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Abstract

In recent years, the defense sector has seen significant advancements with the integration

of drones that capture full-motion video (FMV) along with geospatial metadata. Byte-level

analysis of these videos can disclose confidential mission information, highlighting the

importance of protecting sensitive data from unauthorized access. While current redaction

techniques often focus on visual elements, such as faces and license plates, the redaction

of geospatial metadata has received less attention. This dissertation presents a system-

atic investigation into FMV redaction by introducing tools for metadata inspection and

transformation, a novel approach for redacting geospatial metadata, and a new evaluation

method, the Privacy-Utility Redaction Score (PURS), for assessing object detectionmodels.

The container parsers developed can efficiently extract and narrow down bytes of interest

withminimal memory and CPU usage, and crucially, without memory leaks, making them

well-suited for security-focused applications. Themetadata redactionmodule enables se-

lective redaction of user-specifiedmetadata elements inMotion Imagery Standards Board

(MISB)-compliant FMV. Additionally, the Privacy-Utility Redaction Score provides a metric

for evaluatingmodels based on their ability to redact private objects while ensuring public

objects remain visible.
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Chapter �

Introduction

According to amarket report fromGlobal Airborne - Intelligence, Surveillance and Recon-

naissance (GA-ISR), the global consumer dronesmarket is predicted to reachUS $26.8 billion

by the year 2026 [1]. The number of registered drones in the United States and Canada, as of

the first quarter of 2023, is over 871,000 and 56,000, respectively [2]. Due to the increased

safety concerns, both nations have created stringent regulations for using drones in their

airspace. Unlike the US, where it is mandated to obtain a license to fly drones, in Canada,

one may skip this requirement as long as the drone weighs less than 250 grams and the

safety recommendations from Transport Canada are followedwhen flying the drone. As of

2023, there are approximately 307,000 registered drone pilots in the US and this count is a

little over 90,000 in Canada [3].

A large proportion of drones today are primarily employed in industries such as agricul-

ture, construction, logistics, andmore. In collaborationwith DJI, the FarmBeats project from

Microsoft is an example of employing drone technology in agriculture [4]. The project aimed
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at flying drones over farmlands to survey and collect crucial data affecting crop production,

such as themoisture in the soil or pest infestation andwater scarcity. In logistics, compa-

nies such as Amazon and DHL have worked on integrating drone technology to transport

goods by air between distribution centers and production sites. The Parcelcopter is a drone

developed by DHL and researchers at RWTH Aachen to deliver pharmaceutical supplies to

remote islands [5]. The Prime Air is a drone prototype developed by Amazon for delivering

packages weighing up to 5 pounds, up to 15 miles, within 30minutes or less [6]. Bechtel,

the largest construction company in the United States, in collaboration with Skycatch, re-

leased a FAA-approved UAS project using drone technology to offer real-time surveying of

construction sites while collecting environmental data such as air quality, temperature and

more to enhance construction efficiency [7].

While drones have benefited humankind with their positive applications discussed

above, we noticed instances where drones have been used to carry out unlawful activities.

For instance, drones have been used as smuggling tools to transport illicit goods from Latin

America to the United States across the border [8]. In some cases, drones were used to

drop wire cutters in prison, which helped a prison break [9]. Attempts have been made

to fly drones in restricted airspace to disrupt flights deliberately. In 2018, there was an

instance in the United Kingdom where a dozen drones were flown in restricted airspace

which caused delays in flights [10]. The late 1990s and early 2000s involved the allegedly

attempted use of drones for terrorist activities by various militia groups [11]. More recently,

we have noticed the use of consumer drones for air combat applications in warfare. The

Russia-UkrainianWar has seen themostweaponized use of off-the-shelf drones for ISR roles.

With a modest budget and a shortage in supply of military grade-drones, the Ukrainian

forces turned towards using consumer-grade drones. The Ukrainianmilitary forces have
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been allegedly found to use improvised versions of the DJI Mavic 3 andMatrice 300 RTK to

form an army of ISR drones to conduct missions within Russianmilitary space [12]. These

droneswere capable of surveilling the opposing troops and identifying their exact location to

launch an attack. The drones have beenmodified to carry and drop air-delivery ammunition

at enemy locations.

A collaborative study by researchers at the Ruhr University Bochum and CISPA (Center

for IT-Security, Privacy and Accountability) in Germany revealed about 16 vulnerabilities in

different versions of DJI drones [13]. The research proposed how it was feasible to alter the

serial number of a DJI drone, a piece of critical information used by air authorities to track

drone pilots. Similarly, the underlying tracking protocol, DroneID, used by DJI, was found

to transmit the pilots’ location in an unencrypted formwhen sending it to the authorities.

�.� Motivation

Off-the-shelf consumer drones are not primarily designed for military ISR operations and

thus lack the requisite security measures for such purposes. This deficiency renders them

vulnerable to exploitation and the potential exposure of sensitive data. The widespread

adoption of consumer drones, coupled with their inherent security vulnerabilities, under-

scores the need for in-depth research into the security aspects of these devices. This study

aims to address a critical security concern by systematically examining the redaction of

metadata in full-motion videos captured by drones.

Full-motion videos, which encompass audio, video, andmetadata, are stored as inter-

leaved data streams or packets. The tools proposed in this work intend to aid the process

of producing full-motion video (FMV) and enabling access to the sensitive MISBmetadata
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items for redaction using consumer-grade drones by distinguishing the bytes that constitute

geospatial metadata and other such sensitive metadata items. However, these tools can

also be integrated with systems targeting visual redaction as they offer access to raw frame

data, in addition to underlyingmetadata items. While it is theoretically feasible tomanually

inspect these bytes using a Hex Editor, this approach demands a high level of expertise

from analysts familiar with the intricate structure of full-motion videos [14]. Moreover,

suchmanual inspection is both time-consuming and resource-intensive, relying heavily on

human intervention.

There are several ways to identify the location of an individual by inspecting full-motion

videos. In addition to examining the MISB metadata, it is possible to determine the GPS

location by visually recognizing known structures, objects, or other elements shown in the

video. To fully obfuscate GPS data from a given video, it is necessary to redact both types of

information. This work primarily focuses on the redaction of geospatial metadata, while

the redaction of image-based visual geo-locationmetadata is not explored. However, initial

progress in visual redactionhas beenmadeby exploring various object detection approaches,

which is a crucial task in protecting visually sensitive information.

Most consumer-grade drones capture video footage and geospatial metadata separately

into different files, necessitating human post-processing that entails submitting the flight

record logs to third-party websites for interpretation. This practice exposes confidential

information to untrusted third parties. The necessary tools must thus be accessible to

analyze and further transform the full-motion videos without having tomanually inspect

the lower-level bytes or upload sensitive metadata to third-party sites for inspection and

further manipulation.
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�.� Thesis Outline

Our research investigates three key areas. First, we have proposed tools for the analysis and

modification of full-motion video. Second, we have introduced a redaction technique for

metadata in full-motion video. Third, we have conducted a quantitative review of methods

for object detection and devised a privacy-centric metric for evaluating these algorithms,

ensuring that data privacy remains a central focus throughout our work.

The outline of this thesis is as follows:

We begin by providing some background information in Chapter 2 which is essential for

understanding the fundamentals of videos and FMVmetadata. In chapter 3, we discuss the

design and implementation of tools for parsing full-motion videos. Chapter 4 discusses a

unique approach of redaction by proposing ametadata redaction library. Chapter 5 outlines

a taxonomy of object detection approaches and their evaluation. Finally, we conclude our

thesis by describing future research work in Chapter 6.
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Chapter �

Background

To effectively redact sensitive information from video footage, it is essential to first grasp

several foundational concepts. This chapter addresses key background topics necessary

for this understanding, including the structure of video [Section 2.1], video properties [Sec-

tion 2.2], video compression techniques [Section 2.3], frame types [Section 2.4], and video

containers and codecs [Section 2.5].

�.� Anatomy of a Video

A video is a sequence of frames displayed rapidly and progressively on a screen. At least 24

frames must be shown each second for the human eye to perceive a succession of frames as

a video [15].

A frame is a 2D array of pixels. In the context of a video file, a frame is one of the several

still pictures arranged in chronological sequence [16]. The rapid succession of these frames

creates the illusion of continuous motion, which the human eye perceives as seamless video
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playback.

A pixel, abbreviated for picture element, is the smallest unit of information present in

a video [17]. In a grayscale frame, each pixel is represented as an 8-bit integer (or more),

whereas in a color frame, each pixel is typically represented as a tuple of integers (e.g., RGB

values). Pixels are the fundamental building blocks that combine to create a frame, and they

are organized in a 2D array of pixels.

Figure 2.1: Relationship between video sequence, frame, and pixel

Figure 2.1 depicts authors visualization of the decomposition of a color video sequence

into consecutive frames. Each frame is composed of pixels, which are represented as a tuple

of RGBvalues. These frames are characterized by their height andwidth, collectively referred

to as resolution, as defined in section 2.2.

�.� Characteristics of a Video

A frame size, also known as resolution, is the number of pixels in each of the horizontal

and vertical dimensions used to construct a video frame. One of themost widely utilized
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resolutions today is FHD, which stands for full high-definition and is denoted by 1920 x

1080 or simply 1080p, where p is abbreviated for progressive scan. There are two different

approaches used for rendering the pixels visible in each new frame during video playback,

namely progressive scan and interlaced scan [18].

In the progressive scanning approach, every pixel pertaining to a video frame is rendered

sequentially from left-to-right, top-to-bottom, without omission of any pixel rows. The in-

terlaced scanningmethod, on the contrary, renders pixels from left-to-right, top-to-bottom

fashion, except it only renders alternating rows of pixels. In particular, it only renders odd

rows of pixels in the first pass, followed by a swift rendering of even rows of pixels. This

switch in rendering of odd and even rowof pixels occurs at least 24 times per second,making

us perceive it as if the entire image is rendered in a single pass.

This approach of transmitting half the pixels at a time reduced the required bandwidth

by 50%, crucial for fitting within the limited broadcast bitrate. While this method was

well-suited for CRT television displays, the primary reason for its use was to accommodate

the constraints of broadcast bandwidth [19]. Although this approach significantly saved

bandwidth, it suffered from flickering or blurring artifacts in scenes involving fast-moving

objects. Conversely, progressive scan did not encounter such issues and was introduced for

modern computer screens and HD screens. With CRTs becoming obsolete, progressive scan

is anticipated to be employed in future video system standards[20].

An aspect ratio is the ratio of the width to the height of the given computer screen. Com-

mon aspect ratios include 16:9 and 4:3. Table 2.1 illustrates some common resolutions and

their aspect ratios.

A frame rate is the number of frames captured through a sensor or displayed on a screen

consecutively per second, also known as FPS. The framerate of a video highly affects the
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Resolution Standard Aspect Ratio Width Height Pixels

480p SD 4:3 640 480 307,200

720p HD 16:9 1,280 720 921,600

1080p FHD 16:9 1,920 1,080 2,073,600

1440p QHD 16:9 2,560 1,440 3,686,400

2160p 4K UHD 16:9 3,840 2,160 8,294,400

4320p 8K UHD 16:9 7,680 4,320 33,177,600

Table 2.1: Video Resolutions and Aspect Ratios

playback performance of a video. It is therefore common to use graphics processing units

for intensive applications such as 3D rendering, HD video conferencing, and video games,

where FPS plays a significant role.

A color space offers a set of rules for mathematically expressing colors in digital form.

Commonly-used color spaces are RGB and YCbCr. The RGB color space is divided into three

color channels - red, green and blue. The values within each channel may vary based on the

color depth of a given pixel. These channel values can be combined to illustrate the color of

the pixel in question. For instance, a screen will display white color when the RGB value is

255, 255 and 255 and black when the value is 0, 0 and 0. An example color formation based

on RGB color channels is depicted in Figure 2.1 and 2.2.

The YCbCr color space consists of one Luminance (Y) channel and two Chrominance or

color channels, namely Chroma Blue (Cb) and Chroma Red (Cr). The Y channel represents

the brightness component of a pixel, which can range from 16 to 235. The chrominance

channels, Cb and Cr represent blue and red color differences, respectively. The chrominance

channels have values ranging from 16 to 240. For example, to render a pixel in white, a

YCbCr value of 235, 128 and 128 is required, whereas black is 16, 128, 128. The YCbCr color

space was originally designed for early SD Television Boxes, Blu-ray and DVD players with
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a dynamic color display range of 16 - 235, according to the ITU-R BT.601 specification [21].

Due to bandwidth and storage constraints, early displays considered every pixel with a color

value less than 16 as black and any pixel with a color value more than 235 as white [22].

Figure 2.12 illustrates such a pixel color formation based on a combination of luminance

and chrominance color channels.

The color depth of a video, also known as bits per pixel (bpp), is the number of bits utilized

to encode a single pixel’s color in a video frame. The higher the color depth values, the

broader the range of color options available [23]. For instance, in the RGB color space, a

framewith 24-bit color depth has three 8-bit integer values, each used for representing red,

green and blue color channels [24]. Figure 2.2 illustrates an imagewith different color depth

values. An image with a color depth of 1 will result in a monochromatic or black-and-white

image. As we move higher up the color depth values, such as 32 bits, the image appears

muchmore vibrant, exhibiting greater color details.
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(a) 24 Bits (b) 16 Bits

(c) 12 Bits (d) 10 Bits

(e) 8 Bits (f) 6 Bit

(g) 4 Bits (h) 1 Bit

Figure 2.2: Image with varying RGB color depths (24b source image from Adobe Photoshop
Color Palette)
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The bitrate of a video is the amount of audiovisual information processed or transmitted

per second. Video bitrate plays a crucial role in live video streaming applications. The video

bitrate is expressed in terms of bits/second units and calculated according to equation 2.1.

Bit Rate =

Width⇥ Height⇥ Color Depth⇥ Frames Per Second

Compression Factor (described in section 2.3)

�
= bits/sec (2.1)

The audio sampling rate is expressed in Hertz (1/s). It must be greater than or equal to

the Nyquist rate to preserve the required audio information [25], which is twice the highest

frequencyof theoriginating signal [26]. While the lowest andhighest frequency thathumans

can hearmay vary from person to person, but a common approximation used between 20Hz

- 20KHz [27]. A human earmay perceive audio at varying frequency differently depending

on its ability to hear high or low frequency components. For example, the audio coming out

of a telephone connectionmay sound very different from a CD-quality recording of a human

voice. Table 2.2 illustrates common sampling frequencies in kHz applicable in different

audio scenarios.

Sampling Rate Application

8 kHz Telephone Communications [28]

44.1 kHz CD Audio [29]

48 kHz Audio Tracks inMovies [30]

96 kHz Studio Recordings [31]

Table 2.2: Sampling Rates for various applications

The properties of the video described in this section collectively influence the size of a

video. Video frame height, width, color depth, and frame ratemake up the visual component
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of the video, and sampling rate, bit rate and audio channels make up the audio component

of the video. The relationship between key video properties may be summarized in equation

2.2, which calculates the absolute number of bytes that make up an uncompressed video

frame.

FS = FH ⇥ FW ⇥ CD ⇥ FPS + SR ⇥ BD ⇥ ADC (2.2)

where:

FS = frame size,

FH = frame height,

FW = framewidth,

CD = color depth,

FPS = fps,

SR = audio sampling rate,

BD = audio bit rate,

ADC = audio channels,

�.� Compression in Video Frames

�.�.� Compression Ratio

Compression techniques exploit the redundancies in video frames with an attempt to use as

few bits as possible to render a frame. Video file size depends on the type of compression

technique utilized. Video compression reduces the number of bits necessary to display a

14



video to conserve bandwidth and storage space. It is measured in terms of the compression

ratio shown in equation 2.3.

Compression Ratio =


Original Stream Size

Compressed Stream Size

�
(2.3)

�.�.� Compression Types

Lossless compression seeks to minimize the image size by re-encoding and storing the same

image efficiently with no loss of information. As a result, this approach generates a com-

pressed file that is reversible to its original form, maintaining image quality identical to

the original image. This compression type is suitable where recovering the original data

after decompression is desired. For example, lossless compression is commonly employed

in image, file, and audio storage formats such as PNG, ZIP, andWAV.

The objective of lossy compression is to achieve the highest compression ratio feasible

while keeping picture quality close to the original image. The resultant image is significantly

smaller, making it suitable for applications where a loss of information is acceptable. JPEG

andMP3 are two standard lossy compression algorithms used to store images and audio

files. Figure 2.3 demonstrates an example for lossy and lossless compression on an input

image taken from the Cats and Dogs Dataset byMicrosoft [32].

Another important categorization of compression is Inter-frame and Intra-frame com-

pression. Intra-frame compression identifies and exploits spatial redundancy in a video frame.

Spacial redundancy refers to the repetitious nature of pixels within a single frame. It mini-

mizes the use of repeating pixel bymaking pixels with the identical frequencies point to one

location. Figure 2.3, for example, comprises repeated black andwhite pixel color values that
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make up the dog’s face, as well as repeating green pixel color values that make up the grass

on the ground.

Figure 2.3: Lossy vs Lossless Compression

Inter-frame compression technique looks for temporal redundancies in a series of frames

over time. Temporal redundancy in video frames refers to pixels that are repeated between

two adjacent frames. The construction of the current frame depends on other reference

frame(s).

�.�.� Compression Algorithms

This section discusses twowell-known intra-frame compression algorithms: Run-Length

Encoding (RLE) andDiscrete Cosine Transform (DCT). InRun-Length Encoding, pixel intensi-

ties are read from left to right while keeping track of pixels that have the same intensity [33].

Each time a new intensity pixel is observed, a new intensity count for the pixel is recorded.

The RLE encoding is not ideal for compressing frames having pixels with frequent intensity

value shifts, resulting in negative compression, where the compressed frame takes upmore

storage space than the uncompressed frame. Figure 2.4 gives an example of compression us-
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ing Run-Length encoding, where the first pixel value of 0 is stored as 01, where 0 represents

the pixel value and 1 indicates the count. Subsequently, a sequence of 11 is encoded as 12, a

run of 000 is represented as 03, and a series of 1111 is stored as 14.

Figure 2.4: Run-Length-Encoding Compression

DCT transforms a spatial image into a frequency image representation. Pixel blocks

represent a weighted sum of sinusoidal impulses, especially cosine waves with a range of

frequencies. A larger weight will be given to the cosine wave representation of a macroblock

that describes higher frequency variations and vice versa. Prior to calculating the weighted

sum of all the signals, certain higher-frequency cosine waves are discarded to accomplish

compression. Figure 2.5 shows various stages in JPEG compression includingDiscrete Cosine

Transformation.
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Figure 2.5: Discrete cosine transform in JPEG compression [34]

A picture in RGB color space is first transformed to the YCbCr color space. It is then

partitioned into 8x8 pixel blocks, each separately encoded using DCT to produce exactly

64 cosine waves of varying frequencies. Each of the basis cosine waves have an associated

numerical value called aDCTCoefficient that represents themeasureof contribution for each

cosinewave towards the 8x8 image block. The reconstruction of the 8x8 image block entails

adding each cosine wavemultiplied by the specified DCT constant. In JPEG compression,

DCT coefficients are quantized i.e. trade-off between compression and quality of the image.

The DCT transformmatrix, which has a fixed set of elements responsible for generating DCT

coefficients, is multiplied by the 8x8 input pixel matrix to obtain these coefficients.
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Figure 2.6: 64 Cosine waves represented using 64, 8x8 pixel bock patterns [35]

As shown in figure 2.6, the cosine wave’s frequency rises from the top right corner and

moves downward from left to right. The inputted pixel values are first centered or left

shifted by a mid-point number depending on the sub-sampling ratio employed since a

cosine wave oscillates between -1 and 1, centering around 0. The next step is quantization,

which removes or reduces high-frequency DCT coefficients. Different applications may use

custom quantization table values depending on the ratio of quality vs. image size wewant

to achieve. Each DCT coefficient is divided by the corresponding quantization table value

and rounded to the nearest integer.

�.� Keyframes and Delta Frames

Mostmodern video codecs (discussed in section 2.5) use a combination of three different

kinds of frames: keyframe, predictive frame, and bidirectional frame. The order in which

these frames appear in a video stream is indicated by aGOP, commonly referred to as aGroup

of Pictures, illustrated in figure 2.7.
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A keyframe is an intra-coded image, often abbreviated I-frame. Keyframes are often

placed at the beginning or end of a GOP sequence, as shown in figure 2.7. They are beneficial

when transitioning between two different scenes in video footage, where there is minimal

temporal redundancy. As a result, compression algorithms aim to utilize spatial redundancy

in keyframes. For example, instead of storing individual pixels for the sky, only distinct pixels

to render the sky can be reservedwhile disregarding repeating pixels. This compression type

is mainly beneficial in keyframes as we cannot refer to another frame for pixel redundancies.

In figure 2.7, for example, the B and P frames employ inter-frame compression, with the

P-frame referring to the subsequent P and I-frames and the B-frames using both forward

and backward referencing to obtain pixels from I and/or P frames. Themacroblocks used in

keyframes utilize the intra-prediction technique for their storage, in which amacroblock can

only refer to another macroblock present in the same frame. A keyframe, in H.264 encoding,

uses theDiscreteCosineTransform(DCT) (discussed in section2.3.3) compression technique

[36].

Figure 2.7: Type of Frames
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The term delta refers to difference [37]. A p-frame, short for predictive frame, is a type of

delta frame that only stores the pixel differences with reference to another frame. Thus, they

are also referred to as difference frames. Since delta frames depend on other frames in the

GOP sequence for rendering, they are not a standalone image. Themacroblocks present in a

predictive frame use the inter-prediction technique for their storage. In the inter-prediction

approach, every macroblock within a predictive frame can refer to amacroblock present in

another frame as long as it relates to an I-frame or a P-frame in the GOP sequence.

A b-frame, short for bidirectional frame, usesmacroblocks that depend on inter-prediction

approach: macroblocks can refer to macroblocks from an I-frame before it or a P-frame

before or after it. A B-frame cannot rely on another bidirectional frame. For instance, an

I-frame, which is depicted as a black square in Figure 2.7, does not access pixels from any

neighboring frames; yet, it may have spatial redundancy in which amacroblock accesses

another macroblock for its own rendering, but only inside the same I-frame.

�.� Video Codecs and Containers

�.�.� Video Containers

The term container refers to awrapper format that encapsulates audio streams, video streams

and additionalmetadata such as subtitles. Common container formats includeMP4 (MPEG-

4, Part 14), AVI (Audio-Video Interleaved), and TS (Transport Stream). In full-motion videos,

apart from the audiovisual data streams, a third stream is used to carry geospatial metadata,

such as the real-time longitude, latitude and altitude of an aerial system. Similarly, many

other systems utilize the third and succeeding streams to hold application-specificmeta-
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data. For example, the video footage captured through Parrot drones stores drone-specific

metadata into one of the streams inMP4 container format [38].

Figure 2.8: Video File Containers

�.�.� Video Codecs

The term codec is a portmanteau of coder, decoder. It is a software component employed to

encode and decode audio/video information. Figure 2.9 shows the video encoding process.

Figure 2.9: Video Encoding [39]

Codec-specific information typically begins at the payload level of video containers. For

instance, themdat atom in theMP4 container format stores codec-specific such as NAL units
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(discussed in section 2.6). Similarly, the elementary stream payload inMPEG-TS containers

holds codec-specific information. For example, a slice of IDR coded picture (discussed in

section 2.6).

Container MP4

Codec H.264 MPEG4 H.265 VP9

I-Frame Count 4 27 3 3

P-Frame Count 94 293 82 317

B-Frame Count 222 0 235 0

Table 2.3: I, P and B-frame count variation based on Codec Type changes

Thenumberof frames inavideomayvarydependingon thekindof video codec employed

for the storage of media streams. Table 2.3 depicts the change in frame count when aMP4

container is coupled with four different types of codecs. A shell script using libraries such

as gnuplot, ffprobe, awk, and more was used for investigating the varying frame counts.

For this analysis, four video files were utilized, each using the MP4 container combined

with different codecs: H.264, H.265, MPEG4, and VP9. A bar graph of these observations are

shown in Figure 2.10 and 2.11.
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(a) H.264 Codec

(b) MPEG4 Codec

Figure 2.10: Varying Codec Types: Frame number vs Bytes per frame
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(a) H.265 Codec

(b) VP9 Codec

Figure 2.11: Varying Codec Types: Frame number vs Bytes per frame (Continued)
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�.� The H.��� Video Codec

�.�.� Background

H.264 is the most widely-used video codec today, accounting for 82% of worldwide videos

[40]. It utilizes theYCbCr color space and each frame is divided into several data units known

asmacroblocks of N⇥N pixels. Eachmacroblock has 16⇥16 pixel blocks for the luminance

(Y) channel and two 8⇥8 pixels blocks for chrominance, or the Cb and Cr channels. The

brightness of the video is controlled by the luminance channel, while the chrominance

channel determines each frame’s color values.

Figure 2.12: Relationship between frame,macroblock and pixels (reproduced fromMicrosoft
COCO 2014 Dataset [41])
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The author’s visualization of macroblocks, frames and pixels based on a source image

fromMicrosoft COCO 2014 Dataset [41] is shown in figure 2.12 illustrating subdivision of

the video frame intomacroblocks which are further represented in color channels.

�.�.� ISO/IEC Speci�cation

The ISO/IEC 14496-10:2020 standard specifies the requirements for storing H.264 codec-

specific information [42]. Figure 2.13 illustrates the internal structure of anH.264 codec. The

first level of abstraction is a series of network abstraction layer units, abbreviated for NALU.

The information stored in a NAL unit may be categorized into two classes: Video Coding

Layer (VCL) or non-Video Coding Layer (non-VCL). An example of NALU that belongs to

VCL class is an Instantaneous Decoder Refresh (IDR) or aNon-IDR picture, which is a naming

convention for a keyframe and delta frame in GOP sequence.

Figure 2.13: Data-structure of H.264-encoded video stream [42]
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A non-VCL class typically includes decoding information. The Sequence Parameter Set

(SPS) and Picture Parameter Set (PPS) are example NAL Units belonging to the non-VCL

class storing decoding information. The SPS NAL unit holds information such as the type

resolution or framerate, while PPS stores information such as of compression parameters

used. The ISO/IEC specification for H.264 supports 31 different NAL unit types, as shown in

table 2.5. In H.264, the start of a NALU can be identified by a fixed byte stream 0x00000001,

followed by the NALU header. For example, the SPS NALU type will have a hex byte value of

0x67, indicating the NALU itself.

A NAL unit is made up of a fixed-size header followed by a variable-length payload. The

one-byte NALU header holds three variables, as shown in the Table 2.4.

Variable Size (in bits)

forbidden_zero_bit 1

nal_ref_idc 2

nal_unit_type 5

Table 2.4: NALU Header

The forbidden_zero_bit field is used to validate whether the given NALU has syntax vio-

lations or errors during transmission. A value of 0 indicates no syntax violations, while 1

suggests the presence of bit errors.

The nal_ref_idc field is used to identify whether the given NALU contains reference in-

formation necessary for other NALUs. A value of 00 indicates the absence of reference

information for other non-IDR picture reference NALUs for inter-prediction, and discarding

this NALU should not affect the rendering of referencing NALUs. A value greater than one

indicates the presence of either a coded slice of IDR picture of encodingmetadata such as
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SPS or PPS, which are essential for reconstruction of reference NALUs such as a coded slice

of non-IDR picture. For instance, a non-IDR frame (B) will have this field set to 00(0), an

IDR frame (I) will have this value set to 01(1) and an encodingmetadata NALU such as SPS

will have this number set to 11 (3).

The nal_unit_type field identifies the type of NAL unit being transmitted. Figure 2.14

illustrates the NAL Header bytes for Sequence Parameter Set (SPS), a NAL unit type shown in

Table 2.5.

Figure 2.14: Example NALU (SPS) Header

TheRBSPfield,which stands forRawByte Sequence Payloadmaintains a sequence of slices

that incorporate macroblocks whichmay contain pixel-specific (VCL) or decoding-specific

(non-VCL) information.

This brings to a conclusion the background chapter, which introduced the fundamentals

of images and videos while delving further into compressionmethods, container formats,

and codecs. This chapter lays the groundwork for comprehending the ideas that are dis-

cussed in Chapter 3.
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NAL Unit Type Name of NAL Unit

0 Unspecified

1 Coded slice of a non-IDR picture

2 Coded slice data partition A

3 Coded slice data partition B

5 Coded slice of an IDR picture

6 Supplemental enhancement information (SEI)

7 Sequence parameter set

8 Picture parameter set

9 Access unit delimiter

10 End of sequence

11 End of stream

12 Filler data

13 Sequence parameter set extension

14 Prefix NAL unit

15 Subset sequence parameter set

16-18 Reserved

19 Coded slice of an auxiliary coded picture without partition-
ing

20 Coded slice extension

21 Coded slice extension for depth view components

22-23 Reserved

24-31 Unspecified

Table 2.5: NAL Unit Types (reproduced from ITU-TT Rec. H.264 [43])
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Chapter �

Tools for Full-Motion Video

This section details the tools developed to aid the objective of producing full-motion videos

(FMV) from consumer-grade drones, focusing on the creation and application of MP4 and

MPEG-TS parsers, including KLV (Key, Length, Value)/BER (Basic Encoding Rules) com-

ponents. Themotivation for developingMP4 parsers stems from the prevalent use of the

MP4 container format among consumer-grade dronemanufacturers. Given that MP4 is a

commonly employed video format in these drones, it is necessary to develop a parser tailored

to handle and process this format effectively. Conversely, the need to develop an MPEG-

TS parser arises from the requirement to conform to theMISB standard, whichmandates

MPEG-TS as the container format for integrating variousmetadata. To ensure that consumer

drone videosmeetMISB compliance, incorporating the requisite metadata into the video

footage is essential. Therefore, a MPEG-TS parser is crucial for achievingMISB-compliant

full-motion videos by facilitating the integration of metadata with video content.
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�.� Parser Basics

Parsers are tools that help interpret raw bytes using specific rules and convert it into a more

understandable form and vice versa. For example, in computers, parsers can take human

language input and translate it into amachine-readable format. In video parsing, parsers

analyze the structure of video files to extract useful information like metadata, frames,

and streams. Parsers can be classified into two main categories: Top-Down Parsers and

Bottom-Up Parsers [44].

�.�.� Types of Parsers

�.�.�.� Top-Down Parsers

Top-down parsers start from the general structure and work their way down to the details.

They use a method called "left-most derivation," which begins with the highest-level struc-

ture and breaks it down into smaller parts. In video parsing, a top-down parser might start

by looking at the overall format of a video file (likeMP4) and then break it down into smaller

parts like boxes (or atoms) in MP4, or packets in MPEG-TS. There are two main types of

top-down parsers: Recursive Descent Parsers and Predictive Parsers.

Recursive Descent Parsers

These parsers try all possible ways to match the input with grammar rules, using a

trial-and-error approach. If one way fails, they backtrack and try another. In anMP4 file,

this parser would start with the "ftyp" box and then try to understand each nested box like

moov and trak one by one.

Predictive Parsers
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AlsoknownasLLparsers, theyuse lookahead todecidewhichproduction touse, avoiding

the need for backtracking. They start with the start symbol and expand the left-most non-

terminal nodes until the entire parse tree is constructed. In an MP4 file, this parser uses

lookahead to efficiently predict the next box type to parse.

�.�.�.� Bottom-Up Parsers

Bottom-up parsers, also known as Shift-Reduce Parsers, start from the details and build up

to the overall structure. They use a method called "reverse right-most derivation," meaning

they start from the smallest parts and combine them to form the complete structure.

In video parsing, a bottom-upparsermight start by reading individual bytes froma video

stream and progressively build higher-level structures. For instance, inMPEG-TS parsing,

the parser would start by reading individual ES Packets, then group them into PES packets,

and eventually reconstruct the entire video frame. There are twomain types of bottom-up

parsers: LR Parsers and Operator Precedence Parsers.

LR Parsers

These parsers scan the input from left to right but construct the parse tree using the

reverse of right-most derivation. They handle parsing by shifting bytes onto a stack and

reducing them based on parsing rules. InMP4, this parser would shift bytes corresponding

to box headers onto a stack and reduces them into complete boxes as their boundaries are

identified.

Operator Precedence Parsers

These parsers are specialized for generating the parse tree using operator grammars, en-

suring that no twoconsecutivenon-terminals or epsilon appear on the right-hand side of any

production. They are useful for parsing expressions with operators, managing precedence
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without needing complex backtracking.

TheMP4 parser presented in this research primarily uses a Top-Down Recursive Predic-

tive Parser approachwithout backtracking. However,whenunknown items are encountered,

a recursive descent parser with backtracking is used to identify and store these unknown

atoms. Similarly, the proposed Transport Streamparser also employs a Top-DownRecursive

and Predictive Parser approach.

�.� MP� Parser

�.�.� Background

Our preliminary work concentrated on comprehending the underlying structure of major

video container formats and codecs, as well as the video redaction techniques. Themajority

of object detection libraries are built with open-source libraries such asOpenCV and FFmpeg.

According to the ISO/IEC 14496-14:2020 standard for MP4 containers, MP4 files have an

atomic structure [45]. Figure 3.1 provides a graphical representation of theMP4 container

format.
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Figure 3.1: Structure of MP4 container
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The multimedia data is stored in data units called atoms, which are also known as

Boxes. These data units hold the underlying audio, video, and subtitle streams, as well

as application-specific metadata. Each atom’s first two fields are the atom name and the

atom size, each holding 4 bytes of information. A pre-defined atom name denotes the begin-

ning of a new atom, and the atom size determines the number of bytes needed to be read

next to reach a sub-level atom. Atoms having varied sizes can be placed in any order except

ftyp, whichmust always be at the root of the atom tree formedia players to uniquely identify

the file type. Inner-level atoms such asmoov,mdat,wide, or any other custom atom can be

encoded using any sequence.

A MP4 format is uniquely identified by the file type atom (ftyp). Themoov atom is an

abbreviation for movie header atom, and it contains metadata pertinent to various traks.

For example, a MP4 videomay have audio, video, and subtitle tracks. Further examination

of lower-level atoms in trak shows a sample table atom entry containing the chunk offset table.

This table contains direct offsets to individual audio and video frames stored in themdat or

movie data atom in an interleaved form.

�.�.� Algorithm Design & Implementation

The parser library is implemented in the Rust with no dependency on external libraries

or crates. Figure 3.2 presents the flowchart for the MP4 parsing algorithm, detailing the

iterative process of atom parsing. The initial four bytes are read to identify the atom name,

followed by parsing the subsequent four bytes to determine the atoms size. If the extracted

atom namematches one of the predefined atom names as specified by ISO/IEC standards,

the iterator is incremented by the size of the atom. During this step, the contents of the atom
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are stored, and the start and end offset locations are recorded for future reference.

Figure 3.2: Flowchart - MP4 Parsing Algorithm

The final output of this parsing process is a structured sequence of atoms, each repre-
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sented by its corresponding start and end offset addresses. Figure 3.3 further demonstrates

how essential metadata elements such as offset addresses (STCO), sync sample information

(STSS), and frame sizes (STSZ) can be used to accurately pinpoint the location of an I-frame

within themdat atom.

MP4 File

[moov] (Metadata)

[trak] (Track)

[mdia] (Media)

[stbl] (Sample Tables)

[stco] (Chunk Offsets)

[stsz] (Sample Sizes)

[stss] (Sync Samples)

Offset: 0x00023d42

Bytes: 968692

I-Frame Sample Number: 31Combine Info

[mdat] (Data) Read the 31st chunk, starting at 0x00023d42 for 968692 bytes to get an I-Frame

Figure 3.3: Fetching an I-frame usingMP4metadata

Figures 3.4 and 3.5 demonstrates the relationship between key components of theMP4

parser library using anUML Class diagram. Unlike standard OOP languages like Java that

demonstrate direct inheritance using Classes and Interfaces, Rust gives developers the ability

to accomplish similar goalswith primitives such as Structs andTraits. Rust employs composi-

tion over inheritance that allows combiningmultiple structs to createmore complex objects.
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Somewhat similar to Java, which uses inheritance to create a hierarchy of classes and demon-

strate a relationship between each of those classes. In other words, Java encourages an ’is-a’

relationship, while Rust offers a ’has-a’ relationship to achieve code re-usability. Thus, even

though they both provide inheritance properties, they exhibit some key differences. Traits in

Rust may definemethods optionally implemented by the inheriting struct, while interfaces

in Java define a contract that an implementing class must strictly adhere to.

Figure 3.4: UML Class Diagram (Main) for MP4 Parser

For example, theMp4Box trait provides a variety of methods without a method body,

which is analogous to Interfaces in an OOP paradigm. Structures likeMp4, InnerAtom,Movie,

and others implement one or moremethods from theMp4Box trait, similar to Classes in an

OOP environment. The implement keyword in Rust, like the implements keyword in OOP,
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provides for the inheritance of parent trait methods and their implementation.

Concerning polymorphism property, Java offers both compile-time and run-time Poly-

morphism throughmethod overloading andmethod overriding, respectively. Rust, on the

other hand, encourages ad-hoc polymorphism using traits that support static dispatch,

where depending on the type, the actual implementation is determined at compile-time.

For each atom type identified inMP4 file, the two standard fields are the atom name and

atom size, with certain atoms incorporating sub-level atoms. For instance, the ftyp and free

atom does not contain sub-level atoms, whereas themoov atom holds underlying sub-level

atoms. This information helps decide Template Method as the appropriate design pattern for

the parser library. To gather header information like the atom name and size, we construct

a parsemethod utilizing skeleton code and the Template Method design pattern. Depending

on the kind of atom, implementing the parsemethodmay incorporate atom-specific logic.

For instance, while implementing the Template Method parse for theMovie struct, it might

be necessary to include additional code to parse sub-level atoms like trak.
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Figure 3.5: UML Class Diagram (Continued) for MP4 Parser
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�.�.� Evaluation

Rust’s primitive benchmarking crate criterion.rs was employed to assess the performance

of the parser library [46]. The crate allows runningmultiple benchmarks and comparing

the statistics between current and previous runs. Performance information may be seen

as graphs created with the GNUPlot tool or as sample readings saved in a CSV file. The

criterion benchmarking script comprised four stages: warmup, measurement, analysis and

comparison. Thewarmupphase involves repeatedly executing theparser library setwarmup

period to populate caches and hardware. If the programmer specifies nowarmup time, a

warmup period of 3 seconds is utilized by default. Without this warmup, evaluation script

will producehighly skeweddatapoints for thefirst few iterations. Weusedawarm-upperiod

of 10 seconds, followed by 50 standard evaluation runs, considering our means were in the

order of 3 seconds. Based on the sample iterations count set, the benchmark is conducted

against the parser utility in the measurement stage while keeping track of the execution

times.

File Size Mean (µs) Median (µs) Std. Dev. (µs)

3.9MB 109.476 108.917 16.954

457.6MB 109.618 109.563 15.346

968.4MB 108.831 108.917 15.023

1.54 GB 108.710 109.042 15.002

2.07 GB 109.283 108.896 17.366

Table 3.1: Criterion Evaluation Results for MP4 Parser

The data gathered from the measurement step are used to compute several statistics,

includingMean,Median, StandardDeviation, andmore, in the Statistics stage. The statistics
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are then provided to the user through statistical calculations. Every second benchmarking

result is evaluated in relation to the initial benchmark. The user is presented with logs and

plots that show the statistical variance. In addition to writing the assessments, adjustable

confidence levels are also reported. If the programmer fails to specify a confidence level, a

default confidence level of 95% is applied during benchmarking. The sample time vs number

of iterations Box Plot in Figure 3.6, demonstrates how the processing time of theMP4 parser

varies with different file sizes over linear scale.

Figure 3.6: Box Plot for Execution Time vs VaryingMP4 file size

The mean execution times ranging from 109.48 µs for a 3.9 MB file to 109.29 µs for a

2.07 GB file, indicating that average parsing time is almost constant with respect to different

file sizes. The median execution times, closely aligned with the mean, range from 108.92 µs
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to 108.90 µs, highlighting the consistency of parsing times across different file sizes. The

standard deviation values remain low, gradually increasing from 16.95 µs for the smallest

file to 17.36 µs for the largest, suggesting that the variability in execution time is minimal

and does not significantly change as file size increases. The statistical calculations with

upper and lower bounds (inMicroseconds) are provided in Table 3.1.

UnlikeMPEG-TS, which requires parsing complete packets that include both header and

payload to extract requiredmetadata, theMP4 parser does not require traversing the entire

file. The critical atommetadata is extractedwithout the need to parse themdat atom,which

contains the bulk of the payload data. With almost constant parsing time, relatively low and

stable standard deviation values across all file sizes suggest effective resource management

and consistent I/O operations, ensuring predictable and reliable parsing performance even

as file complexity and size increase.

�.� MPEG-TS Parser

�.�.� Background

TheMPEG-TS container format is described by the ISO/IEC 13818-1 standard[47, 48]. The

three prevalent packet types that may be found in aMPEG-TS container format are seen in

Figure 3.7. A transport stream, a packetized elementary stream, and an elementary stream are

the three packets used to transmit the video stream. To create a transport stream packet, an

elementary stream is split into 188-byte chunks, each having 4 bytes of headermetadata

and a variable-length payload. An optional 8-byte adaptation field is present between the TS

header and payload and includes information on clock references for time synchronization.
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The sync byte, which carries themagic-number 0x47 to signify the start of a TS packet, is

used to synchronize TS packets. Another significant piece ofmetadata in the TS header is the

PID, or packet identifier, which is essential for determiningwhat data the current TS packet’s

payload includes. For instance, a PID of 0x258 indicates that the payload of the supplied

packet contains geospatial KLVmetadata.

Figure 3.7: Structure of MPEG-TS file

The bytes associated with a PES packet are contained in the TS packet’s payload section,

depending onwhether the payload unit start indication (pusi) flag is set. Similar to TS packets,

PES packets include distinct Header and Payload fields. The packet start code prefix is the

first three bytes of the PES header andmust always include the hex value 0x00 00 00 01 in

order to be valid. This 3-byte prefix is followed by a 1-byte Stream ID used to identify the

kind of data in the packet. For instance, a Stream ID between 0xC0-0xDF and 0xE0-0xEF,

respectively, will indicate the availability of audio and video streams. On the other hand, a

Stream ID of 0xFC confirms that the current stream is a metadata stream. Other Stream IDs
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accessible inMPEG-TS are shown in Table 3.2 below.

Stream_ID
Stream Coding

Hex Binary

0xBC 1011 1100 program_stream_map

0xBD 1011 1101 private_stream_1

0xBE 1011 1110 padding_stream

0xBF 1011 1111 private_stream_2

0xCx 110x xxxx ISO/IEC 23008-3 audio stream number ’x xxxx’

0xEx 1110 xxxx Rec. ITU-TT H.265 video stream number ’xxxx’

0xF0 1111 0000 ECM_stream

0xF1 1111 0001 EMM_stream

0xF2 1111 0010 ISO/IEC 13818-6_DSMCC_stream

0xF3 1111 0011 ISO/IEC_13522_stream

0xF4 1111 0100 Rec. ITU-TT H.222.1 type A

0xF5 1111 0101 Rec. ITU-TT type B

0xF6 1111 0110 Rec. ITU-TT H.222.1 type C

0xF7 1111 0111 Rec. ITU-TT H.222.1 type D

0xF8 1111 1000 Rec. ITU-TT H.222.1 type E

0xF9 1111 1001 ancillary_stream

0xFA 1111 1010 ISO/IEC 14496-1_SL-packetized_stream

0xFB 1111 1011 ISO/IEC 14496-1_FlexMux_stream

0xFC 1111 1100 metadata stream

0xFD 1111 1101 extended_stream_id

0xFE 1111 1110 reserved data stream

0xFF 1111 1111 program_stream_directory

Table 3.2: Stream ID assignments (from ISO/IEC 13818-1:2018)

The payload portion of the PESpacket contains an elementary streampacketwith a 4-byte

start code of 0x00 00 01 B3. The header bytes of a PES packet contains essential data, such

as the horizontal and vertical measurements necessary to determine a video’s resolution.
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The frame rate, bit rate, and aspect ratio of the video are among the extra critical metadata

that may be found in an ES header.

�.�.� Algorithm Design & Implementation

OurMPEG-TSparser library is alsowritten inRust, offering an efficient iterator over different

packets found inMPEG-TS containers. Figure 3.8 demonstrates the relationship between

key components of theMPEG-TS parser library using a UML diagram.

The iterator first determines if we have reached the end of the file by comparing the

current address against the size of the inputMPEG-TS file. Using a loop that terminates if

the first byte from the read bytes is not the hexadecimal value 0x47, the first 188 bytes of

the input file are read into a buffer with a capacity of 188 bytes. This hexadecimal number

represents the commencement of a Transport Stream packet. The payload unit start indicator

and adaptation field control flags are typically extracted after this by reading the first 4 bytes

of the TS Header to verify (1) whether the payload comprises the start of a PES packet, (2)

whether an adaptation field is present.
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Figure 3.8: UML Class Diagram forMPEG-TS parsing library

The PES parsing function returns the information from the PES Header and Payload. To

further distinguish the type of data being read in the subsequent phase, the PID field of the

PES packet is utilized. For instance, a PID of 0x258 indicates that geospatial KLV data is

present in the payload of the current packet. The parser also displays the offset address of

each TS and PES packet. This information might be beneficial for a visual redaction tool

to narrow down the bytes and pixels associated with a certain object in the scene so that

redaction can be applied.
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�.�.� KLV Parser

�.�.�.� Background

Government agencies, such as theUS Department of Defense, routinely use drones for ISR

missions that produce full-motion video imagery. FMV analysts are frequently required to

manually analyze and evaluate the video stream recorded during such ISRmissions [49].

Figure 3.9: MISB Standard (SD) 0601.8 - UAS Datalink Local Set KLV Packet

To encodeMISB-compliant full-motion videos, the KLV encoding described inMISB ST

0601.17 specification is implemented. In the payload component of anMPEG-TS PES packet,

a KLV packet can be encountered. To uniquely identify the beginning of a KLV packet, a

fixed-size key is immediately embeddedwithin the KLV packet. In the standard, this key is

referred to as theUAS Local Set Universal Key. The BER standard discussed in the preceding

section 3.3.4 is thenused to encode a lengthfield. Figure 3.9 shows a collection ofKLVpackets,
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including various geospatial metadata components. The value fieldwithin a KLV packetmay

be interpreted as a payload field comprising a sequence of TLV sub-packets, which stand for

tag-length-value. Unlike the key field, the tag field in a KLV packet is connectedwith a specific

geospatial metadata item. For example, themetadata fields checksum andUnix timestamp

are represented by tag values 1 and 2, respectively, and are also deemed required tags by the

standard.

For example, tag0x02 in Figure 3.9 signifies theUnixTimestamp, followedby0x08which

represents the length of the given tag andfinally the valuefield holding the hexadecimal bytes

0x00046050584E0180. Converting this number to decimal yields the Unix timestamp,

i.e. 1,231,798,102,000,000 in seconds, which can be represented into human readable time

asMonday, January 12, 2009, 22:08:22. A Unix epoch is a way of representing and storing

time in operating systems. The beginning of the Unix timekeeping systemwas defined as

00:00:00 in UTC on January 1, 1970. The decimal number above is the number of seconds

that have elapsed while keeping this Unix epoch as a reference. Similarly, for the tag value

of 0x0E, we can obtain the sensor longitude from its hex representation 0x5B5360C4 using

the Equation 3.1.

Longitude =

Maximum longitude in degrees

Maximum hex bytes

�
⇥ Longitude hex bytes

=


360

4,294,967,295

�
⇥ 1,532,190,916

= 128.47 �

(3.1)

The sensor altitude can be derived by reading the tag value 0x0F, which has a length of
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0x02, indicating the altitude field. The value field is 0xC221, which translates to 49,697 in

decimal representation. To compute the altitude inmeters, Equation 3.2 can be used:

Altitude =

Altitude Range
Unit Range

⇥ Value Bytes
�
� Offset

=


65,535
49,697

⇥ 1,532,190,916
�
� 900

= 14,190.72 meters

(3.2)

Where theAltitudeRange is thedifferencebetween themaximumandminimumaltitude

levels: 19000-(-900) = 19900, Unit Range is themaximumvalue for a 16-bit unsigned integer

(65,535) and Offset is the minimum altitude value, which is -900meters. The altitude value

of 14,190.72 with cm precision with altitude values ranging in 14Kms can be overly precise.

The recommended resolution for an altitude sensor is approximately 0.3 meters [50]. This

means the sensor can reliably measure and report altitude changes of at least 0.3 meters.

To ensure the final result is an integer and a multiple of 0.3, we can select the closest

integer value such that its least significant digit is divisible by 3. This approach aligns

with rounding to a multiple of 0.3. For example, the closest integer value to our result

is 14,190 (since 90 is divisible by 3), which means 14,190 is divisible by 0.3, resulting in:

14, 190 ÷ 0.3 = 47, 300. Therefore, the altitude value rounded to the nearest multiple of

0.3 meters, ensuring it is an integer, is: 14,190meters.
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�.�.�.� Algorithm Design & Implementation

The KLV parser extends the MPEG-TS parser presented in the preceding section 3.3. In

full-motion videos, the payload section of a PES packet is intended to hold codec-specific

information. For example, an H.264 video stream, Advanced Audio Coding (AAC) audio

stream and KLV metadata streammay be contained in the payload of a video, audio and

metadata PES packet [43]. The KLV parser decodes PES packets with the PID set to 0x258

to indicate that the packet is a KLV packet. After the correct PID has been determined, we

examine whether the initial 16 bytes of the payload correspond to theUAS Datalink Local Set

Key.

If a match is found, the first bit of the following byte is read to determine if the length of

the KLVpacket is encoded using the short or long BER encoding standards. The bitreader crate

is used to parse singular bits [51]. If the BER encoding type flag is set to 0, the following seven

bits are parsed to determine the length of the KLV packet. If this flag is set to 1, the length of

the length field is determined by parsing the remaining 7 bits. Depending onwhether the

length field is short or long BER encoded, the iterator is incrementedwith the final length

value. The final length is then utilized to parse the value bytes containing the underlying

geospatial metadata encoded in the TLV format. The KLV redaction technique described

in chapter 4 expands this work by considering individual TLV bytes when obfuscating the

value bytes. Figure 4.2 depicts an example of a KLV packet output when a full-motionmovie

is provided as input to the library.
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�.�.� BER Parser

In a full-motion video, the length value from both KLV and TLV packets stream is encoded

in BER [52, 53]. The motivation behind writing the BER parser library was to decode the

underlying Value field from KLV and TLV that held various metadata items defined byMISB

ST 0601.17 specification, including the geospatial metadata. The basic encoding rules (ber)

specify a set of guidelines for encoding data in binary form for transmission to another

system regardless of the underlying hardware or platform. Information can be encoded in

BER format in three different ways: short, long, and indefinite BER encoding, as shown in

Figure 3.10.

Figure 3.10: Basic Encoding Rules
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Figure 3.11: BER Parser

Figure 3.11 displays the BER encoding technique. A short version of BER encoding is used

to encode data whose length can be expressed with 7 bits. The seventh index bit of the octet

is set to zero to indicate that this is a short form of encoding. The remaining 7 bits, from

6 to 0, are used to determine the length of the value field. When a length value cannot be

expressed using 7 bits, a long variant of BER encoding is employed. The leftmost bit of the

octet, or bit 7, is set to 1, while the following 7 bits reflect the length of the length field. The

third type of BER encoding is termed indefinite form, and it involves setting all the bits in an

octet to zero and ending the value field with two NULL bytes.

54



�.�.� Evaluation

We followed the identical procedures as those outlined in the evaluation section for theMP4

parser library to assess performance of theMPEG-TS parser library, i.e., by using Criterion

benchmarking crate by Rust. The Box Plot shown in Figure 3.12 demonstrates how the

processing time of the parser varies with different file sizes. MPEG-TS parser exhibits a clear

correlation between file size and parsing time, with execution times increasing significantly

as file sizes grow over linear scale.

Figure 3.12: Box Plot for Execution Time vs VaryingMPEG-TS file sizes

Table 3.3 presents key performance statistics of theMPEG-TS parser library, focusing on

themean,median, and standard deviation of processing times (inMilliseconds) for different

file sizes.
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File Size Mean (s) Median (s) Std. Dev. (s)

4MB 0.012 0.012 0.000

468.3MB 1.398 1.396 0.008

991.3 MB 2.962 2.959 0.014

1.58 GB 4.704 4.701 0.021

2.11 GB 6.315 6.305 0.031

Table 3.3: Criterion Evaluation Results for MPEG-TS Parser

Themean execution times range from 0.012s (4MB file) to 6.315s (2.11 GB file). Similarly,

themedian times follow this trend, increasing from0.012s to 6.305s. The standard deviation

ranges from 0s to 0.031s, reflecting increasing variability in execution times, especially for

larger files. TheMPEG-TS files are structured in the form of packets that include both head-

ers and payloads, necessitating comprehensive parsing of each packet to extract relevant

information. This requirement, combined with the larger amount of data in bigger files,

leads to longer execution times and greater variability as file size increases.

�.� Comparative Analysis

Given that MP4 and MPEG-TS are a widely adopted container format, several tools have

been developed to analyze, dissect, andmanipulate the audio, video, andmetadata stored

underneath. These tools differ in terms of their offerings, from basic metadata extraction

to complex video analytics. However, they do not fully address the specific requirement of

arbitrarily seeking bytes of interest. This section explores some of the well-known container

parsers and benchmarks them against the tools proposed in this research.
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�.�.� Related Tools

The candidate tools for comparison were selected primarily from GitHub repositories, with

additional insights drawn from a review of parsing techniques discussed in journal and

conference articles. While these publications provided valuable theoretical foundations,

they did not consistently include accessible or fully operational code, making GitHub the

main source of practical implementations. We prioritized tools that compiled successfully

and included user documentation. We chose some tools for their popularity and active

development, as indicated by high numbers of stars, forks, and recent commits. Others were

selected for their unique capabilities in parsingmetadata relevant to our research, even if

they had less community engagement. By including both widely-used and niche tools, we

aimed to provide a well-rounded comparison.

Tools relevant toMP4 videos are listed below.

atomicparsley A command-line tool for analyzing metadata in MP4 files. It supports

various operations such as reading, parsing, settingmetadata tags [54].

Bento4 is a comprehensive video processing toolkit for working withmp4 files, offering

features for both reading andwritingMP4 files. Bento4 offers both, a library written in C++

andmultiple Command Line Interface (CLI) tools such asmp4dump,mp4info, mp4split,

etc., for different purposes [55].

qtfaststart is a command-line utility for optimizing MP4 files for web streaming by

rearranging the file structure. Itmoves themetadata and offset information to the beginning

of the file, improving playback start times for streaming scenarios [56].

GPAC is a framework containing several tools, in the form of library, CLI and GUI to

process, convert, and analyze multimedia content. It supports parsing of several container
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formats, includingMP4. Themp4box command-line utility fromGPAChas been used during

comparisons [57].

MediaInfo is a tool for metadata retrieval from different container formats, with about

37 languages for metadata support. It is cross-platform, written in Pascal and C++, offered

as a library, command-line utility and a GUI variations [58].

ExifTool is a Perl library and CLI tool for reading, writing, and editingmetadata from

different types of multimedia files including images and videos [59].

FFmpeg is awell-rounded collection of CLI tools using libav [7] as library underneath for

handling video processing tasks such as transcoding, streaming, editing, and compression.

FFmpeg is open-source, platform-independent, and supports over 100 different codecs for

video encoding and decoding [60].

Tools for working withMPEG-TS video are outlined below.

m2pb is developed by Google, written in C++, this parser library extracts and analyzes

MPEG-TS streams, allowing users to selectively print specificmetadata fields using corre-

sponding flags [61].

mpeg-ts-media is a C++ library designed to handleMPEG-TS containers with H.264 and

AAC streams. It parses themetadata structure and additionally de-muxes audio and video

streams into separate files [62].

mpeg2tsparser is a simple MPEG-TS parser library that extracts metadata from TS

packets along with their position offsets. It only parses Boolean basedmetadata fields [63].

mpeg_parser is another library that only parses TS packets from MPEG-TS streams,

outputtingmetadata in an XML-formatted file for easy analysis [64].

mpegts-basic-parser is written in C, this lightweight parser is designed for basic parsing

of MPEG-TS files, primarily focusing on inspecting metadata from audio and video streams
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[65].

TS_Parser is a minimalistic MPEG-TS library that parses basic TS packet information

along with offset addresses [66].

mpeg-ts-parser is an extension of the TS_Parser library, it supports parsing high-level

header metadata for TS packet and additional streams such as subtitles [67].

�.�.� Identifying Gaps in existing Tools

This subsection highlights the deficiencies found in existing parsers and the specific re-

quirements they did not fulfill. It discusses how these gaps in security, performance, and

functionality prompted us to write custom parsers that better suited our needs. Table 3.4

and 3.5 highlight some of the key differences in existing parsers vs parsers proposed in this

research.

�.�.�.� Generic Requirements

When investigating existing parsers, we noted some projects on GitHubwhere the program

calls tool binaries like ffprobe or ExifTool directly within the code. This approach is not the

best practice for several reasons. Firstly, invoking external binaries introduces performance

overhead from process creation and inter-process communication, which degrades applica-

tion efficiency. Secondly, running external binaries leads to higher consumption of system

resources, such as memory and CPU, compared to using an integrated library embedded

within the application.

Furthermore, managing dependencies between tool binaries and the application be-

comesmore complex, increasing the likelihood of compatibility issues andmaking setup

andmaintenance more cumbersome. Finally, external binaries offer less flexibility and cus-
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tomization options than libraries, limiting the ability to tailor functionality to specific needs.

Therefore, we require the parser to be available as a library to facilitate easy integrationwith

various applications and systems.

Our research also highlighted the importance of access to packet offsets, which are

crucial for accurately locating sensitive metadata that needs to be secured. Cryptographic

filesystem like ADAPT (Advanced Detection and Prevention of Tampering) can use these

offset addresses as input to preserve the integrity of the metadata.

Our analysis indicates that traditional parsers are not often written usingmemory-safe

languages, thereby posing security risks due to a known vulnerabilities associated with

these languages. Lack of patching and community interest alsomake these types of libraries

less desirable from a security perspective. Tomitigate these risks, we seek parsers written in

memory-safe languages that prevent common programming errors such as buffer overflows

andmemory leaks.

Tool Features atomicparsley Bento4 qtfaststart gpac mediainfo exiftool FFmpeg ProposedMP4 Parser

UsesMemory-Safe Language X
Available as a Library X X X X X X
Basic metadata parsing X X X X X X X X
STCO Box Parsing X X
STSS Box Parsing X X
STSZ Box Parsing X X
Access to Box Offsets X X X
Handling unknown Boxes X X
Acceptable Update Frequency X X X X
Known Vulnerabilities X X X X X X n/a

Table 3.4: ProposedMP4 Parser vs ExistingMP4 Parsers
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�.�.�.� Requirements speci�c to MP� Parsers

For MP4 parsing, we needed a parser library capable of handling the parsing of STCO, STSS,

and STSZ boxes. Parsing the STCO box is essential because it provides offset addresses to

specific frames, enabling efficient navigation within the file. Parsing the STSS box helps

identify the type of frames, such as I-frames or P-frames, which is important for visual

information redaction. The STSZ box parsing is necessary to determine the size of the frames.

Additionally, handling unknownboxes is vital since different drone vendorsmay add custom

metadata to their footage, requiring flexibility and adaptability beyond standard atoms.

Tool Features m2pb
mpeg-
ts-

media

mpeg2ts
parser

mpeg_parser
mpegts-
basic-
parser

TS_Parser
mpeg-
ts-

parser

Proposed
MPEG-TS
Parser

UsesMemory-Safe Language X
Available as a Library X X X X X X X X
Basic metadata parsing X X X X X X X X
Access to Packet Offsets X X X X X X
TS Header Parsing X X X X X X X
PES Header Parsing X X
KLV Stream Parsing X X
StreamDe-muxing X X
Acceptable Update Frequency X X X
Known Vulnerabilities n/a

Table 3.5: ProposedMPEG-TS Parser vs ExistingMPEG-TS Parsers

�.�.�.� Requirements speci�c to MPEG-TS Parsers

ForMPEG-TS parsing, we required a parser library capable of handling Transport Stream

(TS) headers, Packetized Elementary Stream (PES) headers, and KLV streams. Parsing the

TS header helps us identify the type of data contained in each packet, while PES header

parsing is crucial it encapsulates the Elementary Stream (ES) that holds the actual KLV data.

Parsing KLV streams is essential for accessing the sensitive dronemetadata. Additionally,
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we needed a parser with optional support for stream de-muxing to separate KLV data from

video footage, allowing for tailored redaction applications based on the type of stream.

�.�.� Evaluation

For this comparison, we employed three primarymetrics: execution time, memory usage,

and CPU usage to comprehensively evaluate the performance and efficiency of the container

parsers.

Execution Time refers to the total duration required by the container parser to com-

plete processing of a video file. This metric is crucial for understanding responsiveness

of the parsers, especially when dealing with large video files. Wemeasured the execution

time of each parser using Hyperfine, a benchmarking tool that provides precise timing

measurements.

MemoryUsage indicates the amount ofmemory allocated and used by the parser during

the processing of a video file. Efficient memory usage is essential for the stability of the

parsers, particularly when handling high-resolution videos or multiple files concurrently.

To measure memory usage and safety, we used two tools: Valgrind with Memcheck and

Heaptrack. These tools helps detecting total memory usage along with memory leaks by

tracking all memory allocations and de-allocations.

CPUUsagemeasures how intensively the parser utilizes CPU resources while processing

the given video file. High CPU usage can impact the overall system performance, especially

if the parser is run alongside other applications. By analyzing CPU usage, we can determine

the computational efficiency of the parsers and identify any potential bottlenecks. We

measured CPU usage using Perf, a powerful performance analysis tool that collects and
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reports performance data from the CPU.

�.�.� Experimental Setup

The tests were conducted on a standardized system configuration to ensure uniform testing

conditions and consistent hardware resource utilization across all benchmarks. The test

machine is equipped with specifications specified in table 3.6 below.

Component Specification

Processor Intel Core i5-12600K, 10 cores, 3.7 GHz

RAM 32 GB DDR4

Storage 1 TB SATA SSD

Graphics Card NVIDIA GeForce RTX 3060

Operating System Windows 11 (64-bit)

Table 3.6: Hardware and Software Specs for Test Environment

For the benchmarking process, each container parser was evaluated using a consistent

input: drone video footage captured from the DJI Mini 2. This was to ensure that the test-

ing conditions are uniform and that performance measurements are both accurate and

comparable across different parsers.

�.�.�.� Benchmarking Tools

Weevaluated performancemetrics, including execution times, CPU utilization, andmemory

usage, using the benchmarking tools outlined in this section. Additionally, we assess the

parsers from amemory safety standpoint by investigating potential memory leaks to ensure

robust and reliable operation.

Hyperfine is a command-line tool that performs statistical analysis on the execution
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times of a program by usingmetrics such as mean, median, standard deviation, etc [68]. It

supports warm-up runs, useful for programswith significant disk I/O, as it helps mitigate

variations caused by disk cache states, e.g. warm vs cold. For this benchmark, we configured

the number of runs to be 10 andwarmup runs to be 3. Hyperfine supports benchmarking

shell commands, e.g., ls, cat, etc., as well as program binaries across different platforms

and programming languages. It additionally supports benchmarking multiple binaries

simultaneously.

Valgrind is a powerfulmemory analysis tool used todetectmemory leaks, illegalmemory

accesses, and other memory-related errors [69]. Valgrind operates by running the binary

within its own sandbox environment, injecting instrumentation code for memory profiling

without us needing to modify the original code. We utilized its Memcheck tool to track

memory usage and detect leaks. Memcheck captures use of malloc() and free() function

calls to trackmemory allocations.

Heaptrack is a heapmemory profiler that logs memory allocations and de-allocations,

offering insights into memory usage patterns and identifyingmemory leaks [70]. By using

Heaptrack, we recorded detailed information about heapmemory usage, including peak

memory usage and allocation patterns. Heaptrack leverages the LD_PRELOADmechanism

to inject a specially crafted shared object into the given program that monitors system calls

and functions related to memory management. It overloads functions like malloc() and

free() to capture backtraces and logs runtime information about shared libraries.

Perf is a performance analysis tool that collects data on CPU usage, such as clock cycles,

instructions executed, cache hits/misses, and context switches [71]. It helps identify CPU-

related bottlenecks by tracking both hardware and software system events. The perf_events

interface, allowsmonitoring of system events occurred during program execution. These
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events are gathered from sources such as the processor’s Performance Monitoring Unit

(PMU) or kernel interfaces, and includemetrics like context switches, page faults andmore.

The low-level system events that Perf has access tomay vary depending on the processor

type andmodel.

�.�.� Analysis and Results

This subsection discusses the assessment outcomes from benchmarking tools used to assess

candidate parsers for both MP4 and MPEG-TS containers. By examining these metrics,

we aim to understand the effectiveness and efficiency of each parser, highlighting their

strengths and areas for improvement.

�.�.�.� MP� Parsers

The results from assessments for MP4 parsers are outlined below.

ExecutionTimeComparative execution times forMP4parsers are shown in Figure 3.13. A

higher execution time, as seenwith ffprobe (139.80ms), suggestsmore extensive processing

or inefficiencies, either due to additional features or less optimized code. In contrast, a

lower execution time, like that of AtomicParsley (14.10ms) and Bento4 (15.40ms), indicates

more efficient processing, possibly due to optimized algorithms. The proposedMP4 parser,

with an execution time of 29.70ms, shows competitive performance, balancing speed and

functionality effectively. This makes it a viable option for applications that require efficient

parsing without compromising on speed.
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Figure 3.13: Execution Times across MP4 Parsers using Hyperfine

CPUUsage CPU usage statistics for MP4 parsers are depicted in Figure 3.14. Despite the

ProposedMP4 Parser extracting comparatively wider array of metadata, its CPU time usage

is exceptionally low at 1.57 ms, making it the fastest among all other parsers. This indicates

that the proposed parser performs comprehensive and detailed metadata parsing without

clogging up the CPU, ensuring efficient resource utilization. In contrast, qtfaststart (91 ms)

and exiftool (69.46 ms) exhibit much higher CPU time usage, suggesting more intensive

processing requirements or less optimized algorithms. AtomicParsley (1.64ms) and Bento4

(1.72 ms) also show low CPU time usage, similar to the proposed parser, indicating efficient

processing with minimal resource consumption. However, the proposed parser still slightly

outperforms them, showcasing its superior optimization.
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Figure 3.14: CPU Usage Statistics for MP4 Parsers using Perf

Other parsers like GPAC (4.12 ms), MediaInfo (11.49 ms), and ffprobe (56.23 ms) fall

between these extremes, with moderate CPU time usage. While they do not match the

efficiency of the proposed parser, they still offer reasonable performance, likely balancing

processing complexity and optimization. Overall, the proposed MP4 parser’s ability to

handle extensive metadata while maintaining the lowest CPU time usage highlights its

optimized design and effective balance between throughput and efficiency. This makes it an

excellent choice for users seeking a lightweight, efficient, and comprehensiveMP4 parsing

tool.

Memory Usage and Leaks The memory usage results for various MP4 parsers reveal

significant differences in their resource efficiency, focusing on total heap usage, memory
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leakage, and peak heapmemory consumption. Detailedmemorymetrics for MP4 parsers

are illustrated in Table 3.7.

Parsers
In Use

at Exit

Total Heap

Usage

Definitely

Lost

Indirectly

Lost

Possibly

Lost

Still

Reachable

ProposedMp4

Parser
0 B 13.09 KB 0 B 0 B 0 B 0 B

ffprobe 50.37 KB 4.19MB 0 B 0 B 0 B 48.40 KB

exiftool 12.52MB 48.87MB 28.56 KB 59.23 KB 12.43MB 3.00 KB

mediainfo 0 B 9.76MB 0 B 0 B 0 B 0 B

qtfaststart 435.59 KB 27.97MB 0 B 0 B 0 B 435.69 KB

Bento4 0 B 105.92 KB 0 B 0 B 0 B 0 B

atomicparsley 0 B 82.95 KB 0 B 0 B 0 B 0 B

Table 3.7: Memory Usage Statistics for MP4 Parsers using Valgrind

Total Heap Usage The ProposedMP4 Parser demonstrates impressive efficiency with

a total heap usage of 13,405 bytes, making it the lowest among the parsers. This indicates

that it handles memory usage very efficiently, especially when compared to parsers like

qtfaststart (29,326,034 bytes) and exiftool (51,240,784 bytes), which exhibit significantly

higher total heap usage. These higher figures suggest that these parsers are morememory-

intensive, possibly due to poor memorymanagement.

Total Memory Leaked Analysis of memory leaks detected inMP4 parsers is shown in

Figure 3.15. In terms of memory leakage, the Proposed MP4 Parser excels with 0 bytes of

memory leaked, indicating that it has nomemorymanagement issues and does not leave

any allocated memory unreleased. In contrast, exiftool has the highest memory leakage

at 13.15 MB, followed by mediainfo (1.50 MB) and qtfaststart (404.99 KB). These figures

suggest that these parsers may have issues withmemorymanagement, potentially leading

to inefficient use of system resources.
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Figure 3.15: Memory Leak Statistics for MP4 Parsers using Heaptrack

Peak HeapMemory Consumption Peakmemory usage byMP4 parsers is highlighted

in Figure 3.16. The ProposedMP4 Parser also shows low peak heapmemory consumption

at 77.99 KB, which is notably lower compared to other parsers like qtfaststart (5.10 MB)

and exiftool (14.94MB). This indicates that the proposed parser maintains a lower memory

footprint even at its peak usage, demonstrating effective memory management. atomic-

parsley (79.42 KB) and Bento4 (103.50 KB) also exhibit low peakmemory consumption, but

the proposed parser’s performance remains superior in terms of minimizing peakmemory

usage.
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Figure 3.16: PeakMemory Usage Statistics for MP4 Parsers using Heaptrack

Overall, the proposedMP4 parser’s low total heap usage, zeromemory leakage, andmin-

imal peak heapmemory consumption highlight its efficient and safermemorymanagement.

This contrasts sharply with other parsers that exhibit higher memory usage and leakage,

showcasing the strength of proposed parser in resource efficiency and stability.

�.�.�.� MPEG-TS Parsers

The outcomes of theMPEG-TS parser evaluations are summarized below.

Execution Time Figure 3.17 compares execution times across MPEG-TS parsers. The

proposedMPEG-TS Parser displays a notably higher execution time at 32741.20ms. This

significantly larger number is indicative of the ability of parser to recognize and parse a
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muchwider range of metadata from the nativeMPEG-TS container and the KLVmetadata

stream. We observedmuch lower execution times when running our parser on anMPEG-TS

file without a KLV stream.

Figure 3.17: Execution Times across MPEG-TS Parsers using Hyperfine

Other parsers, such asmpeg2tsparser (360.10ms), TS_Parser (1746.50ms), andmpeg-

ts-parser (1961.20 ms), focus on displaying only portion of metadata, leading to shorter

execution times. These parsers might have been developed with intentions to parse small

set of metadata, while excluding others, resulting in faster processing but less detailed

output. Parsers like mpeg-ts-media (2466.50ms) andmpegts-basic-parser (46.00ms) do

not support parsing of the third stream containing KLVmetadata, which further reduces

their processing scope and execution time.

Additionally, mpeg_parser (1917.60ms) only selectively parses certain types of packets,
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e.g., Transport Stream (TS) packets. This selective parsing approach contributes to its faster

execution time tomore comprehensive parsers. In contrast, the trade-off in execution time

demonstrates the capability a parser to handle complex and detailedmetadata, making it

an invaluable tool for those needing exhaustive parsing andmetadata extraction.

CPU Usage Figure 3.18 displays CPU usage statistics for MPEG-TS parsers. Despite

the ProposedMPEG-TS Parser taking longer to process a wide range of data, its CPU time

usage is relatively low at 984.9ms, indicating that it manages resources efficiently while

handling extensive metadata. In contrast, parsers like m2pb (8836.44 ms) and mpeg-ts-

media (9548.63 ms) exhibit much higher CPU time usage, suggesting that they demand

more computational resources for processing, likely due to more complex or less optimized

algorithms.

Figure 3.18: CPU Usage Statistics for MPEG-TS Parsers using Perf
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Parsers such asmpeg2tsparser (2838.8ms) andmpegts-basic-parser (12.65ms) show

varying levels of CPU efficiency. Whilempeg2tsparser hasmoderate CPU timeusage, indicat-

ing a balance between performance and resource consumption, mpegts-basic-parser stands

out with the lowest CPU time usage, reflecting highly efficient processing but potentially

focusing on only basic metadata. TS_Parser (2556.97ms) andMPEG-TS-parser (2801.93ms)

fall into the middle range, with CPU time usage suggesting a trade-off between processing

capabilities and efficiency.

Overall,while theproposedMPEG-TSparserhas ahigher execution timecompared to the

most efficient parsers likempegts-basic-parser, its usage is considerably lower than themost

resource-intensive parsers. This suggests that it effectively balances detailed processing

with efficient resourcemanagement, making it a robust tool for handling complexMPEG-TS

data without excessive CPU demand.

Memory Usage and Leaks The memory usage results for various MPEG-TS parsers

highlight significant differences in their efficiency, focusing on total heap usage, memory

leakage, and peak heapmemory consumption. Table 3.8 presents thememorymetrics for

MPEG-TS parsers.

TotalHeapUsageThe ProposedMPEG-TS Parser shows a total heapusage of 100,099,451

bytes, which is notably lower compared to other parsers such asm2pb (2,049,947,457 bytes)

and mpeg-ts-parser (762,131,084 bytes). This lower total heap usage suggests that the

proposed parser is efficient in memory management, utilizing significantly less memory

than more resource-intensive parsers. Parsers like mpeg2tsparser (266,296 bytes) and

TS_Parser (6,064 bytes) much efficient memory usage, but the proposed parser remains

superior in terms of managing PeakMemory Consumption (discussed below) with lower

memory overhead.
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Parsers
In Use

at Exit

Total Heap

Usage

Definitely

Lost

Indirectly

Lost

Possibly

Lost

Still

Reachable

Proposed

MPEG-TS Parser
0 B 95.46 KB 0 B 0 B 0 B 0 B

mpeg-ts

-parser
726.74MB 726.82MB 188 B 0 B 726.74MB 0 B

TS_Parser 0 B 5.92 KB 0 B 59.23 KB 12.43MB 3.00 KB

mpegts-basic

-parser
386.10 KB 386.10 KB 128.04 KB 128.02 KB 0 B 130.04 KB

mpeg_parser 944 B 80.92 KB 0 B 0 B 0 B 944 B

mpeg2tsparser 0 B 260.05 KB 0 B 0 B 0 B 0 B

mpeg-ts-media 0 B 775.40 KB 0 B 0 B 0 B 0 B

m2pb 99.92 KB 1,954.98MB 0 B 0 B 0 B 99.92 KB

Table 3.8: Memory Usage Statistics for MPEG-TS Parsers using Valgrind

Total Memory Leaked Examination of memory leaks inMPEG-TS parsers can be found

in Figure 3.19. The ProposedMPEG-TS Parser excels with 0 bytes of memory leaked, indi-

cating impeccable memory management with no residual memory left unreleased. This

contrasts sharply withmpeg-ts-parser (762.05MB), which has the highest memory leakage,

suggesting substantial issues withmemorymanagement and potential inefficiencies. Other

parsers, such asm2pb (103.44 KB) andmpeg2tsparser (266.30 KB), also show somememory

leakage, highlighting areas where resource management could be improved.
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Figure 3.19: Memory Leak Statistics for MPEG-TS Parsers using Heaptrack

Peak HeapMemory Consumption Figure 3.20 showcases peakmemory usage byMPEG-

TS parsers. In terms of peak heap memory consumption, the Proposed MPEG-TS Parser

maintains a low figure of 74.44 KB, indicating that it does not require excessive memory

even at its highest usage. This is in sharp contrast to mpeg-ts-parser (762.13 MB) and

m2pb (506.96 KB), which exhibit significantly higher peak memory usage. Parsers like

mpeg_parser (82.86 KB) and TS_Parser (78.77 KB) also demonstrate efficient memory usage,

but the proposed parser’s low peakmemory consumption highlights its effective memory

management under peak conditions.
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Figure 3.20: PeakMemory Usage Statistics for MPEG-TS Parsers using Heaptrack

Overall, the proposedMPEG-TS parser stands out for its efficient memory usage, low

total heap usage, zero memory leakage, and minimal peak memory consumption. This

contrasts with other parsers that exhibit higher memory demands and leakage, showcasing

the proposed parser’s strength inmaintaining efficient and stable memorymanagement.

�.�.� Review of Known Vulnerabilities

This subsection provides an overview of known vulnerabilities found inMP4 andMPEG-TS

parsers. It reviews frequency, severity and categorization of each vulnerability. By analyzing

these known issues, we aim to identify potential risks and discuss the benefits of using Rust

– amemory safe programming language, for parser development.
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�.�.�.� Data Preperation

The data presented in this analysis was collected from twomajor vulnerability databases:

MITRE and NIST [72]. These databases offer comprehensive, publicly accessible informa-

tion on vulnerabilities and exposures. MITRE’s database focuses on the identification and

categorization of vulnerabilities, while NIST provides detailed information on their severity,

impact, and remediation [73].

We created a custom dataset by extracting CVEs (Common Vulnerabilities and Expo-

sures) that specifically affectedMP4 andMPEG-TS container parsers. We particularly col-

lected information such as publish dates, CWE-ID, CVE numbers and severity. CVE numbers

are unique identifiers assigned to publicly known security vulnerabilities. They serve as a

standard reference for security researchers andprofessionals to share data across community

end users.

CWEs categorize vulnerabilities into specific types of weaknesses, making it easier to

understand common vulnerability patterns and prioritizing fixes based on the nature of

the weakness. In our analysis, we identified the following CWEs affecting video container

parsers over the past couple of decades:

�.�.�.� Data Analysis

Vulnerability Distribution Figure 3.21 presents the trend of Vulnerability discovery over

time. There is a general trend of increasing vulnerabilities over time from 2004 to 2023, with

notable peaks in 2022 and 2021. Year 2022 had the highest count of vulnerabilities overall

(70), with Bento4 and GPAC contributing significantly. Followed by year 2021, with a high

count (64), mainly attributed to GPAC. Other parsers like Adobe Flash Player, RealNetworks
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CWE-ID Description

CWE-119 Improper Restriction of Operations within the Bounds of aMemory Buffer

CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)

CWE-122 Heap-based Buffer Overflow

CWE-125 Out-of-bounds Read

CWE-189 Numeric Errors

CWE-190 Integer Overflow orWraparound

CWE-191 Integer Underflow (Wrap orWraparound)

CWE-264 Permissions, Privileges, and Access Controls

CWE-369 Divide By Zero

CWE-399 ResourceManagement Errors

CWE-400 Uncontrolled Resource Consumption

CWE-401 Missing Release of Memory after Effective Lifetime

CWE-404 Improper Resource Shutdown or Release

CWE-415 Double Free

CWE-416 Use After Free

CWE-476 NULL Pointer Dereference

CWE-617 Reachable Assertion

CWE-674 Uncontrolled Recursion

CWE-697 Incorrect Comparison

CWE-704 Incorrect Type Conversion or Cast

CWE-763 Release of Invalid Pointer or Reference

CWE-770 Allocation of ResourcesWithout Limits or Throttling

CWE-772 Missing Release of Resource after Effective Lifetime

CWE-787 Out-of-boundsWrite

CWE-824 Access of Uninitialized Pointer

CWE-835 Loopwith Unreachable Exit Condition (’Infinite Loop’)

CWE-908 Use of Uninitialized Resource

CWE-94 Improper Control of Generation of Code (’Code Injection’)

Table 3.9: CommonWeakness Enumeration (frommitre.org)
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RealPlayer, and Apple QuickTime show vulnerabilities mainly in the earlier years. Overall,

the trend demonstrate a growing issue with specific parsers, highlighting the need for

improved security measures and vigilance.

While some parsers from the previous studywere retained, others were excluded due

to the absence of related vulnerabilities. Additional parsers included in this study aren’t

strictly stand alone parsers, but are embedded components of the software, such as Google

Chrome, Mozilla Firefox and VLCMedia Player. These parsers were included in the study

because they had documented vulnerabilities, even though these libraries do not provide

executable code for direct comparison. This broader approach allowedmore comprehensive

exploration of vulnerabilities not only in stand alone parsers, but software that integrates

parsers as component.

Figure 3.21: Trend of Vulnerability Discovery over Time
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Prevalent CWEs in Parsers Figure 3.22 presents the distribution of CWEs across parsers.

GPAC stands out as the most vulnerable parser with 126 reported issues, including 32 in-

stances of CWE-476 and 23 of CWE-787. These highlight significant problems withmemory

handling and pointer management, leading to potential crashes and security exploits. It

also has 16 occurrences of CWE-120, emphasizing buffer overflow andmemory corruption

concerns. Bento4 followswith 79 reported issues, notably 13 instances each of CWE-787 and

CWE-401, and 12 of CWE-476, indicating critical memorymanagement flaws. Adobe Flash

Player has 17 vulnerabilities, primarily CWE-787 (10 instances), pointing to out-of-bounds

write issues.

Figure 3.22: CWEDistribution by Parser

Mid-level parsers like mp4v2, VLCmedia player, andMozilla’s libstagefright also show

vulnerabilities. mp4v2 has 16 issues, mainly CWE-401 (4 instances). VLCmedia player has
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13 issues, with CWE-119 (4 instances) related to buffer management. Libstagefright has 9

issues, predominantly CWE-189 (6 instances), indicating data handling problems. Figure

3.23 ranks the top CWE categories by severity.

The trend of vulnerability discovery over time by parser is depicted in Figure 3.23.

Figure 3.23: Top CWE Categories by Severity

Lower-level parsers, including libmp4v2,Winamp, and Apple iTunes, show fewer vul-

nerabilities but still pose risks. Libmp4v2 has 3 issues, including one instance of CWE-119.

Winamp has 3 vulnerabilities, with 2 instances of CWE-404. Apple iTunes has 2 issues, with

CWE-399 being notable. Other parsers like GStreamer, WhatsApp, and AtomicParsley each

have a single reported vulnerability, indicating that while they are less prone to issues, they

are not entirely risk-free.
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In summary,memorymanagement andbuffer handling issues are prevalent acrossmany

video parsers, emphasizing the need for improved security measures.

Severity Distribution Figure 3.24 illustrates the severity distribution by parser. A total of

307 vulnerabilities were identified, withMedium-level severity vulnerabilities comprising

60.26% of the total. GPAC and Bento4 account for a significant portion of these Medium

severity vulnerabilities, with GPAC alone contributing nearly 44%. This indicates a need for

focused attention on these parsers to address the numerousmedium-level threats.

Figure 3.24: Severity Distribution by Parser

High severity vulnerabilities make up 36.49% of the total, again heavily concentrated

in GPAC and Bento4. GPAC is particularly notable with 41 High severity vulnerabilities,

representing over one-third of the total. Bento4 and Adobe Flash Player also require sig-

nificant security enhancements due to their high severity vulnerabilities. Critical severity
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vulnerabilities, though fewer, are mainly found in GPAC, mp4v2, and Bento4, highlighting

the urgent need for remediation in these parsers. The single Low severity vulnerability in

Winamp indicates the generally high-risk nature of the vulnerabilities.

In conclusion, this analysis demonstrates the urgent need for robust security measures.

A comprehensive security assessment andmitigation strategy should be implemented across

all parsers to enhance security and protect against potential exploits.

�.�.�.� Recommendations

The vulnerabilities present in video container parsers pose significant security risks that

attackers can exploit for malicious purposes. For example, Denial of Service (DoS) attacks

could cause a parser to consume excessive resources or crash. One example is found in CVE-

2017-15186, where attackers can leverage specially crafted container files to cause the parser

to crash, leading to service disruptions. The double free vulnerability is exploited when

a program attempts to free the samememory block twice, leading to undefined behavior,

program crashes, or security vulnerabilities. In addition to DoS risks, arbitrary remote code

execution vulnerabilities are also critical concerns. An example is CVE-2022-2566, a heap

out-of-boundsmemory write in FFmpeg. This flaw allows an attacker to execute arbitrary

code by crafting amaliciousMP4 file thatmanipulatesmemory allocation incorrectly. These

examples demonstrate that vulnerabilities in parsers are not merely theoretical: they create

concrete pathways for attackers to disrupt services or gain unauthorized access to systems,

emphasizing the need for robust security measures inmedia parsing implementations.

The traditional parsers examined in this study were primarily written in C and C++,

which are known for their performance but lack memory safety features, making them

prone to vulnerabilities such as buffer overflows, use-after-free errors, and null pointer
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dereferencing. These vulnerabilities, as highlighted by the prevalence of CWEs such as

CWE-119 (Improper Restriction ofMemory Buffer), CWE-416 (Use After Free), and CWE-476

(Null PointerDereference) in our dataset, can lead to severe security exploits. In contrast, our

parsers were written in Rust, a language designed to offer memory safety without compro-

misingperformance. Rust’s ownershipmodel ensures thatwhenusing thedefault safemode,

variables are safelymanaged, preventingmanyof the commonmemory vulnerabilities found

in C and C++ parsers. For example, Rust’s compiler:

• prevents null pointer dereferencing, avoiding vulnerabilities like CWE-476.

• enforces bounds checking to safeguard against buffer overflows (CWE-787, CWE-119).

• manages memory allocation and de-allocation strictly, preventing use-after-free and

double-free errors (CWE-416, CWE-415).

• includes default checks for integer overflow, reducing risks tied to CWE-190.

While Rust significantly reduces the likelihood ofmemory-related vulnerabilities, it does

not completely eliminate all risks. Logical errors or improper handling of data input can still

lead to logical vulnerabilities, but by leveraging Rust’s memory safety features, developers

can greatly reduce the risk of severe memory-related vulnerabilities.
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Chapter �

Full-Motion Metadata Redaction

Metadata plays a crucial role in organizing, managing, and accessing information across

various digital file formats. Full-motion video (FMV) is a specialized video container for-

mat that combines geospatial metadata with standard audio-visual data streams. Public

disclosure of such video without appropriate redaction may allow a skilled analyst with

knowledge of FMV structure, to extract the underlying KLVmetadata, illustrating details

of a confidential flight path during an ISRmission, the drone registration and ownership

details, andmore. While FMV technology significantly advances the ISR capabilities, the ex-

posure potential for suchmetadata to expose sensitive information has prompted extensive

research into methods for removing, redacting, or anonymizing such data. The redaction of

visual information is beyond the scope of this chapter. However, we begin this research by

exploring several object detection techniques, as discussed in Chapter 5, which serve as the

initial step in the visual redaction process.
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�.� Metadata in Di�erent Media Types

Metadata in media files can be divided into two categories: fine-grained and coarse-grained.

Fine-grainedmetadata providesmore information about the building blocks that constitute

the internal structureof afile, suchas the specific frameswithinavideoor individual sections

within a document, while coarse-grainedmetadata offers general information about the file

as a whole, such as the file’s owner or creation date.

In video files, fine-grainedmetadata includes frame-specific details such as timestamps,

geospatial data, and embedded subtitles. For example, KLVmetadata in FMV videos pro-

vides detailed information like Unix Timestamps, Longitude, Latitude and unique drone

identifiers (e.g., Platform Tail Number). Coarse-grainedmetadata includes information that

applies to the file as a whole, such as video codec, resolution, and frame rate. In consumer-

grade drones, examples of coarse-grainedmetadata include pilot details, serial numbers,

and drone IDs.

Fine-grainedmetadata in documents includes information such as user comments or

notes, responses made to the comments, and details of the individuals who made each

comment on a particular page. Coarse-grainedmetadatamight include the file’s creation

date, last modified date, and file ownership details. Although this metadata is generally less

sensitive, it can still pose privacy risks in legal or corporate environments.

�.� Existing Techniques for Metadata Redaction

Various approaches have been developed for the automated redaction of sensitive metadata

in different media file formats. This literature review focuses on tools and techniques de-
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veloped to address the privacy risks associated with sensitive metadata across different file

types, including images, documents, and multimedia files. We analyze these tools, with

respect to their ability to handle fine versus coarsemetadata and compare their effectiveness

in different file types.

�.�.� Metadata Redaction in Images

One of the most prominent areas of concern regardingmetadata privacy is digital imaging,

wheremetadata such as EXIF data can include sensitive information like GPS coordinates,

ownership details, and timestamps.

A Python-based tool introduced in [74] strips all metadata from images or specifically

targets sensitive information, such as GPS data, before sharing images on socialmedia. How-

ever, the authors raise concerns about unexplained increases in image size after metadata

removal, suggesting the need for further optimization for large datasets.

Another approach discussed in [75] allows users to selectively remove or retainmetadata

when sharing photos. Users can choose to strip specific metadata elements like location

data while preserving others. The flexibility extends to removingmetadata from all photos,

groups of photos, or individual photos .

ImageMagick is a software suite for creating, editing, and converting images [76]. Im-

ageMagick mainly supports stripping coarse metadata: The "convert" utility with "-strip"

flag can be used to removemetadata coarse metadata from single image. For bulk removal,

"morgify" utility with "-strip" flag can be used.

exiv2 is a C++ library and command-line utility for managing imagemetadata [77]. It

handles multiple image file types and provides robust metadata read and write capabilities.
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We can use exiv2 with "rm" or "delete" flag for general metadata removal, and "del" for

removing specific tags.

Pillow is a Python Imaging Library (PIL) fork that enables opening, manipulating, and

saving various image file formats [78]. The "PIL.Image.Exif" be used to remove specific exif

metadata, provided user is able to supply appropriate tag has number.

ExifTool is a comprehensive Perl library and command-line application for reading,

writing, and editing metadata in various file types [79]. The "-all= tag" flag removes all

metadata, and "-Tag=" targets specific metadata tags.

Amethod described in [80] secures imagemetadata using AES-128 encryption before

sharing. Theencryptedmetadata is embeddedback into the imageandcan laterbedecrypted

without affecting the appearance of the image.

Another technique outlined in [81] focuses on online social networks, encrypting sensi-

tive attributes in tweets, sensitive regions in images andmemes, and anonymizingmetadata.

The approach, while innovative, faces challenges in scaling and applicability to real-world

scenarios due to reliance on synthetic data.

�.�.� Metadata Redaction in Documents

Documents, particularly those created in word processing and PDF formats may contain

extensive metadata that can reveal sensitive information.

TheMetadata Anonymization Toolkit (MAT) aggressively removes metadata from vari-

ous file formats, includingMicrosoftWord, Excel, and PDF, using a whitelist approach that

retains only essential metadata [82]. It can either remove all metadata with no additional

tags required and provides a -L or –lightweight option for partial metadata removal.
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PDF-mangler is a Python librarydeveloped to anonymizePDFcontent andmetadata, par-

ticularly for submitting reproducible bug reports. It uses the PikePDF library to replace text,

blur images, and selectively remove sensitive metadata, though it struggles with embedded

JavaScript and complex image formats [83].

AnonymousXL is a tool designed to anonymize spreadsheet metadata. It adjusts numeri-

cal metadata to random values, converts dates random dates within the valid range, and

replaces text with random characters of the same size, though it may introduce errors due

to its adjustment methods [84].

dmeta is a Python package for removingmetadata fromMicrosoft Office .DOCXfiles [85].

It offers a simple command-line interface for clearing and updatingmetadata, enhancing

privacy and security in document handling. The "clear" flag removes basic metadata, while

"clear –all" performs a comprehensive cleanup.

OpenPyXL is a Python library for reading and writing Excel (xlsx or xlsm) files [86].

It supports datamanipulation, chart creation, and styling in Excel files. The "properties"

module from "openpyxl.workbook" can be used to extract, update, or delete metadata

properties. OpenPyXL is effective for documentmetadata and content redaction.

PDFtk (PDF Toolkit) is a versatile tool for manipulating PDF documents, offering func-

tionalities likemerging, splitting, encrypting, and decrypting PDFs [87]. It is useful for batch

processing via a command-line interface. A combination of dump_data, and update_info

flag from PDFtk, piped into a sed commandmay allow deleting either complete stream of

metadata or specific metadata items.
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�.�.� Video Metadata Redaction

Multimedia files, including videos recordings, often contain embeddedmetadata that can

reveal sensitive information, such as recording locations, timestamps, and device identifiers.

Majority of literature for "metadata in videos" is centered around forensic applications,

where metadata is used to track alterations in videos. Although we could not find any

relevant tools or techniques that offer fine-grained metadata removal or anonymization

in MPEG-TS videos, much less KLV metadata, there are tools available to redact coarse

metadata fromMPEG-TS videos.

FFmpeg is a cross-platform solution for recording, converting, and streaming audio and

video [88]. It supports numerous codecs and formats, making it essential for multimedia

processing. FFmpeg includes capabilities to strip metadata from image, audio and video

files. Users can utilize -metadata tag="value" to set specific metadata and -map_metadata

for stripping the complete stream of metadata.

In [89], an approach for video source identification such as camera device or smartphone

using metadata in MP4 files is presented. The method employs a ‘block list’ to filter out

commonmetadata atoms that do not contribute to source identification, introduces a new

path typedata structure representing thepositioningboxes fromroot to leaf atoms, anduses a

matching algorithm to evaluate the distinctiveness of the path types against known paths type

data structures. The approach leveraging existing knowledge of tree structures from various

manufactures. Despite its high accuracy, the method has limitations. Refining the block list

is a complex task requiring extensive knowledge of theMP4/QuickTime specification.

A novel tamper-protection system for MP4 files is proposed in [90] where perceptual

hashes of I-frames are embedded into the audio stream. The hash of the audio stream is then
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further embedded into the synchronization information, specifically the STSS atom, of the

MP4 file. They use FFmpeg to extract I-frames, pHash library for hashing, andMp4Box from

GPAC for embedding andmultiplexing. However, the authors recognize that the system is

vulnerable to transmission errors, as even a single bit flip can lead to authentication failure.

Finally, [91] introduces amethod to verify the integrity of AVIfiles and identify the editing

software used by analyzing the unique field data structures left by various video editing

tools. The authors first manipulate several AVI video files using different editing software,

then employ a custom parser to extract a comprehensive list of metadata, including artifacts

from the editing process, which is stored in a signature database. Themethod automatically

detects manipulations in a given video by generating a new signature for the input video

and comparing it with the database, allowing for the categorization of the video based on

the editing software used. However, the authors note that the methodmay be less effective

for videos re-rendered by online platforms and is currently confined to the AVI format, with

further research required to extend its application to other video formats.

�.�.� Metadata Redaction in other �le formats

Mutagen is a Pythonmodule for handling audiometadata. It allows for reading andwrit-

ing metadata, providing a pure Python solution for managing audio files [92]. Typically,

metadata is removed using functions like audio.delete() in Python scripts.

StripZIP is a command-line tool for removingmetadata from ZIP archives, enhancing

privacy and security [93]. It focuses on stripping unnecessarymetadata, making it useful for

secure file distribution. The -X or –no-extra flags ensure complete metadata removal, while

standard execution performs normal removal.
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�.� Comparative Analysis of Metadata Redaction Tools

Table 4.1 categorizes existing tools based on their ability to redact content andmetadata

tags, both fine-grained and coarse-grained across different file types. This work is the only

known redaction tool with the unique capability to redact both coarse and finemetadata

from full-motion videos, a feature not offered by any other tools on the list.

Metadata Redaction
Type Format Content Redaction

Coarse Fine

JPEG [88, 76, 78] [79, 77, 88, 76, 94, 78] —

PNG [88, 76, 78] [79, 77, 88, 76, 94, 78] —

BMP [88, 76, 78] [88, 76, 94, 78] —
Image

WebP [88, 76, 78] [79, 77, 88, 76, 78] —

MP4 [88] [88, 94], ThisWork [88], ThisWork

AVI [88] [88, 94] [88]

MPEG-TS [88] [88], ThisWork [88], ThisWork
Video

FMV n/a ThisWork ThisWork

FLAC [88, 92] [88, 94, 92] [88]

MP3 [88, 92] [88, 94, 92] [88]

AAC [88, 92] [88, 92] [88]
Audio

ID3 [92] [92] [92]

PDF [87] [79, 94] [79, 87]

DOCX — [94, 85] —

XLSX [86] [94] [86]
Document

PPTX — [94] —

TAR — [94] —

TAR.GZ — [94] —

XZ — [94] —
ZIP

ZIP — [94, 93] —

Table 4.1: Comparison of Existing Parsers with Proposed Redaction Tool
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�.� Challenges in Metadata Redaction

Automated metadata redaction faces significant challenges, mainly in maintaining the

usefulness of the file while protecting privacy. Many existing tools fall short in fine-grained

redaction, often removing all metadata and compromising the usability of the file. For

example, if a tool removes all metadata from a image to protect privacy, it also deletes

valuable information like the cameramodel and date, reducing the photo’s usefulness.

Another challenge arises when redaction results in the metadata growing beyond its

intended size, creating extra space in the file. Fixing this requires resizing and rewriting the

entire file, which can be time-consuming, especially for large files.

Mostwidely used redaction tools do not support a broad range of file types andmetadata

formats. Fine-grained redaction needs a deep understanding of different container formats,

requiring high technical expertise.

Lastly, there are no standardizedmetrics to evaluate the effectiveness of metadata redac-

tion tools. Future research should focus on developing clear benchmarks tomeasure how

well these tools balance privacy protection withmaintaining file utility.

�.� Proposed Redaction Approach for KLV Metadata

TheMotion Imagery Standards Board, abbreviated asMISB, is an organization that develops

standards for motion imagery systemswithin the U.S. Department of Defense (DoD) and

the National Geospatial-Intelligence Agency (NSG) [95]. TheMISB ST 0601.17 and STANAG

4906 are two important standards utilized in the US defense sector for remote sensing

applications [50, 96]. To be compliant with theMISB ST 0601.17 specification, a full-motion
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video imagerymust be digitally produced using a combination ofMPEG-TS container format

for storage, either H.264 or H.265 as video codec and hold KLVmetadata. Unmanned aircraft

systems (UAS) produce full-motion video by integrating metadata captured through sensor

systems at regular intervals of one second. Each FMV frame is given a universal precision

timestamp to synchronize the audio-visual streams with the geospatial metadata. We used

MISB-compliant FMV samples, some provided by ArcGIS website and some extracted from

the footage captured by our DJI mini 2 drone, produced via telemetry logs, and the ArcGIS

FMVmultiplexer.

�.�.� Architecture

The proposedmetadata redaction technique is illustrated in figure 4.1 and consists of four

key components: FMV ingestion, FMV parsing, KLV de-muxing, KLV redaction, and KLV

re-muxing. The arrows in figure indicate the path across the processing pipeline the input

video goes throughout themetadata redaction process.

Figure 4.1: KLV redaction approach
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The pre-processing of the video file for parsing is part of the KLV ingestion procedure,

which entails determining if the input file has embedded geospatial metadata. It achieves

this by partial parsing to verify the existence of the MPEG-TS container and associated

KLVmetadata stream. Upon ingestion of FMV Video into the redaction system, the parser

retrieves the complete internal structure of theMPEG-TS container, including the addresses

of audio, video, and KLV stream packets.

De-muxing includes unpacking audio, video, andmetadata streams utilizing the knowl-

edge of offset addresses of matching packets. Geospatial metadata stream is encoded using

the BER encoding standard. The redactionmodule conducts byte-level redaction to value

bytes, while other header data, such as the key and length bytes, are kept to preserve the TLV

format. For string values, we substitute, the valuewith ‘X’ characters of the same length. In-

teger values are replacedwith zeros. The re-muxing stage repackages datausing the redacted

values. The result of this redaction process can be observed in the hex dump presented in

Figure 4.2. The Universal Local Set Key, which is a fixed-size key, marks the beginning of a

KLV packet, with the start-code prefix 0x000001FC signaling its initiation. The KLV packet

shown includes a value field of 241 bytes, clearly identifiable at offset 0xF1.

Listing 4.1 shows the pseudocode for parsing and redaction.The implementation was

developed in Rust without relying on any third-party crates or libraries. Rust was chosen for

its performance and safety features, which are vital in video processing systems due to the

complexity of video rendering and the security requirements of defense applications.
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Listing 4.1: Pseudo code for KLV Redaction Algorithm
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Figure 4.2: Details of redacted KLV packet

�.�.� Results

ArcGISPro andQGISare the industry, standard tools for playingMISB-compliant full-motion

videos. Figure 4.3 showcase the compatibility of redacted version FMVwith these tools. As

seen in the metadata panel, integer values are replaced with zeros, and string metadata

values are substituted with a series of ‘X’ characters to indicate redaction. In this case, the

footprint of geo-spatial metadata cannot be seen on themap view, due the GISmetadata

being redacted.
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Figure 4.3: ArcGIS and QGIS Desktop displaying redacted KLVmetadata
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Figure 4.4 compares the redactedmetadata framewith the un-redacted one, with each

column representing Tag, Key, and Value metadata items in accordance with the MISB

standard.

Figure 4.4: Redacted vs Un-Redacted Packet
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Figure 4.5: Selective Metadata Redaction Use Case

Figure 4.5 illustrates a type of redaction use-case where we apply selective metadata

redaction onmetadata items, such asMission ID, Platform Tail Number, PlatformDesigna-

tion, and PlatformCall Sign are selectively redacted, while the geo-spatialmetadata remains

intact, allowing ArcGIS to draw the geographical footprint of the video. Such selective

redactionmay be useful when securing identity-revealingmetadata, such as Platform Tail

Number or Drone Serial Number.
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Chapter �

Utility-aware Video Redaction

In Canada, the Access to Information Act (ATIA) allows citizens to request access to govern-

ment records, including video footage and photographic evidence, such as those captured

by drones [97]. In certain situations, like legal proceedings, these records may be disclosed

[98]. To comply with these requests, government and law enforcement agencies often use

redaction techniques to protect the identities of uninvolved individuals, including victims,

bystanders, and police officers[99].

Traditional methods for redaction require manual intervention by privacy analysts to

ensure the video footage is correctly redacted, leaving no personally identifiable information

exposed, a process that can be labor-intensive. There is a growing need for automated

systems that can redact sensitive information from videos, minimizing the need for manual

editing and inspection [100]. Object redaction aims to identify and obscure pixels that

reveal sensitive or personally identifiable features within a Region of Interest (ROI). For

instance, modern human redaction techniques focus on features such as faces, biometric
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data, birthmarks, and identifiable clothing details. The process typically involves three

stages: object detection, object tracking, and object obfuscation. Object detection identifies

the ROI to determine relevant pixels, tracking follows the movement of the object across

frames, and obfuscationmodifies these pixels to prevent human interpretation. Tracking is

only required for video redaction, not for still images.

There are several approaches to evaluate of object detection models today, including

Intersection Over Union (IoU), F-1 Score, Average Precision (AP), and Average Recall (AR),

among others. Our analysis of these metrics reveals a significant limitation: most existing

metrics are single-dimensional, evaluating the performance of an algorithm based on a

single object by comparing a detected bounding box with its ground truth. This approach

can be inadequate for privacy-focused applications. In privacy-centric contexts, both over-

redaction and under-redaction of objects are crucial considerations. Over-redactionmay

unintentionally obscure public objects, whereas under-redaction could lead to the exposure

of sensitive information. Moreover, the effectiveness of an evaluationmetric can vary de-

pending on the preferences of different users. For example, a privacy assurance officer may

prioritize themaximal redaction of a victim’s face, while a law enforcement officer might

require the visibility of an offender’s face.

Acknowledging these conflicting interests among diverse evaluators, it becomes clear

that a privacy-centric object redaction metric should not be constrained to a single di-

mension. Instead, it should account for both public and private objects for detection and

redactionwhenassessing the effectiveness of an algorithm. Toaddress this issue,wepropose

a metric called Privacy-Utility Redaction Score, abbreviated PURS, that incorporates regions

from both private and public object bounding boxes. In this approach, a single redaction

bounding box is compared against two distinct object bounding boxes, each representing a
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private and a public object region, respectively.

In this section, we have: (1) presented a taxonomy of current state-of-the-art object

detection models; (2) introduced a novel approach for privacy-utility aware evaluation;

and (3) assessed the studied detection models using traditional methods, such as mean

Average Precision (mAP), as well as through a privacy-utility aware approach, employing

the proposed Privacy-Utility Redaction Score.

�.� Foundational Concepts

To comprehend the evaluationmetrics outlined in Sections 5.3 and 5.4, it is essential to first

understand several key concepts, including the various types of bounding boxes and the dis-

tinctions between image classification, detection, and segmentation. Furthermore, learning

about Convolutional Neural Networks (CNNs) is important, as they form the foundation of

manymodern object detection algorithm used today.

�.�.� Bounding Boxes

Object detection involves object localization and bounding box regression. A bounding box

is used to localize a given object in an image. Most object detection algorithms output a

boundingbox in termsof a linear vector containing (a) x andy coordinates, (b) theheight and

width of the bounding box and (c) area of the bounding box. Depending on the convention

used, the coordinatesmay either represent a top left corner or center of a predicted bounding

box. For instance, YOLOalgorithmoutputs detection coordinates that represent the center of

the boundingbox[101]. Similarly, algorithms fromR-CNN family use coordinates that denote

the top left corner of a bounding box. Figure 5.1 illustrates a sample bounding boxwhere
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the axes origin starts from the top left corner. X values increase as wemove horizontally on

the right, while y values increase as wemove down vertically.

Concerning object detection, two different kinds of bounding boxes are considered, i.e.,

ground truth bounding boxes and predicted bounding boxes. A ground truth bounding box

tightly encloses thegivenobject representing its exact location. Ontheotherhand, apredicted

bounding box is the output vector generated from an object detectionmodel representing a

predicted bounding box. A predicted bounding boxmay not be tightly enclosed as the target

bounding box andmight contain redundant False Negative pixels.

Figure 5.1: An example bounding box
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�.�.� Classi�cation vs Detection vs Segmentation

In computer vision, a large proportion of literature focuses on solving problem of image

classification, object detection and image segmentation.

Figure 5.2: Classification vs Detection vs Segmentation

Assigning an entire image to one of the image categorization classes is called image classi-

fication. For instance, determining the presence of a dog in Figure 5.2 is image classification.

The process of classifying an image as belonging to one of the classes while simultaneously

locating the position of an object inside the picture is known as image classification with

localization, also known as object detection. For instance, if an image contains several objects,

wemay construct bounding boxes that indicate where each class is located. These bounding

boxes are commonly square or rectangular forms. We may elevate the classification one

step further by attributing an object class to each pixel. Image segmentation is a fine-grained

categorization in which we describe the pixels corresponding to each class item. Figure

5.2 showcases an output from yolov7 [102] algorithm for Object Detection and Instance

Segmentation for a sample image file taken from ImageNet dataset [103, 104].
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�.�.� Convolutional Neural Network

Convolutional Neural Networks (CNNs) form the basis of deep learning, a subset of machine

learning inspired by the structure of the human brain. CNNs are composed of layers of

neurons, starting with an input layer where data is introduced into the system, followed

by one or more hidden layers where most computation occurs, and ending with an output

layer that produces predictions, as shown in Figure 5.3.

Figure 5.3: Typical CNN Architecture [105]

Neurons in one layer are connected to the next through channels, each assigned aweight.

Inputs are multiplied by these weights, summed, and combined with a bias value before

passing through an activation function, which determines if the neuron is activated [106,

107]. For instance, the value of neuron Y11 is computed by combining weights and biases, as
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shown in Equation 5.1. Activated neurons transmit data forward through the network, a

process called forward propagation. In the output layer, the neuronwith the highest value

represents the final prediction. During training, the network compares its predictions with

known outputs, calculating an error or loss. This error informs how the weights should be

adjusted during backpropagation. This cycle of forward and backpropagation repeats across

many training epochs, refining the weights until the network accurately predicts objects in

most cases.

Y11 = X1 ⇥W1 +X2 ⇥W2 +B1 (5.1)

�.� Object Detection Approaches

A crucial step that comes before any type of redaction is identifying the region of interest

(RoI). Once determined, techniques for tracking the region of interest can be employed to

monitor themovement of the object in the video. Following this stage, a type of obfuscation

can be used on specific portions of themoving object. This section explores various object

detection techniques and their significance. Investigating the relevant literature on object

detection reveals that initial approaches relied on traditional image processing. However,

more recent literature indicate a transition towards the adoption of deep learning bymany

researchers to tackle challenges in object detection.
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�.�.� Traditional Image Processing techniques

�.�.�.� Viola-Jones Detector

The face detection approach proposed byViola-Jones in 2001 serves as the foundation for sev-

eral recent object detection systems [108]. Despite being regarded as an obsolete algorithm,

it remains a feasible approach for systemswith limited computing capabilities.

The technique employs a sliding-window techniquewith each block containing around

24x24 pixels. Moving the window across different image regions from left to right, top to

bottom retrieves several human-face-like elements. These elements are known asHaar-like

features, named after the mathematician Alfred Haar, who introduced the notion of Haar

wavelets [109]. A Haar-like feature is a number deduced by subtracting the sum of pixels

from one part of a rectangular image region from the other part within a rectangular Haar

block. For example, a human face will have the area near the eyes colored darker than the

region surrounding the cheekbones or forehead, which contains much shinier pixels. Thus,

two adjacent rectangular boxes canmake up a Haar block to symbolize the eyes. The top

rectangular boxwill include a collection of darker pixels representing eyes, while the bottom

rectangular box will contain brighter pixels depicting cheeks.

A 24x24 pixel sliding window yields over 160,000 Haar-like features, each of which

involves computing delta values for adjacent rectangular Haar blocks and summing pixels

inside them. Performing addition operations for each pixel value could be time-consuming,

especially for Haar blocks withmuch bigger features. A more efficient form of image rep-

resentation called Integral Image is used to overcome this challenge. An integral image is

a precomputed imagematrix that eliminates the need for several pixel value additions in
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favor of a few subtractions. An element in the integral imagematrix would be computed by

summing the pixel values from the above and left sides of thematrix element. The transition

from the source to the integral imagematrix is depicted in the figure 5.4.

Figure 5.4: Converting Source Image to Integral ImageusingViola-JonesTechnique (example
imagematrix reproduced from [110])

In Viola-Jones technique, the following stage is to train a classifier for each Haar-like

feature using a version of theAdaBoost classification algorithm [111]. Each classifier is initially

considered a "weak classifier" since it lacks enough information to predict a face. However,

theymay be coupled to form a "cascade of strong classifiers," which the authors refer to as

Attentional Cascades. Finally, the source image is processed through one of the classifiers in

the Cascade for face detection. Although this approach detected faces rapidly, the training

procedure was time-consuming, and the system struggled to detect faces with occlusions

[112].
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�.�.�.� Histogram of Oriented Gradients (HOG)

HOG, an abbreviation for Histogramof Oriented Gradients, is a prominent feature extraction

approach in computer vision [113]. The algorithm captures the distribution of gradient

magnitudes and orientationswithin various regions of an image. Consider Figure 5.5, where

different regions of the image have varying pixel intensities. Region A, characterized by

continuous black pixels, has a pixel intensity value of 0. Region B, containing gray pixels,

has a pixel intensity of approximately 63. Regions C and E, composed of white pixels, have

the highest intensity value of 255, while region D, with intermediate pixel intensity, is at

127. These varying intensity levels are critical for understanding the gradients formed at the

boundaries between different regions.

Figure 5.5: Image sample demonstrating HOG features
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The gradient magnitude represents the absolute value of the difference in pixel intensity

between adjacent pixels along a specific direction, such as horizontally (X-axis) or verti-

cally (Y-axis). Areas where pixel intensity changes rapidly across neighboring pixels exhibit

high gradient magnitudes, while regions with uniform pixel intensities show low gradi-

ent magnitudes. The gradient direction or orientation, indicates the angle of this intensity

change relative to the image axes. For instance, a sharp transition from dark to bright pixels

results in a high gradient magnitude, with the gradient direction pointing from the darker

to the brighter region. When switching between picture areas A and B, the gradient magni-

tude varies in the X-axis direction, as shown by horizontal arrows. Similarly, the gradient

magnitude shifts by 30 degrees while moving from region B to region C and vice versa.

A HOG feature descriptor is typically represented as a histogram that captures the distri-

bution of gradient magnitudes over different orientations within a localized region of the

image. For example, in a commonly used configuration, the histogrammay consist of nine

bins corresponding to different orientation ranges, each accumulating the weighted sum of

gradientmagnitudes falling within that range. This histogram forms the basis of the feature

vector used for classification. In the HOG framework, the input image is typically resized to

a standard aspect ratio, often 1:2, such as a 64x128 pixel frame. The image is then divided

into an 8x16 block grid, where each block contains 8x8 pixel cells.
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Figure 5.6: Calculating HOG vectors

Figure 5.6 demonstrates the computation of gradient magnitudes and orientations for

a specific pixel located at column-2 and row-2 within a block. Here, Px and Py represent

the gradient components along the X and Y axes, respectively. The gradient magnitude

(Pgm) is derived from the difference in pixel values across the X-axis, while the gradient

orientation (Pgo) is calculated as the angle of the gradient vector. These values contribute to

the formation of a histogram, where each bin corresponds to a specific orientation range

(e.g., 0-20 degrees, 20-40 degrees, etc.). The magnitude value at a given orientation is

distributed across the corresponding bins, forming the feature vector for the block. Once

the histogram for each pixel value is completed, the feature vector for the block is formed

based on these histogram values. This feature vector can then be used with classification

techniques to recognize objects.

�.�.� Deep Learning based models

The last decade of object detection literature demonstrates application of deep learning

to object detection problem. In this section, we discuss some popular deep learning based
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object detectionmodels which are then evaluated in section 5.4.

�.�.�.� R-CNN

The R-CNN family of algorithms is the state-of-the-art approach for two-staged object

detection. The R-CNN stands for region-based convolutional neural networks and consists

of three significant steps: (1) region proposal, (2) feature extraction and (3) classification

[114].

The region proposal stage selects a small set of regions in an image to run the image

classifier on, unlike the sliding-window-based approach where a classifier is executed N

numberof times for each imageblock. R-CNNusesa selective searchalgorithmtoextract about

2000 category-independent region proposals. The selective search involves segmenting the

given image and grouping adjacent regions based on color, texture and size similarity. The

small regions in the segmented image are iteratively mergedwith adjacent small regions

until nomore change is observed between the two adjacent regions [115].The underlying

CNN architecture is a forked version of the Caffe library, prior work by the authors of R-

CNN in collaboration with the AI (Artificial Intelligence) research group at the University of

California, Berkeley [116]. It consists of 5 convolution layers and two fully connected layers

pre-trained with the ImageNet dataset [117]. Although various frameworks such as PyTorch

and TensorFlow now offer implementations of R-CNNmodels, the authors of R-CNN opted

to use the existing Caffe library at that time. In addition to R-CNN, subsequent versions

such as Fast R-CNN and Faster R-CNN utilized the Caffe library for their implementation.

The region proposals from the initial stage must be compatible with the CNN archi-

tecture, which accepts fix sized input image blocks. Some pre-processing steps, such as

dilation, warping andmean subtraction, are applied before passing the proposed regions
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through CNN. Before warping is applied, dilation produces a tight bounding box around

the proposed region. Thewarping step involves resizing the region proposal to a fixed size

that the underlying CNN expects. Mean subtraction involves subtracting the mean of all

pixels in an image to have pixels centered around zero. The pre-processing of proposed

regions also helps improve the mAP ormean average precision as results discussed in Section

5.3.1.5. The pre-processed region proposals forward propagated through CNN for feature

extraction. The output of CNN is 2000 ⇥ 4096 feature vectors, each of which is passed

through a class-specific linear SVM - a commonly used supervised learning algorithm for

Classification, which scores each feature vector with a confidence score. The classifier is

pre-trained on a large-scale image dataset to distinguish an object from its background

and assign a confidence score. Followed by classification, greedy NMS is applied to discard

detections with lower scores having an IoU (discussed in Section 5.3.1.4) overlap of greater

than 0.5 with high-scoring detections to suppress redundant detections and retain themost

confident ones.

�.�.�.� Fast R-CNN

UnlikeR-CNN,where 2000 individual region proposals are supplied to theCNN for generating

feature vectors one after another, in Fast R-CNN, the entire image is supplied to a sharedCNN

to extract a single set of features called a 2D high-level feature map. Alongside, the algorithm

also uses selective search to propose regions. Another step, RoI or Region of Interest Pooling,

takes the feature map and proposed regions as input. RoI pooling aims tomap or align the

proposed regions from selective search to a fixed-size grid on the feature map, which allows

extracting feature vectors by flattening pooled features from the feature map. Flattening is

translating a 2D array of pixels into a linear vector. This reduces pre-processing steps for
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each region proposal, such aswarping or dilation is needed, unlike R-CNN [118].

The feature vectors obtained fromRoI pooling steps are then forward propagated through

a series of fully connected layers of a backbone CNN, which simultaneously performs two

tasks: Classification that offers the confidence level or probability of the presence of an object

in an image and assign an object class label to it. Regressionprovides the exact coordinates for

the bounding box and localizes the object of interest. One of the limitations of Fast R-CNN

is that it still uses the selective search for proposing regions.

�.�.�.� Faster R-CNN

Faster R-CNN uses a shared convolutional neural network consisting of initial convolutional

layers responsible for accepting the given image as input and producing a feature map,

similar to the Fast R-CNN. The region-proposal network is integrated within the shared CNN

to take these featuremaps togenerate regionproposals directly. The regionproposal network

(RPN) step eliminates the selective search approach, which is computationally expensive

[119].

The RPN uses an anchor generationmethod where pre-defined anchor boxes of different

sizes and aspect ratios are aligned across the feature map in a sliding window fashion. The

region proposal network then applies localization and Classification steps responsible for

adjusting the anchor boxes to fit the object of interest. An objectiveness score is assigned

for each localized anchor box, defining the probability of the refined box containing an

object vs background. The proposed regions from RPN are then passed through RoI pooling

layers, followed by forward propagation through fully connected layers for Classification

and bounding box regression, similar to Fast R-CNN. One of the limitations of RPN is that

even though it does not use the slow selective search approach, it still relies on the anchor
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generationmethod for proposing regions.

�.�.�.� YOLO: You Only Look Once

YOLOisoneof the fastest andmostaccuratealgorithmsused for single-stageobjectdetection

today. It is one of the first algorithms to support real-time object detection in videos [120].

The YOLOmodel requires a single pass for the classification and localization of objects in the

given image, unlike Faster R-CNN. It divides the input image into an S ⇥ S sized grid where

each cell is responsible for detecting the presence of an object inside it. The backbone CNN

architecture of YOLO algorithm consists of 24 convolutional layers and two fully connected

layers. The output of the algorithm is of the form S ⇥ S ⇥ (B ⇥ 5 + C)where S ⇥ S is the

size of the image grid,B is the number of bounding boxes that each cell should compute,

andC is the number of object classes. Out of the 24 layers, the first 20 layers of models are

trained using the ImageNet dataset, and each of these layers performs a set of actions on the

input image to extract and learn high-level features and semantic information. This follows

4 max-pooling layers responsible for suppressing the size of feature maps and reducing

the overall computational load on the network. Finally, the output of max pooling layers

is processed through fully connected layers responsible for performing classification and

bounding box regression. There exists a lighter version of YOLO capable of achieving 150 fps

for real time object detection. This is due to the reduction in number of layers responsible

for training, the lighter version only has about 9 convolution layers instead of 20 layers in

base model.

116



�.�.�.� SSD: Single Shot Multibox Detector

SSD stands for Single ShotMultibox Detector. The term Single Shot in the title refers to the fact

that it is a single-stage detectorwhere object detection is performed in just one forward pass

[121]. The underlying network architecture of SSD consists of a backbone VGG-16 network

without fully connected layers pre-trained on ImageNet responsible for extracting feature

maps from the input image. Each grid cell on the feature map is assigned about six default

boxes of different sizes and aspect ratios, similar to the concept of anchor boxes in Faster

R-CNN.When training, these default boxes are matched with ground truth bounding boxes,

and the bounding box with the highest IoU overlap is selected as responsible for predicting

the object. This helps SSD predict an offset vector for each default box for representing the

modificationsneeded in thedefault box tomake itmatchmore accurately to a tight bounding

box around the object of interest. The offset vector consists of four values, i.e. x-coordinate,

y-coordinate, height and width concerning center coordinates. Finally, the predicted boxes

are processed through subsequent layers in the network to perform classification and apply

a class label.

�.� Evaluation Metrics

This section examines both traditional evaluationmetrics used to assess the performance

of object detectionmodels and introduces a novel metric for privacy-centric, utility-aware

redaction. While established metrics such as Precision, Recall, Intersection Over Union

(IoU), andmean Average Precision (mAP) are widely used, they focus primarily on detection

performance without addressing the need to balance privacy and utility in redacted content.
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Inspiredby these conventionalmetrics, this section introducesanewapproach that shifts the

focus toward optimizing both privacy protection and the preservation of useful information

in redactedmaterial.

�.�.� Traditional Evaluation Approaches

�.�.�.� Confusion Matrix

Figure 5.7 represents the confusion matrix representing prediction outcomes. The confusion

matrix counts all the probable outputs of an object detection approach. It is a two-by-two

matrix with each field representing a count of True Positive, False Positive, False Negative,

and True Negative.

Figure 5.7: ConfusionMatrix

A true positive instance occurs when an object detectionmodel accurately predicts the

presence of an object when there is an object. When an object detection model predicts
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the presence of an object when there is none, the result is a false positive. When an object

detectionmodel fails to detect the existence of an object when there is one, the result is a

false negative. A true negative outcome occurs when an object detection model accurately

predicts the absence of an object where there is no object.

�.�.�.� Precision

Precision is a numeric value that decides howmany true positive predictions out of all the

predictions that an object detectionmodel can predict accurately, which is summarized in

Equation 5.2. For example, consider a human detectormodel given 15 images. Themodel was

able to make 7 correct predictions (TP), while 3 predictions were incorrectly predicted (FP)

and 5 predictions weremissed (FN). In this example, the precision is 0.7 as the number of

true positive predictions were 7, while false positive predictions were 3. Thus, precision is the

ratio of TP predictions over a sum of TP and FP predictions.

Precision =
h TP
TP + FP

i
(5.2)

�.�.�.� Recall

Recall is a numeric value that decides how many true positive predictions out of all the

positive predictions (or outcomes) that an object detectionmodel can predict accurately,

which is summarized in Equation 5.3. In the above example of human detector, the recall is

0.58 as the number of true positive predictions were 7, while false negative predictions were 5.

Thus, recall is the ratio of TP predictions over a sum of TP and FN predictions.

Recall =
h TP
TP + FN

i
(5.3)
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�.�.�.� Intersection Over Union

Intersection Over Union (IoU) is a numerical value between 0 and 1 which represents how

close a predicted bounding box is to the target or ground-truth bounding box. Given a

ground truth and predicted bounding box, the intersection over union is the ratio of (a) the

regionwhere both the boxes intersect each other and (b) the overall surface area covered

when combining both the boxes. For example, if PD andGT are predicted and ground

truth boxes respectively, their IoU can be computed using Equation 5.4.

IoU =
PD \GT

PD [GT
=

TP
TP+ FP+ FN

(5.4)

Figure 5.8 provides a diagrammatic representation of IoU, including both predicted and

ground truth bounding boxes. The region shaded as true positive indicates pixels our model

has correctly detected pixels belonging to the object of interest. The region shaded as false

positive illustrates that our model has incorrectly detected pixels belonging to the object

of interest. The region shaded as false negative indicated that ourmodel hadmissed these

pixels to be detected as belonging to the object of interest. The region shaded as true negative

indicates pixels that have been correctly not detected as belonging to the object of interest

in our model.

120



Figure 5.8: Intersection over Union (IoU)

Precision values can be calculated for several IoU thresholds to apply further granularity.

Since the IoU threshold is directly proportional to the precision value, the higher the IoU

threshold, the higher should be the precision value observed. To calculate the Average

Precision (AP), the precision values computed at different IoU thresholds are averaged. The

value of intersection over unionmay range between 0 and 1. An IoU value of 1 the predicted

and ground truth bounding boxes are precisely overlapping. Similarly, an IoU value of 0

indicates no intersection between ground truth and the predicted bounding box. Most

conventions used an IoU threshold greater than or equal to 0.5 to be the minimum required

IoU to validate the object to be correctly detected as true positive. In a scenariowhere apicture

reveals personally identifiable information (PII) about a person, it would be desirable to

expect the object detection model to have a higher IoU threshold, such that appropriate

obfuscation can be applied to all the pixels representing PII data.
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�.�.�.� Mean Average Precision

Intersection Over Union (IoU)may introduce a threshold bias influencing the evaluation

results leading to different conclusions about the effectiveness of an algorithm. The IoU

threshold used to establish acceptable overlap may impact the number of true positives,

false positives, and false negatives. A higher IoU threshold will improve accuracy while

increasing false positives and decreasing recall. Similarly, lowering the IoU threshold in-

creases recall while decreasing the number of false positives. Setting a higher IoU threshold

rewards algorithmswith precise localization accuracy while punishing algorithms that may

still deliver accurate outcomes with amore modest IoU threshold. Similarly, a lower IoU

thresholdwill provide an algorithmwith lower localization accuracywith the same accuracy

weightage as those exhibiting greater localization accuracy, causing a bias.

Another important consideration is the size of an object of interest; certain algorithms

may be built to identify smaller objects than others. A higher IoU threshold encourages

algorithms that identifymore oversized objects rather than small ones. Similarly, a lower IoU

threshold benefits algorithms that excel at identifying small objects but struggle with large

ones. Selecting an IoU threshold based on image dataset features may also generate bias, as

it would reward algorithms developedwith the attributes of a particular dataset inmind

while punishing those not. As a result, selecting amore generalized evaluation approach

that does not favor one algorithm over another is essential. This may be accomplished by

including randomness and using varying IoU threshold values. A good example of such

evaluationmetric ismean average precision (mAP) [122].

If we havemultiple classes of objects to be predicted by the detector, average precision

is computed for each class object, and amean is taken for all the AP values to deduce the
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mean average precision. Thus, mean average precision can be considered amean of average

precision values computed over varying IoU thresholds formultiple object classes. Equation

5.5 summarizes the mean average precision, where n and c represent an object class and the

total count of object classes respectively.

mAP =
1
c

cX

n=1

APc =
1
c

cX

n=1

TP
TP + FP

(5.5)

�.�.� Privacy-Centric Redaction Metric

Considering an image containing both private and public object classes, when an object is to

be redacted, there are six distinct possible outcomes for image regions: redacted public, un-

redacted public, redacted private, and un-redacted private, redacted free and un-redacted

free. The area within the redaction bounding box that does not overlap with the public or

private bounding boxes is considered redacted free. The area outside the union of public,

private, or redaction bounding boxes is regarded un-redacted free. Given that manymetrics

used today are essentially ratios, we leveraged the fundamental principle of ratios: a higher

result is achieved when the numerator is larger, and a lower result when the denominator

is larger. With this insight, we structured the proposedmetric by placing desirable image

regions in the numerator and elements we seek to discourage in the denominator.

The base metric rewards an algorithm for accurately redacting a private object while

revealing a public object. Conversely, it penalizes an algorithm for under-redacting a private

object, redacting a public object, or redacting a free object region due to over-redaction. Fur-

thermore, themetric comeswithweight factors, ✏ and � to adjust the focus of the evaluation

between privacy versus utility. Figure 5.9 illustrates several regions that PURS takes into
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consideration during evaluation.

Figure 5.9: Components of PURS

�.�.�.� Use Case for Redaction

To evaluate the impact of varying levels of redaction, we explored a series of scenarios

that represent common redaction outcomes that are shown below. Each of thesemetrics

were executed against 9 possible outcome uses cases that are possible in prospect of object

detection. Figure 5.10 summarizes these use cases for ease of comparison.

Case 1 – The entire private object is fully redacted, ensuring that no private information

is exposed, while the public object is entirely visible without any redaction.

Case 2 – The private object is redacted beyond its boundaries, possibly affecting adjacent

regions or the public object, while the public object remains fully visible.

Case 3 – Both the private and public objects are fully redacted, ensuring maximum

privacy but completely obscuring the public information as well.
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Case 4 – Only 25% of the private object is redacted, leaving the remaining 75% visible,

while the public object is fully revealed without any redaction.

Case 5 – Both the private and public objects are partially redacted, with only 25% of each

object being redacted, leaving themajority of both objects visible.

(a) Use Case - 1 (b) Use Case - 2 (c) Use Case - 3

(d) Use Case - 4 (e) Use Case - 5 (f) Use Case - 6

(g) Use Case - 7 (h) Use Case - 8 (i) Use Case - 9

Figure 5.10: Use Case chosen for Redaction
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Case 6 – Both the private and public objects are fully revealed, with no redaction applied

to either, exposing all information.

Case 7 – The private object is completely revealed without any redaction, while 25% of

the public object is redacted.

Case 8 – The private object is fully revealed, while the public object is entirely redacted,

protecting public information while exposing the private object.

Case 9 – The private object is fully revealed without redaction, but the public object is

redacted beyond its boundaries, potentially obscuring adjacent areas or additional informa-

tion.

�.�.�.� Preliminary Metrics for Redaction

In the process of developingmetrics to evaluate the effectiveness of redaction algorithms,

we explored various formulas that combine different regions of an image containing one

public object, one private object, and one redaction bounding box. The inspiration for these

metrics was drawn from existing evaluationmethods, such as the Intersection over Union

(IoU), which is commonly used in object detection tasks. Essentially, thesemetrics are ratios

that compare various combinations of different regions within an image, each representing

distinct meanings and considerations in the context of redaction and privacy. Below is a

set of nine different metrics, denoted asM1 throughM9, that were proposed during the

development phase:

M1(R,U) =
Rp + UP

Up +RP

(5.6)

M2(R,U) =
Rp + UP

Up +Rf +RP

(5.7)

M3(R,U) =
Rp + UP

Rp + Up +RP + UP

(5.8)
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M4(R,U) =
Rp + UP

Rp + Up +Rf +RP + UP

(5.9)

M5(R,U) =
Rp +RP

Rp + Up +RP + UP

(5.10)

M6(R,U) =
Rp +RP

Rp + Up +Rf +RP + UP

(5.11)

M7(R,U) =
Up + UP

Rp + Up +RP + UP

(5.12)

M8(R,U) =
Up + UP

Rp + Up +Rf +RP + UP

(5.13)

M9(R,U) =
Rp + Uf + UP

Up +Rf +RP

(5.14)

where:

Rp = Redacted Private Object Area,

Up = Un-Redacted Private Object Area,

RP = Redacted Public Object Area,

UP = Un-Redacted Public Object Area,

Rf = Redacted Free Area,

Uf = Un-Redacted Free Area

Essentially, these metrics are ratios that compare various combinations of different

regions within an image, each representing distinct meanings and considerations in the

context of redaction and privacy.

�.�.�.� Metric Selection

The following analysis delves into the weaknesses of each proposed metric, ultimately

guiding the selection of themost appropriate metric for our purposes. Table 5.1 represents
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evaluation results for tentative evaluationmetrics considered for comparison. The initial

column lists the redaction use cases outlined in Section 5.3.2.1, with subsequent columns

displaying preliminary metrics as defined in Section 5.3.2.2. The results for each metric

can be visualized through a color gradient ranging from 0 to 1 – values approaching 0 are

represented in red, signifying lower performance, while values nearing 1 are depicted in

green, reflecting higher performance. Intermediate results are represented in various shades

of yellow, with yellow indicating amidpoint score of 0.5.

Use case # Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Metric 6 Metric 7 Metric 8 Metric 9

1 1.00000 1.00000 1.00000 1.00000 0.50000 0.59793 0.50000 1.00000 1.00000

2 1.00000 0.18794 1.00000 0.61538 0.50000 0.35944 0.50000 0.55404 0.16342

3 0.11750 0.10144 0.50000 0.46498 1.00000 1.00000 0.00000 0.00000 0.16342

4 0.18161 0.05698 0.62500 0.30118 0.12500 0.07421 0.87500 0.80075 0.01857

5 0.11750 0.04596 0.50000 0.25812 0.25000 0.15757 0.75000 0.72865 0.01857

6 0.11750 0.03787 0.50000 0.21943 0.00000 0.00000 1.00000 0.86494 0.00000

7 0.07398 0.02840 0.37500 0.17413 0.12500 0.07421 0.87500 0.80075 0.00000

8 0.00000 0.00630 0.00000 0.05121 0.50000 0.59793 0.50000 1.00000 0.06383

9 0.00000 0.00000 0.00000 0.00000 0.50000 0.35944 0.50000 0.55404 0.00000

Table 5.1: Test Results for Different EvaluationMetrics

Metric-1 fails to differentiate between scenarios where over-redaction occurs. For in-

stance, it rates both Use Case 1 and 2 with the highest score of "1", neglecting over-redaction

of private object. This indicates an inability to recognize over-redaction, rendering this

metric ineffective in cases where over-redaction is a concern.

Metric-2 produces highly skewed results. This is evident from the fluctuating scores

across different use cases. For example, the score drastically drops from 1.00000 in Case 1 to

0.18794 in Case 2, and further to 0.00000 in Case 9. Such inconsistency limits its reliability

as a measure.

Metric-3 also fails to recognize over-redaction, like Metric-1. For example, it rates Case-
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8 and Case-9 with a score of "0", neglecting over-redaction of public object. The metric

provides the same score for vastly different scenarios, as seen in its identical ratings for Case

3, Case 5, and Case 6. This questions its ability to accurately assess redaction effectiveness.

Metric-4was chosen for its relatively balanced performance across different use cases,

starting to best to worst case. While it still displays some variation, it provides a more

consistent scores compared to other metrics, making it a potentially useful measure.

Metric 5 struggles with distinguishing between different levels of redaction. It rates the

algorithm highest when both private and public objects are completely redacted and lowest

when both are completely revealed. This indicates that the metric might be biased towards

extreme cases of redaction, without adequately recognizing subtler differences.

Metric-6 shows a similar pattern toMetric 5. It scores two opposing use cases equally.

For example, it rates Case 1 andCase 8, also, the best- andworst-case scenarios, equally. This

again suggests a bias toward extreme scenarios, making it less useful for nuanced analysis.

Metric-7 fails to correctly evaluate cases where no redaction occurs. For example, it

rates Case 6 the highest, which should not be the case in a scenario prioritizing privacy.

Additionally, it struggles to distinguishbetweenover redaction, neither in private, nor public

objects. For example, it scored the algorithms equally for Case 1 and 2, which confirms its

inability to identify over-redaction in private objects. Similarly, in rates an algorithm equally

for Case 8 andCase 9, again reflecting its inability to identify over-redaction in public objects.

Metric-8 provides the lowest score when both public and private objects are completely

redacted. It also struggleswith consistency, as it rates thealgorithmequallyhigh foropposite

scenarios, such as completely redacting a private object while leaving the public object

untouched and vice versa. This suggests an inability to effectively balance the competing

needs of privacy and public access.
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Metric-9 couldnotdistinguishbetweenseveral cases. For instance, it fails todifferentiate

between Case 2 and Case 3, Case 4 and Case 5, and Case 6, Case 7 and Case 9. This lack

of judgement indicates that Metric-9 may not be suitable for use cases requiring precise

redaction evaluations.

�.�.�.� Final Metric Formulation

Among the proposedmetrics, we found thatMetric 4 (M4) was themost suitable for our

purposes. Metric 4 effectively balances the concerns of redacting private information while

also considering the areas occupied by public objects. We call the final metric the PURS,

short for Privacy-Utility Redaction Score, and denoted asPURS(R,U, ✏, �), is expressed as

follows:

PURS(R,U, ✏, �) =
(1� ✏)Rp + ✏UP

(1� ✏)Rp + (1� ✏)Up + ✏(1� �)Rf + ✏RP + ✏UP

(5.15)

Interpretation:

Redacted (R) and Un-Redacted (U): The variables R andU represent the areas that are

redacted (hidden) and un-redacted (revealed) in the context of private and public objects.

The subscript p refers to private objects, while P refers to public objects.

Privacy Parameter (✏): ✏ is a crucial parameter that controls the emphasis on privacy.

When ✏ is close to 1, the equationprioritizes privacy, givingmoreweight to the redacted areas

of private objects. When ✏ is closer to 0, the equation prioritizes revealing public objects

over preserving privacy.

Utility Parameter (�): � is a secondary parameter that allows for adjustments based on

130



the significance of redacting free regions within an image. Higher � values penalize algo-

rithms for redacting free regions, while lower values diminish the importance of redacting

such regions.

This metric can be viewed as a modified version of the Intersection over Union (IoU),

but tailored specifically for the problem of redaction. A ratio of areas in image that prioritize

from a redaction perspective to the total area occupied by all three bounding boxes i.e.,

public, private, and redaction. Moreover, the concept of differential privacy inspires the

incorporation weights into the metric. Differential privacy is a framework that seeks to

provide guarantees about the privacy of individuals in a dataset, typically by adding noise

to the data in a controlledmanner [123].

The balance between anonymizing private information and revealing public information

can change depending on the target audience. For instance, given a crime scene, a privacy

officer may set ✏ to a low value, while increasing the value for �, focusing on redacting

non-relevant objects, such as the police officer, bystanders, etc. On the other hand, a police

officer, focused on ensuring the visibility of an offender’s face in video footage,mayprioritize

reducing the � parameter, while setting a higher value for ✏.

�.� Evaluation

�.�.� mean Average Precision (mAP)

A previous survey on object detection evaluated algorithms available up to 2016, using a

relatively small AFLW (Annotated Facial Landmarks in theWild) dataset [124] with 25,000

images of human faces [125]. In contrast, this study incorporates the latest advancements in
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object detection, including algorithms such as SSD, DETR, EfficientDet, and YOLOv8. We

utilize weights trained on themore extensiveMicrosoft COCO dataset, which consists of

approximately 328,000 images across 90 object classes [41].

For this evaluation, we used aMacBook Pro running on AppleM1Maxwith 10 CPU cores,

24 core AppleMetal 3 GPU and 32 GB of LPDDR5 physical memory. The PyCocoTools API

(Application Programming Interface), fromMicrosoft COCO object detection challenge was

employed tomeasure average precision, average recall, andmean average precision across 10

different IoU thresholds ranging from 0.50 to 0.95, with increments of 0.05, for 80 different

object classes. Wherever possible, we used the original code provided by the original authors

of detectionmodels. For models with no official code base available, implementations from

the TensorFlow 2.0 deep learning framework were used.

The evaluation results are summarized in Table 5.2, with first column listing the candi-

date object detectionmodels along with their corresponding backbone CNNs. The second

column presents themean average precision (mAP) computed over 10 different IoU thresh-

olds, with two of these thresholds detailed in columns 3 and 4. Columns 5 through 7 show

varyingmAP values according to object size.

Our findings reveal thatmost object detectionmodels have difficulty achieving highmAP

for smaller objects, but exhibit improvedmAP for medium and large objects. Additionally,

mAP varies depending on the backbone used. The value of mAP also differs based on the

underlying backbone used. For instance, the SSDmodel with MobileNet as its backbone

CNN generally produces lower mAP compared to ResNet-50. This is due to greater number

of convolutional layers in ResNet-50, which enhance precision, though at the cost of slower

detection speed. In contrast, combination of SSD and MobileNet offers faster detection

speeds over the combination of SSDwith ResNet-50. Similarly, using the CenterNet archi-
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tecture with the HourGlass backbone yields significantly faster detection speeds compared

to using it with ResNet101. Figure 5.11 illustrates a comparison of various object detection

algorithms based on inference time, using theMicrosoft COCO validation dataset.

Figure 5.11: Inference Time

Figure 5.12 illustrates the comparison of several object detection algorithms for varying

mAP values with respect toMicrosoft COCO dataset.
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Model mAP
mAP

@.50IOU

mAP

@.75IOU

mAP

(small)

mAP

(medium)

mAP

(large)

Faster R-CNN, ResNet101 0.317991 0.499855 0.333913 0.063305 0.273727 0.495995

CenterNet, HG104 0.418513 0.596293 0.450574 0.176202 0.396971 0.567429

CenterNet, Resnet101 0.341795 0.51551 0.360114 0.106329 0.30578 0.506753

SSD, MobileNet 0.291359 0.462906 0.311403 0.086949 0.26647 0.411738

SSD, ResNet50 0.343024 0.51974 0.374497 0.103556 0.319488 0.487745

DetR, ResNet50 0.42 0.624 0.442 0.205 0.458 0.611

EfficientDet-D0 0.334914 0.5154238 0.352957 0.124756 0.387916 0.526467

YOLOv7 0.512 0.697 0.556 0.353 0.56 0.667

YOLOv8 0.540 0.710 0.588 0.360 0.594 0.707

Table 5.2: Microsoft COCOmAP results

Figure 5.12: Mean Average Precision for Object Detection Algorithms

Figure 5.13 and 5.14 show the comparison of several object detection algorithms for

varying average recall values with respect toMicrosoft COCO dataset.
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Figure 5.13: Average Recall based on Object Size

Figure 5.14: Average Recall based on Learning Steps
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(a) Faster R-CNN (b) CenterNet + ResNet

(c) SSD +MobileNet (d) YOLOv8

Figure 5.15: Inference Example for Different Object Detection Algorithms
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Figure 5.15 showsmisclassifications andmissed classifications (e.g., bear) for various

object detectionmethods explored in this study. We can note that some algorithms accu-

rately identified the presence of a dog in the sample image, while others failed to do so or

incorrectly suggested the presence of a bear. Despite being trained on the sameMicrosoft

COCO dataset, variations in performance arise from differences in model architectures and

their abilities to extract, learn, and distinguish similar-looking objects. As a result, some

detectionmodels could be better at identifying dogs versus bears, while others might not be

as effective.

The results indicate that YOLOv8 is the fastest algorithm tested, whereas Faster R-CNN

is the slowest. When paired with HourGlass104 and ResNet101 backbones, the CenterNet

method shows nearly identical performance. Using the SSD technique with the ResNet50

architecture, as opposed to MobileNet, significantly improves inference speed. YOLOv8

achieved the highest mean average precision (mAP) of 0.54, outperforming all other algo-

rithms in terms of precision. The combination of SSD and MobileNet yielded the lowest

mAP, which aligns with its design for mobile applications. We discover that the ResNet50

backbone is more precise when combined with SSD.

Overall, we conclude that the choice of detection approach and backbone design pro-

foundly impacts model performance. The acceptable number of false positives may vary

depending on the intended use of the detectionmodel. For example, in a human face redac-

tion application, a high rate of false positives could inadvertently reveal individual identities,

undermining the purpose of redaction. There are currently no evaluationmetrics available

that consider the risks associated with inaccurate detections.
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�.�.� Privacy-Utility Redaction Score (PURS)

This comparison highlights the trade-off between simple object redaction and the more

complex task of selectively redacting specific categories while leaving others un-redacted.

Figures 5.16 and 5.17 illustrates the results for PURS across different object detectionmodels,

in terms of weighted and unweighted forms. In this study, we selected images specifically

featuring dogs and people from theMicrosoft COCO dataset.

Figure 5.16: PURS byModel (Private: Person, Public: Dog)

In the unweighted PURS metric, CenterNet with ResNet101 (0.9277) and CenterNet

with HG104 (0.9271) achieve the highest scores, effectively redacting the private object

(dog) while revealing the public object (person). Conversely, YOLOv7 (0.8944) and YOLOv8

(0.9074) score lower, indicating they either inadequately redact the private object (dog) or

fail to properly reveal the public object (person).

When controlling privacywith the parameter ✏, a lower value places greater emphasis on
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privacy. We observe a gradual decline in algorithmperformance as ✏ decreases, with � values

held constant. For instance, the PURS score for theR-CNNmodel drops from0.9398 to0.9165

as � values are tightened. This suggests that the algorithm is more strictly penalized for

either inadequately revealing private object (dog) or failing to expose public object (person).

When adjusting utility with the � parameter, a lower value indicates a greater focus on

utility. Similar to adjustments for the privacy parameter, a decrease in � results in reduced

algorithm performance. For example, the PURS score for the SSD ResNet model decreases

from 0.9443 to 0.9205 as � values are lowered. This trend indicates that the algorithm is

penalized for not preserving utility.

A similar pattern results with different ranking for models is observed in an alternative

use case where the human is treated as the private object and the dog as the public object.

Figure 5.18 showcases Utility-aware redaction using object detection approaches, particu-

larly instances where objects fails to redact private objects revealing sensitive PII, with cases

where over-redaction of private objects ends up completely redacting private object.
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Figure 5.17: PURS byModel (Private: Dog, Public: Person)

We captured results by changing value of ✏ and �. Upon capturing the un-weighted

metric results, next three results are captured by changing the values of ✏, while keeping

the � consistent, followed by varying the � values, while keeping the ✏ values consistent to

capture next three results. This demonstrates the effect of adjusting the Privacy Parameter

(✏) and Utility Parameter (�). The results of both weighted and un-weighted metric are

summarized in Table 5.3 and 5.4.

Model
PURS

(unweighted)

PURS1

(✏=0, �=0.5)

PURS2

(✏=0.5, �=0.5)

PURS3

(✏=1, �=0.5)

PURS4

(✏=0.5, �=0)

PURS5

(✏=0.5, �=0.5)

PURS6

(✏=0.5, �=1)

YOLOv7 0.8944 0.8747 0.9056 0.9255 0.8944 0.9056 0.9202

YOLOv8 0.9074 0.9081 0.9200 0.9283 0.9074 0.9200 0.9361

SSD, MobileNet 0.9173 0.9218 0.9293 0.9339 0.9173 0.9293 0.9427

EfficientDetD0 0.9183 0.9215 0.9296 0.9343 0.9183 0.9296 0.942614523

SSD, ResNet50 0.9206 0.9270 0.9316 0.9329 0.9206 0.9316 0.9443

Faster R-CNN, ResNet101 0.9209 0.9165 0.9300 0.9398 0.9209 0.9300 0.9406

DETR 0.9237 0.9184 0.9316 0.9402 0.9237 0.9316 0.9413

CenterNet, HG104 0.9271 0.9252 0.9348 0.9397 0.9271 0.9348 0.9443

CenterNet, ResNet101 0.9277 0.9282 0.9359 0.9405 0.9277 0.9359 0.9453

Table 5.3: PURS results for Private Object: Dog and Public Object: Person
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Model
PURS

(unweighted)

PURS1

(✏=0, �=0.5)

PURS2

(✏=0.5, �=0.5)

PURS3

(✏=1, �=0.5)

PURS4

(✏=0.5, �=0)

PURS5

(✏=0.5, �=0.5)

PURS6

(✏=0.5, �=1)

DETR 0.5889 0.4583 0.6337 0.7471 0.5889 0.6332 0.6956

YOLOv7 0.6688 0.594 0.7046 0.7767 0.6688 0.7046 0.7530

YOLOv8 0.6910 0.6449 0.7270 0.7811 0.6910 0.7270 0.7735

EfficientDet D0 0.7323 0.70112 0.7638 0.8088 0.7323 0.7638 0.8021

Faster R-CNN, ResNet101 0.7328 0.7293 0.7710 0.7946 0.7328 0.7710 0.8186

CenterNet, ResNet101 0.7340 0.6969 0.7669 0.8138 0.7340 0.7669 0.8082

SSD, ResNet50 0.7393 0.7223 0.7706 0.8029 0.7393 0.7706 0.8083

CenterNet, HG104 0.7447 0.7263 0.7762 0.8094 0.7447 0.7762 0.8146

SSD, MobileNet 0.7680 0.7543 0.7971 0.8263 0.7680 0.7971 0.8318

Table 5.4: PURS results for Private Object: Person, Public Object: Dog
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(a) CenterNet, ResNet101 (b) EfficientDet (c) Faster R-CNN

(d) DetR (e) SSD, ResNet50 (f) YOLov7

(g) YOLOv8 (h) SSD, MobileNet

Figure 5.18: PURS in Action

When comparing the PURS (with human as redaction object) andmAP (Mean Average

Precision), we observe an inverse relationship between these metrics. For instance, best
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performing algorithms such asDetR, YOLOv7 and YOLOv8,with some of highestmAP scores

ranging from 0.42 to 0.540, yield one of the lowest PURS at between 0.58 to 0.69. This

indicates thatwhile these algorithm excel at the task of single object detection, they struggle

with the task of privacy centric selective redaction. Conversely, SSDwithMobileNet, despite

its lowest mAP score of 0.2914, achieves the highest PURS at 0.768, indicating it handles

privacy centric redaction better despite weaker detection capabilities. Other algorithms like

CenterNet with HourGlass and ResNet101, along with SSD + ResNet50, havemid-rangemAP

scores, perform relatively well in redaction, with PURS scores between 0.7343 and 0.745.

EfficientDet D0 and Faster R-CNNwith ResNet101 follow this trend, with lower mAP scores

but solid PURS results.

The comparison of mAP and PURS result is summarized in Figure 5.19.

Figure 5.19: Comparison of Mean Average Precision with PURS
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These results suggest that algorithmswith better mAP results, indicating strong single

category object detection capabilities, may still struggle with the task of multi-dimensional

privacy-centric redaction, where theymust distinguish between private and public objects.

This highlights that excelling in object detection does not necessarily translate to effective

privacy-focused redaction. This demonstrates the importance of developing algorithms

that can handle the problem of multi-category detection for purposes of redaction.
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Chapter �

Conclusions

This dissertation systematically investigates redaction in full-motion videos. In doing so, we

devised tools for researchers toworkwith FMV content, such as parsers capable of analyzing

and reactor for manipulating full-motion videos, as well as a taxonomy of visual object

detection approaches and privacy-centric evaluationmetric.

Tools for FMV

TheMP4 parser library imports consumer drone footage and generates atom-specific meta-

data followedby the offset address of each atom, allowingus to narrow in onbytes of interest

for visual andmetadata redaction. TheMPEG-TS parser library allows us to investigate a

MISB-compliant full-motion video by presenting different TS, PES, and KLV packets. For

example, the parsers help us identify the bytes that include geographical metadata that has

to be redacted.
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KLV metadata stream redaction

The KLV redactionmodule receives a KLV packet and obfuscates sensitive metadata fields to

maintaining confidentiality. The censored version of geospatial metadata prevents reverse

engineering techniques from examining and extracting sensitive drone flight information,

such as the location of the drone or its pilot.

Object detection in video streams

In the context of metadata stream redaction, a pre-defined structure with fixed-sizedmeta-

data components simplifies the processing and redaction of geographical information. De-

coding the codec-specific video streamdata (e.g., in recognizing a human face for redaction),

on the other hand, necessitates using complex image processing and deep learning algo-

rithms. We also investigated the redaction of visual information in videos by exploring

well-known object detectionmodels ranging from traditional image processing to the deep

learning era.

In conclusion, the accuracy of a detectionmodel improves with an increased number

of processing layers within themodel architecture. On the other hand, as we increase the

number of processing layers, thedetection rate slowsdown. Therefore, it is crucial to develop

techniques that accelerate the processing of video streams by employing a single-stage

pipeline with improvedmethods for region proposals to enable more seamless redaction.

The evaluation of detectionmodels from privacy prospective using the PURSmetric reveals

that having a higher mAP score does not alwaysmean that the detectionmodel can perform

well when challenged with privacy-centric, multi-object categorical scenarios.
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Theproposed tools for FMVvideo enable opportunities for integrationwith other privacy

preserving systems. The unique approach to metadata redaction in full-motion videos

addresses a privacy risk in consumer drones, adding to the broader effort of enabling the

safe use of drones.
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Chapter �

Future Work

Expanding upon the findings and studies presented in this research, several promising

directions for future research emerge in the area of drone-based data processing and pri-

vacy protection. Given the challenges linked with post-processing geospatial metadata

and footage from consumer-grade drones, there lies an opportunity for the development

of a FMVmultiplexing approach. Such an approach could seamlessly integrate drone spe-

cific metadata streams and audio-visual streams, enabling offline processing of drone data

without reliance on third-party parsing websites.

Current techniques for object redaction primarily concentrate on identifying and ob-

scuring sensitive visual information within videos. However, a newer approach to redaction

could utilize parsedmetadata to selectively redact items within a video frame. For instance,

this could involve redaction based on the precise GPS coordinates and camera angle of the

drone. Such an approach would offer geo-specific visual privacy protection customized to

the location and viewpoint of the drone.
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Traditional object detection algorithms often rely on large-scale datasets, including

object classes that may not be relevant to privacy-centric applications. However, training

algorithms on non-sensitive classes does not contribute to effectively detecting private

information in images. Introducing a smaller, more focused dataset tailored specifically to

privacy concerns could significantly enhance the accuracy and efficiency of object detection

algorithms for privacy-centric applications.

As consumer drones become integral to surveillance and public safety, ensuring real-

time data protection becomes increasingly important. The proposedmetadata redaction

method operates on pre-captured drone footage through post-processing procedures. It

assumes that the drone footage remains unaltered during transmission. However, there is

potential to extend this approach to offer real-time redaction from themoment the footage

is generated.
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