG
	Generating Content
	Purpose

	Custom 2-D Game Engine
	ECS
	Scenes
	Benefits

	Genetic Algorithm
	Representation
	Parameters
	Domain-Specific Parameters
	Exploration
	Evaluation

	Experiments and Results
	Level Representation
	Evaluation Metrics
	Experiment Levels
	Results
	Least Blocks

	Conclusions and Future Work
	Bibliography

