
Deep Learning based Auto-labeling for Sparse Underwater

Freestyle Marker-based Optical Motion Capture using

Qualisys Miqus M5U MoCap Cameras

by

© Neda Golpayegani

A thesis submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

October 2024

St. John's Newfoundland and Labrador Canada

ii

Abstract

 This thesis proposes novel algorithms to automate cleaning and labeling of motion

capture (MoCap) data specifically for underwater marker-based optical MoCap systems.

Challenges related to sparse underwater freestyle MoCap data, captured using Qualisys

Miqus M5U MoCap cameras, are explored using a dataset of 21 passive markers. A

thorough review on MoCap denoising, recovery, alignment, and auto-labeling methods is

conducted. The manual cleaning process using Qualisys Track Manager software and

Automatic Identification of Markers function is explained. Then, a novel semi-supervised

geometry-based labeling algorithm is developed based on distance and angle measurements

with a visual evaluation of 100% accuracy. This algorithm includes sub algorithms for

extraneous removal via norm differences, anomaly detection, pelvis detection based on

Principal Component Analysis, recovery of missing markers, and detection of

corresponding reappearing markers along with a side detection algorithm. Finally, a deep

learning-based auto-labeling algorithm utilizing Long-Short-Term Memory is proposed,

employing Hungarian label assignment and Procrustes analysis to label unlabeled data. The

network accepts the 3D relative positions of markers, velocity, and acceleration. The

ground truth and the training set are generated by the geometry-based algorithm and

enhanced using data augmentation and transfer learning of simulated trajectories. The

pelvis detection technique automates the alignment, and the extraneous removal algorithm

enhances accuracy from 66% to 98%. These algorithms work effectively in the presence of

outliers, extraneous, ghosts, and missing markers. Future work will evaluate the algorithm

with more data and ghost markers and explore a more robust body side detection algorithm.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Stephen Czarnuch, who

first motivated me to begin this master’s degree, and provided invaluable guidance

throughout its duration.

I thank the Faculty of Engineering and Applied Science at Memorial University.

I am grateful for the help I received from members of the Marine Institute of Memorial

University, who provided me with Mocap data.

I am thankful for my family who have provided me with great support.

iv

Content

Abstract ... ii

Acknowledgements .. iii

Content .. iv

List of Tables ... xiii

List of Figures .. xv

List of Abbreviations .. xxi

List of Symbols ... xxii

1. Introduction and Overview ... 1

1.1 Background and Statement of the Problem.. 1

1.1.1 OMC Fundamentals ... 1

1.1.1.1 Passive Markers Characteristic: “Reappearing” Markers 2

1.1.1.2 OMC Errors and Challenges .. 3

1.1.1.3 MoCap Solving and Challenges ... 4

1.1.2 Underwater OMC ... 5

1.1.2.1 Underwater OMC Challenges .. 6

1.1.2.2 Underwater Qualisys Miqus M5U MoCap Camera 8

1.2 Thesis Objectives ... 10

1.3 System Overview ... 11

1.3.1 Capturing Underwater MoCap Data .. 11

v

1.3.2 Thesis Structure ... 12

1.4 Thesis Contributions’ Summary .. 14

1.5 Co-authorship Statement .. 15

References .. 16

2. A Survey on Solving Marker-based Motion Capture Approaches 41

Abstract .. 41

2.1 Introduction .. 42

2.2 MoCap Data Denoising .. 43

2.3 MoCap Data Recovery ... 52

2.4 MoCap Data Alignment ... 55

2.5 MoCap Data Auto-Labelling ... 60

2.6 Conclusion ... 64

References .. 65

3. Marker-based Underwater Optical Motion Capture Data Preparation 79

Abstract .. 79

3.1 Introduction .. 80

3.2 Underwater Application ... 81

3.3 Capturing Underwater MoCap Data .. 83

3.3.1 Marker Attachment ... 84

3.3.1.1 Passive Marker Anatomical Locations ... 85

3.3.1.2 Qualisys Passive Markers .. 85

vi

3.3.2 Qualisys Miqus M5U Underwater MoCap Camera 86

3.3.3 Cameras’ Placement in the Volume of Interest ... 87

3.3.4 QTM Software ... 88

3.3.5 Calibration .. 89

3.3.6 Recording MoCap Data and Exported File Types ... 90

3.4 Noise in Underwater MoCap Data ... 90

3.5 MoCap Data Cleaning and Editing Tools .. 91

3.5.1 Commercial MoCap Software ... 92

3.5.2 Mokka Software ... 92

3.5.3 Applications of MATLAB and Python in MoCap Data Cleaning 93

3.6 Marker Set .. 93

3.7 OpenSim Marker Set .. 94

3.8 Manual Cleaning Raw C3D MoCap Data using QTM software 95

3.8.1 Raw C3D Dataset A ... 96

3.8.2 Identifying and Labeling Trajectories .. 97

3.8.2.1 Passive Markers Characteristic: “Reappearing” Markers 97

3.8.3 Bone Visualization ... 100

3.8.4 Denoising ... 101

3.8.4.1 Extraneous Removal .. 101

3.8.4.2 Outlier Removal ... 102

3.8.4.3 Ghost Markers Removal .. 102

vii

3.8.4.4 Swapping Markers ... 104

3.8.5 Recovery .. 106

3.8.5.1 Polynomial ... 107

3.8.5.2 Linear ... 107

3.8.5.3 Static .. 108

3.8.5.4 Relational ... 108

3.8.5.5 Virtual... 109

3.8.5.6 Kinematic ... 110

3.8.6 Smoothing Spikes .. 110

3.8.6.1 Moving Average ... 111

3.8.6.2 Butterworth .. 112

3.8.7 Manual Cleaning Output .. 112

3.9 Labeling using AIM Models .. 114

3.9.1 AIM model Generation and Application Procedure 114

3.9.2 Result of Creating an AIM Model using a Noisy Trial................................ 116

3.9.3 Results of Creating an AIM Model based on Initial Bad Connections 116

3.9.4 Results of Creating an AIM Model based on Initial Good Connections 117

3.9.5 Comparison Manual Cleaning and Cleaning using an AIM Model............. 118

3.9.6 Applying an Existing AIM model on a New C3D file 119

3.10 Other QTM Features .. 119

3.10.1 Skeleton Solver .. 119

viii

3.10.2 Rigid Body and Euler Angles .. 120

3.11 Conclusion ... 121

References .. 122

4. Semi-supervised Geometry-based Cleaning and Labeling of Sparse Freestyle

Underwater Optical MoCap Data .. 133

Abstract .. 133

4.1 Introduction .. 134

4.2 MoCap Cleaning and Labeling Problem .. 138

4.2.1 Noise .. 138

4.2.2 Passive Marker Characteristics: Reappearing Markers 139

4.3 Experimental Methodology ... 141

4.3.1 Preprocessing ... 142

4.3.1.1 Reading a C3D file using EZC3D Library in MATLAB 142

4.3.1.2 Invalid Label Removal ... 142

4.3.1.3 Overlap Removal ... 143

4.3.2 Statistical Processing ... 143

4.3.2.1 Extraneous Removal .. 143

4.3.2.2 Far Outlier Removal based on Anomaly in Norm Profile 145

4.3.2.3 Anomaly detection in Velocity, Acceleration, and Jerk Profiles 146

4.3.2.4 Repetitive Anomaly Detection ... 148

4.3.3 Geometry-based Inlier Detection ... 149

ix

4.3.3.1 Pelvis Detection ... 153

4.3.3.1.1 Probable Pelvis using Rigid Body and Geometric Constraints 155

4.3.3.1.2 Probable Pelvis based on PCA-based Majority Axis Orientation .. 158

4.3.3.1.2.1 Frame of Interest ... 159

4.3.3.1.2.2 PCA ... 160

4.3.3.1.2.3 Finding Majority Axis using PCA .. 160

4.3.3.1.2.4 Probable Pelvis Detection based on Orientation 161

4.3.3.1.3 Pelvis Detection based on Marker set Values 163

4.3.3.1.4 Body Side Detection .. 164

4.3.3.1.4.1 Statement of the Problem .. 165

4.3.3.1.4.2 Statement of the Solution .. 165

4.3.3.1.4.3 Frame of Interest ... 167

4.3.3.2 Detection of Remaining Inliers .. 169

4.3.3.2.1 Torso Markers Detection .. 169

4.3.3.2.1.1 Shoulder Markers Detection ... 169

4.3.3.2.1.2 Chest Marker Detection .. 172

4.3.3.2.1.3 Stomach Marker Detection ... 172

4.3.3.2.2 Near Outlier Removal .. 172

4.3.3.2.3 Lower Limb Markers Detection ... 174

4.3.3.2.3.1 Hip Markers Detection .. 174

4.3.3.2.3.2 Knee Markers Detection ... 174

x

4.3.3.2.3.3 Calf and Ankle Markers detection .. 175

4.3.3.2.4 Head Markers Detection .. 176

4.3.3.2.5 Upper Limb Markers Detection ... 177

4.3.3.2.5.1 Elbow Markers Detection ... 177

4.3.3.2.5.2 Hand Markers Detection ... 178

4.3.3.2.6 Remaining Noise Removal .. 178

4.3.3.2.7 Dropped Ankle Marker Reconstruction ... 179

4.4 Experimental Results ... 180

4.4.1 Results .. 181

4.4.2 Discussion .. 183

4.4.2.1 Analysis of Pelvis Triplets and Side Detection 183

4.4.2.2 Analysis of Dataset 7 with no Hand Points Detected 185

4.4.2.3 Evaluating the Importance of Implementing This Algorithm 186

4.4.2.4 Consideration of Assumptions and Future Solutions 187

4.5 Conclusion ... 190

References .. 191

5. Deep Learning based Auto-Labelling for Underwater Sparse Freestyle MoCap Data

 195

Abstract .. 195

5.1 Introduction .. 196

5.2 Related Work ... 198

xi

5.3 Methodology .. 199

5.3.1 Capturing MoCap C3D Data ... 201

5.3.2 Open Sim Model Marker Set ... 201

5.3.3 Simulated Trajectories ... 202

5.3.4 Training Data Sets Preparation .. 203

5.3.4.1 Transfer Learning ... 203

5.3.4.2 Augmentation ... 203

5.3.5 Pre-processing Data ... 204

5.3.5.1 Invalid Label Removal ... 204

5.3.5.2 Extraneous Removal .. 204

5.3.5.3 Pelvis-based Alignment ... 205

5.3.5.3.1 PCA-based Pelvis Detection .. 205

5.3.5.4 Butterworth Smoothing .. 206

5.3.5.5 Gap Filling ... 206

5.3.5.6 Data Windowing .. 206

5.3.5.7 Neural Network Input Data .. 207

5.3.6 Long short-term memory (LSTM) ... 208

5.3.7 Hungarian based Label Assignment .. 209

5.3.8 Post-processing .. 209

5.3.8.1 Procrustes Analysis .. 210

5.3.9 Evaluation Metrics ... 210

xii

5.4 Experimental Results and Analysis ... 212

5.4.1 Raw C3D Data Sets ... 213

5.4.2 Labeling Performance Results ... 215

5.4.3 Analysis of Low Performance of Test 2: ... 217

5.4.4 Analysis of Results: Test 1, 3, 4, and 5 .. 218

5.4.5 Overall Conclusion: The effectiveness of Extraneous Removal 220

5.5 Conclusion ... 221

References .. 222

6. Conclusion .. 228

6.1 Summary .. 228

6.2 Proportional Contributions of Each Chapter .. 228

6.3 Future Works ... 230

xiii

List of Tables

Table 1-1: Thesis Structure .. 12

Table 3-1: Qualisys Miqus M5U Camera Specifications... 87

Table 4-1: Pelvis Detection Predetermined Tolerances ... 155

Table 4-2: Pelvis Detection Marker set Constraints (M: Marker set) 163

Table 4-3: Shoulder Detection Marker set Constraints (M: Marker set) 170

Table 4-4: Chest Detection Marker set Constraints (M: Marker set) 172

Table 4-5: Stomach Detection Marker set Constraints (M: Marker set) 172

Table 4-6: Hip Detection Marker set Constraints (M: Marker set) 174

Table 4-7: Knee Detection Marker set Constraints (M: Marker set) 174

Table 4-8: Calf and Ankle Detection Marker set Constraints (M: Marker set) 175

Table 4-9: Head Detection Marker set Constraints (M: Marker set) 176

Table 4-10: Elbow Detection Marker set Constraints .. 178

Table 4-11: Hand Detection Marker set Constraints .. 178

Table 4-12: Pelvis detection parameters and tolerances .. 181

Table 4-13: Remaining inlier detection tolerances .. 181

Table 4-14: The results of each step of the algorithm on 10 datasets 182

Table 5-1: Pelvis Detection Marker set Constraints (M: Marker set) 205

Table 5-2: Actions Description of Raw C3D datasets .. 213

Table 5-3: Datasets Properties.. 214

Table 5-4: Results for Test 1,3,4, and 5 (E = Extraneous) ... 215

Table 5-5: Results for Cleaned Datasets (Free of Extraneous) for Test 2 216

xiv

Table 5-6: Results for Raw Datasets for Test 2 (E = Extraneous) (Av= Average) 216

Table 5-7: Summary of Results for Comparison of different Factors (V: Vertical), (H:

Horizontal) ... 219

Table 5-8: The Average Accuracy and F1-score across all Datasets 220

xv

List of Figures

Figure 1-1: The effect of occlusion on Passive and Active Markers’ Trajectories 2

Figure 1-2: Marker set: Location of 21 passive markers and their labels. 11

Figure 2-1: [12]: “Figure 2. Identified types of distortions inpainted into exemplary data—

the first coordinate of the first marker (head) of the IM subject.” 44

Figure 3-1: In-water rehabilitation and swimming performance. 80

Figure 3-2: A 4-meter deep pool utilized for capturing MoCap data. 84

Figure 3-3: 21 Passive Marker Anatomical Locations. .. 85

Figure 3-4: Qualisys passive super-spherical markers. .. 86

Figure 3-5: Miqus M5U Camera .. 87

Figure 3-6: The Volume of Interest .. 87

Figure 3-7: Underwater cameras' placement .. 88

Figure 3-8: Qualisys Calibration Kit: Wand (top right), L-frame (bottom) 89

Figure 3-9: Calibration wand and the Calibration procedure by our swimmer. 90

Figure 3-10: Noise in Underwater Data; Surface Reflection and Wave 91

Figure 3-11: Noisy MoCap Data .. 91

Figure 3-12: Mokka User Interface .. 92

Figure 3-13: Anatomical locations of 21 markers .. 93

Figure 3-14: OpenSim User Interface .. 94

Figure 3-15: OpenSim model markers placement and the output MarkerSet.xml file 94

Figure 3-16: Noisy MoCap data and its corresponding cleaned and labeled data. 95

Figure 3-17: QTM User Interface; Dataset A .. 96

xvi

Figure 3-18: Passive Markers Characteristic; Reappearing Markers Trajectories 98

Figure 3-19: Merging Reappearing Markers Trajectories .. 98

Figure 3-20: The Impact of Bone Connectivity and View Angle Adjustment on

Visualization Enhancement. ... 100

Figure 3-21: Extraneous Markers Removal ... 101

Figure 3-22: Outlier Removal; Yellow outlier (left), white and red outliers (right). 102

Figure 3-23: Challenges of Manual Cleaning for detecting ghost markers. (a) A ghost

marker (red) appears to overlap with a valid marker (pink) from one perspective, (b) in

another view, the red and pink markers are clearly separated. (c) Obscured red marker

behind pink at an unfavorable angle. (d) View change reveals red marker, still appearing

overlapped. (e) Optimal angle; valid (pink) marker is absent. (f) Tracking across frames

distinguishes valid (pink) from ghost (red) based on bone length. 103

Figure 3-24: Swapping Markers .. 105

Figure 3-25: Filling Gaps; A gap (brown) in a “STOM” trajectory. 106

Figure 3-26: Polynomial Gap Filling Type .. 107

Figure 3-27: Linear Gap Filling Type .. 108

Figure 3-28: Static Gap Filling Type ... 108

Figure 3-29: Relational Gap Filling Type .. 109

Figure 3-30: Virtual Gap Filling Type.. 110

Figure 3-31: Spikes Identification.. 111

Figure 3-32: Smoothing Spikes ... 111

Figure 3-33: Moving Average Smoothing Type ... 111

Figure 3-34: Butterworth Smoothing Type Response with Cutoff Frequency = 20 Hz .. 112

xvii

Figure 3-35: Butterworth Smoothing Type Response with Cutoff Frequency = 5 Hz 112

Figure 3-36: Manual Cleaning Output ... 113

Figure 3-37: QTM "AIM" icon .. 115

Figure 3-38: Create a new AIM model .. 115

Figure 3-39: Failure of AIM model; (a) Failure of an AIM model generation based on a

noisy trial; (b) The result of applying an inaccurate AIM model 116

Figure 3-40: AIM model labeling based on initial bad connections: (a) AIM model with

wrong connections; (b) AIM model with corrected connections; (c) Result of applying the

generated AIM model on Dataset A. .. 117

Figure 3-41: AIM model labeling based on initial good connections: (a) Initial bone

connectivity; (b) AIM model with corrected connections; (c) The result of applying the

generated AIM model on Dataset A. .. 117

Figure 3-42: An incorrect labeling found during inspection: (a) Mislabeled “LHEAD”

part2; (b) Corrected Labeling. .. 118

Figure 3-43: Applying AIM model on a new C3D file; (a) New C3D file; (b) The result of

applying AIM model. ... 119

Figure 3-44: Skeleton Solver ... 120

Figure 3-45: Euler Angles .. 120

Figure 4-1: MoCap Noise Types; Outlier (green), Ghost (red), Extraneous (blue),

Overlapped (yellow) .. 138

Figure 4-2: MoCap C3D Data representation of an active marker 139

Figure 4-3: MoCap C3D Data representation of a passive marker 139

Figure 4-4: Passive Markers Characteristic ... 140

xviii

Figure 4-5: System Overview .. 141

Figure 4-6: Overlapped Markers .. 143

Figure 4-7: Sorted norms differences for two C3Ds with (left) and without (right)

extraneous markers.. .. 144

Figure 4-8: Far outlier removal; Before (top) and after (bottom) extraneous removal.... 145

Figure 4-9: Abnormalities in mean velocity (left), acceleration (middle), and jerk (right)

profiles representing outliers. ... 147

Figure 4-10: Label 7 (Hand) was identified as an abnormality in the mean acceleration

profile but later excluded as an outlier due to a filling level exceeding 1%. 148

Figure 4-11: Inlier Detection; Detected Points (left), Shared Steps (middle and right). . 150

Figure 4-12: Pelvis Isosceles Triangle ... 155

Figure 4-13: Probable Pelvis Trios; fcs and fce are the first and last frames of a Trio’s

Common frames ... 156

Figure 4-14: Probable Pelvis Triangles: (a) Not accepted due to SD criterion; (b) Not

accepted due to a small θSp; (c) Accepted due to the geometric and rigid body criteria, but

this triangle does not represent a pelvis and requires additional criteria for rejection. 157

Figure 4-15: The Impact of Noise on Majority Axis Direction: (Left) Noisy Frame; (Right)

Non-Noisy Frame ... 159

Figure 4-16: Rejected probable pelvis Trio (spine (magenta), elbows(cyan)) due to angle

between SWW line (yellow) and majority axis (red);the right tile provides an additional

view for clarity. The correct pelvis is shown in a purple triangular shape....................... 162

Figure 4-17: Pelvis Isosceles Triangle ... 163

xix

Figure 4-18: Probable pelvis triangles (Spine, Waist 1, Waist 2) in the first frame (fcs) of

each Trio’s common frame. .. 166

Figure 4-19: Solution 1 for left and right waist points detection: Translating the Trion

triangle from its fcsn to the next Trion+1 first frame (fcsn+1) and calculating the distances

between waist 1 in the Trion+1 and the translated waist 1 and waist 2 of the Trion. 166

Figure 4-20: Potential problem of equal distances in Solution 1 for detecting left and right

waist points, illustrated by the second blue triangle labeled “2,” where the distance between

points “2” (in the translated blue triangle) and points “1” (in the original black triangle) is

identical. ... 166

Figure 4-21: Solution 2 for the specific rotation problem arises with Solution 1 in detecting

left and right waist points. Instead of translating between the first frames (fcs) of Trios,

translation is done between the last frames (fce) of the current Trion and the first frame (fcs)

of the next Trion+1 to reduce gap size and, hence, the potential rotation problem. 168

Figure 4-22: Shoulder Detection Isosceles Triangle .. 170

Figure 4-23: Chest Detection Isosceles Triangle ... 172

Figure 4-24: Stomach Detection Isosceles Triangle .. 172

Figure 4-25: Valid Points Maximum ROI .. 173

Figure 4-26: Hip Detection Triangle .. 174

Figure 4-27: Knee Detection Triangle ... 174

Figure 4-28: Calf and Ankle Detection Triangle .. 175

Figure 4-29: Head Detection Triangle ... 176

Figure 4-30: Elbow Detection Bone .. 178

Figure 4-31: Hand Detection Bone .. 178

xx

Figure 4-32: Dropped ankle marker reconstruction triangle; Knee (green circle), Calf

(violet circle), Ankle (red star: intersection of two spheres). ... 179

Figure 4-33: The effect of changing the view in Manual Cleaning: Real far distances (b, d)

seem near (a, c) from a different perspective. .. 186

Figure 5-1: System Overview .. 200

Figure 5-2: OpenSim Marker Set; locations of 21 passive markers (pink orbs).............. 202

Figure 5-3: Pelvis Triangle ... 205

Figure 5-4: Axes directions of 3D coordinates .. 213

Figure 5-5: Accuracy for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5 218

Figure 5-6: F1-score for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5 218

Figure 5-7: The Average Accuracy and F1-Score across all Datasets 220

xxi

List of Abbreviations

MoCap Motion Capture

OMC Optical Motion Capture

QTM Qualisys Track Manager

AIM Automatic Identification of Markers

PCA Principal Component Analysis

LSTM Long Short-Term Memory

3D Three-Dimensional

C3D Coordinate 3D

NN Neural Network

SD Standard Deviation

ICP Iterative Closest Point

FOV Field of View

6DOF Six Degree of Freedom

Mokka Motion Kinematic and Kinetic Analyzer

BTK Biomechanical ToolKit

ROI Region of Interest

ID Identifier

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

xxii

List of Symbols

Common

x, X x Coordinate

y, Y y Coordinate

z, Z z Coordinate

NaN Not a Number

s Second

Hz Hertz

º Degree

*, × Multiplication

% Percentage

Max, max Maximum

Min, min Minimum

L/R Left/Right

NA Not Applicable

Chapter 3

VDC Volts Direct Current

ºC Celsius Degree

ºF Fahrenheit Degree

MP Megapixel

fps Frames Per Second

xxiii

Chapter 4

𝐼𝐷1 ID number 1

𝑝 Point; any point in a 3D space

𝑂 Origin = (0,0,0) coordinate

𝑥𝑛, 𝑦𝑛, 𝑧𝑛 x Coordinate, y Coordinate, z Coordinate of nth point

𝑥1, 𝑦1, 𝑧1 x Coordinate, y Coordinate, z Coordinate of point 1

(matrix)’ Transpose a matrix: switch its rows and columns

𝑆𝑝,𝑊1,𝑊2 Spine point, Waist point 1, Waist point 2

𝐿𝑊,𝑊𝐿; 𝑅𝑊,𝑊𝑅 Left Waist point; right Waist points

𝐶ℎ, 𝑆𝑡 Chest point, Stomach point

𝑆ℎ𝐿 , 𝑆ℎ𝑅 Left and right Shoulder points

𝐻𝑖𝑅 , 𝐻𝑖𝐿 Left and right Hip points

𝐾𝑅 , 𝐾𝐿 Left and right Knee points

𝐴𝑅 , 𝐴𝐿 Left and right Ankle points

𝐻𝑅 , 𝐻𝐿 Left and right Head points

𝐸𝑅 , 𝐸𝐿 Left and right Elbow points

𝐻𝑎𝑅 , 𝐻𝑎𝐿 Left and right Hand points

𝑑 Distance between any two points in 3D space

𝑑1 Distance between two specific points

𝑑𝑊 Distance between left and right waist points

𝑑𝑠ℎ Distance between left and right shoulder points

 Distance between spine and stomach points 𝑑𝑠𝑠

xxiv

𝑀𝑑𝑊 Marker set (M) value for 𝑑𝑊

∆ Tolerance: allowable deviation from a measurement

∆𝑑 Tolerance in distance

∆𝑑𝑀 Deviation from a defined distance in the Marker set (M)

𝜃 Angle; angle between any three points in 3D space

𝜃1 Angle between three specific points

𝜃𝑊1 Angle of waist point 1

∆𝜃 Tolerance in angle

𝑀𝜃𝑆𝑝 Marker set (M) value for spine angle (𝜃𝑆𝑝)

∆𝜃𝑀 Deviation from a defined angle in the Marker set (M)

==, ≠ Equal, Not Equal

=, ← Assignment

<, > Comparison Operators

Number

∅ Empty Set

⋃(𝑠𝑒𝑡𝑠)
Union of sets

⋂(𝑠𝑒𝑡𝑠)
Intersection of sets

𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
 The maximum length of arm

𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
 The maximum length of leg

Triplet, Trio A group of three points

𝐺𝑎𝑝1 The first gap in a trajectory

𝑆𝑝𝑡𝑟𝑖𝑜1 Spine point from Trio number 1

xxv

framecn Common frames for Trio number n

fcsn The first frame in common frames of Trio number n

 Waist point 2 in Trio number 1

Algorithm 1 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 READC3D(𝑐3𝑑)

𝑝𝑜𝑖𝑛𝑡𝑠 All Points in a C3D file

𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 Number of Points

𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠 Number of Labels

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 Number of Frames

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 INLIERDETECTION (𝐶3𝐷)

𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 Detected points

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝐹𝑙𝑎𝑔 Flag that shows if there is any intersection in trajectories

𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 Merged trajectory

𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 Gap filled trajectory

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙 Assigned label ID

𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠 IDs of Removed Labels

𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠 New Labels vector

𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 New Points

𝑛𝑒𝑤𝐶3𝐷 New C3D file

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3)

𝑓𝑟𝑎𝑚𝑒 Frame

𝑃1
⃗⃗ ⃗ Vector P1: a vector between two points in 3D space

𝑊2𝑡1

xxvi

𝑃1𝑚𝑎𝑔
 Magnitude of vector P1: Distance between two points

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒)

𝑑𝑠𝑒𝑙 Distance between two points in a selected frame

𝑑𝑚𝑒𝑎𝑛 Mean distance between two points across all frames

𝑑𝑠𝑡𝑑 SD of distances between two points across all frames

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3)

𝜃1𝑚𝑒𝑎𝑛
 Mean angle between three points across all frames

𝜃1𝑠𝑡𝑑
 SD of angles between three points across all frames

Algorithm 4 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠)

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 Probable pelvis points

∁(p𝑜𝑖𝑛𝑡𝑠, 3) Combinations of three points

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 Probable pelvis triplets = ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 3)

𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 Probable Trios

𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 Number of Trios

𝑓𝑟𝑎𝑚𝑒𝑐 Common frames for each Trio

𝑓𝑐𝑠 The first frame in common frames of a Trio

𝑓𝑐𝑠 The last frame in common frames of a Trio

𝑆𝑝𝑐𝑠 Spine point in the first frame of common frames of a Trio

𝐴, 𝐵, 𝐶 Point 1, Point 2, and Point 3 in a Trio (Triangle)

𝐴𝐵, 𝐵𝐶, A𝐶 Vectors between point A and B, B and C, A and C

𝐴𝐵𝑐𝑠 Vector AB in fcs

xxvii

𝑑𝑐𝑠1 Distance between two points in fcs of Trio 1

𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 The frame in which the majority axis was calculated

𝑓𝑙𝑎𝑔𝑚𝑎𝑗 Flag for Majority Axis Orientation Criterion Met

𝑑𝑀𝑊𝑊 Distance between left and right waist points in marker set

𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 Pelvis points: 𝑆𝑝, 𝑅𝑊, 𝐿𝑊

𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠 New C3D file with a cleaned and labeled pelvis points

Algorithm 5 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗, 𝑆𝑝,𝑊1,𝑊2)

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 Mean position of all points in 3D space in each frame

𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 PCA coefficients

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 Direction of majority axis = first PCA coefficient

𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 Distance of Waist point 1 to majority axis

𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 Distance of Waist point 2 to majority axis

𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗 𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 − 𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗

∆𝑑𝑆𝑊 ∆ (distance between spine and waist point)

∆𝑑𝑚𝑎𝑗 ∆ (distance between spine and majority axis)

∆𝑠𝑦𝑚𝑚𝑎𝑗 ∆ (distance between waists and majority axis)

𝑆𝑊𝑊𝐿𝑖𝑛𝑒 Line connects spine to 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 waistline

𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 angle between SWWLine and majority axis

𝜃𝑊𝑊𝑚𝑎𝑗
 angle between waistline and majority axis

∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 ∆ (angle between SWWLine and majority axis)

∆𝜃𝑊𝑊𝑚𝑎𝑗
 ∆ (angle between waistline and majority axis)

xxviii

𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 Flag indicating if spine orientation criterion is met

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 Flag for Waist Symmetry with Major Axis

𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 Flag indicating if waistline angle criterion is met

Algorithm 6 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒)

𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟 Translation vector

t𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 Translation matrix

𝑊1𝑐𝑠,𝑊2𝑐𝑠 Waist point 1 and Waist point 2 in fcs of a Trio

𝑊1𝑐𝑒 ,𝑊2𝑐𝑒 Waist point 1 and waist point 2 in fce of a Trio

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒 Homogeneous W1ce

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒 Translated homogeneousW1ce

distW1cstransW1ce Distance between W1cs and traslatedW1ce

distW2cstransW1ce Distance between W2cs and traslatedW1ce

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟕 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑅𝑊, 𝐿𝑊, ∆𝑑, ∆𝑑𝑠ℎ, ∆𝜃𝑠ℎ)

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 Probable Shoulder Points

∁(p𝑜𝑖𝑛𝑡𝑠, 2) Combinations of two points

𝑝𝑟𝑜𝑏𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟𝑠 Probable shoulder pairs = ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠, 2)

𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 Probable Shoulder pairs

𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 Number of pairs

𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟 Pairs of detected shoulder points

𝑛𝑒𝑤𝐶3𝐷𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 New C3D with cleaned and labeled shoulder points

Chapter 5

xxix

FP False Positive

FN False Negative

TN True Negative

F1 F1 score

𝐴𝑣 Average

𝐸 Extraneous marker

D Dataset (e.g., D1 = Dataset number 1)

MATLAB Functions

𝑠𝑖𝑧𝑒(𝑉, 𝑑𝑖𝑚) Length of dimension dim of a vector V

𝑛𝑜𝑟𝑚(𝑉) Euclidean norm (magnitude) of vector V

𝑝𝑑𝑖𝑠𝑡(𝑠𝑒𝑡) Euclidean distance between pairs of observations in a set

𝑖𝑠𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝐴𝑟𝑟,𝑚𝑒𝑡ℎ𝑜𝑑) Find outliers in data using a specific method (e.g., “mean”)

𝑎𝑡𝑎𝑛2𝑑(𝑦, 𝑥) Four-quadrant inverse tangent (tan-1) of y and x coordinates

𝑐𝑟𝑜𝑠𝑠(𝑉1, 𝑉2) Cross product of vector V1 and vector V2

𝑑𝑜𝑡(𝑉1, 𝑉2) Dot product of vector V1 and vector V2

𝑖𝑠𝑛𝑎𝑛(𝐴𝑟𝑟𝑎𝑦) Determine which array elements are NaN

𝑠𝑡𝑑(𝑉) SD(V): Standard Deviation of observations vector V

𝑚𝑒𝑎𝑛(𝐴𝑟𝑟𝑎𝑦) Average or mean value of an array

1

1. Introduction and Overview

1.1 Background and Statement of the Problem

 The global market for 3D motion capture (MoCap) [1] technology is expected to achieve

a valuation of USD 261.17 million by the year 2026 [2]. Among the various types of MoCap

technologies available [3], marker-based optical motion capture (OMC) [4]–[7] technology

has long been regarded as the ‘gold standard’ in terms of reliability and accuracy [3], [8]–

[13]. OMC systems employ cameras to track the 3D positions of reflective markers placed

at specific anatomical locations on the subject’s body. These systems are widely used in

various fields such as medicine [14], [15], biomedical engineering [16], sports [9], [17],

[18], ergonomics [19], [20], gait analysis [21], [22], robotics [23]–[28], biomechanics [29]–

[32], gaming [33], [34], virtual/augmented reality [35], and computer graphics animation

[36]–[41]. OMC applications [3] include diagnosing disorders [42], rehabilitation [43],

[44], athlete performance analysis [45], mimicking human movements by robots [46]–[49],

analyzing the impact of various activities on the human body [50], [51], and creating

realistic animations [52], [53].

1.1.1 OMC Fundamentals

 The 3D positions of the markers (i.e., the markers' orb centers) are captured at a specific

frame rate (capturing frequency) and saved in various MoCap file formats [6] such as C3D

[54]. The trajectory of a marker represents its movement path tracked in 3D space over time

[55]. The position of this trajectory at any given moment is denoted by its X, Y, and Z

coordinates. The “fill level” [56] represents the visibility of the marker’s trajectory within

2

the measurement range, calculated by dividing the total number of tracked frames for a

marker by the total captured frames and expressing it as a percentage. OMC markers can

be passive (reflect the camera’s light) or active (are battery-powered and emit their own

light) [7], [13], [57], [58].

1.1.1.1 Passive Markers Characteristic: “Reappearing” Markers

 In MoCap data, when a specific physical marker is tracked for the first time in its initial

frame, it is assigned a random ID number. There is a distinction between active and passive

markers in terms of their assigned IDs under occlusion conditions. Each active marker has

a unique ID number that remains consistent [59], [60] even if it disappears and reappears

due to occlusion, resulting in a distinct trajectory with potential gaps (Figure 1-1).

Figure 1-1: The effect of occlusion on Passive and Active Markers’ Trajectories

 When a passive marker, like ID1, disappears due to occlusion and then reappears, it is

typically given a new ID, such as ID2, [59] since the passive system cannot recognize that

these two points are the same. This leads to passive markers commonly having short

segment trajectories (Figure 1-1). As a result, a MoCap file may contain multiple points

with their corresponding trajectories associate to a specific physical marker. Therefore, post

3

processing is needed to identify and merge the short segments associated with a specific

physical marker to form its complete trajectory with gaps. While previous studies have

described this characteristic without a specific term [12], [59], [61] or referred to it as

“instances of occluded markers [16],” in this thesis, we term it as “reappearing markers.”

1.1.1.2 OMC Errors and Challenges

 OMC systems are prone to errors and noise [6] stemming from various factors [8], [62]

such as calibration problems [63], environmental conditions [18], and occlusions [64].

Common types of noise in MoCap data include phantom markers [65] (which consist of

outliers [59] and ghost markers [66]), extraneous markers [67], marker swapping [68] (i.e.,

mislabeling [6]), markers overlapping [69] (i.e., overlying [6]), and missing markers [70].

Phantom markers are not real markers; they arise from reflective surfaces or direct light

sources, and they can be categorized into outliers and ghost markers. Outliers are inaccurate

measurements that significantly deviate from the expected values. Ghost markers are

virtual markers located close to valid markers. Extraneous markers are actual markers

belonging to other objects. Marker swapping occurs when two markers’ labels are switched

due to their proximity or crossing paths in front of the camera, leading to misinterpretation

by the capture system. Overlapped markers refer to points that are closer together than the

marker size or marker measurement accuracy. Moreover, occlusion resulting from reduced

visibility or self-occlusion, as well as markers dropped from the body, can lead to missing

markers. This situation creates gaps in active markers’ trajectories or generates reappearing

markers in passive markers. Therefore, in the captured data file, there may be M points in

4

each frame, where M can be less than, equal to, or more than N physical markers attached

to the subject. Addressing these errors is crucial for further processing of MoCap data.

 Marker set configuration and marker quantity also affect the MoCap data analysis [52],

[69], [71], [72]. Increasing the number of markers can improve precision and reduce

occlusion issues, but drawbacks include longer setup times, subject discomfort, high

computational load, and potential marker interference. While a sparse dataset may reduce

these drawbacks [72]–[74] it may compromise accuracy and worsen occlusion issues.

Large marker spacing can also present challenges for statistical outlier detection.

1.1.1.3 MoCap Solving and Challenges

 To utilize MoCap data in various applications such as action recognition [75], motion

analysis [76], and pose estimation [77], the data must undergo a process known as MoCap

“solving” [59], [78]–[82]. This process includes cleaning [83], [84] (denoising [8] and

recovery of missing markers [85]), alignment [86], and labeling [87]. The goal of MoCap

solving is to transform raw, unlabeled, noisy mocap data into cleaned, labeled data. In this

processed data, each frame contains only N unique labeled points corresponding to N

physical markers attached to the subject. Each point follows a distinct complete trajectory

across all captured frames.

 “Manual cleaning” [77]–[79] is commonly utilized in MoCap solving, where a

technician opens a MoCap file like a C3D file using suitable software such as open-source

Mokka software [88], motion kinematic and kinetic analyzer, or commercial options like

Qualisys Track Manager (QTM) [89] and Vicon Nexus [90]. The technician then proceeds

to rectify errors frame by frame. Despite the automatic labeling functions in these

5

commercial software tools (e.g., AIM; Automatic Identification of Markers [91] in QTM

or Vicon Nexus [92]), aids in manual cleaning, manual intervention remains necessary [86].

Hence, due to the time-consuming and laborious [78] manual cleaning process, there is a

high demand for automated approaches [80].

 Early automated MoCap solving methods struggled to generalize to real-world data due

to their reliance on assumptions, constraints, empirical parameters, and hand-crafted

features [93]–[96]. To overcome these limitations, data-driven approaches such as machine

learning and deep learning have been employed [78]–[83]. However, the scarcity of cleaned

and labeled MoCap data [59] hinders the effectiveness of these methods as they require

large training datasets. This scarcity is due to the high cost and restrictions of traditional

MoCap systems [97], as well as the time-consuming nature of manual cleaning MoCap

data. It is important to highlight that the Motion-X [98] dataset, which comprises 144.2

hours of motion data, alongside the AMASS [99] dataset—recognized as the largest

existing OMC dataset with 45 hours of data—are both considerably smaller in scale

compared to the video datasets commonly employed in the OMC field [59]. Some

techniques have used simulated data [59], [67] to address this issue, but they still necessitate

manual intervention and may struggle with generalizing to unseen data, even when utilizing

diverse motion datasets [59] like AMASS.

1.1.2 Underwater OMC

 Underwater OMC technology enables the capture of underwater biomechanical

movements for various applications [100]–[103] including underwater biomechanics

[104]–[109], swimming and sports performance analysis [45], [110]–[121], rehabilitation

6

utilizing underwater treadmills and gait analysis [122]–[125], underwater robotics [126]–

[135] and underwater animation, filming, and virtual reality [136]–[139]. Beyond human

applications, these systems also extend their utility to non-human subjects [140], [141]

including underwater animal biomechanical analysis [142], [143], tracking marine vessels

and structures [144][145], observing movements of oil pipelines [146], monitoring

underwater autonomous vehicles [147]–[149], and analyzing objects in towing tanks [150].

1.1.2.1 Underwater OMC Challenges

 Capturing underwater OMC data faces increased challenges compared to other

environments [112], [123], [151]–[158]. Factors such as surface reflections [11], [151],

[152] and the unique properties of water result in various types of noise, which compromise

data accuracy [18] and reliability. Water's different optical properties [159]–[161] compared

to air can distort captured data, resulting in inaccuracies in marker positions and the

presence of ghost markers. The presence of bubbles [34], [71], [151], [152], [162] all

around the swimmer and water's ability to absorb light [152], [154] also impacts the quality

of optical markers detection. Additionally, suspended particles and impurities in water

scatter light [154], further contributing to noisy data. The behavior of light underwater

differs significantly from that in air, leading to reduced visibility [102], [151], resulting in

high occlusion. This high occlusion causes missing or incorrectly tracked data, making

passive marker tracking more challenging. Water's unpredictable currents, waves, and

turbulence [154], [157] can cause subjects to move erratically, resulting in motion blur,

outliers, and difficulties in tracking markers. Moreover, the use of waterproof equipment

introduces technical limitations that may affect marker detection and data capture accuracy.

7

 Marker displacement or detachment in water, especially for swimmers, can occur due to

movement, water resistance, and friction between the skin and garment. Securely attaching

markers to a person to prevent detachment during motion significantly increases setup time

[7], [10], [71]. Consequently, re-tracking [6], [59] to reduce errors and decrease editing

time, a common practice in on-land MoCap [8], becomes highly time-consuming for

underwater MoCap. Therefore, underwater MoCap may be very noisy, making post-

cleaning more challenging than in other environments.

 The sparsity of underwater MoCap datasets presents a significant challenge, leading to

unique difficulties in cleaning underwater MoCap data due to their inherent noisiness

compared to other environments. Increasing the number of markers can extend setup time

and impact the swimmer’s performance [71]. Conversely, reducing the number of markers

and working with sparse datasets that have large marker spacing can also complicate

statistical outlier detection, especially in the presence of a higher proportion of outliers

relative to the small number of valid markers in a frame.

 Freestyle [157] and complex [163] movements underwater pose additional challenges

such as creating severe self-occlusion. Also, the kinematics of movement are different in

water conditions compared to land movements due to properties of water such as higher

density and buoyancy [123], [124]. Buoyancy in water allows for effortless floating and

deep diving due to a microgravity environment [103], enabling a wider range of motion

and freedom of movement not achievable on land. Some underwater movements mimic

those of aquatic animals, like dolphin kicks or turtle-like treading motions [114], [131].

 Underwater MoCap solving techniques face greater challenges due to the

aforementioned issues and the scarcity of swimming and underwater MoCap data. This

8

scarcity is attributed to the distinctive characteristics of aquatic environments. Even image-

based MoCap techniques face difficulties when dealing with aquatic data [97]. To address

this issue, the SwimXYZ [97] synthetic dataset was developed to enhance the applicability

of image-based MoCap methods in swimming. It comprises synthetic monocular videos

that are meticulously annotated with accurate ground truth 2D and 3D joint information.

The dataset includes a total of 11,520 videos, amounting to 3.4 million frames. These videos

exhibit variations in camera angles, subjects, water conditions, lighting scenarios, and types

of motion. Additionally, SwimXYZ offers 240 synthetic swimming motion sequences in

SMPL format [164], showcasing diverse body shapes and movements.

 However, to the best of our knowledge, there are currently no OMC datasets publicly

available for underwater swimming actions, which includes intricate movements like

treading water, orientations that are impossible out of water (e.g., floating on or under the

water), or unpatterned maneuvers. Even datasets containing actions at the surface of the

water (e.g., swimming strokes such as backstroke, breaststroke, butterfly, and front crawl)

are rare and limited in size, and these actions are not entirely underwater [165].

1.1.2.2 Underwater Qualisys Miqus M5U MoCap Camera

 Underwater OMC systems are in high demand due to their capability to efficiently

capture and digitize motion compared to traditional video methods that require extensive

time for manually digitizing anatomical landmarks through image-based techniques [166].

 In 2009, Qualisys launched the first commercially available underwater MoCap camera

[167], leading to a reduction in measurement and analysis time compared to video

techniques [166]. Once calibrated, these systems accurately track 3D marker positions. A

9

2009 study [166] assessed the accuracy of the Qualisys underwater passive marker system

for swimming stroke tracking, revealing a low RMS error in angle measurement (0.2°) and

an average RMS error of 1.2 mm over three lengths, which is negligible for biomechanical

analyses. The data from Qualisys closely aligned with that of a land-based motion analysis

passive marker system using markers on an L-shaped frame. Qualisys released a new

underwater MoCap camera, 7+u, in 2019 [167]. This series [168], known as Oqus [169],

[170], has since been discontinued and replaced by the newer Arqus model [171].

Researchers have evaluated the accuracy of Qualisys underwater MoCap cameras [18],

[121], [162], [172]. The most recent study [151] assessed the underwater human movement

error using six Qualisys 7+ cameras that established an underwater capture volume of

8x2x2 meters. All cameras were synchronised, recording marker locations at a frequency

of 100Hz. The calibration error, as provided by Qualisys QTM software, was -1.82 mm.

Average error levels were found to be acceptable in two trials (1.23mm ± 8.23mm and

1.34mm ± 9.65mm), although errors increased at the ends and top of the capture domain.

By concentrating on a specific area with higher accuracy, the error was minimized to

0.53mm (± 1.45mm).

 However, these cameras have been too large to fit into the smaller capture volumes

required for applications like aquatic treadmills with shorter distances between the pool

walls and the subject, and they need a wider viewing angle [100], [122]. The increasing

demand for applications such as aquatic therapy [123], [124] in clinical rehabilitation,

emphasizing its advantages over land-based therapies, along with the benefits of exercise

using an underwater treadmill [123], [124], has driven the development of specialized

underwater MoCap cameras.

10

 On May 16, 2019, Qualisys unveiled the Miqus M3u and M5u underwater MoCap

cameras, the smallest ever MoCap solutions designed specifically for underwater

measurement [167]. These cameras, along with the Miqus underwater color video camera

[173], provide high-resolution, high-speed, and extremely low latency capabilities for

accurate underwater measurements in confined spaces [140]. The new Miqus U cameras

offer a wider field-of-view and lighter weight compared to previous models [174], making

them easier to deploy in smaller tanks or pools. This advancement has opened up new

possibilities for gait analysis and underwater rehabilitation [100], as well as animation of

realistic underwater motion [167]. The Miqus M5U offers the highest resolution, and a

maximum capture distance of 17 meters [174]. Qualisys cameras above water reflect

infrared light. In contrast, the Miqus M5U emits visible light at 455 nm to illuminate

passive markers, as infrared light is absorbed in water. The strobe light from the Miqus

M5U appears blue to the naked eye. Currently, Qualisys underwater markers are passive

and do not include active marker devices for underwater use.

1.2 Thesis Objectives

 The aim of this thesis is to analyze underwater OMC using Qualisys Miqus M5U MoCap

cameras with passive markers. This research addresses the aforementioned limitations,

such as the lack of an underwater MoCap dataset and the need for automatic MoCap solving

approaches, in order to streamline the time-consuming manual cleaning process.

 The proposed algorithms are versatile and applicable to OMC systems using passive or

active markers, making them suitable for a wide range of actions. In this thesis, we apply

11

them in one of the most challenging scenarios of underwater sparse freestyle MoCap using

passive markers, which, to the best of our knowledge, has not been studied before.

1.3 System Overview

 In this section, we will first introduce the captured data. Following that, we will describe

the thesis chapters, which encompass our developed algorithms and contributions.

1.3.1 Capturing Underwater MoCap Data

 We captured underwater MoCap data using seven Qualisys Miqus M5U underwater

MoCap cameras installed at different locations around a four-meter-deep, 18 metre by 14

meter pool at the Memorial University Marine Institute Offshore Safety and Survival

Centre. Although the Qualisys sports marker set [175] recommends a minimum of 41

markers, we opted to use only 21 reflective passive markers to explore the challenges

associated with a sparse marker set. Figure 1-2, shows the locations of these markers and

their corresponding label names. After calibration, data were recorded at 100Hz using QTM

software and exported to .c3d files. Our QTM software version is “2022.2 build 7710”.

Figure 1-2: Marker set: Location of 21 passive markers and their labels.

12

1.3.2 Thesis Structure

 This thesis comprises six chapters, presented in manuscript style, with titles listed in

Table 1-1. The details of each chapter will be introduced in the following lines.

Table 1-1: Thesis Structure

Chapters Title

1 Introduction and Overview

2 A Survey on Solving Marker-based Motion Capture Approaches

3 Marker-based Underwater Optical Motion Capture Data Preparation

4 Semi-supervised Geometry-Based Labeling of Sparse Underwater Optical MoCap Data

5 Deep Learning based Auto-Labelling Underwater Sparse Freestyle MoCap Data

6 Conclusion and Future Work

 Chapter 1 presents the background and problem statement of OMC systems, focusing

on underwater OMC. It covers the fundamentals, applications, and challenges faced by

these systems. Furthermore, it introduces the captured data and outlines the thesis structure,

detailing our developed algorithms, innovations, and contributions to the field.

 Chapter 2 conducts a comprehensive literature review on MoCap solving approaches,

which encompasses denoising, recovery, alignment, and auto-labeling approaches.

 Chapter 3 outlines the preparation steps for marker-based underwater OMC systems.

This includes setting up cameras, attaching markers to the subject, calibrating the cameras,

recording the session, creating a marker set, and MoCap manual cleaning process using

QTM software. It also describes features of this software, such as the AIM model

facilitating the manual cleaning process. The cleaned C3D data file produced can serve as

13

ground truth or a training dataset for the deep learning auto-labeling algorithm discussed in

Chapter 5. Additionally, this chapter addresses the challenges of MoCap manual cleaning,

emphasizing the need for automated algorithms to simplify this tedious process.

 Chapter 4 demonstrates a novel semi-supervised geometry based MoCap labeling

algorithm which we developed to streamline the laborious manual cleaning procedure

described in Chapter 3. This system extracts distances and angles from a marker set to

identify valid labels and applies an innovative extraneous removal algorithm based on the

difference of the norms, along with other denoising and outliers’ removal methods utilizing

norm, velocity, acceleration, and jerk profiles. Additionally, it includes a method for

recovering missing or dropped markers and a pelvis detection algorithm based on Principal

Component Analysis (PCA) [176]. Moreover, side detection is employed to identify

corresponding labels for reappearing markers that result from the use of passive markers.

The evaluation was conducted visually, achieving 100% accuracy in detecting valid

markers despite the presence of outliers, extraneous markers, ghost markers, and missing

or dropped markers due to occlusion. We will explore the use of more ghost markers and

enhance our pelvis detection procedure with automatic side detection.

 Chapter 5 proposes a deep-learning based auto-labeling algorithm that accurately labels

MoCap data utilizing Long short-term memory (LSTM) [177], employing Hungarian

analysis [178] for label assignment and Procrustes analysis [179] to assign labels to

unlabeled data in a post-processing step. The cleaned MoCap data generated by the

algorithm described in Chapter 4 serves as both the ground truth and the training dataset.

However, this dataset is insufficiently large to effectively train the deep learning network.

To tackle the challenge posed by a limited training dataset, two distinct strategies are

14

employed. The first approach involves data augmentation, which enhances the existing

cleaned dataset by introducing random noise and gaps. The second strategy involves

generating simulated trajectories, which are then combined with real data using transfer

learning [180]. These synthetic datasets are produced utilizing a marker set that is

developed with the OpenSim software [181], a tool designed for modeling musculoskeletal

structures and simulating dynamic movements. The core algorithm in Chapter 5 builds

upon the source code from [67], with several key enhancements. Notably, we replace their

manual data alignment method with a PCA-based pelvis detection technique introduced in

Chapter 4. Clouthier et al. [67] also faced accuracy issues due to extraneous markers; we

resolve this by implementing the extraneous marker removal algorithm from Chapter 4,

boosting our accuracy from 66% to 98%. Additionally, we streamline the input for the

LSTM model from five to three data points, using only the 3D relative positions of markers

instead of including velocity and acceleration.

 Chapter 6 summarizes the findings of the thesis and proposes avenues for future research

expansion. Upcoming work will involve collecting more underwater MoCap data to assess

our algorithm’s performance in different underwater actions and noises. The feasibility of

adding ghost markers near valid markers will also be evaluated. There are also plans to

conduct freestyle underwater action recognition using labeled data, as well as exploring a

more robust solution for body side detection within a subset of pelvis detection.

1.4 Thesis Contributions’ Summary

 In summary, this thesis outlines the following technical contributions:

15

1. The first cleaned and labelled underwater freestyle swimming MoCap datasets

using Qualisys QTM software and an AIM model;

2. A characterization of the challenges of utilizing a sparse MoCap Dataset, a topic

rarely explored in previous research;

3. A comprehensive literature review on MoCap solving approaches;

4. A semi-supervised geometry-based labeling algorithm, incorporating an innovative

norm-based denoising method that considers velocity, acceleration, and jerk

profiles;

5. An innovative extraneous removal algorithm based on the difference of the norms;

6. A novel pelvis detection technique using PCA, implemented along with a method

to recover dropped markers; and

7. An auto-labeling algorithm based on LSTM, the Hungarian label assignment, and

Procrustes alignment, incorporating a geometry-based method for initial alignment,

ground truth and training set creation, and an enhancement of the accuracy of the

results.

1.5 Co-authorship Statement

 I am the principal author of all manuscripts presented in this thesis, including the thesis

as a whole. I developed the methods and analyzed the results in all manuscripts, with Dr.

Stephen Czarnuch providing guidance, revisions and conceptualizing the study. The

underwater motion data were captured using seven Qualisys Miqus M5U underwater

cameras installed at different locations around a four-meter-deep, 18-metre by 14-meter

pool at the Memorial University Marine Institute Offshore Safety and Survival Centre.

16

References

[1] M. R. Das and R. R. A, “A Review on Human Motion Capture,” SSRN Electron. J.,

pp. 151–157, 2021, doi: 10.2139/ssrn.3794164.

[2] Proquest, “Global 3D Motion Capture Market,” 2020.

https://www.proquest.com/docview/2347080425/fulltext/CFAA8230641F4C15PQ/

1?accountid=12378&sourcetype=Wire Feeds (accessed Jul. 26, 2024).

[3] M. Menolotto, D. S. Komaris, S. Tedesco, B. O’flynn, and M. Walsh, “Motion

capture technology in industrial applications: A systematic review,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1–25, 2020, doi: 10.3390/s20195687.

[4] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” J. Theor.

Appl. Informatics, vol. 12, pp. 61--89, 2005, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7248

[5] J. F. Nunes, P. M. Moreira, and J. M. R. S. Tavares, “Human motion analysis and

simulation tools: A survey,” Handb. Res. Comput. Simul. Model. Eng., pp. 359–387,

2015, doi: 10.4018/978-1-4666-8823-0.ch012.

[6] M. Kitagawa and B. Windsor, MoCap for Artists Workflow and Techniques for

Motion Capture, no. 0. Elsevier Inc, 2008.

[7] E. Batis and M. Bylund, “Designing a Tool for Assisting in the Setup of Optical

Motion Capture Systems,” 2017.

[8] P. Skurowski and M. Pawlyta, “Detection and Classification of Artifact Distortions

in Optical Motion Capture Sequences,” Sensors, vol. 22, no. 11, pp. 1–29, 2022, doi:

10.3390/s22114076.

17

[9] X. Suo, W. Tang, and Z. Li, “Motion Capture Technology in Sports Scenarios: A

Survey,” Sensors, vol. 24, no. 9, pp. 1–15, 2024, doi: 10.3390/s24092947.

[10] L. Wade, L. Needham, P. McGuigan, and J. Bilzon, “Applications and limitations of

current markerless motion capture methods for clinical gait biomechanics,” PeerJ,

vol. 10, pp. 1–27, 2022, doi: 10.7717/peerj.12995.

[11] N. Giulietti, A. Caputo, P. Chiariotti, and P. Castellini, “SwimmerNET: Underwater

2D Swimmer Pose Estimation Exploiting Fully Convolutional Neural Networks,”

Sensors, vol. 23, no. 4, pp. 1–17, 2023, doi: 10.3390/s23042364.

[12] M. H. Song and R. I. Godøy, “How fast is your body motion? Determining a

sufficient frame rate for an optical motion tracking system using passive markers,”

PLoS One, vol. 11, no. 3, pp. 1–14, 2016, doi: 10.1371/journal.pone.0150993.

[13] S. C. Puthenveetil et al., “Comparison of Marker-Based and Marker-Less Systems

for Low-Cost Human Motion Capture,” vol. 2B:, no. 33rd Computers and

Information in Engineering Conference, 2013, doi:

https://doi.org/10.1115/detc2013-12653.

[14] I. A. Mesquita, P. F. P. da Fonseca, A. R. V. Pinheiro, M. F. P. Velhote Correia, and

C. I. C. da Silva, “Methodological considerations for kinematic analysis of upper

limbs in healthy and poststroke adults Part II: a systematic review of motion capture

systems and kinematic metrics,” Top. Stroke Rehabil., vol. 26, no. 6, pp. 464–472,

2019, doi: 10.1080/10749357.2019.1611221.

[15] G. Giarmatzis et al., “Understanding Post-Stroke Movement by Means of Motion

Capture and Musculoskeletal Modeling: A Scoping Review of Methods and

Practices,” BioMed, vol. 2, no. 4, pp. 409–421, 2022, doi: 10.3390/biomed2040032.

18

[16] I. Takeda, A. Yamada, and H. Onodera, “Artificial Intelligence-Assisted motion

capture for medical applications: a comparative study between markerless and

passive marker motion capture,” Comput. Methods Biomech. Biomed. Engin., vol.

24, no. 8, pp. 864–873, 2021, doi: 10.1080/10255842.2020.1856372.

[17] S. Noiumkar and S. Tirakoat, “Use of optical motion capture in sports science: A

case study of golf swing,” Proc. - 2013 Int. Conf. Informatics Creat. Multimedia,

ICICM 2013, pp. 310–313, 2013, doi: 10.1109/ICICM.2013.58.

[18] E. van der Kruk and M. M. Reijne, “Accuracy of human motion capture systems for

sport applications; state-of-the-art review,” Eur. J. Sport Sci., vol. 18, no. 6, pp. 806–

819, 2018, doi: 10.1080/17461391.2018.1463397.

[19] S. Salisu, N. I. R. Ruhaiyem, T. A. E. Eisa, M. Nasser, F. Saeed, and H. A. Younis,

“Motion Capture Technologies for Ergonomics: A Systematic Literature Review,”

Diagnostics, vol. 13, no. 15, pp. 1–16, 2023, doi: 10.3390/diagnostics13152593.

[20] F. Rybnikár, I. Kaˇcerová, P. Hoˇrejší, and M. Šimon, “Ergonomics Evaluation

Using Motion Capture Technology—Literature Review,” 2023.

[21] N. Rizaldy, F. Ferryanto, A. Sugiharto, and A. I. Mahyuddin, “Evaluation of action

sport camera optical motion capture system for 3D gait analysis,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 1109, no. 1, p. 012024, 2021, doi: 10.1088/1757-

899x/1109/1/012024.

[22] R. M. Kanko, E. K. Laende, E. M. Davis, W. S. Selbie, and K. J. Deluzio,

“Concurrent assessment of gait kinematics using marker-based and markerless

motion capture,” J. Biomech., vol. 127, 2021, doi: 10.1016/j.jbiomech.2021.110665.

[23] O. E. Ramos, N. Mansard, O. Stasse, C. Benazeth, S. Hak, and L. Saab, “Dancing

19

humanoid robots,” IEEE Robot. Autom. Mag., vol. 22, no. 4, pp. 16–26, 2015, doi:

10.1109/MRA.2015.2415048.

[24] I. Maroger, O. Stasse, and B. Watier, “Walking human trajectory models and their

application to humanoid robot locomotion,” IEEE Int. Conf. Intell. Robot. Syst., pp.

3465–3472, 2020, doi: 10.1109/IROS45743.2020.9341118.

[25] K. Miura et al., “Robot motion remix based on motion capture data - Towards

human-like locomotion of humanoid robots,” 9th IEEE-RAS Int. Conf. Humanoid

Robot. HUMANOIDS09, pp. 596–603, 2009, doi: 10.1109/ICHR.2009.5379535.

[26] L. González, J. C. Álvarez, A. M. López, and D. Álvarez, “Metrological evaluation

of human–robot collaborative environments based on optical motion capture

systems†,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113748.

[27] M. Field, D. Stirling, F. Naghdy, and Z. Pan, “Motion capture in robotics review,”

2009 IEEE Int. Conf. Control Autom. ICCA 2009, pp. 1697–1702, 2009, doi:

10.1109/ICCA.2009.5410185.

[28] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body movements for

humanoid robots by observation,” Rob. Auton. Syst., vol. 47, no. 2–3, pp. 93–108,

2004, doi: 10.1016/j.robot.2004.03.004.

[29] G. Nagymáté and R. M. Kiss, “Application of OptiTrack motion capture systems in

human movement analysis,” Recent Innov. Mechatronics, vol. 5, no. 1., pp. 1–9,

1970, doi: 10.17667/riim.2018.1/13.

[30] J. Ramberg, “Method development for capturing drivers posture,” CHALMERS

UNIVERSITY OF TECHNOLOGY, 2016. [Online]. Available:

http://publications.lib.chalmers.se/records/fulltext/238933/238933.pdf

20

[31] B. Lewis, C. J. Nycz, G. S. Fischer, and K. K. Venkatasubramanian, Authentication-

based on biomechanics of finger movements captured using optical motion-capture,

vol. 11241 LNCS. Springer International Publishing, 2018. doi: 10.1007/978-3-030-

03801-4_16.

[32] A. M. Aurand, J. S. Dufour, and W. S. Marras, “Accuracy map of an optical motion

capture system with 42 or 21 cameras in a large measurement volume,” J. Biomech.,

vol. 58, pp. 237–240, 2017, doi: 10.1016/j.jbiomech.2017.05.006.

[33] C. Bregler, “Motion Capture Technology for Entertainment,” Online, no. November,

pp. 156–158, 2007.

[34] T. Baker, “The History of Motion Capture Within The Entertainment Industry,”

Metropolia.fi, pp. 15–20, 2020, [Online]. Available:

https://www.theseus.fi/bitstream/handle/10024/336908/taryn_mocap_thesis.pdf?se

quence=2&isAllowed=y

[35] N. Sadoughi, Y. Liu, and C. Busso, “MSP-Avatar corpus: Motion capture recordings

to study the role of discourse functions in the design of intelligent virtual agents,”

2015 11th IEEE Int. Conf. Work. Autom. Face Gesture Recognition, FG 2015, vol.

2015-Janua, pp. 1–6, 2015, doi: 10.1109/FG.2015.7284885.

[36] M. Y. Zhang, “Application of performance motion capture technology in film and

television performance animation,” Appl. Mech. Mater., vol. 347–350, pp. 2781–

2784, 2013, doi: 10.4028/www.scientific.net/AMM.347-350.2781.

[37] S. Salonen, “MOTION CAPTURE IN 3D ANIMATION,” no. May, 2021.

[38] M. Shields, “The Way of Motion Capture: The Innovations of ‘Avatar.’”

https://filmschoolrejects.com/avatar-the-way-of-water-motion-capture/ (accessed

21

Jul. 01, 2024).

[39] A. Menache, Understanding Motion Capture for Computer Animation (Second

Edition). 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780123814968000032

[40] B. Rosenhahn, K. R., and M. D., Human Motion Understanding, Modelling, Capture

and Animation. 2008.

[41] R. Sengupta, “Was This Motion Captured ?,” 2011.

[42] U. G. Longo et al., “Optical Motion Capture Systems for 3D Kinematic Analysis in

Patients with Shoulder Disorders,” Int. J. Environ. Res. Public Health, vol. 19, no.

19, 2022, doi: 10.3390/ijerph191912033.

[43] A. C. Alarcón-Aldana, M. Callejas-Cuervo, and A. P. L. Bo, “Upper limb physical

rehabilitation using serious videogames and motion capture systems: A systematic

review,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–22, 2020, doi:

10.3390/s20215989.

[44] Z. Yang et al., “A Novel Methodology for Extracting and Evaluating Therapeutic

Movements in Game-Based Motion Capture Rehabilitation Systems,” J. Med. Syst.,

vol. 42, no. 12, 2018, doi: 10.1007/s10916-018-1113-4.

[45] B. Pueo, J. M. Jimenez-olmedo, U. D. A. España, and B. Pueo, “Application of

motion capture technology for sport performance analysis,” vol. 2041, pp. 241–247,

2017.

[46] M. Popescu, D. Mronga, I. Bergonzani, S. Kumar, and F. Kirchner, “Experimental

Investigations into Using Motion Capture State Feedback for Real-Time Control of

a Humanoid Robot,” Sensors, vol. 22, no. 24, pp. 1–12, 2022, doi:

22

10.3390/s22249853.

[47] S. Muench, J. Kreuziger, M. Kaiser, and R. Dillmann, “Robot Programming by

Demonstration ({RPD}) - {U}sing Machine Learning and User Interaction Methods

for the Development of Easy and Comfortable Robot Programming Systems,” Proc.

Intl Symp. Ind. Robot., no. June, pp. 685–693, 1994.

[48] M. Field, Z. Pan, D. Stirling, and F. Naghdy, “Human motion capture sensors and

analysis in robotics,” Ind. Rob., vol. 38, no. 2, pp. 163–171, 2011, doi:

10.1108/01439911111106372.

[49] L. Boutin, A. Eon, S. Zeghloul, and P. Lacouture, “An auto-adaptable algorithm to

generate human-like locomotion for different humanoid robots based on motion

capture data,” IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf. Proc.,

pp. 1256–1261, 2010, doi: 10.1109/IROS.2010.5652230.

[50] G. Hernandez et al., “Machine Learning Techniques for Motion Analysis of Fatigue

from Manual Material Handling Operations Using 3D Motion Capture Data,” 2020

10th Annu. Comput. Commun. Work. Conf. CCWC 2020, pp. 300–305, 2020, doi:

10.1109/CCWC47524.2020.9031222.

[51] F. Asadi and N. Arjmand, “Marker-less versus marker-based driven musculoskeletal

models of the spine during static load-handling activities,” J. Biomech., vol. 112, p.

110043, 2020, doi: 10.1016/j.jbiomech.2020.110043.

[52] M. Loper, N. Mahmoody, and M. J. Blackz, “MoSh: Motion and shape capture from

sparse markers,” ACM Trans. Graph., vol. 33, no. 6, pp. 1–13, 2014, doi:

10.1145/2661229.2661273.

[53] S. Sharma, S. Verma, M. Kumar, and L. Sharma, “Use of Motion Capture in 3D

23

Animation: Motion Capture Systems, Challenges, and Recent Trends,” Proc. Int.

Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives

Prospect. Com. 2019, pp. 289–294, 2019, doi: 10.1109/COMITCon.2019.8862448.

[54] B. Motion, “The C3D File Format A Technical User Guide,” p. 134, 2021.

[55] Qualisys, “What is a trajectory.”

https://www.qualisys.com/my/qacademy/#!/tutorials/what-is-a-trajectory (accessed

Jun. 30, 2024).

[56] Qualisys, “Identifying gaps.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/filling_gaps_in_your_data/id

entifying_gaps.htm?Highlight=fill level (accessed Jul. 03, 2024).

[57] Qualisys, “High-quality passive & active mocap markers,” Qualisys.

https://www.qualisys.com/accessories/markers/ (accessed Jan. 11, 2024).

[58] Qualisys, “Markers.” https://docs.qualisys.com/getting-

started/content/4_what_comes_with_your_system/4_what_comes_with_your_quali

sys_system/markers.htm (accessed Jul. 28, 2024).

[59] N. Ghorbani and M. J. Black, “SOMA: Solving Optical Marker-Based MoCap

Automatically,” Proc. IEEE Int. Conf. Comput. Vis., pp. 11097–11106, 2021, doi:

10.1109/ICCV48922.2021.01093.

[60] E. Ceseracciu, “NEW FRONTIERS OF MARKERLESS MOTION CAPTURE

APPLICATION TO SWIM BIOMECHANICS AND GAIT ANALYSIS,” 2011.

[61] E. Monaco, “Automatic Labelling of 3D Motion Capture Markers using Neural

Networks,” Università degli Studi di Padova Dipartimento, 2022.

[62] P. Skurowski and M. Pawlyta, “On the noise complexity in an optical motion capture

24

facility,” Sensors (Switzerland), vol. 19, no. 20, pp. 1–30, 2019, doi:

10.3390/s19204435.

[63] A. R. Jensenius, K. Nymoen, S. A. Skogstad, and A. Voldsund, “A study of the

noise-level in two infrared marker-based motion capture systems,” Proc. 9th Sound

Music Comput. Conf. SMC 2012, pp. 11–14, 2012.

[64] X. Chen and J. Davis, “Camera Placement Considering Occlusion for Robust Motion

Capture,” Comput. Graph. Lab. Stanford Univ. Tech. Rep, vol. 2, no. 2.2, p. 2, 2000,

[Online]. Available:

http://graphics.stanford.edu/papers/OcclusionMetric/occlusion_metric.pdf

[65] Qualisys, “Before calibrating.” https://docs.qualisys.com/getting-

started/content/8_calibration_series/8a_how_to_calibrate/before_calibrating.htm?

Highlight=phantom (accessed Jul. 29, 2024).

[66] S. Alexanderson, C. O’Sullivan, and J. Beskow, “Real-time labeling of non-rigid

motion capture marker sets,” Comput. Graph., vol. 69, pp. 59–67, 2017, doi:

10.1016/j.cag.2017.10.001.

[67] A. L. Clouthier, G. B. Ross, M. P. Mavor, I. Coll, A. Boyle, and R. B. Graham,

“Development and Validation of a Deep Learning Algorithm and Open-Source

Platform for the Automatic Labelling of Motion Capture Markers,” IEEE Access,

vol. 9, pp. 36444–36454, 2021, doi: 10.1109/ACCESS.2021.3062748.

[68] M. Perepichka, D. Holden, S. P. Mudur, and T. Popa, “Robust marker trajectory

repair for MOCAP using kinematic reference,” Proc. - MIG 2019 ACM Conf.

Motion, Interact. Games, 2019, doi: 10.1145/3359566.3360060.

[69] P. Acevedo, B. Rekabdar, and C. Mousas, “Optimizing retroreflective marker set for

25

motion capturing props,” Comput. Graph., vol. 115, pp. 181–190, 2023, doi:

10.1016/j.cag.2023.07.021.

[70] P. Skurowski and M. Pawlyta, “Gap reconstruction in optical motion capture

sequences using neural networks,” Sensors, vol. 21, no. 18, pp. 1–26, 2021, doi:

10.3390/s21186115.

[71] G. Ascenso, “Development of a non-invasive motion capture system for swimming

biomechanics,” 2021.

[72] M. Schröder, J. Maycock, and M. Botsch, “Reduced marker layouts for optical

motion capture of hands,” Proc. 8th ACM SIGGRAPH Conf. Motion Games, MIG

2015, no. October, pp. 7–16, 2015, doi: 10.1145/2822013.2822026.

[73] G. Liu, J. Zhang, W. Wang, and L. McMillan, “Human motion estimation from a

reduced marker set,” Proc. Symp. Interact. 3D Graph., vol. 2006, no. March, pp. 35–

42, 2006, doi: 10.1145/1111411.1111418.

[74] S. Washino, D. L. Mayfield, G. A. Lichtwark, H. Mankyu, and Y. Yoshitake,

“Swimming performance is reduced by reflective markers intended for the analysis

of swimming kinematics,” J. Biomech., vol. 91, pp. 109–113, 2019, doi:

10.1016/j.jbiomech.2019.05.017.

[75] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham, “3D pose from motion for

cross-view action recognition via non-linear circulant temporal encoding,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2601–2608, 2014, doi:

10.1109/CVPR.2014.333.

[76] G. Hernandez, “USING DEEP LEARNING FOR MOTION ANALYSIS OF 3D

MOTION CAPTURE DATA FOR FORECASTING MOTION AND FATIGUE,”

26

Texas State University, 2021.

[77] V. Joukov, J. F. S. Lin, K. Westermann, and D. Kulić, “Real-Time Unlabeled Marker

Pose Estimation via Constrained Extended Kalman Filter,” Springer Proc. Adv.

Robot., vol. 11, pp. 762–771, 2020, doi: 10.1007/978-3-030-33950-0_65.

[78] K. Chen, Y. Wang, S. H. Zhang, S. Z. Xu, W. Zhang, and S. M. Hu, “MoCap-solver:

A neural solver for optical motion capture data,” ACM Trans. Graph., vol. 40, no. 4,

2021, doi: 10.1145/3450626.3459681.

[79] D. Holden, “Robust solving of optical motion capture data by denoising,” ACM

Trans. Graph., vol. 37, no. 4, pp. 1–12, 2018, doi: 10.1145/3197517.3201302.

[80] X. Pan et al., “A Locality-based Neural Solver for Optical Motion Capture,” 2023,

doi: 10.1145/3610548.3618148.

[81] G. Albanis, N. Zioulis, S. Thermos, A. Chatzitofis, and K. Kolomvatsos, “Noise-in,

Bias-out: Balanced and Real-time MoCap Solving,” 2023, [Online]. Available:

http://arxiv.org/abs/2309.14330

[82] J. Tang, L. Li, J. Hou, H. Xin, and X. Yu, “A Divide-and-conquer Solution to 3D

Human Motion Estimation from Raw MoCap Data,” Proc. - 2023 IEEE Conf.

Virtual Real. 3D User Interfaces Abstr. Work. VRW 2023, pp. 767–768, 2023, doi:

10.1109/VRW58643.2023.00226.

[83] U. Mall, G. R. Lal, S. Chaudhuri, and P. Chaudhuri, “A Deep Recurrent Framework

for Cleaning Motion Capture Data,” no. Figure 1, 2017, [Online]. Available:

http://arxiv.org/abs/1712.03380

[84] E. Martini, S. Member, A. Calanca, and N. Bombieri, “Denoising and Completion

Filters for Human Motion Software : a Survey with Code,” pp. 0–14, 2023, doi:

27

10.36227/techrxiv.22956482.v1.

[85] H. Yasin, S. Ghani, and B. Kruger, “An Effective and Efficient Approach for 3D

Recovery of Human Motion Capture Data,” Sensors, vol. 23, p. 3664, 2023, doi:

10.3390/s23073664.

[86] S. Ghorbani, A. Etemad, and N. F. Troje, Auto-labelling of Markers in Optical

Motion Capture by Permutation Learning, vol. 11542 LNCS. Springer International

Publishing, 2019. doi: 10.1007/978-3-030-22514-8_14.

[87] S. Xia, L. Su, X. Fei, and H. Wang, “Toward accurate real-time marker labeling for

live optical motion capture,” Vis. Comput., vol. 33, no. 6–8, pp. 993–1003, 2017,

doi: 10.1007/s00371-017-1400-y.

[88] Biomechanical-toolkit.github.io, “Mokka,” Biomechanical-toolkit.github.io.

https://biomechanical-toolkit.github.io/mokka/ (accessed Jan. 06, 2024).

[89] Qualisys, “Qualisys Track Manager,” Qualisys, 2011.

https://www.qualisys.com/software/qualisys-track-manager/ (accessed Dec. 10,

2023).

[90] Vicon, “Vicon,” Vicon. https://www.vicon.com/ (accessed Dec. 10, 2023).

[91] Qualisys, “Using AIM models.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/using_aim_models/using_aim

_models.htm (accessed Aug. 01, 2024).

[92] Vicon, “Automated labeling,” Vicon.

https://documentation.vicon.com/nexus/v2.0/desktop/NexusWsN/Labeling/Automa

ted_labeling.htm (accessed Jul. 06, 2024).

[93] A. Aristidou, J. Cameron, and J. Lasenby, “Real-time estimation of missing markers

28

in human motion capture,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008,

pp. 1343–1346, 2008, doi: 10.1109/ICBBE.2008.665.

[94] S. Rajko and G. Qian, “Real-time automatic kinematic model building for optical

motion capture using a markov random field,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4796 LNCS, pp.

69–78, 2007, doi: 10.1007/978-3-540-75773-3_8.

[95] M. Ringer and J. Lasenby, “A procedure for automatically estimating model

parameters in optical motion capture,” Image Vis. Comput., vol. 22, no. 10 SPEC.

ISS., pp. 843–850, 2004, doi: 10.1016/j.imavis.2004.02.011.

[96] J. Meyer, M. Kuderer, J. Muller, and W. Burgard, “Online marker labeling for fully

automatic skeleton Tracking in optical motion capture,” Proc. - IEEE Int. Conf.

Robot. Autom., no. May 2014, pp. 5652–5657, 2014, doi:

10.1109/ICRA.2014.6907690.

[97] G. Fiche, V. Sevestre, C. Gonzalez-Barral, S. Leglaive, and R. Séguier, “SwimXYZ:

A large-scale dataset of synthetic swimming motions and videos,” Proc. - MIG 2023

16th ACM SIGGRAPH Conf. Motion, Interact. Games, vol. 2030, pp. 1–10, 2023,

doi: 10.1145/3623264.3624440.

[98] J. Lin et al., “Motion-X: A Large-scale 3D Expressive Whole-body Human Motion

Dataset,” Adv. Neural Inf. Process. Syst., vol. 36, no. NeurIPS, pp. 1–26, 2023.

[99] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. Black, “AMASS:

Archive of motion capture as surface shapes,” Proc. IEEE Int. Conf. Comput. Vis.,

vol. 2019-Octob, pp. 5441–5450, 2019, doi: 10.1109/ICCV.2019.00554.

[100] Qualisys, “Swimming,” Qualisys. https://www.qualisys.com/life-

29

sciences/swimming/ (accessed Nov. 27, 2023).

[101] A. P. Silvatti, P. Cerveri, T. Telles, F. A. S. Dias, G. Baroni, and R. M. L. Barros,

“Quantitative underwater 3D motion analysis using submerged video cameras:

Accuracy analysis and trajectory reconstruction,” Comput. Methods Biomech.

Biomed. Engin., vol. 16, no. 11, pp. 1240–1248, 2013, doi:

10.1080/10255842.2012.664637.

[102] F. A. Magalhaes, Z. Sawacha, R. Di Michele, M. Cortesi, G. Gatta, and S. Fantozzi,

“Effectiveness of an automatic tracking software in underwater motion analysis,” J.

Sport. Sci. Med., vol. 12, no. 4, pp. 660–667, 2013.

[103] Y. Bernal et al., “Development of underwater motion capture system for space suit

mobility assessment,” Proc. Hum. Factors Ergon. Soc., vol. 2017-Octob, pp. 945–

949, 2017, doi: 10.1177/1541931213601718.

[104] C. Long et al., “Lower Limb Muscle Activation in Young Adults Walking in Water

and on Land,” Appl. Sci., vol. 14, no. 12, p. 5044, 2024, doi: 10.3390/app14125044.

[105] C. Long, “Comparing Lower-Limb Muscle Activity During Gait Performed in Water

Versus on Land by,” UTAH STATE UNIVERSITY, 2023.

[106] B. Worley, “Acute Effects of Multi-Joint Eccentric Exercise on Lower Extremity

Muscle Activation Measured During Land and Water Walking,” UTAH STATE

UNIVERSITY, 2024.

[107] B. H. Olstad, C. Zinner, J. R. Vaz, J. M. H. Cabri, and P. L. Kjendlie, “Muscle

activation in world-champion, world-class, and national breaststroke swimmers,”

Int. J. Sports Physiol. Perform., vol. 12, no. 4, pp. 538–547, 2017, doi:

10.1123/ijspp.2015-0703.

30

[108] B. H. Olstad, J. R. Vaz, C. Zinner, J. M. H. Cabri, and P. L. Kjendlie, “Muscle

coordination, activation and kinematics of world-class and elite breaststroke

swimmers during submaximal and maximal efforts,” J. Sports Sci., vol. 35, no. 11,

pp. 1107–1117, 2017, doi: 10.1080/02640414.2016.1211306.

[109] B. H. Olstad, “A new approach for identifying phases of the breaststroke wave kick

and calculation of feet slip using 3D automatic motion tracking,” BMS Proc., pp.

195–199, 2014.

[110] M. Nakashima, R. Kanie, T. Shimana, Y. Matsuda, and Y. Kubo, “Development of

a comprehensive method for musculoskeletal simulation in swimming using motion

capture data,” Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., vol. 237, no. 2,

pp. 85–95, 2023, doi: 10.1177/1754337119838395.

[111] H. Suito, N. Tsujimoto, H. Shinkai, S. Sano, H. Nunome, and Y. Ikegami, “the Effect

of Fatigue on the Underwater Arm Stroke Motion in the 100 M Front Crawl,” J.

Biomech., vol. 40, no. December, p. S772, 2007, doi: 10.1016/s0021-

9290(07)70760-1.

[112] J. Yang, T. Li, Z. Chen, and X. Li, “Research on the Method of Underwater

Swimming Motion Capture,” J. Phys. Conf. Ser., vol. 1982, no. 1, pp. 1–4, 2021,

doi: 10.1088/1742-6596/1982/1/012075.

[113] C. Connaboy, S. Coleman, G. Moir, and R. Sanders, “Measures of reliability in the

kinematics of maximal undulatory underwater swimming,” Med. Sci. Sports Exerc.,

vol. 42, no. 4, pp. 762–770, 2010, doi: 10.1249/MSS.0b013e3181badc68.

[114] S. Veiga, J. Lorenzo, A. Trinidad, R. Pla, A. Fallas-Campos, and A. de la Rubia,

“Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic

31

and Synthetic Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 19, 2022,

doi: 10.3390/ijerph191912196.

[115] T. Tanaka, S. Hashizume, T. Sato, and T. Isaka, “Competitive-Level Differences in

Trunk and Foot Kinematics of Underwater Undulatory Swimming,” Int. J. Environ.

Res. Public Health, vol. 19, no. 7, 2022, doi: 10.3390/ijerph19073998.

[116] G. R. D. Bernardina, A. G. P. Andrade, T. Monnet, P. Cerveri, and A. P. Silvatti,

“Simultaneous In-Air and Underwater 3d Kinematic Analysis of Swimmers

Feasibility and Reliability of Action Sport Cameras,” J. Biomech., 2023, doi:

10.2139/ssrn.4529173.

[117] A. F. Panaite, S. Rosca, and R. Sibişanu, “Pose and motion capture technologies,”

MATEC Web Conf., vol. 342, p. 05004, 2021, doi:

10.1051/matecconf/202134205004.

[118] D. P. Born, T. Stöggl, A. Petrov, D. Burkhardt, F. Lüthy, and M. Romann, “Analysis

of Freestyle Swimming Sprint Start Performance After Maximal Strength or Vertical

Jump Training in Competitive Female and Male Junior Swimmers,” J. Strength

Cond. Res., vol. 34, no. 2, pp. 323–331, 2020, doi:

10.1519/JSC.0000000000003390.

[119] P. Chainok et al., “Biomechanical Features of Backstroke to Breaststroke Transition

Techniques in Age-Group Swimmers,” Front. Sport. Act. Living, vol. 4, no. March,

pp. 1–11, 2022, doi: 10.3389/fspor.2022.802967.

[120] J. Ribeiro et al., “Biomechanics, energetics and coordination during extreme

swimming intensity: effect of performance level,” J. Sports Sci., vol. 35, no. 16, pp.

1614–1621, 2017, doi: 10.1080/02640414.2016.1227079.

32

[121] G. R. D. Bernardina, P. Cerveri, R. M. L. Barros, J. C. B. Marins, and A. P. Silvatti,

“Action sport cameras as an instrument to perform a 3D underwater motion

analysis,” PLoS One, vol. 11, no. 8, pp. 1–14, 2016, doi:

10.1371/journal.pone.0160490.

[122] S. L. Raghu, R. T. Conners, C. kwon Kang, D. B. Landrum, and P. N. Whitehead,

“Kinematic analysis of gait in an underwater treadmill using land-based Vicon T 40s

motion capture cameras arranged externally,” J. Biomech., vol. 124, no. June, p.

110553, 2021, doi: 10.1016/j.jbiomech.2021.110553.

[123] S. L. Raghu, C. kwon Kang, P. Whitehead, A. Takeyama, and R. Conners, “Static

accuracy analysis of Vicon T40s motion capture cameras arranged externally for

motion capture in constrained aquatic environments,” J. Biomech., vol. 89, pp. 139–

142, 2019, doi: 10.1016/j.jbiomech.2019.04.029.

[124] K. Abdul Jabbar, S. Kudo, K. W. Goh, and M. R. Goh, “Comparison in three

dimensional gait kinematics between young and older adults on land and in shallow

water,” Gait Posture, vol. 57, no. July 2016, pp. 102–108, 2017, doi:

10.1016/j.gaitpost.2017.05.021.

[125] J. Lauer, A. H. Rouard, and J. P. Vilas-Boas, “Upper limb joint forces and moments

during underwater cyclical movements,” J. Biomech., vol. 49, no. 14, pp. 3355–

3361, 2016, doi: 10.1016/j.jbiomech.2016.08.027.

[126] L. Barbieri, F. Bruno, A. Gallo, M. Muzzupappa, and M. L. Russo, “Design,

prototyping and testing of a modular small-sized underwater robotic arm controlled

through a Master-Slave approach,” Ocean Eng., vol. 158, pp. 253–262, 2018, doi:

10.1016/j.oceaneng.2018.04.032.

33

[127] C. Chung and M. Nakashima, “Swimming humanoid robot ‘SWUMANOID’ as an

experimental platform for research of human swimming,” J. Robot. Mechatronics,

vol. 26, no. 2, pp. 265–266, 2014, doi: 10.20965/jrm.2014.p0265.

[128] M. Nakashima and Y. Tsunoda, “Improvement of crawl stroke for the swimming

humanoid robot to establish an experimental platform for swimming research,”

Procedia Eng., vol. 112, pp. 517–521, 2015, doi: 10.1016/j.proeng.2015.07.235.

[129] M. Nakashima and C. Tsai, “Realization and Swimming Performance of the

Butterfly Stroke by a Swimming Humanoid Robot Department of Systems and

Control Engineering , Department of Mechanical Engineering ,” J. Aero Aqua Bio-

Mechanisms, vol. 6, no. 1, pp. 9–15, 2017.

[130] F. RAZI and M. NAKASHIMA, “Preliminary Study of Backstroke by the

Swimming Humanoid Robot,” Proc. JSME Annu. Conf. Robot. Mechatronics, vol.

2017, no. 0, pp. 2A2-D05, 2017, doi: 10.1299/jsmermd.2017.2a2-d05.

[131] Y. Ishii, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “Development of a

Musculoskeletal Humanoid Robot as a Platform for Biomechanical Research on the

Underwater Dolphin Kick,” IEEE Int. Conf. Intell. Robot. Syst., pp. 3285–3291,

2018, doi: 10.1109/IROS.2018.8593912.

[132] M. Nakashima, T. Koga, and H. Takagi, “Measurement of propulsive forces in

swimming by using a swimming humanoid robot,” Int. Conf. Control. Autom. Syst.,

vol. 2021-Octob, no. Iccas, pp. 1780–1783, 2021, doi:

10.23919/ICCAS52745.2021.9649981.

[133] Y. Ukai and J. Rekimoto, “Swimoid: A swim support system using an underwater

buddy robot,” ACM Int. Conf. Proceeding Ser., pp. 170–177, 2013, doi:

34

10.1145/2459236.2459265.

[134] Y. Ukai and J. Rekimoto, “Swimoid: Interacting with an underwater buddy robot,”

ACM/IEEE Int. Conf. Human-Robot Interact., vol. 2, pp. 243–244, 2013, doi:

10.1109/HRI.2013.6483592.

[135] E. Kelasidi, P. Liljebäck, K. Y. Pettersen, and J. T. Gravdahl, “Biologically Inspired

Swimming Snake Robots: Modeling, Control and Experimental Investigation,” Ieee

Robot. Autom. Mag., vol. XX, no. Xx, p. 1, 2015.

[136] Ecency, “Underwater Motion Capture Technology.” https://ecency.com/hive-

174578/@abhay2695/underwater-motion-capture-technology-06a5c57dd4612

(accessed Jul. 10, 2024).

[137] S. Takahashi and S. Kuriyama, “Animations of Real Swimming via Motion

Reconstruction,” 2011.

[138] Y. Hosokawa, D. Urata, A. Doi, T. Takata, and Y. Abe, “The motion capturing of

female divers under water and the trial production of motion viewers for developing

a virtual diving experience learning system,” Artif. Life Robot., vol. 22, no. 3, pp.

346–356, 2017, doi: 10.1007/s10015-017-0359-0.

[139] C. Losee, “The Bathysphere Motion Capture and Immersive Projection,” THE

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, 2010.

[140] Qualisys, “Cameras for underwater motion capture,” Qualisys.

https://www.qualisys.com/cameras/underwater/ (accessed Jul. 15, 2024).

[141] Qualisys, “Marine vessels & structures.”

https://www.qualisys.com/engineering/marine-vessels-and-structures/ (accessed

Jul. 26, 2024).

35

[142] K. J. Nankervis et al., “Effect of speed and water depth on limb and back kinematics

in Thoroughbred horses walking on a water treadmill,” Vet. J., vol. 300–302, p.

106033, 2023, doi: 10.1016/j.tvjl.2023.106033.

[143] X. Meng, J. Pan, and H. Qin, “Motion capture and retargeting of fish by monocular

camera,” Proc. - 2017 Int. Conf. Cyberworlds, CW 2017 - Coop. with Eurographics

Assoc. Int. Fed. Inf. Process. ACM SIGGRAPH, vol. 2017-Janua, pp. 80–87, 2017,

doi: 10.1109/CW.2017.16.

[144] H. Enshaei, R. Birmingham, and E. Mesbahi, “Identification of Influential

Parameters in a Ship’S Motion Responses: a Route To Monitoring Dynamic

Stability,” Trans. R. Inst. Nav. Archit. Part A Int. J. Marit. Eng., vol. 154, no. A1,

pp. A43–A51, 2012, doi: 10.5750/ijme.v154iA1.874.

[145] Y. Yoshimura, K. Takase, H. Fukui, H. Suzuki, and S. Hirabayashi, “Simulation of

Ship Drift Motion with a Simplified Mathematical Model under the Wind,” J. Japan

Soc. Nav. Archit. Ocean Eng., vol. 31, no. 0, pp. 47–57, 2020, doi:

10.2534/jjasnaoe.31.47.

[146] J. P. Jhan, J. Y. Rau, and C. M. Chou, “Underwater 3D rigid object tracking and 6-

DOF estimation: A case study of giant steel pipe scale model underwater

installation,” Remote Sens., vol. 12, no. 16, pp. 1–14, 2020, doi:

10.3390/RS12162600.

[147] S. Lack, E. Rentzow, and T. Jeinsch, “Control of a small Underwater Vehicle

Manipulator System - a highly automated Pick and Place Experiment *,” no.

February, 2024.

[148] N. Bauschmann, D. A. Duecker, T. L. Alff, R. C. Hochdahl, and R. Seifried,

36

“Towards Full Actuation: Reconfigurable Micro Underwater Robots,” IEEE Int.

Conf. Intell. Robot. Syst., pp. 6192–6199, 2023, doi:

10.1109/IROS55552.2023.10341621.

[149] O. Tortorici, C. Péraud, C. Anthierens, and V. Hugel, “Automated Deployment of

an Underwater Tether Equipped with a Compliant Buoy–Ballast System for

Remotely Operated Vehicle Intervention,” J. Mar. Sci. Eng., vol. 12, no. 2, 2024,

doi: 10.3390/jmse12020279.

[150] J. K. Colling, S. J. Kang, E. Dehdashti, S. Husain, H. Masoud, and G. G. Parker,

“Free-Decay Heave Motion of a Spherical Buoy,” Fluids, vol. 7, no. 6, 2022, doi:

10.3390/fluids7060188.

[151] I. M. Thompson, J. Banks, D. Hudson, and M. Warner, “Assessment of error levels

across the domain of a three dimensional underwater motion capture methodology,”

40th Int. Soc. Biomech. Sport. Conf., pp. 703–706, 2022.

[152] T. Monnet, M. Samson, A. Bernard, L. David, and P. Lacouture, “Measurement of

three-dimensional hand kinematics during swimming with a motion capture system:

A feasibility study,” Sport. Eng., vol. 17, no. 3, pp. 171–181, 2014, doi:

10.1007/s12283-014-0152-4.

[153] C. Kirmizibayrak, J. Honorio, X. Jiang, R. Mark, and J. K. Hahn, “Digital Analysis

and Visualization of Swimming Motion,” Int. J. Virtual Real., vol. 10, no. 3, pp. 9–

16, 2011, doi: 10.20870/ijvr.2011.10.3.2817.

[154] A. Marouchos, M. Sherlock, and J. Cordell, “Challenges in underwater image

capture,” Ocean. 2018 MTS/IEEE Charleston, Ocean 2018, pp. 0–4, 2019, doi:

10.1109/OCEANS.2018.8604647.

37

[155] E. Ceseracciu et al., “Markerless analysis of front crawl swimming,” J. Biomech.,

vol. 44, no. 12, pp. 2236–2242, 2011, doi: 10.1016/j.jbiomech.2011.06.003.

[156] S. Ceccon et al., “Motion analysis of front crawl swimming applying CAST

technique by means of automatic tracking,” J. Sports Sci., vol. 31, no. 3, pp. 276–

287, 2013, doi: 10.1080/02640414.2012.729134.

[157] M. A. Hidayat Yani, S. Bayu Aji, I. F. Ariyanti, S. Sukaridhoto, M. A. Zainuddin,

and A. Basuki, “Implementation of Motion Capture System for Swimmer Athlete

Monitoring,” IES 2019 - Int. Electron. Symp. Role Techno-Intelligence Creat. an

Open Energy Syst. Towar. Energy Democr. Proc., pp. 400–405, 2019, doi:

10.1109/ELECSYM.2019.8901554.

[158] N. J. Cronin, T. Rantalainen, J. P. Ahtiainen, E. Hynynen, and B. Waller,

“Markerless 2D kinematic analysis of underwater running: A deep learning

approach,” J. Biomech., vol. 87, pp. 75–82, 2019, doi:

10.1016/j.jbiomech.2019.02.021.

[159] Y. H. Kwon and J. B. Casebolt, “Effects of light refraction on the accuracy of camera

calibration and reconstruction in underwater motion analysis,” Sport. Biomech., vol.

5, no. 2, pp. 315–340, 2006, doi: 10.1080/14763140608522881.

[160] Z. Zhu, X. Li, Z. Wang, L. He, B. He, and S. Xia, “Development and research of a

multi-medium motion capture system for underwater intelligent agents,” Appl. Sci.,

vol. 10, no. 18, 2020, doi: 10.3390/APP10186237.

[161] K. Hu, C. Weng, Y. Zhang, J. Jin, and Q. Xia, “An Overview of Underwater Vision

Enhancement: From Traditional Methods to Recent Deep Learning,” J. Mar. Sci.

Eng., vol. 10, no. 2, 2022, doi: 10.3390/jmse10020241.

38

[162] G. R. D. Bernardina, P. Cerveri, R. M. L. Barros, J. C. B. Marins, and A. P. Silvatti,

“In-air versus underwater comparison of 3D reconstruction accuracy using action

sport cameras,” J. Biomech., vol. 51, pp. 77–82, 2017, doi:

10.1016/j.jbiomech.2016.11.068.

[163] F. Ferryanto, A. I. Mahyuddin, and M. Nakashima, “Markerless Optical Motion

Capture System for Asymmetrical Swimming Stroke,” J. Eng. Technol. Sci., vol. 54,

no. 5, 2022, doi: 10.5614/j.eng.technol.sci.2022.54.5.3.

[164] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL: A

skinned multi-person linear model,” ACM Trans. Graph., vol. 34, no. 6, pp. 1–16,

2015, doi: 10.1145/2816795.2818013.

[165] Qualisys, “Swimming Technique: dual media motion capture,” Qualisys.

https://qfl.qualisys.com/#!/project/swimming-techniques (accessed Dec. 02, 2023).

[166] S. Kudo and M. K. Lee, “Validity of underwater motion capture system for

swimming,” 2009.

[167] Qualisys, “Qualisys launches smallest-ever underwater mocap solution,” 2019.

https://press.qualisys.com/posts/pressreleases/qualisys-launches-smallest-ever-

underwater-mo (accessed Jul. 23, 2024).

[168] Qualisys, “5+, 6+ and 7+ series.” https://www.qualisys.com/cameras/5-6-7/

(accessed Jul. 23, 2024).

[169] Qualisys, “Products tagged ‘oqus.’” https://www.qualisys.com/product-tag/oqus/

(accessed Jul. 23, 2024).

[170] Qualisys, “Introducing the Miqus M5 from Qualisys: Breaking new ground in

motion capture technology,” 2018.

39

https://meltwater.pressify.io/publication/5cc6fcf444c3c10004a9f290/5cb6dab997b

1be1000d4c19a (accessed Jul. 23, 2024).

[171] Qualisys, “Arqus.” https://www.qualisys.com/cameras/arqus/ (accessed Jul. 23,

2024).

[172] G. R. D. Bernardina, R. G. Silva, P. Cerveri, R. M. L. de Barros, and A. P. Silvatti,

“Accuracy of Sport Action Cameras for 3D Underwater Motion Analysis,” ISBS -

Conf. Proc. Arch., pp. 505–508, 2014, [Online]. Available: https://ojs.ub.uni-

konstanz.de/cpa/article/view/5971

[173] Qualisys, “Compare our motion capture cameras.”

https://www.qualisys.com/cameras/ (accessed Jul. 24, 2024).

[174] Qualisys, “Motion capture for underwater measurements.”

https://www.qualisys.com/cameras/underwater/#tech-specs (accessed Jul. 24,

2024).

[175] Qualisys, “Qualisys Sports Marker Set,” Qualisys. https://cdn-

content.qualisys.com/2022/07/Sports-Marker-Set.pdf (accessed Dec. 05, 2023).

[176] Wikipedia, “Principal component analysis.”

https://en.wikipedia.org/wiki/Principal_component_analysis

[177] Wikipedia, “Long short-term memory.” https://en.wikipedia.org/wiki/Long_short-

term_memory (accessed Jul. 29, 2024).

[178] H. W. Kuhn, “The Hungarian method for the assignment problem,” 50 Years Integer

Program. 1958-2008 From Early Years to State-of-the-Art, vol. 2, no. 1, pp. 29–47,

2010, doi: 10.1007/978-3-540-68279-0_2.

[179] S. Chatterjee, “Procrustes Problems,” Technometrics, vol. 47, no. 3, pp. 376–376,

40

2005, doi: 10.1198/tech.2005.s296.

[180] Wikipedia, “Transfer Learning.” https://en.wikipedia.org/wiki/Transfer_learning

[181] SimTK, “OpenSim,” SimTK. https://simtk.org/frs/index.php?group_id=91

(accessed Jan. 05, 2024).

41

2. A Survey on Solving Marker-based Motion Capture

Approaches

Abstract

 This survey article delves deeply into marker-based motion capture (MoCap), a

technology utilized for recording the three-dimensional (3D) movement of objects or

individuals. This technology finds applications in various fields such as virtual reality,

animation, robotics, and biomechanics. It involves affixing markers to the surface of an

object or the skin of a performer, and then tracking their positions in real-time using

cameras. This article aims to provide an overview of various methods and techniques used

to solve marker-based MoCap problems, including cleaning (denoising and recovery),

alignment, and auto-labeling. The discussion revolves around the challenges and

limitations posed by these algorithms, as well as the ongoing research aimed at addressing

these issues. One such endeavor involves creating a natural movement during the gap-

filling procedure. Moreover, other factors affecting MoCap data are studied. These factors

include those that affect 3D reconstruction, leading to occlusion and tracking errors.

Examples of such factors are marker and camera placement constraints, such as marker

visibility, the number of markers used, and the symmetry of the marker set. The article

concludes with potential future directions and developments in marker-based MoCap

technology.

42

2.1 Introduction

 Marker-based optical motion capture (OMC) [1] systems have precisely revolutionized

the field of motion capture (MoCap) and analysis by tracking active or passive markers

attached to the subject’s body [2]. However, MoCap systems are prone to errors due to

many factors, such as poor calibration, noisy environments, and occlusion [3]. Denoising,

recovery, alignment, and auto-labeling are the main pillars of MoCap solving [4].

 Denoising and recovery are commonly encountered problems in MoCap systems.

Although their objectives may differ slightly, the underlying technology used to address

these tasks is often very similar. These problems involve two main tasks: removing noise

from the captured data and reconstructing missing markers. In some articles, a combination

of denoising and recovery is called cleaning [5]. A recent survey studied denoising and

completion filters for 3D skeleton-based human motion analysis from marker-based or

marker-less MoCap systems and their assumptions. We focus on marker-based optical

MoCap approaches not included or extensively discussed in that survey [6].

 Denoising algorithms are designed to eliminate various types of noise [3], such as

outliers, ghost markers, extraneous markers, swapping markers, overlapping markers, and

spikes. These algorithms identify and remove invalid points from captured data, reducing

manual effort to clean the data and enabling accurate motion analysis.

 Recovery algorithms are designed to identify and reconstruct missing marker

trajectories caused by gaps [3], often due to occlusion or self-occlusion, where markers

become obstructed from the cameras’ view. Solutions have been developed to address this

43

issue by filling in these gaps, aiming to create a more natural motion and behavior while

retrieving missing markers. This ensures precise motion analysis for various applications.

 Aligning and maintaining subject direction consistency [7] in MoCap data is crucial for

accurate analysis and interpretation of movement patterns. Subject direction consistency

ensures that the captured movements are correctly attributed to the intended subjects,

preventing errors in data processing and analysis. By addressing these issues, researchers

can enhance the reliability and validity of MoCap studies, leading to more accurate results.

 Auto-labeling methods [8] streamline the tedious task of manually cleaning and labeling

MoCap data. The process includes several stages: data cleaning through denoising and

recovering missing markers, aligning and labeling the data, and possibly post-processing

to correct mislabeled, missing, or unlabeled data.

 The paper is structured as follows: Section 2.2 covers denoising algorithms, Section 2.3

explains recovery methods, Section 2.4 presents aligning approaches, Section 2.5 discusses

auto-labeling methods, and Section 2.6 concludes the article.

2.2 MoCap Data Denoising

 The relevant literature commonly refers to denoising as occlusion gap filling [9]–[11].

They often treat missing values as common noise and attempt to prevent the occurrence of

artifacts by controlling the environment and ensuring precise calibration [12]. We will

address these articles that solely focus on recovering missing markers in the next section.

Some articles address denoising and recovery together, referring to it as cleaning [5], [12],

[13]. In this section, we concentrate on denoising and cleaning techniques aimed at

mitigating various types of noise, including outliers [14], ghost markers [15], extraneous

44

markers [7], swapped markers [16], overlapping markers [17], spikes [18], and jitters [19].

Denoising approaches can be divided into three categories: filter-based algorithms, matrix

low-rank theory algorithms, and data-driven algorithms. Filter-based methods can be

further categorized into three types: low-pass, Kalman, and space-time filters. A recent

systematic review [6] concluded that low-pass and Kalman filters were the most commonly

used. Commercial MoCap software like Qualisys track manager [20] employ low-pass

filters such as Butterworth and moving average filters [21], [22]. However, most articles

on MoCap solving have focused on solutions that account for noise [7], [8] rather than

directly addressing noise removal.

 In [12], incorrect intervals were explicitly identified for further cleaning. They proposed

a marker-wise, skeleton-free method based on two fundamental assumptions: the rigid body

model and the correlation of marker trajectories. Different artifacts were classified into

simple gap, sudden changes (single peak, heavy noise, rectangular distortion), and slow

value change (“Figure 2-1”).

Figure 2-1: [12]: “Figure 2. Identified types of distortions inpainted into exemplary data—the first coordinate of the first

marker (head) of the IM subject.”

45

 We provide a more detailed explanation of this article [12], as it identified only one

study that was similar to theirs [16]. In that study, invalid keyframes were explicitly

identified using a robust method, which subsequently generated new kinematically correct

paths through the application of a neural network (NN). However, this previous research

did not include any identification of the type of distortion present.

 In [12], after detecting and classifying the artifacts, each one was handled using different

methods. They utilized reconstruction methods including Savitzky–Golay filtering (using

a 13th order polynomial over a window of 101 samples), linear interpolation, spline

interpolation, and predictions generated by a NN. Treating sudden changes relied on

derivative analysis, median and Savitzky-Golay low-pass filtering (as predicting models),

respectively, for short-term and long-term distortions, with stats-based thresholding and

mathematical morphology. Slow change detection was based on the hysteresis thresholding

of residuals with backward regrowing of identified segments. They employed neighbour-

based predictors—initially, they assumed a polynomial predictor based on the least squares

method, which they gave up in favor of a feed-forward NN using functional body mesh

representation. The deviation of a trajectory from the prediction was used as a criterion for

classification. The overall efficiency relied on the quality of model predictors, indicated by

the standard deviation (SD) of residuals (e.g., three-sigma rule), which facilitated effective

outlier detection. Additionally, it depended on accurately approximating a marker’s real

location based on its own or neighboring markers’ past, present, or future positions. Using

synthetically distorted sequences (presumed only one distortion at a time), performance of

the approach was comparable to human operators. Companion results were additionally

acquired in the experiment to compare the results obtained to the two generic existing

46

methods of anomaly detection in the time series: three-sigma move, which employs mean

and variance moving, and the Hampel filter, which is based on the moving median and

median absolute deviation, which are more robust measures. Both the three-sigma move

and Hampel filter are methods that consider each coordinate separately, unlike more

sophisticated methods of anomaly detection based on machine learning, such as clustering,

one-class support vector machines, or autoencoders, that can find anomalous frames instead

of inter-marker dependencies. The criteria for evaluation were classification rates,

presented as a confusion matrix, F1-score, and Matthews correlation coefficient. They

assumed the root-mean-square error as the measure of quality. They concluded that

identification of slow change was as difficult as expected. They analyzed alternative

techniques, including simple feedforward and nonlinear autoregressive exogenous NNs,

ridge, lasso, and support vector regression. However, the results were either poor or

impractical (due to long training times), or both. They couldn’t compare the efficiencies to

the other solutions, as their work was the first proposal in this area. The only comparable

method to them [16] was publicly unavailable, and the distortions were not classified.

However, they conducted an indirect comparison of the efficiency of their solution against

that of human operators and industrial software. The proposed solution was less effective

than experienced human operators but significantly outperformed novice operators.

Furthermore, the automatic repairing algorithms available in modern software, such as

Vicon Nexus, have the potential to increase the number of artifacts. Detecting distortions

for all three coordinates of a marker jointly was left for future work.

 Quantifying various types of noise using Allan variance was discussed in [23], including

white noise, random walk, blue noise, and flicker, with significant contribution to the first

47

two and least to violet noise. Environmental long-term correlated noise and periodic

distortion were noted. They suggested Butterworth or Woltring filters to remove white noise

and found longer-term distortion removal, like flicker or random walk, challenging.

 In a study by [24], the author compared moving averages, B-spline smoothing, and the

Kalman filter. The B-spline-based least square method generated high-quality continuous

outputs with minimal parameter adjustments for various motion signals, even in the

presence of outliers or missing data. Moreover, for studies involving the extraction of signal

features such as velocity and acceleration, reliable derivative values can be obtained

through B-spline smoothing. Moreover, they employed low-pass filters to eliminate shaky

movements caused by high-frequency noise. However, the process was offline.

 Kalman and moving average filters are suitable for online applications due to their

localized calculations. However, they may struggle with sudden local spikes. Methods like

the Gaussian low-pass filter and the Kalman filter (optimized for unknown trajectories)

often process each degree of freedom separately, and the filtered output may appear

unnatural due to the lack of spatial-temporal characteristics. A modified k-means algorithm

was claimed to outperform the standard filtering algorithms, such as mean and median, by

completely removing noise with both spike and Gaussian characteristics [18].

 A data-driven approach in [25] utilized multichannel singular spectrum analysis to

eliminate outliers and noise. This technique employed singular value decomposition on the

trajectory matrix derived from time series data to develop space-time filters. It was applied

to the grand lag covariance matrix, which captures spatial-temporal correlations within a

defined window, facilitating the extraction of spatial-temporal patterns. However, post-

processing was required to meet kinematic constraints.

48

 A data-driven method in [26] presented statistical models to classify movements as

natural or unnatural by decomposing the motion into parts based on joint rotations and

linear and angular velocities. A cyclic motion-specific approach in [27] identified male or

female walking, using principle component analysis (PCA) for dimension reduction, and

then fitted sinusoids to the resulting components. On the other hand, [28] provided a multi-

resolution of epitomes as a statistical model of natural motions to choose various timescales

flexibly. Given only positive (natural) training data, the epitomic analysis generated motion

epitomes to compute a degree of naturalness score. Although these methods use kinematics

to detect unnatural intervals, they invalidate all their markers.

 To address this issue, a data-driven approach [29] automatically detected and fixed the

erroneous joint rotations based on the self-similarity of human motion data. The individual

frames or poses weren’t examined because joint angles are relative measures and are

spatially invariant regardless of the global pose, so the absolute marker positions were not

needed. A motion-texture map was defined with temporal joints’ rotation angles as rows

and single pose-frames as columns. Motion words were short sequences of joint

transformations around a motion frame. The outliers and erroneous motions for multiple

performers were detected simultaneously and replaced by similar correct motions by

comparing each motion word with its k-nearest neighbours using dynamic time warping. A

movement digression map indicated unusual movements in time on specific joints.

However, unlike the kinematic level solution presented in [19], this joint level method fails

with more complicated errors such as marker swapping.

 In [16], the benefits of both joint level [29] and kinematic level [19] approaches were

leveraged to detect invalid intervals, such as marker swapping, by looking at poses’

49

differences on a per-joint basis. A NN and a linear blend skinning from a cleaned series of

joint transforms were used reconstruct markers. Preset numbers of frames were removed

before and after a gap until the slope difference between the original and the reference path

was minimized to a preset threshold. Short gaps were filled using polynomial and cubic

Hermite splines with positional and velocity constraints to create a natural filling. The

limitations of this approach include the experimentally selected preset parameters, the loss

of small details, and the introduction of offsets in the marker paths.

 3D human motion search and retrieval techniques were discussed in [30]. They

developed a data-driven method to address corrupted, noisy, or missing markers in MoCap

data. To leverage prior information, they created a knowledge base from an existing clean

MoCap dataset. For efficient searching and retrieval of similar poses, they constructed a

kd-tree and a parallel nearest neighbor search strategy.

 In [31], a data-driven denoising method sparsely selected the most correlated subset of

motion bases for clean motion reconstruction, considering Gaussian noise and outliers.

They divided each human pose into five partitions termed poselets to construct motion

dictionaries. Another approach [32] reconstructed missing markers by using sparse

representation. They proposed a presentation coefficient weighted update algorithm to

mitigate the limited capacity problem of the training set. These approaches’ representations

are coarse; therefore, [14] divided each pose into five parts termed the partlets to obtain a

more fine-grained representation.

 Unlike data-driven approaches, which rely on motion from a large data set, the noisy

low-rank completion methods have the advantage of requiring no training data set to

recover noisy MoCap sequence [33]. The low-rank structural characteristics of the motion

50

data matrix were explored in [9] to complete the missing walking motion data using the

singular value decomposition method. This method is unsuitable for long motion sequences

with different poses.

 In [34], a new robust non-linear matrix factorization method was proposed that is robust

to sparse noise and outliers. They constructed a dictionary for the data space by factoring

in a kernelized feature space. Then, a noisy matrix was decomposed as the sum of a sparse

noise matrix and a clean data matrix in a low-dimensional nonlinear manifold.

 In [10], a method was discussed for denoising MoCap data using filtered subspace

clustering and low-rank matrix approximation. Using a filtered subspace clustering

technique, the noisy MoCap sequence was divided into disjoint piecewise motions. Each

piecewise motion shares a similar low-dimensional subspace representation. The

accelerated proximal gradient algorithm was then utilized to find a complete low-rank

matrix approximation for each noisy piecewise motion. A moving average smoothed the

moving trajectories between the connected motions. Finally, the entire noisy MoCap data

were restored by concatenating all the recovered piecewise motions in sequence. This

method does not require prior knowledge about the structure or auxiliary data sets for

training priors.

 Most of these methods are robust in the presence of different types of noise. However,

the following deep learning-based methods are more robust but sometimes deviate from

the real motion.

 In [5], two deep, bidirectional, recurrent, long short-term memory (LSTM) NNs were

used for real-time cleaning of a wide variety of noise types (in joint angles and positions)

and long gaps with a single trained model. The approach is not noise-specific or action-

51

specific. However, noisy and clean motion pairs and unlabeled action-type examples should

be available in the training set.

 Another online method, with a simpler network and requiring less data, was presented

in [35]. LSTM-based and one-time-window-based models were used to remove position

noise and fill in missing parts of the pose. The approach was validated on synthetically

noisy data which were injected with Gaussian additive noise (similar to [36]) into the input

during training.

 To address different noise types in Kinect data and time-consuming postprocessing

smoothing step in [19], a perceptual-based noise-agnostic 3D skeleton motion data

refinement method was presented in [37] based on a bidirectional recurrent autoencoder.

They improved the refined motion data's kinematic information, bone-length consistency,

and smoothness when the noisy data and target clean data had different topologies, which

was unsolved in their previous work [38]. However, the types of noise weren’t specified,

and the refined motion can still be somewhat noisy due to poor reproduction accuracy.

 Correcting mislabeled markers was addressed as a post-processing step in auto-labeling

approaches. In [39], a sequence of unlabelled (shuffled) 3D trajectories as input was

processed with a data-driven auto-labeling approach by applying permutation learning to

each frame. The resulting labeled frames were concatenated to form trajectories again.

Then, a temporal consistency constraint was used to correct mislabelled markers.

 Recent articles [4], [7], [8], [40], [41] have proposed deep learning-based MoCap

solving methods that address the presence of outliers, ghost markers, and extraneous

markers in MoCap data.

52

 With enough samples, data-driven approaches can automatically learn the time and

space domain and the complexity and diversity in motion sequences. However, they may

need help with unseen motions and obtaining samples for long sequences with multiple

motion semantics.

2.3 MoCap Data Recovery

 Previous work focused on gap filling and reconstruction, sometimes referred to as

denoising tasks, while others considered cleaning [5] as denoising and reconstruction

techniques [6]. Various researchers have focused on different aspects of the problem at

hand. Some have explored the detection of erroneous intervals [12], while others have

concentrated on achieving a natural appearance in reconstruction [26]–[28]. Additionally,

some researchers have investigated sparse representation [31], [32], skeleton-based

methods [42], methods based on low-rank matrix completion [43], truncated singular value

decomposition [9], PCA via truncated nuclear norm regularization [44], truncated nuclear

norm regularization [45], graph-based methods [46], data-driven methods such as kd-tree

recovery [30], and deep learning based methods such as [35]. In [47], a denoising

autoencoder was trained to predict the original uncorrupted skeleton. MoCap solving

methods [4] involve marker tracking, denoising, and reconstruction. This section focuses

exclusively on articles related to reconstruction methods.

 Interpolation is a common method for filling gaps in marker trajectories, employing

techniques like linear or spline interpolation that maintain the spatial-temporal

characteristics of human motion [24], [42]. While effective for short gaps, these methods

struggle with longer sequences due to the high correlation between adjacent trajectories.

53

 In [48], a data-driven marker-based method suitable for large gaps with multiple missing

body parts across different actors and motion styles was proposed. In the preprocessing

step, all MoCap data from the prior database was first normalized with respect to global

position and orientation. In addition, linear marker velocities and accelerations were stored

as a simple optimization scheme without a bone length constraint. Subsequently, similar

examples from the database were retrieved by a spatial indexing structure (kd-tree) based

on the search for nearest neighbours. However, they assumed the same marker set for the

motions in the database and the tested motion to be cleaned. Additionally, it was assumed

that valid markers, which are the set of markers containing reliable positional information,

are provided for each frame of the input motion to be completed.

 In [39], a data-driven auto-labeling approach was proposed. They used a feed-forward

deep residual NN for permutation learning. First, each trajectory was defined as the

sequence of tracked marker locations, which ends with a gap or when the recording stops.

Therefore, in each motion sample, the movement of each marker might be presented in

multiple trajectories over time. They exploited the temporal consistency of each trajectory

to correct the wrong predictions for each marker during the trajectory.

 In [49], a new recovery process was proposed that combined statistical and kinematic

information to address the issues with low-rank matrix completion and sparse coding that

ignored kinematics and used a learned dictionary in a complete feature space. Inspired by

coupled dictionary learning and locally linear embedding, they learned a dictionary of

complete–incomplete training frame pairs, preserving the statistical information. They then

used the kinematic information, including smoothness and bone-length constraints, to

54

recover motions from incomplete frames using sparse representations and a learned

dictionary via two gradient-based optimization models.

 In [50], a Kalman filter-based real-time approach, suitable for long gaps, was proposed.

They combined the prediction algorithm, using previous markers’ positions, with

information from neighbouring markers belonging to the same limb segment, with a rigid

body assumption, to handle the cases that they couldn’t handle in their previous work [51],

where all markers on a limb were occluded, or one or two markers were not visible in a

large gap. Real-time skeleton fitting was done without any pre-defined skeleton model by

estimating the time center of rotation between two marker sets, using the Procrustes method

[52] to calculate the limb orientation relative to a reference frame. However, they still

assumed the presence of rigid limbs with at least three markers placed on each limb.

Another Kalman filter-based approach compared their result with them [53]. In [54], the

unscented Kalman filter was used as an alternative method to the extended Kalman filter

[55] to provide a more accurate estimation of the distribution of the state random variable

through sampling techniques.

 In [56], a data-driven, piecewise linear modeling for long gaps was suggested by

characterizing a k-means clustered hierarchy of low-dimensional local linear models using

PCA to model motion sequences of a training set. Frames of a new sequence were classified

by a random forest classifier into distinct local linear models extracted from the training

set. Random forests involve growing and merging decision trees to form predictive models.

The final prediction was made by voting from all the trees in the forest. The highest rank

was selected to identify each frame's appropriate local linear model. The recovery was done

55

by minimizing the least squared error using marker positions and principal components.

However, the numerical stability was a significant challenge.

 In [57], a locally weighted PCA regression method was proposed to address the issue in

[56] and their previous work [58]. To their knowledge, it was the first least square method

with sparsity constraints. They analyzed 3D skeletal motion data to address the “missing

marker problem” in [59], a marker-based method that used PCA and segment coordination

patterns in multi-limb motion data. This method was improved in [60] to remove noise.

 In [61], a gap reconstruction method was proposed using NN without requiring massive

training sequences to form a predictive model. Instead, they considered each sequence

separately and tried to reconstruct the gaps in individual trajectories based on their own

data. Their assumption was valid if the motion was correlated and most of the sequence

was correct, like other common regression methods, starting with the least squares.

 In [62], they combined low-rank matrix completion of the measured data with a group

sparsity before the marker trajectories were mapped in the frequency domain. Compared to

most existing approaches, the proposed methodology is fully unsupervised and does not

need the user's training data or kinematic information.

2.4 MoCap Data Alignment

 Registering human body scans aligns them with a common template. Alignment of

articulated shapes like human bodies typically uses iterative closest point (ICP) to find

marker correspondences in successive frames [63]–[68]. However, ICP-based methods are

only effective when markers are present and the difference between successive frames is

small. Most body alignment methods focus on aligning a template to different body shapes

56

in a canonical pose [69]. In [70], LED markers were used instead of infrared markers to

align an image with the camera pixel center based on the intensity distribution. Still, this

method is not applicable to marker-based optical passive MoCap data.

 In [71], a real-time online marker labeling algorithm was introduced to address the

challenges of missing and ghost markers by utilizing point correspondence and graph

matching methods, employing a soft graph matching model with the Hungarian algorithm

[72] for finding the global optimal matching.

 In [73], the alignments were regularized using an articulated 3D model of human shape

and pose. Unlike the simple articulated model for initialization [74], [75], they used a richer,

learned body shape model to register many different bodies in different poses accurately.

 In [76], the skeleton tracking was initialized using a T-pose and adjusted by scaling the

person’s size and aligning the skeleton to the subject’s limb. The observed markers were

labeled, and the skeleton configuration was optimized in an expectation-maximization-like

procedure. First, they used the highest marker observation to determine the person's height.

Then, they matched the skeleton and person’s sizes by scaling. They identified specific

points belonging to the legs and arms based on human anatomy and calculated their first

principal axes. The skeleton model was aligned with these axes through least-squares

optimization to establish the initial skeleton configuration. The optimization-based

alignment made the initialization method robust to deviations from the ideal T-pose.

 In [77], a fully automatic optical motion tracking method was introduced using a model-

based inverse kinematics approach. The Hungarian method calculated associations between

model markers and MoCap markers, while occlusions were handled using a posture

interpolation step. In the initialization step, ghost markers were minimized to align models

57

to motion data points, and all valid markers were visible in the first frame. The Euclidean

cluster algorithm in the Point Cloud Library [78] was used in the automatic clustering step

to cluster closely located motion data points. The algorithm worked well if the average

distance between objects was larger than their size. Otherwise, manual correction might be

necessary. This configuration could be saved and loaded for subsequent automated trials.

 In [79], the skeleton was automatically replaced with a 3D body model by solving for

marker locations relative to the body. They estimated the body shape and pose using sparse

marker data without 3D scans. Despite the noisy treatment of non-rigid motions of soft

tissue, they captured them from small marker sets (with 67 markers and missing fine

details) to create a more realistic animation. The shape basis was learned from deformations

of training body shapes using PCA. The pose-dependent component of the model was

learned from a large set of scans, with various poses aligned using the technique in [73].

They optimized body shape and marker placement parameters using Powell’s dogleg

method [80] with Gauss-Newton Hessian approximation.

 In [39], an auto-labeling method was presented using a differentiable permutation

learning model. In preprocessing, the centroid of the marker array was calculated for each

frame and subtracted from marker locations for translation invariance. PCA was used for

orientation invariance by aligning the subject direction with the largest principal component

with the z-axis. Rotations around the z-axis were invariant by aligning the second principal

component with the x-axis. Subject size was normalized by scaling in three spatial

dimensions. For training the model, they used Sinkhorn normalization [81] to convert any

unconstrained non-negative matrix to a design structure matrix.

58

 In [19], a state-of-the-art data-driven skeletal MoCap-solving technique was introduced

that used a forward NN. Before training, as an assumption, the characters’ height was

normalized using a scaling factor computed from T-pose or extracted from MoCap software

during calibration. A local reference frame was found to ensure accurate character

representation in data-driven techniques. This involved using rigid body alignment [63] to

describe the data without prior knowledge of joint transforms. They calculated the mean

location of selected markers around the torso relative to a chosen joint (e.g., spine joints)

to fit a rigid body into the data. This process was repeated for all poses in the dataset,

resulting in a set of reference frames used to transform every pose into the local space. After

training, the rigid body found during the preprocessing step was fitted to the subset of non-

occluded markers to find a local reference frame, and the marker positions were

transformed into it. Then, they fed the NN with these transformed markers to produce the

joint transforms, which were subsequently converted back to the global reference frame.

 MoCap-Solver [4] used separate NNs to produce skeletons to solve motions and

reconstruct clean markers. They discussed that the alignment algorithm in [19] lacked

robustness due to using a rigid-body registration algorithm to align poses in a local

reference frame, and the precision was highly sensitive to corruption in specific markers,

which limited its practical usage. To mitigate excessive dependence on a small number of

key markers and enhance robustness, they normalized markers based on learning a pose-

dependent marker reliability function. They automatically selected the most reliable frame

for alignment and a global orientation. Their algorithm consistently outperformed the

proposed method in [19] on both synthetic and real-world data.

59

 In [13], a locality-based learning method using a graph NN was proposed to clean and

solve labeled MoCap data. To expedite the training process, they aligned markers, similar

to [4], to remove their global transformations by calculating the local coordinate systems

of wrist and waist markers.

 In [11], the first deep unsupervised human body reconstruction technique was

introduced which utilized a denoising autoencoder to estimate missing landmarks and

predict the body surface from a sparse set of landmarks. The impact of global orientation

was addressed by focusing on data normalization. Their previous work [82] subtracted

input landmarks from the mean point to achieve translation invariance. In this article, they

reached a rotation invariant network, without scaling, by aligning all landmarks in the

dataset to a reference set of landmarks using Procrustes analysis to transform landmarks by

computing a rotation matrix and translation vector. Then, they used the aligned data to train

the cascading network as before. Finally, they transformed the estimated surface to its

original orientation at test time.

 In [7], an auto-labeling approach was performed using a LSTM NN in conjunction with

Hungarian label assignment. Initially, the marker coordinates were rotated around the

vertical axis to ensure that the subject faced the positive x-direction at the beginning of the

trial. During the training phase, this rotation process was automatically executed based on

the acromion (shoulders) markers. However, for the test data, the rotation angle was

calculated and input manually. Furthermore, Procrustes analysis was utilized to identify

unlabeled markers by aligning local marker coordinates within the marker set with

measured markers through scaling, rotation, and translation. This alignment process was

60

used to assign labels to body segments that possessed a minimum of three markers, thereby

leaving one or more markers unlabeled.

2.5 MoCap Data Auto-Labelling

 Previously, there have been numerous efforts to automate the cleaning and solving of

MoCap data. Early methods (e.g., moving average filter and low-rank matrix [10], Kalman

smoothing and rank matrix completion [53], unscented Kalman filter and inverse kinematic

[50], automatic kinematic model building based on Markov random field [83], multiple

interacting articulated targets [84], AdaBoost [85], skeleton-based body models [86]–[88],

and inverse kinematic [77]) mainly relied on rules based on empirical parameters and hand-

crafted features. Although these approaches could produce acceptable outcomes for

specific patterns and noise under assumptions and constraints, they consistently faced

difficulties adapting to real-world data with intricate situations.

 Data-driven methods have been employed to address the limitations above by learning

from a large database, such as kd-tree [48], local PCA [56], self-similarity [29], sparse

encoding [31], [15], model averaging [42], graph matching [71] [89], and deep learning-

based approaches [90]–[92].

 Most current research focuses on repairing occluded markers and solving motion. In

[93], based on NNs, a data-driven real-time marker-based was used for finger marker

recovery and tracking. In [94], labeling finger markers while simultaneously detecting

occlusions and false observations (ghost markers) was done. In [16], a robust data-driven

marker trajectory repair was proposed using kinematic reference. They compared their

neural solver with those generated by commercial software. In [11], reconstruction and

61

denoising autoencoder was used to estimate missing landmarks. Then, they used a

cascading network to regress skinned multi-person linear body parameters [95] based on

estimated joint positions using an attention model. However, using the model was

challenging for characters with varying skeleton topologies.

 In [39], an auto-labeling method with no manual initialization was presented using

permutation learning model. For training the model, they used the Adam optimizer, a cross-

entropy loss function, and Sinkhorn normalization to convert any unconstrained non-

negative matrix to a design structure matrix. They added occlusion (missing markers) in

their training data to improve the result. During execution, predicting a single permutation

matrix was framed as a bipartite matching problem. Consequently, the Hungarian algorithm

was applied to the cost matrix to determine the optimal solution. However, they were

limited to a fixed number of markers in a restricted setup, with a subject-specific calibration

stage, a limited range of motions (walk, jog, jump, and sit), and a unique marker set. Due

to requiring high-quality MoCap training data, they faced challenges in their scalability to

new scenarios.

 In [7], an LSTM-based auto-labeling method was introduced in combination with

Hungarian label assignment. Simulation trajectory and transfer learning were utilized to

enhance the training set.

 In [19], a skeletal MoCap solving method based on a forward NN with residual blocks

was proposed. Using linear blend skinning, they used a set of marker configurations to

synthetically reconstruct marker locations in a large skeletal MoCap database (e.g., CMU

[96]). They calculated the mean and SD for joint transformations, marker configurations,

and mean and covariance for marker locations. Pre-weighted local offsets and their mean

62

and SD were also computed to feed into the NN to distinguish characters with different

body proportions or marker placements. Then, the data were corrupted by a custom noise

function to create training data. After training, outliers were eliminated and considered

occlusions to be translation and rotation invariant. The network was fed with transformed

markers to generate joint transforms, which were then converted back to the global

reference frame. A Savitzky-Golay filter was used to remove jittery movements (quickly

appearing or disappearing). Finally, in the retargeting stage, they utilized singular value

decomposition to orthogonalize the rotational parts of joint transforms and extracted the

local joint transformations using a Jacobian inverse kinematics solver.

 Mocap-Solver [4] utilized distinct NNs for motion solving, achieving state-of-the-art

results. However, it faced issues with outliers, occlusions, and complex movements. A

heuristic removal of ghost markers restricted to a single body shape, and depended on high-

quality real MoCap training data, limiting its scalability to new data.

 In [8], an auto-labeling raw MoCap data was proposed using a NN. They removed

outliers and ghost markers without calibration and with minimum user intervention. Unlike

[4], which worked on labeled data and a single body shape and needed to compute the

global orientation of the body, they worked with unlabeled points and dealt with varied

body shapes. The assumption of graph isomorphism between MoCap frames and labels in

Sinkhorn normalization was relaxed to allow for inexact matching between the labels and

points using an optimal transport solution [97]. Due to a lack of real data, they created

extensive simulated noisy training data and ground truth MoCap markers using AMASS

[98]. They used the method proposed in [79] to fit SMPL-X [95] bodies to the labeled data

to find body parameters and accurate marker placement on the body. They used dustbins

63

[99] to deal with missing and ghost markers. The dataset used for model selection and

validation consisted of 215 sequences across four subjects with 40 markers on average.

Their results outperformed prior works [77], [39], [100] under the same conditions.

However, as with any learning-based method, they could not generalize for unseen motions.

 In [13], the limitations of the state-of-the-art data-driven methods (e.g., [4], [19]) were

classified into three problems. First, using skinning functions ignores the complexity of

marker motions, and solving errors may lead to additional errors. Second, they often

overlook the detailed correlations between markers by using a single fully connected

network structure to encode all markers uniformly, leading to incorrect solutions for

specific movements. Third, all methods must assume or model data noise using random

sampling per frame, which overlooks long gaps and intense occlusion, decreasing accuracy.

 To address the above issues, [13] proposed a locality-based learning method using a

graph NN to clean and solve MoCap data and tracking errors. Unlike [4], they accurately

reconstructed occluded markers by hand-crafted and learned intrinsic priors based on

neighbouring markers' distance and a bidirectional LSTM network. Outliers, due to

tracking errors, were detected by acceleration curves and replaced by simple spline

interpolation. The training involved masking to simulate occluded and noisy markers

commonly found in real data. Their alignment was similar to [4]. While the method in [8]

assigned unlabeled markers to specific body parts, their method solved motions with

labeled markers. Additionally, unlike [4] and [19], where the lack of quantification of local

marker features hindered the successful resolution of motions, they extracted local features

by constructing a heterogeneous graph that differentiated markers and joints as distinct

node types, frame-by-frame and improved the accuracy by using graph convolution.

64

 The placement of markers affects motion reconstruction, leading to labeling problems,

unnatural animation, and inaccuracy. Labeling involves interpreting marker set data over

timeframes to reconstruct captured models like humans or objects. This issue is investigated

due to the time-consuming and costly labeling process for larger datasets, requiring

commercial software and licenses (e.g., Qualisys and Vicon software). In [17], an optimal

marker set configuration was proposed to improve the quality of MoCap data affected by

factors like volume shape, motion between frames, ghost points, and self-occlusion of

markers. They used a reversible-jump Markov chain Monte Carlo method to optimize the

data, considering marker and camera placement constraints such as marker visibility,

number of markers, symmetry of the marker set, and marker overlap. Researchers have also

explored the optimal placement of cameras for MoCap systems [17], [68], [101]–[104].

2.6 Conclusion

 We provided a comprehensive overview of various methods employed to tackle

challenges associated with marker-based MoCap solving, including cleaning (denoising

and recovery), alignment, and auto-labeling. While these systems address certain issues,

they remain prone to inaccuracies due to their reliance on training data and limitations of

feature-based methods. Thus, a more general solution applicable to various MoCap actions

is still needed.

65

References

[1] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” J. Theor.

Appl. Informatics, vol. 12, pp. 61--89, 2005, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7248

[2] M. Menolotto, D. S. Komaris, S. Tedesco, B. O’flynn, and M. Walsh, “Motion

capture technology in industrial applications: A systematic review,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1–25, 2020, doi: 10.3390/s20195687.

[3] M. Kitagawa and B. Windsor, MoCap for Artists Workflow and Techniques for

Motion Capture, no. 0. Elsevier Inc, 2008.

[4] K. Chen, Y. Wang, S. H. Zhang, S. Z. Xu, W. Zhang, and S. M. Hu, “MoCap-solver:

A neural solver for optical motion capture data,” ACM Trans. Graph., vol. 40, no. 4,

2021, doi: 10.1145/3450626.3459681.

[5] U. Mall, G. R. Lal, S. Chaudhuri, and P. Chaudhuri, “A Deep Recurrent Framework

for Cleaning Motion Capture Data,” no. Figure 1, 2017, [Online]. Available:

http://arxiv.org/abs/1712.03380

[6] E. Martini, S. Member, A. Calanca, and N. Bombieri, “Denoising and Completion

Filters for Human Motion Software : a Survey with Code,” pp. 0–14, 2023, doi:

10.36227/techrxiv.22956482.v1.

[7] A. L. Clouthier, G. B. Ross, M. P. Mavor, I. Coll, A. Boyle, and R. B. Graham,

“Development and Validation of a Deep Learning Algorithm and Open-Source

Platform for the Automatic Labelling of Motion Capture Markers,” IEEE Access,

vol. 9, pp. 36444–36454, 2021, doi: 10.1109/ACCESS.2021.3062748.

66

[8] N. Ghorbani and M. J. Black, “SOMA: Solving Optical Marker-Based MoCap

Automatically,” Proc. IEEE Int. Conf. Comput. Vis., pp. 11097–11106, 2021, doi:

10.1109/ICCV48922.2021.01093.

[9] R. Lai, P. Yuen, and K. Lee, “Motion capture data completion and denoising by

singular value thresholding,” Proc. Eurographics Assoc., pp. 1–4, 2011, [Online].

Available: http://www.comp.hkbu.edu.hk/~yqlai/images/egfinal.pdf

[10] X. Liu, Y. M. Cheung, S. J. Peng, Z. Cui, B. Zhong, and J. X. Du, “Automatic motion

capture data denoising via filtered subspace clustering and low rank matrix

approximation,” Signal Processing, vol. 105, pp. 350–362, 2014, doi:

10.1016/j.sigpro.2014.06.009.

[11] M. Madadi, H. Bertiche, and S. Escalera, “Deep Unsupervised 3D Human Body

Reconstruction from a Sparse set of Landmarks,” Int. J. Comput. Vis., vol. 129, no.

8, pp. 2499–2512, 2021, doi: 10.1007/s11263-021-01488-2.

[12] P. Skurowski and M. Pawlyta, “Detection and Classification of Artifact Distortions

in Optical Motion Capture Sequences,” Sensors, vol. 22, no. 11, pp. 1–29, 2022, doi:

10.3390/s22114076.

[13] X. Pan et al., “A Locality-based Neural Solver for Optical Motion Capture,” 2023,

doi: 10.1145/3610548.3618148.

[14] Y. Feng et al., “Mining Spatial-Temporal Patterns and Structural Sparsity for Human

Motion Data Denoising,” IEEE Trans. Cybern., vol. 45, no. 12, pp. 2693–2706,

2015, doi: 10.1109/TCYB.2014.2381659.

[15] S. Alexanderson, C. O’Sullivan, and J. Beskow, “Real-time labeling of non-rigid

motion capture marker sets,” Comput. Graph., vol. 69, pp. 59–67, 2017, doi:

67

10.1016/j.cag.2017.10.001.

[16] M. Perepichka, D. Holden, S. P. Mudur, and T. Popa, “Robust marker trajectory

repair for MOCAP using kinematic reference,” Proc. - MIG 2019 ACM Conf.

Motion, Interact. Games, 2019, doi: 10.1145/3359566.3360060.

[17] P. Acevedo, B. Rekabdar, and C. Mousas, “Optimizing retroreflective marker set for

motion capturing props,” Comput. Graph., vol. 115, pp. 181–190, 2023, doi:

10.1016/j.cag.2023.07.021.

[18] J. Barca, G. Rumantir, and R. Li, “Noise Filtering of New Motion Capture Markers

Using Modified K-Means,” vol. 96, no. April 2008, pp. 79–98, 2008, doi:

10.1007/978-3-540-76827-2.

[19] D. Holden, “Robust solving of optical motion capture data by denoising,” ACM

Trans. Graph., vol. 37, no. 4, pp. 1–12, 2018, doi: 10.1145/3197517.3201302.

[20] Qualisys, “Qualisys Track Manager,” Qualisys, 2011.

https://www.qualisys.com/software/qualisys-track-manager/ (accessed Dec. 10,

2023).

[21] Qualisys, “Smoothing your data,” Qualisys. https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/smoothing_your_data/smooth

ing_your_data.htm (accessed Jan. 12, 2024).

[22] Qualisys, “Smoothing types,” Qualisys. https://docs.qualisys.com/getting-

started/content/37_trajectory_editor_series/37c_how_to_use_the_trajectory_editor

_-_smoothing/smoothing_types.htm?Highlight=smoothing types (accessed Aug.

11, 2024).

[23] P. Skurowski and M. Pawlyta, “On the noise complexity in an optical motion capture

68

facility,” Sensors (Switzerland), vol. 19, no. 20, pp. 1–30, 2019, doi:

10.3390/s19204435.

[24] M. M. Ardestani and H. Yan, “Noise Reduction in Human Motion-Captured Signals

for Computer Animation based on B-Spline Filtering,” Sensors, vol. 22, no. 12,

2022, doi: 10.3390/s22124629.

[25] H. Lou and J. Chai, “Example-based human motion denoising,” IEEE Trans. Vis.

Comput. Graph., vol. 16, no. 5, pp. 870–879, 2010, doi: 10.1109/TVCG.2010.23.

[26] L. Ren, A. Patrick, A. A. Efros, J. K. Hodgins, and J. M. Rehg, “A data-driven

approach to quantifying natural human motion,” ACM Trans. Graph., vol. 24, no. 3,

pp. 1090–1097, 2005, doi: 10.1145/1073204.1073316.

[27] N. F. Troje, “Decomposing biological motion: A framework for analysis and

synthesis of human gait patterns,” J. Vis., vol. 2, no. 5, pp. 371–387, 2002, doi:

10.1167/2.5.2.

[28] W. Kim and J. M. Rehg, “Detection of unnatural movement using epitomic

analysis,” Proc. - 7th Int. Conf. Mach. Learn. Appl. ICMLA 2008, pp. 271–276,

2008, doi: 10.1109/ICMLA.2008.138.

[29] A. Aristidou, D. Cohen-Or, J. K. Hodgins, and A. Shamir, “Self-similarity analysis

for motion capture cleaning,” Comput. Graph. Forum, vol. 37, no. 2, pp. 297–309,

2018, doi: 10.1111/cgf.13362.

[30] H. Yasin, S. Ghani, and B. Kruger, “An Effective and Efficient Approach for 3D

Recovery of Human Motion Capture Data,” Sensors, vol. 23, p. 3664, 2023, doi:

10.3390/s23073664.

[31] J. Xiao, Y. Feng, M. Ji, X. Yang, J. J. Zhang, and Y. Zhuang, “Sparse motion bases

69

selection for human motion denoising,” Signal Processing, vol. 110, pp. 108–122,

2015, doi: 10.1016/j.sigpro.2014.08.017.

[32] J. Xiao, Y. Feng, and W. Hu, “Predicting missing markers in human motion capture

using l1-sparse representation,” Comput. Animat. Virtual Worlds, vol. 22, no. April,

pp. 221–228, 2011, doi: 10.1002/cav.413.

[33] W. Hu, X. Zhu, T. Wang, Y. Yi, and G. Yu, “Discrete subspace structure constrained

human motion capture data recovery,” Appl. Soft Comput., vol. 129, p. 109617,

2022, doi: 10.1016/j.asoc.2022.109617.

[34] J. Fan, C. Yang, and M. Udell, “Robust non-linear matrix factorization for dictionary

learning, denoising, and clustering,” IEEE Trans. Signal Process., vol. 69, pp. 1755–

1770, 2021, doi: 10.1109/TSP.2021.3062988.

[35] T. Kucherenko, J. Beskow, and H. Kjellström, “A Neural Network Approach to

Missing Marker Reconstruction in Human Motion Capture,” 2018, [Online].

Available: http://arxiv.org/abs/1803.02665

[36] Y. Zhu, “Denoising method of motion capture data based on neural network,” J.

Phys. Conf. Ser., vol. 1650, no. 3, 2020, doi: 10.1088/1742-6596/1650/3/032068.

[37] S. J. Li, H. S. Zhu, L. P. Zheng, and L. Li, “A Perceptual-Based Noise-Agnostic 3D

Skeleton Motion Data Refinement Network,” IEEE Access, vol. 8, pp. 52927–

52940, 2020, doi: 10.1109/ACCESS.2020.2980316.

[38] S. Li, Y. Zhou, H. Zhu, W. Xie, Y. Zhao, and X. Liu, “Bidirectional recurrent

autoencoder for 3D skeleton motion data refinement,” Comput. Graph., vol. 81, pp.

92–103, 2019, doi: 10.1016/j.cag.2019.03.010.

[39] S. Ghorbani, A. Etemad, and N. F. Troje, Auto-labelling of Markers in Optical

70

Motion Capture by Permutation Learning, vol. 11542 LNCS. Springer International

Publishing, 2019. doi: 10.1007/978-3-030-22514-8_14.

[40] G. Albanis, N. Zioulis, S. Thermos, A. Chatzitofis, and K. Kolomvatsos, “Noise-in,

Bias-out: Balanced and Real-time MoCap Solving,” 2023, [Online]. Available:

http://arxiv.org/abs/2309.14330

[41] K. Zhou, Z. Cheng, H. P. H. Shum, F. W. B. Li, and X. Liang, “StgAE: Spatial-

temporal graph auto-encoder for hand motion denoising,” Proc. - 2021 IEEE Int.

Symp. Mix. Augment. Reality, ISMAR 2021, pp. 41–49, 2021, doi:

10.1109/ISMAR52148.2021.00018.

[42] M. Tits, J. Tilmanne, and T. Dutoit, “Robust and automatic motion-capture data

recovery using soft skeleton constraints and model averaging,” PLoS One, vol. 13,

no. 7, pp. 1–21, 2018, doi: 10.1371/journal.pone.0199744.

[43] C. H. Tan, J. Hou, and L. P. Chau, “Human motion capture data recovery using

trajectory-based matrix completion,” Electron. Lett., vol. 49, no. 12, pp. 752–754,

2013, doi: 10.1049/el.2013.0442.

[44] B. Hong, L. Wei, Y. Hu, D. Cai, and X. He, “Online robust principal component

analysis via truncated nuclear norm regularization,” Neurocomputing, vol. 175, no.

PartA, pp. 216–222, 2015, doi: 10.1016/j.neucom.2015.10.052.

[45] W. Hu, Z. Wang, S. Liu, X. Yang, G. Yu, and J. J. Zhang, “Motion Capture Data

Completion via Truncated Nuclear Norm Regularization,” IEEE Signal Process.

Lett., vol. 25, no. 2, pp. 258–262, 2018, doi: 10.1109/LSP.2017.2687044.

[46] W. Yin, H. Yin, D. Kragic, and M. Bjorkman, “Graph-based normalizing flow for

human motion generation and reconstruction,” 2021 30th IEEE Int. Conf. Robot

71

Hum. Interact. Commun. RO-MAN 2021, pp. 641–648, 2021, doi: 10.1109/RO-

MAN50785.2021.9515316.

[47] S. Lohit, R. Anirudh, and P. Turaga, “Recovering trajectories of unmarked joints in

3d human actions using latent space optimization,” Proc. - 2021 IEEE Winter Conf.

Appl. Comput. Vision, WACV 2021, pp. 2341–2350, 2021, doi:

10.1109/WACV48630.2021.00239.

[48] J. Baumann, B. Krüger, A. Zinke, and A. Weber, “Data-driven completion of motion

capture data,” VRIPHYS 2011 - 8th Work. Virtual Real. Interact. Phys. Simulations,

no. January, pp. 111–118, 2011, doi: 10.2312/PE/vriphys/vriphys11/111-118.

[49] G. Xia, H. Sun, G. Zhang, and L. Feng, “Human motion recovery jointly utilizing

statistical and kinematic information,” Inf. Sci. (Ny)., vol. 339, pp. 189–205, 2016,

doi: 10.1016/j.ins.2015.12.041.

[50] A. Aristidou and J. Lasenby, “Real-time marker prediction and CoR estimation in

optical motion capture,” Vis. Comput., vol. 29, no. 1, pp. 7–26, 2013, doi:

10.1007/s00371-011-0671-y.

[51] A. Aristidou, J. Cameron, and J. Lasenby, “Real-time estimation of missing markers

in human motion capture,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008,

pp. 1343–1346, 2008, doi: 10.1109/ICBBE.2008.665.

[52] S. Chatterjee, “Procrustes Problems,” Technometrics, vol. 47, no. 3, pp. 376–376,

2005, doi: 10.1198/tech.2005.s296.

[53] M. Burke and J. Lasenby, “Estimating missing marker positions using low

dimensional Kalman smoothing,” J. Biomech., vol. 49, no. 9, pp. 1854–1858, 2016,

doi: 10.1016/j.jbiomech.2016.04.016.

72

[54] D. Gomes, V. Guimarães, and J. Silva, “A fully-automatic gap filling approach for

motion capture trajectories,” Appl. Sci., vol. 11, no. 21, 2021, doi:

10.3390/app11219847.

[55] K. Dorfmüller-Ulhaas, “Robust Optical User Motion Tracking Using a Kalman

Filter,” 10th ACM Symp. Virtual Real. Softw. Technol., no. May, 2003, [Online].

Available: https://opus.bibliothek.uni-

augsburg.de/opus4/frontdoor/index/index/year/2007/docId/584

[56] G. Liu and L. McMillan, “Estimation of missing markers in human motion capture,”

Vis. Comput., vol. 22, no. 9–11, pp. 721–728, 2006, doi: 10.1007/s00371-006-0080-

9.

[57] H. D. Kieu, H. Yu, Z. Li, and J. J. Zhang, “Locally weighted PCA regression to

recover missing markers in human motion data,” PLoS One, vol. 17, no. 8 August,

pp. 1–13, 2022, doi: 10.1371/journal.pone.0272407.

[58] Z. Li, H. Yu, H. D. Kieu, T. L. Vuong, and J. J. Zhang, “PCA-Based robust motion

data recovery,” IEEE Access, vol. 8, no. 1, pp. 76980–76990, 2020, doi:

10.1109/ACCESS.2020.2989744.

[59] P. A. Federolf, “A novel approach to solve the ‘missing marker problem’ in marker-

based motion analysis that exploits the segment coordination patterns in multi-limb

motion,” PLoS One, vol. 8, no. 10, 2013, doi: 10.1371/journal.pone.0078689.

[60] Ø. Gløersen and P. Federolf, “Predicting missing marker trajectories in human

motion data using marker intercorrelations,” PLoS One, vol. 11, no. 3, 2016, doi:

10.1371/journal.pone.0152616.

[61] P. Skurowski and M. Pawlyta, “Gap reconstruction in optical motion capture

73

sequences using neural networks,” Sensors, vol. 21, no. 18, pp. 1–26, 2021, doi:

10.3390/s21186115.

[62] K. Kamali, A. A. Akbari, C. Desrosiers, A. Akbarzadeh, M. J. D. Otis, and J. C.

Ayena, “Low-rank and sparse recovery of human gait data,” Sensors (Switzerland),

vol. 20, no. 16, pp. 1–13, 2020, doi: 10.3390/s20164525.

[63] T. Theodoridis and J. Kraemer, “A Method for Registration of 3-D Shapes,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256, 1992, doi:

10.1109/34.121791.

[64] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch, and M. Pauly,

“Robust articulated-ICP for real-time hand tracking,” Eurographics Symp. Geom.

Process., vol. 34, no. 5, pp. 101–114, 2015, doi: 10.1111/cgf.12700.

[65] S. Ji, Y. Ren, Z. Ji, X. Liu, and G. Hong, “An improved method for registration of

point cloud,” Optik (Stuttg)., vol. 140, pp. 451–458, 2017, doi:

10.1016/j.ijleo.2017.01.041.

[66] Y. Sahillioğlu and L. Kavan, “Scale-Adaptive ICP,” Graph. Models, vol. 116, no.

May, 2021, doi: 10.1016/j.gmod.2021.101113.

[67] R. Marin, S. Melzi, E. Rodolà, and U. Castellani, “FARM: Functional Automatic

Registration Method for 3D Human Bodies,” Comput. Graph. Forum, vol. 39, no.

1, pp. 160–173, 2020, doi: 10.1111/cgf.13751.

[68] A. Chatzitofis, D. Zarpalas, P. Daras, and S. Kollias, “DeMoCap : Low-Cost

Marker-Based Motion Capture,” pp. 3338–3366, 2021, doi: 10.1007/s11263-021-

01526-z.

[69] D. A. Hirshberg et al., “Evaluating the Automated Alignment of 3D Human Body

74

Scans,” no. October, pp. 76–86, 2011, doi: 10.15221/11.076.

[70] I. Stancic, T. G. Supuk, and A. Panjkota, “Design, development and evaluation of

optical motion-tracking system based on active white light markers,” IET Sci. Meas.

Technol., vol. 7, no. 4, pp. 206–214, 2013, doi: 10.1049/iet-smt.2012.0157.

[71] S. Xia, L. Su, X. Fei, and H. Wang, “Toward accurate real-time marker labeling for

live optical motion capture,” Vis. Comput., vol. 33, no. 6–8, pp. 993–1003, 2017,

doi: 10.1007/s00371-017-1400-y.

[72] H. W. Kuhn, “The Hungarian method for the assignment problem,” 50 Years Integer

Program. 1958-2008 From Early Years to State-of-the-Art, vol. 2, no. 1, pp. 29–47,

2010, doi: 10.1007/978-3-540-68279-0_2.

[73] D. A. Hirshberg, M. Loper, E. Rachlin, and M. J. Black, “Coregistration:

Simultaneous alignment and modeling of articulated 3D shape,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

vol. 7577 LNCS, no. PART 6, pp. 242–255, 2012, doi: 10.1007/978-3-642-33783-

3_18.

[74] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H. P. Seidel, “A statistical model

of human pose and body shape,” Comput. Graph. Forum, vol. 28, no. 2, pp. 337–

346, 2009, doi: 10.1111/j.1467-8659.2009.01373.x.

[75] S. Wuhrer, C. Shu, and P. Xi, “Landmark-free posture invariant human shape

correspondence,” Vis. Comput., vol. 27, no. 9, pp. 843–852, 2011, doi:

10.1007/s00371-011-0557-z.

[76] J. Meyer, M. Kuderer, J. Muller, and W. Burgard, “Online marker labeling for fully

automatic skeleton Tracking in optical motion capture,” Proc. - IEEE Int. Conf.

75

Robot. Autom., no. May 2014, pp. 5652–5657, 2014, doi:

10.1109/ICRA.2014.6907690.

[77] J. Maycock, T. Röhlig, M. Schröder, M. Botsch, and H. Ritter, “Fully automatic

optical motion tracking using an inverse kinematics approach,” IEEE-RAS Int. Conf.

Humanoid Robot., vol. 2015-Decem, pp. 461–466, 2015, doi:

10.1109/HUMANOIDS.2015.7363590.

[78] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” Robot. Autom.

(ICRA), 2011 IEEE Int. Conf., pp. 1–4, 2011, doi: 10.1073/pnas.74.3.1167.

[79] M. Loper, N. Mahmoody, and M. J. Blackz, “MoSh: Motion and shape capture from

sparse markers,” ACM Trans. Graph., vol. 33, no. 6, pp. 1–13, 2014, doi:

10.1145/2661229.2661273.

[80] K. Robinson and S. Gatehouse, (book)Numerical Optimization(2rd), vol. 17, no. 2.

2006.

[81] R. P. Adams and R. S. Zemel, “Ranking via Sinkhorn Propagation,” pp. 1–12, 2011,

[Online]. Available: http://arxiv.org/abs/1106.1925

[82] M. Madadi, H. Bertiche, and S. Escalera, “SMPLR : Deep SMPL reverse for 3D

human pose and shape recovery,” arXiv:1812.10766v2, 2019.

[83] S. Rajko and G. Qian, “Real-time automatic kinematic model building for optical

motion capture using a markov random field,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4796 LNCS, pp.

69–78, 2007, doi: 10.1007/978-3-540-75773-3_8.

[84] Q. Yu, Q. Li, and Z. Deng, “Online motion capture marker labeling for multiple

interacting articulated targets,” Comput. Graph. Forum, vol. 26, no. 3, pp. 477–483,

76

2007, doi: 10.1111/j.1467-8659.2007.01070.x.

[85] J. L. Jiménez Bascones, M. Graña, and J. M. Lopez-Guede, “Robust labeling of

human motion markers in the presence of occlusions,” Neurocomputing, vol. 353,

pp. 96–105, 2019, doi: 10.1016/j.neucom.2018.05.132.

[86] M. Ringer and J. Lasenby, “A procedure for automatically estimating model

parameters in optical motion capture,” Image Vis. Comput., vol. 22, no. 10 SPEC.

ISS., pp. 843–850, 2004, doi: 10.1016/j.imavis.2004.02.011.

[87] A. Cuevas, J. Rodriguez-Navarro, and A. Susín, “Auto-labeling as a minimization

problem with virtual occlusions,” 18th Spanish Comput. Graph. Conf. CEIG 2008,

vol. 5, pp. 133–139, 2008.

[88] C. Schönauer, T. Pintaric, and H. Kaufmann, “Full Body Motion Capture A Flexible

Marker-Based Solution,” 2011.

[89] J. Li, D. Xiao, K. Li, and J. Li, “Graph matching for marker labeling and missing

marker reconstruction with bone constraint by LSTM in optical motion capture,”

IEEE Access, vol. 9, pp. 34868–34881, 2021, doi: 10.1109/ACCESS.2021.3060385.

[90] S. Han, B. Liu, R. Wang, Y. Ye, C. D. Twigg, and K. Kin, “Online optical marker-

based hand tracking with deep labels,” ACM Trans. Graph., vol. 37, no. 4, 2018,

doi: 10.1145/3197517.3201399.

[91] J. Bütepage, M. J. Black, D. Kragic, and H. Kjellström, “Deep representation

learning for human motion prediction and classification,” Proc. - 30th IEEE Conf.

Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1591–1599,

2017, doi: 10.1109/CVPR.2017.173.

[92] S. Graßhof, M. Bastholm, and S. S. Brandt, “Neural Network-Based Human Motion

77

Predictor and Smoother,” SN Comput. Sci., vol. 4, no. 6, 2023, doi: 10.1007/s42979-

023-02195-0.

[93] D. Pavllo, T. Porssut, B. Herbelin, and R. Boulic, “Real-Time Marker-Based Finger

Tracking with Neural Networks,” 25th IEEE Conf. Virtual Real. 3D User Interfaces,

VR 2018 - Proc., pp. 651–652, 2018, doi: 10.1109/VR.2018.8446173.

[94] S. Alexanderson, C. O’Sullivan, and J. Beskow, “Robust online motion capture

labeling of finger markers,” Proc. - Motion Games 2016 9th Int. Conf. Motion

Games, MIG 2016, pp. 7–13, 2016, doi: 10.1145/2994258.2994264.

[95] G. Pavlakos et al., “Expressive body capture: 3D hands, face, and body from a single

image,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-

June, pp. 10967–10977, 2019, doi: 10.1109/CVPR.2019.01123.

[96] CMU, “CMU Graphics Lab Motion Capture Database,” CMU.

http://mocap.cs.cmu.edu/ (accessed Dec. 16, 2023).

[97] M. Berger et al., Optimal transport – Old and New. 2009.

[98] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. Black, “AMASS:

Archive of motion capture as surface shapes,” Proc. IEEE Int. Conf. Comput. Vis.,

vol. 2019-Octob, pp. 5441–5450, 2019, doi: 10.1109/ICCV.2019.00554.

[99] P. E. Sarlin, D. Detone, T. Malisiewicz, and A. Rabinovich, “SuperGlue: Learning

Feature Matching with Graph Neural Networks,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., pp. 4937–4946, 2020, doi:

10.1109/CVPR42600.2020.00499.

[100] S. Holzreiter, “Autolabeling 3D tracks using neural networks,” Clin. Biomech., vol.

20, no. 1, pp. 1–8, 2005, doi: 10.1016/j.clinbiomech.2004.04.006.

78

[101] X. Chen and J. Davis, “Camera Placement Considering Occlusion for Robust Motion

Capture,” Comput. Graph. Lab. Stanford Univ. Tech. Rep, vol. 2, no. 2.2, p. 2, 2000,

[Online]. Available:

http://graphics.stanford.edu/papers/OcclusionMetric/occlusion_metric.pdf

[102] P. Rahimian and J. K. Kearney, “Optimal camera placement for motion capture

systems in the presence of dynamic occlusion,” Proc. ACM Symp. Virtual Real.

Softw. Technol. VRST, vol. 13-15-Nove, no. May, pp. 129–138, 2015, doi:

10.1145/2821592.2821596.

[103] P. Rahimian and J. K. Kearney, “Optimal Camera Placement for Motion Capture

Systems,” vol. 23, no. 3, pp. 1209–1221, 2017.

[104] P. Eichelberger et al., “Analysis of accuracy in optical motion capture – A protocol

for laboratory setup evaluation,” J. Biomech., vol. 49, no. 10, pp. 2085–2088, 2016,

doi: 10.1016/j.jbiomech.2016.05.007.

79

3. Marker-based Underwater Optical Motion Capture Data

Preparation

Abstract

 This article presents the steps of motion capture (MoCap) data preparation for marker-

based underwater optical motion capture (OMC) systems, including attaching markers to

the subject, setting up the capturing volume by placing cameras, camera calibration,

recording the session, creating a marker set, and manual cleaning the exported C3D data

by denoising, recovering missing markers, and labeling, which are steps of MoCap solving

process. The cleaned C3D output file can be utilized in various applications, such as ground

truth data for evaluating automatic MoCap solving algorithms or as a training or validation

dataset for machine learning and deep learning algorithms. We utilized the Qualisys Track

Manager (QTM) software to capture MoCap data using Qualisys underwater Miqus M5U

MoCap cameras, the first commercially available OMC cameras for aquatic environments.

We present a manual cleaning procedure for a subset of our raw dataset, called Dataset A.

The cleaned output, Dataset A_cleaned is used to generate a QTM automatic identification

of markers (AIM) model, which is then applied to the raw Dataset A for comparison with

the manual cleaned output. We discuss the challenges of manual cleaning and using the

AIM model, highlighting the need for automated algorithms to streamline this laborious

process. However, manual cleaning and verification of data remains unavoidable.

80

3.1 Introduction

 Marker-based optical motion capture (OMC) [1] systems utilize cameras to measure the

3D locations of reflective markers on the subject’s body. This technology has been applied

in various environments, including underwater settings, where challenges from light

refraction and distortion, among other issues unique to underwater environments, introduce

new challenges [2]. Established commercial tools from MoCap companies such as Qualisys

[3] and Vicon [4] are available to support MoCap with proprietary equipment. These

MoCap systems are designed for data collection, management, and analysis for MoCap

applications [5].

 Qualisys Track Manager (QTM) [6], [7] is the software developed by Qualisys for

motion capture. It is compatible with various Qualisys MoCap cameras [8], including the

Miqus M5U underwater MoCap camera [9], specifically designed for underwater

measurement. It can be used in underwater applications [10], [11], such as in-water

rehabilitation using underwater treadmills [12], underwater animation [13], and swimming

performance analysis [14], as shown in Figure 3-1.

Figure 3-1: In-water rehabilitation and swimming performance.

81

 This article outlines the steps for preparing marker-based underwater OMC data using

7 Qualisys Miqus M5U underwater MoCap cameras and QTM software. The process

includes attaching 21 passive markers to the swimmer suit, camera placement and

calibration, recording data at 100Hz, and manually cleaning the captured raw C3D file.

 The paper is organized as follows. Section 3.2 provides a review of the research utilizing

the Qualisys MoCap system for different underwater applications. Section 3.3 describes

our setup for capturing underwater MoCap data, including reflective marker attachment,

camera placement, calibration, and recording data using QTM software. Section 3.4

describes noise in underwater MoCap data. Section 3.5 introduces MoCap data cleaning

and editing software tools such as commercial software, Mokka software [15],

biomechanical analysis software, and MATLAB and Python C3D libraries. Sections 3.6

and 3.7 explain the marker set labels and the marker set creation using OpenSim [16], open-

source biomechanical modelling software. Section 3.8 explains our process for manual

cleaning of our raw MoCap Dataset A, including denoising, recovery, and labeling methods

using QTM software. Section 3.9 presents our data cleaning procedure using the QTM

automatic identification of markers (AIM) model [17]–[19]. Sections 3.10 introduces a

brief introduction of some other QTM features such as skeleton solver [20]–[25], and rigid

body and Euler angles [26]–[28]. Section 3.11 concludes the paper.

3.2 Underwater Application

 To the best of our knowledge, there are currently no published research studies using

Qualisys Miqus underwater MoCap cameras, specifically Miqus M5U, for human

kinematics analysis within OMC systems. Since their introduction in 2019 [11], these

82

cameras have been used primarily for tracking marine vessels and structures due to their

compact size and wide-angle capabilities, which make them ideal for confined spaces [29].

Their applications include monitoring underwater autonomous vehicles [30], robotics [31],

objects in towing tanks, animal biomechanical analysis [32], and movements of oil

pipelines [33]. Tortorici et al. [30] utilized five Miqus M5U cameras operating at 180

frames per second to track remotely operated vehicles markers. Lack et al. [34] used 8

Miqus M5U to control a small underwater vehicle manipulator systems. Researchers [35]–

[37] measured the kinematics and surface electromyography of human lower limbs using a

Miqus underwater video camera.

 There are a number of studies on swimming performance and underwater gait analysis

using other Qualisys underwater MoCap cameras [9], such as the Oqus [38], which is not

suitable for confined spaces. The Oqus brand has been discontinued [39] and replaced by

the newer Arqus [40] camera model. Lauer et al. [41] utilized 12 Qualisys underwater

MoCap cameras to measure upper limb joint forces and moments during underwater

cyclical movements. The study found that the upper limb joint load was within 5% of the

swimmer’s body weight. This suggests that low-load aquatic exercises could be beneficial

in reducing joint stress in aquatic therapy and rehabilitation. Olstad et al. [42]–[44]

examined the kinematics of breaststroke swimmers utilizing Qualisys underwater MoCap

Oqus 3 and 4 cameras functioning at 100 Hz, which recorded retro-reflective passive

markers. They employed QTM software versions 2.6 and 2.8. Ribeiro et al. [45]

investigated how swimmers with different speeds organize factors such as biomechanics,

energy, and coordination during extreme-intensity swims. Kinematics parameters were

assessed using seven land plus eight underwater cameras (Oqus 3+ and Oqus Underwater)

83

operating at 60 Hz. Abdul Jabbar et al. [46] researched the effect of aquatic medium and

age on the lower limb’s joint angles. Underwater gait kinematic data were acquired at 100

Hz using 8 Oqus underwater MoCap cameras. Washino et al. [47] suggested that swimming

performance is reduced, at least in part, due to additional drag caused by reflective markers.

They utilized 25 Qualisys reflective markers. However, they recorded the MoCap data by

a digital video camera positioned about 5 meters above the water and 30 meters away from

the swimming lane. Chainok et al. [48] sought to identify biomechanical features of

transitioning from backstroke to breaststroke using a dual-media MoCap system, which

included 12 land and 11 underwater cameras (Oqus 3 and 4 series) along with 51 spherical

retroreflective markers. Tanaka et al. [49] compared foot and trunk kinematic parameters

during underwater undulatory swimming between faster and slower swimmers using 8

Qualisys underwater cameras and 12 retro-reflective markers. Nakashima et al. [50]

developed of a method for musculoskeletal simulation in swimming using dual media with

18 Qualisys underwater cameras and 48 reflective markers. Qualisys [10] offers a

promotional video of their underwater systems and software, demonstrating swimming

biomechanics. However, these studies all notably focus on the subject at the surface of the

water, completing only predictable and pre-defined activities (i.e., swimming strokes).

3.3 Capturing Underwater MoCap Data

 The marker-based OMC system setup involves attaching markers on the body, placing

cameras in the volume of interest, and camera calibration. We captured underwater MoCap

data using seven Qualisys Miqus M5U underwater MoCap cameras installed at different

locations around a four-meter-deep, 18-meter by 14-meter pool at the Memorial University

84

Marine Institute Offshore Safety and Survival Centre, as shown in Figure 3-2. A total of 21

passive (reflective) markers were attached to the swimmer suit and body, as shown in

Figure 3-3. After calibration, data were recorded at 100Hz using QTM software and

exported to C3D files. The subsequent sections detail visualizing markers attached to the

swimmer’s body, identifying the area of interest, positioning the cameras for optimal

results, performing camera calibration, and recording MoCap data.

Figure 3-2: A 4-meter deep pool utilized for capturing MoCap data.

3.3.1 Marker Attachment

 In this section, we will first provide a visualization of the anatomical locations where

we attached the 21 Qualisys passive markers to the subjects’ bodies. Following that, we

will introduce the Qualisys markers specifications.

85

3.3.1.1 Passive Marker Anatomical Locations

 We attached 21 reflective super-spherical MoCap markers on the swimmer’s body and

suit based on the Qualisys sports marker set [51], as shown in Figure 3-3.

Figure 3-3: 21 Passive Marker Anatomical Locations.

3.3.1.2 Qualisys Passive Markers

 Qualisys offers different types of passive markers for underwater OMC tracking systems

[52], including hand-coated underwater markers, super-spherical underwater markers,

super-spherical MoCap markers, and retro-reflective underwater tape. The selection of

marker size depends on several factors: (1) the setup, which includes available space on the

object and streaming characteristics; (2) the distance between the markers and cameras,

influenced by camera type—such as the Arqus UW [40], which allows for smaller markers

at greater distances due to its strong strobe; and (3) water quality, which can affect visibility.

Generally, larger markers provide a greater reflective surface area, making them easier to

detect in various underwater conditions. Ordinary passive markers are ineffective

underwater as their retro-reflective properties diminish. Hand-coated underwater markers

are water-resistant, threaded markers with a spherical body covered in retro-reflective tape,

86

with a minimum size of 12 mm. They can remain submerged permanently. However, in

some cases, the taped markers may break apart and appear as multiple markers. There for,

super-spherical underwater markers, that can be for a long-time underwater, are

recommended, with a minimum size of 14 mm. If a smaller size is needed, super-spherical

MoCap markers can be used, with minimum size of 6.5 mm; however, they will fail after

extended periods (over 1 hour) of submersion. Moreover, retro-reflective underwater tape

serves as an alternative to ordinary spherical underwater markers. It is particularly useful

in scenarios where the use of ordinary markers could interfere with the movement of the

object being tracked. Figure 3-4 illustrates the dimensions and weight specifications of the

Qualisys passive super-spherical markers [53], [54], which we utilize.

Figure 3-4: Qualisys passive super-spherical markers.

3.3.2 Qualisys Miqus M5U Underwater MoCap Camera

 Qualisys Miqus M5u underwater MoCap camera, which was released on 16 May 2019

as the smallest underwater MoCap Camera [11], offers the widest field-of-view and a

maximum capture distance of 17 meters among other Qualisys underwater MoCap cameras

[55]. Figure 3-5 and Table 3-1 show the Miqus M5U camera we used for our study and its

specifications.

87

 Figure 3-5: Miqus M5U Camera

3.3.3 Cameras’ Placement in the Volume of Interest

 The volume of interest [56] is where a system records motion using cameras. A sample

visualization of our pool is depicted in Figure 3-6, created with QTM software. It shows

seven cameras positioned around the pool: four on one side and three on the opposite side,

along with the “L-frame” calibration fixture and the swimmer. Figure 3-7 shows a “birds

eye view” of part of the pool. To reconstruct 3D MoCap data, each marker should be visible

to at least two cameras (preferably three or more) such that, following system calibration,

the 3D geometry of the markers can be calculated from the 2D images. It is best to position

the cameras as far back as possible from the volume to maximize camera view overlap.

Figure 3-6: The Volume of Interest

Table 3-1: Qualisys Miqus M5U Camera Specifications

Pixels 4 MP

Resolution 2048 * 2048

Frame rate (full FOV) 180 fps

Underwater FOV 51° * 51°

Max capture distance
(with 19 mm marker)

17 m

Weight 2.5 kg / 5.5 lbs

Dimensions 250 × 110 × 110 mm
(9.8 × 4.3 × 4.3 in)

Buoyancy Neutral

Operating voltage 24 VDC

Operating temperature 0-35°C (32-95°F)

Underwater housing Stainless steel and acrylic

88

Figure 3-7: Underwater cameras' placement

3.3.4 QTM Software

 Qualisys Track Manager (QTM) [6] is a powerful proprietary software designed by

Qualisys to integrate seamlessly with Qualisys MoCap cameras. This sophisticated tracking

software facilitates the capture, cleaning, editing, labeling, and analysis of MoCap data

across various dimensions, including 2D, 3D, and six degrees of freedom (6DOF) in real-

time, ensuring fast and precise measurements with minimal latency. QTM also features a

3D video overlay function that works with any Qualisys video camera calibrated with the

MoCap system. Two important features of QTM software are:

✓ Automatic Identification of Markers (AIM) [17] function enables the identification of

markers to facilitate manual data cleaning, regardless of the marker set, by creating

an AIM model and feeding it with sample motion data.

✓ Skeleton solver [20] is a proven and very robust inverse kinematics solver that can

deal with occluded markers in challenging multi-character takes. By using the pre-

defined marker set, applying the pre-trained AIM model, stand in a T-pose to fit the

skeleton, the real-time solver will start streaming skeletal data such as rigid body joint

angles expressed in Euler angles [27].

89

 Furthermore, the QTM software supports integration with various plugins for Unity

[57], Unreal Engine [58], iClone [59], MotionBuilder [60], and Maya [61]. QTM is also

compatible with major force plates and EMG systems used in biomechanical research.

Additionally, QTM offers features like real-time streaming with QTM Connect, real-time

server and SDK for seamless integration with other applications, C3D import/export,

MATLAB and LabVIEW [62] export, and exporting data to tab-separated value files for

further analysis in programs like Microsoft Excel.

 The version of QTM software that we use is “2022.2 build 7710”.

3.3.5 Calibration

 Before MoCap recording, the Qualisys system must be calibrated to accurately define

the cameras’ coordinates relative to each other and the environment. Qualisys Calibration

kit [63], [64] includes a carbon fiber wand, and a folding L-frame, as shown in Figure 3-8.

The L-frame sets the global coordinate system’s orientation during calibration, defining the

X, Y, and Z axes with its corner as the origin. It can be removed after calibration.

Figure 3-8: Qualisys Calibration Kit: Wand (top right), L-frame (bottom)

90

 Calibration [65], [66] involves waving and twisting a calibration wand continuously in

various directions within the volume to ensure it enters all cameras’ fields of view as

concurrently as possible. The QTM software will indicate if the moving speed is too fast.

The software accurately determines each camera’s position relative to the L-frame. It is

important to keep moving during calibration, cover the entire volume of interest, and avoid

waving the wand in areas outside the volume. Additionally, it is crucial to avoid hitting the

wand on anything. The calibration procedure done by our swimmer is shown in Figure 3-9.

Figure 3-9: Calibration wand and the Calibration procedure by our swimmer.

3.3.6 Recording MoCap Data and Exported File Types

 After calibration, data were recorded at a frequency of 100 Hz using QTM. This

recorded data can be exported into various file formats [67], including C3D [68], TSV [69],

AVI [70], FBX [71], or MATLAB, allowing for further processing in other applications.

For our purposes, we export the data into a C3D file [72].

3.4 Noise in Underwater MoCap Data

 Underwater MoCap is prone to noise due to surface reflections, water's unique

properties, and water’s unpredictable waves and turbulence, as depicted in the Figure 3-10.

The noisy image and the corresponding MoCap data are shown in Figure 3-11.

91

Figure 3-10: Noise in Underwater Data; Surface Reflection and Wave

Figure 3-11: Noisy MoCap Data

3.5 MoCap Data Cleaning and Editing Tools

 To utilize MoCap data, the noisy raw data must be cleaned using various methods,

including commercial software, open-source software, and programming tools. The

following sections define these editing tools.

92

3.5.1 Commercial MoCap Software

 Commercial MoCap software, such as Qualisys QTM, Vicon Nexus, and OptiTrack [73]

is utilized for recording, processing, editing, and animating motion data. These tools feature

automatic labeling functions (e.g., AIM in QTM or Vicon Nexus) that assist with manual

cleaning; however, some manual intervention is still required. These systems often integrate

with hardware for real-time feedback. They necessitate a purchase.

3.5.2 Mokka Software

 Motion Kinematic and Kinetic Analyzer (Mokka) [15] is an open-source software

designed to analyze biomechanical data. It is compatible with various file formats,

including C3D. It can be used for tasks such as manually cleaning raw MoCap data when

commercial software is unavailable. The Mokka User Interface is shown in Figure 3-12.

Figure 3-12: Mokka User Interface

93

3.5.3 Applications of MATLAB and Python in MoCap Data Cleaning

 Programming software like MATLAB and Python can be used to generate semi-

automatic or automatic MoCap cleaning and labeling algorithms. The EZC3D [74] library

and Biomechanical ToolKit (BTK) [75] are tools for reading and modifying C3D files. We

utilized the EZC3D library in both MATLAB and Python.

3.6 Marker Set

 Our marker set consists of 21 passive markers attached to our swimmer’s suit and body.

The anatomical placement of the correspondence points, our given labels and their

correspondence name in the Qualisys Sports Marker Set [51] are shown in Figure 3-13. The

numbers in this figure are based on the Qualisys marker set. For example, our given label

name to marker number 8 is “CHST” and its correspondence Qualisys name is “Chest”.

Figure 3-13: Anatomical locations of 21 markers

94

3.7 OpenSim Marker Set

 OpenSim 4.4 [16] creates the marker set based on the musculoskeletal model [76]. The

user interface contains a model, markers, and a topology tree, as shown in Figure 3-14. The

markers are placed on Simbody based on the anatomical location described in Figure 3-13.

The markers’ local coordinates are defined in the “MarkerSet.xml” file.

Figure 3-14: OpenSim User Interface

Figure 3-15: OpenSim model markers placement and the output MarkerSet.xml file

95

 The locations of 21 markers in front and back of the body model and part of the

generated MarkerSet.xml file are shown in Figure 3-15. The colors of the x, y, and z axis

are red, green, and blue.

3.8 Manual Cleaning Raw C3D MoCap Data using QTM software

 The raw MoCap files often exhibit significant noise and contain gaps, particularly in

underwater environments. The primary goal of manually cleaning MoCap data is to refine

and label these datasets so that they can be effectively utilized for subsequent processing

and various applications. The following sections describe our manual cleaning process for

our captured Dataset A using QTM software, which includes labelling, denoising, and

recovering missing markers. We also clean data using QTM AIM model and compare its

results to the result of manual cleaning.

 Our captured MoCap data contains 21 reflective passive markers based on our marker

set shown in Figure 3-13. The cleaning process described for passive markers can also be

applied to active markers or partially cleaned data. Figure 3-16 illustrates the noisy frame

of our MoCap data alongside the corresponding cleaned and labeled MoCap data.

Figure 3-16: Noisy MoCap data and its corresponding cleaned and labeled data.

96

3.8.1 Raw C3D Dataset A

 Our Dataset A is a noisy C3D file containing 897 frames. The sampling frequency of

data is 100 Hz. For this dataset, our swimmer begins at the first frame in a downward

posture similar to the inverse of “T-pose” as depicted in Figure 3-17, which showcases the

QTM User Interface. For the trial, the swimmer submerges and breaststrokes downward

toward the bottom of the pool head first, turns head up, and swims back to the surface. The

first frame features 21 valid markers, which are physical markers affixed to the swimmers’

bodies and are illustrated in green. Additionally, it includes 4 extraneous markers that are

attached to the “L-frame,” depicted in orange.

Figure 3-17: QTM User Interface; Dataset A

 The Dataset A contains a total of 35 tracked points. Given that there are only 21 valid

markers, the discrepancy in numbers—specifically the additional 14 points—is attributed

to factors such as noise or the phenomenon of “reappearing valid markers.” This occurrence

is typical of passive markers and will be elaborated upon in detail in the subsequent section.

97

 Each point in a MoCap C3D file has a trajectory [77] that represents its movement path

tracked in three-dimensional (3D) space over time. The trajectory of point number 0018 is

illustrated in Figure 3-17, represented by the pink curve. Also, in this figure, the position

of this trajectory at any given moment is plotted using its X, Y, and Z coordinates.

 The term “Fill Level” [7] refers to the percentage of the capture period during which a

trajectory is visible. For point number 0018, the fill level is 98.3%. This indicates that the

total duration of its trajectory encompasses 882 frames. As illustrated in Figure 3-17 the

trajectory for this point extends from frame 1 to frame 882. This means that this point is

not detected by any cameras after frame 882 until the last captured frame, which is 897.

3.8.2 Identifying and Labeling Trajectories

 After a motion capture recording, all recorded trajectories will be displayed in the right

pane of QTM under either “Labeled trajectories” or “Unidentified trajectories”. Labeling a

trajectory can be done manually by renaming each trajectory. For instance, point number

0018 can be labeled as “LHEAD” (left head marker), and point number 0024 can be labeled

as “LKNEE” (left knee marker), as illustrated in Figure 3-18. In the subsequent section, we

will describe the “reappearing” markers, which are characteristic of passive markers.

Understanding this feature is essential before proceeding with the manual cleaning process.

3.8.2.1 Passive Markers Characteristic: “Reappearing” Markers

 In MoCap data, a physical marker is assigned a random ID number when tracked for the

first time. If a passive marker becomes occluded and later reappears, it is typically assigned

a new ID because the tracking system can not recognize it as the same marker.

Consequently, passive markers often exhibit short segment trajectories rather than

98

continuous trajectories, with potential gaps. As a result, a MoCap file may have multiple

points linked to different segments of the same physical marker’s trajectory. Thus, the

trajectory segments belong to each specific physical marker should be identified and

merged into a complete trajectory with gaps. Figure 3-18 and Figure 3-19 illustrate before

and after merging short trajectory segments of an example passive marker (i.e., ‘LKNEE’).

Figure 3-18: Passive Markers Characteristic; Reappearing Markers Trajectories

Figure 3-19: Merging Reappearing Markers Trajectories

99

 In Figure 3-18, we identified the marker “LKNEE” in the first frame and tracked it until

frame 318, at which point it was lost due to occlusion. During a meticulous frame-by-frame

manual review, we detected point number 0033 as left knee in frame 334. This indicates

that the passive marker previously labeled as “LKNEE” (point number 0018), which was

tracked from frame 1 to frame 318 and subsequently occluded, reappeared in frame 334

with a new identifier, which is 0033. To rectify this, we utilized the QTM feature “Identify”

by right-clicking on point 0033 and linking it to the “LKNEE” marker. Consequently, as

depicted in Figure 3-19, the “LKNEE” markers now consist of two parts and span from

frame 1 to frame 897, with a gap occurring between frames 319 and 333.

 Comparing the 3D coordinate plots in Figure 3-18 and Figure 3-19 provides a visual

understanding of the characteristics of passive markers. In Figure 3-18, the plot consists of

two distinct representations related to the points labeled “LKNEE” and “0033.” Conversely,

Figure 3-19 illustrates a complete trajectory associated with the new “LKNEE” points,

which integrates both segments into one cohesive path. The gaps observed in this trajectory

indicate periods during which no left knee marker was captured in the dataset.

Consequently, the physical marker “LKNEE” now possesses a unique trajectory within this

cleaned dataset. Additionally, the trajectory editor in Figure 3-19 showcases the integrated

“LKNEE” continuous trajectory along with the identified gap.

 Trajectory overview in Figure 3-18 highlights a crucial aspect regarding the behavior of

“reappearing” markers: the trajectories of these markers should not overlap, meaning there

should be no intersections between them. The yellow segment preceding each marker ID

in the trajectory editor indicates a gap in that marker’s trajectory. For instance, when the

visibility duration of the marker labeled “LKNEE” concludes, it is represented in yellow,

100

signifying that it has become occluded. At this point, if we examine marker “0033,” we

observe that after several frames, the yellow section associated with this marker ends, and

it becomes visible. This observation confirms that the trajectories of these two markers do

not intersect at any point.

3.8.3 Bone Visualization

 Manual Cleaning MoCap Data begins with the first frame by detecting valid markers

and labeling them based on the marker set. Each frame must undergo a thorough review to

ensure accurate labeling and to identify and remove any anomalies. To enhance

visualization, the connections between markers can be established using bones, which

facilitates the identification of irregularities. In this review, we need to adjust the angle of

view to improve posture visualization. Figure 3-20 illustrates how bone connectivity and

the angle of view influence the identification of valid markers. In the first and second

images, it is challenging to discern what the green single marker represents. However, in

the third image, it becomes clearer that this marker is the ankle marker.

Figure 3-20: The Impact of Bone Connectivity and View Angle Adjustment on Visualization Enhancement.

101

3.8.4 Denoising

 This section explains manual denoising of our Dataset A, which removes extraneous

markers [78], outliers [79], ghost markers [80], and swapping markers [81]. Subsequent

sections will define these types of noise and outline the methods used for their removal

from the MoCap dataset using the QTM software.

3.8.4.1 Extraneous Removal

 Extraneous markers refer to actual markers that are affixed to an object other than the

primary subject, which in this context is our swimmer. For instance, as illustrated in Figure

3-17, there are four orange markers identified by IDs 0005, 0006, 0007, and 0008. These

markers are attached to the “L-frame” calibration tool positioned on the floor of the pool.

These markers can be easily removed by clicking on them to locate the corresponding ID

in the trajectory column and deleting them. Once deleted, these markers will be relocated

to the discarded trajectories section within the QTM software, as depicted in Figure 3-21.

Figure 3-21: Extraneous Markers Removal

102

3.8.4.2 Outlier Removal

 Outliers in MoCap data refer to invalid data points that deviate significantly from the

rest of the markers. We can easily discard them from the dataset. Figure 3-22 shows

examples of outliers in MoCap data. The first image highlights one outlier in yellow, while

the second image displays two outliers marked in white and red.

Figure 3-22: Outlier Removal; Yellow outlier (left), white and red outliers (right).

3.8.4.3 Ghost Markers Removal

 Ghost markers are erroneous markers that are not associated with any physical object or

body part and can be removed by discarding them. Detecting these ghost markers poses a

challenge, as they often appear near valid markers. To effectively distinguish valid markers

from ghost markers, it is essential to analyze frames preceding and succeeding the current

frame. Additionally, factors such as marker fill levels should be considered, along with a

comparison of the distances between the markers and the distances in the marker set.

Adjusting the view angle and bone connectivity can further aid in clarifying which markers

are valid. The images in Figure 3-23 show an example of a ghost marker, along with the

103

effect of changing view angle and bone connectivity on distinguishing the ghost marker

from the valid markers.

 (a) (b) (c)

 (d) (e) (f)

Figure 3-23: Challenges of Manual Cleaning for detecting ghost markers. (a) A ghost marker (red) appears to overlap

with a valid marker (pink) from one perspective, (b) in another view, the red and pink markers are clearly separated. (c)

Obscured red marker behind pink at an unfavorable angle. (d) View change reveals red marker, still appearing

overlapped. (e) Optimal angle; valid (pink) marker is absent. (f) Tracking across frames distinguishes valid (pink) from

ghost (red) based on bone length.

 In the first image (a) of Figure 3-23, it is essential to differentiate between the two nearby

points (red and light pink) to identify which one is a valid marker and which one is a ghost

marker. The first four images in Figure 3-23 (from images (a) to image (d)) demonstrate

that utilizing both bone connectivity and viewing angle simultaneously can aid in this

differentiation. In image (a), there is a lack of bone connectivity, and the two points—red

and light pink—appear to overlap. However, upon changing the viewing angle in the

104

second image (b), it becomes evident that these two markers are not actually overlapping.

Despite this clarification, it remains unclear which of the two markers is valid. The third

image (c) introduces bone connectivity; however, due to an unfavorable viewing angle, the

red point is obscured by the pink point. In image (d), a change in perspective reveals the

red point, yet it still appears to overlap with the pink point.

 After selecting an optimal viewing angle and enhancing visualization through bone

connectivity, we analyze the frames preceding and succeeding the current frame to

determine which of the two points is a valid marker and which one is a ghost marker. The

fifth image (e) illustrates the previous frame; in this image, the viewing angle and bone

connectivity are adequate for identifying that the red point could potentially be a calf

marker, while the pink point has not yet appeared. In image six (f), both points are visible,

and with good bone connectivity and viewing angle, we can also assess their fill levels. We

can confidently conclude that the red point, exhibiting a low fill level, is indeed a ghost

marker. To further validate our findings, we compared the respective distances of these two

points to the knee and ankle points against those in the established marker set. This

comparison allows us to accurately identify that the light pink point is a valid calf marker

while confirming that the red point is a ghost marker.

3.8.4.4 Swapping Markers

 Marker swapping [7], [81], [82] occurs when the labels of two markers are inadvertently

exchanged due to their close proximity or overlapping paths in front of a camera. This error

results in segments of the 3D trajectory being inaccurately assigned to the incorrect marker.

For example, if a hand marker moves closely in front of a chest marker during motion

105

capture, the tracking system may erroneously attribute data from one marker to the other.

This issue is particularly common when two markers become occluded and later reappear;

in the case of passive markers, this often leads to them being assigned new IDs.

Furthermore, during manual cleaning processes, markers can be misidentified due to

viewpoint issues that obscure their actual positions. An example is shown in Figure 3-24.

Figure 3-24: Swapping Markers

 In Figure 3-24, the first image displays an orange marker positioned at the chest location

and labeled as “CHST2.” However, it becomes evident that the second part of the “CHST”

label is not indicative of a chest marker; rather, it is an outlier. To rectify this discrepancy,

we will swap the second part of “CHST” with “CHST2.” This can be accomplished by

selecting both markers intended for swapping and right-clicking to access the option to

either swap selected parts or swap parts only at the current marker frame. In this instance,

we opted to swap selected parts, resulting in the corrected markers shown in the second

image. As a final step, we should remove “CHST2,” since it has been identified as an

outlier.

106

3.8.5 Recovery

 After denoising the raw MoCap data, it is essential to recover any missing markers and

fill in the gaps [83] within the trajectories of the valid markers. The identification of these

gaps [84] can be accomplished by examining the Fill Level column in QTM. Once

identified, the gaps can be addressed using the trajectory editor, which offers various fill

types [85] such as Linear, Polynomial, Static, Relational, Virtual, and Kinematic. Each of

these methods will be elaborated upon in subsequent sections.

Figure 3-25: Filling Gaps; A gap (brown) in a “STOM” trajectory.

 Figure 3-25 illustrates the “STOM” marker, for which we aim to fill the trajectory gap

using various fill types. The gap begins at frame 291 and concludes at frame 359, resulting

in a total gap size of 69 frames, as indicated in the trajectory editor. Consequently, we can

calculate the fill level using the formula 100 * (897 - 69) / 897, which yields a fill level of

92.3%, as reflected in the Fill Level column next to “STOM.” To fill selected gaps, click

the Fill icon (paint bucket) in the trajectory editor. This will fill all chosen gaps based on

the specified fill type in the settings sidebar.

107

3.8.5.1 Polynomial

 The default fill type is Polynomial, which uses cubic polynomial interpolation to

smoothly connect the X, Y, and Z curves across a gap. This method requires trajectory data

on both sides of the gap. However, for larger gaps, the accuracy of the results may diminish;

therefore, it is advisable to set a maximum number of frames for filling to ensure reliability.

In instances where the gap exceeds the limits suitable for Polynomial filling, alternative

methods such as Relational or Kinematic can be utilized, which will be discussed in

subsequent sections. Figure 3-26 illustrates the application of polynomial gap filling on the

“STOM” marker, achieving a complete fill level of 100% for this marker by incorporating

the “Gap-filled” part2 from frames 291 to 359.

Figure 3-26: Polynomial Gap Filling Type

3.8.5.2 Linear

 Linear type fills gaps with a straight line connecting the X, Y, and Z coordinates on one

side of the gap to those on the other side. This method is suitable for small gaps or constant

velocity movement. If a gap occurs at the start of a trajectory, it will be filled with the first

available data point following the gap. Conversely, if a gap appears at the end of a trajectory,

it will be filled with the last data point recorded before the gap. A maximum frame length

can be set for linear gap filling. Figure 3-27 displays the application of linear gap filling on

the “STOM” marker, effectively completing its trajectory to 100%.

108

Figure 3-27: Linear Gap Filling Type

3.8.5.3 Static

 Static is a virtual type that uses fixed values for X, Y, and Z throughout a gap. It is

suitable for filling gaps in stationary objects with known coordinates. As it does not rely on

data from the edges of the gap, it works even without surrounding data or in an empty

trajectory. Figure 3-28 shows the application of this filling type to completely fill the gap

in the “STOM” marker. The initial X, Y, Z coordinates at the start of the gap are treated as

static values. This figure indicates that this filling method is not appropriate for such a gap.

Figure 3-28: Static Gap Filling Type

3.8.5.4 Relational

 The Relational type connects the curves on both sides of a gap based on the movement

of surrounding markers. It is useful when tracking markers remain fixed with respect to

each other, like a cluster. Up to three context markers should be selected to establish a local

coordinate system for the missing data. An origin marker is necessary to define this

109

system’s origin, while an additional marker can set the X-axis and a third can define the

XY plane. By checking “Rigid Body,” QTM will treat these three context markers as a rigid

body based on their average configuration during the gap. Figure 3-29 illustrates the

outcome of filling the gap of the “STOM” marker using this filling type. We selected

“CHST” as the origin, which has a filling level of 96.6%. Notably, the gap associated with

“CHST” is entirely contained within the “STOM” gap. Consequently, by applying this

filling method, we successfully filled the “STOM” trajectory to a level of 96.6%.

Figure 3-29: Relational Gap Filling Type

3.8.5.5 Virtual

 The Virtual type of gap-filling operates similarly to Relational gap-filling by addressing

gaps based on the movement of surrounding markers; however, it distinguishes itself by

being independent of the trajectory data at the edges of the gap. This independence allows

the Virtual type to be utilized in scenarios involving empty trajectories or sections that lack

surrounding data. As with Relational type, up to three context markers can be selected, and

“Rigid Body” can be chosen to treat them as a rigid body. By default, the virtual trajectory

will correspond to the trajectory designated as “Origin;” however, an offset can be applied

to move the virtual trajectory to a different position. Similar to the Relational type, there

110

exists a gap within the filled “STOM” trajectory associated with the “CHST” marker, as

illustrated in Figure 3-30. Consequently, the resulting fill level is 96.3%.

Figure 3-30: Virtual Gap Filling Type

3.8.5.6 Kinematic

 The Kinematic type fills gaps based on the movement of the skeleton segment or of the

rigid body, suitable for tracking a rigid body or using the skeleton solver. Consequently,

this specific method of gap filling is not applicable for the “STOM” marker.

3.8.6 Smoothing Spikes

Spikes [86] refer to discontinuities that occur between consecutive frames in a trajectory,

characterized by sudden and significant changes in acceleration. These spikes can arise

from various factors, with one primary cause being occlusion. Additionally, labeling errors,

such as swapping markers, can contribute to their occurrence; these errors must be rectified

before proceeding with further analysis. Any remaining spikes can be effectively identified

and smoothed using a trajectory editor. QTM provides two types of smoothing [87]: moving

average and Butterworth filtering, which will be elaborated upon in the following sections.

Over-smoothing or filtering out crucial information should be avoided especially if

acceleration changes are essential for the application. Figure 3-31 and Figure 3-32 illustrate

the detected spikes and the smoothing process applied to them using the trajectory editor.

111

We can also click the Smooth icon (Iron icon) in the trajectory editor to smooth spikes.

These spikes were generated using Virtual gap filling on the “STOM” marker, resulting in

the creation of three distinct spikes. The blue bars show filled gap frames, red dots indicate

data spikes, and yellow highlights the gap in the trajectory.

Figure 3-31: Spikes Identification

Figure 3-32: Smoothing Spikes

3.8.6.1 Moving Average

 The Moving Average type (Figure 3-33) is suitable for local spikes, as it averages the

data in a customizable window (up to 15 frames) around the current frame.

Figure 3-33: Moving Average Smoothing Type

112

3.8.6.2 Butterworth

 The Butterworth filter is particularly effective for extensive frame ranges that experience

significant high-frequency noise, using a low-pass filter to attenuate information above the

specified cutoff frequency. The initial cutoff frequency should be set at 2-3 times higher

than the highest frequency to be retained and can be adjusted as necessary. Figure 3-34 and

Figure 3-35 displays the application of Butterworth smoothing on the “STOM” marker,

utilizing cutoff frequencies of 20 and 5, respectively. This demonstrates that a lower cutoff

frequency results in a greater degree of signal smoothing.

Figure 3-34: Butterworth Smoothing Type Response with Cutoff Frequency = 20 Hz

Figure 3-35: Butterworth Smoothing Type Response with Cutoff Frequency = 5 Hz

3.8.7 Manual Cleaning Output

 The manual cleaning process applied to our Dataset A results in a final C3D output that

is meticulously cleaned and accurately labeled with 21 markers, in accordance with the

113

specified marker set. This output is free from any noise or gaps. Figure 3-36 illustrates the

final output after manual cleaning. This output encompasses the skeleton visualization of

the swimmer’s posture in the first frame, the Trajectory Overview, and detailed information

regarding the error correction for each label. The Type column specifies the nature of error

correction, which can be categorized as either “Measured” or “Mixed.” The trajectories

classified as “Measured” were directly tracked by the QTM during the motion capture trial.

The “Mixed” type may include segments that are “Gap-filled,” resulting from gap filling

processes, or “Edited,” which pertains to smoothing adjustments. The number of parts

shows the number of trajectory segments for each marker. In the Trajectory Overview, the

blue bars indicate the frames where filled gaps are present for each label, effectively

showcasing their size and locations.

Figure 3-36: Manual Cleaning Output

114

3.9 Labeling using AIM Models

 Automatic identification of markers (AIM) [17] helps automatically identify and labels

trajectories based on a created model [18], [19] for a specific marker set. AIM models are

also learning models, which implies that new trials can be added to the existing model to

enhance its knowledge. The initial trial defines the connections between the markers;

however, training [88] the existing model with new trials provides additional examples of

distances and angles between markers. This process will improve the accuracy of applying

[89] the trained model to future test subjects. The generated AIM model can be applied to

any recording with the same marker set and similar motions.

 In the following sections, we describe how to generate an AIM model for our marker set

and apply this AIM model to our Dataset A. Then, we compare the results of our manual

cleaning on Dataset A with the results of applying the AIM model to it. We also apply this

AIM model to a new C3D dataset.

3.9.1 AIM model Generation and Application Procedure

 For an AIM model to function effectively, it is crucial that we “teach” it using a dataset

comprised of thoroughly cleaned and accurately labeled trials. This can be achieved by

utilizing either manually cleaned and labeled archival trials or by recording specific trials

tailored for this purpose and ensuring they are thoroughly cleaned.

 To effectively record a trial for the creation of an AIM model, it is advisable to start with

the subject in a “T-pose,” with arms extended sideways. This position facilitates easier

identification of markers. It is essential that the subject performs the complete range of

motion that is intended for tracking by the AIM model.

115

 To create an AIM model using archival MoCap data or a specific trial, we must first

manually clean and label the data and create the visual bone connections between markers.

Once this is done, during the AIM model creation process, QTM will display the learned

connectivity based on the training dataset, which differs from our bone connectivity. It is

essential to review and correct this connectivity if needed before generating and saving the

AIM model for applying it on a dataset. The summary of the procedure for creating an AIM

model and applying it on a dataset, using QTM, is as follows:

1- Clean and label a C3D MoCap file and create bone connectivity in QTM.

2- Select “AIM” from the top menu bar and choose “Generate Model” (Figure 3-37).

Figure 3-37: QTM "AIM" icon

3- In the opened window, select “Create a new model” (Figure 3-38).

Figure 3-38: Create a new AIM model

4- In “Verify and edit AIM structure bones” windows, rectify any incorrect connections.

5- Click “Next” again, enter a name for the AIM model, and Click “OK.”

6- Click “Finish” in a message window that displays the successful generation.

7- Open a raw C3D file, choose “Apply Model” (Figure 3-37) and then the AIM model.

8- Check the result, correct any mislabeling, and fill in any gaps.

116

3.9.2 Result of Creating an AIM Model using a Noisy Trial

 Figure 3-39 (a) shows that using a noisy trial to create an AIM model leads to incorrect

red bone connections. When this flawed model is applied to the same unlabeled motion

trial, it produces incomplete and incorrect results as shown in Figure 3-39 (b).

 (a) (b)

Figure 3-39: Failure of AIM model; (a) Failure of an AIM model generation based on a noisy trial; (b) The result of

applying an inaccurate AIM model

3.9.3 Results of Creating an AIM Model based on Initial Bad Connections

 Figure 3-36 displays our cleaned and labeled Dataset A with bone connectivity which

we use as a trial to create and teach an AIM model. Figure 3-40 (a) displays the preview

model created by QTM based on the trained trial. Some connections are incorrect, which

we have corrected in Figure 3-40 (b). We save the created AIM model, then apply it to our

raw Dataset A. The result shown in Figure 3-40 (c) indicates that the head markers were

not detected, likely due to their lack of connections to other markers. We will investigate

this further in the next section by adjusting the initial connectivity.

117

 (a) (b) (c)

Figure 3-40: AIM model labeling based on initial bad connections: (a) AIM model with wrong connections; (b) AIM

model with corrected connections; (c) Result of applying the generated AIM model on Dataset A.

3.9.4 Results of Creating an AIM Model based on Initial Good Connections

 Figure 3-41 (a), (b), and (c) illustrate the new bone connectivity in our cleaned Dataset

A, the updated red connections between markers in the model preview, and the results of

applying the AIM model to our raw Dataset A, which now successfully detects head

markers. We now need to thoroughly examine the results frame by frame for accuracy.

 (a) (b) (c)

Figure 3-41: AIM model labeling based on initial good connections: (a) Initial bone connectivity; (b) AIM model with

corrected connections; (c) The result of applying the generated AIM model on Dataset A.

118

 During a frame-by-frame inspection of labeled Dataset A using the AIM model, we

identified an incorrect labeling in frame 883, as illustrated in Figure 3-42 (a). The

“LHEAD” marker Part 2 is mistakenly linked to the “LHEAD” marker, while it is evident

from the image that this part is an extraneous marker. This likely occurred due to the

occlusion of the “LHEAD” marker from frame 883 to frame 897. In previous frames, when

the swimmer descends near the pool floor, “LHEAD” comes close to this extraneous

marker. Therefore, it seems that during these occlusion frames, this extraneous marker was

mistakenly detected as “LHEAD.” Consequently, we have removed this erroneous Part 2

from the “LHEAD,” and the corrected result is displayed in Figure 3-42 (b).

 (a) (b)

Figure 3-42: An incorrect labeling found during inspection: (a) Mislabeled “LHEAD” part2; (b) Corrected Labeling.

3.9.5 Comparison Manual Cleaning and Cleaning using an AIM Model

 A comparison of the fill levels in Figure 3-36 and Figure 3-42 (b), which represent the

results of manual cleaning and labeling of Dataset A using the AIM model, indicates that

the AIM model only labels data without filling gaps.

119

3.9.6 Applying an Existing AIM model on a New C3D file

 In Figure 3-43 (a) the AIM model is applied to a new C3D file using the same marker

set and similar motion. This dataset is less noisy than Dataset A. The successful visual

inspection indicates that the AIM model effectively labeled this dataset. However, the Fill

Level suggests that further gap filling is still needed.

 (a) (b)

Figure 3-43: Applying AIM model on a new C3D file; (a) New C3D file; (b) The result of applying AIM model.

3.10 Other QTM Features

 This section provides a brief overview of the skeleton solver and rigid bodies, which are

crucial for animation and the development of six degrees of freedom (6DoF) models.

3.10.1 Skeleton Solver

 The skeleton solver [20] calculates and displays skeleton data based on a specific marker

set. This can be exported to TSV and FBX formats or streamed in real-time to animation

software for retargeting [7]. The procedure includes labeling the skeleton markers,

120

calibrating the skeleton [24], and acquiring the skeleton data (i.e., X, Y, and Z coordinates,

and Roll, Pitch, and Yaw angels) [25], (Figure 3-44).

Figure 3-44: Skeleton Solver

3.10.2 Rigid Body and Euler Angles

 Unlike our human MoCap application, the QTM software also supports tracking of rigid

bodies, defined as bodies where the markers remain fixed relative to each other. Tracking

rigid bodies [26] with six degrees of freedom (6DoF) [28] records the object’s position as

it moves both translationally (left/right, up/down, and forward/backward) and rotationally

along its axes (yaw, pitch, and roll). These Euler angels describe the orientation of a rigid

body with respect to a fixed coordinate system, as shown in Figure 3-45.

Figure 3-45: Euler Angles

121

3.11 Conclusion

 The steps of manual cleaning demonstrated in this article thoroughly illustrate the

challenges and time-consuming nature of manually cleaning MoCap data, particularly

when dealing with large datasets that contain numerous frames, markers, noise, and

complex actions. The reappearing characteristics of passive markers due to occlusion

introduce additional complications, as they increase the number of points within a MoCap

file. Furthermore, the potential short lifespan of these markers can lead them to be mistaken

for noise movements. These challenges are intensified in underwater environments, where

decreased visibility leads to an increased frequency of occlusion. During the manual

cleaning process, it is necessary to frequently change views to accurately distinguish

between markers. This is crucial because, for instance, markers may appear overlapped

from one angle while being spaced apart in another view. Even with automatic marker

identification tools such as the Qualisys AIM model found in commercial software—which

aim to facilitate this process—manual intervention remains essential. This intervention

requires cleaned and labeled training data. These challenges render manual cleaning of

MoCap data both tedious and time-consuming. This situation motivates the exploration of

semi-automatic or fully automatic approaches to streamline the process.

122

References

[1] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” J. Theor.

Appl. Informatics, vol. 12, pp. 61--89, 2005, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7248

[2] J. Yang, T. Li, Z. Chen, and X. Li, “Research on the Method of Underwater

Swimming Motion Capture,” J. Phys. Conf. Ser., vol. 1982, no. 1, pp. 1–4, 2021,

doi: 10.1088/1742-6596/1982/1/012075.

[3] Qualisys, “Qualisys,” Qualisys. https://www.qualisys.com/ (accessed Dec. 10,

2023).

[4] Vicon, “Vicon,” Vicon. https://www.vicon.com/ (accessed Dec. 10, 2023).

[5] A. F. Panaite, S. Rosca, and R. Sibişanu, “Pose and motion capture technologies,”

MATEC Web Conf., vol. 342, p. 05004, 2021, doi:

10.1051/matecconf/202134205004.

[6] Qualisys, “Qualisys Track Manager,” Qualisys, 2011.

https://www.qualisys.com/software/qualisys-track-manager/ (accessed Dec. 10,

2023).

[7] Qualisys, Qualisys Track Manager User Manual, 2022.1. 2022. [Online]. Available:

https://cdn-content.qualisys.com/2022/07/QTM-user-manual.pdf

[8] Qualisys, “Compare our motion capture cameras.”

https://www.qualisys.com/cameras/ (accessed Jul. 24, 2024).

[9] Qualisys, “Cameras for underwater motion capture,” Qualisys.

https://www.qualisys.com/cameras/underwater/ (accessed Jul. 15, 2024).

123

[10] Qualisys, “Swimming,” Qualisys. https://www.qualisys.com/life-

sciences/swimming/ (accessed Nov. 27, 2023).

[11] Qualisys, “Qualisys launches smallest-ever underwater mocap solution,” 2019.

https://press.qualisys.com/posts/pressreleases/qualisys-launches-smallest-ever-

underwater-mo (accessed Jul. 23, 2024).

[12] S. L. Raghu, R. T. Conners, C. kwon Kang, D. B. Landrum, and P. N. Whitehead,

“Kinematic analysis of gait in an underwater treadmill using land-based Vicon T 40s

motion capture cameras arranged externally,” J. Biomech., vol. 124, no. June, p.

110553, 2021, doi: 10.1016/j.jbiomech.2021.110553.

[13] S. Takahashi and S. Kuriyama, “Animations of Real Swimming via Motion

Reconstruction,” 2011.

[14] S. Veiga, J. Lorenzo, A. Trinidad, R. Pla, A. Fallas-Campos, and A. de la Rubia,

“Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic

and Synthetic Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 19, 2022,

doi: 10.3390/ijerph191912196.

[15] Biomechanical-toolkit.github.io, “Mokka,” Biomechanical-toolkit.github.io.

https://biomechanical-toolkit.github.io/mokka/ (accessed Jan. 06, 2024).

[16] SimTK, “OpenSim,” SimTK. https://simtk.org/frs/index.php?group_id=91

(accessed Jan. 05, 2024).

[17] Qualisys, “Using AIM models.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/using_aim_models/using_aim

_models.htm (accessed Aug. 01, 2024).

[18] Qualisys, “How to create an AIM model.” https://www.qualisys.com/video-

124

tutorials/how-to-generate-an-aim-model/ (accessed Aug. 01, 2024).

[19] Qualisys, “Recording an AIM trial.” https://docs.qualisys.com/getting-

started/content/11_aim_series/11a_how_to_create_an_aim_model/recording_an_ai

m_trial.htm?Highlight=T pose (accessed Aug. 01, 2024).

[20] Qualisys, “Using the skeleton solver.” https://docs.qualisys.com/getting-

started/content/getting_started/getting_started_with_animation/using_the_skeleton

_solver.htm (accessed Aug. 01, 2024).

[21] Qualisys, “How to use the skeleton solver for animation – Part 1.”

https://www.qualisys.com/video-tutorials/how-to-set-up-the-skeleton-solver/

(accessed Aug. 01, 2024).

[22] Qualisys, “How to use the skeleton solver for animation - Part 2.”

https://www.qualisys.com/my/qacademy/#!/tutorials/how-to-use-the-skeleton-

solver-for-animation-part-2 (accessed Aug. 01, 2024).

[23] Qualisys, “Setting up an actor’s skeleton.” https://docs.qualisys.com/getting-

started/content/36_skeleton_solver_series/36a_how_to_use_the_skeleton_solver_f

or_animation/setting_up_an_actors_skeleton.htm?Highlight=calibrating the

skeleton (accessed Aug. 01, 2024).

[24] Qualisys, “Calibrating the skeleton.” https://docs.qualisys.com/getting-

started/content/36_skeleton_solver_series/36a_how_to_use_the_skeleton_solver_f

or_animation/calibrating_the_skeleton.htm (accessed Aug. 01, 2024).

[25] Qualisys, “Skeleton data in QTM.” https://docs.qualisys.com/getting-

started/content/36_skeleton_solver_series/36a_how_to_use_the_skeleton_solver_f

or_animation/skeleton_data_in_qtm.htm (accessed Aug. 01, 2024).

125

[26] Qualisys, “Rigid body overview.” https://docs.qualisys.com/getting-

started/content/17_rigid_body_series/17a_how_to_track_rigid_bodies/rigid_body_

overview.htm#:~:text=Your Qualisys system allows you,%2C pitch%2C and roll).

(accessed Aug. 01, 2024).

[27] Qualisys, “Learn about 6DOF.” https://www.qualisys.com/webinars/learn-about-

6dof/ (accessed Aug. 01, 2024).

[28] Qualisys, “Viewing the 6DOF data.” https://docs.qualisys.com/getting-

started/content/17_rigid_body_series/17a_how_to_track_rigid_bodies/viewing_the

_6dof_data.htm?Highlight=angle (accessed Aug. 01, 2024).

[29] Qualisys, “Marine vessels & structures.”

https://www.qualisys.com/engineering/marine-vessels-and-structures/ (accessed

Jul. 26, 2024).

[30] O. Tortorici, C. Péraud, C. Anthierens, and V. Hugel, “Automated Deployment of

an Underwater Tether Equipped with a Compliant Buoy–Ballast System for

Remotely Operated Vehicle Intervention,” J. Mar. Sci. Eng., vol. 12, no. 2, 2024,

doi: 10.3390/jmse12020279.

[31] N. Bauschmann, D. A. Duecker, T. L. Alff, R. C. Hochdahl, and R. Seifried,

“Towards Full Actuation: Reconfigurable Micro Underwater Robots,” IEEE Int.

Conf. Intell. Robot. Syst., pp. 6192–6199, 2023, doi:

10.1109/IROS55552.2023.10341621.

[32] K. J. Nankervis et al., “Effect of speed and water depth on limb and back kinematics

in Thoroughbred horses walking on a water treadmill,” Vet. J., vol. 300–302, p.

106033, 2023, doi: 10.1016/j.tvjl.2023.106033.

126

[33] J. P. Jhan, J. Y. Rau, and C. M. Chou, “Underwater 3D rigid object tracking and 6-

DOF estimation: A case study of giant steel pipe scale model underwater

installation,” Remote Sens., vol. 12, no. 16, pp. 1–14, 2020, doi:

10.3390/RS12162600.

[34] S. Lack, E. Rentzow, and T. Jeinsch, “Control of a small Underwater Vehicle

Manipulator System - a highly automated Pick and Place Experiment *,” no.

February, 2024.

[35] C. Long, “Comparing Lower-Limb Muscle Activity During Gait Performed in Water

Versus on Land by,” UTAH STATE UNIVERSITY, 2023.

[36] B. Worley, “Acute Effects of Multi-Joint Eccentric Exercise on Lower Extremity

Muscle Activation Measured During Land and Water Walking,” UTAH STATE

UNIVERSITY, 2024.

[37] C. Long et al., “Lower Limb Muscle Activation in Young Adults Walking in Water

and on Land,” Appl. Sci., vol. 14, no. 12, p. 5044, 2024, doi: 10.3390/app14125044.

[38] Qualisys, “Products tagged ‘oqus.’” https://www.qualisys.com/product-tag/oqus/

(accessed Jul. 23, 2024).

[39] Qualisys, “5+, 6+ and 7+ series.” https://www.qualisys.com/cameras/5-6-7/

(accessed Jul. 23, 2024).

[40] Qualisys, “Arqus.” https://www.qualisys.com/cameras/arqus/ (accessed Jul. 23,

2024).

[41] J. Lauer, A. H. Rouard, and J. P. Vilas-Boas, “Upper limb joint forces and moments

during underwater cyclical movements,” J. Biomech., vol. 49, no. 14, pp. 3355–

3361, 2016, doi: 10.1016/j.jbiomech.2016.08.027.

127

[42] B. H. Olstad, “A new approach for identifying phases of the breaststroke wave kick

and calculation of feet slip using 3D automatic motion tracking,” BMS Proc., pp.

195–199, 2014.

[43] B. H. Olstad, J. R. Vaz, C. Zinner, J. M. H. Cabri, and P. L. Kjendlie, “Muscle

coordination, activation and kinematics of world-class and elite breaststroke

swimmers during submaximal and maximal efforts,” J. Sports Sci., vol. 35, no. 11,

pp. 1107–1117, 2017, doi: 10.1080/02640414.2016.1211306.

[44] B. H. Olstad, C. Zinner, J. R. Vaz, J. M. H. Cabri, and P. L. Kjendlie, “Muscle

activation in world-champion, world-class, and national breaststroke swimmers,”

Int. J. Sports Physiol. Perform., vol. 12, no. 4, pp. 538–547, 2017, doi:

10.1123/ijspp.2015-0703.

[45] J. Ribeiro et al., “Biomechanics, energetics and coordination during extreme

swimming intensity: effect of performance level,” J. Sports Sci., vol. 35, no. 16, pp.

1614–1621, 2017, doi: 10.1080/02640414.2016.1227079.

[46] K. Abdul Jabbar, S. Kudo, K. W. Goh, and M. R. Goh, “Comparison in three

dimensional gait kinematics between young and older adults on land and in shallow

water,” Gait Posture, vol. 57, no. July 2016, pp. 102–108, 2017, doi:

10.1016/j.gaitpost.2017.05.021.

[47] S. Washino, D. L. Mayfield, G. A. Lichtwark, H. Mankyu, and Y. Yoshitake,

“Swimming performance is reduced by reflective markers intended for the analysis

of swimming kinematics,” J. Biomech., vol. 91, pp. 109–113, 2019, doi:

10.1016/j.jbiomech.2019.05.017.

[48] P. Chainok et al., “Biomechanical Features of Backstroke to Breaststroke Transition

128

Techniques in Age-Group Swimmers,” Front. Sport. Act. Living, vol. 4, no. March,

pp. 1–11, 2022, doi: 10.3389/fspor.2022.802967.

[49] T. Tanaka, S. Hashizume, T. Sato, and T. Isaka, “Competitive-Level Differences in

Trunk and Foot Kinematics of Underwater Undulatory Swimming,” Int. J. Environ.

Res. Public Health, vol. 19, no. 7, 2022, doi: 10.3390/ijerph19073998.

[50] M. Nakashima, R. Kanie, T. Shimana, Y. Matsuda, and Y. Kubo, “Development of

a comprehensive method for musculoskeletal simulation in swimming using motion

capture data,” Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., vol. 237, no. 2,

pp. 85–95, 2023, doi: 10.1177/1754337119838395.

[51] Qualisys, “Qualisys Sports Marker Set,” Qualisys. https://cdn-

content.qualisys.com/2022/07/Sports-Marker-Set.pdf (accessed Dec. 05, 2023).

[52] Qualisys, “High-quality passive & active mocap markers,” Qualisys.

https://www.qualisys.com/accessories/markers/ (accessed Jan. 11, 2024).

[53] Qualisys, “Super-spherical mocap markers.”

https://www.qualisys.com/accessories/markers/super-spherical-markers/ (accessed

Jul. 28, 2024).

[54] Qualisys, “Super-spherical underwater markers.”

https://www.qualisys.com/accessories/markers/underwater-markers-extra-durable/

(accessed Jul. 28, 2024).

[55] Qualisys, “Motion capture for underwater measurements.”

https://www.qualisys.com/cameras/underwater/#tech-specs (accessed Jul. 24,

2024).

[56] Qualisys, “Volume of interest,” Qualisys. https://docs.qualisys.com/getting-

129

started/content/getting started/setting up your system/planning your volume/volume

of interest.htm?Highlight=volume (accessed Jan. 11, 2024).

[57] Unity, “Unity.” https://unity.com/ (accessed Aug. 01, 2024).

[58] Unrealengine, “Unreal Engine.” https://www.unrealengine.com/en-US (accessed

Aug. 01, 2024).

[59] Reallusion, “iClone.” https://www.reallusion.com/iclone/ (accessed Aug. 01, 2024).

[60] Autodesk, “What is MotionBuilder?”

https://www.autodesk.com/products/motionbuilder/free-trial (accessed Aug. 01,

2024).

[61] Autodesk, “What is Maya?” https://www.autodesk.com/ca-

en/products/maya/overview?term=1-YEAR&tab=subscription (accessed Aug. 01,

2024).

[62] Wikipedia, “LabVIEW.” https://en.wikipedia.org/wiki/LabVIEW (accessed Aug.

01, 2024).

[63] Qualisys, “Assembling the calibration kit.” https://docs.qualisys.com/getting-

started/content/8_calibration_series/8a_how_to_calibrate/assembling_the_calibrati

on_kit.htm (accessed Jul. 28, 2024).

[64] Qualisys, “Carbon fiber calibration kit.”

https://www.qualisys.com/accessories/calibration-kits/carbon-fibre-calibration-kit/

(accessed Jul. 28, 2024).

[65] Qualisys, “Calibrating your system,” Qualisys. https://docs.qualisys.com/getting-

started/content/getting_started/running_your_qualisys_system/calibrating_your_sy

stem/calibrating_your_system.htm (accessed Jan. 06, 2024).

130

[66] Qualisys, “How to calibrate.” https://www.qualisys.com/video-tutorials/how-to-

calibrate/ (accessed Jul. 28, 2024).

[67] Qualisys, “Exporting and streaming data.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/exporting_and_streaming_dat

a/exporting_and_streaming_data.htm?Highlight=export (accessed Aug. 01, 2024).

[68] B. Motion, “The C3D File Format A Technical User Guide,” p. 134, 2021.

[69] Wikipedia, “Tab-separated values (TSV).” https://en.wikipedia.org/wiki/Tab-

separated_values (accessed Aug. 01, 2024).

[70] Wikipedia, “Audio Video Interleave (AVI).”

https://en.wikipedia.org/wiki/Audio_Video_Interleave (accessed Aug. 01, 2024).

[71] Wikipedia, “FBX (Filmbox).” https://en.wikipedia.org/wiki/FBX#:~:text=FBX

(Filmbox) is a proprietary,series of video game middleware. (accessed Aug. 01,

2024).

[72] Qualisys, “Exporting files to C3D.” https://docs.qualisys.com/getting-

started/content/13_how_to_visualize_data_in_visual3d/exporting_files_to_c3d.htm

?Highlight=export (accessed Aug. 01, 2024).

[73] Optitrack, “optiTrack.” https://optitrack.com/ (accessed Aug. 02, 2024).

[74] Github, “ezc3d.” https://github.com/pyomeca/ezc3d

[75] Biomechanical-toolkit.github.io, “BTK is evolving to become a bigger project!,”

Biomechanical-toolkit.github.io. https://biomechanical-

toolkit.github.io/news/2016/08/29/btk-evolution/ (accessed Jan. 06, 2024).

[76] S. A et al., “OpenSim: Simulating musculoskeletal dynamics and neuromuscular

control to study human and animal movement Ajay,” PLOS Comput. Biol., vol. 14,

131

no. 7, 2018, doi: 10.3758/BF03326891.

[77] Qualisys, “What is a trajectory.”

https://www.qualisys.com/my/qacademy/#!/tutorials/what-is-a-trajectory (accessed

Jun. 30, 2024).

[78] A. L. Clouthier, G. B. Ross, M. P. Mavor, I. Coll, A. Boyle, and R. B. Graham,

“Development and Validation of a Deep Learning Algorithm and Open-Source

Platform for the Automatic Labelling of Motion Capture Markers,” IEEE Access,

vol. 9, pp. 36444–36454, 2021, doi: 10.1109/ACCESS.2021.3062748.

[79] N. Ghorbani and M. J. Black, “SOMA: Solving Optical Marker-Based MoCap

Automatically,” Proc. IEEE Int. Conf. Comput. Vis., pp. 11097–11106, 2021, doi:

10.1109/ICCV48922.2021.01093.

[80] S. Alexanderson, C. O’Sullivan, and J. Beskow, “Real-time labeling of non-rigid

motion capture marker sets,” Comput. Graph., vol. 69, pp. 59–67, 2017, doi:

10.1016/j.cag.2017.10.001.

[81] M. Kitagawa and B. Windsor, MoCap for Artists Workflow and Techniques for

Motion Capture, no. 0. Elsevier Inc, 2008.

[82] Qualisys, “Swapping trajectories.” https://docs.qualisys.com/getting-

started/content/26_labeling_series/26b_how_to_re-

label__swap__and_split_trajectory_parts/swapping_trajectories.htm?Highlight=sw

ap (accessed Aug. 11, 2024).

[83] Qualisys, “Filling gaps in your data.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/filling_gaps_in_your_data/fill

ing_gaps_in_your_data.htm (accessed Aug. 11, 2024).

132

[84] Qualisys, “Identifying gaps.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/filling_gaps_in_your_data/id

entifying_gaps.htm?Highlight=fill level (accessed Jul. 03, 2024).

[85] Qualisys, “Fill types.” https://docs.qualisys.com/getting-

started/content/37_trajectory_editor_series/37b_how_to_use_the_trajectory_editor

_-_gap-filling/fill_types.htm (accessed Aug. 11, 2024).

[86] Qualisys, “Smoothing your data,” Qualisys. https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/smoothing_your_data/smooth

ing_your_data.htm (accessed Jan. 12, 2024).

[87] Qualisys, “Smoothing types,” Qualisys. https://docs.qualisys.com/getting-

started/content/37_trajectory_editor_series/37c_how_to_use_the_trajectory_editor

_-_smoothing/smoothing_types.htm?Highlight=smoothing types (accessed Aug.

11, 2024).

[88] Qualisys, “How to train an AIM model.”

https://www.qualisys.com/my/qacademy/#!/tutorials/how-to-train-an-aim-model

(accessed Aug. 12, 2024).

[89] Qualisys, “How to apply AIM models.”

https://www.qualisys.com/my/qacademy/#!/tutorials/how-to-apply-aim-models

(accessed Aug. 12, 2024).

133

4. Semi-supervised Geometry-based Cleaning and Labeling of

Sparse Freestyle Underwater Optical MoCap Data

Abstract

 This paper presents an interactive labeling method for underwater optical motion

capture (MoCap) markers to simplify the tedious manual data cleaning process. Using a

sparse freestyle MoCap dataset, containing only 21 passive physical markers, poses

challenges when applying many traditional denoising solutions. Hence, a novel method is

employed to remove extraneous markers based on the norm differences, and outliers are

eliminated by detecting abnormalities in velocity, acceleration, and jerk profiles. The

geometry-based algorithm identifies valid markers amid remaining noise and ghost markers

by assuming a rigid body and incorporating user-defined tolerances to demonstrate

deviations from rigidity concerning the angles and distances within the marker set. It first

uses a Principal Component Analysis-based method to detect pelvis points, which are then

used to identify other body part markers. This process includes recognizing corresponding

passive reappearing markers and using a body side detection method to assign unique labels

to each marker. A method is used to reconstruct dropped markers that were not captured in

any frames. An evaluation was carried out visually, demonstrating a 100% detection

accuracy for valid markers. This algorithm effectively streamlines the time-consuming

manual cleaning process of MoCap data. In the future, we will explore the use of additional

ghost markers and automatic side detection in the pelvis detection procedure.

134

4.1 Introduction

 Marker-based optical motion capture (OMC) [1] systems are advanced technologies

used to track the three-dimensional (3D) motion of markers attached to a subject’s body.

These systems are employed for a wide range of applications in diverse environments [2].

Qualisys underwater Miqus motion capture (MoCap) cameras are the first commercially

available optical MoCap cameras for underwater use [3] for various applications such as

in-water rehabilitation using underwater treadmills, underwater animation, and swimming

performance analysis, by using Qualisys Track Manager (QTM) software [4]. However,

MoCap systems are susceptible to errors stemming from various factors, including

inadequate calibration, noisy environments, and occlusion [5]. Underwater settings present

additional challenges compared to other environments due to factors such as surface

reflections and reduced visibility [6], which contribute to increased noise levels and further

occlusions. Therefore, manual cleaning [7] is an essential part of MoCap data processing,

involving tasks such as denoising, recovering data, and labeling MoCap markers.

 The challenge of manually cleaning underwater MoCap data is heightened by the

occlusion effects associated with passive marker systems. In these systems, markers are

commonly given an ID when first detected, but then given a random new ID when they

reappear after tracking is lost (e.g., being occluded), leading to the creation of partial

trajectories that are not connected instead of complete trajectories [8]. Therefore, post-

processing is necessary to identify “reappearing” markers and merge short segments linked

to a specific physical marker, creating a complete trajectory with gaps. Additionally, body

side detection is required to differentiate corresponding markers on the left and right sides

135

of the body. Meanwhile, active marker systems may experience gaps in trajectories due to

occlusions which can be filled with gap-filling approaches.

 The number of physical markers significantly impacts manual cleaning for underwater

MoCap data [9], which experiences more occlusion and noise than other environments.

Increasing the number of markers improves accuracy and reduces occlusion issues by

providing redundant tracking points, enhancing post-processing capabilities. However, this

comes with drawbacks such as longer setup times, discomfort for subjects, complex data

processing, high computational loads, and potential marker interference from closely

spaced markers that can lead to tracking inaccuracies or added noise. On the other hand,

using fewer (and as a result, more sparse) markers with larger spacing can complicate

statistical outlier detection, particularly when there is a higher ratio of outliers compared to

valid markers.

 Freestyle [10] underwater movement complicates manual cleaning due to the unique

properties of water, which allow for intricate rotations, direction changes, and floating that

are difficult to replicate on land. This complexity makes it hard to identify and predict

marker movements specifically during gaps due to their unpredictable nature.

 To tackle the challenges of manual cleaning in MoCap, researchers have turned to

machine learning and deep learning techniques to automate this labor-intensive process

[11]. These methods still necessitate training and ground truth datasets that have undergone

manual cleaning and labeling [12]. While some methods utilize simulated data to eliminate

the necessity for manual labeling to generate training sets, they still require manual labeling

for MoCap datasets that exhibit significant variations in marker placement compared to

their simulation marker set [8]. Moreover, these methods may not perfectly replicate real-

136

world variations in human motion. Additionally, commercial software tools like QTM’s

Automatic Identification of Markers (AIM) [13] can speed up manual cleaning, but they

require purchase and still need manual input. Free software such as Mokka [14] offers

measurements between markers, yet it is difficult to manage all angles and distances

simultaneously due to occlusions and the large number of markers and frames. Manual

cleaning also often necessitates frequent view changes to accurately assess distances and

movements.

 To our knowledge, there are currently no publicly available OMC datasets for

underwater freestyle actions. Additionally, datasets featuring surface-level swimming

actions (e.g., backstroke, breaststroke, butterfly, and front crawl) [15] are scarce and limited

in size, and these actions do not fully represent underwater or freestyle activities. Therefore,

there is a need to create comprehensive MoCap datasets specifically for underwater

freestyle actions to tackle the unique challenges posed by underwater conditions.

 This paper proposes a semi-supervised geometry-based cleaning and labeling method

implemented in MATLAB to streamline the challenging and tedious process of manual

cleaning MoCap data. Our sparse marker set included 21 passive physical markers, whereas

Qualisys recommends a minimum of 41 markers for human tracking [16], and universal

datasets like AMASS contain marker sets ranging from 37 to 91 markers [17]. This decision

was made due to the significantly high time required for underwater setup and with

consideration for the comfort of the swimmer. Additionally, our research aimed to explore

the challenges associated with sparse MoCap datasets. For example, the relatively large gap

between our markers on the hip and knee made it challenging to denoise using common

algorithms. Hence, a novel statistical denoising approach leverages the difference of norms

137

to eliminate extraneous markers. Additionally, outliers are removed through repetitive

checks to identify abnormalities in velocity, acceleration, and jerk profiles.

 A geometry-based algorithm detects valid markers among remaining noise and ghost

markers by assuming rigid body conditions. It compares angles and distances in datasets to

those in the marker set, applying user-defined tolerances for rigidity deviations. First, pelvis

points are detected by incorporating Principal Component Analysis (PCA) [18]. These

detected pelvis points are subsequently utilized to identify markers for other body parts.

This process involves identifying corresponding passive reappearing markers and

employing a body side detection method to locate short trajectories associated with each

physical marker. Subsequently, these short trajectories are merged, and the gaps between

them are filled using linear interpolation. This results in a unique label for each physical

marker along with its corresponding complete trajectory across all frames. Moreover, a

trajectory is created using the triangulation method for a dropped marker that was not

captured in any frames during data collection.

 The visual evaluation demonstrated a 100% accurate detection of 21 valid markers on

our 10 C3D files [19], [20], captured at 100 Hz, with totally 7792 frames of underwater

freestyle MoCap data captured using 7 Qualisys Miqus M5U Underwater MoCap cameras.

In the future, we explore additional ghost markers and automatic side detection.

 The paper is structured as follows: Section 4.2 details explanation of MoCap cleaning

and labeling problems that we aim to address in this article. Section 4.3 describes the

proposed method along with its rationale and design considerations. Section 4.4 presents

the experimental results and discussion, and Section 4.5 summarizes the article.

138

4.2 MoCap Cleaning and Labeling Problem

 MoCap data captures the 3D positions of markers at a specific frame rate (i.e., capturing

frequency). The trajectory [21] of a marker shows its movement path over time, represented

by its 𝑥, 𝑦, and 𝑧 coordinates at any moment. The “fill level” [22] indicates how visible a

point is, calculated by dividing the number of frames where the point was tracked by the

total frames captured during the MoCap session, expressed as a percentage. The total points

in a MoCap file may differ from the number of physical markers due to factors like noise,

dropped markers, and occlusion effects on passive markers. The following sections

elaborate on these two issues: noise and ”reappearing” passive markers.

4.2.1 Noise

 Each frame of a MoCap file, as shown in Figure 4-1, may contain valid markers (black)

and various noise types: extraneous (blue), outlier (green), overlapped (yellow), ghost (red),

and missing marker due to occlusion or dropped markers.

Figure 4-1: MoCap Noise Types; Outlier (green), Ghost (red), Extraneous (blue), Overlapped (yellow)

139

 Extraneous markers are real markers from other objects, while outliers are inaccurate

measurements that deviate significantly from expected values. Overlapping markers occur

when points are closer than the marker size or measurement accuracy. Ghost markers are

virtual markers near valid ones. Occlusion [8] typically causes gaps in active marker

trajectories and leads to “reappearing” markers in passive systems.

4.2.2 Passive Marker Characteristics: Reappearing Markers

 In MoCap data, a physical marker is assigned a random ID (e.g., ID1) upon first tracking

in a frame. Passive markers typically receive new IDs after occlusion, while active markers

keep the same ID. Thus, an active marker has a unique ID and a complete trajectory with

possible gaps due to occlusion. Conversely, a passive marker may be linked to multiple

IDs, each corresponding to a short trajectory segment. Therefore, post-processing is needed

to merge these segments into a complete trajectory with gaps and assign a single ID.

[

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑚

] [

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

]… [

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

]

Figure 4-2: MoCap C3D Data representation of an active marker

[

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑛

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

] … [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

]

Figure 4-3: MoCap C3D Data representation of a passive marker

 Figure 4-2 and Figure 4-3 depict the contents of a MoCap file for an active and passive

marker, highlighting the occlusion effect. Each matrix represents a single frame, with rows

for 3D coordinates and columns for individual points. In Figure 4-2, active point 1 is

occluded in frame 2, leading to its 3D coordinates being recorded as null values ([NaN,

NaN, NaN]). When it reappears in frame 3, it retains ID1 until the last frame. In contrast, in

Figure 4-3, passive point 1 remains null from frame 2 onward.

140

 An example is shown in Figure 4-4, showcasing a physical calf marker with the ID20

(orange) in the top left image. Its trajectory, as depicted in the bottom row image, remains

visible from frame 1 to frame 253. Then, it disappears only to reappear again in frame 308

with a new ID5 (yellow), remaining visible until the end at frame 460. Thus, post-processing

is required to merge the trajectories of ID20 and ID5, creating a complete trajectory from

frame 1 to frame 460, with a gap between frames 253 and 308. Subsequently, label ID20

must be assigned to this trajectory and label ID5 removed.

Figure 4-4: Passive Markers Characteristic

141

4.3 Experimental Methodology

 The overview of our system is illustrated in Figure 4-5. The left flowchart outlines the

sequential steps of the proposed algorithm, while the right image depicts our marker set,

which comprises 21 distinct markers. The preprocessing and statistical processing phases

are designed to reduce noise interference and computation load by minimizing data points.

The geometry-based inlier detection method identifies valid markers using rigid body

assumptions. As a result, the algorithm refines raw, noisy MoCap data into a cleaned and

labeled dataset. The evaluation of the processed data was conducted visually. The

subsequent sections detail the steps of our methodology.

Figure 4-5: System Overview

Far Outlier Removal

Overlap Removal

Extraneous Removal

Anomaly Removal
(in Norm, Velocity, Acceleration,

& Jerk Profiles)

Invalid Label Removal

Statistical Processing

Dropped Marker

Reconstruction

Remaining Noise Removal

Limb & Head Detection
(Hip, Knee, Calf, Ankle, Elbow,

Hand, Head)

PCA-based Pelvis

Detection

Near Outlier Removal

Preprocessing

Geometry-based Inlier Detection

Read Raw C3D

Cleaned C3D

Torso Detection
(Shoulder, Stomach, Chest)

142

4.3.1 Preprocessing

 The following sections outline how to read C3D [19] MoCap files using MATLAB and

eliminate invalid or overlapping points. The implementation was executed using MATLAB

R2022b on an 11th Gen Intel i7 processor running at 2.80GHz, with 16.0 GB of RAM. To

visualize C3D files, we utilize QTM [4] and Mokka [14].

4.3.1.1 Reading a C3D file using EZC3D Library in MATLAB

 To process the data, we utilized the EZC3D library [23] in MATLAB to read C3D files.

Algorithm 1 presents the pseudocode for extracting key information from a C3D file.

Algorithm 1 Read C3D File

 1: addpath(′\MATLAB\ezc3d′)

 2: 𝑐3𝑑 ← ezc3dRead(′𝑇𝑒𝑠𝑡. c3d′)

 3: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 READC3D(𝑐3𝑑)

 4: 𝑝𝑜𝑖𝑛𝑡𝑠 ← c3d. data. points(: , : , :)

 5: //𝑝𝑜𝑖𝑛𝑡𝑠(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑠)

 6: 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 ← c3d. header. points. size

 7: 𝐿𝑎𝑏𝑒𝑙𝑠 ← c3d. parameters. POINT. LABELS. DATA

 8: 𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠 ← size(𝐿𝑎𝑏𝑒𝑙𝑠, 1)

 9: 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← c3d. parameters. POINT. FRAMES.DATA

10: //𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← size(𝑝𝑜𝑖𝑛𝑡𝑠, 3)

11: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, 𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠
12: 𝐄𝐧𝐝

4.3.1.2 Invalid Label Removal

 Labels containing no information (i.e., null or NaN) across all frames were removed to

decrease computational load. This issue may arise when a C3D file is exported from a larger

C3D file without adequate trimming, resulting in more points than labels due to leftover

143

points from the original file. Figure 4-2 and Figure 4-3 show an invalid point 2 (i.e., the

second column of each matrix) that is null across all frames (i.e., [NaN, NaN, NaN]).

4.3.1.3 Overlap Removal

 In each frame, we initially calculated the Euclidean distance between every pair of

points (e.g., using the “pdist()” function in MATLAB). We defined a minimum distance

criterion of 6mm, based on the minimum Qualisys marker size of 6.5 mm [24]. If any two

markers were closer than 6mm, they were classified as overlapping. Figure 4-6 shows these

overlapping markers in green and blue. Two markers (visible as large gray orbs above

marker ID19) visually appears to overlap; however, both are valid waist and hip markers

that are close due to a treading motion resembling sitting actions, keeping them at a distance

greater than 6mm.

Figure 4-6: Overlapped Markers

4.3.2 Statistical Processing

 Extraneous markers and far outlier removal are discussed in the following sections.

4.3.2.1 Extraneous Removal

 Extraneous markers are defined as those belonging to stationary objects with a fill level

of 100%. Our innovative approach for eliminating these markers utilized clustering of norm

144

differences. We assumed the extraneous markers were far from the valid ones in all frames.

If this was not the case, the markers would remain and be addressed in subsequent steps.

 We calculated the Euclidean norm of each point 𝒑 = (𝑥, 𝑦, 𝑧) in every frame relative to

the origin 𝑂 = (0,0,0) as 𝑛𝑜𝑟𝑚(𝑝) = ‖𝒑‖ = √𝒑 ⋅ 𝒑 = √𝑥2 + 𝑦2 + 𝑧2. Subsequently, we

sorted these norms and their correspondence labels, then computed the difference between

each norm value and the preceding norm value. To eliminate abnormalities, we applied a

threshold of three standard deviations (SD) [25] from the mean (e.g., using “isoutlier()”

function in MATLAB).

Figure 4-7: Sorted norms differences for two C3Ds with (left) and without (right) extraneous markers..

 Figure 4-7 displays an example for two C3D files, with and without extraneous markers.

A red star indicates an abnormality where the distance between sorted labels 5 and 6 is

significant, leading to two clusters. Consequently, this C3D file contains 5 extraneous

markers (sorted labels 1, 2, 3, 4, and 5).

 It is essential to note that utilizing k-means clustering with our sparse dataset of 21 valid

markers and significant space between markers on the hips and knees is ineffective.

145

4.3.2.2 Far Outlier Removal based on Anomaly in Norm Profile

 Far outliers were eliminated based on abnormalities identified in the sorted norm plot

for each frame, utilizing a threshold of three standard deviations (SD) from the mean. This

function cannot be applied before removing extraneous markers due to the number and

distribution of valid and invalid points within each frame. We used 21 sparse real markers,

alongside 5 closely located extraneous markers. The presence of these extraneous markers

leads to a lack of abnormal peaks in the sorted norm plot when assessed against three SD

or other thresholds, as shown in the third image of the first row of Figure 4-8.

Figure 4-8: Far outlier removal; Before (top) and after (bottom) extraneous removal.

146

 In this figure, the first row displays plots of the sorted norm difference (middle image)

and sorted norm (right image) for a C3D file that includes extraneous markers, represented

as green orbs in the left image. No abnormalities are detected in the norm plot; the

abnormality identified in the norm differences plot is associated with the extraneous

markers (i.e., the blue orb in the first image). In the second row, after removing the

extraneous markers, an abnormality is observed in both the middle and right images, which

correctly corresponds to a far outlier.

 The inability to remove far outliers based on the distance of neighboring markers using

Euclidean distance (e.g., using the “pdist()” function in MATLAB) within three SD (or

other thresholds, such as median and quartiles) is primarily due to the sparsity of our

dataset. Moreover, the low fill level of valid passive markers also impacts this process.

4.3.2.3 Anomaly detection in Velocity, Acceleration, and Jerk Profiles

 Nearby outliers that were not removed in the previous step due to their proximity to

valid markers (i.e., markers with norms within three SD) were detected based on their

abnormal movement behavior. These anomalies exhibited irregularities in velocity (rate of

change of position), acceleration (rate of change of velocity) (as seen in [26]), and jerk (rate

of change of acceleration) profiles compared to the more consistent behaviours of valid

markers, which are constrained by human biomechanical limits.

 However, a major challenge may arise in removing noise from passive markers due to

their low fill level, which can cause their behavior to mimic noise during their brief lifespan.

This makes it difficult to distinguish between actual marker behavior and noise using above

traditional methods. Moreover, valid markers can remain static throughout their short

147

lifetime due to short segment trajectories or lack of movement in certain actions, such as

the chest when a person is treading water and only moves their hands or upper body.

 To resolve this issue, we eliminated movement anomalies with a fill level below 1%.

These anomalies typically consist of only a few frames of detection, so even if false

detections occur, their removal does not significantly affect the overall tracking of the

marker’s movement. Interpolation or other gap-filling methods can compensate for the

removed data points. A visual inspection was performed to ensure the accuracy of this

removal. Any remaining outliers with higher fill levels will be addressed in later stages of

data processing.

Figure 4-9: Abnormalities in mean velocity (left), acceleration (middle), and jerk (right) profiles representing outliers.

 It is essential to note that currently, no single method can eliminate all outliers from

MoCap data. Therefore, a combination of techniques was used to enhance the quality of

data analysis. As illustrated in Figure 4-9, two anomalies, ID26 and ID36, were identified

using the mean velocity profile. Additionally, label 43 was pinpointed utilizing the mean

acceleration profile, while label 33 was detected through the mean jerk profile. Notably, all

anomalies were accurately identified. In this context, outliers are defined as data points that

fall beyond three SD from the mean values of velocity, acceleration, and jerk.

148

 Analysis of Figure 4-10 reveals a valid marker, label 7 highlighted in blue, that was

identified as an abnormality in the mean velocity and jerk profiles but was not classified as

an outlier due to fill level greater than 1%. Notably, this marker is valid, representing data

collected from the left hand. Label 27, highlighted in green, was correctly identified as an

anomaly and therefore an outlier in the acceleration profile.

Figure 4-10: Label 7 (Hand) was identified as an abnormality in the mean acceleration profile but later excluded as an

outlier due to a filling level exceeding 1%.

4.3.2.4 Repetitive Anomaly Detection

 Noise significantly affects the mean values of norms, velocity, acceleration, and jerk.

Thus, by applying the methods in steps 4.3.2.2 and 4.3.2.3, some noise was eliminated with

a single application. Repeated applications of these methods, until no abnormalities were

detected, identified most remaining outliers, drastically reducing data points (e.g., one

dataset reduced from 41 to 28 points).

149

4.3.3 Geometry-based Inlier Detection

 We implemented a geometry-based algorithm to identify valid markers amid remaining

noise and ghost markers based on rigid body assumptions. Markers on a single bone form

a rigid body part that can combine into rigid body triangle segments. We detected valid

markers by comparing the bone lengths and joint angles of these segments in a MoCap file

with predefined measurements from the marker set. However, the inherent flexibility of

human anatomy—such as stretching and compressing—complicates this assumption. To

address this challenge, we introduced tolerances and action constraints to approximate

these segments as rigid bodies.

 First, we identified pelvis points (spine, left and right waists) using a body side detection

algorithm, which served as reference points for detecting other body markers. Next, torso

points (left and right shoulders, chest, stomach) were identified. To reduce computational

load, we eliminated near outliers by estimating a maximum region of interest (ROI) for

valid markers based on the detected pelvis and torso markers. Subsequently, we detected

lower limb points (hip, knee, calf, ankle), head points (left and right), and upper limb left

and right points (elbow and hand). After identifying all valid markers, any remaining noise

was removed. Finally, a triangulation method was used to locate a dropped ankle marker

that was not captured in any frames. The evaluation was conducted visually.

 Algorithm 2 presents the key steps for detecting inlier valid markers. Initially, we

processed the C3D file from prior statistical analysis (Section 4.3.2). This process returned

detected label (assignedLabel) for each pelvis points and a new C3D file (newC3D) that

contained the visually confirmed cleaned pelvis segment. Subsequently, we inputted this

150

new C3D file (newC3D) back into Algorithm 2 to detect and label the chest marker. This

iterative process continued until all inlier valid markers were detected and labeled.

Algorithm 2 Inlier Detection

 1: 𝐶3𝐷 ← Cleaned 𝑛𝑒𝑤𝐶3𝐷 file outputted from the previous iteration
 2: // point(trajectory) ≡ point(frames of visibility)

 3: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 INLIERDETECTION (𝐶3𝐷)

 4: 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, ~, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← READC3D(𝐶3𝐷)
 5: 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 ← reappearing IDs for a passive marker

 and their corresponding 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠

 6: // "Shared Steps":

 7: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝐹𝑙𝑎𝑔 = 1 𝐢𝐟 ⋂(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠)) ≠ ∅

 8: 𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← 𝑀erge short 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 of 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠

 9: 𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← linear_interpolate(𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)

10: 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙 ← Assign a label (unique ID) to 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠

11: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠 ← IDs that should be removed from 𝐶3𝐷

12: 𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝐿𝑎𝑏𝑒𝑙𝑠(𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠) = ∅

13: 𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠, 𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)
14: 𝑛𝑒𝑤𝐶3𝐷 ← Modify 𝐶3𝐷 with 𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠
15: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛𝑒𝑤𝐶3𝐷, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙
16: 𝐄𝐧𝐝

Detected Points (IDs) Merged Trajectory Gap-filled Trajectory

Figure 4-11: Inlier Detection; Detected Points (left), Shared Steps (middle and right).

 A passive physical marker can be associated with multiple IDs (i.e., “reappearing”

markers) due to occlusion. Consequently, the detectedPoints variable may include several

IDs for each marker along with their trajectories, as illustrated in Figure 4-11 (first tile).

The detectedPoints were identified according to specific geometric constraints and

tolerances that are unique to each body segment.

ID1 ID2 ID3 ID4
Gap1 Gap2 Gap3

assignedLabel (e.g., ID1)

151

 After identifying the IDs (detectedPoints) for a specific physical marker, several steps

were followed to create a new C3D file (newC3D) where this specific marker was cleaned

and labeled. We refer to these steps as “shared steps” (Algorithm 2, steps 6 to 16) because

their functionalities remain consistent for each specific physical marker.

 In the initial phase of the shared steps, the short trajectories associated with a specific

physical marker were analyzed to confirm that there were no intersections. This is essential

because each physical marker should appear only once per frame; any overlap may indicate

a false detection or a nearby ghost marker that meets the geometric criteria and is

incorrectly identified as valid. If intersections were detected, users should be referred to

conduct a visual inspection to keep a valid marker and remove any ghost or false detection.

In the next phases of shared steps, as illustrated in Figure 4-11 (second and third tiles), the

short trajectories of a specific physical marker were merged into a single trajectory

(mergedTrajectory), gaps were filled using linear interpolation (gapfilledTrajectory), and

each was assigned a unique identifier (assignedLabel) like ID1. The remaining IDs

(removedLabels) were eliminated from the original list of labels (Labels), creating a new

list (newLabels). New data points (newPoints) were then created using newLabels and the

gapfilledTrajectory. The original C3D file (C3D) was modified with these newPoints to

produce an updated C3D file (newC3D). Ultimately, this inlier detection function returned

a cleaned and labeled new C3D file (newC3D) along with the unique label (assignedLabel)

for a specific physical marker, facilitating the detection of the next valid physical marker.

 The following sections outline the process for identifying valid markers (detectedPoints)

for various body segments: pelvis, torso, lower limb, head, and upper limb. The “shared

152

steps” will not be repeated. Algorithm 3 outlines the essential functions for calculating

distances and angles between markers utilized in all steps.

Algorithm 3 Fundamental Functions

 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3)

 2: 𝐟𝐨𝐫 𝑓𝑟𝑎𝑚𝑒 = 1, … , 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 𝐝𝐨

 3: [𝑥1 𝑦1 𝑧1] ← 𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝐼𝐷1, 𝑓𝑟𝑎𝑚𝑒)′
 4: [𝑥2 𝑦2 𝑧2] ← 𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝐼𝐷2, 𝑓𝑟𝑎𝑚𝑒)′

 5: 𝑃1
⃗⃗ ⃗[𝑓𝑟𝑎𝑚𝑒] ← [𝑥1 𝑦1 𝑧1] − [𝑥2 𝑦2 𝑧2]

 6: 𝑃1𝑚𝑎𝑔
← ||𝑃1

⃗⃗ ⃗[𝑓𝑟𝑎𝑚𝑒]|| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

 7: 𝐞𝐧𝐝 𝐟𝐨𝐫

 8: �⃗� 2, 𝑃2𝑚𝑎𝑔
, �⃗� 3, 𝑃3𝑚𝑎𝑔

← 𝐋𝐨𝐨𝐩 steps 2 to 7 𝐟𝐨𝐫 (𝐼𝐷1, 𝐼𝐷3), (𝐼𝐷2, 𝐼𝐷3)

 9: 𝐫𝐞𝐭𝐮𝐫𝐧 �⃗� 1, 𝑃1𝑚𝑎𝑔
, �⃗� 2, 𝑃2𝑚𝑎𝑔

, �⃗� 3, 𝑃3𝑚𝑎𝑔

10: 𝐄𝐧𝐝

11: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒)

12: 𝑃1
⃗⃗ ⃗, 𝑃1𝑚𝑎𝑔

, ~, ~, ~, ~ ← VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, ~)

13: 𝑑𝑠𝑒𝑙 ← 𝑃1𝑚𝑎𝑔
[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒]

14: 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 𝐝𝐨

15: 𝑑 ← Append 𝑃1𝑚𝑎𝑔
[𝑖]to 𝑑 𝐢𝐟 𝑃1𝑚𝑎𝑔

[𝑖] ≠ NaN

16: 𝐞𝐧𝐝 𝐟𝐨𝐫
17: 𝑑𝑚𝑒𝑎𝑛 ← 𝑚𝑒𝑎𝑛(𝑑)

18: 𝑑𝑠𝑡𝑑 ← 𝑠𝑡𝑑(𝑑) = √
∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)2

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠
𝑗=1

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠

19: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑑, 𝑑𝑚𝑒𝑎𝑛, 𝑑𝑠𝑡𝑑 , 𝑑𝑠𝑒𝑙

20: 𝐄𝐧𝐝

21: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3)

22: �⃗� 1, 𝑃1𝑚𝑎𝑔
, �⃗� 2, 𝑃2𝑚𝑎𝑔

, �⃗� 3, 𝑃3𝑚𝑎𝑔
← VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3)

23: // MATLAB Functions: 𝑎𝑡𝑎𝑛2𝑑, 𝑐𝑟𝑜𝑠𝑠, 𝑑𝑜𝑡, 𝑖𝑠𝑛𝑎𝑛, 𝑠𝑡𝑑, 𝑛𝑜𝑟𝑚,𝑚𝑒𝑎𝑛
24: // Search all frames and retain not NaN θ1, θ2, θ3 values

25: 𝜃1 ← ~isnan(𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑃1
⃗⃗ ⃗, 𝑃2

⃗⃗⃗⃗)), 𝑑𝑜𝑡(𝑃1
⃗⃗ ⃗, 𝑃2

⃗⃗⃗⃗)))

26: 𝜃2, 𝜃3 ← 𝐋𝐨𝐨𝐩 step 25 𝐟𝐨𝐫 (−𝑃1
⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑃3

⃗⃗⃗⃗), (−𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗, −𝑃3

⃗⃗⃗⃗)

27: 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
 ← 𝑚𝑒𝑎𝑛(𝜃1),𝑚𝑒𝑎𝑛(𝜃2),𝑚𝑒𝑎𝑛(𝜃3)

28: 𝜃1𝑠𝑡𝑑
, 𝜃2𝑠𝑡𝑑

, 𝜃3𝑠𝑡𝑑
 ← 𝑠𝑡𝑑(𝜃1), 𝑠𝑡𝑑(𝜃2), 𝑠𝑡𝑑(𝜃3)

29: 𝐫𝐞𝐭𝐮𝐫𝐧 𝜃1, 𝜃2, 𝜃3, 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
, 𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

30: 𝐄𝐧𝐝

153

4.3.3.1 Pelvis Detection

 The pelvis is the most rigid segment of the body within our tracking data. Therefore, we

can identify the triangle formed by the spine, right waist, and left waist markers based on

our marker set and action constraints such as distances and angles while considering user-

defined tolerances. We assumed that pelvis points appear simultaneously in at least one

frame.

 First, we detected the probable pelvis points (i.e., reappearing passive marker IDs due

to occlusion, see Figure 4-11 (first tile)) based on the geometric constraints of the marker

set, without relying on precise values for distances and angles. Next, we refined our initial

detection of potential candidates by applying orientation constraints. We employed PCA to

determine the majority axis, attempting to identify the orientation of the human. Third, we

accurately identified the correct pelvis points among the potential candidates by analyzing

precise distances and angle values derived from our marker set. Fourth, we differentiated

between the left and right sides of the body to allow detected pelvic triangles to be

connected across broken trajectories (i.e., reappearing markers). Finally, we executed the

“shared steps” (refer to Algorithm 2, lines 6 to 16) to output the detected pelvis point IDs

(Sp, RW, LW) and generated a new C3D file containing the cleaned pelvis segment. This

cleaned segment was utilized for the detection of the next valid markers (i.e., torso segment)

in the subsequent section (section 4.3.3.2). The details of this process are outlined in

Algorithm 4 and are further elaborated upon here. We inputted the points (points) retrieved

from the C3D file using Algorithm 1 (i.e., the READC3D function) into this algorithm. It

returned pelvis points (pelvisPoints) (i.e., Sp, RW, LW) and a new C3D file (new C3D).

154

Algorithm 4 Pelvis Detection

 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠)

 2: 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 & j = 1, … , num_points & 𝑖 ≠ 𝑗 𝐝𝐨

 3: 𝑑, 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑 , ~ ← DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑖, 𝑗, ~)

 4: 𝐢𝐟 𝑑𝑠𝑡𝑑 < ∆𝑑𝑠𝑡𝑑 𝐭𝐡𝐞𝐧

 5: 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 ← Append [𝑖, 𝑗] to 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠

 6: 𝐞𝐧𝐝 𝐟𝐨𝐫

 7: 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 ← 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 ← ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 3)
 8: 𝐟𝐨𝐫 𝑘 = 1, … , 𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 𝐝𝐨

 9: 𝑓𝑟𝑎𝑚𝑒𝑐 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘]))

10: //e. g. , framec[Trio1] =∩ (p1(traj), p2(traj), p3(traj))if Trio1 = (p1, p2, p3)

11: 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 ← 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 𝐢𝐟 𝑓𝑟𝑎𝑚𝑒𝑐 ≠ ∅

12: 𝐴[𝑘], 𝐵[𝑘], 𝐶[𝑘] ← 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][1], 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][2], 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][3]
13: 𝑓𝑐𝑠 ← min(𝑓𝑟𝑎𝑚𝑒𝑐[k]) //first common frame in each 𝑇𝑟𝑖𝑜

14: 𝐞𝐧𝐝 𝐟𝐨𝐫

15: 𝐴𝐵, 𝑑1, 𝐴𝐶, 𝑑2, 𝐵𝐶, 𝑑3 ← 𝑉ECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐴, 𝐵, 𝐶)

16: 𝐴𝐵𝑐𝑠, 𝑑𝑐𝑠1 ← AB[𝑓𝑐𝑠], 𝑑1[𝑓𝑐𝑠]
17: 𝐴𝐶𝑐𝑠, 𝑑𝑐𝑠2, 𝐵𝐶𝑐𝑠, 𝑑𝑐𝑠3 ← 𝐋𝐨𝐨𝐩 step 15 𝐟𝐨𝐫 𝐴𝐶, 𝑑2, 𝐵𝐶, 𝑑3

18: 𝐴, 𝐵, 𝐶 ← Keep noncollinear Trios (i. e. , 𝐢𝐟 𝑐𝑟𝑜𝑠𝑠(𝐴𝐵𝑐𝑠, 𝐴𝐶𝑐𝑠) == 0)
19: 𝐢𝐟 |𝑑𝑐𝑠1 − 𝑑𝑐𝑠2| < ∆𝑑, |𝑑𝑐𝑠1 − 𝑑𝑐𝑠3| < ∆𝑑, |𝑑𝑐𝑠2 − 𝑑𝑐𝑠3| < ∆𝑑 𝐭𝐡𝐞𝐧

20: 𝐴, 𝐵, 𝐶 ← 𝐴, 𝐵, 𝐶 (Keep Isosceles 𝐴, 𝐵, 𝐶 Triangles)
21: 𝐞𝐧𝐝 𝐢𝐟

22: 𝜃1, 𝜃2, 𝜃3, 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
, 𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

← 𝐴NGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐴,𝐵,𝐶)
23: 𝐴, 𝐵, 𝐶 ← Keep 𝐴, 𝐵, 𝐶 Trios 𝐢𝐟 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑇𝑟𝑖𝑜: 𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

< ∆𝜃𝑠𝑡𝑑

24: 𝑆𝑝,𝑊1,𝑊2 ← Sort 𝐴, 𝐵, 𝐶 Trios with 𝑚𝑎𝑥(𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
) first

25: 𝜃𝑠𝑝 , 𝜃𝑤1, 𝜃𝑤2 ← 𝜃1[𝑓𝑐𝑠], 𝜃2[𝑓𝑐𝑠], 𝜃3[𝑓𝑐𝑠] //assume θ1 is max
26: 𝐢𝐟 𝜃𝑊1 + 𝜃𝑊2 < 𝜃𝑆𝑝 & |𝜃𝑊1 − 𝜃𝑊2| < ∆𝜃 & |𝑑𝑊1 − 𝑑𝑊2| < ∆𝑑 𝐭𝐡𝐞𝐧

27: 𝑆𝑝,𝑊1,𝑊2 ← Keep 𝑆𝑝,𝑊1,𝑊2 Trios
28: 𝐞𝐧𝐝 𝐢𝐟

29: 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 ← first frame in 𝑓𝑟𝑎𝑚𝑒𝑐 of each Trio with minimum 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠

30: 𝑓𝑙𝑎𝑔𝑚𝑎𝑗 ← PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 , 𝑆𝑝,𝑊1,𝑊2)

31: 𝑆𝑝,𝑊1,𝑊2 ← Keep 𝑆𝑝,𝑊1,𝑊2 Trios 𝐢𝐟 𝑓𝑙𝑎𝑔𝑚𝑎𝑗 == 1

32: // Compare with Marker set Measurments

33: 𝐢𝐟 |𝜃𝑆𝑝 − 𝜃𝑀𝑆𝑝| < ∆𝜃𝑀𝑆𝑝 & |𝜃𝑊1 − 𝜃𝑀𝑊1| < ∆𝜃𝑀𝑊 & |𝜃𝑊2 − 𝜃𝑀𝑊2| < ∆𝜃𝑀𝑊 &

 |𝑑𝑊1 − 𝑑𝑀𝑊1|< ∆𝑑 & |𝑑𝑊2 − 𝑑𝑀𝑊2| < ∆𝑑 & |𝑑𝑊𝑊 − 𝑑𝑀𝑊𝑊| < ∆𝑑 𝐭𝐡𝐞𝐧

34: 𝑆𝑝,𝑊1,𝑊2 ← Keep 𝑆𝑝,𝑊1,𝑊2 Trios
35: 𝐞𝐧𝐝 𝐢𝐟

36: 𝑓𝑐𝑒 ← max(𝑓𝑟𝑎𝑚𝑒𝑐) //last common frame in each 𝑇𝑟𝑖𝑜

37: 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio

38: 𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑆𝑝, 𝑅𝑊, 𝐿𝑊 ← BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒)
39: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠

155

4.3.3.1.1 Probable Pelvis using Rigid Body and Geometric Constraints

 First, we identified pairs of points as potential pelvis points that formed a rigid bone by

maintaining a constant distance within a specified threshold across all frames. To achieve

this, we computed the distance between each point and all other points in each frame and

repeated this process for all frames. Subsequently, we calculated the standard deviation

(SD) of these distances (e.g., using the “std” function in MATLAB). The SD of the distance

between two points is a measure of the variation in their distance across all frames about

their mean distance. Pairs of points with a SD of less than a predetermined threshold

(∆𝑑𝑠𝑡𝑑) were retained as probable pelvis points (probablePelvisPoints). A lower threshold

indicates reduced variance in the distance between two points, suggesting that they are

static relative to one another throughout all frames. We applied a threshold of 0.5 cm

(∆𝑑𝑠𝑡𝑑 = 0.5 𝑐𝑚) to the calculated SDs for effectiveness across all our datasets (C3Ds).

Next, we created all combinations of three probable pelvis points, refer to as “Trio”

(probTrio). All predefined tolerances for pelvis detection are displayed in Table 4-1.

 Table 4-1: Pelvis Detection Predetermined Tolerances

∆𝑑𝑆𝑊𝑠𝑡𝑑 = ∆𝑑𝑊𝑠𝑡𝑑 = ∆𝑑𝑠𝑡𝑑 0.5 cm ∆𝑑𝑚𝑎𝑗 14.5 cm

∆𝑑𝑆𝑊 = ∆𝑑𝑊 = ∆𝑑𝑀 2.4 cm ∆𝑠𝑦𝑚𝑚𝑎𝑗 8.9 cm

∆𝜃𝑆𝑝𝑠𝑡𝑑 = ∆𝜃𝑊𝑠𝑡𝑑 = ∆𝜃𝑠𝑡𝑑 3.5° ∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 35.4°

∆𝜃𝑀𝑆𝑝 6° ∆𝜃𝑊𝑊𝑚𝑎𝑗
 15.2°

∆𝜃𝑊 = ∆𝜃𝑀𝑊 5° * M: Marker Set Values

 Figure 4-12: Pelvis Isosceles Triangle

 To form a pelvis triangle (Figure 4-12), we assumed that the spine, right waist, and left

waist must be visible in at least one frame. Therefore, we first identified the common frames

for each Trio (framec) by calculating the intersection of the trajectories of the three points

in each Trio. Subsequently, we filtered out Trios to retain only those that shared at least one

𝑆𝑝

𝜃𝑆𝑝

𝜃𝑊

𝑑𝑆𝑊 𝑑𝑆𝑊

𝜃𝑊

𝐿𝑊 𝑅𝑊
𝑑𝑊

156

common frame. We labeled three points in each Trio as A, B, and C. Subsequent steps

focused on identifying the most probable pelvis Trios and determining which of these points

correspond to the spine, right waist, and left waist. To reduce the computational load, we

performed the remaining calculations in the initial frame of a common frame for each Trio

(fcs), as shown in Figure 4-13. Consequently, within this frame for each Trio, we verified

whether the three points were non-collinear [27], thus forming a triangle.

Figure 4-13: Probable Pelvis Trios; fcs and fce are the first and last frames of a Trio’s Common frames

 Based on our marker set geometry configuration (Figure 4-5), the pelvic segment is

represented as an isosceles triangle. Accordingly, we retained the Trios that formed such a

triangle by verifying whether two points of three points maintained equal distances to the

third point, within an experimentally learned tolerance of 2.4 cm (∆𝑑 = 2.4 𝑐𝑚). We

further refined these Trios using the rigid body rule, retaining only those for which the

variance of each of the three angles across all frames was less than a specified tolerance

(i.e., ∆𝜃𝑠𝑡𝑑 = 3.5°). In our marker set, the spine point has the largest angle, which exceeds

the sum of the angles at the waist points. Thus, we organized the Trios (A, B, and C) by

placing the point with the maximum angle first, renaming them as Sp, W1, and W2. We

retained only those Trios where the spine angle (𝜃𝑆𝑝) was greater than the sum of the angles

of the other two points (i.e., 𝜃𝑆𝑝 > 𝜃𝑊1 + 𝜃𝑊2). We then refined these Trios by verifying

𝑓𝑐𝑒1 𝑓𝑐𝑠1

Gap1

𝑇𝑟𝑖𝑜1

Gap2

𝑇𝑟𝑖𝑜2

𝑓𝑐𝑠2 𝑓𝑐𝑒2

𝑇𝑟𝑖𝑜3

𝑓𝑐𝑠3 𝑓𝑐𝑒3

157

the isosceles triangle rules based on the detected spine point. We ensured that the two waist

angles were equal within a tolerance of 5 degree (∆𝜃𝑊 = 5°) and that the side lengths (the

distance between spine and waist) were equal within a tolerance of 2.4 cm (∆𝑑 = 2.4 𝑐𝑚).

 Figure 4-14 (a) illustrates a rejected isosceles triangle based on the SD of the distance

criterion due to elbow movement. The distance between the elbow point (represented in

blue) and the chest point (represented in green) varies significantly and is not static over

time. This emphasizes the challenges associated with passive markers. An elbow passive

marker may meet the SD criterion because it can remain stationary during its potentially

short lifespan due to occlusion. Consequently, further criteria will be necessary in

subsequent steps to address these situations effectively.

 (a) (b) (c)

Figure 4-14: Probable Pelvis Triangles: (a) Not accepted due to SD criterion; (b) Not accepted due to a small θSp; (c)

Accepted due to the geometric and rigid body criteria, but this triangle does not represent a pelvis and requires additional

criteria for rejection.

 Figure 4-14 (b) shows an isosceles triangle that was not accepted due to a small 𝜃𝑆𝑝 (i.e.,

does not meet 𝜃𝑆𝑝 > 𝜃𝑊1 + 𝜃𝑊2). The third image (c) presents a triangle that met all criteria

for being a probable pelvis segment based on isosceles triangle and rigid body

requirements. To further refine our selection, we will introduce orientation criteria in the

next section to eliminate this triangle from consideration as a probable pelvis Trio.

158

4.3.3.1.2 Probable Pelvis based on PCA-based Majority Axis Orientation

 To eliminate incorrectly identified probable pelvis triangles, such as the one depicted in

Figure 4-14 (c), we implemented an additional criterion based on human body orientation.

Given the constraints of our marker set and dataset actions, we assumed that the pelvis

triangle should align with the body’s orientation, which corresponds to the majority axis of

point distribution estimated using PCA.

 Algorithm 5 illustrates this process. It was provided with probable pelvis Trios (Sp,

W1,W2) identified in the previous section, along with the specific frame (𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗) for

performing the calculations. It then returned a flag (𝑓𝑙𝑎𝑔𝑚𝑎𝑗) indicating whether the Trio

was accepted as a probable pelvis Trio, where a value of 1 signified an accepted Trio.

Algorithm 5 Majority Axis Criterion

 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 , 𝑆𝑝,𝑊1,𝑊2)

 2: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝑛𝑎𝑛𝑚𝑒𝑎𝑛(𝑝𝑜𝑖𝑛𝑡𝑠(: , : , 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗), 2)

 3: 𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 ← 𝑝𝑐𝑎(𝑝𝑜𝑖𝑛𝑡𝑠(: , : , 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗)′)

 4: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 ← 𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(: ,1)

 5: projection𝑆𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 ← |𝑑𝑜𝑡(𝑆𝑝 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗)|

 6: 𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 = 1 𝐢𝐟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑝𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 < ∆𝑑𝑚𝑎𝑗

 7: 𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 ← |𝑑𝑜𝑡(𝑊1 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗)| //Repeat for W2

 8: 𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗 ← 𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 − 𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗

 9: 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 = 1 𝐢𝐟 |𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗| < ∆𝑠𝑦𝑚𝑚𝑎𝑗

10: //𝑐𝑟𝑜𝑠𝑠(𝑊𝑊𝑚𝑎𝑗) ← 𝑐𝑟𝑜𝑠𝑠(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 , waistl𝑖𝑛𝑒)

11: 𝜃𝑊𝑊𝑚𝑎𝑗
← ~𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑊𝑊𝑚𝑎𝑗)), 𝑑𝑜𝑡(𝑊𝑊𝑚𝑎𝑗))

12: 𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 = 1 𝐢𝐟 |𝜃𝑊𝑊𝑚𝑎𝑗

− 90| < ∆𝜃𝑊𝑊𝑚𝑎𝑗

13: //SWWLine: Line connects Sp to 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 waistl𝑖𝑛𝑒
14: //𝑐𝑟𝑜𝑠𝑠(𝑆𝑊𝑊𝑚𝑎𝑗) ← 𝑐𝑟𝑜𝑠𝑠(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 , 𝑆𝑊𝑊𝐿𝑖𝑛𝑒)

15: 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
← ~𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑆𝑊𝑊𝑚𝑎𝑗)), 𝑑𝑜𝑡(𝑆𝑊𝑊𝑚𝑎𝑗))

16: 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 = 1 𝐢𝐟 |𝜃𝑆𝑊𝑊𝑚𝑎𝑗

− 90| < ∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗

17: 𝑓𝑙𝑎𝑔𝑚𝑎𝑗 ← 𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 ∗ 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 ∗ 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 ∗ 𝜃𝑊𝑊𝑚𝑎𝑗

𝐹𝑙𝑎𝑔

18: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑓𝑙𝑎𝑔𝑚𝑎𝑗

159

4.3.3.1.2.1 Frame of Interest

 First, as indicated in Algorithm 4, line 29, we specified a distinct frame (framemaj) for

the calculation of PCA-based majority axis. The rationale for not utilizing the same frame

(fcs) as in previous steps stems from the impact of noise. Given the sparsity of our dataset,

noise can considerably affect the orientation of the major axis, as illustrated in Figure 4-15.

In a noisy frame (left image), the majority axis is misaligned compared to the accurate

majority axis of the valid points, as illustrated in the non-noisy frame (right image).

Figure 4-15: The Impact of Noise on Majority Axis Direction: (Left) Noisy Frame; (Right) Non-Noisy Frame

 Consequently, we identified the first frame among the common frames (framec) of each

Trio that contained a minimal number of points. We assumed that any frame with a minimal

number of points would include only properly tracked markers. The criteria for minimal

points were set to be greater than 19 and less than 21; if this condition was not met, a flag

was raised for visual inspection.

160

4.3.3.1.2.2 PCA

 Principal component analysis (PCA) [18] is a statistical technique that analyzes and

reduces data dimensionality while preserving as much variance as possible. In the context

of 3D space, PCA helps identifying the directions (principal components) where variation

is maximized (i.e., the data points are most spread out), effectively finding the majority axis

of point distribution. The process begins by centering data around feature means, involving

subtracting mean values from each coordinate across all points. Then, the covariance matrix

of the centered data is computed to capture relationships between variables. Eigenvalue

decomposition is then performed on the covariance matrix, identifying eigenvalues

indicating variance along each principal component and eigenvectors representing

directions of variance. The eigenvalues are sorted in descending order; corresponding

eigenvectors are also rearranged accordingly. The top eigenvectors correspond to directions

with maximum variance and thus represent principal components.

4.3.3.1.2.3 Finding Majority Axis using PCA

 After identifying the specified frame (framemaj), we calculated the centroid of the 3D

point distribution in this frame (i.e., mean of the non-null points) in Algorithm 5, line2

(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑). We then performed PCA on the transposed points to capture PCA coefficients

(𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠) (i.e., using “pca” function in MATLAB). Transposing is crucial

because PCA typically requires data to be organized such that each row corresponds to an

observation (in this case, a point in 3D space), and each column corresponds to a variable

(the x, y, z coordinates). This arrangement allows PCA to analyze how the points vary

161

across their features. We then determined the first coefficient, which represents the

direction of maximum variance, identified as the majority axis direction (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗).

4.3.3.1.2.4 Probable Pelvis Detection based on Orientation

 We established an additional criterion for identifying a probable pelvis triangle based on

the orientation of the majority axis. The first criterion in Algorithm 5, line 5, stipulates that

the spine point must be near the distribution’s centroid and aligned with the majority axis.

To verify this, we first computed a vector that indicated the distance from the spine point

to the centroid. Next, we calculated the dot product of this vector with the direction of the

majority axis. The result (projection𝑆𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗) represented how far away

the spine point was from the centroid when projected along this direction of maximum

variance. This can be interpreted as a measure of distance or deviation along that principal

component. If this deviation was less than an experimentally determined threshold of 14.5

cm (∆𝑑𝑚𝑎𝑗 = 14.5 𝑐𝑚), a flag (spineFlag) to 1, indicating the first criterion was met.

 The second criterion requires that the right and left waists be symmetrically positioned

relative to the major axis and close to it. We assessed this by calculating the projection

distances from W1 and W2 to the major axis. If the absolute difference between these

distances was less than a threshold of 8.9 cm (∆𝑠𝑦𝑚𝑚𝑎𝑗 = 8.9 𝑐𝑚), we set a flag

(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔) to 1, indicating that we satisfied the second criterion.

 As a third criterion, we assumed that the waistline should be perpendicular to the major

axis based on our dataset actions. Consequently, we evaluated whether the angle (𝜃𝑊𝑊𝑚𝑎𝑗
)

deviation between the waistline and the major axis from 90 degrees was less than a

162

specified threshold of 15.2 degrees (∆𝜃𝑊𝑊𝑚𝑎𝑗
= 15.2°). If this condition was met, a flag

(𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔) was set to 1, indicating that the third criterion had been met.

 In the fourth criterion, we assumed that the line connecting the spine to midpoint of

waistline (SWWLine) should be perpendicular to the major axis based on our dataset

actions. Therefore, if the angle (𝜃𝑆𝑊𝑊𝑚𝑎𝑗
) deviation between this line and the major axis

from 90 degrees was less than a threshold of 35.4 degrees (∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
= 35.4°), a flag

(𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔) was set to 1.

 Finally, if all four criteria were met, we set a flag (𝑓𝑙𝑎𝑔𝑚𝑎𝑗) to 1 to accept the probable

pelvis Trio. Figure 4-16 shows a rejected triangle (spine (magenta), elbows(cyan)) due to

the 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔, with 𝜃𝑆𝑊𝑊𝑚𝑎𝑗

= 6.11°. All criteria were satisfied. Note that the passive

elbow markers (blue) met the SD criteria, and 𝜃𝑊𝑊𝑚𝑎𝑗
= 92.8°.

Figure 4-16: Rejected probable pelvis Trio (spine (magenta), elbows(cyan)) due to angle between SWW line (yellow) and

majority axis (red);the right tile provides an additional view for clarity. The correct pelvis is shown in a purple triangular

shape.

163

 These orientation criteria, particularly the third and fourth ones, are influenced by the

marker set and action constraints. This influence necessitates a high threshold to satisfy the

criteria due to the inherent flexibility of the human body. Therefore, while these criteria

effectively eliminate triangles that significantly deviate from resembling a pelvis segment

—such as those depicted in Figure 4-16 and the image (c) in Figure 4-14— additional

criteria are necessary for the accurate detection of pelvis points. These further criteria will

be discussed in the next section.

4.3.3.1.3 Pelvis Detection based on Marker set Values

 In the final stage of pelvis detection, we accurately identified these points by comparing

the distances and joint angles of each probable pelvis Trio with those measurements derived

from our marker set, taking tolerances into account as shown in Figure 4-17 and Table 4-2

(M represents marker set values). We then retained the Trios that met these constraints.

 Table 4-2: Pelvis Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎 Constraints ∆ °

|𝑑1 − 𝑀𝑑1| < ∆𝑑𝑀 2.4 |𝜃𝑆𝑝 − 𝑀𝜃𝑆𝑝| < ∆𝜃𝑀𝑆𝑝 6

|𝑑2 − 𝑀𝑑2| < ∆𝑑𝑀 2.4 |𝜃𝑊1 − 𝑀𝜃𝑊1| < ∆𝜃𝑀𝑊 5

|𝑑𝑊 − 𝑀𝑑𝑊| < ∆𝑑𝑀 2.4 |𝜃𝑊2 − 𝑀𝜃𝑊2| < ∆𝜃𝑀𝑊 5

 Figure 4-17: Pelvis Isosceles Triangle

 This stage significantly reduces the probability of false detection to nearly zero.

However, due to user-defined tolerances, there is a possibility that ghost markers—those

very close to valid markers—may satisfy all criteria and be mistakenly classified as valid

markers. To address this issue, we checked an intersectFlag as the first step in the “Shared

Steps” of Algorithm 2, line 8. This intersect step was executed after detecting the body side

detection, which will be detailed in the next section.

𝑆𝑝

𝜃𝑆𝑝

𝜃𝑊2

𝑑2 𝑑1

𝜃𝑊1

𝑊1 𝑊2
𝑑𝑊

164

4.3.3.1.4 Body Side Detection

 After identifying pelvis Trios that met all criteria, we differentiated between the left and

right waist. Since these triangles are isosceles, only the spine point was accurately detected.

Algorithm 6 illustrates our body side detection function (BODYSIDEDETECTION). It used the

detected Trios (𝑆𝑝,𝑊1,𝑊2) identified in the previous section, along with specific frames

(𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒) as inputs and returned new Trios (𝑆𝑝, 𝑅𝑊, 𝐿𝑊), which determined the spine,

right waist, and left waist points for each Trio.

Algorithm 6 Body Detection

 1: 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio

 2: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒)

 3: 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛𝑢𝑚_Trios 𝐝𝐨

 4: 𝑆𝑝𝑐𝑠[𝑖] ← 𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑆𝑝[𝑖], 𝑓𝑐𝑠[i]) //Repeat for 𝑊1𝑐𝑠[𝑖],𝑊2𝑐𝑠[𝑖]
 5: 𝑆𝑝𝑐𝑒[𝑖] ← 𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑆𝑝[𝑖], 𝑓𝑐𝑒[i]) //Repeat for W1ce[i],W2ce[i]
 6: 𝐞𝐧𝐝 𝐟𝐨𝐫

 7: 𝐟𝐨𝐫 𝑗 = 1, … , (𝑛𝑢𝑚_Trios − 1) 𝐝𝐨

 8: 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟[𝑗] ← 𝑆𝑝𝑐𝑠[𝑗 + 1] − 𝑆𝑝𝑐𝑒[𝑗];
 9: t𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗] ← 𝑒𝑦𝑒(4); // Initialize identity matrix

10: 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗](1: 3, 4) ← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟[𝑗]′
11: ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒[𝑗] ← [𝑊1𝑐𝑒[𝑗], 1] //homogeneous coordinate

12: 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[𝑗] ← (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗] ∗ ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒[𝑗]′)′
13: 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[j] = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[𝑗](1: 3)

14: //Repeat Line 11 to 13 for W2

15: 𝐞𝐧𝐝 𝐟𝐨𝐫

16: 𝐟𝐨𝐫 𝑘 = 2, … , 𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 𝐝𝐨

17: distW1cstransW1ce[k] ← norm(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[k − 1] − 𝑊1𝑐𝑠[k]))

18: distW2cstransW1ce[k] ← norm(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[k − 1] − 𝑊2𝑐𝑠[k]))

19: 𝐢𝐟 distW1cstransW1ce[k] < distW2cstransW1ce[k] 𝐭𝐡𝐞𝐧

20: [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ← [𝑆𝑝,𝑊1,𝑊2][k] // No Change
21: 𝐞𝐥𝐬𝐞 𝐢𝐟 distW2cstransW1ce[k] > distW1cstransW1ce[k]
22: [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ← [𝑆𝑝,𝑊2,𝑊1][k] // Change

23: 𝐞𝐥𝐬𝐞 𝐢𝐟 distW1cstransW1ce[k] == distW2cstransW1ce[k]
24: [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ← user visual decision

25: 𝐞𝐧𝐝 𝐟𝐨𝐫

26: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆𝑝, 𝑅𝑊, 𝐿𝑊

165

4.3.3.1.4.1 Statement of the Problem

 We need to distinguish between left waist and right waist (W1 and W2) in each Trio to

identify corresponding reappearing markers on each side of the body. This involves

recognizing the corresponding points of each Trio, as detailed in Algorithm 2, line 6, under

“Shared Steps.” By doing so, we can merge the short trajectories of each physical marker

into a single complete trajectory with potential gaps, as illustrated in Figure 4-11. Since we

have detected spine point (Sp) for each Trio, we can combine the trajectories of all spine

points (i.e., ∪ (𝑆𝑝𝑡𝑟𝑖𝑜1(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦), 𝑆𝑝𝑡𝑟𝑖𝑜2(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦),… , 𝑆𝑝𝑡𝑟𝑖𝑜𝑁(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)).

Therefore, it is essential to determine whether to merge the trajectory of W1trio1 with W1trio2

or W2trio2. This process must be repeated for all Trios (e.g., merging W1trio2 with W1trio3 or

W2trio3).

 Our objective was to facilitate manual cleaning rather than labeling. Therefore, we only

need to identify which points are on the same side of the body, rather than precisely

distinguishing between the true left and right sides. The actual sides will be visually

confirmed during the validation and labeling process of the cleaned C3D file.

4.3.3.1.4.2 Statement of the Solution

 To solve this problem, we aimed to translate one Trio (e.g., Trion) from its initial frame

(fcsn) of its common frame (framecn) to its subsequent Trio (Trion+1) initial frame (fcsn+1),

based on the translation between two spine points of these two successive Trios. Then, we

found the Euclidean distance between translated W1trion and W1trion+1 (e.g., d1), and

translated W1trion and W2trion+1 (d2). Then, d1<d2 means W1trion corresponds to W1trion+1,

and d2<d1 means W1trion corresponds to W2trion+1, as shown in Figure 4-18 and Figure 4-19.

166

Figure 4-18: Probable pelvis triangles (Spine, Waist 1, Waist 2) in the first frame (fcs) of each Trio’s common frame.

Figure 4-19: Solution 1 for left and right waist points detection: Translating the Trion triangle from its fcsn to the next

Trion+1 first frame (fcsn+1) and calculating the distances between waist 1 in the Trion+1 and the translated waist 1 and

waist 2 of the Trion.

 However, two problems may arise: 1) if the distances are equal; or 2) if the body rotates

during gaps between pelvis Trios, as shown in Figure 4-20.

Figure 4-20: Potential problem of equal distances in Solution 1 for detecting left and right waist points, illustrated by the

second blue triangle labeled “2,” where the distance between points “2” (in the translated blue triangle) and points “1”

(in the original black triangle) is identical.

Gap2

𝑇𝑟𝑖𝑜2

𝑊1𝑡2

𝑆𝑝𝑡2

𝑊2𝑡2

𝑆𝑝𝑡1

𝑊2𝑡1

𝑊1𝑡1

𝑓𝑐𝑒1 𝑓𝑐𝑠1 𝑓𝑐𝑠2 𝑓𝑐𝑒2 𝑓𝑐𝑠3 𝑓𝑐𝑒3

𝑇𝑟𝑖𝑜1 𝑇𝑟𝑖𝑜3

Gap1

𝑆𝑝𝑡3

𝑊1𝑡3

𝑊2𝑡3

Gap2

𝑇𝑟𝑖𝑜2

𝑓𝑐𝑒1 𝑓𝑐𝑠1 𝑓𝑐𝑠2 𝑓𝑐𝑒2 𝑓𝑐𝑠3 𝑓𝑐𝑒3

𝑇𝑟𝑖𝑜1 𝑇𝑟𝑖𝑜3

Gap1

𝑑1

𝑑2

𝑑2

𝑑1

167

 Figure 4-20 illustrates five pelvis Trios from a C3D file positioned in 3D space, depicted

as black triangles labeled 1 to 5. These Trios are pelvis reappearing markers due to

occlusion (i.e., gaps between the black triangles). The first black triangle, labeled 1,

corresponds to the initial detected pelvis Trio (Trio1) presented in its fcs1 frame. The

accompanying blue circle represents the spine (Sp1), while the star and plus markers denote

the waist markers. The second black triangle (Trio2), labeled 2, is depicted in its fcs2 frame,

with this pattern continuing for the remaining black triangles.

 The blue triangles represent translated triangles. For instance, Trio1 was translated to

fcs2, appearing as a blue triangle labeled 1, aligning the spine point (Sp1) of Trio1 with spine

point (Sp2) of Trio2. This translation process was applied repeatedly, resulting in all blue

triangles being classified as translated Trios.

 The first issue occurred in the second Trio (Trio2), with a large gap between Trio1 and

Trio2, where the distance between the two waist points of triangle 1 are equal to the closest

two waist points in triangle 2. The second problem may occur because of body rotation

during transitional movements during gaps, such as when an individual shifts from a supine

position (facing up) to a prone position (facing down). Solutions for addressing these two

issues will be outlined in the following section.

4.3.3.1.4.3 Frame of Interest

 To address the issue of potential body rotation during gaps between pelvis Trios, we

hypothesized that performing translations between closer frames would decrease the

likelihood of such rotation. This is based on the understanding that the human body has a

maximum speed at which it can move, particularly in underwater environments.

168

 First, as shown in Algorithm 6, line 1, we received a distinct vector (framemaj) from

Algorithm 4, line 37. This vector includes two frames for each Trio: fcs and fce, which

represent the first and the last frames of the common frame (framecs) for each Trio.

 Then, as shown in Figure 4-21, we translated the first Trio (red triangle) from fce1 to fcs2

and compared the distances (d1 and d2) between one waist point of Trio2 (green triangle)

and two waist points of the translated triangle (dashed-line red triangle), as illustrated in

Algorithm 6, line 16 to 24. If the distances were equal (d1 = d2), the automatic processing

of the dataset was paused until human intervention resolved the condition, as a decision

was necessary for the subsequent translation. We continued this process for all Trios.

Figure 4-21: Solution 2 for the specific rotation problem arises with Solution 1 in detecting left and right waist points.

Instead of translating between the first frames (fcs) of Trios, translation is done between the last frames (fce) of the current

Trion and the first frame (fcs) of the next Trion+1 to reduce gap size and, hence, the potential rotation problem.

 This solution has consistently produced accurate results across all our datasets by

effectively minimizing the gap size between two Trios. As an example, shown in Figure

4-21, the green triangle in fcs2 exhibits a significantly different orientation compared to the

blue triangle in fcs3. In contrast, the green triangle in fce2 shows less variation than the blue

triangle in fcs3. However, there is still a potential for body rotation to occur during these

small gaps between Trios. To ensure the reliability of the results, a final visual check was

conducted to validate the outcomes after all data had been processed.

𝑑1

𝑓𝑐𝑒2 𝑓𝑐𝑠1 𝑓𝑐𝑒1 𝑓𝑐𝑠2 𝑓𝑐𝑠3

𝑇𝑟𝑖𝑜1 𝑇𝑟𝑖𝑜2 𝑇𝑟𝑖𝑜3

𝑓𝑐𝑒3

Gap1

Gap2

𝑑2 𝑑2

𝑑1

169

4.3.3.2 Detection of Remaining Inliers

 After identifying the pelvis points (spine, right waist, left waist), we detected the

remaining inliers using Algorithm 2. We will only discuss the detected points (Algorithm

2, line 5) and will not cover the “Shared Steps” (Algorithm 2, lines 6 to 15).

 We first identified torso points (shoulders, chest, stomach) and then reduced

computational load by eliminating near outliers. Next, we detected lower limb points (hip,

knee, calf, ankle), head points (left and right), and upper limb points (elbow and hand).

Then, we removed any remaining noise and reconstructed a missing ankle marker. The

evaluation was conducted visually.

 The detection of remaining valid markers involved forming a triangle with one or two

previously detected points and applying geometric constraints by comparing angles and

lengths to those in the marker set. We will detail the shoulder point detection process, while

for other inliers, we will simply present the triangle and constraint table, as their detection

is similar to that of shoulder points.

4.3.3.2.1 Torso Markers Detection

 After identifying pelvis points (spine, right waist, left waist), we proceeded to detect

torso points (left and right shoulders, chest, stomach). The subsequent sections describe the

process.

4.3.3.2.1.1 Shoulder Markers Detection

 We first located the shoulder points using potential triangles formed by the left and right

shoulders and the detected spine point, as shown in Figure 4-22. This process applied

constraints detailed in Table 4-3. Algorithm 7 outlines this method, utilizing the previously

170

identified pelvis points (Sp, RW, LW) to return the right shoulder (ShR), left shoulder (ShL),

and a new C3d (newC3Dshoulder). Additionally, Algorithm 8 illustrates the process for

distinguishing between left and right shoulder points.

 Table 4-3: Shoulder Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎 Constraints ∆ °

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 10 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ 6

|𝑑𝑠ℎ𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠ℎ| < ∆𝑑𝑠ℎ 5 |𝜃2𝑚𝑒𝑎𝑛

− 𝑀𝜃2| < ∆𝜃𝑠ℎ 6

Figure 4-22: Shoulder Detection Isosceles Triangle

Algorithm 7 Shoulder Detection

 1: 𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠 ← PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠)

 2: 𝑆𝑝, 𝑅𝑊, 𝐿𝑊 ← 𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠

 3: 𝑛𝑒𝑤𝐶3𝐷, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙 ← INLIERDETECTION (𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠)

 4: 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, ~, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← READC3D(𝑛𝑒𝑤𝐶3𝐷)

 4: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑅𝑊, 𝐿𝑊, ∆𝑑, ∆𝑑𝑠ℎ, ∆𝜃𝑠ℎ)

 5: 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 𝐝𝐨
 6: 𝑑, 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑 , ~ ← 𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑖, ~)

 7: 𝐢𝐟 |𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 𝐭𝐡𝐞𝐧
 8: 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 ← Append 𝑖 to 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠

 9: 𝐞𝐧𝐝 𝐟𝐨𝐫

10: 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 ← 𝑝𝑟𝑜𝑏𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟𝑠 ← ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠, 2)
11: 𝐟𝐨𝐫 j = 1, … , 𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 𝐝𝐨

12: 𝑑𝑠ℎ , 𝑑𝑠ℎ𝑚𝑒𝑎𝑛
, 𝑑𝑠ℎ𝑠𝑡𝑑

, ~ ← 𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗, 1), 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗, 2), ~)

13: 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 ← Keep 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗) 𝐢𝐟 |𝑑𝑠ℎ𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠ℎ| < ∆𝑑𝑠ℎ

14: 𝐞𝐧𝐝 𝐟𝐨𝐫

15: 𝐟𝐨𝐫 𝑘 = 1, … , 𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 𝐝𝐨

16: ~, ~, ~, 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
, ~, ~, ~

← ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑘, 1), 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑘, 2))

17: 𝐢𝐟 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ & |𝜃2𝑚𝑒𝑎𝑛

− 𝑀𝜃2| < ∆𝜃𝑠ℎ 𝐭𝐡𝐞𝐧

18: 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟 ← Keep 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗)

19: 𝐞𝐧𝐝 𝐟𝐨𝐫

20: 𝑆ℎ𝑅 , 𝑆ℎ𝐿 ← SHOULDERSIDEDETECTION(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟, 𝑅𝑊, 𝐿𝑊)

21: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆ℎ𝑅 , 𝑆ℎ𝐿 , 𝑛𝑒𝑤𝐶3𝐷𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟

𝑑𝑠ℎ

𝑆ℎ𝐿 𝑆ℎ𝑅

𝑆𝑝

𝑑 𝑑

𝜃2 𝜃1

𝜃𝑠𝑝

171

 Algorithm 7 identified points that were within a distance of 10 cm (∆𝑑 = 10 𝑐𝑚) from

the detected spine point, matching the marker set length. It then formed pairs of these points

(𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟) and retained those where the distance between each pair was consistent with

the marker set, allowing for a threshold of 5 cm (∆𝑑𝑠ℎ = 5 𝑐𝑚). The shoulder angles of

these pairs were compared to the marker set values within a threshold of 6 degrees (∆𝜃𝑠ℎ =

6°). Pairs meeting these criteria were classified as shoulder points. It is important to note

that we took into account the mean distances and angles; therefore, we did not need to

perform the calculations within a specific frame.

 The function (SHOULDERSIDEDETECTION), illustrated in Algorithm 8, differentiated

between right and left shoulder points by comparing the Euclidean distances from detected

shoulder points to the right and left waists. For each pair of shoulder points

(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟), the point closer to the right waist was identified as the right shoulder,

while the other was designated as the left shoulder.

Algorithm 8 Shoulder Side Detection

 1: 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERSIDEDETECTION(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟, 𝑅𝑊, 𝐿𝑊)

 2: 𝐟𝐨𝐫 𝑖 = 1, … , 𝑛𝑢𝑚_𝑝𝑎𝑖𝑟𝑠 𝐝𝐨
 3: ~, 𝑑1𝑚𝑒𝑎𝑛, ~, ~ ← 𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑊, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1), ~)

 4: ~, 𝑑2𝑚𝑒𝑎𝑛 , ~, ~ ← 𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑊, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2), ~)

 5: 𝐢𝐟 𝑑1𝑚𝑒𝑎𝑛 < 𝑑2𝑚𝑒𝑎𝑛 𝐭𝐡𝐞𝐧
 6: 𝑆ℎ𝑅 , 𝑆ℎ𝐿 ← 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1), 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2)

 7: 𝐞𝐥𝐬𝐞
 8: 𝑆ℎ𝑅 , 𝑆ℎ𝐿 ← 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2), 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1)

 9: 𝐞𝐧𝐝 𝐢𝐟

10: 𝐞𝐧𝐝 𝐟𝐨𝐫

11: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑆ℎ𝑅 , 𝑆ℎ𝐿

172

4.3.3.2.1.2 Chest Marker Detection

 The chest point was determined by constructing potential triangles using the detected

left and right shoulder points along with the chest, as illustrated in Figure 4-23, and

adhering to the constraints outlined in Table 4-4.

 Table 4-4: Chest Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎 Constraints ∆ °

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ 7

 |𝜃2𝑚𝑒𝑎𝑛
− 𝑀𝜃2| < ∆𝜃𝑠ℎ 7

Figure 4-23: Chest Detection Isosceles Triangle

4.3.3.2.1.3 Stomach Marker Detection

 The stomach point was identified by creating potential triangles with the spine and chest

points, as shown in Figure 4-24, while following the constraints in Table 4-5.

 Table 4-5: Stomach Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎 Constraints ∆ °

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5 |𝜃𝑠𝑡𝑚𝑒𝑎𝑛
− 𝑀𝜃𝑠𝑡| < ∆𝜃𝑠ℎ 7

|𝑑𝑠𝑠𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠𝑠| < ∆𝑑𝑠𝑠 5 |𝜃𝑐ℎ𝑚𝑒𝑎𝑛

− 𝑀𝜃𝑐ℎ| < ∆𝜃𝑐ℎ 7

Figure 4-24: Stomach Detection Isosceles Triangle

4.3.3.2.2 Near Outlier Removal

 Pelvis markers (left waist, spine, right waist) and the torso markers (left shoulder, right

shoulder, chest, stomach) have been identified. This allowed us to identify noisy points

based on their distance from the torso and pelvis segments, leveraging our knowledge of

human anatomy. We defined the maximum arm length as the distance from the shoulder

𝑑𝑠ℎ

𝑆ℎ𝑅 𝑆ℎ𝐿

𝐶ℎ

𝑑 𝑑

𝜃2 𝜃1

𝜃𝑐ℎ

𝐶ℎ

𝜃𝑐ℎ

𝜃𝑠𝑝

𝑑 𝑑

𝜃𝑠𝑡

𝑆𝑡 𝑆𝑝 𝑑𝑠𝑠

173

marker to the hand marker within the “T-shape” marker set (Figure 4-5), as this

configuration represents the maximum extension of the arm:

𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
= 𝑑𝑖𝑠𝑡(𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟, 𝐻𝑎𝑛𝑑)

 Similarly, the maximum leg lengths were simply the distance from the waist to the ankle:

𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
= 𝑑𝑖𝑠𝑡(𝑊𝑎𝑖𝑠𝑡, 𝐴𝑛𝑘𝑙𝑒)

 We then created two spheres of radii equal to 𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
 centred at each shoulder

(highlighted blue and green), and two spheres of radii 𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
 centred at each waist

marker (highlighted red and purple). The region of interest (ROI) was defined by the union

of the four spheres as shown in Figure 4-25. Any point outside this ROI was considered

noise and was subsequently removed, since anatomically the human body cannot contain

points further away than the boundaries of the spheres. This step significantly reduced the

computational load for subsequent processes.

Figure 4-25: Valid Points Maximum ROI

174

4.3.3.2.3 Lower Limb Markers Detection

 After identifying torso points (left shoulder, right shoulder, chest, stomach), we detected

lower limb points for the left and right side of the body (hip, knee, calf, ankle). The

subsequent sections describe the process.

4.3.3.2.3.1 Hip Markers Detection

 The hip points were identified by forming potential triangles using the detected spine

and waist points for each side of the body, as shown in Figure 4-26, and based on the

constraints in Table 4-6.

 Table 4-6: Hip Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑 3.03

|𝑑2𝑚𝑒𝑎𝑛
− 𝑀𝑑2| < ∆𝑑 3.03

 Figure 4-26: Hip Detection Triangle

4.3.3.2.3.2 Knee Markers Detection

 The knee points were identified by forming potential triangles using the detected waist

and hip points for each side of the body, as shown in Figure 4-27, and according to the

constraints in Table 4-7.

 Table 4-7: Knee Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑 5.5

|𝑑2𝑚𝑒𝑎𝑛
− 𝑀𝑑2| < ∆𝑑 5.5

 Figure 4-27: Knee Detection Triangle

𝑑1 𝑑1

𝑆𝑝

𝐻𝑖𝐿 𝐻𝑖𝑅

𝑊𝐿 𝑊𝑅
𝑑2 𝑑2

𝑑1

𝐾𝐿

𝑊𝐿 𝑊𝑅

𝐻𝑖𝐿 𝐻𝑖𝑅

𝐾𝑅

𝑑1

𝑑2 𝑑2

175

4.3.3.2.3.3 Calf and Ankle Markers detection

 The calf and ankle detection process resembled shoulder point detection. We created

potential triangles using two unknown points (calf and ankle) and one detected point (knee),

as shown in Figure 4-28. We first identified points with a static length based on the standard

deviation (SD) criteria (SD<1), indicating that the SD of distances between all pairs of

points was less than 1 (i.e., std(d1)<1, std(d2)<1, and std(d3)<1). Subsequently, we applied

the constraints listed in Table 4-8 to the points that satisfied the SD<1 condition.

 Table 4-8: Calf and Ankle Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎

L,R

Constraints ∆ °
L,R

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑1 7.3, 5 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃1 8, 16

|𝑑2𝑚𝑒𝑎𝑛 − 𝑀𝑑2| < ∆𝑑2 7.3, 5 |𝜃2𝑚𝑒𝑎𝑛
− 𝑀𝜃2| < ∆𝜃2 13, 35

|𝑑3𝑚𝑒𝑎𝑛 − 𝑀𝑑3| < ∆𝑑3 7.3, 5 |𝜃3𝑚𝑒𝑎𝑛
− 𝑀𝜃3| < ∆𝜃3 20, 20

Figure 4-28: Calf and Ankle Detection Triangle

 To check these constraints, we formed combinations of the points with SD<1 into groups

of two probable calf and ankle points (probPair). For each side, we generated two sets of

Trios by adding the left knee to all double groups for the first set (KL, probPair(1),

probPair(2)) and adding the right knee for the second set (KR, probPair(1), probPair(2)).

In each Trio, the unknown point with the larger angle was the calf, while the other unknown

point was the ankle.

 In previous steps, we required three markers to identify triangles. However, we faced an

issue where one ankle marker was missing, from some of our datasets, when a swimmer

jumped into the water, and it was physically removed, leading to its absence in all frames.

To resolve this, we developed a new method for locating calf and ankle points in such cases.

𝑑1 𝑑1

𝑑2 𝜃3

𝐾𝐿

𝐶𝐿

𝐴𝐿

𝜃1

𝜃2

𝐴𝑅

 𝐾𝑅

𝐶𝑅 𝑑3 𝑑3

𝑑2

𝜃1

𝜃2

𝜃3

176

Although we could have removed this assumption earlier, it would have complicated

previous steps unnecessarily. Our main goal is to simplify the manual cleaning process.

 Hence, we applied constraints on bone lengths and angles from Table 4-8 to identify calf

and ankle points in each Trio. If three markers were not present in at least one frame, the

corresponding ankle point was considered missing, resulting in an empty set of Trios for

that side (left or right). We retained only valid non-empty Trios for either side. Since we

had separate groups for the left and right knee, our side detection process was not needed.

This process yielded two sets of Trios—one for the right side and one for the left, with the

possibility of one being empty. For any empty Trios, we determined calf points based solely

on their Euclidean distance from the knee point on the same side.

4.3.3.2.4 Head Markers Detection

 The head point was determined by creating potential triangles with the detected left and

right shoulder points and the head point for each side of the body, as depicted in Figure

4-29, while following the constraints specified in Table 4-9.

 Table 4-9: Head Detection Marker set Constraints (M: Marker set)

Constraints ∆ 𝒄𝒎 Constraints ∆°
std(𝑑ℎ) < ∆𝑑ℎ𝑠𝑡𝑑

 1 M𝜃ℎ𝑚𝑎𝑥
= max(M𝜃1, M𝜃2)

M𝜃ℎ𝑚𝑖𝑛
= min(M𝜃1, M𝜃2)

M𝜃ℎ𝑚𝑖𝑛
− ∆𝜃 < 𝜃ℎ < M𝜃ℎ𝑚𝑎𝑥

+ ∆𝜃

19 |𝑑ℎ𝑚𝑒𝑎𝑛 − 𝑀𝑑ℎ| < ∆𝑑 1.3

Figure 4-29: Head Detection Triangle

 We initially identified points that maintained a consistent distance from one another

based on the SD criteria (std(dh)<1). This was due to the limited stretching and compressing

of the head’s anatomy, which resulted in minimal variability between the left and right head

𝜃2 𝜃1

𝑆ℎ𝑅

𝐻𝑅 𝐻𝐿

𝑆ℎ𝐿

𝑑ℎ

177

markers. Among these pairs of points, those with distances that fell within a 1.3 cm

threshold of the specified marker set value were retained as potential head pairs.

 Subsequently, we applied anatomical and action constraints to the triangles since they

were not rigid body segments. We calculated the head angle relative to both shoulders using

our marker set values. The smaller angle defined the lower limit, while the larger angle

defined the upper limit, extending the variation duration. A learned tolerance of 19 degrees

was established, which all datasets met. Finally, the side detection was performed based on

Euclidean distances of the detected head points with the left and right shoulders, with the

shortest distance being on the same side.

 Even with high tolerance due to head movement, false detections are rare because other

body parts such as the torso, pelvis, and lower limb were identified previously, and the

potential elbows and hands have more significant variations in their distances from the

shoulders (i.e., they do not meet SD<1 criteria except for passive markers with short

lifetimes). Additionally, using precise distance values between two head markers further

minimized potential false detections.

4.3.3.2.5 Upper Limb Markers Detection

 The remaining points are the elbow and hand points, amid the remaining noise.

4.3.3.2.5.1 Elbow Markers Detection

 Elbow points were reliably identified using the bone length between the elbow and

shoulder markers on each side as shown in Figure 4-30, by considering the constraints in

Table 4-10. Side detection utilized Euclidean distances from shoulder points, with the

shortest distance indicating the corresponding side. By applying mean distances and a

178

SD<1 cm criterion, the likelihood of false detections was minimized, particularly when the

hand points were located at the same distance as the length between the shoulder and elbow.

However, it is important to acknowledge that passive hand markers with short lifespans and

near ghost markers could still satisfy these criteria.

 Table 4-10: Elbow Detection Marker set Constraints

Constraints ∆ 𝒄𝒎

L, R

std(𝑑) < ∆𝑑𝑠𝑡𝑑 1,1

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 11.8, 6.4

 Figure 4-30: Elbow Detection Bone

4.3.3.2.5.2 Hand Markers Detection

 The remaining points were the hand points identified amidst noise, based on the distance

between potential hand points and detected elbows as shown in Figure 4-31, following the

constraints in Table 4-11. Side detection was applied, ensuring that shorter distances from

elbows were maintained on the same side.

 Table 4-11: Hand Detection Marker set Constraints

Constraints ∆ 𝒄𝒎

L, R

std(𝑑) < ∆𝑑𝑠𝑡𝑑 1

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5, 6.5

 Figure 4-31: Hand Detection Bone

4.3.3.2.6 Remaining Noise Removal

 After identifying all valid points and labeling them correctly, we removed any remaining

unlabeled points, which were considered noise. The final output of this step was a cleaned

and labeled C3D file. The evaluation was conducted visually.

𝐸𝐿 𝑆ℎ𝐿

𝐸𝑅 𝑆ℎ𝑅

𝑑

𝑑

𝐸𝐿

𝐸𝑅

𝐻𝑎𝐿

𝐻𝑎𝑅

𝑑

𝑑

179

4.3.3.2.7 Dropped Ankle Marker Reconstruction

 During the analysis of specific datasets, it was noted that there was a missing ankle

marker for all frames. In order to resolve this issue, a trajectory for the absent ankle was

reconstructed using a semi-supervised method. It was concluded that the missing ankle

marker should be situated at the intersection of two spheres based on our understanding of

which side may be lacking the marker. The first sphere had its center at the calf, with a

radius equal to the distance between the ankle and calf, while the second sphere had its

center at the knee, with a radius equal to the distance between the knee and ankle, as shown

in Figure 4-32.

Figure 4-32: Dropped ankle marker reconstruction triangle; Knee (green circle), Calf (violet circle), Ankle (red star:

intersection of two spheres).

 However, the intersection of these spheres resulted in a circle. As a result, a point on this

circle was manually identified as an ankle point (A1) for the initial frame to create a triangle

180

with the knee and calf that matched the angles and lengths of the marker set. Subsequently,

a transformation matrix was computed between the calf point in the first frame and the calf

point in the second frame. Ankle (A1) was then translated from the first frame to the second

frame based on this transformation matrix, resulting in the location of A2 as the ankle point

in the second frame. This process was iterated for all frames, with adjustments made

manually for variations in body rotation and orientation. Refinements were implemented

through manual inspection of the constructed ankle trajectory to identify frames requiring

adjustments. Frames that exhibited changes in orientation were identified, and the position

of the translated ankle in those frames was refined. This process continued by translating

with a new refined ankle point in a specific frame until reaching the next frame requiring

refinement. The procedure was repeated for all frames to develop a comprehensive

trajectory for the missing ankle marker.

4.4 Experimental Results

 Underwater MoCap data were collected using seven Qualisys Miqus M5U underwater

MoCap cameras positioned at various points around a four-meter-deep pool at the

Memorial University Marine Institute. Reflective passive markers were placed on 21

anatomical locations directly on the swimmer’s skin or suit (Figure 4-5). Once calibrated

[28], the data were recorded at 100Hz using Qualisys Track Manager (QTM) [4] and then

exported to C3D files. Ten C3D files, each containing specific actions, have been exported

from a larger, noisy C3D file to serve as our datasets. These files correspond to ten different

activities performed by a single swimmer.

181

4.4.1 Results

 In an interactive experimental setting, manual parameters were estimated for each step

of the proposed algorithm. With these adjusted tolerances, all ten datasets successfully

passed each step’s objectives with a 100% success rate. Table 4-12 presents the parameters

and tolerances utilized during the pelvis detection step. Table 4-13 showcases the tolerances

related to the remaining inlier detection. NA stands for “not applicable.”

Table 4-12: Pelvis detection parameters and tolerances

Parameters Tolerance Unit

SD (Distances between Markers) < 0.5 cm

Sides Lengths compared to Marker set ± 2.4 cm

SD (Angles) < 3.5 º

Spine Angle compared to Marker set ± 6 º

Waists Angle compared to Marker set ± 5 º

Spine Projection Distance on Majority Axis (How Far Spine is from Majority Axis) ± 14.5 cm

Symmetry of Waist points against the Majority Axis ± 8.9 cm

Angle between the Majority Axis and Spine to Waistline-midpoint Line ± 35.4 º

Angle between the Majority Axis and Waistline 90 ± 15.2 º

Table 4-13: Remaining inlier detection tolerances

Table Algorithms Parameters Distance (cm) Parameters Angle (º)

4-3

Shoulder Points Detection
Shoulder - Spine ±10 Shoulder ± 6

Shoulder - Shoulder ± 5 Spine NA

4-4 Chest Point Detection Shoulder - Chest ± 5 Shoulder ± 7

4-5 Stomach Point Detection Stomach - Spine ± 5 Stomach ± 7

Stomach - Chest ± 5 Chest ± 7

4-6 Hip Points Detection Spine – Hip, Waist - Hip ± 3.03 Hip NA

4-7 Knee Points Detection Waist – Knee, Hip - Knee ± 5.5 Knee NA

4-8

Calf and Ankle Points Detection

SD (distances) < 1 NA

Knee - Calf (L/R) ± 7.3, ± 5 Knee (R/L) ± 8, 16

Calf - Ankle (L/R) ± 7.3, ± 5 Calf (R/L) ± 13, 35

Knee - Ankle (L/R) ± 7.3, ± 5 Ankle (R/L) ± 20, 20

4-9

Head Points Detection
Shoulder - Head NA ± 19

Head - Head STD <1 NA

4-10

Elbow Points Detection
SD (distance) < 1 NA

Shoulder - Elbow (L/R) ± 11.8, 6.4 NA

4-11

Hand Points Detection
SD (distance) < 1 NA

Elbow - Hand (L/R) ± 5, 6.5 NA

182

 Table 4-14 presents the outcomes of each stage of the proposed algorithm across ten

datasets. The remaining points and reduction percentage are shown after certain steps to

illustrate the algorithm’s impact on reducing the number of invalid or reappearing markers,

thereby reducing computational load. The significant reduction percentage in dataset #7

and #10 after removing NaN points was due to their improperly exported, untrimmed C3D

files.

Table 4-14: The results of each step of the algorithm on 10 datasets

Data Datasets 1 2 3 4 5 6 7 8 9 10

Frames 921 1241 536 686 803 897 460 792 803 653

Original Points 65 62 34 65 51 35 245 30 48 1719

Original Labels 65 62 34 65 51 35 245 30 48 255

NaN Points 5 15 0 5 5 4 221 4 10 1667

Remaining points 60 47 34 60 46 31 24 26 38 52

Reduction percentage (%) 7.7 75.8 0.0 7.7 9.8 11.4 90.2 13.3 20.8 97.0

Extraneous markers 0 0 0 0 0 0 4 0 0 5

Far Outliers 2 3 4 0 10 2 0 0 2 2

Velocity, Acceleration, Jerk Anomalies 4 0 2 4 3 1 0 0 0 4

Norm, Vel., Acc., and Jerk Anomalies 12 0 1 3 2 0 0 0 0 13

Overlapped points 0 1 0 1 0 0 0 0 1 0

Remaining points After Noise Reduction 42 43 27 52 31 28 20 26 35 28

Reduction percentage (%) 30.0 8.5 20.6 13.3 32.6 9.7 16.7 0.0 7.9 46.2

Pelvic Triplets 2 5 2 3 1 3 1 2 4 1

Shoulder points (L,R) 1,1 1,1 2,2 1,1 2,2 1,1 1,1 1,1 1,1 1,1

Chest points 1 3 1 1 1 1 1 1 1 1

Stomach points 1 1 1 1 2 2 1 1 1 1

Remaining points 40 37 25 50 29 24 20 24 32 28

Reduction percentage (%) 4.8 13.9 7.4 3.8 6.5 14.3 0.0 7.7 8.6 0.0

Near Outliers 9 0 1 8 1 0 0 0 0 4

Remaining points 31 37 24 42 28 24 20 24 32 24

Reduction percentage (%) 22.5 0.0 4 16 3.4 0.0 0.0 0.0 0.0 14.3

Hip points (L,R) 1,1 1,2 1,2 2,2 1,1 1,1 1,1 2,2 1,1 1,1

Knee points (L,R) 1,1 1,2 1,1 1,2 1,1 1,2 1,1 1,1 1,1 1,1

Calf points (L,R) 1,1 1,1 1,1 2,3 1,2 2,1 2,1 1,1 1,1 1,1

Ankle points (L,R) 2,0 2,0 1,0 0,4 1,0 1,1 1,1 1,1 1,0 1,0

Head points (L,R) 1,4 1,3 1,2 4,3 1,2 1,1 1,1 1,1 1,3 1,2

Elbow points (L,R) 1,1 3,4 2,1 1,2 4,1 1,1 1,1 1,2 3,4 2,1

Hand points (L,R) 5,1 6,3 1,1 1,7 4,1 1,2 0,0 1,1 4,3 4,1

Remaining points 20 20 20 20 20 21 19 21 20 20

183

 Table cells with multiple values separated by a comma (e.g., 4,3 for # Head points in

dataset 4) represent the number of detected reappearing markers on the left side (4) and

right side (3). In dataset #7, no hand points were detected due to dropped markers in all

frames, resulting in a total of 19 valid markers. For all datasets with a total of 20 remaining

points, the right or left ankle marker was not captured across all frames in the dataset,

prompting the proposal of a recovery algorithm to reconstruct them (see subsection

4.3.3.2.7). Notably, there were no instances of false labeling or unlabeled markers.

4.4.2 Discussion

 We developed an interactive algorithm to streamline the tedious manual cleaning of

MoCap Data. The algorithm removes outliers, extraneous, overlapping and ghost markers,

focusing on detecting inliers based on the geometric criteria like joint angles and bone

lengths using a marker set of 21 markers. Visual evaluation demonstrated a 100% accuracy

rate across ten underwater MoCap datasets.

 First, we provide an analysis of interesting phenomenon that occurred during the

workflow development, specifically considering the pelvis triplets, issues with no hand

points detected, and the necessity of the proposed algorithm to overcome challenges with

manual cleaning. Subsequently, we will delve into specific considerations of assumptions

made during the process and propose potential solutions for enhancing future iterations.

4.4.2.1 Analysis of Pelvis Triplets and Side Detection

 In Table 4-14 the number displayed in front of the pelvis detection row for each dataset

represents the count of detected triplets for pelvis points. For example, in dataset #2, five

triplets were detected: [8 9 14], [8 34 9], [8 9 36], [8 38 9], [8 42 38]. In each triplet, the

184

first number denotes a spine marker, which in this case was reliably labeled with ID8, while

the other two numbers represent waist IDs with unknown sides. The proposed algorithm

places the spine point as the first index in the triplet due to its greater angle. However, since

the pelvis forms an isosceles triangle, initially distinguishing between the other two waist

points as left or right was challenging (see subsection 4.3.3.1.4.1).

 Firstly, the triplets (we referred them to Trios) were sorted by the proposed algorithm if

they contained identical numbers. This means that if the value in index 2 of one Trio is the

same as the value in index 3 of another Trio, then it is evident that both should be placed in

the same index and side. Therefore, the corrected Trios are as follows: [8 9 14], [8 9 34], [8

9 36], [8 9 38], [8 42 38]. These numbers can vary across different Trios. If a label has the

same number in multiple instances, it signifies that the marker was visible throughout,

while the other label may have disappeared and reappeared with a new ID.

 For example, in dataset #2, the spine marker with ID8 remained continuously visible

across all Trios. One of the waist markers with ID9 maintained its original ID in the first

four Trios but disappeared and reappeared with a new ID42, in the last Trio. The other waist

marker transitioned through ID14, ID34, ID36, and finally settled on ID38. This sequence

suggests that initially, it had an ID14 which then disappeared. Upon reappearing, it was

assigned ID34, then ID36, and finally settled on ID38. At the final stage of processing, the

first pelvis Trio [8 9 14] was retained. The trajectories of ID34, ID36, and ID38 are combined

with the trajectory of ID14. The same merging process was applied to ID42 and ID9. Any

gaps present in all trajectories were linearly interpolated. Consequently, the resulting C3D

file contained one spine point with ID8 and its corresponding complete trajectory, one waist

point with ID9 and its corresponding complete trajectory, and another waist point with ID14

185

and its corresponding complete trajectory. It is important to note that in the proposed

algorithm, distinguishing between left or right is not crucial; only the same side matters.

Other IDs such as ID34, ID36, ID38, and ID42 are eliminated in the final C3D file, resulting

in a reduction of four points from the total number of points.

 In this example, the side detection was unnecessary due to identical numbers in Trios.

To demonstrate side detection, another example is presented from dataset #1, which

includes two Trios: [13 16 21] and [13 40 41]. Just like before, index 1 corresponds to the

spine point (ID13). Now, we need to conduct side detection to determine if ID16 belongs to

the same side as ID40 or ID41. If ID16 is on the same side as ID40, these Trios are confirmed

as correct, and the trajectory of ID40 should be combined with that of ID16. Similarly, the

trajectories of ID21 and ID41 should be merged. If not, then IDs 16 and 41 will be merged

while ID21 and ID41 would be combined. The correct order of indices for this dataset after

side detection confirmed that the first scenario was accurate.

4.4.2.2 Analysis of Dataset 7 with no Hand Points Detected

 In dataset #7, it was observed that no hand markers were detected. This absence of hand

markers signifies that throughout the data capture process across all frames, there were no

hands present as the markers were physically dropped. The proposed algorithm did not

incorporate a recovery algorithm for this dataset due to the distinct nature of hand

movements compared to other body parts. Since specific hand data was not available in the

dataset, implementing a recovery algorithm would not have provided meaningful results.

This is because without a reference point for hand movements within the dataset itself, any

attempt at recovery would lack accuracy and relevance. While it may be possible to

186

manually simulate hand movements based on swimming actions in some instances, such as

breaststroke or butterfly stroke, it is not feasible for freestyle movement. Freestyle

swimming involves complicated arm motions that are challenging to replicate accurately

without actual hand marker data, and any estimation techniques would simply provide

synthetic data that likely would not reflect the actual movements.

4.4.2.3 Evaluating the Importance of Implementing This Algorithm

 Manual cleaning is a time-consuming and tedious process, especially in complex tasks.

Specifically, the reappearing passive markers further complicate the situation, as their

movement behavior can resemble noise if their lifespan is short.

 Additionally, during manual cleaning, changing perspectives is crucial for accurately

detecting points, as distances can be misleading. For instance, in Figure 4-33, the red points

in image (a) appear close to valid markers, but in image (b), they are shown to be far away.

Similarly, the yellow points in image (c) seem to overlap, yet a different angle in image (d)

reveals they are also distant from valid markers.

 a b c d

Figure 4-33: The effect of changing the view in Manual Cleaning: Real far distances (b, d) seem near (a, c) from a

different perspective.

187

 In manual cleaning processes, it is necessary to meticulously examine hundreds of

potential points over thousands of frames. Particularly in cases of complex movements,

proximity to outliers, and data gaps, detecting anomalies especially ghost markers that are

very near to valid markers can be challenging, even for a skilled human.

 Taking tolerances into account increases the likelihood of misclassifying nearby ghost

markers as valid markers. However, this method has the advantage of accurately identifying

the frame and label number associated with any abnormalities, facilitating quick visual

verification. Moreover, the intersection check process (Algorithm 2, line 7) triggered an

alarm for visual verification when two points were identified as one physical marker in a

single frame, consisting of one ghost marker and one valid marker.

 Depending on the specific marker set used, this process can be automated. Nonetheless,

due to the inherent challenges presented by our sparse underwater passive marker dataset

and the presence of ghost markers, a semi-automatic approach that combines automatic

identification with manual verification proved to be more reliable.

4.4.2.4 Consideration of Assumptions and Future Solutions

 We had varying assumptions throughout our algorithm. In the extraneous marker

removal phase, valid markers should not be near extraneous ones. For example, in our

datasets, swimmers did not swim at the pool’s bottom where extraneous markers were

located (i.e., the system’s calibration fixture). If extraneous markers were not removed

initially, they would be addressed later, increasing computational load.

 In far outlier detection we removed anomalies with fill levels less than 1% due to

potential passive markers meeting the criteria. This step was used to reduce the

188

computational load, as these outliers could be detected during geometry-based inlier

detection due to their far distance from valid markers. In the future, we can calculate the

mean velocity, acceleration, and jerk over the lifespan of the identified anomalies.

 In pelvis detection using the majority axis, we utilized a frame with a minimum point

and made assumptions about the alignment of the pelvis triangle relative to the majority

axis. While our datasets aligned with these assumptions, further testing with various actions

is necessary. Additionally, for pelvis side detection, we assumed there would be no

significant variation in small gaps, which may not hold true. As a future endeavor, we

should focus on developing an automatic robust solution and explore whether it can be

based on the direction of movement, the cross vector, and other criteria. The initial attempt

to detect sides based on these criteria has not yet yielded results.

 In the inlier detection algorithm, a rigid body assumption was made by incorporating

user-defined tolerances to demonstrate deviations from rigidity concerning the angles and

distances within the marker set. This assumption was correct as long as there was no

stretching or compressing of the body. However, using mean distances and angles helps

mitigate this issue even in those situations. Moreover, certain segments exhibit considerable

deviations from the rigid body assumption (e.g., triangle formed by head and shoulders).

We addressed this using action constraints from our datasets..

 To identify most of our body parts, we assumed that any three points could form a

triangle, necessitating the presence of all three points simultaneously in at least one frame.

To address this assumption in future studies, we plan to pinpoint potential body part

locations by considering marker set distances. If these points fail to create a triangle, we

will then proceed to handle these potential points after identifying all body parts, similar to

189

our approach for dropped ankle reconstruction. We could remove this assumption in our

current algorithm but because all our datasets met this assumption, we did not do that

because such actions would have unnecessarily complicated these procedures, which was

not our intention. Our primary objective is to streamline the manual cleaning process.

 Using interpolation for gap filling can affect angles, distances, and other aspects.

Exploring alternative recovery approaches is crucial to achieve more natural gap filling,

especially with large gaps. However, considering the mean distances reduced the impact.

 We visually evaluated the C3D of each step to ensure accuracy. It was essential to

maintain consistent tolerances across all datasets. Therefore, if we encountered a situation

where, for example, certain body points reappeared in the third dataset but were not

detected, we adjusted the tolerances and reviewed the previous dataset to prevent false

detections or missed points. While starting with high initial tolerances may mitigate this

issue due to varying criteria, it is challenging in conditions with near ghost markers.

 Overall, assumptions based on domain knowledge, such as specific action constraints,

are fundamental in feature-based approaches. Many MoCap solving methods did not

consider ghost markers, and deep learning approaches may struggle with unseen complex

actions that differ significantly from the training set. Since there are no underwater MoCap

data available, and freestyle actions in this environment are unique and unpredictable,

manual cleaning is necessary in our dataset. The purpose of this algorithm was facilitating

laborious manual cleaning, especially for complex actions with numerous reappearing

markers, where assumptions and interactive approaches prove to be effective in noisy and

complicated scenarios where manual cleaning is not feasible.

190

4.5 Conclusion

 We have tackled the issue of labeling raw MoCap data, particularly using underwater

sparse marker sets and freestyle underwater motion. These data are susceptible to various

types of noise, including outliers, extraneous and ghost markers, as well as missing markers

caused by occlusions, reduced visibility under water, and dropped markers due to water

resistance. Moreover, handling the reappearing valid markers caused by using passive

markers results in a high number of points with small trajectory segments instead of a

certain number of valid markers with corresponding trajectories and possible gaps.

 This interactive approach aims to facilitate the tedious and error-prone manual cleaning

process of creating training and ground truth datasets for machine learning and deep

learning algorithms. Additionally, it can be utilized in the alignment, evaluation, or

correction phase of these systems. Furthermore, it serves as a standalone solution for

cleaning and labeling smaller datasets that do not warrant the use of advanced algorithms.

 We have addressed this issue by implementing a range of innovations, such as

extraneous removal based on anomaly detection in the difference of sorted norms profile.

Additionally, we have developed methods for detecting abnormalities in norm, velocity,

acceleration, and jerk profiles. Furthermore, we have established a process for identifying

inliers using a geometry-based approach that considers marker set values like lengths and

angles. The algorithm’s central feature is PCA based pelvis detection, which can also be

utilized in the alignment step of the other MoCap solving systems. The evaluation was

conducted visually, showcasing a 100% accurate detection of valid markers for our ten

captured underwater MoCap datasets containing 21 valid markers.

191

References

[1] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” J. Theor.

Appl. Informatics, vol. 12, pp. 61--89, 2005, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7248

[2] M. Menolotto, D. S. Komaris, S. Tedesco, B. O’flynn, and M. Walsh, “Motion

capture technology in industrial applications: A systematic review,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1–25, 2020, doi: 10.3390/s20195687.

[3] Qualisys, “Cameras for underwater motion capture,” Qualisys.

https://www.qualisys.com/cameras/underwater/ (accessed Jul. 15, 2024).

[4] Qualisys, “Qualisys Track Manager,” Qualisys, 2011.

https://www.qualisys.com/software/qualisys-track-manager/ (accessed Dec. 10,

2023).

[5] M. Kitagawa and B. Windsor, MoCap for Artists Workflow and Techniques for

Motion Capture, no. 0. Elsevier Inc, 2008.

[6] J. Yang, T. Li, Z. Chen, and X. Li, “Research on the Method of Underwater

Swimming Motion Capture,” J. Phys. Conf. Ser., vol. 1982, no. 1, pp. 1–4, 2021,

doi: 10.1088/1742-6596/1982/1/012075.

[7] K. Chen, Y. Wang, S. H. Zhang, S. Z. Xu, W. Zhang, and S. M. Hu, “MoCap-solver:

A neural solver for optical motion capture data,” ACM Trans. Graph., vol. 40, no. 4,

2021, doi: 10.1145/3450626.3459681.

[8] N. Ghorbani and M. J. Black, “SOMA: Solving Optical Marker-Based MoCap

Automatically,” Proc. IEEE Int. Conf. Comput. Vis., pp. 11097–11106, 2021, doi:

192

10.1109/ICCV48922.2021.01093.

[9] G. Ascenso, “Development of a non-invasive motion capture system for swimming

biomechanics,” 2021.

[10] M. A. Hidayat Yani, S. Bayu Aji, I. F. Ariyanti, S. Sukaridhoto, M. A. Zainuddin,

and A. Basuki, “Implementation of Motion Capture System for Swimmer Athlete

Monitoring,” IES 2019 - Int. Electron. Symp. Role Techno-Intelligence Creat. an

Open Energy Syst. Towar. Energy Democr. Proc., pp. 400–405, 2019, doi:

10.1109/ELECSYM.2019.8901554.

[11] E. Martini, S. Member, A. Calanca, and N. Bombieri, “Denoising and Completion

Filters for Human Motion Software : a Survey with Code,” pp. 0–14, 2023, doi:

10.36227/techrxiv.22956482.v1.

[12] A. L. Clouthier, G. B. Ross, M. P. Mavor, I. Coll, A. Boyle, and R. B. Graham,

“Development and Validation of a Deep Learning Algorithm and Open-Source

Platform for the Automatic Labelling of Motion Capture Markers,” IEEE Access,

vol. 9, pp. 36444–36454, 2021, doi: 10.1109/ACCESS.2021.3062748.

[13] Qualisys, “Using AIM models.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/using_aim_models/using_aim

_models.htm (accessed Aug. 01, 2024).

[14] Biomechanical-toolkit.github.io, “Mokka,” Biomechanical-toolkit.github.io.

https://biomechanical-toolkit.github.io/mokka/ (accessed Jan. 06, 2024).

[15] Qualisys, “Swimming Technique: dual media motion capture,” Qualisys.

https://qfl.qualisys.com/#!/project/swimming-techniques (accessed Dec. 02, 2023).

[16] Qualisys, “Qualisys Sports Marker Set,” Qualisys. https://cdn-

193

content.qualisys.com/2022/07/Sports-Marker-Set.pdf (accessed Dec. 05, 2023).

[17] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. Black, “AMASS:

Archive of motion capture as surface shapes,” Proc. IEEE Int. Conf. Comput. Vis.,

vol. 2019-Octob, pp. 5441–5450, 2019, doi: 10.1109/ICCV.2019.00554.

[18] Wikipedia, “Principal component analysis.”

https://en.wikipedia.org/wiki/Principal_component_analysis

[19] B. Motion, “The C3D File Format A Technical User Guide,” p. 134, 2021.

[20] Qualisys, “Exporting files to C3D.” https://docs.qualisys.com/getting-

started/content/13_how_to_visualize_data_in_visual3d/exporting_files_to_c3d.htm

?Highlight=export (accessed Aug. 01, 2024).

[21] Qualisys, “What is a trajectory.”

https://www.qualisys.com/my/qacademy/#!/tutorials/what-is-a-trajectory (accessed

Jun. 30, 2024).

[22] Qualisys, Qualisys Track Manager User Manual, 2022.1. 2022. [Online]. Available:

https://cdn-content.qualisys.com/2022/07/QTM-user-manual.pdf

[23] Github, “ezc3d.” https://github.com/pyomeca/ezc3d

[24] Qualisys, “Super-spherical mocap markers.”

https://www.qualisys.com/accessories/markers/super-spherical-markers/ (accessed

Jul. 28, 2024).

[25] Wikipedia, “Standard deviation.” https://en.wikipedia.org/wiki/Standard_deviation

(accessed Aug. 17, 2024).

[26] X. Pan et al., “A Locality-based Neural Solver for Optical Motion Capture,” 2023,

doi: 10.1145/3610548.3618148.

194

[27] Wikipedia, “Collinearity.” https://en.wikipedia.org/wiki/Collinearity (accessed Sep.

05, 2024).

[28] Qualisys, “Calibrating your system,” Qualisys. https://docs.qualisys.com/getting-

started/content/getting_started/running_your_qualisys_system/calibrating_your_sy

stem/calibrating_your_system.htm (accessed Jan. 06, 2024).

195

5. Deep Learning based Auto-Labelling for Underwater Sparse

Freestyle MoCap Data

Abstract

 This paper discusses auto-labeling for sparse freestyle underwater optical motion

capture (MoCap) data using 21 passive markers, recorded by Qualisys Miqus M5U Mocap

Cameras. MoCap data contains noise such as outliers, ghost markers, and occlusion, which

are exacerbated by water’s unique properties. The algorithm aims to train a Long Short-

Term Memory (LSTM) network with various inputs to assess the impact of feature

selection, training set size, and noise on accuracy. The process involves augmenting the

training set with random noise and gaps, training an LSTM model with 3D position inputs,

then with positions, velocity, and acceleration as five inputs, and using transfer learning

with simulated trajectories to expand the training set. Labels are assigned using the

Hungarian algorithm, Procrustes analysis locates unlabeled markers, and an OpenSim

marker set post-processing corrects mislabeled markers. A semi-supervised geometry-

based labeling method establishes ground truth and training sets. PCA-based pelvis

detection aids in data alignment, and an extraneous marker removal algorithm boosts

LSTM performance from 66% to 98%. The semi-supervised algorithm achieved 100% on

our 10 datasets. Overall, the auto-labelling algorithm streamlines the MoCap manual

cleaning.

196

5.1 Introduction

 Marker-based optical motion capture (OMC) [1] is a technique used in various industries

[2], such as computer vision, biomechanics, entertainment, sports analysis, medical

research, and robotics, to accurately track and record the three-dimensional (3D) motion of

humans. This method involves attaching markers to the subject’s body while cameras

capture their positions in real-time. Specialized software (e.g., Qualisys [3]) processes this

MoCap data to determine the 3D coordinates of each marker by triangulating their locations

from multiple camera views.

 However, the raw Mocap data contain errors due to calibration issues, noisy

environments (e.g., reflective surfaces), and occlusion, resulting in noise, outliers, ghost

markers, mislabeling, and gaps. Extraneous markers, which are real markers from other

objects, may also be present. The underwater environment poses greater challenges due to

surface reflections and water’s unique properties, which amplify noise [4]. For example,

reduced visibility underwater increases the possibility of occlusion. This poses a greater

challenge for passive systems, as occluded passive markers typically receive new random

IDs upon reappearance, resulting in multiple short trajectories for a single marker. In

contrast, active markers retain their ID during occlusion, allowing for continuous

trajectories with potential gaps. Therefore, passive markers can be resembled as noise

throughout their lifespan. We refer to instances of a passive marker as “reappearing”

markers.

 The mentioned challenges complicates manual cleaning and labeling MoCap data.

Automatic labeling functions in commercial software (e.g., Qualisys AIM model;

197

Automatic Identification of Markers [5]) can expedite this process but is still time-

consuming, expensive, and requires manual intervention and cleaned training data.

Consequently, researchers have sought automatic cleaning methods. Early techniques

utilized rigid body and action constraints based on user-defined tolerances, limiting their

generalizability across different actions [6]. Recently, there has been a shift towards deep

learning methods to improve this process [7]. However, the lack of labeled MoCap data for

training these models is a major hurdle; for example, the largest dataset, AMASS [8], is

much smaller than video datasets in other fields. Despite these challenges, deep learning-

based approaches promise better generalization with reduced user intervention.

 The challenge of using deep learning-based auto-labeling methods for underwater

swimming actions in the absence of a Mocap dataset, particularly those involving intricate

and freestyle movements, is significant. A limited number of existing datasets are only

partially underwater, not comprehensive, and sparse [9]. Therefore, we captured

underwater MoCap data using Qualisys system as our primary objective and contribution.

 The auto-labeling algorithm in this study employs a Long Short-Term Memory (LSTM)

[10] network to generate a vector of probabilities, which are then assigned labels using the

Hungarian algorithm [11]. A semi-supervised geometry-based algorithm, as detailed in

Chapter 4 of this thesis, is utilized to establish ground truth and serves as a standalone

labeling algorithm for comparison with the LSTM method. A pelvis detection algorithm

utilizing Principal Component Analysis (PCA) [12] is used to align data. Additionally, an

extraneous marker removal algorithm is proposed to enhance the results of LSTM auto-

labeling. Post-processing identifies and correct mislabeled data using an OpenSim [13]

marker set, and the Procrustes algorithm [14] assigns labels to unlabeled data. Transfer

198

learning [15] is used to expand the training set using simulated trajectories, and due to the

small dataset size, it is augmented using random noise and gaps.

 The paper is organized as follows: Section 5.2 discusses the former works on auto-

labeling in optical Mocap systems. Section 5.3 describes the proposed method with its

rationale and design considerations. Section 5.4 presents experimental results. Section 5.5

summarizes the article.

5.2 Related Work

 Early auto-labeling methods (e.g., moving average filters and low-rank matrix [16],

unscented Kalman filter and inverse kinematics [17], automatic kinematic model building

based on Markov random field [18], and skeleton-based body models [6], [19]–[21]),

mainly relied on empirical parameters and hand-crafted features. Although these

approaches could produce acceptable outcomes for specific patterns and noise under

assumptions and constraints, they consistently faced difficulties adapting to real-world data

with intricate situations.

 Data-driven methods have been employed to address the limitations above by learning

from a large database, such as kd-tree [22], local PCA [23], self-similarity [24], sparse

encoding [25], [26], graph matching [27], [28], and deep learning-based approaches [29]–

[32]. We provided a thorough literature review on addressing MoCap data solving includes

denoising, recovery, alignment, and auto-labelling in Chapter 2 of this thesis.

 We utilize the source Python code of the deep learning-based auto-labeling approach

presented in [33]. However, we enhance their algorithms in several ways. One significant

enhancement is proposing an automatic pelvis detection method for data alignment instead

199

of their manual approach. Additionally, they reported low accuracy due to extraneous

markers, which we address by proposing an extraneous markers removal algorithm. This

improvement significantly enhances the accuracy from 66% to 98%. Furthermore, we input

three data (X, Y and Z position) into LSTM instead of their five inputs (X, Y, Z, velocity

and acceleration) and conduct comparisons. A semi-supervised geometry-based algorithm

is proposed to establish ground truth and functions as an independent labeling method for

comparison with the LSTM approach.

5.3 Methodology

 The overview of our system is shown in Figure 5-1. It consists of 11 main steps:

capturing C3D files, creating an OpenSim marker set, ground truth creation using semi-

supervised geometry-based labeling algorithm, preprocessing, PCA-based pelvis detection

for alignment, training set creation using augmentation and simulated trajectories, training

LSTM using three and five inputs [33], labelling test data using the Hungarian algorithm,

post-processing using Procrustes, and accuracy calculation. They will be described in the

following sections.

 The semi-supervised geometry-based labeling algorithm, detailed in Chapter 4 of this

thesis, was proposed to clean and label datasets. This process generates ground truth and

training datasets for the LSTM-based auto-labeling method presented in this article. This

algorithm relies on the geometric characteristics of the human body considering user

defined tolerances based on rigid body assumptions and actions’ constraints. This algorithm

as shown in Figure 5-1, read C3D file using MATLAB. The steps of this algorithm are

preprocessing including invalid label removal, extraneous marker removal, far outlier

200

removal, PCA-based pelvis detection, torso detection (shoulders, chest, and stomach

points), near outlier removal, limb (hips, knees, calves, ankles, elbows, and hands) and head

detection, remaining noise removal, and dropped marker reconstruction. We will not cover

the details of this algorithm in this article.

Figure 5-1: System Overview

201

5.3.1 Capturing MoCap C3D Data

 Underwater MoCap data were captured using seven Qualisys Miqus M5U underwater

MoCap cameras [34] installed at different locations around a four-meter-deep pool at the

Memorial University Marine Institute. Passive markers were placed on 21 anatomical

locations directly on the swimmer's skin or suit. After calibration [35], data were recorded

at 100Hz using Qualisys Track Manager (QTM) [36] and exported to C3D [37], [38] files.

 A MoCap C3D file consists of a defined number of frames and points, which can be

categorized into valid markers and noise. These markers are tracked across all frames, and

their trajectories are represented by their 3D coordinates x, y, and z over time. To process

the data, we utilized the EZC3D library [39] in MATLAB and Python to read C3D files.

5.3.2 Open Sim Model Marker Set

 OpenSim 4.4 software [13] was used to create the marker set based on the

musculoskeletal model [40]. Our marker set consisted of 21 passive markers attached to

our swimmer’s suit and body, as shown in Figure 5-2. These markers were placed on an

OpenSim Simbody based on our marker set. The markers’ local coordinates are defined in

a “MarkerSet.xml” file.

 Furthermore, triangle-based calculations, which include angles and bone lengths, were

derived from a “T-pose” skeleton. The markers were attached at the same locations as those

on a Simbody. These measurements served as inputs for a semi-supervised geometry-based

algorithm, along with the post-processing steps of the LSTM-based auto-labeling approach

described in this article.

202

Figure 5-2: OpenSim Marker Set; locations of 21 passive markers (pink orbs)

5.3.3 Simulated Trajectories

 The simulated trajectories were generated based on our marker set using the kinematics

of 100 participants from “bodykinematics.hdf5” [33]. Right waist and left waist markers

were used to align the subject to face in the positive x-direction (+x). The sampling

203

frequency of data was 100 Hz. The generation of simulated data addresses the issue of

insufficient data for training deep learning models. This body kinematics contained actions

such as running, walking, and others described in [33], which are completely different from

our underwater freestyle movements.

5.3.4 Training Data Sets Preparation

 The raw C3D files captured contained outliers, extraneous markers, ghost markers, and

gaps or reappearing markers due to occlusion. Denoising, recovering missing markers, and

labeling these MoCap data could be manually performed using free software such as Mokka

[41] or commercial software such as QTM. To avoid the tedious manual cleaning process,

we employed our semi-supervised geometry-based labeling algorithm to clean and label

the datasets, creating the ground truth or training sets.

5.3.4.1 Transfer Learning

 Transfer learning was utilized to augment the training set of the network by

incorporating the accurately labeled outputs from the auto-labeling algorithm. This allowed

us to enhance the training set by adding the trained model using simulated trajectories or

by adding new labeled C3D files to a previously trained model. This approach improved

the network’s performance and accuracy.

5.3.4.2 Augmentation

 Because our underwater datasets were small and the created simulated trajectories

contained actions that were very different from our freestyle underwater movements, we

204

augmented our datasets by adding random noise and gaps. However, we did not incorporate

the simulation of reappearing markers.

5.3.5 Pre-processing Data

 There were several steps to prepare input data for a neural network, including invalid

label removal, extraneous marker removal, pelvis detection for alignment, Butterworth

filtering, gap filling, and data windowing, which are described in the following sections.

We compared the results with and without this enhancement to demonstrate the significant

improvement in accuracy achieved through our contribution.

5.3.5.1 Invalid Label Removal

 Removing labels that hold no information in all frames reduced the computational load.

This happens when a C3D file is a subset exported from a larger C3D file without trimming.

5.3.5.2 Extraneous Removal

 This algorithm used clustering of norm differences to identify and remove extraneous

markers that were visible in all frames and located far from valid markers. This method

involved calculating the Euclidean norm of each point 𝑝 = (𝑥, 𝑦, 𝑧) in every frame relative

to the origin 𝑂 = (0,0,0) as ‖𝑝‖ = √(𝑝 ⋅ 𝑝) = √(𝑥2 + 𝑦2 + 𝑧2). Then, the norms and

their corresponding labels were sorted, and the difference between each norm value and the

preceding norm value was computed. To remove anomalies, we set a threshold of three

standard deviations (SD) from the mean (e.g., using “isoutlier()” function in MATLAB).

This method improved the low accuracy, due to extraneous markers, noted in [33].

205

5.3.5.3 Pelvis-based Alignment

 The marker coordinates were rotated around the vertical axis so that the swimmer faced

the positive x-direction at the beginning of the trial, to prepare the data for input into the

neural network. We used PCA-based pelvis detection, as detailed in Chapter 4 of this thesis

and will be summarized here, to automatically align data in the dataset based on the right

and left waist points. This proposed method resolved the issue of manual alignment of test

data described in [33].

5.3.5.3.1 PCA-based Pelvis Detection

 First, we identified probable pelvis points (i.e., reappearing passive marker IDs) by

assuming that the spine, right waist, and left waist markers appeared simultaneously in at

least one frame to form a triangle, as illustrated in Figure 5-3.

 Table 5-1: Pelvis Detection Marker set Constraints (M: Marker set)

Constraints Constraints

|𝑑1 − 𝑀𝑑1| < ∆𝑑𝑀 |𝜃𝑆𝑝 − 𝑀𝜃𝑆𝑝| < ∆𝜃𝑀𝑆𝑝

|𝑑2 − 𝑀𝑑2| < ∆𝑑𝑀 |𝜃𝑊1 − 𝑀𝜃𝑊1| < ∆𝜃𝑀𝑊

|𝑑𝑊 − 𝑀𝑑𝑊| < ∆𝑑𝑀 |𝜃𝑊2 − 𝑀𝜃𝑊2| < ∆𝜃𝑀𝑊

 Figure 5-3: Pelvis Triangle

 We detected probable pelvis points in each frame by applying geometric constraints

based on rigid body assumptions. First, we selected pairs of points with a static distance

(i.e., SD(distance) < 0.5 cm). Next, we formed all combinations of three points to create

triangles and evaluated their distances and angles against specific criteria. Then, we refined

the triangles that met these criteria by assessing their orientation. We determined body

orientation using the first PCA component as the majority axis. We assumed that the right

and left waist points should be symmetrically aligned with this axis, while the spine point

𝑆𝑝

𝜃𝑆𝑝

𝜃𝑊2

𝑑2 𝑑1

𝜃𝑊1

𝑊1 𝑊2
𝑑𝑊

206

should be close to both the centroid of the points and this axis. Finally, we accurately

identified the correct pelvis points by comparing distances and angles with precise values

from our marker set, as shown in Table 5-1. We used a side detection algorithm to

differentiate between the right and left waist points. Next, we combined the short

trajectories for each pelvis point into a single trajectory and applied linear interpolation to

fill in any gaps.

5.3.5.4 Butterworth Smoothing

 Trajectories were smoothed using a zero-phase second-order 6Hz Butterworth filter,

akin to [33]. This smoothing process occurred after our pelvis detection step since it could

impact angle values crucial for the pelvis detection algorithm. However, using mean angles

helped reduce the influence of smoothing.

5.3.5.5 Gap Filling

 The small gaps, defined as gaps 10 frames or less, were filled using linear interpolation.

As is common in passive marker systems, we observed short trajectories for each marker,

rather than complete trajectories with potential gaps as seen in active systems. However,

accommodating a general solution for datasets with active or passive markers and partially

processed data, we filled any small gaps.

5.3.5.6 Data Windowing

 Windowing marker trajectories before inputting them into an LSTM network enhances

the network’s ability to capture temporal dynamics, extract relevant features, handle

variable-length sequences, improve training efficiency, and enhance prediction accuracy.

207

For the test and validation data, windows of 100 frames were chosen, if the total number

of frames was divisible by 100. The last window would be smaller for fewer frames. If

there were 10 or fewer frames left, these frames were added to the previous window. For

example, for 202 total frames, we created two windows with a size of 100 each. The

remaining 2 frames, being less than 10, were added to the second window. In the training

data, a random length between 10 and 100 frames was considered so that the neural network

could encounter windows of various sizes to prepare for the different-sized final window

of each marker. The detail of the windowing procedure was described in [33].

5.3.5.7 Neural Network Input Data

 We used three inputs (x, y, and z relative location of each marker) and suggested five

inputs [33] (x, y, z, velocity and acceleration of each marker) separately as inputs into the

neural network to compare them. The x, y, and z coordinates of the retained markers in

relation to the current marker were computed by iterating through all markers.

Subsequently, the trajectories were arranged based on their mean distance from the current

marker. The Euclidean norm of the velocity and acceleration of the retained markers

concerning the current marker were computed. The relative positions, velocities, and

accelerations were normalized by the mean values observed across all markers in the

training dataset. A matrix of dimensions (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒) × (5 (𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 − 1)) was

created, which included the positions (coordinates x, y, z), velocities, and accelerations of

the retained markers relative to the current marker. This matrix served as input to the neural

network. A matrix of dimensions (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒) × (3 (𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 − 1)) was used for

3-input.

208

5.3.6 Long short-term memory (LSTM)

 An LSTM network was used to calculate label probabilities for each window. It is a type

of recurrent neural network (RNN) specifically designed to overcome the vanishing

gradient problem found in traditional RNNs. One of its main advantages over other RNN

architectures and sequence learning techniques is its effectiveness in handling varying

lengths of temporal gaps in the data. This feature allows LSTM networks to significantly

improve the capture of long-sequence dependencies by utilizing a short-term memory

mechanism that retains information over thousands of time steps.

 The suggested network [33] comprised a recurrent layer (LSTM) with a 10% dropout

rate and 128 cells, a fully connected layer with 128 nodes, one-dimensional batch

normalization, a rectified linear unit (ReLU), another fully connected layer, and a softmax

function. The network was implemented using a stochastic gradient descent (SGD)

optimizer with momentum to train the neural network using a cross-entropy loss criterion.

The algorithm underwent training for 10 epochs on the training sets and was subsequently

tested on the data set. The training and testing processes were executed on an 11th Gen

Intel(R) Core(TM) i7-1165G7 @ 2.80GHz processor with 16.0 GB of RAM.

 Hyperparameter tuning was conducted in [33] to determine the optimal settings for

various parameters in a neural network model. These parameters included the number of

LSTM layers, the number of LSTM cells, the dropout percentage for LSTM layers, the

number of nodes in fully connected layers, and the momentum and learning rate of the

optimizer. The process of finding the best combination of these hyperparameters was

achieved through Bayesian hyperparameter optimization using the Ax Platform. In this

optimization process, the micro-averaged F1 score was utilized as the metric for evaluation.

209

The micro-averaged F1 score combines precision and recall into a single metric and serves

as an indicator of classification accuracy. The best results were obtained with three LSTM

layers, 256 LSTM cells, a dropout rate of 0.17, 128 nodes in fully connected layers, a

learning rate set at 0.078, and a momentum value of 0.65.

 The neural network produced a 1 × 𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 vector for each window of a marker,

indicating the probabilities of each label being correct. New windows were created by

dividing the trial marker data at frames where any marker appeared or disappeared. This

ensures that each marker label appeared only once in each window, which was essential

because a single marker label may be spread across multiple trajectories, and this guarantee

is not provided with randomly segmented windows.

5.3.7 Hungarian based Label Assignment

 Formulating the assignment of labels involved solving an unbalanced assignment

problem on a weighted bipartite graph. Consequently, the optimal marker labels for each

window were determined using the Hungarian algorithm. Using the weighted mode

involved assigning a single label to the entire trajectory. The predicted labels for each frame

were weighted based on the probability of the prediction. The issue of assigning two

markers to one label was solved by keeping the marker with the highest probability [33].

5.3.8 Post-processing

 The OpenSim marker set was utilized to determine the precise local coordinates of each

marker in relation to its corresponding body segment. This process helped identify

inaccurately labeled markers by assuming a rigid body model. If the distances between a

marker and other markers within the same segment deviated more than three SD from the

210

distances in the training dataset specific to that marker, the assigned label was removed.

Assigning labels to unlabeled markers was determined by calculating the mean

probabilities and comparing the distance to other markers in a segment with three SD from

those observed in the training set. If the distances fell outside this range for all available

labels, the marker remained unlabeled [33].

5.3.8.1 Procrustes Analysis

 Procrustes Analysis [14] is a statistical method for analyzing the distribution of a set of

shapes. It was used [33] to align the local marker coordinates in the marker set with the

measured markers based on scaling, rotation, and translation to assign labels for body

segments with at least three markers, but with one or more remaining unlabeled. Locating

unlabeled markers was achieved by ensuring that all distances between the aligned marker

set and the measured markers were below a specified threshold. If an unlabeled marker fell

within a second threshold of the expected position based on the aligned marker set

coordinates, it was then assigned the missing label. The manual adjustment of thresholds

was based on the spacing of markers within the respective marker set.

5.3.9 Evaluation Metrics

 We compared labelled data with ground truth with different metrics. We reported

average of per-frame accuracy, precision, recall, and F1 score in percentages. We used a

confusion matrix which is a table that is often used to describe the performance of a

classification model on a set of data for which the true values are known. It is called a

confusion matrix because it can show what types of errors are being made by the model.

Below are the definitions of confusion matrix values and the evaluation metrics:

211

 A confusion matrix is a 2 × 2 matrix that contains the following four values:

✓ True Positive (TP): These are the points that are actual markers and correctly

labelled by the algorithm.

✓ False Positive (FP): These points are incorrectly identified as markers by the

algorithm, either because they are actually noise or because the labels are wrong.

✓ False Negative (FN): Actual markers that are falsely unlabelled by the algorithm.

✓ True Negatives (TN): Instances where the model correctly identifies negative

instances (i.e., the model correctly classifies data points as noise or when the marker

is null in a frame and is labeled correctly as null).

Accuracy: The proportion of correctly predicted labels over all labels. This is calculated

by dividing the number of correct predictions by the total number of labels:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision: The proportion of actual correct labels over predicted labels. This is calculated

by dividing the number of true positives by the total number of positive labels predicted:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall: The proportion of correct predicted labels over actual labels. This is calculated by

dividing the number of true positives by the total number of actual positive labels:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 Score: The harmonic-average of precision and recall:

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

212

5.4 Experimental Results and Analysis

 We captured 10 underwater MoCap C3D data sets at 100 Hz, with 21 passive markers,

as described in Table 5-2. We cleaned and labeled these files using our proposed semi-

supervised geometry-based labeling algorithm to create a ground truth dataset and training

data. Then, these datasets were augmented through transfer learning by using simulated

trajectories. An additional augmentation was performed by introducing gaps and noise into

these datasets. We evaluated the deep-learning-based approach on these 10 raw C3D files

because with passive markers, the raw data contained many reappearing markers, which

were not like the cleaned data with gaps where each physical marker had a unique, complete

trajectory with potential gaps.

 We conducted a series of tests to evaluate the impact of different factors on network

accuracy including feature selection as an input to the network, size of the training set, and

the effects of our proposed extraneous removal technique. The tests were as follows:

 Test 1: 5-inputs LSTM, and train set of 10 C3D files

 Test 2: 5-inputs LSTM, and train set of 10 C3D files and simulated trajectories

 Test 3: 5-inputs LSTM, and train set of 100 C3D files

 Test 4: 5-inputs LSTM, and train set of 100 C3D files and simulated trajectories

 Test 5: 3-inputs LSTM, and train set of 100 C3D files

 All tests mentioned above were conducted once with the application of the

extraneous removal algorithm on the datasets and then again without applying the

extraneous removal to investigate the effectiveness of this algorithm.

213

5.4.1 Raw C3D Data Sets

 The actions’ description of 10 captured underwater MoCap data sets is displayed in

Table 5-2. Data were captured at 100 Hz, with 21 markers attached to the swimmer’s body.

The major movements are described, while they can be quite intricate. The axis directions

of 3D coordinates are described in Figure 5-4.

Figure 5-4: Axes directions of 3D coordinates

Table 5-2: Actions Description of Raw C3D datasets

C3D Underwater Action Description Head Position Transition Posture Face

1 - Going down (Head UP) to -Z (Upright)

- Overhead clapping (still feet)

- Transition to a horizontal position (+X)

- Float (Supine) : Face +Z

+Z

+Z

+X

+X

(+Z) Vertical

(+Z) Vertical

(+X) Horizontal

(+X) Horizontal

-X

-X

+Z

+Z

2 - Front Crawl to -X

- Turn & Front Crawl to +Y

- Turn & Front Crawl to +X

-X

+Y

+X

(-X) Horizontal

(+Y) Horizontal

(+X) Horizontal

-Z

-Z

-Z

3 - Going downward to -Z (Upside-down)

- Bending Transition to Float (-XY) (Supine)

-Z

-XY

(-Z) Vertical

(-XY) Horizontal

+X

-Z

4 - Going downward to -Z (Upside-down)

- Downward Butterfly

- Rotate Body around XY (few times)

- Transition to Float (Supine) to +Y

-Z

-Z

+XY

+Y

(-Z) Vertical

(-Z) Vertical

(+XY) Horizontal

(+Y) Horizontal

+XY

+XY

+Z,-Z

+Z

5 - Crawl downward to -Z (Upside-down)

- Rotate Body around Z

- Transition to Horizontal +Y

- Jumping position & going up (Upright) (+Z)

- Rotate around Z to Face -Y

-Z

-Z

+Y

+Z

+Z

(-Z) Vertical

(-Z) Vertical

(+Y) Horizontal

(+Z) Upright Vertical

(+Z) Upright Vertical

+X

+X,-X

-Z

-X

-Y

6 - Breaststroke downward (Upside-down)

- Bending Turn to (+Z)

-Z

+Z

(-Z) Vertical

(+Z) Vertical

-XY

+XY

7 - Walk horizontally to +Y

- Bend Knee & Jump up (+Z) (Upright)

+Z

+Z

(+Z) Vertical

(+Z) Vertical

+Y

+Y

8 - Breaststroke downward (Upside-down)

- Bending turning to horizontal +XY

- Going up (Upright)

-Z

+XY

+Z

(-Z) Vertical

(+XY) Horizontal

(+Z) Vertical

-X

-Z

+X

9 - Front Crawl to -X

- Turn & Front Crawl to +Y

- Turn & Front Crawl to +X

-X

+Y

+X

(-X) Horizontal

(+Y) Horizontal

(+X) Horizontal

-Z

-Z

-Z

10 - Moving hands

- Bend Backward & Float horizontal +X

+Z

+X

(+Z) Vertical

(+X) Horizontal

-X

+Z

214

 The properties of these 10 datasets are in Table 5-3. These datasets contain null markers

due to being exported from another large C3D file, noise which includes ghost markers and

outliers, extraneous markers which belong to another object, and dropped markers across

the entire frames. Two datasets, numbers 7 and 10, have extraneous markers. All datasets

except numbers 6 and 8 have dropped markers. In all, only one side ankle (left or right) was

dropped, except for dataset number 7, which had two hand markers (left and right) dropped.

Additionally, this table provides information about passive marker characteristics,

specifically those that reappear after being occluded. Passive markers can have multiple

short trajectories, called tracklets [42], with different IDs, meaning a single physical marker

can be associated with more than one point. The maximum number of tracklets per marker

and the number of tracklets exceeding one, highlighting the complexity of cleaning and

labeling data. The minimum, maximum, and mean filling levels are also presented, further

emphasizing the labeling challenges as markers with low filling levels can resemble noise.

Table 5-3: Datasets Properties

Data C3D 1 2 3 4 5 6 7 8 9 10

#Frames 921 1241 536 686 803 897 460 792 803 653

#Points 65 62 34 65 51 35 245 30 48 1719

#NaN 5 15 0 5 5 4 221 4 10 1667

#Valid Points 30 44 25 43 30 28 20 26 36 24

#Extranous 0 0 0 0 0 0 4 0 0 5

#Noise 30 3 9 17 16 3 0 0 2 28

#Dropped 1 1 1 1 1 0 2 0 1 1

Max #Tracklets 5 6 2 7 4 3 2 2 4 4

#Tracklets > 1 5 12 5 13 6 6 1 5 7 2

Valid Markers

Filling Level

Min 0.65 1.13 2.24 0.15 2.86 4.68 33.26 7.45 1.74 3.22

Max 100 100 100 100 100 100 100 100 100 100

Mean 65.25 43.75 79.13 44.21 65.47 74.09 94.41 80.05 54.16 82.52

215

5.4.2 Labeling Performance Results

 The results of test numbers 1, 3, 4, and 5 are shown in Table 5-4.

Table 5-4: Results for Test 1,3,4, and 5 (E = Extraneous)

Dataset Rotation Angle (º) Test Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1

177.2

1 81.19 89.35 89.33 89.34

3 98.59 99.68 98.84 99.24

4 99.47 99.61 99.84 99.72

5 87.32 96.41 89.30 92.69

2

177.2

1 92.26 99.77 91.86 95.63

3 99.86 99.99 99.85 99.92

4 98.64 99.74 98.63 99.17

5 99.18 99.74 99.19 99.46

3

176.9

1 79.65 100 78.26 87.76

3 98.79 99.13 99.57 99.35

4 99.68 99.67 100 99.83

5 99.59 99.58 100 99.79

4

110

1 65.58 89.25 67.53 76.70

3 96.92 98.71 97.57 98.12

4 89.59 94.82 93.46 94.11

5 95.12 97.01 97.21 97.10

5

177

1 94.41 99.54 94.51 96.94

3 99.41 99.66 99.69 99.67

4 99.98 99.98 100 99.99

5 99.98 99.98 100 99.99

6

-40

1 100 100 100 100

3 99.98 99.98 100 99.99

4 99.31 99.70 99.55 99.62

5 99.65 99.82 99.81 99.81

7

-20

1 E 62.88 76.28 68.25 72.04

1 100 100 100 100

3 E 70.87 72.58 94.14 81.96

3 100 100 100 100

4 E 59.30 62.33 88.22 73.05

4 100 100 100 100

5 E 58.66 62.33 83.29 71.30

5 100 100 100 100

8

0

1 100 100 100 100

3 100 100 100 100

4 100 100 100 100

5 100 100 100 100

9

177

1 87.18 94.53 91.63 93.04

3 99.92 100 99.91 99.95

4 99.88 99.96 99.91 99.94

5 99.85 99.96 99.87 99.92

10

-177.5

1 E 73.71 83.03 76.99 79.87

1 84.54 90.17 92.76 91.43

3 E 65.71 71.42 81.13 75.94

3 98.69 99.43 99.26 99.33

4 E 76.89 80.53 89.57 84.80

4 99.35 99.44 99.90 99.66

5 E 59.93 65.23 80.84 72.19

5 99.50 99.65 99.84 99.74

216

 Table 5-4, presents the accuracy, precision, recall, and F1-score evaluation metrics for

each dataset across Test 1, 3, 4, and 5. Figure 5-5 and Figure 5-6 present bar charts for

accuracy and F1-Score, that facilitate a better understanding and analysis of these results

which will be provided in further pages. However, the most significant result is the

improved performance on all four tests using datasets without extraneous markers (i.e., in

datasets 7 and 10). These demonstrate the effectiveness of one of our contributions, which

is the extraneous marker removal algorithm. These tests were also conducted on cleaned,

unlabeled versions of these 10 datasets, and all tests resulted in 100% accuracy.

 The results for Test 2, which utilizes a “5-input LSTM” model with a training set of 10

C3D files and simulated trajectories, are presented in Table 5-5 and Table 5-6. These tables

are separated due to the lower performance of this test. Table 5-5 displays the results for

the cleaned, unlabeled version of these 10 datasets, while Table 5-6 shows the results for

the raw, noisy datasets. The mean of each metric is calculated once for the dataset without

extraneous markers and once with extraneous markers, considering that the cleaned version

contains no such markers.

Table 5-5: Results for Cleaned Datasets (Free of Extraneous) for Test 2

Data \ C3D 1 2 3 4 5 6 7 8 9 10 Average

Rotation Angle (º) 177.2 177.2 176.9 110 177 -40 -20 0 177 -177.5

Accuracy (%) 26.09 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 26.09 20.458

Precision (%) 75 100 100 100 100 100 100 100 100 75 95.0

Recall (%) 28.57 19.05 19.05 19.05 19.05 19.05 10.62 19.05 19.05 28.57 20.111

F1-Score (%) 41.38 32.00 32 32 32 32 19.19 32.00 32 41.38 32.595

Table 5-6: Results for Raw Datasets for Test 2 (E = Extraneous) (Av= Average)

Data \ C3D 1 2 3 4 5 6 7 E 7 8 9 10 E 10 Av. (E) Av.

Rotation Angle (º) 177.2 177.2 176.9 110 177 -40 -20 -20 0 177 -177.5 -177.5

Accuracy (%) 61.66 54.78 57.61 54.30 46.30 55.12 46.64 37.36 100 52.55, 39.89 50.12 51.63 51.725

Precision (%) 69.55 82.81 71.75 75.54 61.01 72.72 51.95 63.27 100 90.94 53.01 60.55 72.928 74.814

Recall (%) 83.14 58.18 74.04 64.39 64.70 69.44 70.52 38.53 100 52 46.25 70.56 68.266 67.498

F1-Score (%) 75.72 67.79 72.83 69.34 62.69 70.77 59.83 47.89 100 66.11 49.39 65.16 69.447 69.83

217

5.4.3 Analysis of Low Performance of Test 2:

 We expected to see improved results by using transfer learning to augment the training

set with simulated trajectories. However, when comparing the results of Test 2 (Table 5-5

and Table 5-6: a 5-input LSTM trained with 10 C3D files and simulated trajectories) to Test

1 (Table 5-4: a 5-input LSTM trained only with 10 C3D files), the results were significantly

decreased rather than improved. This could be due to several factors:

1- Mismatch in Data Distributions:

 The primary issue at hand is the mismatch between the data distributions of the

pretrained model and the new dataset. This discrepancy arises from the fact that the pre-

trained model was generated based on a specific marker set distribution, while the

kinematics of the new data are different, with distinct actions. Consequently, characteristics

like velocity and acceleration in the new data vary significantly from those in the pre-

trained model. This mismatch can lead to the pre-trained model’s initial weights being

poorly suited for the new data, causing the model to struggle to learn effectively.

2- Pre-trained Model Bias due to small datasets (10 C3D files):

 Table 5-4 shows that transfer learning yielded either enhanced or nearly similar results

when comparing Test 3 (5-input LSTM, trained on 100 C3D files without simulated

trajectories) and Test 4 (trained on 100 C3D files with simulated trajectories). Initially, this

might seem contradictory to the first factor, which is the mismatch problem. However, this

discrepancy arises because Test 2 uses a dataset of 10 C3D files, while Test 3 and 4 utilize

datasets of 100 C3D files. In essence, transfer learning augmented the larger datasets in

218

Test 3 and 4 (100 C3D files), whereas in Test 2, it augmented a smaller dataset (10 C3D

files). Consequently, the smaller dataset in Test 2 introduced a bias.

5.4.4 Analysis of Results: Test 1, 3, 4, and 5

 Figure 5-5 and Figure 5-6 present bar charts, for accuracy and F1-score of Table 5-4 that

facilitate a better understanding and analysis of the results of Test 1, 3, 4, and 5.

Figure 5-5: Accuracy for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5

Figure 5-6: F1-score for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5

219

 Summary of the results (Table 5-7):

Table 5-7: Summary of Results for Comparison of different Factors (V: Vertical), (H: Horizontal)

Datasets Main Postures Accuracy (%) Ranked Results

C3D V H Min Max Highest Rank 2 Rank 3 Lowest

1 + + 81 99.4 Test 4 Test 3 Test 5 Test 1

2 - + 92 99.9 Test 3 Test 5 Test 4 Test 1

3 + + 79 99.7 Test 4 Test 5 Test 3 Test 1

4 + + 65 96.9 Test 3 Test 5 Test 4 Test 1

5 + + 94 99.9 Test 5 Test 4 Test 3 Test 1

6 + - 99 100 Test 1 Test 3 Test 5 Test 4

7 E + - 58 70.9 Test 3 Test 1 Test 4 Test 5

7 + - 100 100 Same Rank Across Tests

8 + - 100 100 Same Rank Across Tests

9 - + 87 99.9 Test 3 Test 4 Test 5 Test 1

10 E + + 60 76.9 Test 4 Test 1 Test 3 Test 5

10 + + 84 99.5 Test 3 Test 4 Test 3 Test 1

 The conclusions from these results based on different factors:

1- 3-Inputs vs 5-Inputs: 5 input variables are more effective; however, for some

datasets, 3 inputs yield better results than 5 inputs. In most cases, their results are

quite similar. The poorest performances were in datasets 7E and 10E.

2- Augmented training set with simulated trajectories: overall, similar to 3 inputs,

except that the poorest results were obtained for dataset 6.

3- Augmented training set from 10 to 100: the small training set of 10 nearly

consistently achieved the lowest results across all datasets.

4- Extraneous Removal: Removing extraneous markers significantly enhanced the

results, increasing accuracy from 62.9% to 100% for dataset 7 and from 69% to

95.5% for dataset 10. This demonstrates the substantial impact of our contribution

which is our extraneous removal algorithm.

 We expected the exclusive horizontal movements in datasets 2 and 9 to produce lower

results, as the simulated trajectories mainly involve vertical actions like running and

220

walking. Contrary to our expectation, this did not happen, possibly due to the larger

underwater training sets (100 C3Ds) compared to 20 participants-simulated trajectories.

5.4.5 Overall Conclusion: The effectiveness of Extraneous Removal

 Table 5-8 and Figure 5-7 show the average accuracy and F1-score across all datasets for

Tests 1, 3, 4, and 5, both with and without extraneous markers. This table demonstrates the

effectiveness of the extraneous marker removal algorithm. Datasets 7 and 10 are the only

ones containing extraneous markers. This table also compares these four tests across all

datasets, showing that Test 3 achieved the highest results, followed by Test 4 and Test 5.

The lowest result was for the non-augmented training set with 5 inputs.

Table 5-8: The Average Accuracy and F1-score across all Datasets

Tests 1 3 4 5

Accuracy (%) (E) With Extraneous 83.69 93.01 92.27 89.93

Without Extraneous 88.48 99.22 98.59 98.02

F1-Score (%) (E) With Extraneous 89.13 95.41 95.02 93.23

Without Extraneous 93.08 99.56 99.20 98.85

Figure 5-7: The Average Accuracy and F1-Score across all Datasets

221

5.5 Conclusion

 We addressed the challenge of automatically labeling raw MoCap data for underwater

motion using sparse marker sets. These data are prone to noise such as outliers, ghost

markers, extraneous markers, and missing markers due to occlusions and reduced visibility

underwater. Additionally, dealing with reappearing valid markers from passive markers

leads to numerous small trajectory segments instead of a consistent number of valid

markers with trajectories and potential gaps.

 We tackled this issue by training an LSTM network using various inputs to evaluate the

impact of feature selection, training set size, and noise on accuracy. The training set was

augmented with random noise and gaps. Our LSTM network was trained with three 3D

relative position inputs, then with relative positions, velocity, and acceleration as five

inputs, and utilized transfer learning with simulated trajectories to expand the training data.

The Hungarian algorithm was used for label assignment. Procrustes analysis was used to

locate unlabeled markers. Post-processing was used to correct mislabeled markers using an

OpenSim marker set. A semi-supervised geometry-based labeling method established the

ground truth and training sets and allowing results to be compared with LSTM results.

PCA-based pelvis detection was designed for data alignment, and an extraneous marker

removal algorithm was proposed to enhance our LSTM model performance. The

extraneous markers removal algorithm increased the accuracy of our approach for datasets

with extraneous markers from 66% to 98%. The final semi-supervised algorithm achieved

100% on our 10 datasets. The auto-labelling algorithm reduced the time and tedious efforts

of the manual labelling of MoCap data.

222

References

[1] G. B. Guerra-filho, “Optical motion capture: Theory and implementation,” J. Theor.

Appl. Informatics, vol. 12, pp. 61--89, 2005, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7248

[2] M. Menolotto, D. S. Komaris, S. Tedesco, B. O’flynn, and M. Walsh, “Motion

capture technology in industrial applications: A systematic review,” Sensors

(Switzerland), vol. 20, no. 19, pp. 1–25, 2020, doi: 10.3390/s20195687.

[3] Qualisys, “Qualisys,” Qualisys. https://www.qualisys.com/ (accessed Dec. 10,

2023).

[4] I. M. Thompson, J. Banks, D. Hudson, and M. Warner, “Assessment of error levels

across the domain of a three dimensional underwater motion capture methodology,”

40th Int. Soc. Biomech. Sport. Conf., pp. 703–706, 2022.

[5] Qualisys, “Using AIM models.” https://docs.qualisys.com/getting-

started/content/getting_started/processing_your_data/using_aim_models/using_aim

_models.htm (accessed Aug. 01, 2024).

[6] J. Meyer, M. Kuderer, J. Muller, and W. Burgard, “Online marker labeling for fully

automatic skeleton Tracking in optical motion capture,” Proc. - IEEE Int. Conf.

Robot. Autom., no. May 2014, pp. 5652–5657, 2014, doi:

10.1109/ICRA.2014.6907690.

[7] K. Chen, Y. Wang, S. H. Zhang, S. Z. Xu, W. Zhang, and S. M. Hu, “MoCap-solver:

A neural solver for optical motion capture data,” ACM Trans. Graph., vol. 40, no. 4,

2021, doi: 10.1145/3450626.3459681.

223

[8] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. Black, “AMASS:

Archive of motion capture as surface shapes,” Proc. IEEE Int. Conf. Comput. Vis.,

vol. 2019-Octob, pp. 5441–5450, 2019, doi: 10.1109/ICCV.2019.00554.

[9] Qualisys, “Swimming Technique: dual media motion capture,” Qualisys.

https://qfl.qualisys.com/#!/project/swimming-techniques (accessed Dec. 02, 2023).

[10] Wikipedia, “Long short-term memory.” https://en.wikipedia.org/wiki/Long_short-

term_memory (accessed Jul. 29, 2024).

[11] H. W. Kuhn, “The Hungarian method for the assignment problem,” 50 Years Integer

Program. 1958-2008 From Early Years to State-of-the-Art, vol. 2, no. 1, pp. 29–47,

2010, doi: 10.1007/978-3-540-68279-0_2.

[12] Wikipedia, “Principal component analysis.”

https://en.wikipedia.org/wiki/Principal_component_analysis

[13] SimTK, “OpenSim,” SimTK. https://simtk.org/frs/index.php?group_id=91

(accessed Jan. 05, 2024).

[14] S. Chatterjee, “Procrustes Problems,” Technometrics, vol. 47, no. 3, pp. 376–376,

2005, doi: 10.1198/tech.2005.s296.

[15] Wikipedia, “Transfer Learning.” https://en.wikipedia.org/wiki/Transfer_learning

[16] X. Liu, Y. M. Cheung, S. J. Peng, Z. Cui, B. Zhong, and J. X. Du, “Automatic motion

capture data denoising via filtered subspace clustering and low rank matrix

approximation,” Signal Processing, vol. 105, pp. 350–362, 2014, doi:

10.1016/j.sigpro.2014.06.009.

[17] A. Aristidou and J. Lasenby, “Real-time marker prediction and CoR estimation in

optical motion capture,” Vis. Comput., vol. 29, no. 1, pp. 7–26, 2013, doi:

224

10.1007/s00371-011-0671-y.

[18] S. Rajko and G. Qian, “Real-time automatic kinematic model building for optical

motion capture using a markov random field,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4796 LNCS, pp.

69–78, 2007, doi: 10.1007/978-3-540-75773-3_8.

[19] M. Ringer and J. Lasenby, “A procedure for automatically estimating model

parameters in optical motion capture,” Image Vis. Comput., vol. 22, no. 10 SPEC.

ISS., pp. 843–850, 2004, doi: 10.1016/j.imavis.2004.02.011.

[20] A. Cuevas, J. Rodriguez-Navarro, and A. Susín, “Auto-labeling as a minimization

problem with virtual occlusions,” 18th Spanish Comput. Graph. Conf. CEIG 2008,

vol. 5, pp. 133–139, 2008.

[21] C. Schönauer, T. Pintaric, and H. Kaufmann, “Full Body Motion Capture A Flexible

Marker-Based Solution,” 2011.

[22] J. Baumann, B. Krüger, A. Zinke, and A. Weber, “Data-driven completion of motion

capture data,” VRIPHYS 2011 - 8th Work. Virtual Real. Interact. Phys. Simulations,

no. January, pp. 111–118, 2011, doi: 10.2312/PE/vriphys/vriphys11/111-118.

[23] G. Liu and L. McMillan, “Estimation of missing markers in human motion capture,”

Vis. Comput., vol. 22, no. 9–11, pp. 721–728, 2006, doi: 10.1007/s00371-006-0080-

9.

[24] A. Aristidou, D. Cohen-Or, J. K. Hodgins, and A. Shamir, “Self-similarity analysis

for motion capture cleaning,” Comput. Graph. Forum, vol. 37, no. 2, pp. 297–309,

2018, doi: 10.1111/cgf.13362.

[25] J. Xiao, Y. Feng, M. Ji, X. Yang, J. J. Zhang, and Y. Zhuang, “Sparse motion bases

225

selection for human motion denoising,” Signal Processing, vol. 110, pp. 108–122,

2015, doi: 10.1016/j.sigpro.2014.08.017.

[26] S. Alexanderson, C. O’Sullivan, and J. Beskow, “Real-time labeling of non-rigid

motion capture marker sets,” Comput. Graph., vol. 69, pp. 59–67, 2017, doi:

10.1016/j.cag.2017.10.001.

[27] S. Xia, L. Su, X. Fei, and H. Wang, “Toward accurate real-time marker labeling for

live optical motion capture,” Vis. Comput., vol. 33, no. 6–8, pp. 993–1003, 2017,

doi: 10.1007/s00371-017-1400-y.

[28] J. Li, D. Xiao, K. Li, and J. Li, “Graph matching for marker labeling and missing

marker reconstruction with bone constraint by LSTM in optical motion capture,”

IEEE Access, vol. 9, pp. 34868–34881, 2021, doi: 10.1109/ACCESS.2021.3060385.

[29] S. Han, B. Liu, R. Wang, Y. Ye, C. D. Twigg, and K. Kin, “Online optical marker-

based hand tracking with deep labels,” ACM Trans. Graph., vol. 37, no. 4, 2018,

doi: 10.1145/3197517.3201399.

[30] Y. Zhu, “Denoising method of motion capture data based on neural network,” J.

Phys. Conf. Ser., vol. 1650, no. 3, 2020, doi: 10.1088/1742-6596/1650/3/032068.

[31] J. Bütepage, M. J. Black, D. Kragic, and H. Kjellström, “Deep representation

learning for human motion prediction and classification,” Proc. - 30th IEEE Conf.

Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1591–1599,

2017, doi: 10.1109/CVPR.2017.173.

[32] S. Graßhof, M. Bastholm, and S. S. Brandt, “Neural Network-Based Human Motion

Predictor and Smoother,” SN Comput. Sci., vol. 4, no. 6, 2023, doi: 10.1007/s42979-

023-02195-0.

226

[33] A. L. Clouthier, G. B. Ross, M. P. Mavor, I. Coll, A. Boyle, and R. B. Graham,

“Development and Validation of a Deep Learning Algorithm and Open-Source

Platform for the Automatic Labelling of Motion Capture Markers,” IEEE Access,

vol. 9, pp. 36444–36454, 2021, doi: 10.1109/ACCESS.2021.3062748.

[34] Qualisys, “Cameras for underwater motion capture,” Qualisys.

https://www.qualisys.com/cameras/underwater/ (accessed Jul. 15, 2024).

[35] Qualisys, “Calibrating your system,” Qualisys. https://docs.qualisys.com/getting-

started/content/getting_started/running_your_qualisys_system/calibrating_your_sy

stem/calibrating_your_system.htm (accessed Jan. 06, 2024).

[36] Qualisys, “Qualisys Track Manager,” Qualisys, 2011.

https://www.qualisys.com/software/qualisys-track-manager/ (accessed Dec. 10,

2023).

[37] Qualisys, “Exporting files to C3D.” https://docs.qualisys.com/getting-

started/content/13_how_to_visualize_data_in_visual3d/exporting_files_to_c3d.htm

?Highlight=export (accessed Aug. 01, 2024).

[38] B. Motion, “The C3D File Format A Technical User Guide,” p. 134, 2021.

[39] Github, “ezc3d.” https://github.com/pyomeca/ezc3d

[40] S. A et al., “OpenSim: Simulating musculoskeletal dynamics and neuromuscular

control to study human and animal movement Ajay,” PLOS Comput. Biol., vol. 14,

no. 7, 2018, doi: 10.3758/BF03326891.

[41] Biomechanical-toolkit.github.io, “Mokka,” Biomechanical-toolkit.github.io.

https://biomechanical-toolkit.github.io/mokka/ (accessed Jan. 06, 2024).

[42] N. Ghorbani and M. J. Black, “SOMA: Solving Optical Marker-Based MoCap

227

Automatically,” Proc. IEEE Int. Conf. Comput. Vis., pp. 11097–11106, 2021, doi:

10.1109/ICCV48922.2021.01093.

228

6. Conclusion

6.1 Summary

 As outlined in Table 1-1, this thesis consists of six chapters that address the challenges

related to cleaning and labeling MoCap data. Chapter 1 introduces the background and

problem statement concerning underwater OMC systems. Chapter 2 presents a through

literature review of MoCap solving methods. Chapter 3 illustrates manual cleaning of noisy

MoCap data, highlighting the challenges involved in this process.

 Chapter 4 proposes a semi-supervised geometry-based labeling and cleaning algorithm

to streamline the time-consuming manual cleaning process described in Chapter 3. While

this method has limitations, such as requiring significant user input and making certain

assumptions, it provides high accuracy without needing training data.

 Chapter 5 introduces a deep learning-based auto-labeling method designed to address

the challenges presented by the semi-supervised algorithm discussed in Chapter 4. While

the algorithm in Chapter 5 effectively mitigates issues related to high user intervention and

assumptions inherent in the Chapter 4 algorithm, achieving good accuracy, it remains

dependent on a large set of cleaned and labeled training data. This dataset is generated by

the semi-supervised algorithm outlined in Chapter 4.

 Overall, combining these two algorithms (Chapter 4 and Chapter 5) in the future could

address all the issues of both algorithms while benefiting from their respective advantages.

6.2 Proportional Contributions of Each Chapter

 As stated in Section 1.4, this thesis makes seven main contributions:

229

1. Creation of the first underwater freestyle swimming MoCap dataset.

Ten MoCap C3D files were captured using the Qualisys system and subsequently

underwent manual cleaning and labeling, as detailed in Chapter 3. Furthermore,

Chapters 4 and 5 introduced innovative algorithms designed to streamline the time-

consuming manual cleaning process.

2. Addressing the challenges of using sparse MoCap datasets.

An underexplored topic covered in Chapters 3, 4, and 5.

3. A comprehensive literature review on MoCap solving approaches.

This is presented in Chapter 2.

4. A semi-supervised geometry-based labeling algorithm that includes an anomaly

detection method utilizing norm, velocity, acceleration, and jerk profiles.

This is discussed in Chapter 4 as a standalone labeling algorithm and used in

Chapter 5 to generate the training set for the deep learning network.

5. An innovative extraneous removal algorithm based on the difference of the norms.

This method, part of the semi-supervised algorithm from Chapter 4, serves as a

preprocessing step in Chapter 5 to eliminate extraneous markers, improving the

algorithm’s accuracy from 66% to 98%.

6. A novel pelvis detection technique using PCA, implemented along with a method to

recover dropped markers.

These methods are part of the semi-supervised algorithm from Chapter 4, with

pelvis detection serving as an alignment step in the Chapter 5 algorithm.

7. An auto-labeling algorithm based on LSTM, the Hungarian label assignment, and

Procrustes alignment, incorporating a geometry-based method for initial

230

alignment, ground truth and training set creation, and an enhancement of the

accuracy of the results.

This algorithm in Chapter 5 incorporates steps from the Chapter 4 algorithm,

including pelvis detection for alignment and the use of extraneous markers to

enhance accuracy. Additionally, part of the training set is generated using the

algorithm from Chapter 4.

6.3 Future Works

 As concluded in Section 6.1, we recommend integrating our cleaning and labeling

algorithms from Chapters 4 and 5 to leverage their strengths and resolve their respective

issues.

 To enhance our future work, we should collect more underwater data with diverse

actions and additional noise and ghost markers. This will allow us to evaluate our

algorithms more comprehensively. Furthermore, having a larger dataset will improve the

training of our deep learning algorithm discussed in Chapter 5, resulting in higher accuracy

and better generalization for handling unseen data.

 Moreover, key areas for enhancement in this work to establish a standalone approach

for any MoCap auto-labeling methods include pelvis detection and body side

differentiation. Developing a more robust solution in these areas can be applied as the

alignment method across various MoCap auto-labeling techniques.

