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Abstract 

     This thesis proposes novel algorithms to automate cleaning and labeling of motion 

capture (MoCap) data specifically for underwater marker-based optical MoCap  systems. 

Challenges related to sparse underwater freestyle MoCap data, captured using Qualisys 

Miqus M5U MoCap cameras, are explored using a dataset of 21 passive markers. A 

thorough review on MoCap denoising, recovery, alignment, and auto-labeling methods is 

conducted. The manual cleaning process using Qualisys Track Manager software and 

Automatic Identification of Markers function is explained. Then, a novel semi-supervised 

geometry-based labeling algorithm is developed based on distance and angle measurements 

with a visual evaluation of 100% accuracy. This algorithm includes sub algorithms for 

extraneous removal via norm differences, anomaly detection, pelvis detection based on 

Principal Component Analysis, recovery of missing markers, and detection of 

corresponding reappearing markers along with a side detection algorithm. Finally, a deep 

learning-based auto-labeling algorithm utilizing Long-Short-Term Memory is proposed, 

employing Hungarian label assignment and Procrustes analysis to label unlabeled data. The 

network accepts the 3D relative positions of markers, velocity, and acceleration. The 

ground truth and the training set are generated by the geometry-based algorithm and 

enhanced using data augmentation and transfer learning of simulated trajectories. The 

pelvis detection technique automates the alignment, and the extraneous removal algorithm 

enhances accuracy from 66% to 98%. These algorithms work effectively in the presence of 

outliers, extraneous, ghosts, and missing markers. Future work will evaluate the algorithm 

with more data and ghost markers and explore a more robust body side detection algorithm.  
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𝑑 Distance between any two points in 3D space 

𝑑1   Distance between two specific points 

𝑑𝑊 Distance between left and right waist points 

𝑑𝑠ℎ  Distance between left and right shoulder points 

 Distance between spine and stomach points 𝑑𝑠𝑠  
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𝑀𝑑𝑊 Marker set (M) value for 𝑑𝑊 

∆ Tolerance: allowable deviation from a measurement 

∆𝑑 Tolerance in distance 

∆𝑑𝑀 Deviation from a defined distance in the Marker set (M) 

𝜃 Angle; angle between any three points in 3D space 

𝜃1 Angle between three specific points 

𝜃𝑊1 Angle of waist point 1 

∆𝜃 Tolerance in angle 

𝑀𝜃𝑆𝑝  Marker set (M) value for spine angle  (𝜃𝑆𝑝) 

∆𝜃𝑀  Deviation from a defined angle in the Marker set (M) 

==, ≠ Equal, Not Equal 

=, ← Assignment 

<, > Comparison Operators 

# Number 

∅ Empty Set 

⋃(𝑠𝑒𝑡𝑠) 
Union of sets 

⋂(𝑠𝑒𝑡𝑠) 
Intersection of sets 

𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
 The maximum length of arm  

𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
 The maximum length of leg 

Triplet, Trio A group of three points 

𝐺𝑎𝑝1 The first gap in a trajectory 

𝑆𝑝𝑡𝑟𝑖𝑜1 Spine point from Trio number 1 
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framecn Common frames for Trio number n 

fcsn The first frame in common frames of Trio number n 

 Waist point 2 in Trio number 1 

Algorithm 1 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 READC3D(𝑐3𝑑) 

𝑝𝑜𝑖𝑛𝑡𝑠 All Points in a C3D file 

𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠  Number of Points 

𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠 Number of Labels 

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 Number of Frames 

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 INLIERDETECTION (𝐶3𝐷) 

𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 Detected points 

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝐹𝑙𝑎𝑔 Flag that shows if there is any intersection in trajectories 

𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 Merged trajectory 

𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 Gap filled trajectory 

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙 Assigned label ID 

𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠 IDs of Removed Labels 

𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠 New Labels vector 

𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 New Points 

𝑛𝑒𝑤𝐶3𝐷 New C3D file 

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3) 

𝑓𝑟𝑎𝑚𝑒 Frame 

𝑃1
⃗⃗  ⃗ Vector P1: a vector between two points in 3D space 

𝑊2𝑡1 
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𝑃1𝑚𝑎𝑔
 Magnitude of vector P1: Distance between two points 

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒) 

𝑑𝑠𝑒𝑙 Distance between two points in a selected frame 

𝑑𝑚𝑒𝑎𝑛 Mean distance between two points across all frames 

𝑑𝑠𝑡𝑑 SD of distances between two points across all frames 

Algorithm 2 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3) 

𝜃1𝑚𝑒𝑎𝑛
 Mean angle between three points across all frames 

𝜃1𝑠𝑡𝑑
 SD of angles between three points across all frames 

Algorithm 4 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 Probable pelvis points 

∁(p𝑜𝑖𝑛𝑡𝑠, 3) Combinations of three points 

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 Probable pelvis triplets = ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 3) 

𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 Probable Trios 

𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 Number of Trios 

𝑓𝑟𝑎𝑚𝑒𝑐 Common frames for each Trio 

𝑓𝑐𝑠 The first frame in common frames of a Trio 

𝑓𝑐𝑠 The last frame in common frames of a Trio 

𝑆𝑝𝑐𝑠 Spine point in the first frame of common frames of a Trio 

𝐴, 𝐵, 𝐶 Point 1, Point 2, and Point 3 in a Trio (Triangle) 

𝐴𝐵, 𝐵𝐶, A𝐶 Vectors between point A and B, B and C, A and C 

𝐴𝐵𝑐𝑠 Vector AB in fcs 
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𝑑𝑐𝑠1 Distance between two points in fcs of Trio 1 

𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗  The frame in which the majority axis was calculated 

𝑓𝑙𝑎𝑔𝑚𝑎𝑗  Flag for Majority Axis Orientation Criterion Met 

𝑑𝑀𝑊𝑊  Distance between left and right waist points in marker set 

𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 Pelvis points: 𝑆𝑝, 𝑅𝑊, 𝐿𝑊 

𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠 New C3D file with a cleaned and labeled pelvis points 

Algorithm 5 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗, 𝑆𝑝,𝑊1,𝑊2) 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 Mean position of all points in 3D space in each frame 

𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 PCA coefficients 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗  Direction of majority axis = first PCA coefficient 

𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 Distance of Waist point 1 to majority axis 

𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 Distance of Waist point 2 to majority axis 

𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗 𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 − 𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 

∆𝑑𝑆𝑊 ∆ (distance between spine and waist point) 

∆𝑑𝑚𝑎𝑗 ∆ (distance between spine and majority axis) 

∆𝑠𝑦𝑚𝑚𝑎𝑗 ∆ (distance between waists and majority axis) 

𝑆𝑊𝑊𝐿𝑖𝑛𝑒 Line connects spine to 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 waistline 

𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 angle between SWWLine and majority axis 

𝜃𝑊𝑊𝑚𝑎𝑗
 angle between waistline and majority axis 

∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 ∆ (angle between SWWLine and majority axis) 

∆𝜃𝑊𝑊𝑚𝑎𝑗
 ∆ (angle between waistline and majority axis) 
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𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 Flag indicating if spine orientation criterion is met 

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 Flag for Waist Symmetry with Major Axis 

𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 Flag indicating if waistline angle criterion is met 

Algorithm 6 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒) 

𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio 

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟 Translation vector 

t𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 Translation matrix 

𝑊1𝑐𝑠,𝑊2𝑐𝑠  Waist point 1 and Waist point 2 in fcs of a Trio 

𝑊1𝑐𝑒 ,𝑊2𝑐𝑒 Waist point 1 and waist point 2 in fce of a Trio 

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒 Homogeneous W1ce  

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒 Translated homogeneousW1ce 

distW1cstransW1ce Distance between W1cs and traslatedW1ce 

distW2cstransW1ce Distance between W2cs and traslatedW1ce 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟕           𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑅𝑊, 𝐿𝑊, ∆𝑑, ∆𝑑𝑠ℎ, ∆𝜃𝑠ℎ) 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 Probable Shoulder Points 

∁(p𝑜𝑖𝑛𝑡𝑠, 2) Combinations of two points 

𝑝𝑟𝑜𝑏𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟𝑠 Probable shoulder pairs = ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠, 2) 

𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 Probable Shoulder pairs 

𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 Number of pairs 

𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟 Pairs of detected shoulder points 

𝑛𝑒𝑤𝐶3𝐷𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 New C3D with cleaned and labeled shoulder points 

Chapter 5  
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FP False Positive 

FN False Negative 

TN True Negative 

F1 F1 score 

𝐴𝑣 Average 

𝐸 Extraneous marker 

D Dataset (e.g., D1 = Dataset number 1) 

MATLAB Functions  

𝑠𝑖𝑧𝑒(𝑉, 𝑑𝑖𝑚) Length of dimension dim of a vector V 

𝑛𝑜𝑟𝑚(𝑉) Euclidean norm (magnitude) of vector V 

𝑝𝑑𝑖𝑠𝑡(𝑠𝑒𝑡) Euclidean distance between pairs of observations in a set 

𝑖𝑠𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝐴𝑟𝑟,𝑚𝑒𝑡ℎ𝑜𝑑) Find outliers in data using a specific method (e.g., “mean”) 

𝑎𝑡𝑎𝑛2𝑑(𝑦, 𝑥) Four-quadrant inverse tangent (tan-1) of y and x coordinates 

𝑐𝑟𝑜𝑠𝑠(𝑉1, 𝑉2) Cross product of vector V1 and vector V2 

𝑑𝑜𝑡(𝑉1, 𝑉2) Dot product of vector V1 and vector V2 

𝑖𝑠𝑛𝑎𝑛(𝐴𝑟𝑟𝑎𝑦) Determine which array elements are NaN 

𝑠𝑡𝑑(𝑉) SD(V): Standard Deviation of observations vector V 

𝑚𝑒𝑎𝑛(𝐴𝑟𝑟𝑎𝑦) Average or mean value of an array 
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1. Introduction and Overview 

1.1 Background and Statement of the Problem 

     The global market for 3D motion capture (MoCap) [1] technology is expected to achieve 

a valuation of USD 261.17 million by the year 2026 [2]. Among the various types of MoCap 

technologies available [3], marker-based optical motion capture (OMC) [4]–[7] technology 

has long been regarded as the ‘gold standard’ in terms of reliability and accuracy [3], [8]–

[13]. OMC systems employ cameras to track the 3D positions of reflective markers placed 

at specific anatomical locations on the subject’s body. These systems are widely used in 

various fields such as medicine [14], [15], biomedical engineering [16], sports [9], [17], 

[18], ergonomics [19], [20], gait analysis [21], [22], robotics [23]–[28], biomechanics [29]–

[32], gaming [33], [34], virtual/augmented reality [35], and computer graphics animation 

[36]–[41]. OMC applications [3] include diagnosing disorders [42], rehabilitation [43], 

[44], athlete performance analysis [45], mimicking human movements by robots [46]–[49], 

analyzing the impact of various activities on the human body [50], [51], and creating 

realistic animations [52], [53].  

1.1.1 OMC Fundamentals 

     The 3D positions of the markers (i.e., the markers' orb centers) are captured at a specific 

frame rate (capturing frequency) and saved in various MoCap file formats [6] such as C3D 

[54]. The trajectory of a marker represents its movement path tracked in 3D space over time 

[55]. The position of this trajectory at any given moment is denoted by its X, Y, and Z 

coordinates. The “fill level” [56] represents the visibility of the marker’s trajectory within 
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the measurement range, calculated by dividing the total number of tracked frames for a 

marker by the total captured frames and expressing it as a percentage. OMC markers can 

be passive (reflect the camera’s light) or active (are battery-powered and emit their own 

light) [7], [13], [57], [58]. 

1.1.1.1 Passive Markers Characteristic: “Reappearing” Markers 

     In MoCap data, when a specific physical marker is tracked for the first time in its initial 

frame, it is assigned a random ID number. There is a distinction between active and passive 

markers in terms of their assigned IDs under occlusion conditions. Each active marker has 

a unique ID number that remains consistent [59], [60] even if it disappears and reappears 

due to occlusion, resulting in a distinct trajectory with potential gaps (Figure 1-1). 

 

Figure 1-1: The effect of occlusion on Passive and Active Markers’ Trajectories 

 

     When a  passive marker, like ID1, disappears due to occlusion and then reappears, it is 

typically given a new ID, such as ID2, [59] since the passive system cannot recognize that 

these two points are the same. This leads to passive markers commonly having short 

segment trajectories (Figure 1-1). As a result, a MoCap file may contain multiple points 

with their corresponding trajectories associate to a specific physical marker. Therefore, post 
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processing is needed to identify and merge the short segments associated with a specific 

physical marker to form its complete trajectory with gaps. While previous studies have 

described this characteristic without a specific term [12], [59], [61] or referred to it as 

“instances of occluded markers [16],” in this thesis, we term it as “reappearing markers.” 

1.1.1.2 OMC Errors and Challenges 

     OMC systems are prone to errors and noise [6] stemming from various factors [8], [62] 

such as calibration problems [63], environmental conditions [18], and occlusions [64]. 

Common types of noise in MoCap data include phantom markers [65] (which consist of 

outliers [59] and ghost markers [66]), extraneous markers [67], marker swapping [68] (i.e., 

mislabeling [6]), markers overlapping [69] (i.e., overlying [6]), and missing markers [70]. 

Phantom markers are not real markers; they arise from reflective surfaces or direct light 

sources, and they can be categorized into outliers and ghost markers. Outliers are inaccurate 

measurements that significantly deviate from the expected values. Ghost markers are 

virtual markers located close to valid markers. Extraneous markers are actual markers 

belonging to other objects. Marker swapping occurs when two markers’ labels are switched 

due to their proximity or crossing paths in front of the camera, leading to misinterpretation 

by the capture system. Overlapped markers refer to points that are closer together than the 

marker size or marker measurement accuracy. Moreover, occlusion resulting from reduced 

visibility or self-occlusion, as well as markers dropped from the body, can lead to missing 

markers. This situation creates gaps in active markers’ trajectories or generates reappearing 

markers in passive markers. Therefore, in the captured data file, there may be M points in 
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each frame, where M can be less than, equal to, or more than N physical markers attached 

to the subject. Addressing these errors is crucial for further processing of MoCap data. 

     Marker set configuration and marker quantity also affect the MoCap data analysis [52], 

[69], [71], [72]. Increasing the number of markers can improve precision and reduce 

occlusion issues, but drawbacks include longer setup times, subject discomfort, high 

computational load, and potential marker interference. While a sparse dataset may reduce 

these drawbacks [72]–[74] it may compromise accuracy and worsen occlusion issues. 

Large marker spacing can also present challenges for statistical outlier detection. 

1.1.1.3 MoCap Solving and Challenges 

     To utilize MoCap data in various applications such as action recognition [75], motion 

analysis [76], and pose estimation [77], the data must undergo a process known as MoCap 

“solving” [59], [78]–[82]. This process includes cleaning [83], [84] (denoising [8] and 

recovery of missing markers [85]), alignment [86], and labeling [87]. The goal of MoCap 

solving is to transform raw, unlabeled, noisy mocap data into cleaned, labeled data. In this 

processed data, each frame contains only N unique labeled points corresponding to N 

physical markers attached to the subject. Each point follows a distinct complete trajectory 

across all captured frames. 

     “Manual cleaning” [77]–[79] is commonly utilized in MoCap solving, where a 

technician opens a MoCap file like a C3D file using suitable software such as open-source 

Mokka software [88], motion kinematic and kinetic analyzer, or commercial options like 

Qualisys Track Manager (QTM) [89] and Vicon Nexus [90]. The technician then proceeds 

to rectify errors frame by frame. Despite the automatic labeling functions in these 
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commercial software tools (e.g., AIM; Automatic Identification of Markers [91] in QTM 

or Vicon Nexus [92]), aids in manual cleaning, manual intervention remains necessary [86]. 

Hence, due to the time-consuming and laborious [78] manual cleaning process, there is a 

high demand for automated approaches [80]. 

     Early automated MoCap solving methods struggled to generalize to real-world data due 

to their reliance on assumptions, constraints, empirical parameters, and hand-crafted 

features [93]–[96]. To overcome these limitations, data-driven approaches such as machine 

learning and deep learning have been employed [78]–[83]. However, the scarcity of cleaned 

and labeled MoCap data [59] hinders the effectiveness of these methods as they require 

large training datasets. This scarcity is due to the high cost and restrictions of traditional 

MoCap systems [97], as well as the time-consuming nature of manual cleaning MoCap 

data. It is important to highlight that the Motion-X [98] dataset, which comprises 144.2 

hours of motion data, alongside the AMASS [99] dataset—recognized as the largest 

existing OMC dataset with 45 hours of data—are both considerably smaller in scale 

compared to the video datasets commonly employed in the OMC field [59]. Some 

techniques have used simulated data [59], [67] to address this issue, but they still necessitate 

manual intervention and may struggle with generalizing to unseen data, even when utilizing 

diverse motion datasets [59] like AMASS.  

1.1.2 Underwater OMC 

     Underwater OMC technology enables the capture of underwater biomechanical 

movements for various applications [100]–[103] including underwater biomechanics 

[104]–[109], swimming and sports performance analysis [45], [110]–[121], rehabilitation 
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utilizing underwater treadmills and gait analysis [122]–[125], underwater robotics [126]–

[135] and underwater animation, filming, and virtual reality [136]–[139]. Beyond human 

applications, these systems also extend their utility to non-human subjects [140], [141] 

including underwater animal biomechanical analysis [142], [143], tracking marine vessels 

and structures [144][145], observing movements of oil pipelines [146], monitoring 

underwater autonomous vehicles [147]–[149], and analyzing objects in towing tanks [150]. 

1.1.2.1 Underwater OMC Challenges 

     Capturing underwater OMC data faces increased challenges compared to other 

environments [112], [123], [151]–[158]. Factors such as surface reflections [11], [151], 

[152] and the unique properties of water result in various types of noise, which compromise 

data accuracy [18] and reliability. Water's different optical properties [159]–[161] compared 

to air can distort captured data, resulting in inaccuracies in marker positions and the 

presence of ghost markers. The presence of bubbles [34], [71], [151], [152], [162] all 

around the swimmer and water's ability to absorb light [152], [154] also impacts the quality 

of optical markers detection. Additionally, suspended particles and impurities in water 

scatter light [154], further contributing to noisy data. The behavior of light underwater 

differs significantly from that in air, leading to reduced visibility [102], [151], resulting in 

high occlusion. This high occlusion causes missing or incorrectly tracked data, making 

passive marker tracking more challenging. Water's unpredictable currents, waves, and 

turbulence [154], [157] can cause subjects to move erratically, resulting in motion blur, 

outliers, and difficulties in tracking markers. Moreover, the use of waterproof equipment 

introduces technical limitations that may affect marker detection and data capture accuracy.  
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     Marker displacement or detachment in water, especially for swimmers, can occur due to 

movement, water resistance, and friction between the skin and garment. Securely attaching 

markers to a person to prevent detachment during motion significantly increases setup time 

[7], [10], [71]. Consequently, re-tracking [6], [59] to reduce errors and decrease editing 

time, a common practice in on-land MoCap [8], becomes highly time-consuming for 

underwater MoCap. Therefore, underwater MoCap may be very noisy, making post-

cleaning more challenging than in other environments. 

     The sparsity of underwater MoCap datasets presents a significant challenge, leading to 

unique difficulties in cleaning underwater MoCap data due to their inherent noisiness 

compared to other environments. Increasing the number of markers can extend setup time 

and impact the swimmer’s performance [71]. Conversely, reducing the number of markers 

and working with sparse datasets that have large marker spacing can also complicate 

statistical outlier detection, especially in the presence of a higher proportion of outliers 

relative to the small number of valid markers in a frame. 

     Freestyle [157] and complex [163] movements underwater pose additional challenges 

such as creating severe self-occlusion. Also, the kinematics of movement are different in 

water conditions compared to land movements due to properties of water such as higher 

density and buoyancy [123], [124]. Buoyancy in water allows for effortless floating and 

deep diving due to a microgravity environment [103], enabling a wider range of motion 

and freedom of movement not achievable on land. Some underwater movements mimic 

those of aquatic animals, like dolphin kicks or turtle-like treading motions [114], [131].  

     Underwater MoCap solving techniques face greater challenges due to the 

aforementioned issues and the scarcity of swimming and underwater MoCap data. This 
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scarcity is attributed to the distinctive characteristics of aquatic environments. Even image-

based MoCap techniques face difficulties when dealing with aquatic data [97]. To address 

this issue, the SwimXYZ [97] synthetic dataset was developed to enhance the applicability 

of image-based MoCap methods in swimming. It comprises synthetic monocular videos 

that are meticulously annotated with accurate ground truth 2D and 3D joint information. 

The dataset includes a total of 11,520 videos, amounting to 3.4 million frames. These videos 

exhibit variations in camera angles, subjects, water conditions, lighting scenarios, and types 

of motion. Additionally, SwimXYZ offers 240 synthetic swimming motion sequences in 

SMPL format [164], showcasing diverse body shapes and movements. 

     However, to the best of our knowledge, there are currently no OMC datasets publicly 

available for underwater swimming actions, which includes intricate movements like 

treading water, orientations that are impossible out of water (e.g., floating on or under the 

water), or unpatterned maneuvers. Even datasets containing actions at the surface of the 

water (e.g., swimming strokes such as backstroke, breaststroke, butterfly, and front crawl) 

are rare and limited in size, and these actions are not entirely underwater [165]. 

1.1.2.2 Underwater Qualisys Miqus M5U MoCap Camera 

     Underwater OMC systems are in high demand due to their capability to efficiently 

capture and digitize motion compared to traditional video methods that require extensive 

time for manually digitizing anatomical landmarks through image-based techniques [166].    

     In 2009, Qualisys launched the first commercially available underwater MoCap camera 

[167], leading to a reduction in measurement and analysis time compared to video 

techniques [166]. Once calibrated, these systems accurately track 3D marker positions. A 
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2009 study [166] assessed the accuracy of the Qualisys underwater passive marker system 

for swimming stroke tracking, revealing a low RMS error in angle measurement (0.2°) and 

an average RMS error of 1.2 mm over three lengths, which is negligible for biomechanical 

analyses. The data from Qualisys closely aligned with that of a land-based motion analysis 

passive marker system using markers on an L-shaped frame. Qualisys released a new 

underwater MoCap camera, 7+u, in 2019 [167]. This series [168], known as Oqus [169], 

[170], has since been discontinued and replaced by the newer Arqus model [171]. 

Researchers have evaluated the accuracy of Qualisys underwater MoCap cameras [18], 

[121], [162], [172]. The most recent study [151] assessed the underwater human movement 

error using six Qualisys 7+ cameras that established an underwater capture volume of 

8x2x2 meters. All cameras were synchronised, recording marker locations at a frequency 

of 100Hz. The calibration error, as provided by Qualisys QTM software, was -1.82 mm. 

Average error levels were found to be acceptable in two trials (1.23mm ± 8.23mm and 

1.34mm ± 9.65mm), although errors increased at the ends and top of the capture domain. 

By concentrating on a specific area with higher accuracy, the error was minimized to 

0.53mm (± 1.45mm). 

     However, these cameras have been too large to fit into the smaller capture volumes 

required for applications like aquatic treadmills with shorter distances between the pool 

walls and the subject, and they need a wider viewing angle [100], [122]. The increasing 

demand for applications such as aquatic therapy [123], [124] in clinical rehabilitation, 

emphasizing its advantages over land-based therapies, along with the benefits of exercise 

using an underwater treadmill [123], [124], has driven the development of specialized 

underwater MoCap cameras.  
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     On May 16, 2019, Qualisys unveiled the Miqus M3u and M5u underwater MoCap  

cameras, the smallest ever MoCap solutions designed specifically for underwater 

measurement [167]. These cameras, along with the Miqus underwater color video camera 

[173], provide high-resolution, high-speed, and extremely low latency capabilities for 

accurate underwater measurements in confined spaces [140]. The new Miqus U cameras 

offer a wider field-of-view and lighter weight compared to previous models [174], making 

them easier to deploy in smaller tanks or pools. This advancement has opened up new 

possibilities for gait analysis and underwater rehabilitation [100], as well as animation of 

realistic underwater motion [167]. The Miqus M5U offers the highest resolution, and a 

maximum capture distance of 17 meters [174]. Qualisys cameras above water reflect 

infrared light. In contrast, the Miqus M5U emits visible light at 455 nm to illuminate 

passive markers, as infrared light is absorbed in water. The strobe light from the Miqus 

M5U appears blue to the naked eye. Currently, Qualisys underwater markers are passive 

and do not include active marker devices for underwater use. 

1.2 Thesis Objectives 

     The aim of this thesis is to analyze underwater OMC using Qualisys Miqus M5U MoCap 

cameras with passive markers. This research addresses the aforementioned limitations, 

such as the lack of an underwater MoCap dataset and the need for automatic MoCap solving 

approaches, in order to streamline the time-consuming manual cleaning process.  

     The proposed algorithms are versatile and applicable to OMC systems using passive or 

active markers, making them suitable for a wide range of actions. In this thesis, we apply 
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them in one of the most challenging scenarios of underwater sparse freestyle MoCap using 

passive markers, which, to the best of our knowledge, has not been studied before. 

1.3 System Overview  

     In this section, we will first introduce the captured data. Following that, we will describe 

the thesis chapters, which encompass our developed algorithms and contributions. 

1.3.1 Capturing Underwater MoCap Data 

     We captured underwater MoCap data using seven Qualisys Miqus M5U underwater 

MoCap cameras installed at different locations around a four-meter-deep, 18 metre by 14 

meter pool at the Memorial University Marine Institute Offshore Safety and Survival 

Centre. Although the Qualisys sports marker set [175] recommends a minimum of 41 

markers, we opted to use only 21 reflective passive markers to explore the challenges 

associated with a sparse marker set. Figure 1-2, shows the locations of these markers and 

their corresponding label names. After calibration, data were recorded at 100Hz using QTM 

software and exported to .c3d files. Our QTM software version is “2022.2 build 7710”. 

 

 

Figure 1-2: Marker set: Location of 21 passive markers and their labels. 
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1.3.2 Thesis Structure 

     This thesis comprises six chapters, presented in manuscript style, with titles listed in 

Table 1-1. The details of each chapter will be introduced in the following lines. 

Table 1-1: Thesis Structure 

Chapters Title 

1 Introduction and Overview 

2 A Survey on Solving Marker-based Motion Capture Approaches 

3 Marker-based Underwater Optical Motion Capture Data Preparation 

4 Semi-supervised Geometry-Based Labeling of Sparse Underwater Optical MoCap Data 

5 Deep Learning based Auto-Labelling Underwater Sparse Freestyle MoCap Data 

6 Conclusion and Future Work 

      

     Chapter 1 presents the background and problem statement of OMC systems, focusing 

on underwater OMC. It covers the fundamentals, applications, and challenges faced by 

these systems. Furthermore, it introduces the captured data and outlines the thesis structure, 

detailing our developed algorithms, innovations, and contributions to the field. 

     Chapter 2 conducts a comprehensive literature review on MoCap solving approaches, 

which encompasses denoising, recovery, alignment, and auto-labeling approaches.  

     Chapter 3 outlines the preparation steps for marker-based underwater OMC systems. 

This includes setting up cameras, attaching markers to the subject, calibrating the cameras, 

recording the session, creating a marker set, and MoCap manual cleaning process using 

QTM software. It also describes features of this software, such as the AIM model 

facilitating the manual cleaning process. The cleaned C3D data file produced can serve as 
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ground truth or a training dataset for the deep learning auto-labeling algorithm discussed in 

Chapter 5. Additionally, this chapter addresses the challenges of MoCap manual cleaning, 

emphasizing the need for automated algorithms to simplify this tedious process. 

     Chapter 4 demonstrates a novel semi-supervised geometry based MoCap labeling 

algorithm which we developed to streamline the laborious manual cleaning procedure 

described in Chapter 3. This system extracts distances and angles from a marker set to 

identify valid labels and applies an innovative extraneous removal algorithm based on the 

difference of the norms, along with other denoising and outliers’ removal methods utilizing 

norm, velocity, acceleration, and jerk profiles. Additionally, it includes a method for 

recovering missing or dropped markers and a pelvis detection algorithm based on Principal 

Component Analysis (PCA) [176]. Moreover, side detection is employed to identify 

corresponding labels for reappearing markers that result from the use of passive markers. 

The evaluation was conducted visually, achieving 100% accuracy in detecting valid 

markers despite the presence of outliers, extraneous markers, ghost markers, and missing 

or dropped markers due to occlusion. We will explore the use of more ghost markers and 

enhance our pelvis detection procedure with automatic side detection.  

     Chapter 5 proposes a deep-learning based auto-labeling algorithm that accurately labels 

MoCap data utilizing Long short-term memory (LSTM) [177], employing Hungarian 

analysis [178] for label assignment and Procrustes analysis [179] to assign labels to 

unlabeled data in a post-processing step. The cleaned MoCap data generated by the 

algorithm described in Chapter 4 serves as both the ground truth and the training dataset. 

However, this dataset is insufficiently large to effectively train the deep learning network. 

To tackle the challenge posed by a limited training dataset, two distinct strategies are 
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employed. The first approach involves data augmentation, which enhances the existing 

cleaned dataset by introducing random noise and gaps. The second strategy involves 

generating simulated trajectories, which are then combined with real data using transfer 

learning [180]. These synthetic datasets are produced utilizing a marker set that is 

developed with the OpenSim software [181], a tool designed for modeling musculoskeletal 

structures and simulating dynamic movements. The core algorithm in Chapter 5 builds 

upon the source code from [67], with several key enhancements. Notably, we replace their 

manual data alignment method with a PCA-based pelvis detection technique introduced in 

Chapter 4. Clouthier et al. [67] also faced accuracy issues due to extraneous markers; we 

resolve this by implementing the extraneous marker removal algorithm from Chapter 4, 

boosting our accuracy from 66% to 98%. Additionally, we streamline the input for the 

LSTM model from five to three data points, using only the 3D relative positions of markers 

instead of including velocity and acceleration. 

     Chapter 6 summarizes the findings of the thesis and proposes avenues for future research 

expansion. Upcoming work will involve collecting more underwater MoCap data to assess 

our algorithm’s performance in different underwater actions and noises. The feasibility of 

adding ghost markers near valid markers will also be evaluated. There are also plans to 

conduct freestyle underwater action recognition using labeled data, as well as exploring a 

more robust solution for body side detection within a subset of pelvis detection.   

1.4 Thesis Contributions’ Summary 

     In summary, this thesis outlines the following technical contributions: 
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1. The first cleaned and labelled underwater freestyle swimming MoCap datasets 

using Qualisys QTM software and an AIM model; 

2. A characterization of the challenges of utilizing a sparse MoCap Dataset, a topic 

rarely explored in previous research; 

3. A comprehensive literature review on MoCap solving approaches; 

4. A semi-supervised geometry-based labeling algorithm, incorporating an innovative 

norm-based denoising method that considers velocity, acceleration, and jerk 

profiles;  

5. An innovative extraneous removal algorithm based on the difference of the norms; 

6. A novel pelvis detection technique using PCA, implemented along with a method 

to recover dropped markers; and 

7. An auto-labeling algorithm based on LSTM, the Hungarian label assignment, and 

Procrustes alignment, incorporating a geometry-based method for initial alignment, 

ground truth and training set creation, and an enhancement of the accuracy of the 

results. 

1.5 Co-authorship Statement 

     I am the principal author of all manuscripts presented in this thesis, including the thesis 

as a whole. I developed the methods and analyzed the results in all manuscripts, with Dr. 

Stephen Czarnuch providing guidance, revisions and conceptualizing the study. The 

underwater motion data were captured using seven Qualisys Miqus M5U underwater 

cameras installed at different locations around a four-meter-deep, 18-metre by 14-meter 

pool at the Memorial University Marine Institute Offshore Safety and Survival Centre. 
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2.  A Survey on Solving Marker-based Motion Capture 

Approaches 

Abstract 

     This survey article delves deeply into marker-based motion capture (MoCap), a 

technology utilized for recording the three-dimensional (3D) movement of objects or 

individuals. This technology finds applications in various fields such as virtual reality, 

animation, robotics, and biomechanics. It involves affixing markers to the surface of an 

object or the skin of a performer, and then tracking their positions in real-time using 

cameras. This article aims to provide an overview of various methods and techniques used 

to solve marker-based MoCap problems, including cleaning (denoising and recovery), 

alignment, and auto-labeling. The discussion revolves around the challenges and 

limitations posed by these algorithms, as well as the ongoing research aimed at addressing 

these issues. One such endeavor involves creating a natural movement during the gap-

filling procedure. Moreover, other factors affecting MoCap data are studied. These factors 

include those that affect 3D reconstruction, leading to occlusion and tracking errors. 

Examples of such factors are marker and camera placement constraints, such as marker 

visibility, the number of markers used, and the symmetry of the marker set. The article 

concludes with potential future directions and developments in marker-based MoCap 

technology. 
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2.1 Introduction 

     Marker-based optical motion capture (OMC) [1] systems have precisely revolutionized 

the field of motion capture (MoCap) and analysis by tracking active or passive markers 

attached to the subject’s body [2]. However, MoCap systems are prone to errors due to 

many factors, such as poor calibration, noisy environments, and occlusion [3]. Denoising, 

recovery, alignment, and auto-labeling are the main pillars of MoCap solving [4]. 

     Denoising and recovery are commonly encountered problems in MoCap systems. 

Although their objectives may differ slightly, the underlying technology used to address 

these tasks is often very similar. These problems involve two main tasks: removing noise 

from the captured data and reconstructing missing markers. In some articles, a combination 

of denoising and recovery is called cleaning [5]. A recent survey studied denoising and 

completion filters for 3D skeleton-based human motion analysis from marker-based or 

marker-less MoCap systems and their assumptions. We focus on marker-based optical 

MoCap approaches not included or extensively discussed in that survey [6]. 

     Denoising algorithms are designed to eliminate various types of noise [3], such as 

outliers, ghost markers, extraneous markers, swapping markers, overlapping markers, and 

spikes. These algorithms identify and remove invalid points from captured data, reducing 

manual effort to clean the data and enabling accurate motion analysis.  

     Recovery algorithms are designed to identify and reconstruct missing marker 

trajectories caused by gaps [3], often due to occlusion or self-occlusion, where markers 

become obstructed from the cameras’ view. Solutions have been developed to address this 
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issue by filling in these gaps, aiming to create a more natural motion and behavior while 

retrieving missing markers. This ensures precise motion analysis for various applications. 

     Aligning and maintaining subject direction consistency [7] in MoCap data is crucial for 

accurate analysis and interpretation of movement patterns. Subject direction consistency 

ensures that the captured movements are correctly attributed to the intended subjects, 

preventing errors in data processing and analysis. By addressing these issues, researchers 

can enhance the reliability and validity of MoCap studies, leading to more accurate results. 

     Auto-labeling methods [8] streamline the tedious task of manually cleaning and labeling 

MoCap data. The process includes several stages: data cleaning through denoising and 

recovering missing markers, aligning and labeling the data, and possibly post-processing 

to correct mislabeled, missing, or unlabeled data. 

     The paper is structured as follows: Section 2.2 covers denoising algorithms, Section 2.3 

explains recovery methods, Section 2.4 presents aligning approaches, Section 2.5 discusses 

auto-labeling methods, and Section 2.6 concludes the article. 

2.2 MoCap Data Denoising 

     The relevant literature commonly refers to denoising as occlusion gap filling [9]–[11]. 

They often treat missing values as common noise and attempt to prevent the occurrence of 

artifacts by controlling the environment and ensuring precise calibration [12]. We will 

address these articles that solely focus on recovering missing markers in the next section. 

Some articles address denoising and recovery together, referring to it as cleaning [5], [12], 

[13]. In this section, we concentrate on denoising and cleaning techniques aimed at 

mitigating various types of noise, including outliers [14], ghost markers [15], extraneous 
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markers [7], swapped markers [16], overlapping markers [17], spikes [18], and jitters [19]. 

Denoising approaches can be divided into three categories: filter-based algorithms, matrix 

low-rank theory algorithms, and data-driven algorithms. Filter-based methods can be 

further categorized into three types: low-pass, Kalman, and space-time filters. A recent 

systematic review [6] concluded that low-pass and Kalman filters were the most commonly 

used. Commercial MoCap software like Qualisys track manager [20] employ low-pass 

filters such as Butterworth and moving average filters [21], [22]. However, most articles 

on MoCap solving have focused on solutions that account for noise [7], [8] rather than 

directly addressing noise removal.  

     In [12], incorrect intervals were explicitly identified for further cleaning. They proposed 

a marker-wise, skeleton-free method based on two fundamental assumptions: the rigid body 

model and the correlation of marker trajectories. Different artifacts were classified into 

simple gap, sudden changes (single peak, heavy noise, rectangular distortion), and slow 

value change (“Figure 2-1”).  

 
Figure 2-1: [12]: “Figure 2. Identified types of distortions inpainted into exemplary data—the first coordinate of the first 

marker (head) of the IM subject.” 
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     We provide a more detailed explanation of this article [12], as it identified only one 

study that was similar to theirs [16]. In that study, invalid keyframes were explicitly 

identified using a robust method, which subsequently generated new kinematically correct 

paths through the application of a neural network (NN). However, this previous research 

did not include any identification of the type of distortion present.  

     In [12], after detecting and classifying the artifacts, each one was handled using different 

methods. They utilized reconstruction methods including Savitzky–Golay filtering (using 

a 13th order polynomial over a window of 101 samples), linear interpolation, spline 

interpolation, and predictions generated by a NN. Treating sudden changes relied on 

derivative analysis, median and Savitzky-Golay low-pass filtering (as predicting models), 

respectively, for short-term and long-term distortions, with stats-based thresholding and 

mathematical morphology. Slow change detection was based on the hysteresis thresholding 

of residuals with backward regrowing of identified segments. They employed neighbour-

based predictors—initially, they assumed a polynomial predictor based on the least squares 

method, which they gave up in favor of a feed-forward NN using functional body mesh 

representation. The deviation of a trajectory from the prediction was used as a criterion for 

classification. The overall efficiency relied on the quality of model predictors, indicated by 

the standard deviation (SD) of residuals (e.g., three-sigma rule), which facilitated effective 

outlier detection. Additionally, it depended on accurately approximating a marker’s real 

location based on its own or neighboring markers’ past, present, or future positions. Using 

synthetically distorted sequences (presumed only one distortion at a time), performance of 

the approach was comparable to human operators. Companion results were additionally 

acquired in the experiment to compare the results obtained to the two generic existing 
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methods of anomaly detection in the time series: three-sigma move, which employs mean 

and variance moving, and the Hampel filter, which is based on the moving median and 

median absolute deviation, which are more robust measures. Both the three-sigma move 

and Hampel filter are methods that consider each coordinate separately, unlike more 

sophisticated methods of anomaly detection based on machine learning, such as clustering, 

one-class support vector machines, or autoencoders, that can find anomalous frames instead 

of inter-marker dependencies. The criteria for evaluation were classification rates, 

presented as a confusion matrix, F1-score, and Matthews correlation coefficient. They 

assumed the root-mean-square error as the measure of quality. They concluded that 

identification of slow change was as difficult as expected. They analyzed alternative 

techniques, including simple feedforward and nonlinear autoregressive exogenous NNs, 

ridge, lasso, and support vector regression. However, the results were either poor or 

impractical (due to long training times), or both. They couldn’t compare the efficiencies to 

the other solutions, as their work was the first proposal in this area. The only comparable 

method to them [16] was publicly unavailable, and the distortions were not classified. 

However, they conducted an indirect comparison of the efficiency of their solution against 

that of human operators and industrial software. The proposed solution was less effective 

than experienced human operators but significantly outperformed novice operators. 

Furthermore, the automatic repairing algorithms available in modern software, such as 

Vicon Nexus, have the potential to increase the number of artifacts. Detecting distortions 

for all three coordinates of a marker jointly was left for future work. 

     Quantifying various types of noise using Allan variance was discussed in [23], including 

white noise, random walk, blue noise, and flicker, with significant contribution to the first 
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two and least to violet noise. Environmental long-term correlated noise and periodic 

distortion were noted. They suggested Butterworth or Woltring filters to remove white noise 

and found longer-term distortion removal, like flicker or random walk, challenging. 

     In a study by [24], the author compared moving averages, B-spline smoothing, and the 

Kalman filter. The B-spline-based least square method generated high-quality continuous 

outputs with minimal parameter adjustments for various motion signals, even in the 

presence of outliers or missing data. Moreover, for studies involving the extraction of signal 

features such as velocity and acceleration, reliable derivative values can be obtained 

through B-spline smoothing. Moreover, they employed low-pass filters to eliminate shaky 

movements caused by high-frequency noise. However, the process was offline.    

     Kalman and moving average filters are suitable for online applications due to their 

localized calculations. However, they may struggle with sudden local spikes. Methods like 

the Gaussian low-pass filter and the Kalman filter (optimized for unknown trajectories) 

often process each degree of freedom separately, and the filtered output may appear 

unnatural due to the lack of spatial-temporal characteristics. A modified k-means algorithm 

was claimed to outperform the standard filtering algorithms, such as mean and median, by 

completely removing noise with both spike and Gaussian characteristics [18]. 

     A data-driven approach in [25] utilized multichannel singular spectrum analysis to 

eliminate outliers and noise. This technique employed singular value decomposition on the 

trajectory matrix derived from time series data to develop space-time filters. It was applied 

to the grand lag covariance matrix, which captures spatial-temporal correlations within a 

defined window, facilitating the extraction of spatial-temporal patterns. However, post-

processing was required to meet kinematic constraints. 
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     A data-driven method in [26] presented statistical models to classify movements as 

natural or unnatural by decomposing the motion into parts based on joint rotations and 

linear and angular velocities. A cyclic motion-specific approach in [27] identified male or 

female walking, using principle component analysis (PCA) for dimension reduction, and 

then fitted sinusoids to the resulting components. On the other hand, [28] provided a multi-

resolution of epitomes as a statistical model of natural motions to choose various timescales 

flexibly. Given only positive (natural) training data, the epitomic analysis generated motion 

epitomes to compute a degree of naturalness score. Although these methods use kinematics 

to detect unnatural intervals, they invalidate all their markers.  

     To address this issue, a data-driven approach [29] automatically detected and fixed the 

erroneous joint rotations based on the self-similarity of human motion data. The individual 

frames or poses weren’t examined because joint angles are relative measures and are 

spatially invariant regardless of the global pose, so the absolute marker positions were not 

needed. A motion-texture map was defined with temporal joints’ rotation angles as rows 

and single pose-frames as columns. Motion words were short sequences of joint 

transformations around a motion frame. The outliers and erroneous motions for multiple 

performers were detected simultaneously and replaced by similar correct motions by 

comparing each motion word with its k-nearest neighbours using dynamic time warping. A 

movement digression map indicated unusual movements in time on specific joints. 

However, unlike the kinematic level solution presented in [19], this joint level method fails 

with more complicated errors such as marker swapping. 

     In [16], the benefits of both joint level [29] and kinematic level [19] approaches were 

leveraged to detect invalid intervals, such as marker swapping, by looking at poses’ 
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differences on a per-joint basis. A NN and a linear blend skinning from a cleaned series of 

joint transforms were used  reconstruct markers. Preset numbers of frames were removed 

before and after a gap until the slope difference between the original and the reference path 

was minimized to a preset threshold. Short gaps were filled using polynomial and cubic 

Hermite splines with positional and velocity constraints to create a natural filling. The 

limitations of this approach include the experimentally selected preset parameters, the loss 

of small details, and the introduction of offsets in the marker paths.  

     3D human motion search and retrieval techniques were discussed in [30]. They 

developed a data-driven method to address corrupted, noisy, or missing markers in MoCap 

data. To leverage prior information, they created a knowledge base from an existing clean 

MoCap dataset. For efficient searching and retrieval of similar poses, they constructed a 

kd-tree and a parallel nearest neighbor search strategy. 

     In [31], a data-driven denoising method sparsely selected the most correlated subset of 

motion bases for clean motion reconstruction, considering Gaussian noise and outliers. 

They divided each human pose into five partitions termed poselets to construct motion 

dictionaries. Another approach [32] reconstructed missing markers by using sparse 

representation. They proposed a presentation coefficient weighted update algorithm to 

mitigate the limited capacity problem of the training set. These approaches’ representations 

are coarse; therefore, [14] divided each pose into five parts termed the partlets to obtain a 

more fine-grained representation. 

     Unlike data-driven approaches, which rely on motion from a large data set, the noisy 

low-rank completion methods have the advantage of requiring no training data set to 

recover noisy MoCap sequence [33]. The low-rank structural characteristics of the motion 
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data matrix were explored in [9] to complete the missing walking motion data using the 

singular value decomposition method. This method is unsuitable for long motion sequences 

with different poses.  

     In [34], a new robust non-linear matrix factorization method was proposed that is robust 

to sparse noise and outliers. They constructed a dictionary for the data space by factoring 

in a kernelized feature space. Then, a noisy matrix was decomposed as the sum of a sparse 

noise matrix and a clean data matrix in a low-dimensional nonlinear manifold. 

     In [10], a method was discussed for denoising MoCap data using filtered subspace 

clustering and low-rank matrix approximation. Using a filtered subspace clustering 

technique, the noisy MoCap sequence was divided into disjoint piecewise motions. Each 

piecewise motion shares a similar low-dimensional subspace representation. The 

accelerated proximal gradient algorithm was then utilized to find a complete low-rank 

matrix approximation for each noisy piecewise motion. A moving average smoothed the 

moving trajectories between the connected motions. Finally, the entire noisy MoCap data 

were restored by concatenating all the recovered piecewise motions in sequence. This 

method does not require prior knowledge about the structure or auxiliary data sets for 

training priors. 

     Most of these methods are robust in the presence of different types of noise. However, 

the following deep learning-based methods are more robust but sometimes deviate from 

the real motion. 

     In [5], two deep, bidirectional, recurrent, long short-term memory (LSTM) NNs were 

used for real-time cleaning of a wide variety of noise types (in joint angles and positions) 

and long gaps with a single trained model. The approach is not noise-specific or action-
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specific. However, noisy and clean motion pairs and unlabeled action-type examples should 

be available in the training set.  

     Another online method, with a simpler network and requiring less data, was presented 

in [35]. LSTM-based and one-time-window-based models were used to remove position 

noise and fill in missing parts of the pose. The approach was validated on synthetically 

noisy data which were injected with Gaussian additive noise (similar to [36]) into the input 

during training. 

     To address different noise types in Kinect data and time-consuming postprocessing 

smoothing step in [19], a perceptual-based noise-agnostic 3D skeleton motion data 

refinement method was presented in [37] based on a bidirectional recurrent autoencoder. 

They improved the refined motion data's kinematic information, bone-length consistency, 

and smoothness when the noisy data and target clean data had different topologies, which 

was unsolved in their previous work [38]. However, the types of noise weren’t specified, 

and the refined motion can still be somewhat noisy due to poor reproduction accuracy.  

     Correcting mislabeled markers was addressed as a post-processing step in auto-labeling 

approaches. In [39], a sequence of unlabelled (shuffled) 3D trajectories as input was 

processed with a data-driven auto-labeling approach by applying permutation learning to 

each frame. The resulting labeled frames were concatenated to form trajectories again. 

Then, a temporal consistency constraint was used to correct mislabelled markers.  

     Recent articles [4], [7], [8], [40], [41] have proposed deep learning-based MoCap 

solving methods that address the presence of outliers, ghost markers, and extraneous 

markers in MoCap data. 
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     With enough samples, data-driven approaches can automatically learn the time and 

space domain and the complexity and diversity in motion sequences. However, they may 

need help with unseen motions and obtaining samples for long sequences with multiple 

motion semantics. 

2.3 MoCap Data Recovery 

     Previous work focused on gap filling and reconstruction, sometimes referred to as 

denoising tasks, while others considered cleaning [5] as denoising and reconstruction 

techniques [6]. Various researchers have focused on different aspects of the problem at 

hand. Some have explored the detection of erroneous intervals [12], while others have 

concentrated on achieving a natural appearance in reconstruction [26]–[28]. Additionally, 

some researchers have investigated sparse representation [31], [32], skeleton-based 

methods [42], methods based on low-rank matrix completion [43], truncated singular value 

decomposition [9], PCA via truncated nuclear norm regularization [44], truncated nuclear 

norm regularization [45], graph-based methods [46], data-driven methods such as kd-tree 

recovery [30], and deep learning based methods such as [35]. In [47], a denoising 

autoencoder was trained to predict the original uncorrupted skeleton. MoCap solving 

methods [4] involve marker tracking, denoising, and reconstruction. This section focuses 

exclusively on articles related to reconstruction methods. 

     Interpolation is a common method for filling gaps in marker trajectories, employing 

techniques like linear or spline interpolation that maintain the spatial-temporal 

characteristics of human motion [24], [42]. While effective for short gaps, these methods 

struggle with longer sequences due to the high correlation between adjacent trajectories. 
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     In [48], a data-driven marker-based method suitable for large gaps with multiple missing 

body parts across different actors and motion styles was proposed. In the preprocessing 

step, all MoCap data from the prior database was first normalized with respect to global 

position and orientation. In addition, linear marker velocities and accelerations were stored 

as a simple optimization scheme without a bone length constraint. Subsequently, similar 

examples from the database were retrieved by a spatial indexing structure (kd-tree) based 

on the search for nearest neighbours. However, they assumed the same marker set for the 

motions in the database and the tested motion to be cleaned. Additionally, it was assumed 

that valid markers, which are the set of markers containing reliable positional information, 

are provided for each frame of the input motion to be completed. 

     In [39], a data-driven auto-labeling approach was proposed. They used a feed-forward 

deep residual NN for permutation learning. First, each trajectory was defined as the 

sequence of tracked marker locations, which ends with a gap or when the recording stops. 

Therefore, in each motion sample, the movement of each marker might be presented in 

multiple trajectories over time. They exploited the temporal consistency of each trajectory 

to correct the wrong predictions for each marker during the trajectory.  

     In [49], a new recovery process was proposed that combined statistical and kinematic 

information to address the issues with low-rank matrix completion and sparse coding that 

ignored kinematics and used a learned dictionary in a complete feature space. Inspired by 

coupled dictionary learning and locally linear embedding, they learned a dictionary of 

complete–incomplete training frame pairs, preserving the statistical information. They then 

used the kinematic information, including smoothness and bone-length constraints, to 



54 

 

recover motions from incomplete frames using sparse representations and a learned 

dictionary via two gradient-based optimization models. 

     In [50], a Kalman filter-based real-time approach, suitable for long gaps, was proposed. 

They combined the prediction algorithm, using previous markers’ positions, with 

information from neighbouring markers belonging to the same limb segment, with a rigid 

body assumption, to handle the cases that they couldn’t handle in their previous work [51], 

where all markers on a limb were occluded, or one or two markers were not visible in a 

large gap. Real-time skeleton fitting was done without any pre-defined skeleton model by 

estimating the time center of rotation between two marker sets, using the Procrustes method 

[52] to calculate the limb orientation relative to a reference frame. However, they still 

assumed the presence of rigid limbs with at least three markers placed on each limb. 

Another Kalman filter-based approach compared their result with them [53]. In [54], the 

unscented Kalman filter was used as an alternative method to the extended Kalman filter 

[55] to provide a more accurate estimation of the distribution of the state random variable 

through sampling techniques. 

     In [56], a data-driven, piecewise linear modeling for long gaps was suggested by 

characterizing a k-means clustered hierarchy of low-dimensional local linear models using 

PCA to model motion sequences of a training set. Frames of a new sequence were classified 

by a random forest classifier into distinct local linear models extracted from the training 

set. Random forests involve growing and merging decision trees to form predictive models. 

The final prediction was made by voting from all the trees in the forest. The highest rank 

was selected to identify each frame's appropriate local linear model. The recovery was done 
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by minimizing the least squared error using marker positions and principal components. 

However, the numerical stability was a significant challenge. 

     In [57], a locally weighted PCA regression method was proposed to address the issue in 

[56] and their previous work [58]. To their knowledge, it was the first least square method 

with sparsity constraints. They analyzed 3D skeletal motion data to address the “missing 

marker problem”  in [59], a marker-based method that used PCA and segment coordination 

patterns in multi-limb motion data. This method was improved in [60] to remove noise. 

     In [61], a gap reconstruction method was proposed using NN without requiring massive 

training sequences to form a predictive model. Instead, they considered each sequence 

separately and tried to reconstruct the gaps in individual trajectories based on their own 

data. Their assumption was valid if the motion was correlated and most of the sequence 

was correct, like other common regression methods, starting with the least squares.  

     In [62], they combined low-rank matrix completion of the measured data with a group 

sparsity before the marker trajectories were mapped in the frequency domain. Compared to 

most existing approaches, the proposed methodology is fully unsupervised and does not 

need the user's training data or kinematic information. 

2.4 MoCap Data Alignment 

          Registering human body scans aligns them with a common template. Alignment of 

articulated shapes like human bodies typically uses iterative closest point (ICP) to find 

marker correspondences in successive frames [63]–[68]. However, ICP-based methods are 

only effective when markers are present and the difference between successive frames is 

small. Most body alignment methods focus on aligning a template to different body shapes 
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in a canonical pose [69]. In [70], LED markers were used instead of infrared markers to 

align an image with the camera pixel center based on the intensity distribution. Still, this 

method is not applicable to marker-based optical passive MoCap data. 

     In [71], a real-time online marker labeling algorithm was introduced to address the 

challenges of missing and ghost markers by utilizing point correspondence and graph 

matching methods, employing a soft graph matching model with the Hungarian algorithm 

[72] for finding the global optimal matching. 

     In [73], the alignments were regularized using an articulated 3D model of human shape 

and pose. Unlike the simple articulated model for initialization [74], [75], they used a richer, 

learned body shape model to register many different bodies in different poses accurately.  

     In [76], the skeleton tracking was initialized using a T-pose and adjusted by scaling the 

person’s size and aligning the skeleton to the subject’s limb. The observed markers were 

labeled, and the skeleton configuration was optimized in an expectation-maximization-like 

procedure. First, they used the highest marker observation to determine the person's height. 

Then, they matched the skeleton and person’s sizes by scaling. They identified specific 

points belonging to the legs and arms based on human anatomy and calculated their first 

principal axes. The skeleton model was aligned with these axes through least-squares 

optimization to establish the initial skeleton configuration. The optimization-based 

alignment made the initialization method robust to deviations from the ideal T-pose. 

     In [77], a fully automatic optical motion tracking method was introduced using a model-

based inverse kinematics approach. The Hungarian method calculated associations between 

model markers and MoCap markers, while occlusions were handled using a posture 

interpolation step. In the initialization step, ghost markers were minimized to align models 
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to motion data points, and all valid markers were visible in the first frame. The Euclidean 

cluster algorithm in the Point Cloud Library [78] was used in the automatic clustering step 

to cluster closely located motion data points. The algorithm worked well if the average 

distance between objects was larger than their size. Otherwise, manual correction might be 

necessary. This configuration could be saved and loaded for subsequent automated trials. 

     In [79], the skeleton was automatically replaced with a 3D body model by solving for 

marker locations relative to the body. They estimated the body shape and pose using sparse 

marker data without 3D scans. Despite the noisy treatment of non-rigid motions of soft 

tissue, they captured them from small marker sets (with 67 markers and missing fine 

details) to create a more realistic animation. The shape basis was learned from deformations 

of training body shapes using PCA. The pose-dependent component of the model was 

learned from a large set of scans, with various poses aligned using the technique in [73]. 

They optimized body shape and marker placement parameters using Powell’s dogleg 

method [80] with Gauss-Newton Hessian approximation. 

     In [39], an auto-labeling method was presented using a differentiable permutation 

learning model. In preprocessing, the centroid of the marker array was calculated for each 

frame and subtracted from marker locations for translation invariance. PCA was used for 

orientation invariance by aligning the subject direction with the largest principal component 

with the z-axis. Rotations around the z-axis were invariant by aligning the second principal 

component with the x-axis. Subject size was normalized by scaling in three spatial 

dimensions. For training the model, they used Sinkhorn normalization [81] to convert any 

unconstrained non-negative matrix to a design structure matrix.  
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     In [19], a state-of-the-art data-driven skeletal MoCap-solving technique was introduced 

that used a forward NN. Before training, as an assumption, the characters’ height was 

normalized using a scaling factor computed from T-pose or extracted from MoCap software 

during calibration. A local reference frame was found to ensure accurate character 

representation in data-driven techniques. This involved using rigid body alignment [63] to 

describe the data without prior knowledge of joint transforms. They calculated the mean 

location of selected markers around the torso relative to a chosen joint (e.g., spine joints) 

to fit a rigid body into the data. This process was repeated for all poses in the dataset, 

resulting in a set of reference frames used to transform every pose into the local space. After 

training, the rigid body found during the preprocessing step was fitted to the subset of non-

occluded markers to find a local reference frame, and the marker positions were 

transformed into it. Then, they fed the NN with these transformed markers to produce the 

joint transforms, which were subsequently converted back to the global reference frame.  

     MoCap-Solver [4] used separate NNs to produce skeletons to solve motions and 

reconstruct clean markers. They discussed that the alignment algorithm in [19] lacked 

robustness due to using a rigid-body registration algorithm to align poses in a local 

reference frame, and the precision was highly sensitive to corruption in specific markers, 

which limited its practical usage. To mitigate excessive dependence on a small number of 

key markers and enhance robustness, they normalized markers based on learning a pose-

dependent marker reliability function. They automatically selected the most reliable frame 

for alignment and a global orientation. Their algorithm consistently outperformed the 

proposed method in [19] on both synthetic and real-world data. 
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     In [13], a locality-based learning method using a graph NN was proposed to clean and 

solve labeled MoCap data. To expedite the training process, they aligned markers, similar 

to [4], to remove their global transformations by calculating the local coordinate systems 

of wrist and waist markers.  

     In [11], the first deep unsupervised human body reconstruction technique was 

introduced which utilized a denoising autoencoder to estimate missing landmarks and 

predict the body surface from a sparse set of landmarks. The impact of global orientation 

was addressed by focusing on data normalization. Their previous work [82] subtracted 

input landmarks from the mean point to achieve translation invariance. In this article, they 

reached a rotation invariant network, without scaling, by aligning all landmarks in the 

dataset to a reference set of landmarks using Procrustes analysis to transform landmarks by 

computing a rotation matrix and translation vector. Then, they used the aligned data to train 

the cascading network as before. Finally, they transformed the estimated surface to its 

original orientation at test time. 

     In [7], an auto-labeling approach was performed using a LSTM NN in conjunction with 

Hungarian label assignment. Initially, the marker coordinates were rotated around the 

vertical axis to ensure that the subject faced the positive x-direction at the beginning of the 

trial. During the training phase, this rotation process was automatically executed based on 

the acromion (shoulders) markers. However, for the test data, the rotation angle was 

calculated and input manually. Furthermore, Procrustes analysis was utilized to identify 

unlabeled markers by aligning local marker coordinates within the marker set with 

measured markers through scaling, rotation, and translation. This alignment process was 
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used to assign labels to body segments that possessed a minimum of three markers, thereby 

leaving one or more markers unlabeled. 

2.5 MoCap Data Auto-Labelling 

     Previously, there have been numerous efforts to automate the cleaning and solving of 

MoCap data. Early methods (e.g., moving average filter and low-rank matrix [10], Kalman 

smoothing and rank matrix completion [53], unscented Kalman filter and inverse kinematic 

[50], automatic kinematic model building based on Markov random field [83], multiple 

interacting articulated targets [84], AdaBoost [85], skeleton-based body models [86]–[88], 

and inverse kinematic [77]) mainly relied on rules based on empirical parameters and hand-

crafted features. Although these approaches could produce acceptable outcomes for 

specific patterns and noise under assumptions and constraints, they consistently faced 

difficulties adapting to real-world data with intricate situations.  

     Data-driven methods have been employed to address the limitations above by learning 

from a large database, such as kd-tree [48], local PCA [56], self-similarity [29], sparse 

encoding [31], [15], model averaging [42], graph matching [71] [89], and deep learning-

based approaches [90]–[92]. 

     Most current research focuses on repairing occluded markers and solving motion. In 

[93], based on NNs, a data-driven real-time marker-based was used for finger marker 

recovery and tracking. In [94], labeling finger markers while simultaneously detecting 

occlusions and false observations (ghost markers) was done. In [16], a robust data-driven 

marker trajectory repair was proposed using kinematic reference. They compared their 

neural solver with those generated by commercial software. In [11], reconstruction and 
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denoising autoencoder was used to estimate missing landmarks. Then, they used a 

cascading network to regress skinned multi-person linear body parameters [95] based on 

estimated joint positions using an attention model. However, using the model was 

challenging for characters with varying skeleton topologies.  

     In [39], an auto-labeling method with no manual initialization was presented using 

permutation learning model. For training the model, they used the Adam optimizer, a cross-

entropy loss function, and Sinkhorn normalization to convert any unconstrained non-

negative matrix to a design structure matrix. They added occlusion (missing markers) in 

their training data to improve the result. During execution, predicting a single permutation 

matrix was framed as a bipartite matching problem. Consequently, the Hungarian algorithm 

was applied to the cost matrix to determine the optimal solution. However, they were 

limited to a fixed number of markers in a restricted setup, with a subject-specific calibration 

stage, a limited range of motions (walk, jog, jump, and sit), and a unique marker set. Due 

to requiring high-quality MoCap training data, they faced challenges in their scalability to 

new scenarios. 

     In [7], an LSTM-based auto-labeling method was introduced in combination with 

Hungarian label assignment. Simulation trajectory and transfer learning were utilized to 

enhance the training set. 

     In [19], a skeletal MoCap solving method based on a forward NN with residual blocks 

was proposed. Using linear blend skinning, they used a set of marker configurations to 

synthetically reconstruct marker locations in a large skeletal MoCap database (e.g., CMU 

[96]). They calculated the mean and SD for joint transformations, marker configurations, 

and mean and covariance for marker locations. Pre-weighted local offsets and their mean 
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and SD were also computed to feed into the NN to distinguish characters with different 

body proportions or marker placements. Then, the data were corrupted by a custom noise 

function to create training data. After training, outliers were eliminated and considered 

occlusions to be translation and rotation invariant. The network was fed with transformed 

markers to generate joint transforms, which were then converted back to the global 

reference frame. A Savitzky-Golay filter was used to remove jittery movements (quickly 

appearing or disappearing). Finally, in the retargeting stage, they utilized singular value 

decomposition to orthogonalize the rotational parts of joint transforms and extracted the 

local joint transformations using a Jacobian inverse kinematics solver. 

     Mocap-Solver [4] utilized distinct NNs for motion solving, achieving state-of-the-art 

results. However, it faced issues with outliers, occlusions, and complex movements. A 

heuristic removal of ghost markers restricted to a single body shape, and depended on high-

quality real MoCap training data, limiting its scalability to new data.  

     In [8], an auto-labeling raw MoCap data was proposed using a NN. They removed 

outliers and ghost markers without calibration and with minimum user intervention. Unlike 

[4], which worked on labeled data and a single body shape and needed to compute the 

global orientation of the body, they worked with unlabeled points and dealt with varied 

body shapes. The assumption of graph isomorphism between MoCap frames and labels in 

Sinkhorn normalization was relaxed to allow for inexact matching between the labels and 

points using an optimal transport solution [97]. Due to a lack of real data, they created 

extensive simulated noisy training data and ground truth MoCap markers using AMASS 

[98]. They used the method proposed in [79] to fit SMPL-X [95] bodies to the labeled data 

to find body parameters and accurate marker placement on the body. They used dustbins 
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[99] to deal with missing and ghost markers. The dataset used for model selection and 

validation consisted of 215 sequences across four subjects with 40 markers on average. 

Their results outperformed prior works [77], [39], [100] under the same conditions. 

However, as with any learning-based method, they could not generalize for unseen motions. 

     In [13], the limitations of the state-of-the-art data-driven methods (e.g., [4], [19]) were 

classified into three problems. First, using skinning functions ignores the complexity of 

marker motions, and solving errors may lead to additional errors. Second, they often 

overlook the detailed correlations between markers by using a single fully connected 

network structure to encode all markers uniformly, leading to incorrect solutions for 

specific movements. Third, all methods must assume or model data noise using random 

sampling per frame, which overlooks long gaps and intense occlusion, decreasing accuracy. 

     To address the above issues, [13] proposed a locality-based learning method using a 

graph NN to clean and solve MoCap data and tracking errors. Unlike [4], they accurately 

reconstructed occluded markers by hand-crafted and learned intrinsic priors based on 

neighbouring markers' distance and a bidirectional LSTM network. Outliers, due to 

tracking errors, were detected by acceleration curves and replaced by simple spline 

interpolation. The training involved masking to simulate occluded and noisy markers 

commonly found in real data. Their alignment was similar to [4]. While the method in [8] 

assigned unlabeled markers to specific body parts, their method solved motions with 

labeled markers. Additionally, unlike [4] and [19], where the lack of quantification of local 

marker features hindered the successful resolution of motions, they extracted local features 

by constructing a heterogeneous graph that differentiated markers and joints as distinct 

node types, frame-by-frame and improved the accuracy by using graph convolution.  
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     The placement of markers affects motion reconstruction, leading to labeling problems, 

unnatural animation, and inaccuracy. Labeling involves interpreting marker set data over 

timeframes to reconstruct captured models like humans or objects. This issue is investigated 

due to the time-consuming and costly labeling process for larger datasets, requiring 

commercial software and licenses (e.g., Qualisys and Vicon software). In [17], an optimal 

marker set configuration was proposed to improve the quality of MoCap data affected by 

factors like volume shape, motion between frames, ghost points, and self-occlusion of 

markers. They used a reversible-jump Markov chain Monte Carlo method to optimize the 

data, considering marker and camera placement constraints such as marker visibility, 

number of markers, symmetry of the marker set, and marker overlap. Researchers have also 

explored the optimal placement of cameras for MoCap systems [17], [68], [101]–[104]. 

2.6 Conclusion 

     We provided a comprehensive overview of various methods employed to tackle 

challenges associated with marker-based MoCap solving, including cleaning (denoising 

and recovery), alignment, and auto-labeling. While these systems address certain issues, 

they remain prone to inaccuracies due to their reliance on training data and limitations of 

feature-based methods. Thus, a more general solution applicable to various MoCap actions 

is still needed. 
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3. Marker-based Underwater Optical Motion Capture Data 

Preparation 

Abstract 

     This article presents the steps of motion capture (MoCap) data preparation for marker-

based underwater optical motion capture (OMC) systems, including attaching markers to 

the subject, setting up the capturing volume by placing cameras, camera calibration, 

recording the session, creating a marker set, and manual cleaning the exported C3D data 

by denoising, recovering missing markers, and labeling, which are steps of MoCap solving 

process. The cleaned C3D output file can be utilized in various applications, such as ground 

truth data for evaluating automatic MoCap solving algorithms or as a training or validation 

dataset for machine learning and deep learning algorithms. We utilized the Qualisys Track 

Manager (QTM) software to capture MoCap data using Qualisys underwater Miqus M5U 

MoCap cameras, the first commercially available OMC cameras for aquatic environments. 

We present a manual cleaning procedure for a subset of our raw dataset, called Dataset A. 

The cleaned output, Dataset A_cleaned is used to generate a QTM automatic identification 

of markers (AIM) model, which is then applied to the raw Dataset A for comparison with 

the manual cleaned output. We discuss the challenges of manual cleaning and using the 

AIM model, highlighting the need for automated algorithms to streamline this laborious 

process. However, manual cleaning and verification of data remains unavoidable. 
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3.1 Introduction  

     Marker-based optical motion capture (OMC) [1] systems utilize cameras to measure the 

3D locations of reflective markers on the subject’s body. This technology has been applied 

in various environments, including underwater settings, where challenges from light 

refraction and distortion, among other issues unique to underwater environments, introduce 

new challenges [2]. Established commercial tools from MoCap companies such as Qualisys 

[3] and Vicon [4] are available to support MoCap with proprietary equipment. These 

MoCap  systems are designed for data collection, management, and analysis for MoCap 

applications [5].  

     Qualisys Track Manager (QTM) [6], [7] is the software developed by Qualisys for 

motion capture. It is compatible with various Qualisys MoCap cameras [8], including the 

Miqus M5U underwater MoCap camera [9], specifically designed for underwater  

measurement. It can be used in underwater applications [10], [11], such as in-water 

rehabilitation using underwater treadmills [12], underwater animation [13], and swimming 

performance analysis [14], as shown in Figure 3-1.  

 

Figure 3-1: In-water rehabilitation and swimming performance. 
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     This article outlines the steps for preparing marker-based underwater OMC data using 

7 Qualisys Miqus M5U underwater MoCap cameras and QTM software. The process 

includes attaching 21 passive markers to the swimmer suit, camera placement and 

calibration, recording data at 100Hz, and manually cleaning the captured raw C3D file. 

     The paper is organized as follows. Section 3.2 provides a review of the research utilizing 

the Qualisys MoCap system for different underwater applications. Section 3.3 describes 

our setup for capturing underwater MoCap data, including reflective marker attachment, 

camera placement, calibration, and recording data using QTM software. Section 3.4 

describes noise in underwater MoCap data. Section 3.5 introduces MoCap data cleaning 

and editing software tools such as commercial software, Mokka software [15], 

biomechanical analysis software, and MATLAB and Python C3D libraries. Sections 3.6 

and 3.7 explain the marker set labels and the marker set creation using OpenSim [16], open-

source biomechanical modelling software. Section 3.8 explains our process for manual 

cleaning of our raw MoCap Dataset A, including denoising, recovery, and labeling methods 

using QTM software. Section 3.9 presents our data cleaning procedure using the QTM 

automatic identification of markers (AIM) model [17]–[19]. Sections 3.10 introduces a 

brief introduction of some other QTM features such as skeleton solver [20]–[25], and rigid 

body and Euler angles [26]–[28]. Section 3.11 concludes the paper. 

3.2 Underwater Application 

     To the best of our knowledge, there are currently no published research studies using 

Qualisys Miqus underwater MoCap cameras, specifically Miqus M5U, for human 

kinematics analysis within OMC systems. Since their introduction in 2019 [11], these 
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cameras have been used primarily for tracking marine vessels and structures due to their 

compact size and wide-angle capabilities, which make them ideal for confined spaces [29]. 

Their applications include monitoring underwater autonomous vehicles [30], robotics [31], 

objects in towing tanks, animal biomechanical analysis [32], and movements of oil 

pipelines [33]. Tortorici et al. [30] utilized five Miqus M5U cameras operating at 180 

frames per second to track remotely operated vehicles markers. Lack et al. [34] used 8 

Miqus M5U to control a small underwater vehicle manipulator systems. Researchers [35]–

[37] measured the kinematics and surface electromyography of human lower limbs using a 

Miqus underwater video camera.  

     There are a number of studies on swimming performance and underwater gait analysis 

using other Qualisys underwater MoCap cameras [9], such as the Oqus [38], which is not 

suitable for confined spaces. The Oqus brand has been discontinued [39] and replaced by 

the newer Arqus [40] camera model. Lauer et al. [41] utilized 12 Qualisys underwater 

MoCap cameras to measure upper limb joint forces and moments during underwater 

cyclical movements. The study found that the upper limb joint load was within 5% of the 

swimmer’s body weight. This suggests that low-load aquatic exercises could be beneficial 

in reducing joint stress in aquatic therapy and rehabilitation. Olstad et al. [42]–[44] 

examined the kinematics of breaststroke swimmers utilizing Qualisys underwater MoCap 

Oqus 3 and 4 cameras functioning at 100 Hz, which recorded retro-reflective passive 

markers. They employed QTM software versions 2.6 and 2.8. Ribeiro et al. [45] 

investigated how swimmers with different speeds organize factors such as biomechanics, 

energy, and coordination during extreme-intensity swims. Kinematics parameters were 

assessed using seven land plus eight underwater cameras (Oqus 3+ and Oqus Underwater) 
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operating at 60 Hz. Abdul Jabbar et al. [46] researched the effect of aquatic medium and 

age on the lower limb’s joint angles. Underwater gait kinematic data were acquired at 100 

Hz using 8 Oqus underwater MoCap cameras. Washino et al. [47] suggested that swimming 

performance is reduced, at least in part, due to additional drag caused by reflective markers. 

They utilized 25 Qualisys reflective markers. However, they recorded the MoCap data by 

a digital video camera positioned about 5 meters above the water and 30 meters away from 

the swimming lane. Chainok et al. [48] sought to identify biomechanical features of 

transitioning from backstroke to breaststroke using a dual-media MoCap system, which 

included 12 land and 11 underwater cameras (Oqus 3 and 4 series) along with 51 spherical 

retroreflective markers. Tanaka et al. [49] compared foot and trunk kinematic parameters 

during underwater undulatory swimming between faster and slower swimmers using 8 

Qualisys underwater cameras and 12 retro-reflective markers. Nakashima et al. [50] 

developed of a method for musculoskeletal simulation in swimming using dual media with 

18 Qualisys underwater cameras and 48 reflective markers. Qualisys [10] offers a 

promotional video of their underwater systems and software, demonstrating swimming 

biomechanics. However, these studies all notably focus on the subject at the surface of the 

water, completing only predictable and pre-defined activities (i.e., swimming strokes). 

3.3 Capturing Underwater MoCap Data 

     The marker-based OMC system setup involves attaching markers on the body, placing 

cameras in the volume of interest, and camera calibration. We captured underwater MoCap 

data using seven Qualisys Miqus M5U underwater MoCap cameras installed at different 

locations around a four-meter-deep, 18-meter by 14-meter pool at the Memorial University 
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Marine Institute Offshore Safety and Survival Centre, as shown in Figure 3-2. A total of 21 

passive (reflective) markers were attached to the swimmer suit and body, as shown in 

Figure 3-3. After calibration, data were recorded at 100Hz using QTM software and 

exported to C3D files. The subsequent sections detail visualizing markers attached to the 

swimmer’s body, identifying the area of interest, positioning the cameras for optimal 

results, performing camera calibration, and recording MoCap data. 

 

Figure 3-2: A 4-meter deep pool utilized for capturing MoCap data. 

 

3.3.1 Marker  Attachment  

     In this section, we will first provide a visualization of the anatomical locations where 

we attached the 21 Qualisys passive markers to the subjects’ bodies. Following that, we 

will introduce the Qualisys markers specifications. 
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3.3.1.1 Passive Marker Anatomical Locations 

     We attached 21 reflective super-spherical MoCap markers on the swimmer’s body and 

suit based on the Qualisys sports marker set [51], as shown in Figure 3-3.  

 

Figure 3-3: 21 Passive Marker Anatomical Locations. 

 

3.3.1.2 Qualisys Passive Markers 

     Qualisys offers different types of passive markers for underwater OMC tracking systems 

[52], including hand-coated underwater markers, super-spherical underwater markers, 

super-spherical MoCap markers, and retro-reflective underwater tape. The selection of 

marker size depends on several factors: (1) the setup, which includes available space on the 

object and streaming characteristics; (2) the distance between the markers and cameras, 

influenced by camera type—such as the Arqus UW [40], which allows for smaller markers 

at greater distances due to its strong strobe; and (3) water quality, which can affect visibility. 

Generally, larger markers provide a greater reflective surface area, making them easier to 

detect in various underwater conditions. Ordinary passive markers are ineffective 

underwater as their retro-reflective properties diminish. Hand-coated underwater markers 

are water-resistant, threaded markers with a spherical body covered in retro-reflective tape, 
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with a minimum size of 12 mm. They can remain submerged permanently. However, in 

some cases, the taped markers may break apart and appear as multiple markers. There for, 

super-spherical underwater markers, that can be for a long-time underwater, are 

recommended, with a minimum size of 14 mm. If a smaller size is needed, super-spherical 

MoCap markers can be used, with minimum size of 6.5 mm; however, they will fail after 

extended periods (over 1 hour) of submersion. Moreover, retro-reflective underwater tape 

serves as an alternative to ordinary spherical underwater markers. It is particularly useful 

in scenarios where the use of ordinary markers could interfere with the movement of the 

object being tracked. Figure 3-4 illustrates the dimensions and weight specifications of the 

Qualisys passive super-spherical markers [53], [54], which we utilize. 

 

 

Figure 3-4: Qualisys passive super-spherical markers. 

 

3.3.2 Qualisys Miqus M5U Underwater MoCap Camera 

     Qualisys Miqus M5u underwater MoCap camera, which was released on 16 May 2019 

as the smallest underwater MoCap Camera [11], offers the widest field-of-view and a 

maximum capture distance of 17 meters among other Qualisys underwater MoCap cameras 

[55]. Figure 3-5 and Table 3-1 show the Miqus M5U camera we used for our study and its 

specifications. 
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                         Figure 3-5: Miqus M5U Camera 

 

 

 

3.3.3 Cameras’ Placement in the Volume of Interest 

     The volume of interest [56] is where a system records motion using cameras. A sample 

visualization of our pool is depicted in Figure 3-6, created with QTM software. It shows 

seven cameras positioned around the pool: four on one side and three on the opposite side, 

along with the “L-frame” calibration fixture and the swimmer. Figure 3-7 shows a “birds 

eye view” of part of the pool. To reconstruct 3D MoCap data, each marker should be visible 

to at least two cameras (preferably three or more) such that, following system calibration, 

the 3D geometry of the markers can be calculated from the 2D images. It is best to position 

the cameras as far back as possible from the volume to maximize camera view overlap. 

 

Figure 3-6: The Volume of Interest 

Table 3-1: Qualisys Miqus M5U Camera Specifications 

Pixels 4 MP 

Resolution  2048 * 2048 

Frame rate (full FOV) 180 fps 

Underwater FOV 51° * 51° 

Max capture distance 
(with 19 mm marker) 

17 m 

Weight 2.5 kg / 5.5 lbs 

Dimensions 250 × 110 × 110 mm 
(9.8 × 4.3 × 4.3 in) 

Buoyancy Neutral 

Operating voltage 24 VDC 

Operating temperature 0-35°C (32-95°F) 

Underwater housing Stainless steel and acrylic 

 



88 

 

 

Figure 3-7: Underwater cameras' placement 

 
 

 

3.3.4 QTM Software 

     Qualisys Track Manager (QTM) [6] is a powerful proprietary software designed by 

Qualisys to integrate seamlessly with Qualisys MoCap cameras. This sophisticated tracking 

software facilitates the capture, cleaning, editing, labeling, and analysis of MoCap data 

across various dimensions, including 2D, 3D, and six degrees of freedom (6DOF) in real-

time, ensuring fast and precise measurements with minimal latency. QTM also features a 

3D video overlay function that works with any Qualisys video camera calibrated with the 

MoCap system. Two important features of QTM software are: 

✓ Automatic Identification of Markers (AIM) [17] function enables the identification of 

markers to facilitate manual data cleaning, regardless of the marker set, by creating 

an AIM model and feeding it with sample motion data.  

✓ Skeleton solver [20] is a proven and very robust inverse kinematics solver that can 

deal with occluded markers in challenging multi-character takes. By using the pre-

defined marker set, applying the pre-trained AIM model, stand in a T-pose to fit the 

skeleton, the real-time solver will start streaming skeletal data such as rigid body joint 

angles expressed in Euler angles [27]. 
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     Furthermore, the QTM software supports integration with various plugins for Unity 

[57], Unreal Engine [58], iClone [59], MotionBuilder [60], and Maya [61]. QTM is also 

compatible with major force plates and EMG systems used in biomechanical research. 

Additionally, QTM offers features like real-time streaming with QTM Connect, real-time 

server and SDK for seamless integration with other applications, C3D import/export, 

MATLAB and LabVIEW [62] export, and exporting data to tab-separated value files for 

further analysis in programs like Microsoft Excel. 

     The version of QTM software that we use is “2022.2 build 7710”.  

3.3.5 Calibration 

     Before MoCap recording, the Qualisys system must be calibrated to accurately define 

the cameras’ coordinates relative to each other and the environment. Qualisys Calibration 

kit [63], [64] includes a carbon fiber wand, and a folding L-frame, as shown in Figure 3-8.    

The L-frame sets the global coordinate system’s orientation during calibration, defining the 

X, Y, and Z axes with its corner as the origin. It can be removed after calibration.       

 

Figure 3-8: Qualisys Calibration Kit: Wand (top right), L-frame (bottom) 
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     Calibration [65], [66] involves waving and twisting a calibration wand continuously in 

various directions within the volume to ensure it enters all cameras’ fields of view as 

concurrently as possible. The QTM software will indicate if the moving speed is too fast. 

The software accurately determines each camera’s position relative to the L-frame. It is 

important to keep moving during calibration, cover the entire volume of interest, and avoid 

waving the wand in areas outside the volume. Additionally, it is crucial to avoid hitting the 

wand on anything. The calibration procedure done by our swimmer is shown in Figure 3-9. 

 

Figure 3-9: Calibration wand and the Calibration procedure by our swimmer. 

 

3.3.6 Recording MoCap Data and Exported File Types 

     After calibration, data were recorded at a frequency of 100 Hz using QTM. This 

recorded data can be exported into various file formats [67], including C3D [68], TSV [69], 

AVI [70], FBX [71], or MATLAB, allowing for further processing in other applications. 

For our purposes, we export the data into a C3D file [72]. 

3.4 Noise in Underwater MoCap Data 

     Underwater MoCap is prone to noise due to surface reflections, water's unique 

properties, and water’s unpredictable waves and turbulence, as depicted in the Figure 3-10. 

The noisy image and the corresponding MoCap data are shown in Figure 3-11.  
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Figure 3-10: Noise in Underwater Data; Surface Reflection and Wave 

 

Figure 3-11: Noisy MoCap Data 

 

3.5 MoCap Data Cleaning and Editing Tools 

     To utilize MoCap data, the noisy raw data must be cleaned using various methods, 

including commercial software, open-source software, and programming tools. The 

following sections define these editing tools. 
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3.5.1 Commercial MoCap Software 

     Commercial MoCap software, such as Qualisys QTM, Vicon Nexus, and OptiTrack [73] 

is utilized for recording, processing, editing, and animating motion data. These tools feature 

automatic labeling functions (e.g., AIM in QTM or Vicon Nexus) that assist with manual 

cleaning; however, some manual intervention is still required. These systems often integrate 

with hardware for real-time feedback. They necessitate a purchase. 

3.5.2 Mokka Software 

     Motion Kinematic and Kinetic Analyzer (Mokka) [15] is an open-source software 

designed to analyze biomechanical data. It is compatible with various file formats, 

including C3D. It can be used for tasks such as manually cleaning raw MoCap data when 

commercial software is unavailable. The Mokka User Interface is shown in Figure 3-12. 

 

Figure 3-12: Mokka User Interface 
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3.5.3 Applications of MATLAB and Python in MoCap Data Cleaning 

     Programming software like MATLAB and Python can be used to generate semi-

automatic or automatic MoCap cleaning and labeling algorithms. The EZC3D [74] library 

and Biomechanical ToolKit (BTK) [75] are tools for reading and modifying C3D files. We 

utilized the EZC3D library in both MATLAB and Python. 

3.6 Marker Set 

     Our marker set consists of 21 passive markers attached to our swimmer’s suit and body. 

The anatomical placement of the correspondence points, our given labels and their 

correspondence name in the Qualisys Sports Marker Set [51] are shown in Figure 3-13. The 

numbers in this figure are based on the Qualisys marker set. For example, our given label 

name to marker number 8 is “CHST” and its correspondence Qualisys name is “Chest”. 

 

 

Figure 3-13: Anatomical locations of 21 markers 



94 

 

3.7 OpenSim Marker Set 

     OpenSim 4.4 [16] creates the marker set based on the musculoskeletal model [76]. The 

user interface contains a model, markers, and a topology tree, as shown in Figure 3-14. The 

markers are placed on Simbody based on the anatomical location described in Figure 3-13. 

The markers’ local coordinates are defined in the “MarkerSet.xml” file. 

 

Figure 3-14: OpenSim User Interface 

 

Figure 3-15: OpenSim model markers placement and the output MarkerSet.xml file 
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     The locations of 21 markers in front and back of the body model and part of the 

generated MarkerSet.xml file are shown in Figure 3-15. The colors of the x, y, and z axis 

are red, green, and blue. 

3.8 Manual Cleaning Raw C3D MoCap Data using QTM software 

     The raw MoCap files often exhibit significant noise and contain gaps, particularly in 

underwater environments. The primary goal of manually cleaning MoCap data is to refine 

and label these datasets so that they can be effectively utilized for subsequent processing 

and various applications. The following sections describe our manual cleaning process for 

our captured Dataset A using QTM software, which includes labelling, denoising, and 

recovering missing markers. We also clean data using QTM AIM model and compare its 

results to the result of manual cleaning.  

     Our captured MoCap data contains 21 reflective passive markers based on our marker 

set shown in Figure 3-13. The cleaning process described for passive markers can also be 

applied to active markers or partially cleaned data. Figure 3-16 illustrates the noisy frame 

of our MoCap data alongside the corresponding cleaned and labeled MoCap data. 

  

Figure 3-16: Noisy MoCap data and its corresponding cleaned and labeled data. 
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3.8.1 Raw C3D Dataset A 

     Our Dataset A is a noisy C3D file containing 897 frames. The sampling frequency of 

data is 100 Hz. For this dataset, our swimmer begins at the first frame in a downward 

posture similar to the inverse of “T-pose” as depicted in Figure 3-17, which showcases the 

QTM User Interface. For the trial, the swimmer submerges and breaststrokes downward 

toward the bottom of the pool head first, turns head up, and swims back to the surface. The 

first frame features 21 valid markers, which are physical markers affixed to the swimmers’ 

bodies and are illustrated in green. Additionally, it includes 4 extraneous markers that are 

attached to the “L-frame,” depicted in orange. 

 

Figure 3-17: QTM User Interface; Dataset A 

 

 

     The Dataset A contains a total of 35 tracked points. Given that there are only 21 valid 

markers, the discrepancy in numbers—specifically the additional 14 points—is attributed 

to factors such as noise or the phenomenon of “reappearing valid markers.” This occurrence 

is typical of passive markers and will be elaborated upon in detail in the subsequent section. 
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     Each point in a MoCap C3D file has a trajectory [77] that represents its movement path 

tracked in three-dimensional (3D) space over time. The trajectory of point number 0018 is 

illustrated in Figure 3-17, represented by the pink curve. Also, in this figure, the position 

of this trajectory at any given moment is plotted using its X, Y, and Z coordinates. 

     The term “Fill Level” [7] refers to the percentage of the capture period during which a 

trajectory is visible. For point number 0018, the fill level is 98.3%. This indicates that the 

total duration of its trajectory encompasses 882 frames. As illustrated in Figure 3-17 the 

trajectory for this point extends from frame 1 to frame 882. This means that this point is 

not detected by any cameras after frame 882 until the last captured frame, which is 897. 

3.8.2 Identifying and Labeling Trajectories 

     After a motion capture recording, all recorded trajectories will be displayed in the right 

pane of QTM under either “Labeled trajectories” or “Unidentified trajectories”. Labeling a 

trajectory can be done manually by renaming each trajectory. For instance, point number 

0018 can be labeled as “LHEAD” (left head marker), and point number 0024 can be labeled 

as “LKNEE” (left knee marker), as illustrated in Figure 3-18. In the subsequent section, we 

will describe the “reappearing” markers, which are characteristic of passive markers. 

Understanding this feature is essential before proceeding with the manual cleaning process. 

3.8.2.1 Passive Markers Characteristic: “Reappearing” Markers 

     In MoCap data, a physical marker is assigned a random ID number when tracked for the 

first time. If a passive marker becomes occluded and later reappears, it is typically assigned 

a new ID because the tracking system can not recognize it as the same marker. 

Consequently, passive markers often exhibit short segment trajectories rather than 
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continuous trajectories, with potential gaps. As a result, a MoCap file may have multiple 

points linked to different segments of the same physical marker’s trajectory. Thus, the 

trajectory segments belong to each specific physical marker should be identified and 

merged into a complete trajectory with gaps. Figure 3-18 and Figure 3-19 illustrate before 

and after merging short trajectory segments of an example passive marker (i.e., ‘LKNEE’). 

 

Figure 3-18: Passive Markers Characteristic; Reappearing Markers Trajectories 

 

 

Figure 3-19: Merging Reappearing Markers Trajectories 
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     In Figure 3-18, we identified the marker “LKNEE” in the first frame and tracked it until 

frame 318, at which point it was lost due to occlusion. During a meticulous frame-by-frame 

manual review, we detected point number 0033 as left knee in frame 334. This indicates 

that the passive marker previously labeled as “LKNEE” (point number 0018), which was 

tracked from frame 1 to frame 318 and subsequently occluded, reappeared in frame 334 

with a new identifier, which is 0033. To rectify this, we utilized the QTM feature “Identify” 

by right-clicking on point 0033 and linking it to the “LKNEE” marker. Consequently, as 

depicted in Figure 3-19, the “LKNEE” markers now consist of two parts and span from 

frame 1 to frame 897, with a gap occurring between frames 319 and 333. 

     Comparing the 3D coordinate plots in Figure 3-18 and Figure 3-19 provides a visual 

understanding of the characteristics of passive markers. In Figure 3-18, the plot consists of 

two distinct representations related to the points labeled “LKNEE” and “0033.” Conversely, 

Figure 3-19 illustrates a complete trajectory associated with the new “LKNEE” points, 

which integrates both segments into one cohesive path. The gaps observed in this trajectory 

indicate periods during which no left knee marker was captured in the dataset. 

Consequently, the physical marker “LKNEE” now possesses a unique trajectory within this 

cleaned dataset. Additionally, the trajectory editor in Figure 3-19 showcases the integrated 

“LKNEE” continuous trajectory along with the identified gap. 

     Trajectory overview in Figure 3-18 highlights a crucial aspect regarding the behavior of 

“reappearing” markers: the trajectories of these markers should not overlap, meaning there 

should be no intersections between them. The yellow segment preceding each marker ID 

in the trajectory editor indicates a gap in that marker’s trajectory. For instance, when the 

visibility duration of the marker labeled “LKNEE” concludes, it is represented in yellow, 
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signifying that it has become occluded. At this point, if we examine marker “0033,” we 

observe that after several frames, the yellow section associated with this marker ends, and 

it becomes visible. This observation confirms that the trajectories of these two markers do 

not intersect at any point.      

3.8.3 Bone Visualization 

     Manual Cleaning MoCap Data begins with the first frame by detecting valid markers 

and labeling them based on the marker set. Each frame must undergo a thorough review to 

ensure accurate labeling and to identify and remove any anomalies. To enhance 

visualization, the connections between markers can be established using bones, which 

facilitates the identification of irregularities. In this review, we need to adjust the angle of 

view to improve posture visualization. Figure 3-20 illustrates how bone connectivity and 

the angle of view influence the identification of valid markers. In the first and second 

images, it is challenging to discern what the green single marker represents. However, in 

the third image, it becomes clearer that this marker is the ankle marker. 

   

Figure 3-20: The Impact of Bone Connectivity and View Angle Adjustment on Visualization Enhancement. 
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3.8.4 Denoising 

     This section explains manual denoising of our Dataset A, which removes extraneous 

markers [78], outliers [79], ghost markers [80], and swapping markers [81]. Subsequent 

sections will define these types of noise and outline the methods used for their removal 

from the MoCap dataset using the QTM software. 

3.8.4.1 Extraneous Removal 

     Extraneous markers refer to actual markers that are affixed to an object other than the 

primary subject, which in this context is our swimmer. For instance, as illustrated in Figure 

3-17, there are four orange markers identified by IDs 0005, 0006, 0007, and 0008. These 

markers are attached to the “L-frame” calibration tool positioned on the floor of the pool. 

These markers can be easily removed by clicking on them to locate the corresponding ID 

in the trajectory column and deleting them. Once deleted, these markers will be relocated 

to the discarded trajectories section within the QTM software, as depicted in Figure 3-21. 

 

Figure 3-21: Extraneous Markers Removal 
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3.8.4.2 Outlier Removal 

     Outliers in MoCap data refer to invalid data points that deviate significantly from the 

rest of the markers. We can easily discard them from the dataset. Figure 3-22 shows 

examples of outliers in MoCap data. The first image highlights one outlier in yellow, while 

the second image displays two outliers marked in white and red. 

  

Figure 3-22: Outlier Removal; Yellow outlier (left), white and red outliers (right). 

 

3.8.4.3 Ghost Markers Removal 

     Ghost markers are erroneous markers that are not associated with any physical object or 

body part and can be removed by discarding them. Detecting these ghost markers poses a 

challenge, as they often appear near valid markers. To effectively distinguish valid markers 

from ghost markers, it is essential to analyze frames preceding and succeeding the current 

frame. Additionally, factors such as marker fill levels should be considered, along with a 

comparison of the distances between the markers and the distances in the marker set. 

Adjusting the view angle and bone connectivity can further aid in clarifying which markers 

are valid. The images in Figure 3-23 show an example of a ghost marker, along with the 
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effect of changing view angle and bone connectivity on distinguishing the ghost marker 

from the valid markers.  

   
                        (a)                                                        (b)                                                                  (c) 

   
                                       (d)                                                  (e)                                                   (f)  

Figure 3-23: Challenges of Manual Cleaning for detecting ghost markers. (a) A ghost marker (red) appears to overlap 

with a valid marker (pink) from one perspective, (b) in another view, the red and pink markers are clearly separated. (c) 

Obscured red marker behind pink at an unfavorable angle. (d) View change reveals red marker, still appearing 

overlapped. (e) Optimal angle; valid (pink) marker is absent. (f) Tracking across frames distinguishes valid (pink) from 

ghost (red) based on bone length. 

 

 

     In the first image (a) of Figure 3-23, it is essential to differentiate between the two nearby 

points (red and light pink) to identify which one is a valid marker and which one is a ghost 

marker. The first four images in Figure 3-23 (from images (a) to image (d)) demonstrate 

that utilizing both bone connectivity and viewing angle simultaneously can aid in this 

differentiation. In image (a), there is a lack of bone connectivity, and the two points—red 

and light pink—appear to overlap.  However, upon changing the viewing angle in the 
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second image (b), it becomes evident that these two markers are not actually overlapping. 

Despite this clarification, it remains unclear which of the two markers is valid. The third 

image (c) introduces bone connectivity; however, due to an unfavorable viewing angle, the 

red point is obscured by the pink point. In image (d), a change in perspective reveals the 

red point, yet it still appears to overlap with the pink point.  

     After selecting an optimal viewing angle and enhancing visualization through bone 

connectivity, we analyze the frames preceding and succeeding the current frame to 

determine which of the two points is a valid marker and which one is a ghost marker. The 

fifth image (e) illustrates the previous frame; in this image, the viewing angle and bone 

connectivity are adequate for identifying that the red point could potentially be a calf 

marker, while the pink point has not yet appeared. In image six (f), both points are visible, 

and with good bone connectivity and viewing angle, we can also assess their fill levels. We 

can confidently conclude that the red point, exhibiting a low fill level, is indeed a ghost 

marker. To further validate our findings, we compared the respective distances of these two 

points to the knee and ankle points against those in the established marker set. This 

comparison allows us to accurately identify that the light pink point is a valid calf marker 

while confirming that the red point is a ghost marker. 

3.8.4.4 Swapping Markers  

     Marker swapping [7], [81], [82] occurs when the labels of two markers are inadvertently 

exchanged due to their close proximity or overlapping paths in front of a camera. This error 

results in segments of the 3D trajectory being inaccurately assigned to the incorrect marker. 

For example, if a hand marker moves closely in front of a chest marker during motion 
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capture, the tracking system may erroneously attribute data from one marker to the other. 

This issue is particularly common when two markers become occluded and later reappear; 

in the case of passive markers, this often leads to them being assigned new IDs. 

Furthermore, during manual cleaning processes, markers can be misidentified due to 

viewpoint issues that obscure their actual positions. An example is shown in Figure 3-24. 

 

Figure 3-24: Swapping Markers 

 

 

     In Figure 3-24, the first image displays an orange marker positioned at the chest location 

and labeled as “CHST2.” However, it becomes evident that the second part of the “CHST” 

label is not indicative of a chest marker; rather, it is an outlier. To rectify this discrepancy, 

we will swap the second part of “CHST” with “CHST2.” This can be accomplished by 

selecting both markers intended for swapping and right-clicking to access the option to 

either swap selected parts or swap parts only at the current marker frame. In this instance, 

we opted to swap selected parts, resulting in the corrected markers shown in the second 

image. As a final step, we should remove “CHST2,” since it has been identified as an 

outlier. 
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3.8.5 Recovery 

     After denoising the raw MoCap data, it is essential to recover any missing markers and 

fill in the gaps [83] within the trajectories of the valid markers. The identification of these 

gaps [84] can be accomplished by examining the Fill Level column in QTM. Once 

identified, the gaps can be addressed using the trajectory editor, which offers various fill 

types [85] such as Linear, Polynomial, Static, Relational, Virtual, and Kinematic. Each of 

these methods will be elaborated upon in subsequent sections.  

 

Figure 3-25: Filling Gaps; A gap (brown) in a “STOM” trajectory. 

 

 

     Figure 3-25 illustrates the “STOM” marker, for which we aim to fill the trajectory gap 

using various fill types. The gap begins at frame 291 and concludes at frame 359, resulting 

in a total gap size of 69 frames, as indicated in the trajectory editor. Consequently, we can 

calculate the fill level using the formula 100 * (897 - 69) / 897, which yields a fill level of 

92.3%, as reflected in the Fill Level column next to “STOM.” To fill selected gaps, click 

the Fill icon (paint bucket) in the trajectory editor. This will fill all chosen gaps based on 

the specified fill type in the settings sidebar. 
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3.8.5.1 Polynomial 

     The default fill type is Polynomial, which uses cubic polynomial interpolation to 

smoothly connect the X, Y, and Z curves across a gap. This method requires trajectory data 

on both sides of the gap. However, for larger gaps, the accuracy of the results may diminish; 

therefore, it is advisable to set a maximum number of frames for filling to ensure reliability. 

In instances where the gap exceeds the limits suitable for Polynomial filling, alternative 

methods such as Relational or Kinematic can be utilized, which will be discussed in 

subsequent sections. Figure 3-26 illustrates the application of polynomial gap filling on the 

“STOM” marker, achieving a complete fill level of 100% for this marker by incorporating 

the “Gap-filled” part2 from frames 291 to 359. 

 

Figure 3-26: Polynomial Gap Filling Type 

 

3.8.5.2 Linear 

     Linear type fills gaps with a straight line connecting the X, Y, and Z coordinates on one 

side of the gap to those on the other side. This method is suitable for small gaps or constant 

velocity movement. If a gap occurs at the start of a trajectory, it will be filled with the first 

available data point following the gap. Conversely, if a gap appears at the end of a trajectory, 

it will be filled with the last data point recorded before the gap. A maximum frame length 

can be set for linear gap filling. Figure 3-27 displays the application of linear gap filling on 

the “STOM” marker, effectively completing its trajectory to 100%. 
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Figure 3-27: Linear Gap Filling Type 

 

3.8.5.3 Static 

     Static is a virtual type that uses fixed values for X, Y, and Z throughout a gap. It is 

suitable for filling gaps in stationary objects with known coordinates. As it does not rely on 

data from the edges of the gap, it works even without surrounding data or in an empty 

trajectory. Figure 3-28 shows the application of this filling type to completely fill the gap 

in the “STOM” marker. The initial X, Y, Z coordinates at the start of the gap are treated as 

static values. This figure indicates that this filling method is not appropriate for such a gap. 

 

Figure 3-28: Static Gap Filling Type 

 

3.8.5.4 Relational 

     The Relational type connects the curves on both sides of a gap based on the movement 

of surrounding markers. It is useful when tracking markers remain fixed with respect to 

each other, like a cluster. Up to three context markers should be selected to establish a local 

coordinate system for the missing data. An origin marker is necessary to define this 
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system’s origin, while an additional marker can set the X-axis and a third can define the 

XY plane. By checking “Rigid Body,” QTM will treat these three context markers as a rigid 

body based on their average configuration during the gap. Figure 3-29 illustrates the 

outcome of filling the gap of the “STOM” marker using this filling type. We selected 

“CHST” as the origin, which has a filling level of 96.6%. Notably, the gap associated with 

“CHST” is entirely contained within the “STOM” gap. Consequently, by applying this 

filling method, we successfully filled the “STOM” trajectory to a level of 96.6%. 

 

Figure 3-29: Relational Gap Filling Type 

 

3.8.5.5 Virtual 

     The Virtual type of gap-filling operates similarly to Relational gap-filling by addressing 

gaps based on the movement of surrounding markers; however, it distinguishes itself by 

being independent of the trajectory data at the edges of the gap. This independence allows 

the Virtual type to be utilized in scenarios involving empty trajectories or sections that lack 

surrounding data. As with Relational type, up to three context markers can be selected, and 

“Rigid Body” can be chosen to treat them as a rigid body. By default, the virtual trajectory 

will correspond to the trajectory designated as “Origin;” however, an offset can be applied 

to move the virtual trajectory to a different position. Similar to the Relational type, there 
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exists a gap within the filled “STOM” trajectory associated with the “CHST” marker, as 

illustrated in Figure 3-30. Consequently, the resulting fill level is 96.3%.  

 

Figure 3-30: Virtual Gap Filling Type 

 

3.8.5.6 Kinematic 

     The Kinematic type fills gaps based on the movement of the skeleton segment or of the 

rigid body, suitable for tracking a rigid body or using the skeleton solver. Consequently, 

this specific method of gap filling is not applicable for the “STOM” marker. 

3.8.6 Smoothing Spikes 

Spikes [86] refer to discontinuities that occur between consecutive frames in a trajectory, 

characterized by sudden and significant changes in acceleration. These spikes can arise 

from various factors, with one primary cause being occlusion. Additionally, labeling errors, 

such as swapping markers, can contribute to their occurrence; these errors must be rectified 

before proceeding with further analysis. Any remaining spikes can be effectively identified 

and smoothed using a trajectory editor. QTM provides two types of smoothing [87]: moving 

average and Butterworth filtering, which will be elaborated upon in the following sections. 

Over-smoothing or filtering out crucial information should be avoided especially if 

acceleration changes are essential for the application. Figure 3-31 and Figure 3-32 illustrate 

the detected spikes and the smoothing process applied to them using the trajectory editor. 
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We can also click the Smooth icon (Iron icon) in the trajectory editor to smooth spikes. 

These spikes were generated using Virtual gap filling on the “STOM” marker, resulting in 

the creation of three distinct spikes. The blue bars show filled gap frames, red dots indicate 

data spikes, and yellow highlights the gap in the trajectory. 

 

Figure 3-31: Spikes Identification 

 

Figure 3-32: Smoothing Spikes 

 

3.8.6.1 Moving Average 

     The Moving Average type (Figure 3-33) is suitable for local spikes, as it averages the 

data in a customizable window (up to 15 frames) around the current frame.  

 

Figure 3-33: Moving Average Smoothing Type 
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3.8.6.2 Butterworth  

     The Butterworth filter is particularly effective for extensive frame ranges that experience 

significant high-frequency noise, using a low-pass filter to attenuate information above the 

specified cutoff frequency. The initial cutoff frequency should be set at 2-3 times higher 

than the highest frequency to be retained and can be adjusted as necessary. Figure 3-34 and 

Figure 3-35 displays the application of Butterworth smoothing on the “STOM” marker, 

utilizing cutoff frequencies of 20 and 5, respectively. This demonstrates that a lower cutoff 

frequency results in a greater degree of signal smoothing. 

 

Figure 3-34: Butterworth Smoothing Type Response with Cutoff Frequency = 20 Hz 

 

 

Figure 3-35: Butterworth Smoothing Type Response with Cutoff Frequency = 5 Hz 

 

3.8.7 Manual Cleaning Output 

     The manual cleaning process applied to our Dataset A results in a final C3D output that 

is meticulously cleaned and accurately labeled with 21 markers, in accordance with the 
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specified marker set. This output is free from any noise or gaps. Figure 3-36 illustrates the 

final output after manual cleaning. This output encompasses the skeleton visualization of 

the swimmer’s posture in the first frame, the Trajectory Overview, and detailed information 

regarding the error correction for each label. The Type column specifies the nature of error 

correction, which can be categorized as either “Measured” or “Mixed.” The trajectories 

classified as “Measured” were directly tracked by the QTM during the motion capture trial. 

The “Mixed” type may include segments that are “Gap-filled,” resulting from gap filling 

processes, or “Edited,” which pertains to smoothing adjustments. The number of parts 

shows the number of trajectory segments for each marker. In the Trajectory Overview, the 

blue bars indicate the frames where filled gaps are present for each label, effectively 

showcasing their size and locations.  

 

 

Figure 3-36: Manual Cleaning Output 
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3.9 Labeling using AIM Models 

     Automatic identification of markers (AIM) [17] helps automatically identify and labels 

trajectories based on a created model [18], [19] for a specific marker set. AIM models are 

also learning models, which implies that new trials can be added to the existing model to 

enhance its knowledge. The initial trial defines the connections between the markers; 

however, training [88] the existing model with new trials provides additional examples of 

distances and angles between markers. This process will improve the accuracy of applying 

[89] the trained model to future test subjects. The generated AIM model can be applied to 

any recording with the same marker set and similar motions.  

     In the following sections, we describe how to generate an AIM model for our marker set 

and apply this AIM model to our Dataset A. Then, we compare the results of our manual 

cleaning on Dataset A with the results of applying the AIM model to it. We also apply this 

AIM model to a new C3D dataset.  

3.9.1 AIM model Generation and Application Procedure 

     For an AIM model to function effectively, it is crucial that we “teach” it using a dataset 

comprised of thoroughly cleaned and accurately labeled trials. This can be achieved by 

utilizing either manually cleaned and labeled archival trials or by recording specific trials 

tailored for this purpose and ensuring they are thoroughly cleaned. 

     To effectively record a trial for the creation of an AIM model, it is advisable to start with 

the subject in a “T-pose,” with arms extended sideways. This position facilitates easier 

identification of markers. It is essential that the subject performs the complete range of 

motion that is intended for tracking by the AIM model. 
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     To create an AIM model using archival MoCap data or a specific trial, we must first 

manually clean and label the data and create the visual bone connections between markers. 

Once this is done, during the AIM model creation process, QTM will display the learned 

connectivity based on the training dataset, which differs from our bone connectivity. It is 

essential to review and correct this connectivity if needed before generating and saving the 

AIM model for applying it on a dataset. The summary of the procedure for creating an AIM 

model and applying it on a dataset, using QTM, is as follows: 

1- Clean and label a C3D MoCap file and create bone connectivity in QTM. 

2- Select “AIM” from the top menu bar and choose “Generate Model” (Figure 3-37). 

 

Figure 3-37: QTM "AIM" icon 

3- In the opened window, select “Create a new model” (Figure 3-38). 

 

Figure 3-38: Create a new AIM model 

4- In “Verify and edit AIM structure bones” windows, rectify any incorrect connections. 

5- Click “Next” again, enter a name for the AIM model, and Click “OK.” 

6- Click “Finish” in a message window that displays the successful generation. 

7- Open a raw C3D file, choose “Apply Model” (Figure 3-37) and then the AIM model. 

8- Check the result, correct any mislabeling, and fill in any gaps. 
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3.9.2 Result of Creating an AIM Model using a Noisy Trial     

     Figure 3-39 (a) shows that using a noisy trial to create an AIM model leads to incorrect 

red bone connections. When this flawed model is applied to the same unlabeled motion 

trial, it produces incomplete and incorrect results as shown in Figure 3-39 (b). 

    
                                                      (a)                                                                            (b) 

Figure 3-39: Failure of AIM model; (a) Failure of an AIM model generation based on a noisy trial; (b) The result of 

applying an inaccurate AIM model 

 

3.9.3 Results of Creating an AIM Model based on Initial Bad Connections 

     Figure 3-36 displays our cleaned and labeled Dataset A with bone connectivity which 

we use as a trial to create and teach an AIM model. Figure 3-40 (a) displays the preview 

model created by QTM based on the trained trial. Some connections are incorrect, which 

we have corrected in Figure 3-40 (b). We save the created AIM model, then apply it to our 

raw Dataset A. The result shown in Figure 3-40 (c) indicates that the head markers were 

not detected, likely due to their lack of connections to other markers. We will investigate 

this further in the next section by adjusting the initial connectivity. 
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                                 (a)                                                       (b)                                                          (c)                                     

Figure 3-40: AIM model labeling based on initial bad connections: (a) AIM model with wrong connections; (b) AIM 

model with corrected connections; (c) Result of applying the generated AIM model on Dataset A. 

 

3.9.4 Results of Creating an AIM Model based on Initial Good Connections 

     Figure 3-41 (a), (b), and (c) illustrate the new bone connectivity in our cleaned Dataset 

A, the updated red connections between markers in the model preview, and the results of 

applying the AIM model to our raw Dataset A, which now successfully detects head 

markers. We now need to thoroughly examine the results frame by frame for accuracy. 

   
                                    (a)                                                  (b)                                                    (c)                            

Figure 3-41: AIM model labeling based on initial good connections: (a) Initial bone connectivity; (b) AIM model with 

corrected connections; (c) The result of applying the generated AIM model on Dataset A. 
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     During a frame-by-frame inspection of labeled Dataset A using the AIM model, we 

identified an incorrect labeling in frame 883, as illustrated in Figure 3-42 (a). The 

“LHEAD” marker Part 2 is mistakenly linked to the “LHEAD” marker, while it is evident 

from the image that this part is an extraneous marker. This likely occurred due to the 

occlusion of the “LHEAD” marker from frame 883 to frame 897. In previous frames, when 

the swimmer descends near the pool floor, “LHEAD” comes close to this extraneous 

marker. Therefore, it seems that during these occlusion frames, this extraneous marker was 

mistakenly detected as “LHEAD.” Consequently, we have removed this erroneous Part 2 

from the “LHEAD,” and the corrected result is displayed in Figure 3-42 (b). 

  
                                                 (a)                                                                                        (b)                                         

Figure 3-42: An incorrect labeling found during inspection: (a) Mislabeled “LHEAD” part2; (b) Corrected Labeling. 

 

3.9.5 Comparison Manual Cleaning and Cleaning using an AIM Model 

     A comparison of the fill levels in Figure 3-36 and Figure 3-42 (b), which represent the 

results of manual cleaning and labeling of Dataset A using the AIM model, indicates that 

the AIM model only labels data without filling gaps. 
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3.9.6 Applying an Existing AIM model on a New C3D file  

     In Figure 3-43 (a) the AIM model is applied to a new C3D file using the same marker 

set and similar motion. This dataset is less noisy than Dataset A. The successful visual 

inspection indicates that the AIM model effectively labeled this dataset. However, the Fill 

Level suggests that further gap filling is still needed. 

  
                                                  (a)                                                                                           (b)                                       

Figure 3-43: Applying AIM model on a new C3D file; (a) New C3D file; (b) The result of applying AIM model. 

 

 

3.10 Other QTM Features 

     This section provides a brief overview of the skeleton solver and rigid bodies, which are 

crucial for animation and the development of six degrees of freedom (6DoF) models.     

3.10.1 Skeleton Solver 

     The skeleton solver [20] calculates and displays skeleton data based on a specific marker 

set. This can be exported to TSV and FBX formats or streamed in real-time to animation 

software for retargeting [7]. The procedure includes labeling the skeleton markers, 
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calibrating the skeleton [24], and acquiring the skeleton data (i.e., X, Y, and Z coordinates, 

and Roll, Pitch, and Yaw angels) [25], (Figure 3-44).  

 

Figure 3-44: Skeleton Solver 

 

3.10.2 Rigid Body and Euler Angles  

     Unlike our human MoCap application, the QTM software also supports tracking of rigid 

bodies, defined as bodies where the markers remain fixed relative to each other. Tracking 

rigid bodies [26] with six degrees of freedom (6DoF) [28] records the object’s position as 

it moves both translationally (left/right, up/down, and forward/backward) and rotationally 

along its axes (yaw, pitch, and roll). These Euler angels describe the orientation of a rigid 

body with respect to a fixed coordinate system, as shown in Figure 3-45. 

 

Figure 3-45: Euler Angles 
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3.11 Conclusion  

     The steps of manual cleaning demonstrated in this article thoroughly illustrate the 

challenges and time-consuming nature of manually cleaning MoCap data, particularly 

when dealing with large datasets that contain numerous frames, markers, noise, and 

complex actions. The reappearing characteristics of passive markers due to occlusion 

introduce additional complications, as they increase the number of points within a MoCap 

file. Furthermore, the potential short lifespan of these markers can lead them to be mistaken 

for noise movements. These challenges are intensified in underwater environments, where 

decreased visibility leads to an increased frequency of occlusion. During the manual 

cleaning process, it is necessary to frequently change views to accurately distinguish 

between markers. This is crucial because, for instance, markers may appear overlapped 

from one angle while being spaced apart in another view. Even with automatic marker 

identification tools such as the Qualisys AIM model found in commercial software—which 

aim to facilitate this process—manual intervention remains essential. This intervention 

requires cleaned and labeled training data. These challenges render manual cleaning of 

MoCap data both tedious and time-consuming. This situation motivates the exploration of 

semi-automatic or fully automatic approaches to streamline the process. 
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4. Semi-supervised Geometry-based Cleaning and Labeling of 

Sparse Freestyle Underwater Optical MoCap Data 

Abstract 

     This paper presents an interactive labeling method for underwater optical motion 

capture (MoCap) markers to simplify the tedious manual data cleaning process. Using a 

sparse freestyle MoCap dataset, containing only 21 passive physical markers, poses 

challenges when applying many traditional denoising solutions. Hence, a novel method is 

employed to remove extraneous markers based on the norm differences, and outliers are 

eliminated by detecting abnormalities in velocity, acceleration, and jerk profiles. The 

geometry-based algorithm identifies valid markers amid remaining noise and ghost markers 

by assuming a rigid body and incorporating user-defined tolerances to demonstrate 

deviations from rigidity concerning the angles and distances within the marker set. It first 

uses a Principal Component Analysis-based method to detect pelvis points, which are then 

used to identify other body part markers. This process includes recognizing corresponding 

passive reappearing markers and using a body side detection method to assign unique labels 

to each marker. A method is used to reconstruct dropped markers that were not captured in 

any frames. An evaluation was carried out visually, demonstrating a 100% detection 

accuracy for valid markers. This algorithm effectively streamlines the time-consuming 

manual cleaning process of MoCap data. In the future, we will explore the use of additional 

ghost markers and automatic side detection in the pelvis detection procedure. 
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4.1  Introduction 

     Marker-based optical motion capture (OMC) [1] systems are advanced technologies 

used to track the three-dimensional (3D) motion of markers attached to a subject’s body. 

These systems are employed for a wide range of applications in diverse environments [2]. 

Qualisys underwater Miqus motion capture (MoCap) cameras are the first commercially 

available optical MoCap cameras for underwater use [3] for various applications such as 

in-water rehabilitation using underwater treadmills, underwater animation, and swimming 

performance analysis, by using Qualisys Track Manager (QTM) software [4]. However, 

MoCap systems are susceptible to errors stemming from various factors, including 

inadequate calibration, noisy environments, and occlusion [5]. Underwater settings present 

additional challenges compared to other environments due to factors such as surface 

reflections and reduced visibility [6], which contribute to increased noise levels and further 

occlusions. Therefore, manual cleaning [7] is an essential part of MoCap data processing, 

involving tasks such as denoising, recovering data, and labeling MoCap markers.  

     The challenge of manually cleaning underwater MoCap data is heightened by the 

occlusion effects associated with passive marker systems. In these systems, markers are 

commonly given an ID when first detected, but then given a random new ID when they 

reappear after tracking is lost (e.g., being occluded), leading to the creation of partial 

trajectories that are not connected instead of complete trajectories [8]. Therefore, post-

processing is necessary to identify “reappearing” markers and merge short segments linked 

to a specific physical marker, creating a complete trajectory with gaps. Additionally, body 

side detection is required to differentiate corresponding markers on the left and right sides 
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of the body. Meanwhile, active marker systems may experience gaps in trajectories due to 

occlusions which can be filled with gap-filling approaches.  

     The number of physical markers significantly impacts manual cleaning for underwater 

MoCap data [9], which experiences more occlusion and noise than other environments. 

Increasing the number of markers improves accuracy and reduces occlusion issues by 

providing redundant tracking points, enhancing post-processing capabilities. However, this 

comes with drawbacks such as longer setup times, discomfort for subjects, complex data 

processing, high computational loads, and potential marker interference from closely 

spaced markers that can lead to tracking inaccuracies or added noise. On the other hand, 

using fewer (and as a result, more sparse) markers with larger spacing can complicate 

statistical outlier detection, particularly when there is a higher ratio of outliers compared to 

valid markers. 

     Freestyle [10] underwater movement complicates manual cleaning due to the unique 

properties of water, which allow for intricate rotations, direction changes, and floating that 

are difficult to replicate on land. This complexity makes it hard to identify and predict 

marker movements specifically during gaps due to their unpredictable nature.      

     To tackle the challenges of manual cleaning in MoCap, researchers have turned to  

machine learning and deep learning techniques to automate this labor-intensive process 

[11]. These methods still necessitate training and ground truth datasets that have undergone 

manual cleaning and labeling [12]. While some methods utilize simulated data to eliminate 

the necessity for manual labeling to generate training sets, they still require manual labeling 

for MoCap datasets that exhibit significant variations in marker placement compared to 

their simulation marker set [8]. Moreover, these methods may not perfectly replicate real-
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world variations in human motion. Additionally, commercial software tools like QTM’s 

Automatic Identification of Markers (AIM) [13] can speed up manual cleaning, but they 

require purchase and still need manual input. Free software such as Mokka [14] offers 

measurements between markers, yet it is difficult to manage all angles and distances 

simultaneously due to occlusions and the large number of markers and frames. Manual 

cleaning also often necessitates frequent view changes to accurately assess distances and 

movements. 

     To our knowledge, there are currently no publicly available OMC datasets for 

underwater freestyle actions. Additionally, datasets featuring surface-level swimming 

actions (e.g., backstroke, breaststroke, butterfly, and front crawl) [15] are scarce and limited 

in size, and these actions do not fully represent underwater or freestyle activities. Therefore, 

there is a need to create comprehensive MoCap datasets specifically for underwater 

freestyle actions to tackle the unique challenges posed by underwater conditions. 

     This paper proposes a semi-supervised geometry-based cleaning and labeling method 

implemented in MATLAB to streamline the challenging and tedious process of manual 

cleaning MoCap data. Our sparse marker set included 21 passive physical markers, whereas 

Qualisys recommends a minimum of 41 markers for human tracking [16], and universal 

datasets like AMASS contain marker sets ranging from 37 to 91 markers [17]. This decision 

was made due to the significantly high time required for underwater setup and with 

consideration for the comfort of the swimmer. Additionally, our research aimed to explore 

the challenges associated with sparse MoCap datasets. For example, the relatively large gap 

between our markers on the hip and knee made it challenging to denoise using common 

algorithms. Hence, a novel statistical denoising approach leverages the difference of norms 
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to eliminate extraneous markers. Additionally, outliers are removed through repetitive 

checks to identify abnormalities in velocity, acceleration, and jerk profiles. 

     A geometry-based algorithm detects valid markers among remaining noise and ghost 

markers by assuming rigid body conditions. It compares angles and distances in datasets to 

those in the marker set, applying user-defined tolerances for rigidity deviations. First, pelvis 

points are detected by incorporating Principal Component Analysis (PCA) [18]. These 

detected pelvis points are subsequently utilized to identify markers for other body parts. 

This process involves identifying corresponding passive reappearing markers and 

employing a body side detection method to locate short trajectories associated with each 

physical marker. Subsequently, these short trajectories are merged, and the gaps between 

them are filled using linear interpolation. This results in a unique label for each physical 

marker along with its corresponding complete trajectory across all frames. Moreover, a 

trajectory is created using the triangulation method for a dropped marker that was not 

captured in any frames during data collection.  

     The visual evaluation demonstrated a 100% accurate detection of 21 valid markers on 

our 10 C3D files [19], [20], captured at 100 Hz, with totally 7792 frames of underwater 

freestyle MoCap data captured using 7 Qualisys Miqus M5U Underwater MoCap cameras. 

In the future, we explore additional ghost markers and automatic side detection. 

     The paper is structured as follows: Section 4.2 details explanation of MoCap cleaning 

and labeling problems that we aim to address in this article. Section 4.3 describes the 

proposed method along with its rationale and design considerations. Section 4.4 presents 

the experimental results and discussion, and Section 4.5 summarizes the article. 
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4.2  MoCap Cleaning and Labeling Problem 

     MoCap data captures the 3D positions of markers at a specific frame rate (i.e., capturing 

frequency). The trajectory [21] of a marker shows its movement path over time, represented 

by its 𝑥, 𝑦, and 𝑧 coordinates at any moment. The “fill level” [22] indicates how visible a 

point is, calculated by dividing the number of frames where the point was tracked by the 

total frames captured during the MoCap session, expressed as a percentage. The total points 

in a MoCap file may differ from the number of physical markers due to factors like noise, 

dropped markers, and occlusion effects on passive markers. The following sections 

elaborate on these two issues: noise and ”reappearing” passive markers. 

4.2.1 Noise 

     Each frame of a MoCap file, as shown in Figure 4-1, may contain valid markers (black) 

and various noise types: extraneous (blue), outlier (green), overlapped (yellow), ghost (red), 

and missing marker due to occlusion or dropped markers. 

 

Figure 4-1: MoCap Noise Types; Outlier (green), Ghost (red), Extraneous (blue), Overlapped (yellow) 
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     Extraneous markers are real markers from other objects, while outliers are inaccurate 

measurements that deviate significantly from expected values. Overlapping markers occur 

when points are closer than the marker size or measurement accuracy. Ghost markers are 

virtual markers near valid ones. Occlusion [8] typically causes gaps in active marker 

trajectories and leads to “reappearing” markers in passive systems.  

4.2.2 Passive Marker Characteristics: Reappearing Markers 

     In MoCap data, a physical marker is assigned a random ID (e.g., ID1) upon first tracking 

in a frame. Passive markers typically receive new IDs after occlusion, while active markers 

keep the same ID. Thus, an active marker has a unique ID and a complete trajectory with 

possible gaps due to occlusion. Conversely, a passive marker may be linked to multiple 

IDs, each corresponding to a short trajectory segment. Therefore, post-processing is needed 

to merge these segments into a complete trajectory with gaps and assign a single ID.  

[

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑚

] [

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

]… [

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑚

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑚

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑚

] 

Figure 4-2: MoCap C3D Data representation of an active marker 

[

𝑥1 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑦1 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑧1 𝑁𝑎𝑁 . . . 𝑧𝑛

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

] [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

] … [

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑥𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑦𝑛

𝑁𝑎𝑁 𝑁𝑎𝑁 . . . 𝑧𝑛

] 

Figure 4-3: MoCap C3D Data representation of a passive marker 

     Figure 4-2 and Figure 4-3 depict the contents of a MoCap file for an active and passive 

marker, highlighting the occlusion effect. Each matrix represents a single frame, with rows 

for 3D coordinates and columns for individual points. In Figure 4-2, active point 1 is 

occluded in frame 2, leading to its 3D coordinates being recorded as null values ([NaN, 

NaN, NaN]). When it reappears in frame 3, it retains ID1 until the last frame. In contrast, in  

Figure 4-3, passive point 1 remains null from frame 2 onward. 
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     An example is shown in Figure 4-4, showcasing a physical calf marker with the ID20 

(orange) in the top left image. Its trajectory, as depicted in the bottom row image, remains 

visible from frame 1 to frame 253. Then, it disappears only to reappear again in frame 308 

with a new ID5 (yellow), remaining visible until the end at frame 460. Thus, post-processing 

is required to merge the trajectories of ID20 and ID5, creating a complete trajectory from 

frame 1 to frame 460, with a gap between frames 253 and 308. Subsequently, label ID20 

must be assigned to this trajectory and label ID5 removed. 

  

  

Figure 4-4: Passive Markers Characteristic 
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4.3  Experimental Methodology 

     The overview of our system is illustrated in Figure 4-5. The left flowchart outlines the 

sequential steps of the proposed algorithm, while the right image depicts our marker set, 

which comprises 21 distinct markers. The preprocessing and statistical processing phases 

are designed to reduce noise interference and computation load by minimizing data points. 

The geometry-based inlier detection method identifies valid markers using rigid body 

assumptions. As a result, the algorithm refines raw, noisy MoCap data into a cleaned and 

labeled dataset. The evaluation of the processed data was conducted visually. The 

subsequent sections detail the steps of our methodology. 

 

  

 

 

Figure 4-5: System Overview 
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4.3.1 Preprocessing 

     The following sections outline how to read C3D [19] MoCap files using MATLAB and 

eliminate invalid or overlapping points. The implementation was executed using MATLAB 

R2022b on an 11th Gen Intel i7 processor running at 2.80GHz, with 16.0 GB of RAM. To 

visualize C3D files, we utilize QTM [4] and Mokka [14]. 

4.3.1.1 Reading a C3D file using EZC3D Library in MATLAB 

     To process the data, we utilized the EZC3D library [23] in MATLAB to read C3D files. 

Algorithm 1 presents the pseudocode for extracting key information from a C3D file.   

Algorithm 1 Read C3D File  

  1:       addpath(′\MATLAB\ezc3d′) 

  2:       𝑐3𝑑 ←  ezc3dRead(′𝑇𝑒𝑠𝑡. c3d′) 

 

  3:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 READC3D(𝑐3𝑑) 

  4:       𝑝𝑜𝑖𝑛𝑡𝑠 ←  c3d. data. points(: , : , : ) 

  5:       //𝑝𝑜𝑖𝑛𝑡𝑠(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑠) 

  6:       𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 ←  c3d. header. points. size 

  7:       𝐿𝑎𝑏𝑒𝑙𝑠 ←  c3d. parameters. POINT. LABELS. DATA 

  8:       𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠 ←  size(𝐿𝑎𝑏𝑒𝑙𝑠, 1) 

  9:       𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ←  c3d. parameters. POINT. FRAMES.DATA 

10:       //𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ←  size(𝑝𝑜𝑖𝑛𝑡𝑠, 3) 

11:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, 𝑛𝑢𝑚_𝐿𝑎𝑏𝑒𝑙𝑠, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠  
12:  𝐄𝐧𝐝 
 

4.3.1.2 Invalid Label Removal 

     Labels containing no information (i.e., null or NaN) across all frames were removed to 

decrease computational load. This issue may arise when a C3D file is exported from a larger 

C3D file without adequate trimming, resulting in more points than labels due to leftover 
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points from the original file. Figure 4-2 and Figure 4-3 show an invalid point 2 (i.e., the 

second column of each matrix) that is null across all frames (i.e., [NaN, NaN, NaN]). 

4.3.1.3 Overlap Removal 

     In each frame, we initially calculated the Euclidean distance between every pair of 

points (e.g., using the “pdist()” function in MATLAB). We defined a minimum distance 

criterion of 6mm, based on the minimum Qualisys marker size of 6.5 mm [24]. If any two 

markers were closer than 6mm, they were classified as overlapping. Figure 4-6 shows these 

overlapping markers in green and blue. Two markers (visible as large gray orbs above 

marker ID19) visually appears to overlap; however, both are valid waist and hip markers 

that are close due to a treading motion resembling sitting actions, keeping them at a distance 

greater than 6mm. 

 

Figure 4-6: Overlapped Markers 

 

4.3.2 Statistical Processing 

     Extraneous markers and far outlier removal are discussed in the following sections.  

4.3.2.1 Extraneous Removal 

     Extraneous markers are defined as those belonging to stationary objects with a fill level 

of 100%. Our innovative approach for eliminating these markers utilized clustering of norm 



144 

 

differences. We assumed the extraneous markers were far from the valid ones in all frames. 

If this was not the case, the markers would remain and be addressed in subsequent steps. 

     We calculated the Euclidean norm of each point 𝒑 = (𝑥, 𝑦, 𝑧) in every frame relative to 

the origin 𝑂 = (0,0,0) as 𝑛𝑜𝑟𝑚(𝑝) =  ‖𝒑‖ = √𝒑 ⋅ 𝒑 = √𝑥2 + 𝑦2 + 𝑧2. Subsequently, we 

sorted these norms and their correspondence labels, then computed the difference between 

each norm value and the preceding norm value. To eliminate abnormalities, we applied a 

threshold of three standard deviations (SD) [25] from the mean (e.g., using “isoutlier()” 

function in MATLAB). 

 

Figure 4-7: Sorted norms differences for two C3Ds with (left) and without (right) extraneous markers..  

 

     Figure 4-7 displays an example for two C3D files, with and without extraneous markers. 

A red star indicates an abnormality where the distance between sorted labels 5 and 6 is 

significant, leading to two clusters. Consequently, this C3D file contains 5 extraneous 

markers (sorted labels 1, 2, 3, 4, and 5). 

     It is essential to note that utilizing k-means clustering with our sparse dataset of 21 valid 

markers and significant space between markers on the hips and knees is ineffective. 
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4.3.2.2 Far Outlier Removal based on Anomaly in Norm Profile 

     Far outliers were eliminated based on abnormalities identified in the sorted norm plot 

for each frame, utilizing a threshold of three standard deviations (SD) from the mean. This 

function cannot be applied before removing extraneous markers due to the number and 

distribution of valid and invalid points within each frame. We used 21 sparse real markers, 

alongside 5 closely located extraneous markers. The presence of these extraneous markers 

leads to a lack of abnormal peaks in the sorted norm plot when assessed against three SD 

or other thresholds, as shown in the third image of the first row of Figure 4-8.  

 

 

Figure 4-8: Far outlier removal; Before (top) and after (bottom) extraneous removal. 
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     In this figure, the first row displays plots of the sorted norm difference (middle image) 

and sorted norm (right image) for a C3D file that includes extraneous markers, represented 

as green orbs in the left image. No abnormalities are detected in the norm plot; the 

abnormality identified in the norm differences plot is associated with the extraneous 

markers (i.e., the blue orb in the first image). In the second row, after removing the 

extraneous markers, an abnormality is observed in both the middle and right images, which 

correctly corresponds to a far outlier. 

     The inability to remove far outliers based on the distance of neighboring markers using 

Euclidean distance (e.g., using the “pdist()” function in MATLAB) within three SD (or 

other thresholds, such as median and quartiles) is primarily due to the sparsity of our 

dataset. Moreover, the low fill level of valid passive markers also impacts this process. 

4.3.2.3 Anomaly detection in Velocity, Acceleration, and Jerk Profiles 

     Nearby outliers that were not removed in the previous step due to their proximity to 

valid markers (i.e., markers with norms within three SD) were detected based on their 

abnormal movement behavior. These anomalies exhibited irregularities in velocity (rate of 

change of position), acceleration (rate of change of velocity) (as seen in [26]), and jerk (rate 

of change of acceleration) profiles compared to the more consistent behaviours of valid 

markers, which are constrained by human biomechanical limits.  

     However, a major challenge may arise in removing noise from passive markers due to 

their low fill level, which can cause their behavior to mimic noise during their brief lifespan. 

This makes it difficult to distinguish between actual marker behavior and noise using above 

traditional methods. Moreover, valid markers can remain static throughout their short 
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lifetime due to short segment trajectories or lack of movement in certain actions, such as 

the chest when a person is treading water and only moves their hands or upper body. 

     To resolve this issue, we eliminated movement anomalies with a fill level below 1%. 

These anomalies typically consist of only a few frames of detection, so even if false 

detections occur, their removal does not significantly affect the overall tracking of the 

marker’s movement. Interpolation or other gap-filling methods can compensate for the 

removed data points. A visual inspection was performed to ensure the accuracy of this 

removal. Any remaining outliers with higher fill levels will be addressed in later stages of 

data processing. 

 

Figure 4-9: Abnormalities in mean velocity (left), acceleration (middle), and jerk (right) profiles representing outliers. 

 

     It is essential to note that currently, no single method can eliminate all outliers from 

MoCap data. Therefore, a combination of techniques was used to enhance the quality of 

data analysis. As illustrated in Figure 4-9, two anomalies, ID26 and ID36, were identified 

using the mean velocity profile. Additionally, label 43 was pinpointed utilizing the mean 

acceleration profile, while label 33 was detected through the mean jerk profile. Notably, all 

anomalies were accurately identified. In this context, outliers are defined as data points that 

fall beyond three SD from the mean values of velocity, acceleration, and jerk. 
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     Analysis of Figure 4-10 reveals a valid marker, label 7 highlighted in blue, that was 

identified as an abnormality in the mean velocity and jerk profiles but was not classified as 

an outlier due to fill level greater than 1%. Notably, this marker is valid, representing data 

collected from the left hand. Label 27, highlighted in green, was correctly identified as an 

anomaly and therefore an outlier in the acceleration profile. 

 

 

Figure 4-10: Label 7 (Hand) was identified as an abnormality in the mean acceleration profile but later excluded as an 

outlier due to a filling level exceeding 1%. 

 

4.3.2.4 Repetitive Anomaly Detection 

     Noise significantly affects the mean values of norms, velocity, acceleration, and jerk. 

Thus, by applying the methods in steps 4.3.2.2 and 4.3.2.3, some noise was eliminated with 

a single application. Repeated applications of these methods, until no abnormalities were 

detected, identified most remaining outliers, drastically reducing data points (e.g., one 

dataset reduced from 41 to 28 points). 
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4.3.3 Geometry-based Inlier Detection 

     We implemented a geometry-based algorithm to identify valid markers amid remaining 

noise and ghost markers based on rigid body assumptions. Markers on a single bone form 

a rigid body part that can combine into rigid body triangle segments. We detected valid 

markers by comparing the bone lengths and joint angles of these segments in a MoCap file 

with predefined measurements from the marker set. However, the inherent flexibility of 

human anatomy—such as stretching and compressing—complicates this assumption. To 

address this challenge, we introduced tolerances and action constraints to approximate 

these segments as rigid bodies.  

     First, we identified pelvis points (spine, left and right waists) using a body side detection 

algorithm, which served as reference points for detecting other body markers. Next, torso 

points (left and right shoulders, chest, stomach) were identified. To reduce computational 

load, we eliminated near outliers by estimating a maximum region of interest (ROI) for 

valid markers based on the detected pelvis and torso markers. Subsequently, we detected 

lower limb points (hip, knee, calf, ankle), head points (left and right), and upper limb left 

and right points (elbow and hand). After identifying all valid markers, any remaining noise 

was removed. Finally, a triangulation method was used to locate a dropped ankle marker 

that was not captured in any frames. The evaluation was conducted visually. 

     Algorithm 2 presents the key steps for detecting inlier valid markers. Initially, we 

processed the C3D file from prior statistical analysis (Section 4.3.2). This process returned 

detected label (assignedLabel) for each pelvis points and a new C3D file (newC3D) that 

contained the visually confirmed cleaned pelvis segment. Subsequently, we inputted this 
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new C3D file (newC3D) back into Algorithm 2 to detect and label the chest marker. This 

iterative process continued until all inlier valid markers were detected and labeled.  

Algorithm 2 Inlier Detection 

  1:       𝐶3𝐷 ← Cleaned 𝑛𝑒𝑤𝐶3𝐷 file outputted from the previous iteration  
  2:       // point(trajectory) ≡  point(frames of visibility) 

 

  3:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 INLIERDETECTION (𝐶3𝐷) 

  4:       𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, ~, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← READC3D(𝐶3𝐷)  
  5:       𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 ←  reappearing IDs for a passive marker 

                                                   and their corresponding 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠           

  6:       // "Shared Steps":   

  7:       𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝐹𝑙𝑎𝑔 = 1    𝐢𝐟 ⋂(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠)) ≠ ∅ 

  8:       𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ←  𝑀erge short 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 of 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 

  9:       𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ←  linear_interpolate(𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦) 

10:       𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙 ←  Assign a label (unique ID) to 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑝𝑜𝑖𝑛𝑡𝑠 

11:       𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠 ← IDs that should be removed from 𝐶3𝐷 

12:       𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠 ←  𝐿𝑎𝑏𝑒𝑙𝑠(𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐿𝑎𝑏𝑒𝑙𝑠) = ∅ 

13:       𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 ←  𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑛𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠, 𝑔𝑎𝑝𝑓𝑖𝑙𝑙𝑒𝑑𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)  
14:       𝑛𝑒𝑤𝐶3𝐷 ←  Modify 𝐶3𝐷 with 𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠     
15:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑛𝑒𝑤𝐶3𝐷, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙  
16:  𝐄𝐧𝐝 

 

Detected Points (IDs) Merged Trajectory Gap-filled Trajectory 

 

 

  

 

Figure 4-11: Inlier Detection; Detected Points (left), Shared Steps (middle and right). 

 

     A passive physical marker can be associated with multiple IDs (i.e., “reappearing” 

markers) due to occlusion. Consequently, the detectedPoints variable may include several 

IDs for each marker along with their trajectories, as illustrated in Figure 4-11 (first tile). 

The detectedPoints were identified according to specific geometric constraints and 

tolerances that are unique to each body segment. 

ID1 ID2 ID3 ID4 
Gap1 Gap2 Gap3 

assignedLabel (e.g., ID1) 
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     After identifying the IDs (detectedPoints) for a specific physical marker, several steps 

were followed to create a new C3D file (newC3D) where this specific marker was cleaned 

and labeled. We refer to these steps as “shared steps” (Algorithm 2, steps 6 to 16) because 

their functionalities remain consistent for each specific physical marker. 

     In the initial phase of the shared steps, the short trajectories associated with a specific 

physical marker were analyzed to confirm that there were no intersections. This is essential 

because each physical marker should appear only once per frame; any overlap may indicate 

a false detection or a nearby ghost marker that meets the geometric criteria and is 

incorrectly identified as valid. If intersections were detected, users should be referred to 

conduct a visual inspection to keep a valid marker and remove any ghost or false detection. 

In the next phases of shared steps, as illustrated in Figure 4-11 (second and third tiles), the 

short trajectories of a specific physical marker were merged into a single trajectory 

(mergedTrajectory), gaps were filled using linear interpolation (gapfilledTrajectory), and 

each was assigned a unique identifier (assignedLabel) like ID1. The remaining IDs 

(removedLabels) were eliminated from the original list of labels (Labels), creating a new 

list (newLabels). New data points (newPoints) were then created using newLabels and the 

gapfilledTrajectory. The original C3D file (C3D) was modified with these newPoints to 

produce an updated C3D file (newC3D). Ultimately, this inlier detection function returned 

a cleaned and labeled new C3D file (newC3D) along with the unique label (assignedLabel) 

for a specific physical marker, facilitating the detection of the next valid physical marker. 

     The following sections outline the process for identifying valid markers (detectedPoints) 

for various body segments: pelvis, torso, lower limb, head, and upper limb. The “shared 
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steps” will not be repeated. Algorithm 3 outlines the essential functions for calculating 

distances and angles between markers utilized in all steps.  

Algorithm 3 Fundamental Functions 

  1:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3) 

  2:       𝐟𝐨𝐫 𝑓𝑟𝑎𝑚𝑒 =  1, … , 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 𝐝𝐨 

  3:            [𝑥1 𝑦1 𝑧1] ←  𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝐼𝐷1, 𝑓𝑟𝑎𝑚𝑒)′ 
  4:            [𝑥2 𝑦2 𝑧2] ←  𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝐼𝐷2, 𝑓𝑟𝑎𝑚𝑒)′ 

  5:            𝑃1
⃗⃗  ⃗[𝑓𝑟𝑎𝑚𝑒] ←  [𝑥1 𝑦1 𝑧1]  −   [𝑥2 𝑦2 𝑧2]   

  6:            𝑃1𝑚𝑎𝑔
← ||𝑃1

⃗⃗  ⃗[𝑓𝑟𝑎𝑚𝑒]|| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2   

  7:       𝐞𝐧𝐝 𝐟𝐨𝐫  

  8:       �⃗� 2, 𝑃2𝑚𝑎𝑔
, �⃗� 3, 𝑃3𝑚𝑎𝑔

← 𝐋𝐨𝐨𝐩 steps 2 to 7 𝐟𝐨𝐫 (𝐼𝐷1, 𝐼𝐷3), (𝐼𝐷2, 𝐼𝐷3) 

  9:       𝐫𝐞𝐭𝐮𝐫𝐧 �⃗� 1, 𝑃1𝑚𝑎𝑔
, �⃗� 2, 𝑃2𝑚𝑎𝑔

, �⃗� 3, 𝑃3𝑚𝑎𝑔
  

10:  𝐄𝐧𝐝 

 

11:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒) 

12:       𝑃1
⃗⃗  ⃗, 𝑃1𝑚𝑎𝑔

, ~, ~, ~, ~ ←  VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, ~) 

13:       𝑑𝑠𝑒𝑙   ←   𝑃1𝑚𝑎𝑔
[𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒]  

14:       𝐟𝐨𝐫 𝑖 =  1, … , 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 𝐝𝐨 

15:            𝑑 ← Append 𝑃1𝑚𝑎𝑔
[𝑖]to 𝑑     𝐢𝐟 𝑃1𝑚𝑎𝑔

[𝑖]  ≠  NaN  

16:       𝐞𝐧𝐝 𝐟𝐨𝐫  
17:       𝑑𝑚𝑒𝑎𝑛   ←   𝑚𝑒𝑎𝑛(𝑑) 

18:       𝑑𝑠𝑡𝑑       ←   𝑠𝑡𝑑(𝑑) =  √
∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)2

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠
𝑗=1

𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠
  

19:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑑, 𝑑𝑚𝑒𝑎𝑛, 𝑑𝑠𝑡𝑑 , 𝑑𝑠𝑒𝑙 

20:  𝐄𝐧𝐝 

 

21:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3) 

22:       �⃗� 1, 𝑃1𝑚𝑎𝑔
, �⃗� 2, 𝑃2𝑚𝑎𝑔

, �⃗� 3, 𝑃3𝑚𝑎𝑔
←  VECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐼𝐷1, 𝐼𝐷2, 𝐼𝐷3) 

23:       // MATLAB Functions: 𝑎𝑡𝑎𝑛2𝑑, 𝑐𝑟𝑜𝑠𝑠, 𝑑𝑜𝑡, 𝑖𝑠𝑛𝑎𝑛, 𝑠𝑡𝑑, 𝑛𝑜𝑟𝑚,𝑚𝑒𝑎𝑛  
24:       // Search all frames and retain not NaN θ1, θ2, θ3 values  

25:       𝜃1 ← ~isnan(𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑃1
⃗⃗  ⃗, 𝑃2

⃗⃗⃗⃗ )), 𝑑𝑜𝑡(𝑃1
⃗⃗  ⃗, 𝑃2

⃗⃗⃗⃗ ))) 

26:       𝜃2, 𝜃3 ← 𝐋𝐨𝐨𝐩 step 25 𝐟𝐨𝐫 (−𝑃1
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃3

⃗⃗⃗⃗ ), (−𝑃2
⃗⃗ ⃗⃗ ⃗⃗  ⃗, −𝑃3

⃗⃗⃗⃗ ) 

27:       𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
  ←   𝑚𝑒𝑎𝑛(𝜃1),𝑚𝑒𝑎𝑛(𝜃2),𝑚𝑒𝑎𝑛(𝜃3) 

28:       𝜃1𝑠𝑡𝑑
, 𝜃2𝑠𝑡𝑑

, 𝜃3𝑠𝑡𝑑
  ←   𝑠𝑡𝑑(𝜃1), 𝑠𝑡𝑑(𝜃2), 𝑠𝑡𝑑(𝜃3) 

29:       𝐫𝐞𝐭𝐮𝐫𝐧 𝜃1, 𝜃2, 𝜃3,  𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
,  𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

 

30:  𝐄𝐧𝐝 
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4.3.3.1 Pelvis Detection 

     The pelvis is the most rigid segment of the body within our tracking data. Therefore, we 

can identify the triangle formed by the spine, right waist, and left waist markers based on 

our marker set and action constraints such as distances and angles while considering user-

defined tolerances. We assumed that pelvis points appear simultaneously in at least one 

frame.  

     First, we detected the probable pelvis points (i.e., reappearing passive marker IDs due 

to occlusion, see Figure 4-11 (first tile)) based on the geometric constraints of the marker 

set, without relying on precise values for distances and angles. Next, we refined our initial 

detection of potential candidates by applying orientation constraints. We employed PCA to 

determine the majority axis, attempting to identify the orientation of the human. Third, we 

accurately identified the correct pelvis points among the potential candidates by analyzing 

precise distances and angle values derived from our marker set. Fourth, we differentiated 

between the left and right sides of the body to allow detected pelvic triangles to be 

connected across broken trajectories (i.e., reappearing markers). Finally, we executed the 

“shared steps” (refer to Algorithm 2, lines 6 to 16) to output the detected pelvis point IDs 

(Sp, RW, LW) and generated a new C3D file containing the cleaned pelvis segment. This 

cleaned segment was utilized for the detection of the next valid markers (i.e., torso segment) 

in the subsequent section (section 4.3.3.2). The details of this process are outlined in 

Algorithm 4 and are further elaborated upon here. We inputted the points (points) retrieved 

from the C3D file using Algorithm 1 (i.e., the READC3D function) into this algorithm. It 

returned pelvis points (pelvisPoints) (i.e., Sp, RW, LW) and a new C3D file (new C3D). 
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Algorithm 4 Pelvis Detection 

  1:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠) 

  2:       𝐟𝐨𝐫 𝑖 =  1, … , 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 & j =  1, … , num_points &  𝑖 ≠ 𝑗 𝐝𝐨 

  3:            𝑑, 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑 , ~ ←  DIST(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑖, 𝑗, ~ ) 

  4:            𝐢𝐟 𝑑𝑠𝑡𝑑 < ∆𝑑𝑠𝑡𝑑  𝐭𝐡𝐞𝐧 

  5:                 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 ←  Append [𝑖, 𝑗] to 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 

  6:       𝐞𝐧𝐝 𝐟𝐨𝐫 

  7:       𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 ← 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑇𝑟𝑖𝑝𝑙𝑒𝑡𝑠 ← ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑃𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 3)  
  8:       𝐟𝐨𝐫 𝑘 =  1, … , 𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 𝐝𝐨 

  9:            𝑓𝑟𝑎𝑚𝑒𝑐 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘])) 

10:          //e. g. , framec[Trio1] =∩ (p1(traj), p2(traj), p3(traj))if Trio1 = (p1, p2, p3) 

11:            𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 ← 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜 𝐢𝐟  𝑓𝑟𝑎𝑚𝑒𝑐 ≠ ∅ 

12:            𝐴[𝑘], 𝐵[𝑘], 𝐶[𝑘] ← 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][1], 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][2], 𝑝𝑟𝑜𝑏𝑇𝑟𝑖𝑜[𝑘][3] 
13:            𝑓𝑐𝑠 ←  min(𝑓𝑟𝑎𝑚𝑒𝑐[k])  //first common frame in each 𝑇𝑟𝑖𝑜 

14:       𝐞𝐧𝐝 𝐟𝐨𝐫 

15:       𝐴𝐵, 𝑑1, 𝐴𝐶, 𝑑2, 𝐵𝐶, 𝑑3 ← 𝑉ECTORIZETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐴, 𝐵, 𝐶) 

16:       𝐴𝐵𝑐𝑠, 𝑑𝑐𝑠1 ← AB[𝑓𝑐𝑠], 𝑑1[𝑓𝑐𝑠]  
17:       𝐴𝐶𝑐𝑠, 𝑑𝑐𝑠2, 𝐵𝐶𝑐𝑠, 𝑑𝑐𝑠3 ← 𝐋𝐨𝐨𝐩 step 15 𝐟𝐨𝐫 𝐴𝐶, 𝑑2, 𝐵𝐶, 𝑑3  

18:       𝐴, 𝐵, 𝐶 ←  Keep noncollinear Trios (i. e. , 𝐢𝐟 𝑐𝑟𝑜𝑠𝑠(𝐴𝐵𝑐𝑠, 𝐴𝐶𝑐𝑠) == 0)  
19:       𝐢𝐟 |𝑑𝑐𝑠1 − 𝑑𝑐𝑠2| < ∆𝑑, |𝑑𝑐𝑠1 − 𝑑𝑐𝑠3| < ∆𝑑, |𝑑𝑐𝑠2 − 𝑑𝑐𝑠3| < ∆𝑑  𝐭𝐡𝐞𝐧 

20:            𝐴, 𝐵, 𝐶 ←  𝐴, 𝐵, 𝐶 (Keep Isosceles 𝐴, 𝐵, 𝐶 Triangles)   
21:       𝐞𝐧𝐝 𝐢𝐟 

22:       𝜃1, 𝜃2, 𝜃3, 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
, 𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

← 𝐴NGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝐴,𝐵,𝐶) 
23:       𝐴, 𝐵, 𝐶 ←  Keep 𝐴, 𝐵, 𝐶 Trios 𝐢𝐟 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑇𝑟𝑖𝑜: 𝜃1𝑠𝑡𝑑

, 𝜃2𝑠𝑡𝑑
, 𝜃3𝑠𝑡𝑑

< ∆𝜃𝑠𝑡𝑑 

24:       𝑆𝑝,𝑊1,𝑊2 ← Sort 𝐴, 𝐵, 𝐶 Trios with 𝑚𝑎𝑥(𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
) first  

25:       𝜃𝑠𝑝 , 𝜃𝑤1, 𝜃𝑤2 ← 𝜃1[𝑓𝑐𝑠], 𝜃2[𝑓𝑐𝑠], 𝜃3[𝑓𝑐𝑠]    //assume θ1 is max 
26:       𝐢𝐟 𝜃𝑊1 + 𝜃𝑊2 < 𝜃𝑆𝑝 & |𝜃𝑊1 − 𝜃𝑊2| < ∆𝜃 & |𝑑𝑊1 − 𝑑𝑊2| < ∆𝑑 𝐭𝐡𝐞𝐧 

27:            𝑆𝑝,𝑊1,𝑊2 ←  Keep 𝑆𝑝,𝑊1,𝑊2 Trios  
28:       𝐞𝐧𝐝 𝐢𝐟 

29:       𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 ← first frame in 𝑓𝑟𝑎𝑚𝑒𝑐 of each Trio with minimum 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠    

30:       𝑓𝑙𝑎𝑔𝑚𝑎𝑗  ← PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 , 𝑆𝑝,𝑊1,𝑊2) 

31:       𝑆𝑝,𝑊1,𝑊2 ← Keep 𝑆𝑝,𝑊1,𝑊2 Trios   𝐢𝐟 𝑓𝑙𝑎𝑔𝑚𝑎𝑗 == 1 

32:       // Compare with Marker set Measurments 

33:       𝐢𝐟 |𝜃𝑆𝑝 − 𝜃𝑀𝑆𝑝| < ∆𝜃𝑀𝑆𝑝 & |𝜃𝑊1 − 𝜃𝑀𝑊1| < ∆𝜃𝑀𝑊 & |𝜃𝑊2 − 𝜃𝑀𝑊2| < ∆𝜃𝑀𝑊 & 

                  |𝑑𝑊1 − 𝑑𝑀𝑊1|< ∆𝑑 & |𝑑𝑊2 − 𝑑𝑀𝑊2| < ∆𝑑 & |𝑑𝑊𝑊 − 𝑑𝑀𝑊𝑊| < ∆𝑑 𝐭𝐡𝐞𝐧 

34:            𝑆𝑝,𝑊1,𝑊2 ←  Keep 𝑆𝑝,𝑊1,𝑊2 Trios  
35:       𝐞𝐧𝐝 𝐢𝐟 

36:       𝑓𝑐𝑒 ←  max(𝑓𝑟𝑎𝑚𝑒𝑐)  //last common frame in each 𝑇𝑟𝑖𝑜 

37:       𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio 

38:       𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑆𝑝, 𝑅𝑊, 𝐿𝑊 ← BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒) 
39:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠 
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4.3.3.1.1 Probable Pelvis using Rigid Body and Geometric Constraints 

     First, we identified pairs of points as potential pelvis points that formed a rigid bone by 

maintaining a constant distance within a specified threshold across all frames. To achieve 

this, we computed the distance between each point and all other points in each frame and 

repeated this process for all frames. Subsequently, we calculated the standard deviation 

(SD) of these distances (e.g., using the “std” function in MATLAB). The SD of the distance 

between two points is a measure of the variation in their distance across all frames about 

their mean distance. Pairs of points with a SD of less than a predetermined threshold 

(∆𝑑𝑠𝑡𝑑) were retained as probable pelvis points (probablePelvisPoints). A lower threshold 

indicates reduced variance in the distance between two points, suggesting that they are 

static relative to one another throughout all frames. We applied a threshold of 0.5 cm 

(∆𝑑𝑠𝑡𝑑 = 0.5 𝑐𝑚) to the calculated SDs for effectiveness across all our datasets (C3Ds). 

Next, we created all combinations of three probable pelvis points, refer to as “Trio” 

(probTrio). All predefined tolerances for pelvis detection are displayed in      Table 4-1. 

      Table 4-1: Pelvis Detection Predetermined Tolerances 

∆𝑑𝑆𝑊𝑠𝑡𝑑 = ∆𝑑𝑊𝑠𝑡𝑑 = ∆𝑑𝑠𝑡𝑑 0.5 cm ∆𝑑𝑚𝑎𝑗  14.5 cm 

∆𝑑𝑆𝑊 = ∆𝑑𝑊 = ∆𝑑𝑀 2.4 cm ∆𝑠𝑦𝑚𝑚𝑎𝑗 8.9 cm 

∆𝜃𝑆𝑝𝑠𝑡𝑑 = ∆𝜃𝑊𝑠𝑡𝑑 = ∆𝜃𝑠𝑡𝑑 3.5° ∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 35.4° 

∆𝜃𝑀𝑆𝑝 6° ∆𝜃𝑊𝑊𝑚𝑎𝑗
 15.2° 

∆𝜃𝑊 = ∆𝜃𝑀𝑊 5° * M: Marker Set Values 
 

 Figure 4-12: Pelvis Isosceles Triangle 

 

     To form a pelvis triangle (Figure 4-12), we assumed that the spine, right waist, and left 

waist must be visible in at least one frame. Therefore, we first identified the common frames 

for each Trio (framec) by calculating the intersection of the trajectories of the three points 

in each Trio. Subsequently, we filtered out Trios to retain only those that shared at least one 
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common frame. We labeled three points in each Trio as A, B, and C. Subsequent steps 

focused on identifying the most probable pelvis Trios and determining which of these points 

correspond to the spine, right waist, and left waist. To reduce the computational load, we 

performed the remaining calculations in the initial frame of a common frame for each Trio 

(fcs), as shown in Figure 4-13. Consequently, within this frame for each Trio, we verified 

whether the three points were non-collinear [27], thus forming a triangle. 

 

        

 

                      

 

Figure 4-13: Probable Pelvis Trios; fcs and fce are the first and last  frames of a Trio’s Common frames  

 

     Based on our marker set geometry configuration (Figure 4-5), the pelvic segment is 

represented as an isosceles triangle. Accordingly, we retained the Trios that formed such a 

triangle by verifying whether two points of three points maintained equal distances to the 

third point, within an experimentally learned tolerance of 2.4 cm (∆𝑑 = 2.4 𝑐𝑚). We 

further refined these Trios using the rigid body rule, retaining only those for which the 

variance of each of the three angles across all frames was less than a specified tolerance 

(i.e., ∆𝜃𝑠𝑡𝑑 = 3.5°). In our marker set, the spine point has the largest angle, which exceeds 

the sum of the angles at the waist points. Thus, we organized the Trios (A, B, and C) by 

placing the point with the maximum angle first, renaming them as Sp, W1, and W2. We 

retained only those Trios where the spine angle (𝜃𝑆𝑝) was greater than the sum of the angles 

of the other two points (i.e., 𝜃𝑆𝑝 > 𝜃𝑊1 + 𝜃𝑊2). We then refined these Trios by verifying 

𝑓𝑐𝑒1 𝑓𝑐𝑠1 
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the isosceles triangle rules based on the detected spine point. We ensured that the two waist 

angles were equal within a tolerance of 5 degree (∆𝜃𝑊 = 5°) and that the side lengths (the 

distance between spine and waist) were equal within a tolerance of 2.4 cm (∆𝑑 = 2.4 𝑐𝑚). 

     Figure 4-14 (a) illustrates a rejected isosceles triangle based on the SD of the distance 

criterion due to elbow movement. The distance between the elbow point (represented in 

blue) and the chest point (represented in green) varies significantly and is not static over 

time. This emphasizes the challenges associated with passive markers. An elbow passive 

marker may meet the SD criterion because it can remain stationary during its potentially 

short lifespan due to occlusion. Consequently, further criteria will be necessary in 

subsequent steps to address these situations effectively. 

   
                               (a)                                                          (b)                                                         (c) 

Figure 4-14: Probable Pelvis Triangles: (a) Not accepted due to SD criterion; (b) Not accepted due to a small θSp; (c) 

Accepted due to the geometric and rigid body criteria, but this triangle does not represent a pelvis and requires additional 

criteria for rejection. 

 

     Figure 4-14 (b) shows an isosceles triangle that was not accepted due to a small 𝜃𝑆𝑝 (i.e., 

does not meet 𝜃𝑆𝑝 > 𝜃𝑊1 + 𝜃𝑊2). The third image (c) presents a triangle that met all criteria 

for being a probable pelvis segment based on isosceles triangle and rigid body 

requirements. To further refine our selection, we will introduce orientation criteria in the 

next section to eliminate this triangle from consideration as a probable pelvis Trio. 
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4.3.3.1.2 Probable Pelvis based on PCA-based Majority Axis Orientation 

     To eliminate incorrectly identified probable pelvis triangles, such as the one depicted in 

Figure 4-14 (c), we implemented an additional criterion based on human body orientation. 

Given the constraints of our marker set and dataset actions, we assumed that the pelvis 

triangle should align with the body’s orientation, which corresponds to the majority axis of 

point distribution estimated using PCA.  

     Algorithm 5 illustrates this process. It was provided with probable pelvis Trios (Sp, 

W1,W2) identified in the previous section, along with the specific frame (𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗) for 

performing the calculations. It then returned a flag (𝑓𝑙𝑎𝑔𝑚𝑎𝑗) indicating whether the Trio 

was accepted as a probable pelvis Trio, where a value of 1 signified an accepted Trio. 

Algorithm 5 Majority Axis Criterion 

  1:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 PCAMAJORITYAXIS(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗 , 𝑆𝑝,𝑊1,𝑊2) 

  2:       𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ←  𝑛𝑎𝑛𝑚𝑒𝑎𝑛(𝑝𝑜𝑖𝑛𝑡𝑠(: , : , 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗), 2) 

  3:       𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 ←  𝑝𝑐𝑎(𝑝𝑜𝑖𝑛𝑡𝑠(: , : , 𝑓𝑟𝑎𝑚𝑒𝑚𝑎𝑗)′) 

  4:       𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗  ←  𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠(: ,1) 

  5:       projection𝑆𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗  ← |𝑑𝑜𝑡(𝑆𝑝 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗)| 

  6:       𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 = 1    𝐢𝐟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑝𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 < ∆𝑑𝑚𝑎𝑗 

  7:       𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗  ← |𝑑𝑜𝑡(𝑊1 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗)|  //Repeat for W2 

  8:       𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗  ←  𝑑𝑖𝑠𝑡𝑊1𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗 − 𝑑𝑖𝑠𝑡𝑊2𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗   

  9:       𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 = 1    𝐢𝐟 |𝑊1𝑊2𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑚𝑎𝑗| <  ∆𝑠𝑦𝑚𝑚𝑎𝑗 

10:       //𝑐𝑟𝑜𝑠𝑠(𝑊𝑊𝑚𝑎𝑗) ← 𝑐𝑟𝑜𝑠𝑠(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 , waistl𝑖𝑛𝑒)  

11:       𝜃𝑊𝑊𝑚𝑎𝑗
← ~𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑊𝑊𝑚𝑎𝑗)), 𝑑𝑜𝑡(𝑊𝑊𝑚𝑎𝑗)) 

12:       𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔   = 1    𝐢𝐟 |𝜃𝑊𝑊𝑚𝑎𝑗

− 90| < ∆𝜃𝑊𝑊𝑚𝑎𝑗
 

13:       //SWWLine: Line connects Sp to 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 waistl𝑖𝑛𝑒  
14:       //𝑐𝑟𝑜𝑠𝑠(𝑆𝑊𝑊𝑚𝑎𝑗) ← 𝑐𝑟𝑜𝑠𝑠(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗 , 𝑆𝑊𝑊𝐿𝑖𝑛𝑒)  

15:       𝜃𝑆𝑊𝑊𝑚𝑎𝑗
← ~𝑎𝑡𝑎𝑛2𝑑(𝑛𝑜𝑟𝑚(𝑐𝑟𝑜𝑠𝑠(𝑆𝑊𝑊𝑚𝑎𝑗)), 𝑑𝑜𝑡(𝑆𝑊𝑊𝑚𝑎𝑗)) 

16:       𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 = 1    𝐢𝐟 |𝜃𝑆𝑊𝑊𝑚𝑎𝑗

− 90| < ∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
 

17:       𝑓𝑙𝑎𝑔𝑚𝑎𝑗  ←  𝑠𝑝𝑖𝑛𝑒𝐹𝑙𝑎𝑔 ∗  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔 ∗ 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔 ∗  𝜃𝑊𝑊𝑚𝑎𝑗

𝐹𝑙𝑎𝑔  

18:       𝐫𝐞𝐭𝐮𝐫𝐧   𝑓𝑙𝑎𝑔𝑚𝑎𝑗 
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4.3.3.1.2.1 Frame of Interest     

     First, as indicated in Algorithm 4, line 29, we specified a distinct frame (framemaj) for 

the calculation of PCA-based majority axis. The rationale for not utilizing the same frame 

(fcs) as in previous steps stems from the impact of noise. Given the sparsity of our dataset, 

noise can considerably affect the orientation of the major axis, as illustrated in Figure 4-15. 

In a noisy frame (left image), the majority axis is misaligned compared to the accurate 

majority axis of the valid points, as illustrated in the non-noisy frame (right image). 

 

 

Figure 4-15: The Impact of Noise on Majority Axis Direction: (Left) Noisy Frame; (Right) Non-Noisy Frame 

 

     Consequently, we identified the first frame among the common frames (framec) of each 

Trio that contained a minimal number of points. We assumed that any frame with a minimal 

number of points would include only properly tracked markers. The criteria for minimal 

points were set to be greater than 19 and less than 21; if this condition was not met, a flag 

was raised for visual inspection.  
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4.3.3.1.2.2 PCA 

     Principal component analysis (PCA) [18] is a statistical technique that analyzes and 

reduces data dimensionality while preserving as much variance as possible. In the context 

of 3D space, PCA helps identifying the directions (principal components) where variation 

is maximized (i.e., the data points are most spread out), effectively finding the majority axis 

of point distribution. The process begins by centering data around feature means, involving 

subtracting mean values from each coordinate across all points. Then, the covariance matrix 

of the centered data is computed to capture relationships between variables. Eigenvalue 

decomposition is then performed on the covariance matrix, identifying eigenvalues 

indicating variance along each principal component and eigenvectors representing 

directions of variance. The eigenvalues are sorted in descending order; corresponding 

eigenvectors are also rearranged accordingly. The top eigenvectors correspond to directions 

with maximum variance and thus represent principal components. 

4.3.3.1.2.3 Finding Majority Axis using PCA 

     After identifying the specified frame (framemaj), we calculated the centroid of the 3D 

point distribution in this frame (i.e., mean of the non-null points) in Algorithm 5, line2 

(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑). We then performed PCA on the transposed points to capture PCA coefficients 

(𝑝𝑐𝑎𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠) (i.e., using “pca” function in MATLAB). Transposing is crucial 

because PCA typically requires data to be organized such that each row corresponds to an 

observation (in this case, a point in 3D space), and each column corresponds to a variable 

(the x, y, z coordinates). This arrangement allows PCA to analyze how the points vary 
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across their features. We then determined the first coefficient, which represents the 

direction of maximum variance, identified as the majority axis direction (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚𝑎𝑗). 

4.3.3.1.2.4 Probable Pelvis Detection based on Orientation 

     We established an additional criterion for identifying a probable pelvis triangle based on 

the orientation of the majority axis. The first criterion in Algorithm 5, line 5, stipulates that 

the spine point must be near the distribution’s centroid and aligned with the majority axis. 

To verify this, we first computed a vector that indicated the distance from the spine point 

to the centroid. Next, we calculated the dot product of this vector with the direction of the 

majority axis. The result (projection𝑆𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝐴𝑥𝑖𝑠𝑚𝑎𝑗) represented how far away 

the spine point was from the centroid when projected along this direction of maximum 

variance. This can be interpreted as a measure of distance or deviation along that principal 

component. If this deviation was less than an experimentally determined threshold of 14.5 

cm (∆𝑑𝑚𝑎𝑗 = 14.5 𝑐𝑚), a flag (spineFlag) to 1, indicating the first criterion was met. 

     The second criterion requires that the right and left waists be symmetrically positioned 

relative to the major axis and close to it. We assessed this by calculating the projection 

distances from W1 and W2 to the major axis. If the absolute difference between these 

distances was less than a threshold of 8.9 cm (∆𝑠𝑦𝑚𝑚𝑎𝑗 = 8.9 𝑐𝑚), we set a flag 

(𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝐹𝑙𝑎𝑔) to 1, indicating that we satisfied the second criterion.  

     As a third criterion, we assumed that the waistline should be perpendicular to the major 

axis based on our dataset actions. Consequently, we evaluated whether the angle (𝜃𝑊𝑊𝑚𝑎𝑗
) 

deviation between the waistline and the major axis from 90 degrees was less than a 
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specified threshold of 15.2 degrees (∆𝜃𝑊𝑊𝑚𝑎𝑗
= 15.2°). If this condition was met, a flag 

(𝜃𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔) was set to 1, indicating that the third criterion had been met. 

     In the fourth criterion, we assumed that the line connecting the spine to midpoint of 

waistline (SWWLine) should be perpendicular to the major axis based on our dataset 

actions. Therefore, if the angle (𝜃𝑆𝑊𝑊𝑚𝑎𝑗
) deviation between this line and the major axis 

from 90 degrees was less than a threshold of 35.4 degrees (∆𝜃𝑆𝑊𝑊𝑚𝑎𝑗
= 35.4°), a flag 

(𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔) was set to 1.  

     Finally, if all four criteria were met, we set a flag (𝑓𝑙𝑎𝑔𝑚𝑎𝑗) to 1 to accept the probable 

pelvis Trio. Figure 4-16 shows a rejected triangle (spine (magenta), elbows(cyan)) due to 

the 𝜃𝑆𝑊𝑊𝑚𝑎𝑗
𝐹𝑙𝑎𝑔, with 𝜃𝑆𝑊𝑊𝑚𝑎𝑗

= 6.11°. All criteria were satisfied. Note that the passive 

elbow markers (blue) met the SD criteria, and 𝜃𝑊𝑊𝑚𝑎𝑗
= 92.8°. 

 

Figure 4-16: Rejected probable pelvis Trio (spine (magenta), elbows(cyan)) due to angle between SWW line (yellow) and 

majority axis (red);the right tile provides an additional view for clarity. The correct pelvis is shown in a purple triangular 

shape. 
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     These orientation criteria, particularly the third and fourth ones, are influenced by the 

marker set and action constraints. This influence necessitates a high threshold to satisfy the 

criteria due to the inherent flexibility of the human body. Therefore, while these criteria 

effectively eliminate triangles that significantly deviate from resembling a pelvis segment 

—such as those depicted in Figure 4-16 and the image (c) in Figure 4-14— additional 

criteria are necessary for the accurate detection of pelvis points. These further criteria will 

be discussed in the next section. 

4.3.3.1.3 Pelvis Detection based on Marker set Values 

     In the final stage of pelvis detection, we accurately identified these points by comparing 

the distances and joint angles of each probable pelvis Trio with those measurements derived 

from our marker set, taking tolerances into account as shown in Figure 4-17 and Table 4-2 

(M represents marker set values). We then retained the Trios that met these constraints. 

 

      Table 4-2: Pelvis Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 Constraints ∆ ° 

|𝑑1 − 𝑀𝑑1|   < ∆𝑑𝑀 2.4 |𝜃𝑆𝑝 − 𝑀𝜃𝑆𝑝|   < ∆𝜃𝑀𝑆𝑝 6 

|𝑑2 − 𝑀𝑑2|   < ∆𝑑𝑀 2.4 |𝜃𝑊1 − 𝑀𝜃𝑊1| < ∆𝜃𝑀𝑊 5 

|𝑑𝑊 − 𝑀𝑑𝑊| < ∆𝑑𝑀 2.4 |𝜃𝑊2 − 𝑀𝜃𝑊2| < ∆𝜃𝑀𝑊 5 
 

 Figure 4-17: Pelvis Isosceles Triangle 

 

     This stage significantly reduces the probability of false detection to nearly zero. 

However, due to user-defined tolerances, there is a possibility that ghost markers—those 

very close to valid markers—may satisfy all criteria and be mistakenly classified as valid 

markers. To address this issue, we checked an intersectFlag as the first step in the “Shared 

Steps” of Algorithm 2, line 8. This intersect step was executed after detecting the body side 

detection, which will be detailed in the next section. 

𝑆𝑝 

𝜃𝑆𝑝  

𝜃𝑊2  

𝑑2  𝑑1  

𝜃𝑊1  

𝑊1 𝑊2 
𝑑𝑊  
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4.3.3.1.4 Body Side Detection 

     After identifying pelvis Trios that met all criteria, we differentiated between the left and 

right waist. Since these triangles are isosceles, only the spine point was accurately detected. 

Algorithm 6 illustrates our body side detection function (BODYSIDEDETECTION). It used the 

detected Trios (𝑆𝑝,𝑊1,𝑊2) identified in the previous section, along with specific frames 

(𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒) as inputs and returned new Trios (𝑆𝑝, 𝑅𝑊, 𝐿𝑊), which determined the spine, 

right waist, and left waist points for each Trio.  

Algorithm 6 Body Detection 

  1:       𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒 ← [𝑓𝑐𝑠, 𝑓𝑐𝑒] in each Trio 

 

  2:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 BODYSIDEDETECTION(𝑆𝑝,𝑊1,𝑊2, 𝑓𝑟𝑎𝑚𝑒𝑠𝑖𝑑𝑒) 

  3:       𝐟𝐨𝐫 𝑖 =  1, … , 𝑛𝑢𝑚_Trios 𝐝𝐨 

  4:            𝑆𝑝𝑐𝑠[𝑖] ←  𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑆𝑝[𝑖], 𝑓𝑐𝑠[i])    //Repeat for 𝑊1𝑐𝑠[𝑖],𝑊2𝑐𝑠[𝑖] 
  5:            𝑆𝑝𝑐𝑒[𝑖] ←  𝑝𝑜𝑖𝑛𝑡𝑠(: , 𝑆𝑝[𝑖], 𝑓𝑐𝑒[i])    //Repeat for W1ce[i],W2ce[i] 
  6:       𝐞𝐧𝐝 𝐟𝐨𝐫 

  7:       𝐟𝐨𝐫 𝑗 =  1, … , (𝑛𝑢𝑚_Trios − 1) 𝐝𝐨 

  8:            𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟[𝑗] ←   𝑆𝑝𝑐𝑠[𝑗 + 1]  − 𝑆𝑝𝑐𝑒[𝑗];  
  9:            t𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗]  ←  𝑒𝑦𝑒(4); // Initialize identity matrix 

10:            𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗](1: 3, 4)  ←  𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟[𝑗]′ 
11:            ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒[𝑗]  ←  [𝑊1𝑐𝑒[𝑗], 1] //homogeneous coordinate 

12:            𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[𝑗]  ← (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥[𝑗] ∗ ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠𝑊1𝑐𝑒[𝑗]′)′ 
13:            𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[j]  =  𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[𝑗](1: 3) 

14:            //Repeat Line 11 to 13 for W2 

15:       𝐞𝐧𝐝 𝐟𝐨𝐫 

16:       𝐟𝐨𝐫 𝑘 =  2, … , 𝑛𝑢𝑚_T𝑟𝑖𝑜𝑠 𝐝𝐨 

17:            distW1cstransW1ce[k] ← norm(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[k − 1]  −  𝑊1𝑐𝑠[k])) 

18:            distW2cstransW1ce[k] ← norm(𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑𝑊1𝑐𝑒[k − 1]  −  𝑊2𝑐𝑠[k])) 

19:            𝐢𝐟 distW1cstransW1ce[k] < distW2cstransW1ce[k] 𝐭𝐡𝐞𝐧 

20:                 [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ←  [𝑆𝑝,𝑊1,𝑊2][k]        // No Change  
21:            𝐞𝐥𝐬𝐞 𝐢𝐟 distW2cstransW1ce[k] > distW1cstransW1ce[k] 
22:                 [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ←  [𝑆𝑝,𝑊2,𝑊1][k]       // Change 

23:            𝐞𝐥𝐬𝐞 𝐢𝐟 distW1cstransW1ce[k] == distW2cstransW1ce[k] 
24:                 [𝑆𝑝, 𝑅𝑊, 𝐿𝑊][k] ← user visual decision 

25:       𝐞𝐧𝐝 𝐟𝐨𝐫 

26:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑆𝑝, 𝑅𝑊, 𝐿𝑊 
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4.3.3.1.4.1 Statement of the Problem 

     We need to distinguish between left waist and right waist (W1 and W2) in each Trio to 

identify corresponding reappearing markers on each side of the body. This involves 

recognizing the corresponding points of each Trio, as detailed in Algorithm 2, line 6, under 

“Shared Steps.” By doing so, we can merge the short trajectories of each physical marker 

into a single complete trajectory with potential gaps, as illustrated in Figure 4-11. Since we 

have detected spine point (Sp) for each Trio, we can combine the trajectories of all spine 

points (i.e., ∪ (𝑆𝑝𝑡𝑟𝑖𝑜1(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦), 𝑆𝑝𝑡𝑟𝑖𝑜2(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦),… , 𝑆𝑝𝑡𝑟𝑖𝑜𝑁(𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦)). 

Therefore, it is essential to determine whether to merge the trajectory of W1trio1 with W1trio2 

or W2trio2. This process must be repeated for all Trios (e.g., merging W1trio2 with W1trio3 or 

W2trio3).  

     Our objective was to facilitate manual cleaning rather than labeling. Therefore, we only 

need to identify which points are on the same side of the body, rather than precisely 

distinguishing between the true left and right sides. The actual sides will be visually 

confirmed during the validation and labeling process of the cleaned C3D file. 

4.3.3.1.4.2 Statement of the Solution 

     To solve this problem, we aimed to translate one Trio (e.g., Trion) from its initial frame 

(fcsn) of its common frame (framecn) to its subsequent Trio (Trion+1) initial frame (fcsn+1), 

based on the translation between two spine points of these two successive Trios. Then, we 

found the Euclidean distance between translated W1trion and W1trion+1 (e.g., d1), and 

translated W1trion and W2trion+1 (d2). Then, d1<d2 means W1trion corresponds to W1trion+1, 

and d2<d1 means W1trion corresponds to W2trion+1, as shown in Figure 4-18 and Figure 4-19. 
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Figure 4-18: Probable pelvis triangles (Spine, Waist 1, Waist 2) in the first frame (fcs) of each Trio’s common frame. 

 

 

 

 

           

 

Figure 4-19: Solution 1 for left and right waist points detection: Translating the Trion triangle from its fcsn to the next 

Trion+1 first frame (fcsn+1) and calculating the distances between waist 1 in the Trion+1 and the translated waist 1 and 

waist 2 of the Trion. 

 

     However, two problems may arise: 1) if the distances are equal; or 2) if the body rotates 

during gaps between pelvis Trios, as shown in Figure 4-20. 

 

Figure 4-20: Potential problem of equal distances in Solution 1 for detecting left and right waist points, illustrated by the 

second blue triangle labeled “2,” where the distance between points “2” (in the translated blue triangle) and points “1” 

(in the original black triangle) is identical. 
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     Figure 4-20 illustrates five pelvis Trios from a C3D file positioned in 3D space, depicted 

as black triangles labeled 1 to 5. These Trios are pelvis reappearing markers due to 

occlusion (i.e., gaps between the black triangles). The first black triangle, labeled 1, 

corresponds to the initial detected pelvis Trio (Trio1) presented in its fcs1 frame. The 

accompanying blue circle represents the spine (Sp1), while the star and plus markers denote 

the waist markers. The second black triangle (Trio2), labeled 2, is depicted in its fcs2 frame, 

with this pattern continuing for the remaining black triangles.  

     The blue triangles represent translated triangles. For instance, Trio1 was translated to 

fcs2, appearing as a blue triangle labeled 1, aligning the spine point (Sp1) of Trio1 with spine 

point (Sp2) of Trio2. This translation process was applied repeatedly, resulting in all blue 

triangles being classified as translated Trios. 

     The first issue occurred in the second Trio (Trio2), with a large gap between Trio1 and 

Trio2, where the distance between the two waist points of triangle 1 are equal to the closest 

two waist points in triangle 2. The second problem may occur because of body rotation 

during transitional movements during gaps, such as when an individual shifts from a supine 

position (facing up) to a prone position (facing down). Solutions for addressing these two 

issues will be outlined in the following section.  

4.3.3.1.4.3 Frame of Interest 

     To address the issue of potential body rotation during gaps between pelvis Trios, we 

hypothesized that performing translations between closer frames would decrease the 

likelihood of such rotation. This is based on the understanding that the human body has a 

maximum speed at which it can move, particularly in underwater environments.  
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     First, as shown in Algorithm 6, line 1, we received a distinct vector (framemaj) from 

Algorithm 4, line 37. This vector includes two frames for each Trio: fcs and fce, which 

represent the first and the last frames of the common frame (framecs) for each Trio. 

     Then, as shown in Figure 4-21, we translated the first Trio (red triangle) from fce1 to fcs2 

and compared the distances (d1 and d2) between one waist point of Trio2 (green triangle) 

and two waist points of the translated triangle (dashed-line red triangle), as illustrated in 

Algorithm 6, line 16 to 24. If the distances were equal (d1 = d2), the automatic processing 

of the dataset was paused until human intervention resolved the condition, as a decision 

was necessary for the subsequent translation. We continued this process for all Trios. 

 

 

 

           

 

Figure 4-21: Solution 2 for the specific rotation problem arises with Solution 1 in detecting left and right waist points. 

Instead of translating between the first frames (fcs) of Trios, translation is done between the last frames (fce) of the current 

Trion and the first frame (fcs) of the next Trion+1 to reduce gap size and, hence, the potential rotation problem. 

 

     This solution has consistently produced accurate results across all our datasets by 

effectively minimizing the gap size between two Trios. As an example, shown in Figure 

4-21, the green triangle in fcs2 exhibits a significantly different orientation compared to the 

blue triangle in fcs3. In contrast, the green triangle in fce2 shows less variation than the blue 

triangle in fcs3. However, there is still a potential for body rotation to occur during these 

small gaps between Trios. To ensure the reliability of the results, a final visual check was 

conducted to validate the outcomes after all data had been processed. 
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4.3.3.2 Detection of Remaining Inliers 

     After identifying the pelvis points (spine, right waist, left waist), we detected the 

remaining inliers using Algorithm 2. We will only discuss the detected points (Algorithm 

2, line 5) and will not cover the “Shared Steps” (Algorithm 2, lines 6 to 15). 

     We first identified torso points (shoulders, chest, stomach) and then reduced 

computational load by eliminating near outliers. Next, we detected lower limb points (hip, 

knee, calf, ankle), head points (left and right), and upper limb points (elbow and hand). 

Then, we removed any remaining noise and reconstructed a missing ankle marker. The 

evaluation was conducted visually. 

     The detection of remaining valid markers involved forming a triangle with one or two 

previously detected points and applying geometric constraints by comparing angles and 

lengths to those in the marker set. We will detail the shoulder point detection process, while 

for other inliers, we will simply present the triangle and constraint table, as their detection 

is similar to that of shoulder points. 

4.3.3.2.1 Torso Markers Detection 

     After identifying pelvis points (spine, right waist, left waist), we proceeded to detect 

torso points (left and right shoulders, chest, stomach). The subsequent sections describe the 

process. 

4.3.3.2.1.1 Shoulder Markers Detection 

     We first located the shoulder points using potential triangles formed by the left and right 

shoulders and the detected spine point, as shown in Figure 4-22. This process applied 

constraints detailed in Table 4-3. Algorithm 7 outlines this method, utilizing the previously 
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identified pelvis points (Sp, RW, LW) to return the right shoulder (ShR), left shoulder (ShL), 

and a new C3d (newC3Dshoulder). Additionally, Algorithm 8 illustrates the process for 

distinguishing between left and right shoulder points.  

 

 

 

 

    
  Table 4-3: Shoulder Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 Constraints ∆ ° 

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 10 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ 6 

|𝑑𝑠ℎ𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠ℎ| < ∆𝑑𝑠ℎ  5 |𝜃2𝑚𝑒𝑎𝑛

− 𝑀𝜃2| < ∆𝜃𝑠ℎ 6 
 

Figure 4-22: Shoulder Detection Isosceles Triangle 

Algorithm 7 Shoulder Detection 

  1:  𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠, 𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠 ←  PELVISDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠) 

  2:  𝑆𝑝, 𝑅𝑊, 𝐿𝑊 ←  𝑝𝑒𝑙𝑣𝑖𝑠𝑃𝑜𝑖𝑛𝑡𝑠 

  3:  𝑛𝑒𝑤𝐶3𝐷, 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑎𝑏𝑒𝑙     ←  INLIERDETECTION (𝑛𝑒𝑤𝐶3𝐷𝑝𝑒𝑙𝑣𝑖𝑠) 

  4:  𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠, 𝐿𝑎𝑏𝑒𝑙𝑠, ~, 𝑛𝑢𝑚_𝑓𝑟𝑎𝑚𝑒𝑠 ← READC3D(𝑛𝑒𝑤𝐶3𝐷) 

 

  4:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERDETECTION(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑅𝑊, 𝐿𝑊, ∆𝑑, ∆𝑑𝑠ℎ, ∆𝜃𝑠ℎ) 

  5:       𝐟𝐨𝐫 𝑖 =  1, … , 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠 𝐝𝐨   
  6:            𝑑, 𝑑𝑚𝑒𝑎𝑛 , 𝑑𝑠𝑡𝑑 , ~ ←  𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑖, ~ ) 

  7:            𝐢𝐟 |𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 𝐭𝐡𝐞𝐧   
  8:                 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 ←  Append 𝑖 to 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠 

  9:       𝐞𝐧𝐝 𝐟𝐨𝐫 

10:       𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 ← 𝑝𝑟𝑜𝑏𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟𝑠 ← ∁(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡𝑠, 2)  
11:       𝐟𝐨𝐫 j =  1, … , 𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 𝐝𝐨 

12:            𝑑𝑠ℎ , 𝑑𝑠ℎ𝑚𝑒𝑎𝑛
, 𝑑𝑠ℎ𝑠𝑡𝑑

, ~ ←  𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗, 1), 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗, 2), ~ ) 

13:            𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟 ←  Keep 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗)   𝐢𝐟 |𝑑𝑠ℎ𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠ℎ| < ∆𝑑𝑠ℎ  

14:       𝐞𝐧𝐝 𝐟𝐨𝐫 

15:       𝐟𝐨𝐫 𝑘 =  1, … , 𝑛𝑢𝑚_𝑃𝑎𝑖𝑟𝑠 𝐝𝐨 

16:            ~, ~, ~, 𝜃1𝑚𝑒𝑎𝑛
, 𝜃2𝑚𝑒𝑎𝑛

, 𝜃3𝑚𝑒𝑎𝑛
, ~, ~, ~

← ANGLETRIO(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑆𝑝, 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑘, 1), 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑘, 2)) 

17:            𝐢𝐟 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ  & |𝜃2𝑚𝑒𝑎𝑛

− 𝑀𝜃2| < ∆𝜃𝑠ℎ 𝐭𝐡𝐞𝐧 

18:                 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟 ←  Keep 𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟(𝑗) 

19:       𝐞𝐧𝐝 𝐟𝐨𝐫 

20:       𝑆ℎ𝑅 , 𝑆ℎ𝐿 ← SHOULDERSIDEDETECTION(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟, 𝑅𝑊, 𝐿𝑊) 

21:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑆ℎ𝑅 , 𝑆ℎ𝐿 , 𝑛𝑒𝑤𝐶3𝐷𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 
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     Algorithm 7 identified points that were within a distance of 10 cm (∆𝑑 = 10 𝑐𝑚) from 

the detected spine point, matching the marker set length. It then formed pairs of these points 

(𝑝𝑟𝑜𝑏𝑃𝑎𝑖𝑟) and retained those where the distance between each pair was consistent with 

the marker set, allowing for a threshold of 5 cm (∆𝑑𝑠ℎ = 5 𝑐𝑚). The shoulder angles of 

these pairs were compared to the marker set values within a threshold of 6 degrees (∆𝜃𝑠ℎ =

6°). Pairs meeting these criteria were classified as shoulder points. It is important to note 

that we took into account the mean distances and angles; therefore, we did not need to 

perform the calculations within a specific frame. 

     The function (SHOULDERSIDEDETECTION), illustrated in Algorithm 8, differentiated 

between right and left shoulder points by comparing the Euclidean distances from detected 

shoulder points to the right and left waists. For each pair of shoulder points 

(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟), the point closer to the right waist was identified as the right shoulder, 

while the other was designated as the left shoulder. 

Algorithm 8 Shoulder Side Detection 

  1:  𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧 SHOULDERSIDEDETECTION(𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟, 𝑅𝑊, 𝐿𝑊) 

  2:       𝐟𝐨𝐫 𝑖 =  1, … , 𝑛𝑢𝑚_𝑝𝑎𝑖𝑟𝑠 𝐝𝐨   
  3:            ~, 𝑑1𝑚𝑒𝑎𝑛, ~, ~ ←  𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑊, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1), ~) 

  4:            ~, 𝑑2𝑚𝑒𝑎𝑛 , ~, ~ ←  𝑑𝑖𝑠𝑡(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑅𝑊, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2), ~) 

  5:            𝐢𝐟 𝑑1𝑚𝑒𝑎𝑛 < 𝑑2𝑚𝑒𝑎𝑛 𝐭𝐡𝐞𝐧   
  6:                 𝑆ℎ𝑅 , 𝑆ℎ𝐿 ←  𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1), 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2) 

  7:            𝐞𝐥𝐬𝐞   
  8:                 𝑆ℎ𝑅 , 𝑆ℎ𝐿 ←  𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 2), 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟𝑃𝑎𝑖𝑟(𝑖, 1) 

  9:            𝐞𝐧𝐝 𝐢𝐟 

10:       𝐞𝐧𝐝 𝐟𝐨𝐫 

11:       𝐫𝐞𝐭𝐮𝐫𝐧 𝑆ℎ𝑅 , 𝑆ℎ𝐿 
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4.3.3.2.1.2 Chest Marker Detection 

     The chest point was determined by constructing potential triangles using the detected 

left and right shoulder points along with the chest, as illustrated in Figure 4-23, and 

adhering to the constraints outlined in Table 4-4. 

 

 

 

 

    
  Table 4-4: Chest Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 Constraints ∆ ° 

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃𝑠ℎ 7 

  |𝜃2𝑚𝑒𝑎𝑛
− 𝑀𝜃2| < ∆𝜃𝑠ℎ 7 

 

Figure 4-23: Chest Detection Isosceles Triangle 

 

4.3.3.2.1.3 Stomach Marker Detection 

     The stomach point was identified by creating potential triangles with the spine and chest 

points, as shown in Figure 4-24, while following the constraints in Table 4-5. 

 

 

 

 

    
  Table 4-5: Stomach Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 Constraints ∆ ° 

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5 |𝜃𝑠𝑡𝑚𝑒𝑎𝑛
− 𝑀𝜃𝑠𝑡| < ∆𝜃𝑠ℎ 7 

|𝑑𝑠𝑠𝑚𝑒𝑎𝑛
− 𝑀𝑑𝑠𝑠| < ∆𝑑𝑠𝑠   5 |𝜃𝑐ℎ𝑚𝑒𝑎𝑛

− 𝑀𝜃𝑐ℎ| < ∆𝜃𝑐ℎ 7 
 

Figure 4-24: Stomach Detection Isosceles Triangle 

 

4.3.3.2.2 Near Outlier Removal 

     Pelvis markers (left waist, spine, right waist) and the torso markers (left shoulder, right 

shoulder, chest, stomach) have been identified. This allowed us to identify noisy points 

based on their distance from the torso and pelvis segments, leveraging our knowledge of 

human anatomy. We defined the maximum arm length as the distance from the shoulder 
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marker to the hand marker within the “T-shape” marker set (Figure 4-5), as this 

configuration represents the maximum extension of the arm: 

𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
=  𝑑𝑖𝑠𝑡(𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟, 𝐻𝑎𝑛𝑑) 

     Similarly, the maximum leg lengths were simply the distance from the waist to the ankle:          

𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
=  𝑑𝑖𝑠𝑡(𝑊𝑎𝑖𝑠𝑡, 𝐴𝑛𝑘𝑙𝑒)  

     We then created two spheres of radii equal to 𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑟𝑚𝑚𝑎𝑥
 centred at each shoulder 

(highlighted blue and green), and two spheres of radii 𝑙𝑒𝑛𝑔𝑡ℎ𝑙𝑒𝑔𝑚𝑎𝑥
 centred at each waist 

marker (highlighted red and purple). The region of interest (ROI) was defined by the union 

of the four spheres as shown in Figure 4-25. Any point outside this ROI was considered 

noise and was subsequently removed, since anatomically the human body cannot contain 

points further away than the boundaries of the spheres. This step significantly reduced the 

computational load for subsequent processes. 

 

Figure 4-25: Valid Points Maximum ROI 
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4.3.3.2.3 Lower Limb Markers Detection 

     After identifying torso points (left shoulder, right shoulder, chest, stomach), we detected 

lower limb points for the left and right side of the body (hip, knee, calf, ankle). The 

subsequent sections describe the process. 

4.3.3.2.3.1 Hip Markers Detection 

     The hip points were identified by forming potential triangles using the detected spine 

and waist points for each side of the body, as shown in Figure 4-26, and based on the 

constraints in Table 4-6. 

 

 

 

 

    
     Table 4-6: Hip Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑 3.03 

|𝑑2𝑚𝑒𝑎𝑛
− 𝑀𝑑2| < ∆𝑑   3.03 

 

           Figure 4-26: Hip Detection Triangle 

 

4.3.3.2.3.2 Knee Markers Detection 

     The knee points were identified by forming potential triangles using the detected waist 

and hip points for each side of the body, as shown in Figure 4-27, and according to the 

constraints in Table 4-7. 

 

 

 

 

    
     Table 4-7: Knee Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑 5.5 

|𝑑2𝑚𝑒𝑎𝑛
− 𝑀𝑑2| < ∆𝑑  5.5 

 

 

 

 

   Figure 4-27: Knee Detection Triangle 
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4.3.3.2.3.3 Calf and Ankle Markers detection 

     The calf and ankle detection process resembled shoulder point detection. We created 

potential triangles using two unknown points (calf and ankle) and one detected point (knee), 

as shown in Figure 4-28. We first identified points with a static length based on the standard 

deviation (SD) criteria (SD<1), indicating that the SD of distances between all pairs of 

points was less than 1 (i.e., std(d1)<1, std(d2)<1, and std(d3)<1). Subsequently, we applied 

the constraints listed in Table 4-8 to the points that satisfied the SD<1 condition. 

 

 

 

 

    
   Table 4-8: Calf and Ankle Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 

L,R 

Constraints ∆ ° 
L,R 

|𝑑1𝑚𝑒𝑎𝑛 − 𝑀𝑑1| < ∆𝑑1 7.3, 5 |𝜃1𝑚𝑒𝑎𝑛
− 𝑀𝜃1| < ∆𝜃1 8, 16 

|𝑑2𝑚𝑒𝑎𝑛 − 𝑀𝑑2| < ∆𝑑2 7.3, 5 |𝜃2𝑚𝑒𝑎𝑛
− 𝑀𝜃2| < ∆𝜃2 13, 35 

|𝑑3𝑚𝑒𝑎𝑛 − 𝑀𝑑3| < ∆𝑑3 7.3, 5 |𝜃3𝑚𝑒𝑎𝑛
− 𝑀𝜃3| < ∆𝜃3 20, 20 

 

 

Figure 4-28: Calf and Ankle Detection Triangle 

 

     To check these constraints, we formed combinations of the points with SD<1 into groups 

of two probable calf and ankle points (probPair). For each side, we generated two sets of 

Trios by adding the left knee to all double groups for the first set (KL, probPair(1), 

probPair(2)) and adding the right knee for the second set (KR, probPair(1), probPair(2)). 

In each Trio, the unknown point with the larger angle was the calf, while the other unknown 

point was the ankle. 

     In previous steps, we required three markers to identify triangles. However, we faced an 

issue where one ankle marker was missing, from some of our datasets, when a swimmer 

jumped into the water, and it was physically removed, leading to its absence in all frames. 

To resolve this, we developed a new method for locating calf and ankle points in such cases. 
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Although we could have removed this assumption earlier, it would have complicated 

previous steps unnecessarily. Our main goal is to simplify the manual cleaning process. 

     Hence, we applied constraints on bone lengths and angles from Table 4-8 to identify calf 

and ankle points in each Trio. If three markers were not present in at least one frame, the 

corresponding ankle point was considered missing, resulting in an empty set of Trios for 

that side (left or right). We retained only valid non-empty Trios for either side. Since we 

had separate groups for the left and right knee, our side detection process was not needed. 

This process yielded two sets of Trios—one for the right side and one for the left, with the 

possibility of one being empty. For any empty Trios, we determined calf points based solely 

on their Euclidean distance from the knee point on the same side. 

4.3.3.2.4 Head Markers Detection 

     The head point was determined by creating potential triangles with the detected left and 

right shoulder points and the head point for each side of the body, as depicted in Figure 

4-29, while following the constraints specified in Table 4-9. 

 

 

 

    

   Table 4-9: Head Detection Marker set Constraints (M: Marker set) 

Constraints ∆ 𝒄𝒎 Constraints ∆° 
std(𝑑ℎ) < ∆𝑑ℎ𝑠𝑡𝑑

 1 M𝜃ℎ𝑚𝑎𝑥
= max(M𝜃1, M𝜃2) 

M𝜃ℎ𝑚𝑖𝑛
= min(M𝜃1, M𝜃2) 

M𝜃ℎ𝑚𝑖𝑛
− ∆𝜃 < 𝜃ℎ < M𝜃ℎ𝑚𝑎𝑥

+ ∆𝜃 

 

19 |𝑑ℎ𝑚𝑒𝑎𝑛 − 𝑀𝑑ℎ| < ∆𝑑 1.3 

 

Figure 4-29: Head Detection Triangle 

 

     We initially identified points that maintained a consistent distance from one another 

based on the SD criteria (std(dh)<1). This was due to the limited stretching and compressing 

of the head’s anatomy, which resulted in minimal variability between the left and right head 
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markers. Among these pairs of points, those with distances that fell within a 1.3 cm 

threshold of the specified marker set value were retained as potential head pairs. 

     Subsequently, we applied anatomical and action constraints to the triangles since they 

were not rigid body segments. We calculated the head angle relative to both shoulders using 

our marker set values. The smaller angle defined the lower limit, while the larger angle 

defined the upper limit, extending the variation duration. A learned tolerance of 19 degrees 

was established, which all datasets met. Finally, the side detection was performed based on 

Euclidean distances of the detected head points with the left and right shoulders, with the 

shortest distance being on the same side. 

     Even with high tolerance due to head movement, false detections are rare because other 

body parts such as the torso, pelvis, and lower limb were identified previously, and the 

potential elbows and hands have more significant variations in their distances from the 

shoulders (i.e., they do not meet SD<1 criteria except for passive markers with short 

lifetimes). Additionally, using precise distance values between two head markers further 

minimized potential false detections. 

4.3.3.2.5 Upper Limb Markers Detection 

     The remaining points are the elbow and hand points, amid the remaining noise.  

4.3.3.2.5.1 Elbow Markers Detection 

     Elbow points were reliably identified using the bone length between the elbow and 

shoulder markers on each side as shown in Figure 4-30, by considering the constraints in 

Table 4-10. Side detection utilized Euclidean distances from shoulder points, with the 

shortest distance indicating the corresponding side. By applying mean distances and a 
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SD<1 cm criterion, the likelihood of false detections was minimized, particularly when the 

hand points were located at the same distance as the length between the shoulder and elbow. 

However, it is important to acknowledge that passive hand markers with short lifespans and 

near ghost markers could still satisfy these criteria.  

 
    

     Table 4-10: Elbow Detection Marker set Constraints 

Constraints ∆ 𝒄𝒎 

L, R 

std(𝑑) < ∆𝑑𝑠𝑡𝑑 1,1 

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 11.8, 6.4 
 

         Figure 4-30: Elbow Detection Bone 

 

4.3.3.2.5.2 Hand Markers Detection 

     The remaining points were the hand points identified amidst noise, based on the distance 

between potential hand points and detected elbows as shown in Figure 4-31, following the 

constraints in Table 4-11. Side detection was applied, ensuring that shorter distances from 

elbows were maintained on the same side.  

 
    

     Table 4-11: Hand Detection Marker set Constraints 

Constraints ∆ 𝒄𝒎 

L, R 

std(𝑑) < ∆𝑑𝑠𝑡𝑑 1 

|𝑑𝑚𝑒𝑎𝑛 − 𝑀𝑑| < ∆𝑑 5, 6.5 
 

      Figure 4-31: Hand Detection Bone 

 

4.3.3.2.6 Remaining Noise Removal 

     After identifying all valid points and labeling them correctly, we removed any remaining 

unlabeled points, which were considered noise. The final output of this step was a cleaned 

and labeled C3D file. The evaluation was conducted visually. 

 

 

𝐸𝐿  𝑆ℎ𝐿   

𝐸𝑅  𝑆ℎ𝑅  

𝑑 

𝑑 

𝐸𝐿  

𝐸𝑅  

𝐻𝑎𝐿  

𝐻𝑎𝑅  

𝑑 

𝑑  

 



179 

 

4.3.3.2.7 Dropped Ankle Marker Reconstruction 

     During the analysis of specific datasets, it was noted that there was a missing ankle 

marker for all frames. In order to resolve this issue, a trajectory for the absent ankle was 

reconstructed using a semi-supervised method. It was concluded that the missing ankle 

marker should be situated at the intersection of two spheres based on our understanding of 

which side may be lacking the marker. The first sphere had its center at the calf, with a 

radius equal to the distance between the ankle and calf, while the second sphere had its 

center at the knee, with a radius equal to the distance between the knee and ankle, as shown 

in Figure 4-32. 

 

Figure 4-32: Dropped ankle marker reconstruction triangle; Knee (green circle), Calf (violet circle), Ankle (red star: 

intersection of two spheres).  

 

     However, the intersection of these spheres resulted in a circle. As a result, a point on this 

circle was manually identified as an ankle point (A1) for the initial frame to create a triangle 



180 

 

with the knee and calf that matched the angles and lengths of the marker set. Subsequently, 

a transformation matrix was computed between the calf point in the first frame and the calf 

point in the second frame. Ankle (A1) was then translated from the first frame to the second 

frame based on this transformation matrix, resulting in the location of A2 as the ankle point 

in the second frame. This process was iterated for all frames, with adjustments made 

manually for variations in body rotation and orientation. Refinements were implemented 

through manual inspection of the constructed ankle trajectory to identify frames requiring 

adjustments. Frames that exhibited changes in orientation were identified, and the position 

of the translated ankle in those frames was refined. This process continued by translating 

with a new refined ankle point in a specific frame until reaching the next frame requiring 

refinement. The procedure was repeated for all frames to develop a comprehensive 

trajectory for the missing ankle marker. 

4.4 Experimental Results 

     Underwater MoCap data were collected using seven Qualisys Miqus M5U underwater 

MoCap cameras positioned at various points around a four-meter-deep pool at the 

Memorial University Marine Institute. Reflective passive markers were placed on 21 

anatomical locations directly on the swimmer’s skin or suit (Figure 4-5). Once calibrated 

[28], the data were recorded at 100Hz using Qualisys Track Manager (QTM) [4] and then 

exported to C3D files. Ten C3D files, each containing specific actions, have been exported 

from a larger, noisy C3D file to serve as our datasets. These files correspond to ten different 

activities performed by a single swimmer. 
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4.4.1 Results 

     In an interactive experimental setting, manual parameters were estimated for each step 

of the proposed algorithm. With these adjusted tolerances, all ten datasets successfully 

passed each step’s objectives with a 100% success rate. Table 4-12 presents the parameters 

and tolerances utilized during the pelvis detection step. Table 4-13 showcases the tolerances 

related to the remaining inlier detection. NA stands for “not applicable.” 

Table 4-12: Pelvis detection parameters and tolerances 

Parameters Tolerance Unit 

SD (Distances between Markers) < 0.5  cm 

Sides Lengths compared to Marker set ± 2.4 cm 

SD (Angles) < 3.5 º 

Spine Angle compared to Marker set ± 6 º 

Waists Angle compared to Marker set ± 5 º 

Spine Projection Distance on Majority Axis (How Far Spine is from Majority Axis) ± 14.5 cm 

Symmetry of Waist points against the Majority Axis ± 8.9 cm 

Angle between the Majority Axis and Spine to Waistline-midpoint Line  ± 35.4 º 

Angle between the Majority Axis and Waistline 90 ± 15.2 º 
 

Table 4-13: Remaining inlier detection tolerances 

Table Algorithms Parameters Distance (cm) Parameters Angle (º) 
 

4-3 
 

Shoulder Points Detection 
Shoulder - Spine ±10 Shoulder ± 6 

Shoulder - Shoulder ± 5 Spine NA 

4-4 Chest Point Detection Shoulder - Chest ± 5 Shoulder ± 7 

4-5 Stomach Point Detection Stomach - Spine ± 5 Stomach ± 7 

Stomach - Chest ± 5 Chest ± 7 

4-6 Hip Points Detection Spine – Hip, Waist - Hip ± 3.03 Hip NA 

4-7 Knee Points Detection Waist – Knee, Hip - Knee ± 5.5 Knee NA 

 

4-8 

 

Calf and Ankle Points Detection 

SD (distances) < 1  NA 

Knee - Calf  (L/R) ± 7.3, ± 5 Knee (R/L) ± 8, 16 

Calf - Ankle  (L/R) ± 7.3, ± 5 Calf (R/L) ± 13, 35 

Knee - Ankle  (L/R) ± 7.3, ± 5 Ankle (R/L) ± 20, 20 
 

4-9 
 

Head Points Detection 
Shoulder - Head NA  ± 19 

Head - Head STD <1  NA 
 

4-10 
 

Elbow Points Detection 
SD (distance) < 1  NA 

Shoulder - Elbow (L/R) ± 11.8, 6.4  NA 
 

4-11 
 

Hand Points Detection 
SD (distance) < 1  NA 

Elbow - Hand (L/R) ± 5, 6.5  NA 
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     Table 4-14 presents the outcomes of each stage of the proposed algorithm across ten 

datasets. The remaining points and reduction percentage are shown after certain steps to 

illustrate the algorithm’s impact on reducing the number of invalid or reappearing markers, 

thereby reducing computational load. The significant reduction percentage in dataset #7 

and #10 after removing NaN points was due to their improperly exported, untrimmed C3D 

files. 

Table 4-14: The results of each step of the algorithm on 10 datasets 

Data                                                  Datasets 1 2 3 4 5 6 7 8 9 10 

# Frames 921 1241 536 686 803 897 460 792 803 653 

# Original Points 65 62 34 65 51 35 245 30 48 1719 

# Original Labels 65 62 34 65 51 35 245 30 48 255 

# NaN Points 5 15 0 5 5 4 221 4 10 1667 

# Remaining points 60 47 34 60 46 31 24 26 38 52 

# Reduction percentage (%) 7.7 75.8 0.0 7.7 9.8 11.4 90.2 13.3 20.8 97.0 

# Extraneous markers 0 0 0 0 0 0 4 0 0 5 

# Far Outliers 2 3 4 0 10 2 0 0 2 2 

# Velocity, Acceleration, Jerk Anomalies 4  0  2 4 3 1 0 0 0 4 

# Norm, Vel., Acc., and Jerk Anomalies 12 0 1 3 2 0 0 0 0 13 

# Overlapped points 0 1 0 1 0 0 0 0 1 0 

# Remaining points After Noise Reduction 42 43 27 52 31 28 20 26 35 28 

# Reduction percentage (%) 30.0 8.5 20.6 13.3 32.6 9.7 16.7 0.0 7.9 46.2 

# Pelvic Triplets 2 5 2 3 1 3 1 2 4 1 

# Shoulder points (L,R) 1,1 1,1 2,2 1,1 2,2 1,1 1,1 1,1 1,1 1,1 

# Chest points 1 3 1 1 1 1 1 1 1 1 

# Stomach points  1 1 1 1 2 2 1 1 1 1 

# Remaining points  40 37 25 50 29 24 20 24 32 28 

# Reduction percentage (%) 4.8 13.9 7.4 3.8 6.5 14.3 0.0 7.7 8.6 0.0 

# Near Outliers 9 0 1 8 1 0 0 0 0 4 

# Remaining points 31 37 24 42 28 24 20 24 32 24 

# Reduction percentage (%) 22.5 0.0 4 16 3.4 0.0 0.0 0.0 0.0 14.3 

# Hip points (L,R) 1,1 1,2 1,2 2,2 1,1 1,1 1,1 2,2 1,1 1,1 

# Knee points (L,R) 1,1 1,2 1,1 1,2 1,1 1,2 1,1 1,1 1,1 1,1 

# Calf points (L,R) 1,1 1,1 1,1 2,3 1,2 2,1 2,1 1,1 1,1 1,1 

# Ankle points (L,R) 2,0 2,0 1,0 0,4 1,0 1,1 1,1 1,1 1,0 1,0 

# Head points (L,R) 1,4 1,3 1,2 4,3 1,2 1,1 1,1 1,1 1,3 1,2 

# Elbow points (L,R) 1,1 3,4 2,1 1,2 4,1 1,1 1,1 1,2 3,4 2,1 

# Hand points (L,R) 5,1 6,3 1,1 1,7 4,1 1,2 0,0 1,1 4,3 4,1 

# Remaining points 20 20 20 20 20 21 19 21 20 20 
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     Table cells with multiple values separated by a comma (e.g., 4,3 for # Head points in 

dataset 4) represent the number of detected reappearing markers on the left side (4) and 

right side (3). In dataset #7, no hand points were detected due to dropped markers in all 

frames, resulting in a total of 19 valid markers. For all datasets with a total of 20 remaining 

points, the right or left ankle marker was not captured across all frames in the dataset, 

prompting the proposal of a recovery algorithm to reconstruct them (see subsection 

4.3.3.2.7). Notably, there were no instances of false labeling or unlabeled markers. 

4.4.2 Discussion    

     We developed an interactive algorithm to streamline the tedious manual cleaning of 

MoCap Data. The algorithm removes outliers, extraneous, overlapping and ghost markers, 

focusing on detecting inliers based on the geometric criteria like joint angles and bone 

lengths using a marker set of 21 markers. Visual evaluation demonstrated a 100% accuracy 

rate across ten underwater MoCap datasets.  

     First, we provide an analysis of interesting phenomenon that occurred during the 

workflow development, specifically considering the pelvis triplets, issues with no hand 

points detected, and the necessity of the proposed algorithm to overcome challenges with 

manual cleaning. Subsequently, we will delve into specific considerations of assumptions 

made during the process and propose potential solutions for enhancing future iterations. 

4.4.2.1 Analysis of Pelvis Triplets and Side Detection 

     In Table 4-14 the number displayed in front of the pelvis detection row for each dataset 

represents the count of detected triplets for pelvis points. For example, in dataset #2, five 

triplets were detected: [8 9 14], [8 34 9], [8 9 36], [8 38 9], [8 42 38]. In each triplet, the 
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first number denotes a spine marker, which in this case was reliably labeled with ID8, while 

the other two numbers represent waist IDs with unknown sides. The proposed algorithm 

places the spine point as the first index in the triplet due to its greater angle. However, since 

the pelvis forms an isosceles triangle, initially distinguishing between the other two waist 

points as left or right was challenging (see subsection 4.3.3.1.4.1).  

     Firstly, the triplets (we referred them to Trios) were sorted by the proposed algorithm if 

they contained identical numbers. This means that if the value in index 2 of one Trio is the 

same as the value in index 3 of another Trio, then it is evident that both should be placed in 

the same index and side. Therefore, the corrected Trios are as follows: [8 9 14], [8 9 34], [8 

9 36], [8 9 38], [8 42 38]. These numbers can vary across different Trios. If a label has the 

same number in multiple instances, it signifies that the marker was visible throughout, 

while the other label may have disappeared and reappeared with a new ID.  

     For example, in dataset #2, the spine marker with ID8 remained continuously visible 

across all Trios. One of the waist markers with ID9 maintained its original ID in the first 

four Trios but disappeared and reappeared with a new ID42, in the last Trio. The other waist 

marker transitioned through ID14, ID34, ID36, and finally settled on ID38. This sequence 

suggests that initially, it had an ID14 which then disappeared. Upon reappearing, it was 

assigned ID34, then ID36, and finally settled on ID38. At the final stage of processing, the 

first pelvis Trio [8 9 14] was retained. The trajectories of ID34, ID36, and ID38 are combined 

with the trajectory of ID14. The same merging process was applied to ID42 and ID9. Any 

gaps present in all trajectories were linearly interpolated. Consequently, the resulting C3D 

file contained one spine point with ID8 and its corresponding complete trajectory, one waist 

point with ID9 and its corresponding complete trajectory, and another waist point with ID14 
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and its corresponding complete trajectory. It is important to note that in the proposed 

algorithm, distinguishing between left or right is not crucial; only the same side matters. 

Other IDs such as ID34, ID36, ID38, and ID42 are eliminated in the final C3D file, resulting 

in a reduction of four points from the total number of points. 

     In this example, the side detection was unnecessary due to identical numbers in Trios. 

To demonstrate side detection, another example is presented from dataset #1, which 

includes two Trios: [13 16 21] and [13 40 41]. Just like before, index 1 corresponds to the 

spine point (ID13). Now, we need to conduct side detection to determine if ID16 belongs to 

the same side as ID40 or ID41. If ID16 is on the same side as ID40, these Trios are confirmed 

as correct, and the trajectory of ID40 should be combined with that of ID16. Similarly, the 

trajectories of ID21 and ID41 should be merged. If not, then IDs 16 and 41 will be merged 

while ID21 and ID41 would be combined. The correct order of indices for this dataset after 

side detection confirmed that the first scenario was accurate. 

4.4.2.2 Analysis of Dataset 7 with no Hand Points Detected 

     In dataset #7, it was observed that no hand markers were detected. This absence of hand 

markers signifies that throughout the data capture process across all frames, there were no 

hands present as the markers were physically dropped. The proposed algorithm did not 

incorporate a recovery algorithm for this dataset due to the distinct nature of hand 

movements compared to other body parts. Since specific hand data was not available in the 

dataset, implementing a recovery algorithm would not have provided meaningful results. 

This is because without a reference point for hand movements within the dataset itself, any 

attempt at recovery would lack accuracy and relevance. While it may be possible to 
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manually simulate hand movements based on swimming actions in some instances, such as 

breaststroke or butterfly stroke, it is not feasible for freestyle movement. Freestyle 

swimming involves complicated arm motions that are challenging to replicate accurately 

without actual hand marker data, and any estimation techniques would simply provide 

synthetic data that likely would not reflect the actual movements. 

4.4.2.3 Evaluating the Importance of Implementing This Algorithm 

     Manual cleaning is a time-consuming and tedious process, especially in complex tasks. 

Specifically, the reappearing passive markers further complicate the situation, as their 

movement behavior can resemble noise if their lifespan is short. 

     Additionally, during manual cleaning, changing perspectives is crucial for accurately 

detecting points, as distances can be misleading. For instance, in Figure 4-33, the red points 

in image (a) appear close to valid markers, but in image (b), they are shown to be far away. 

Similarly, the yellow points in image (c) seem to overlap, yet a different angle in image (d) 

reveals they are also distant from valid markers.     

    
                     a                                            b                                              c                                                   d                      

Figure 4-33: The effect of changing the view in Manual Cleaning: Real far distances (b, d) seem near (a, c) from a 

different perspective. 
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     In manual cleaning processes, it is necessary to meticulously examine hundreds of 

potential points over thousands of frames. Particularly in cases of complex movements, 

proximity to outliers, and data gaps, detecting anomalies especially ghost markers that are 

very near to valid markers can be challenging, even for a skilled human. 

     Taking tolerances into account increases the likelihood of misclassifying nearby ghost 

markers as valid markers. However, this method has the advantage of accurately identifying 

the frame and label number associated with any abnormalities, facilitating quick visual 

verification. Moreover, the intersection check process (Algorithm 2, line 7) triggered an 

alarm for visual verification when two points were identified as one physical marker in a 

single frame, consisting of one ghost marker and one valid marker.  

     Depending on the specific marker set used, this process can be automated. Nonetheless, 

due to the inherent challenges presented by our sparse underwater passive marker dataset 

and the presence of ghost markers, a semi-automatic approach that combines automatic 

identification with manual verification proved to be more reliable.  

4.4.2.4 Consideration of Assumptions and Future Solutions 

     We had varying assumptions throughout our algorithm. In the extraneous marker 

removal phase, valid markers should not be near extraneous ones. For example, in our 

datasets, swimmers did not swim at the pool’s bottom where extraneous markers were 

located (i.e., the system’s calibration fixture). If extraneous markers were not removed 

initially, they would be addressed later, increasing computational load.  

     In far outlier detection we removed anomalies with fill levels less than 1% due to 

potential passive markers meeting the criteria. This step was used to reduce the 
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computational load, as these outliers could be detected during geometry-based inlier 

detection due to their far distance from valid markers. In the future, we can calculate the 

mean velocity, acceleration, and jerk over the lifespan of the identified anomalies. 

     In pelvis detection using the majority axis, we utilized a frame with a minimum point 

and made assumptions about the alignment of the pelvis triangle relative to the majority 

axis. While our datasets aligned with these assumptions, further testing with various actions 

is necessary. Additionally, for pelvis side detection, we assumed there would be no 

significant variation in small gaps, which may not hold true. As a future endeavor, we 

should focus on developing an automatic robust solution and explore whether it can be 

based on the direction of movement, the cross vector, and other criteria. The initial attempt 

to detect sides based on these criteria has not yet yielded results. 

     In the inlier detection algorithm, a rigid body assumption was made by incorporating 

user-defined tolerances to demonstrate deviations from rigidity concerning the angles and 

distances within the marker set. This assumption was correct as long as there was no 

stretching or compressing of the body. However, using mean distances and angles helps 

mitigate this issue even in those situations. Moreover, certain segments exhibit considerable 

deviations from the rigid body assumption (e.g., triangle formed by head and shoulders). 

We addressed this using action constraints from our datasets.. 

     To identify most of our body parts, we assumed that any three points could form a 

triangle, necessitating the presence of all three points simultaneously in at least one frame. 

To address this assumption in future studies, we plan to pinpoint potential body part 

locations by considering marker set distances. If these points fail to create a triangle, we 

will then proceed to handle these potential points after identifying all body parts, similar to 
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our approach for dropped ankle reconstruction. We could remove this assumption in our 

current algorithm but because all our datasets met this assumption, we did not do that 

because such actions would have unnecessarily complicated these procedures, which was 

not our intention. Our primary objective is to streamline the manual cleaning process. 

     Using interpolation for gap filling can affect angles, distances, and other aspects. 

Exploring alternative recovery approaches is crucial to achieve more natural gap filling, 

especially with large gaps. However, considering the mean distances reduced the impact. 

     We visually evaluated the C3D of each step to ensure accuracy. It was essential to 

maintain consistent tolerances across all datasets. Therefore, if we encountered a situation 

where, for example, certain body points reappeared in the third dataset but were not 

detected, we adjusted the tolerances and reviewed the previous dataset to prevent false 

detections or missed points. While starting with high initial tolerances may mitigate this 

issue due to varying criteria, it is challenging in conditions with near ghost markers. 

     Overall, assumptions based on domain knowledge, such as specific action constraints, 

are fundamental in feature-based approaches. Many MoCap solving methods did not 

consider ghost markers, and deep learning approaches may struggle with unseen complex 

actions that differ significantly from the training set. Since there are no underwater MoCap 

data available, and freestyle actions in this environment are unique and unpredictable, 

manual cleaning is necessary in our dataset. The purpose of this algorithm was facilitating 

laborious manual cleaning, especially for complex actions with numerous reappearing 

markers, where assumptions and interactive approaches prove to be effective in noisy and 

complicated scenarios where manual cleaning is not feasible.  
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4.5  Conclusion 

     We have tackled the issue of labeling raw MoCap data, particularly using underwater 

sparse marker sets and freestyle underwater motion. These data are susceptible to various 

types of noise, including outliers, extraneous and ghost markers, as well as missing markers 

caused by occlusions, reduced visibility under water, and dropped markers due to water 

resistance. Moreover, handling the reappearing valid markers caused by using passive 

markers results in a high number of points with small trajectory segments instead of a 

certain number of valid markers with corresponding trajectories and possible gaps.  

     This interactive approach aims to facilitate the tedious and error-prone manual cleaning 

process of creating training and ground truth datasets for machine learning and deep 

learning algorithms. Additionally, it can be utilized in the alignment, evaluation, or 

correction phase of these systems. Furthermore, it serves as a standalone solution for 

cleaning and labeling smaller datasets that do not warrant the use of advanced algorithms. 

     We have addressed this issue by implementing a range of innovations, such as 

extraneous removal based on anomaly detection in the difference of sorted norms profile. 

Additionally, we have developed methods for detecting abnormalities in norm, velocity, 

acceleration, and jerk profiles. Furthermore, we have established a process for identifying 

inliers using a geometry-based approach that considers marker set values like lengths and 

angles. The algorithm’s central feature is PCA based pelvis detection, which can also be 

utilized in the alignment step of the other MoCap solving systems. The evaluation was 

conducted visually, showcasing a 100% accurate detection of valid markers for our ten 

captured underwater MoCap datasets containing 21 valid markers. 
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5. Deep Learning based Auto-Labelling for Underwater Sparse 

Freestyle MoCap Data 

Abstract 

     This paper discusses auto-labeling for sparse freestyle underwater optical motion 

capture (MoCap) data using 21 passive markers, recorded by Qualisys Miqus M5U Mocap 

Cameras. MoCap data contains noise such as outliers, ghost markers, and occlusion, which 

are exacerbated by water’s unique properties. The algorithm aims to train a Long Short-

Term Memory (LSTM) network with various inputs to assess the impact of feature 

selection, training set size, and noise on accuracy. The process involves augmenting the 

training set with random noise and gaps, training an LSTM model with 3D position inputs, 

then with positions, velocity, and acceleration as five inputs, and using transfer learning 

with simulated trajectories to expand the training set. Labels are assigned using the 

Hungarian algorithm, Procrustes analysis locates unlabeled markers, and an OpenSim 

marker set post-processing corrects mislabeled markers. A semi-supervised geometry-

based labeling method establishes ground truth and training sets. PCA-based pelvis 

detection aids in data alignment, and an extraneous marker removal algorithm boosts 

LSTM performance from 66% to 98%. The semi-supervised algorithm achieved 100% on 

our 10 datasets. Overall, the auto-labelling algorithm streamlines the MoCap manual 

cleaning. 
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5.1  Introduction 

     Marker-based optical motion capture (OMC) [1] is a technique used in various industries 

[2], such as computer vision, biomechanics, entertainment, sports analysis, medical 

research, and robotics, to accurately track and record the three-dimensional (3D) motion of 

humans. This method involves attaching markers to the subject’s body while cameras 

capture their positions in real-time. Specialized software (e.g., Qualisys [3]) processes this 

MoCap data to determine the 3D coordinates of each marker by triangulating their locations 

from multiple camera views. 

     However, the raw Mocap data contain errors due to calibration issues, noisy 

environments (e.g., reflective surfaces), and occlusion, resulting in noise, outliers, ghost 

markers, mislabeling, and gaps. Extraneous markers, which are real markers from other 

objects, may also be present. The underwater environment poses greater challenges due to 

surface reflections and water’s unique properties, which amplify noise [4]. For example, 

reduced visibility underwater increases the possibility of occlusion. This poses a greater 

challenge for passive systems, as occluded passive markers typically receive new random 

IDs upon reappearance, resulting in multiple short trajectories for a single marker. In 

contrast, active markers retain their ID during occlusion, allowing for continuous 

trajectories with potential gaps. Therefore, passive markers can be resembled as noise 

throughout their lifespan. We refer to instances of a passive marker as “reappearing” 

markers. 

     The mentioned challenges complicates manual cleaning and labeling MoCap data. 

Automatic labeling functions in commercial software (e.g., Qualisys AIM model; 
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Automatic Identification of Markers [5]) can expedite this process but is still time-

consuming, expensive, and requires manual intervention and cleaned training data. 

Consequently, researchers have sought automatic cleaning methods. Early techniques 

utilized rigid body and action constraints based on user-defined tolerances, limiting their 

generalizability across different actions [6]. Recently, there has been a shift towards deep 

learning methods to improve this process [7]. However, the lack of labeled MoCap data for 

training these models is a major hurdle; for example, the largest dataset, AMASS [8], is 

much smaller than video datasets in other fields. Despite these challenges, deep learning-

based approaches promise better generalization with reduced user intervention. 

     The challenge of using deep learning-based auto-labeling methods for underwater 

swimming actions in the absence of a Mocap dataset, particularly those involving intricate 

and freestyle movements, is significant. A limited number of existing datasets are only 

partially underwater, not comprehensive, and sparse [9]. Therefore, we captured 

underwater MoCap data using Qualisys system as our primary objective and contribution.     

     The auto-labeling algorithm in this study employs a Long Short-Term Memory (LSTM) 

[10] network to generate a vector of probabilities, which are then assigned labels using the 

Hungarian algorithm [11]. A semi-supervised geometry-based algorithm, as detailed in 

Chapter 4 of this thesis, is utilized to establish ground truth and serves as a standalone 

labeling algorithm for comparison with the LSTM method. A pelvis detection algorithm 

utilizing Principal Component Analysis (PCA) [12] is used to align data. Additionally, an 

extraneous marker removal algorithm is proposed to enhance the results of LSTM auto-

labeling. Post-processing identifies and correct mislabeled data using an OpenSim [13] 

marker set, and the Procrustes algorithm [14] assigns labels to unlabeled data. Transfer 
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learning [15] is used to expand the training set using simulated trajectories, and due to the 

small dataset size, it is augmented using random noise and gaps. 

     The paper is organized as follows: Section 5.2 discusses the former works on auto-

labeling in optical Mocap systems. Section 5.3 describes the proposed method with its 

rationale and design considerations. Section 5.4 presents experimental results. Section 5.5 

summarizes the article. 

5.2  Related Work 

     Early auto-labeling methods (e.g., moving average filters and low-rank matrix [16], 

unscented Kalman filter and inverse kinematics [17], automatic kinematic model building 

based on Markov random field [18], and skeleton-based body models [6], [19]–[21]), 

mainly relied on empirical parameters and hand-crafted features. Although these 

approaches could produce acceptable outcomes for specific patterns and noise under 

assumptions and constraints, they consistently faced difficulties adapting to real-world data 

with intricate situations.  

     Data-driven methods have been employed to address the limitations above by learning 

from a large database, such as kd-tree [22], local PCA [23], self-similarity [24], sparse 

encoding [25], [26], graph matching [27], [28], and deep learning-based approaches [29]–

[32]. We provided a thorough literature review on addressing MoCap data solving includes 

denoising, recovery, alignment, and auto-labelling in Chapter 2 of this thesis.  

     We utilize the source Python code of the deep learning-based auto-labeling approach 

presented in [33]. However, we enhance their algorithms in several ways. One significant 

enhancement is proposing an automatic pelvis detection method for data alignment instead 
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of their manual approach. Additionally, they reported low accuracy due to extraneous 

markers, which we address by proposing an extraneous markers removal algorithm. This 

improvement significantly enhances the accuracy from 66% to 98%. Furthermore, we input 

three data (X, Y and Z position) into LSTM instead of their five inputs (X, Y, Z, velocity 

and acceleration) and conduct comparisons. A semi-supervised geometry-based algorithm 

is proposed to establish ground truth and functions as an independent labeling method for 

comparison with the LSTM approach. 

5.3  Methodology 

     The overview of our system is shown in Figure 5-1. It consists of 11 main steps: 

capturing C3D files, creating an OpenSim marker set, ground truth creation using semi-

supervised geometry-based labeling algorithm, preprocessing, PCA-based pelvis detection 

for alignment, training set creation using augmentation and simulated trajectories, training 

LSTM using three and five inputs [33], labelling test data using the Hungarian algorithm, 

post-processing using Procrustes, and accuracy calculation. They will be described in the 

following sections.       

     The semi-supervised geometry-based labeling algorithm, detailed in Chapter 4 of this 

thesis, was proposed to clean and label datasets. This process generates ground truth and 

training datasets for the LSTM-based auto-labeling method presented in this article. This 

algorithm relies on the geometric characteristics of the human body considering user 

defined tolerances based on rigid body assumptions and actions’ constraints. This algorithm 

as shown in Figure 5-1, read C3D file using MATLAB. The steps of this algorithm are 

preprocessing including invalid label removal, extraneous marker removal, far outlier 
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removal, PCA-based pelvis detection, torso detection (shoulders, chest, and stomach 

points), near outlier removal, limb (hips, knees, calves, ankles, elbows, and hands) and head 

detection, remaining noise removal, and dropped marker reconstruction. We will not cover 

the details of this algorithm in this article. 

 

Figure 5-1: System Overview 
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5.3.1 Capturing MoCap C3D Data 

     Underwater MoCap data were captured using seven Qualisys Miqus M5U underwater 

MoCap cameras [34] installed at different locations around a four-meter-deep pool at the 

Memorial University Marine Institute. Passive markers were placed on 21 anatomical 

locations directly on the swimmer's skin or suit. After calibration [35], data were recorded 

at 100Hz using Qualisys Track Manager (QTM) [36] and exported to C3D [37], [38] files.  

     A MoCap C3D file consists of a defined number of frames and points, which can be 

categorized into valid markers and noise. These markers are tracked across all frames, and 

their trajectories are represented by their 3D coordinates x, y, and z over time. To process 

the data, we utilized the EZC3D library [39] in MATLAB and Python to read C3D files. 

5.3.2 Open Sim Model Marker Set 

     OpenSim 4.4 software [13] was used to create the marker set based on the 

musculoskeletal model [40]. Our marker set consisted of 21 passive markers attached to 

our swimmer’s suit and body, as shown in Figure 5-2. These markers were placed on an 

OpenSim Simbody based on our marker set. The markers’ local coordinates are defined in 

a “MarkerSet.xml” file. 

     Furthermore, triangle-based calculations, which include angles and bone lengths, were 

derived from a “T-pose” skeleton. The markers were attached at the same locations as those 

on a Simbody. These measurements served as inputs for a semi-supervised geometry-based 

algorithm, along with the post-processing steps of the LSTM-based auto-labeling approach 

described in this article. 
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Figure 5-2: OpenSim Marker Set; locations of 21 passive markers (pink orbs) 

 

5.3.3 Simulated Trajectories 

     The simulated trajectories were generated based on our marker set using the kinematics 

of 100 participants from “bodykinematics.hdf5” [33]. Right waist and left waist markers 

were used to align the subject to face in the positive x-direction (+x). The sampling 
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frequency of data was 100 Hz. The generation of simulated data addresses the issue of 

insufficient data for training deep learning models. This body kinematics contained actions 

such as running, walking, and others described in [33], which are completely different from 

our underwater freestyle movements. 

5.3.4 Training Data Sets Preparation  

     The raw C3D files captured contained outliers, extraneous markers, ghost markers, and 

gaps or reappearing markers due to occlusion. Denoising, recovering missing markers, and 

labeling these MoCap data could be manually performed using free software such as Mokka 

[41] or commercial software such as QTM. To avoid the tedious manual cleaning process, 

we employed our semi-supervised geometry-based labeling algorithm to clean and label 

the datasets, creating the ground truth or training sets.    

5.3.4.1 Transfer Learning 

     Transfer learning was utilized to augment the training set of the network by 

incorporating the accurately labeled outputs from the auto-labeling algorithm. This allowed 

us to enhance the training set by adding the trained model using simulated trajectories or 

by adding new labeled C3D files to a previously trained model. This approach improved 

the network’s performance and accuracy. 

5.3.4.2 Augmentation 

     Because our underwater datasets were small and the created simulated trajectories 

contained actions that were very different from our freestyle underwater movements, we 
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augmented our datasets by adding random noise and gaps. However, we did not incorporate 

the simulation of reappearing markers. 

5.3.5 Pre-processing Data 

     There were several steps to prepare input data for a neural network, including invalid 

label removal, extraneous marker removal, pelvis detection for alignment, Butterworth 

filtering, gap filling, and data windowing, which are described in the following sections. 

We compared the results with and without this enhancement to demonstrate the significant 

improvement in accuracy achieved through our contribution. 

5.3.5.1 Invalid Label Removal 

     Removing labels that hold no information in all frames reduced the computational load. 

This happens when a C3D file is a subset exported from a larger C3D file without trimming. 

5.3.5.2 Extraneous Removal 

     This algorithm used clustering of norm differences to identify and remove extraneous 

markers that were visible in all frames and located far from valid markers. This method 

involved calculating the Euclidean norm of each point 𝑝 = (𝑥, 𝑦, 𝑧) in every frame relative 

to the origin 𝑂 = (0,0,0) as ‖𝑝‖ = √(𝑝 ⋅ 𝑝) = √(𝑥2 + 𝑦2 + 𝑧2). Then, the norms and 

their corresponding labels were sorted, and the difference between each norm value and the 

preceding norm value was computed. To remove anomalies, we set a threshold of three 

standard deviations (SD) from the mean (e.g., using “isoutlier()” function in MATLAB). 

This method improved the low accuracy, due to extraneous markers, noted in [33].  

 



205 

 

5.3.5.3 Pelvis-based Alignment 

     The marker coordinates were rotated around the vertical axis so that the swimmer faced 

the positive x-direction at the beginning of the trial, to prepare the data for input into the 

neural network. We used PCA-based pelvis detection, as detailed in Chapter 4 of this thesis 

and will be summarized here, to automatically align data in the dataset based on the right 

and left waist points. This proposed method resolved the issue of manual alignment of test 

data described in [33].  

5.3.5.3.1 PCA-based Pelvis Detection 

     First, we identified probable pelvis points (i.e., reappearing passive marker IDs) by 

assuming that the spine, right waist, and left waist markers appeared simultaneously in at 

least one frame to form a triangle, as illustrated in Figure 5-3. 

 

 

         Table 5-1: Pelvis Detection Marker set Constraints (M: Marker set) 

Constraints Constraints 

|𝑑1 − 𝑀𝑑1|   < ∆𝑑𝑀 |𝜃𝑆𝑝 − 𝑀𝜃𝑆𝑝|   < ∆𝜃𝑀𝑆𝑝 

|𝑑2 − 𝑀𝑑2|   < ∆𝑑𝑀 |𝜃𝑊1 − 𝑀𝜃𝑊1| < ∆𝜃𝑀𝑊 

|𝑑𝑊 − 𝑀𝑑𝑊| < ∆𝑑𝑀 |𝜃𝑊2 − 𝑀𝜃𝑊2| < ∆𝜃𝑀𝑊 
 

        Figure 5-3: Pelvis Triangle 

 

     We detected probable pelvis points in each frame by applying geometric constraints 

based on rigid body assumptions. First, we selected pairs of points with a static distance 

(i.e., SD(distance) < 0.5 cm). Next, we formed all combinations of three points to create 

triangles and evaluated their distances and angles against specific criteria. Then, we refined 

the triangles that met these criteria by assessing their orientation. We determined body 

orientation using the first PCA component as the majority axis. We assumed that the right 

and left waist points should be symmetrically aligned with this axis, while the spine point 

𝑆𝑝 

𝜃𝑆𝑝  

𝜃𝑊2  

𝑑2  𝑑1  

𝜃𝑊1  

𝑊1 𝑊2 
𝑑𝑊  
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should be close to both the centroid of the points and this axis. Finally, we accurately 

identified the correct pelvis points by comparing distances and angles with precise values 

from our marker set, as shown in Table 5-1. We used a side detection algorithm to 

differentiate between the right and left waist points. Next, we combined the short 

trajectories for each pelvis point into a single trajectory and applied linear interpolation to 

fill in any gaps. 

5.3.5.4 Butterworth Smoothing 

     Trajectories were smoothed using a zero-phase second-order 6Hz Butterworth filter, 

akin to [33]. This smoothing process occurred after our pelvis detection step since it could 

impact angle values crucial for the pelvis detection algorithm. However, using mean angles 

helped reduce the influence of smoothing. 

5.3.5.5 Gap Filling      

     The small gaps, defined as gaps 10 frames or less, were filled using linear interpolation. 

As is common in passive marker systems, we observed short trajectories for each marker, 

rather than complete trajectories with potential gaps as seen in active systems. However, 

accommodating a general solution for datasets with active or passive markers and partially 

processed data, we filled any small gaps.  

5.3.5.6 Data Windowing 

     Windowing marker trajectories before inputting them into an LSTM network enhances 

the network’s ability to capture temporal dynamics, extract relevant features, handle 

variable-length sequences, improve training efficiency, and enhance prediction accuracy. 
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For the test and validation data, windows of 100 frames were chosen, if the total number 

of frames was divisible by 100. The last window would be smaller for fewer frames. If 

there were 10 or fewer frames left, these frames were added to the previous window. For 

example, for 202 total frames, we created two windows with a size of 100 each. The 

remaining 2 frames, being less than 10, were added to the second window. In the training 

data, a random length between 10 and 100 frames was considered so that the neural network 

could encounter windows of various sizes to prepare for the different-sized final window 

of each marker. The detail of the windowing procedure was described in [33]. 

5.3.5.7 Neural Network Input Data 

     We used three inputs (x, y, and z relative location of each marker) and suggested five 

inputs [33] (x, y, z, velocity and acceleration of each marker) separately as inputs into the 

neural network to compare them. The x, y, and z coordinates of the retained markers in 

relation to the current marker were computed by iterating through all markers. 

Subsequently, the trajectories were arranged based on their mean distance from the current 

marker. The Euclidean norm of the velocity and acceleration of the retained markers 

concerning the current marker were computed. The relative positions, velocities, and 

accelerations were normalized by the mean values observed across all markers in the 

training dataset. A matrix of dimensions (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒)  ×  (5 (𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 −  1)) was 

created, which included the positions (coordinates x, y, z), velocities, and accelerations of 

the retained markers relative to the current marker. This matrix served as input to the neural 

network. A matrix of dimensions (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒)  ×  (3 (𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 −  1)) was used for 

3-input. 
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5.3.6 Long short-term memory (LSTM) 

     An LSTM network was used to calculate label probabilities for each window. It is a type 

of recurrent neural network (RNN) specifically designed to overcome the vanishing 

gradient problem found in traditional RNNs. One of its main advantages over other RNN 

architectures and sequence learning techniques is its effectiveness in handling varying 

lengths of temporal gaps in the data. This feature allows LSTM networks to significantly 

improve the capture of long-sequence dependencies by utilizing a short-term memory 

mechanism that retains information over thousands of time steps.  

     The suggested network [33] comprised a recurrent layer (LSTM) with a 10% dropout 

rate and 128 cells, a fully connected layer with 128 nodes, one-dimensional batch 

normalization, a rectified linear unit (ReLU), another fully connected layer, and a softmax 

function. The network was implemented using a stochastic gradient descent (SGD) 

optimizer with momentum to train the neural network using a cross-entropy loss criterion. 

The algorithm underwent training for 10 epochs on the training sets and was subsequently 

tested on the data set. The training and testing processes were executed on an 11th Gen 

Intel(R) Core(TM) i7-1165G7 @ 2.80GHz processor with 16.0 GB of RAM. 

     Hyperparameter tuning was conducted in [33] to determine the optimal settings for 

various parameters in a neural network model. These parameters included the number of 

LSTM layers, the number of LSTM cells, the dropout percentage for LSTM layers, the 

number of nodes in fully connected layers, and the momentum and learning rate of the 

optimizer. The process of finding the best combination of these hyperparameters was 

achieved through Bayesian hyperparameter optimization using the Ax Platform. In this 

optimization process, the micro-averaged F1 score was utilized as the metric for evaluation. 
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The micro-averaged F1 score combines precision and recall into a single metric and serves 

as an indicator of classification accuracy. The best results were obtained with three LSTM 

layers, 256 LSTM cells, a dropout rate of 0.17, 128 nodes in fully connected layers, a 

learning rate set at 0.078, and a momentum value of 0.65. 

     The neural network produced a 1 ×  𝑛𝑢𝑚_𝑙𝑎𝑏𝑒𝑙𝑠 vector for each window of a marker, 

indicating the probabilities of each label being correct. New windows were created by 

dividing the trial marker data at frames where any marker appeared or disappeared. This 

ensures that each marker label appeared only once in each window, which was essential 

because a single marker label may be spread across multiple trajectories, and this guarantee 

is not provided with randomly segmented windows. 

5.3.7 Hungarian based Label Assignment 

     Formulating the assignment of labels involved solving an unbalanced assignment 

problem on a weighted bipartite graph. Consequently, the optimal marker labels for each 

window were determined using the Hungarian algorithm. Using the weighted mode 

involved assigning a single label to the entire trajectory. The predicted labels for each frame 

were weighted based on the probability of the prediction. The issue of assigning two 

markers to one label was solved by keeping the marker with the highest probability [33]. 

5.3.8 Post-processing   

     The OpenSim marker set was utilized to determine the precise local coordinates of each 

marker in relation to its corresponding body segment. This process helped identify 

inaccurately labeled markers by assuming a rigid body model. If the distances between a 

marker and other markers within the same segment deviated more than three SD from the 
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distances in the training dataset specific to that marker, the assigned label was removed. 

Assigning labels to unlabeled markers was determined by calculating the mean 

probabilities and comparing the distance to other markers in a segment with three SD from 

those observed in the training set. If the distances fell outside this range for all available 

labels, the marker remained unlabeled [33]. 

5.3.8.1 Procrustes Analysis  

     Procrustes Analysis [14] is a statistical method for analyzing the distribution of a set of 

shapes. It was used [33] to align the local marker coordinates in the marker set with the 

measured markers based on scaling, rotation, and translation to assign labels for body 

segments with at least three markers, but with one or more remaining unlabeled. Locating 

unlabeled markers was achieved by ensuring that all distances between the aligned marker 

set and the measured markers were below a specified threshold. If an unlabeled marker fell 

within a second threshold of the expected position based on the aligned marker set 

coordinates, it was then assigned the missing label. The manual adjustment of thresholds 

was based on the spacing of markers within the respective marker set. 

 

5.3.9 Evaluation Metrics 

      We compared labelled data with ground truth with different metrics. We reported 

average of per-frame accuracy, precision, recall, and F1 score in percentages. We used a 

confusion matrix which is a table that is often used to describe the performance of a 

classification model on a set of data for which the true values are known. It is called a 

confusion matrix because it can show what types of errors are being made by the model. 

Below are the definitions of confusion matrix values and the evaluation metrics: 
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     A confusion matrix is a 2 × 2 matrix that contains the following four values: 

✓ True Positive (TP): These are the points that are actual markers and correctly 

labelled by the algorithm. 

✓ False Positive (FP): These points are incorrectly identified as markers by the 

algorithm, either because they are actually noise or because the labels are wrong. 

✓ False Negative (FN): Actual markers that are falsely unlabelled by the algorithm. 

✓ True Negatives (TN): Instances where the model correctly identifies negative 

instances (i.e., the model correctly classifies data points as noise or when the marker 

is null in a frame and is labeled correctly as null). 

Accuracy: The proportion of correctly predicted labels over all labels. This is calculated 

by dividing the number of correct predictions by the total number of labels: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision: The proportion of actual correct labels over predicted labels. This is calculated 

by dividing the number of true positives by the total number of positive labels predicted: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: The proportion of correct predicted labels over actual labels. This is calculated by 

dividing the number of true positives by the total number of actual positive labels: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score: The harmonic-average of precision and recall: 

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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5.4 Experimental Results and Analysis 

     We captured 10 underwater MoCap C3D data sets at 100 Hz, with 21 passive markers, 

as described in Table 5-2. We cleaned and labeled these files using our proposed semi-

supervised geometry-based labeling algorithm to create a ground truth dataset and training 

data. Then, these datasets were augmented through transfer learning by using simulated 

trajectories. An additional augmentation was performed by introducing gaps and noise into 

these datasets. We evaluated the deep-learning-based approach on these 10 raw C3D files 

because with passive markers, the raw data contained many reappearing markers, which 

were not like the cleaned data with gaps where each physical marker had a unique, complete 

trajectory with potential gaps.  

     We conducted a series of tests to evaluate the impact of different factors on network 

accuracy including feature selection as an input to the network, size of the training set, and  

the effects of our proposed extraneous removal technique. The tests were as follows: 

     Test 1: 5-inputs LSTM, and train set of 10 C3D files 

     Test 2: 5-inputs LSTM, and train set of 10 C3D files and simulated trajectories 

     Test 3: 5-inputs LSTM, and train set of 100 C3D files 

     Test 4: 5-inputs LSTM, and train set of 100 C3D files and simulated trajectories 

     Test 5: 3-inputs LSTM, and train set of 100 C3D files    

          All tests mentioned above were conducted once with the application of the 

extraneous removal algorithm on the datasets and then again without applying the 

extraneous removal to investigate the effectiveness of this algorithm. 
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5.4.1 Raw C3D Data Sets 

     The actions’ description of 10 captured underwater MoCap data sets is displayed in 

Table 5-2. Data were captured at 100 Hz, with 21 markers attached to the swimmer’s body. 

The major movements are described, while they can be quite intricate. The axis directions 

of 3D coordinates are described in Figure 5-4. 

 

Figure 5-4: Axes directions of 3D coordinates 

 

Table 5-2: Actions Description of Raw C3D datasets 

C3D Underwater Action Description  Head Position Transition Posture  Face 

1 - Going down (Head UP) to -Z (Upright) 

- Overhead clapping (still feet) 

- Transition to a horizontal position (+X) 

- Float (Supine) : Face +Z 

+Z 

+Z 

+X 

+X 

(+Z) Vertical 

(+Z) Vertical 

(+X) Horizontal 

(+X) Horizontal 

-X  

-X 

+Z 

+Z 

2 - Front Crawl to -X 

- Turn & Front Crawl to +Y 

- Turn & Front Crawl to +X 

-X  

+Y 

+X 

(-X)  Horizontal 

(+Y) Horizontal 

(+X) Horizontal 

-Z 

-Z 

-Z 

3 - Going downward to -Z (Upside-down) 

- Bending Transition to Float (-XY) (Supine) 

-Z  

-XY 

(-Z) Vertical  

(-XY) Horizontal 

+X 

-Z 

4 - Going downward to -Z (Upside-down) 

- Downward Butterfly  

- Rotate Body around XY (few times) 

- Transition to Float (Supine) to +Y 

-Z  

-Z 

+XY 

+Y 

(-Z) Vertical  

(-Z) Vertical  

(+XY) Horizontal 

(+Y) Horizontal 

+XY  

+XY 

+Z,-Z 

+Z 

5 - Crawl downward to -Z (Upside-down) 

- Rotate Body around Z  

- Transition to Horizontal +Y 

- Jumping position & going up (Upright) (+Z) 

- Rotate around Z to Face -Y 

-Z  

-Z 

+Y 

+Z 

+Z 

(-Z) Vertical  

(-Z) Vertical  

(+Y) Horizontal 

(+Z) Upright Vertical 

(+Z) Upright Vertical 

+X 

+X,-X 

-Z 

-X 

-Y 

6 - Breaststroke downward (Upside-down) 

- Bending Turn to (+Z)  

-Z  

+Z 

(-Z) Vertical  

(+Z) Vertical  

-XY 

+XY 

7 - Walk horizontally to +Y 

- Bend Knee & Jump up (+Z) (Upright) 

+Z 

+Z 

(+Z) Vertical 

(+Z) Vertical 

+Y 

+Y 

8 - Breaststroke downward (Upside-down) 

- Bending turning to horizontal +XY 

- Going up (Upright) 

-Z  

+XY 

+Z 

(-Z) Vertical 

(+XY) Horizontal 

(+Z) Vertical 

-X 

-Z 

+X 

9 - Front Crawl to -X 

- Turn & Front Crawl to +Y 

- Turn & Front Crawl to +X 

-X  

+Y 

+X 

(-X)  Horizontal 

(+Y) Horizontal 

(+X) Horizontal 

-Z 

-Z 

-Z 

10 - Moving hands  

- Bend Backward & Float horizontal +X 

+Z 

+X 

(+Z) Vertical 

(+X) Horizontal 

-X 

+Z 
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     The properties of these 10 datasets are in Table 5-3. These datasets contain null markers 

due to being exported from another large C3D file, noise which includes ghost markers and 

outliers, extraneous markers which belong to another object, and dropped markers across 

the entire frames. Two datasets, numbers 7 and 10, have extraneous markers. All datasets 

except numbers 6 and 8 have dropped markers. In all, only one side ankle (left or right) was 

dropped, except for dataset number 7, which had two hand markers (left and right) dropped. 

Additionally, this table provides information about passive marker characteristics, 

specifically those that reappear after being occluded. Passive markers can have multiple 

short trajectories, called tracklets [42], with different IDs, meaning a single physical marker 

can be associated with more than one point. The maximum number of tracklets per marker 

and the number of tracklets exceeding one, highlighting the complexity of cleaning and 

labeling data. The minimum, maximum, and mean filling levels are also presented, further 

emphasizing the labeling challenges as markers with low filling levels can resemble noise. 

Table 5-3: Datasets Properties 

Data             C3D  1 2 3 4 5 6 7 8 9 10 

#Frames  921 1241 536 686 803 897 460 792 803 653 

#Points  65 62 34 65 51 35 245 30 48 1719 

#NaN  5 15 0 5 5 4 221 4 10 1667 

#Valid Points  30 44 25 43 30 28 20 26 36 24 

#Extranous  0 0 0 0 0 0 4 0 0 5 

#Noise  30 3 9 17 16 3 0 0 2 28 

#Dropped  1 1 1 1 1 0 2 0 1 1 

Max #Tracklets  5 6 2 7 4 3 2 2 4 4 

#Tracklets > 1  5 12 5 13 6 6 1 5 7 2 

Valid Markers 

Filling Level 

Min 0.65 1.13 2.24 0.15 2.86 4.68 33.26 7.45 1.74 3.22 

Max 100 100 100 100 100 100 100 100 100 100 

Mean 65.25 43.75 79.13 44.21 65.47 74.09 94.41 80.05 54.16 82.52 
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5.4.2 Labeling Performance Results  

     The results of test numbers 1, 3, 4, and 5 are shown in Table 5-4. 

Table 5-4: Results for Test 1,3,4, and 5 (E = Extraneous) 

Dataset Rotation Angle (º) Test Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

 

1 

 

 

 

177.2 

1 81.19 89.35 89.33 89.34 

3 98.59 99.68 98.84 99.24 

4 99.47 99.61 99.84 99.72 

5 87.32 96.41 89.30 92.69 

 

2 

 

 

 

177.2 

1 92.26 99.77 91.86 95.63 

3 99.86 99.99 99.85 99.92 

4 98.64 99.74 98.63 99.17 

5 99.18 99.74 99.19 99.46 

 

3 

 

 

 

176.9 

1 79.65 100 78.26 87.76 

3 98.79 99.13 99.57 99.35 

4 99.68 99.67 100 99.83 

5 99.59 99.58 100 99.79 

 

4 

 

 

 

110 

1 65.58 89.25 67.53 76.70 

3 96.92 98.71 97.57 98.12 

4 89.59 94.82 93.46 94.11 

5 95.12 97.01 97.21 97.10 

 

5 

 

177 

1 94.41 99.54 94.51 96.94 

3 99.41 99.66 99.69 99.67 

4 99.98 99.98 100 99.99 

5 99.98 99.98 100 99.99 

 

6 

 

-40 

1 100 100 100 100 

3 99.98 99.98 100 99.99 

4 99.31 99.70 99.55 99.62 

5 99.65 99.82 99.81 99.81 

 

 

 

7 

 

 

 

-20 

1 E 62.88 76.28 68.25 72.04 

1 100 100 100 100 

3 E 70.87 72.58 94.14 81.96 

3 100 100 100 100 

4 E 59.30 62.33 88.22 73.05 

4 100 100 100 100 

5 E 58.66 62.33 83.29 71.30 

5 100 100 100 100 

 

8 

 

0 

1 100 100 100 100 

3 100 100 100 100 

4 100 100 100 100 

5 100 100 100 100 

 

9 

 

177 

1 87.18 94.53 91.63 93.04 

3 99.92 100 99.91 99.95 

4 99.88 99.96 99.91 99.94 

5 99.85 99.96 99.87 99.92 

 

 

 

10 

 

 

 

-177.5 

1 E 73.71 83.03 76.99 79.87 

1 84.54 90.17 92.76 91.43 

3 E 65.71 71.42 81.13 75.94 

3 98.69 99.43 99.26 99.33 

4 E 76.89 80.53 89.57 84.80 

4 99.35 99.44 99.90 99.66 

5 E 59.93 65.23 80.84 72.19 

5 99.50 99.65 99.84 99.74 
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     Table 5-4, presents the accuracy, precision, recall, and F1-score evaluation metrics for 

each dataset across Test 1, 3, 4, and 5. Figure 5-5 and Figure 5-6 present bar charts for 

accuracy and F1-Score, that facilitate a better understanding and analysis of these results 

which will be provided in further pages. However, the most significant result is the 

improved performance on all four tests using datasets without extraneous markers (i.e., in 

datasets 7 and 10). These demonstrate the effectiveness of one of our contributions, which 

is the extraneous marker removal algorithm. These tests were also conducted on cleaned, 

unlabeled versions of these 10 datasets, and all tests resulted in 100% accuracy.  

     The results for Test 2, which utilizes a “5-input LSTM” model with a training set of 10 

C3D files and simulated trajectories, are presented in Table 5-5 and Table 5-6. These tables 

are separated due to the lower performance of this test. Table 5-5 displays the results for 

the cleaned, unlabeled version of these 10 datasets, while Table 5-6 shows the results for 

the raw, noisy datasets. The mean of each metric is calculated once for the dataset without 

extraneous markers and once with extraneous markers, considering that the cleaned version 

contains no such markers.  

Table 5-5: Results for Cleaned Datasets (Free of Extraneous)  for Test 2  

Data      \    C3D 1 2 3 4 5 6 7 8 9 10 Average 

Rotation Angle (º) 177.2 177.2 176.9 110 177 -40 -20 0 177 -177.5  

Accuracy (%) 26.09 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 26.09 20.458 

Precision (%) 75 100 100 100 100 100 100 100 100 75 95.0 

Recall (%) 28.57 19.05 19.05 19.05 19.05 19.05 10.62 19.05 19.05 28.57 20.111 

F1-Score (%) 41.38 32.00 32 32 32 32 19.19 32.00 32 41.38 32.595 
 

Table 5-6: Results for Raw Datasets for Test 2 (E = Extraneous) (Av= Average) 

Data      \    C3D 1 2 3 4 5 6 7 E 7 8 9 10 E 10 Av. (E) Av.  

Rotation Angle (º) 177.2 177.2 176.9 110 177 -40 -20 -20 0 177 -177.5 -177.5   

Accuracy (%) 61.66 54.78 57.61 54.30 46.30 55.12 46.64 37.36 100 52.55, 39.89 50.12 51.63 51.725 

Precision (%) 69.55 82.81 71.75 75.54 61.01 72.72 51.95 63.27 100 90.94 53.01 60.55 72.928 74.814 

Recall (%) 83.14 58.18 74.04 64.39 64.70 69.44 70.52 38.53 100 52 46.25 70.56 68.266 67.498 

F1-Score (%) 75.72 67.79 72.83 69.34 62.69 70.77 59.83 47.89 100 66.11 49.39 65.16 69.447 69.83 
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5.4.3 Analysis of Low Performance of Test 2:  

     We expected to see improved results by using transfer learning to augment the training 

set with simulated trajectories. However, when comparing the results of Test 2 (Table 5-5 

and Table 5-6: a 5-input LSTM trained with 10 C3D files and simulated trajectories) to Test 

1 (Table 5-4: a 5-input LSTM trained only with 10 C3D files), the results were significantly 

decreased rather than improved. This could be due to several factors: 

1- Mismatch in Data Distributions:  

     The primary issue at hand is the mismatch between the data distributions of the 

pretrained model and the new dataset. This discrepancy arises from the fact that the pre-

trained model was generated based on a specific marker set distribution, while the 

kinematics of the new data are different, with distinct actions. Consequently, characteristics 

like velocity and acceleration in the new data vary significantly from those in the pre-

trained model. This mismatch can lead to the pre-trained model’s initial weights being 

poorly suited for the new data, causing the model to struggle to learn effectively.  

2- Pre-trained Model Bias due to small datasets (10 C3D files):  

     Table 5-4 shows that transfer learning yielded either enhanced or nearly similar results 

when comparing Test 3 (5-input LSTM, trained on 100 C3D files without simulated 

trajectories) and Test 4 (trained on 100 C3D files with simulated trajectories). Initially, this 

might seem contradictory to the first factor, which is the mismatch problem. However, this 

discrepancy arises because Test 2 uses a dataset of 10 C3D files, while Test 3 and 4 utilize 

datasets of 100 C3D files. In essence, transfer learning augmented the larger datasets in 
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Test 3 and 4 (100 C3D files), whereas in Test 2, it augmented a smaller dataset (10 C3D 

files). Consequently, the smaller dataset in Test 2 introduced a bias. 

5.4.4 Analysis of Results: Test 1, 3, 4, and 5 

     Figure 5-5 and Figure 5-6 present bar charts, for accuracy and F1-score of Table 5-4 that 

facilitate a better understanding and analysis of the results of Test 1, 3, 4, and 5.  

 

Figure 5-5: Accuracy for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5 

 

Figure 5-6: F1-score for 10 datasets in Table 5-4: Tests 1, 3, 4, and 5 
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 Summary of the results (Table 5-7):  

Table 5-7: Summary of Results for Comparison of different Factors (V: Vertical), (H: Horizontal) 

Datasets Main Postures Accuracy (%) Ranked Results 

C3D V H Min  Max  Highest  Rank 2  Rank 3  Lowest  

1 + + 81  99.4 Test 4 Test 3 Test 5 Test 1 

2 - + 92  99.9 Test 3 Test 5 Test 4 Test 1 

3 + + 79 99.7 Test 4 Test 5 Test 3 Test 1 

4 + + 65 96.9 Test 3 Test 5 Test 4 Test 1 

5 + + 94 99.9 Test 5 Test 4 Test 3 Test 1 

6 + - 99 100 Test 1 Test 3 Test 5 Test 4 

7 E + - 58 70.9 Test 3 Test 1 Test 4 Test 5 

7 + - 100 100 Same Rank Across Tests 

8 + - 100 100 Same Rank Across Tests 

9 - + 87 99.9 Test 3 Test 4 Test 5 Test 1 

10 E + + 60 76.9 Test 4 Test 1 Test 3 Test 5 

10 + + 84 99.5 Test 3 Test 4 Test 3 Test 1 
 

 

 The conclusions from these results based on different factors: 

1- 3-Inputs vs 5-Inputs: 5 input variables are more effective; however, for some 

datasets, 3 inputs yield better results than 5 inputs. In most cases, their results are 

quite similar. The poorest performances were in datasets 7E and 10E. 

2- Augmented training set with simulated trajectories: overall, similar to 3 inputs, 

except that the poorest results were obtained for dataset 6.  

3- Augmented training set from 10 to 100: the small training set of 10 nearly 

consistently achieved the lowest results across all datasets. 

4- Extraneous Removal: Removing extraneous markers significantly enhanced the 

results, increasing accuracy from 62.9% to 100% for dataset 7 and from 69% to 

95.5% for dataset 10. This demonstrates the substantial impact of our contribution 

which is our extraneous removal algorithm. 

     We expected the exclusive horizontal movements in datasets 2 and 9 to produce lower 

results, as the simulated trajectories mainly involve vertical actions like running and 
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walking. Contrary to our expectation, this did not happen, possibly due to the larger 

underwater training sets (100 C3Ds) compared to 20 participants-simulated trajectories. 

5.4.5 Overall Conclusion: The effectiveness of Extraneous Removal  

     Table 5-8 and Figure 5-7 show the average accuracy and F1-score across all datasets for 

Tests 1, 3, 4, and 5, both with and without extraneous markers. This table demonstrates the 

effectiveness of the extraneous marker removal algorithm. Datasets 7 and 10 are the only 

ones containing extraneous markers. This table also compares these four tests across all 

datasets, showing that Test 3 achieved the highest results, followed by Test 4 and Test 5. 

The lowest result was for the non-augmented training set with 5 inputs. 

Table 5-8: The Average Accuracy and F1-score across all Datasets 

Tests  1 3 4 5 

Accuracy (%) (E) With Extraneous 83.69 93.01 92.27 89.93 

Without Extraneous 88.48 99.22 98.59 98.02 

F1-Score (%) (E) With Extraneous 89.13 95.41 95.02 93.23 

Without Extraneous 93.08 99.56 99.20 98.85 
 

 

Figure 5-7: The Average Accuracy and F1-Score across all Datasets 
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5.5 Conclusion 

     We addressed the challenge of automatically labeling raw MoCap data for underwater 

motion using sparse marker sets. These data are prone to noise such as outliers, ghost 

markers, extraneous markers, and missing markers due to occlusions and reduced visibility 

underwater. Additionally, dealing with reappearing valid markers from passive markers 

leads to numerous small trajectory segments instead of a consistent number of valid 

markers with trajectories and potential gaps. 

     We tackled this issue by training an LSTM network using various inputs to evaluate the 

impact of feature selection, training set size, and noise on accuracy. The training set was 

augmented with random noise and gaps. Our LSTM network was trained with three 3D 

relative position inputs, then with relative positions, velocity, and acceleration as five 

inputs, and utilized transfer learning with simulated trajectories to expand the training data. 

The Hungarian algorithm was used for label assignment. Procrustes analysis was used to 

locate unlabeled markers. Post-processing was used to correct mislabeled markers using an 

OpenSim marker set. A semi-supervised geometry-based labeling method established the 

ground truth and training sets and allowing results to be compared with LSTM results. 

PCA-based pelvis detection was designed for data alignment, and an extraneous marker 

removal algorithm was proposed to enhance our LSTM model performance. The 

extraneous markers removal algorithm  increased the accuracy of our approach for datasets 

with extraneous markers from 66% to 98%. The final semi-supervised algorithm achieved 

100% on our 10 datasets. The auto-labelling algorithm reduced the time and tedious efforts 

of the manual labelling of MoCap data. 
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6. Conclusion 

6.1 Summary 

     As outlined in Table 1-1, this thesis consists of six chapters that address the challenges 

related to cleaning and labeling MoCap data. Chapter 1 introduces the background and 

problem statement concerning underwater OMC systems. Chapter 2 presents a through 

literature review of MoCap solving methods. Chapter 3 illustrates manual cleaning of noisy 

MoCap data, highlighting the challenges involved in this process.  

     Chapter 4 proposes a semi-supervised geometry-based labeling and cleaning algorithm 

to streamline the time-consuming manual cleaning process described in Chapter 3. While 

this method has limitations, such as requiring significant user input and making certain 

assumptions, it provides high accuracy without needing training data. 

     Chapter 5 introduces a deep learning-based auto-labeling method designed to address 

the challenges presented by the semi-supervised algorithm discussed in Chapter 4. While 

the algorithm in Chapter 5 effectively mitigates issues related to high user intervention and 

assumptions inherent in the Chapter 4 algorithm, achieving good accuracy, it remains 

dependent on a large set of cleaned and labeled training data. This dataset is generated by 

the semi-supervised algorithm outlined in Chapter 4. 

     Overall, combining these two algorithms (Chapter 4 and Chapter 5) in the future could 

address all the issues of both algorithms while benefiting from their respective advantages. 

6.2 Proportional Contributions of Each Chapter 

     As stated in Section 1.4, this thesis makes seven main contributions: 
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1. Creation of the first underwater freestyle swimming MoCap dataset. 

Ten MoCap C3D files were captured using the Qualisys system and subsequently 

underwent manual cleaning and labeling, as detailed in Chapter 3. Furthermore, 

Chapters 4 and 5 introduced innovative algorithms designed to streamline the time-

consuming manual cleaning process. 

2. Addressing the challenges of using sparse MoCap datasets.  

An underexplored topic covered in Chapters 3, 4, and 5. 

3. A comprehensive literature review on MoCap solving approaches. 

This is presented in Chapter 2. 

4. A semi-supervised geometry-based labeling algorithm that includes an anomaly 

detection method utilizing norm, velocity, acceleration, and jerk profiles. 

This is discussed in Chapter 4 as a standalone labeling algorithm and used in 

Chapter 5 to generate the training set for the deep learning network. 

5. An innovative extraneous removal algorithm based on the difference of the norms. 

This method, part of the semi-supervised algorithm from Chapter 4, serves as a 

preprocessing step in Chapter 5 to eliminate extraneous markers, improving the 

algorithm’s accuracy from 66% to 98%. 

6. A novel pelvis detection technique using PCA, implemented along with a method to 

recover dropped markers. 

These methods are part of the semi-supervised algorithm from Chapter 4, with 

pelvis detection serving as an alignment step in the Chapter 5 algorithm. 

7. An auto-labeling algorithm based on LSTM, the Hungarian label assignment, and 

Procrustes alignment, incorporating a geometry-based method for initial 
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alignment, ground truth and training set creation, and an enhancement of the 

accuracy of the results. 

This algorithm in Chapter 5 incorporates steps from the Chapter 4 algorithm, 

including pelvis detection for alignment and the use of extraneous markers to 

enhance accuracy. Additionally, part of the training set is generated using the 

algorithm from Chapter 4.  

6.3 Future Works 

     As concluded in Section 6.1, we recommend integrating our cleaning and labeling 

algorithms from Chapters 4 and 5 to leverage their strengths and resolve their respective 

issues. 

     To enhance our future work, we should collect more underwater data with diverse 

actions and additional noise and ghost markers. This will allow us to evaluate our 

algorithms more comprehensively. Furthermore, having a larger dataset will improve the 

training of our deep learning algorithm discussed in Chapter 5, resulting in higher accuracy 

and better generalization for handling unseen data. 

     Moreover, key areas for enhancement in this work to establish a standalone approach 

for any MoCap auto-labeling methods include pelvis detection and body side 

differentiation. Developing a more robust solution in these areas can be applied as the 

alignment method across various MoCap auto-labeling techniques. 

 

 


