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Abstract

Long period variables (LPVs) are stars that have ceased burning Hydrogen in their

cores and have moved to the asymptotic giant branch [1]. During this phase of evo-

lution LPVs have periods of over 100 days [2]. LPVs can pulsate in the fundamental

of overtone modes, and can display multiple pulsation frequencies at once. While

the exact driving mechanism of this pulsation is unknown, it is likely that the large

convection zone in the star plays into this oscillation period [2]. Some LPVs display

a phenomenon called long secondary periods (LSPs) that are 5-10 times the length of

the main pulsation period. During the summer of 2023, preliminary analysis to this

project involved analyzing the brightness data of a sample of six LPV stars. One of

the stars, V CVn, displayed an extra-long secondary period over 30 times the length

of the main period of the star. Other stars analyzed also displayed traditional LSPs

of 5-10 times the main period. One proposed explanation of V CVn’s extra-long LSP

was cross-harmonics: the interplay of two simultaneously occuring periods in an LPV.

This thesis serves as an investigation of the possibility of LSPs and V CVn’s extra-

long LSP being caused by cross-harmonics. In order to do this, a stellar evolution

models of 0.85 M�, 0.9 M�, 1 M�, 1.2 M�, and 1.3 M� stars were made using Mod-

ules for Experiments in Stellar Astrophysics (MESA). These evolution models were

then analyzed using GYRE for their pulsation periods during the LPV phase, and

the cross-harmonics calculated using python. As a result of this analysis, we do not

find evidence of LSPs in the cross-harmonic calculations of the models used for this

study. However, periods consistent with LSPs were observed in the pulsation period

calculation.
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Chapter 1

Introduction to Long Period

Variables

“There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy.”

-Hamlet, Act I Scene V

William Shakespeare

Although Hamlet was likely not pondering the intricacies of stellar astrophysics,

the sentiment still remains true. Stars are much more complex, and all that more ec-

centric, than any human could fathom. Our knowledge of stellar physics is constantly

changing and adapting to advancements in observational technology and modelling

capabilities. As a result of this, the field of stellar astrophysics is constantly evolving.

I don’t doubt that this thesis will one day, either tomorrow or in a decade, become

obsolete. Yet it is the endeavour to understand that helps carry collective knowledge

forward.

The night sky is home to a multitude of objects that change in apparent brightness

over time. These objects can range from asteroids, to active galactic nuclei, to pulsat-

ing stars, and are called variable objects. This broad range of objects are separated

into categories based on a number of factors, the most important being source of light

variation, and type of light curve. A more detailed explanation of variable object

categories is demonstrated in the “variability tree” as in fig. 1.1. Variable objects are

separated into “intrinsic” and “extrinsic” variables based on whether the variation of
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Figure 1.1: Fig. 3.1 of [2], displaying the categories of variable objects in the night
sky [2].

brightness stems from the object itself, or an external manipulation.

For the sake of this thesis, the area of interest is intrinsic pulsating variable stars.

They reside under the “pulsation” category, meaning they show intrinsic radial and/or

non-radial pulsation. The particular type of variable star of interest are Long Period

Variables (LPVs), a well-documented but poorly understood branch of intrinsic vari-

able stars. LPVs are separated into two categories: Mira variables, and Semi-Regular

Variables (SRVs) [2]. The region of the Hertzsprung Russel Diagram (HRD) where

LPVs reside is given in fig. 1.2.

LPVs are low-mass stars that have stopped Hydrogen burning in their core, and

moved into the Giant Branches of the HRD [2]. As our sun is a low-mass star, LPVs

reflect what will eventually become of our sun in ∼6 billion years. Their evolutionary

process is further detailed in section 1.1, and pulsation mechanism during the LPV

phase detailed in 1.2. LPV variables are one of the most puzzling stars in the night

sky as of today, with the exact driving force behind their pulsation and the cause

of their behaviour still being debated. This is counter intuitive, as one of the first

variable stars discovered is an LPV called “Mira” or o Ceti [1].

Today, we know of thousands of LPVs in the night sky that have pulsation periods
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Figure 1.2: Fig. 3.2 of [2], displaying variable star regions on the Hertzsprung Russel
Diagram (HRD) [2].
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above 100 days. Some LPVs will display an additional variation to their main pulsa-

tion period called a “long secondary period” (LSP) that is 5-10 times longer that their

main period. Like the nature of LPVs themselves, the reason behind long secondary

periods is still a matter of contention. One possibility is that this variation is caused

by frequency mixing in stars with multiple periods that occur simultaneously. The

purpose of this thesis is to investigate the possibility of frequency mixing as a cause of

long secondary periods using stellar evolution models and pulsation frequency calcula-

tors. We begin by discussing the evolution of low-mass stars as they are stars become

LPVs later in their lifetime. We then move on to some background work performed

during the summer of 2023, followed by the methodology. In methods, we discuss the

stellar evolution code MESA as well as the complementary code GYRE. Finally, the

results and their interpretation is given in section 3.1.2. Example code used for this

project can be found in the appendix.

1.1 Evolution of Low-Mass Stars

The cutoff point of when a star goes from a “low-mass” to “intermediate-mass” star

is one with contention, with varying cutoff masses cited throughout literature. The

textbook “Asteroseismology” by Aaerts et al. considers a main sequence mass of ≤
9 M� to be low-mass, while “Stellar Structure and Evolution” by Kippenhahn et al.,

considers this limit to be ≤ 2.3 M� low-mass [3] [4]. For the sake of this thesis,

we are only interested in stars with a main sequence mass between 0.8 M� to a

maximum of 1.3 M�.

Fig. 1.3 displays the typical evolution steps of a low-mass star, followed from

“Pulsating Stars” by Catelan et al. [2]. While on the main sequence (labelled parts 4

to 5), stars are burning Hydrogen found in their core: if the star is between 0.1 M�

to 1 M� , the core of the star is purely radiative, while above this mass convection

in the core begins taking effect [4][2]. A 1 M� star will spend around 10 billion years

on the main sequence, this time varies depending on the mass of the star [2].
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Figure 1.3: Fig. 4.2 adapted from [2], summarizing the evolution track of a low-mass
star on the HRD.

Once core Hydrogen is depleted and the star is at the “turn-off point”, otherwise

point 5 in Fig. 1.3, the core mainly consists Helium obtained through the means of the

proton-proton chain [2]. Hydrogen burning is now only taking place in the shell formed

around the core, increasing core Helium mass until the “Schönberg–Chandrasekhar”

limit causes the core to collapse [2]. Core collapse increases the temperature in the

core, the Carbon-Nitrogen-Oxygen (CNO) cycle is now dominant, but Hydrogen con-

sumption continues in the shells, releasing energy that is only partially able to escape

the star [2]. The remaining energy causes the star to expand as it reaches the base

of the red giant branch (RGB), characterized by a partially degenerate Helium core,

with a Hydrogen burning shell surrounded by a convective envelope that is becoming

deeper with time [2].

Once the convective envelope reaches a maximum depth, it “dredges up” material

from the Hydrogen shell, as Ill as some Helium, in the “first dredge-up phase” indicated

by number 6 in figure 1.3. At this point, the convective envelope begins retreating as

the H shell and he core increase in mass [2]. Once the evolution reaches point 7, a

discontinuity of the chemical composition occurs due to the depth of the convective

envelope [2]. This disturbance results in a previously unused supply of fuel to become
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available to nuclear fusion [2]. Thus, a reversal in the evolution begins taking place

dubbed the “RGB bump” [2]. Eventually this supply runs out and the star continues

on its previous path [2].

At point 8 in Fig. 1.3, the star has reached the end of the RGB, where the He core

is increasing in mass until eventually the temperature becomes high enough to start

burning Helium, also called the “He flash” [2]. It is important to understand that at

the point leading up to the He flash, the matter inside the core is degenerate: the

nuclear reactions increase the temperature, which in turn increase the reaction rate

in a “thermonuclear runaway” [2]. In contrast, non-degenerate conditions allow for a

pressure increase that expands surrounding material and cools down the medium in

a self-regulating cycle [2]. In degenerate matter a pressure increase is not possible:

a local temperature increase does not cause a pressure increase [2]. This degeneracy

is important for reasons that will be explained in section 3.1. Many stellar evolution

codes struggle to model regions of degenerate matter, which is a fair bit of a star’s

lifetime.

Once He fusion begins, the star begins its descent through the HRD into the

horizontal branch (HB), where the beginning point is called the zero-age HB (ZAHB)

indicated by point 9 in fig. 1.1 [2]. Not all stars will have prominent HBs, but the

properties of this region holds nonetheless. Cepheid variables, a different type of

variable star will become very regular pulsators while crossing the HB. For very low-

mass stars (0.8to1.3 M�), this is not a point of concern as they do not remain on the

horizontal branch for long, and are far too low-mass to cause this type of pulsation.

Eventually, just like the star ran out of H to burn in the core, the star will also

run out of He, which happens around point 10 in fig. 1.1. this ascent on the HRD is

dubbed the “asymptotic giant branch” because it follows close to the RGB region, but

will not touch the RGB [2]. The star is home to a non-burning Carbon and Oxygen

core but continues to burn He and H in concentric shells outside the core region [2]. It

is the AGB phase of Low-mass stars where we see LPV pulsation, the mechanism of

this pulsation is described in the coming section. During this era of evolution, LPVs

have deep convective envelopes, where convection cells continually stir up material

from the depths of the star to the surface [2]. They also have very strong winds:

they shed mass at faster rates than other stars and are in fact responsible for a large

amount of interstellar dust [2]. This is caused by the loosely attached atmosphere
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that can easily become detached during pulsation.

Some stars undergo a “thermal pulse” (TP) on the AGB, which is different from

a LPV pulsation, and are caused by ignitions of the H and He shells around the core

[2]. The chemical compositions and efficiency of burning can cause the fusion in these

shells to die down and re-ignite once they are compressed enough [2]. Because the

matter is not degenerate, the temperature does cause an expansion, and thus a visible

increase in light we see called the thermal pulse [2].

Beyond the AGB, low-mass stars will “die” by exploding into a planetary nebula,

rapidly shedding their mass and leaving a white dwarf in their wake. This section of

evolution is irrelevant to this thesis and is left out of discussion.

There are a number of important equations that can be attributed to thermal

physics and classical mechanics that describe the stellar evolution we just described

qualitatively. Solving these 5 fundamental ordinary differential equations (ODEs) can

sufficiently describe the interior of a star. These descriptions follow from section 10.12

of [4]. The first equation, very simply, is a relation between radius and mass. Given

by eq. 1.1, r is radial distance from center, m is mass fraction, and % is the density,

which allows us to describe a relation between mass and radius [4].

∂r

∂m
=

1

4πr2%
(1.1)

The next equation is the hydrostatic equilibrium, given by eq. 1.2, which describes

the relation that the inward force of gravity needs to be balanced by the outwards

radiation pressure [4]. In this equation, P is the outwards pressure, and the term
Gm
4πr4

is the gravitational effect. The left term being non-zero describes the case where

hydrostatic equilibrium is not met [4].

1

4πr2
∂2r

∂t2
= −∂P

∂m
− Gm

4πr4
(1.2)

The third equation (eq. 1.3) is the change in energy that enters a concentric shell

around the center of the star with respect to mass [4]. ε is the energy released per unit

mass per second and l is the energy per second entering the shell [4]. The different ε

variables are for different sources of energy transfer. εv represents energy carried away

from the star in the form of neutrinos that are a byproduct of fusion [4]. ε represent
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nuclear energy generated and εg is a combination of terms of time-dependent partial

derivatives that is derived in section 4.4 of [4].

∂l

∂m
= εn − εv + εg (1.3)

Next is the transport equation that describes how energy is carried out of the star.

Note that this form of the equation is highly generic; ∇ changes depending on the

mode of energy transport and location in the star [4].

∂T

∂m
= − GmT

4πr4P
∇ (1.4)

Finally, we need an equation that describes the chemical composition in the star.

Eq. 1.5 describes the change in relative fraction of an element with respect to time,

where Xi is the relative fraction of an element [4]. The right-hand term describes

the rate at which this element is made using the reaction rate of synthesizing this

element rji, and the reaction rate of destroying this element to make a new one rik [4].

This equation holds for all elements in the star, which seems daunting, but elements

heavier than He are so low in fraction compared to H and He that they are commonly

grouped together. This approximation calls everything heavier than He “metals”

and the fraction of metals in a star the “metallicity” which gives us three chemical

composition equations instead.

∂Xi

∂t
=
mi

%

(∑
j

rji −
∑
k

rik

)
, i = 1, . . . , I (1.5)

Using these five(ish) equations, we are equipped to accurately describe a stellar

interior. Note that these equations are a system of non-linear equations that are not

straight forward to solve. When talking about modelling stellar evolution, remember

these equations, and that by giving some starting conditions we can allow solvers to

step through what a star would look like at every point of its life. This is exactly

what we will be doing in section 3.1, where we use a stellar evolution code to solve

these very equations (albeit in a much more complicated way).
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Figure 1.4: A diagram of one period of LPV pulsation, where colour indicates tem-
perature, and r is the radius of the star.

1.2 Pulsation of LPVs

What exactly is stellar pulsation? As seen from fig. 1.2, there are many types of stars

that show some kind of pulsation, not all of these stars use the same mechanisms.

While we focus on LPV pulsation, it is important to remember that not everything

in this section will hold for all types of variable stars.

There are two “types” of stellar oscillation, radial and non-radial, where radial

oscillations are spherically symmetric, radial oscillations are not [2]. LPVs pulsate

in radial modes; fig. 1.4 summarizes the radial pulsation of an LPV. At maximum

light the star is smaller, but hotter (denoted using colour), and at minimum light the

star is larger but cooler [2]. This variation is the one we see when we look at optical

wavelength light curves of an LPV over time. Although Miras and Semi-Regular

Variables (SRVs) are different categories, there is no discontinuity in the HRD where

SRVs stop and Mira variables begin. We will discuss the difference between these two

categories but the mechanisms are still valid for both.

Radial oscillations in stars are caused by sound waves resonating in a star: matter

gets compressed, sending shock waves through the star. Because of this, we can use

properties of sound travelling though different media to model how pulses would travel

in a star. The pulsation period Π, can be obtained using the adiabatic sound speed

obtained using the bulk modulus:
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vs =

√
γP

ρ
(1.6)

where P is the pressure, obtained from the hydrostatic equilibrium in eq. 1.2, γ

is a constant specifying an equation of state, and ρ is a constant density [1]. Then

applying some boundary conditions, we can obtain an expression for the period given

a certain γ and ρ (for a more detailed explanation, see section 14.2 of [1]). This

relation is derived from equations 1.1 through 1.5, or the equation required to model

a star. However, it makes some assumptions of an adiabatic environment and constant

density throughout the star. The consequences of these assumptions are discussed in

section 3.1. An adiabatic approximation means there is no transfer of heat between

the shells of a star. Stars, of course, are not actually adiabatic, but this approximation

is used with justification also discussed in section 3.1.

We can think of the sound wave analogy as a taught string: when plucked, a taught

string will oscillate at a certain frequency and will have harmonics, or “overtones” that

correspond to different frequencies. Certain frequencies will cause standing waves in

a string, exactly like the radial modes of a star. The translation of this analogy to

a star means that there is a fixed node at the center of the star, and an open end

at the star’s surface where the gasses can freely move. The fundamental mode is the

frequency which all gas in the star moves in the same direction, there is no node [1].

The first overtone has one node, the second overtone two, and so on. Fig. 1.5 displays

a diagram of this motion.

MACHO and OGLE database studies of LPVs have concluded that Miras are

fundamental radial mode pulsators, and SRVs are fundamental, 1st, 2nd, and 3rd

overtone pulsators [5]. SRVs can also pulsate in multiple modes at once, causing a

“beating” phenomenon, which will be explored more in section 2 [6].

At this point, we understand what the pulsation looks like, but what drives this

pulsation? There still needs to be some mechanism perturbs the star to cause a

pulse. The exact mechanism for LPVs is not well understood, but there are a few

possibilities that could contribute. The answer likely lies within the interplay between

convection and pulsation [2]. If you are familiar with Cepheid variables, or more

“classical” pulsators, you might be familiar with the opacity mechanism, also called

the κ mechanism. This mechanism involves the medium of the star becoming optically
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Figure 1.5: A diagram of radial pulsation where (a) corresponds to the fundamental
mode, (b) corresponds to the first overtone, and (c) corresponds to the second overtone
[1]. O denotes the center of the star. The figure is adapted from fig. 14.9 of [1].

dense to photons streaming out of fusion regions, and building pressure until it is

strong enough to push outwards [1]. However, this mechanism is only efficient in

regions where radiative energy transport is more efficient. We cannot apply the same

principles to largely convective stars like LPVs [2]. This has been a widely studied

topic in stellar physics, for a more detailed explanation of the various studies and

their conclusions, refer to section 8.1 of [2].

As of today, there is no exact consensus on the driving mechanism, only that

the coupling between convection and pulsation replaces traditional drivers like the κ

mechanism in traditional pulsators [2] [7]. Many models tried for LPVs cannot fully

account for the large amplitude and long periods of pulsation simultaneously. For this

reason, models that treat LPVs using schemes of pulsation that are solely based on

pulsation drivers applicable to classical pulsators must be treated with caution. This

reality also applies to this thesis.

1.2.1 Long Secondary Periods

Long Secondary Periods (LSP) are a phenomena observed in about one third to a

half of LPVs, and are an additional type of variability aside from main periods that

occur in the LPV phase of evolution [8]. LSPs are typically 5-10 times longer than

the main pulsation period, where the main period is defined as the period with the
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Figure 1.6: Adapted from fig. 7 of Soszyński adn Udalski (2014) displaying an example
light curve of an LSP star folded and phase-matched [10]. The main period variation
is clearly visible as a short period variation inside the larger-period LSP. The light
curve is sampled from OGLE I-band light curve from a star in the Galactic bulge [10].

largest amplitude [9]. Fig. 1.6, adapted from [10] displays a sample light curve of an

LSP star, folded so that the phases align. While the astronomy community has been

aware of the phenomenon of LSPs for over a century, the underlying mechanism is

highly debated, with different studies attributing it to different causes [11]. In their

2015 paper, Saio et al. investigated oscillatory convective modes as the cause and

found that the resulting oscillation “roughly” agreed with the properties of an LSP

[11]. They did indicate that the models used were cooler than that of the AGB stars

used as a blueprint, and concluded that a more sophisticated convection model was

needed to verify any findings from the study [11].

The most recent study on LSPs was done by Soszyński et al. in 2021, where they

investigated a binary companion as the reason for LSPs [12]. They found secondary

eclipses visible only in infrared wavelengths in around half of a sample of 700 LSP

variables [12]. They attribute this to a system of a dust cloud orbiting the variable star

alongside a companion substellar or stellar object [12]. While an excellent analysis,

there still remains some questions with this conclusion: for this to be possible, a large

amount of binary systems would have to be seen face-on, but no such discoveries have

been made [13]. This issue among others have left the astronomy community with

great guesses, but no concrete evidence as to the origin of LSPs.

During summer of 2023, my research under Dr. Hilding Neilson prompted the
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analysis a sample of 6 LPV stars. This research is further detailed as background in

section 2. Many of these stars displayed an LSP, but no concrete reason behind most

of the LSPs were found, partially due to lack of observational data. As a result of

analysis, we did find LSP-like periods in most stars, but these LSPs were much longer

than 5-10 times the length of the main period. One of the stars analyzed, V Canum

Venaticorum (V CVn), displayed an extra-long secondary period, which Kiss et al.

(2000) argues is due to cross-production [6]. While they do not elaborate on their

definition of cross-production, it can be inferred that they refer to frequency-beating

or cross-harmonics that can be described with :

fmixed = f1 ± f2 (1.7)

where the added and subtracted values of two frequencies that occur simultaneously

cause fmixed.

1.3 Goal of the Study

Having contextualized LPVs and LSPs I can now further explain the goals of this

study. Despite the underlying mechanism for LSPs being highly debated, an argument

for frequency mixing can be made. The goal of this study is to model LPVs and

calculate the pulsation frequencies using a stellar modelling code to understand if

frequency mixing is the potential cause for LSPs. The software, parameters, and

calculations used are discussed in section 3.1. We expect that multiple frequencies will

occur at the same point in evolution, but we may not observe frequencies consistent

with an LSP. Luckily, we have observational data from LPVs that we can compare

these models to. The analysis of the observational data used to justify this study is

discussed in the next section, and this data will be directly compared to the results

of the models.

This thesis also partially serves as an investigation of whether MESA and GYRE

are capable of computing the periods of LPVs. Masses as low as 0.85 M� have not

been attempted to be modeled in literature using the methods we employ in this

thesis. Thus achieving a viable model would be a novel endeavour.



Chapter 2

Background

The American Association of Variable Star Observers (AAVSO) is an organization

dedicated to collecting and cataloguing data from variable stars in the night sky.

Contributions to data can be made by amateur and professional astronomers alike, as

continuously tracking thousands of variable stars as they change in brightness is not

an easy task for a small group of people. Their archive of observations span over a

century, and prove exceptionally useful when trying to understand LPVs: in order to

deduce the periods or track the evolution of their pulsations, observations spanning

multiple times the length of one pulsation cycle is needed. This can be multiple years

for some stars, and in the case of LSPs, a few cycles could mean a decade.

From May to September of 2023, I worked under Dr. Hilding Neilson, where I

used Fourier analysis and Wavelet analysis techniques to analyze time series data of

6 LPVs. Because this work was not in fulfillment of the B.Sc. Physics (Honours)

degree at Memorial University, it is not discussed in depth in this thesis, but will

be submitted for journal publishing under citation [14] and is currently a work in

progress. For further explanation of this study, consult this resource.

The 6 stars studied were V canum Venaticorum (V CVn), UZ Aries (UZ Ari), AK

Pegasus (AK Peg), RX Boo (RX Bootis), Z Ursa Majoris (Z UMa), and L2 Puppis

(L2 Pup). The data is in the optical wavelength and is designated as high-quality

data by the AAVSO, and is in the form on light curves, or magnitude vs. time graphs

as given in fig. 2.1. The data analysis and visualization program used is AAVSO’s

program VSTAR [15].
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Figure 2.1: The light curve of LPV V CVn in the form of brightness [mag] vs. time
[JD]. The highlighted region clearly displays the periodicity in the light curve [16].

By applying Fourier analysis, we obtain a power vs. frequency graph that indi-

cates the statistical significance of each frequency analyzed. The result of performing

Fourier analysis on V CVn’s light curve is given in fig. 2.2. From the significant

periods, we observe four closely-spaced periods around 190 days, of which the lower

significance ones are a result of variability in the periods. The two main periods of

V CVn are 192 and 186 days, and these periods are consistent with those in litera-

ture. We also observe a 5407-day period that is not mentioned in literature. However,

comparing this study’s analysis to that of fig. 2.3, the 5407-day period seemingly

correlates to the f0 − f1 period that Kiss et al. point out [6]. This period is much

longer than a traditional LSP which is 5-10 times longer than the main periods of a

star. The 5407-day period is over 20 times longer than V CVn’s main periods, mak-

ing it either an unlikely candidate for a traditional LSP, or one of the highest LSP to

main period ratios among LSP stars. Aside from V CVn, the remaining 5 stars also

showed multiple periods with some LSPs and contenders for extra-long cross-harmonic

frequencies.

It is important to note that the Fourier spectrum is far less noisy in this study’s

analysis. This is likely due to Kiss et al. performing their analysis around 2000,

while our analysis takes place over 20 years later. In this time, there has been much

contribution to V CVn’s observational data, which would allow for better constraints

on the Fourier spectra.
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Figure 2.2: The result of performing Fourier analysis on V CVN’s light curve in the
form of a power vs. frequency graph. The most significant periods are indicated on
the graph.

Another important point to consider is that this period could simply by an artefact

caused by the Fourier analysis: in time series data it is not uncommon to observe false

peaks for a number of reasons. One of these artefacts is “aliasing”, and are a result

of performing Fourier analysis on data with a limited number of sampled points [17].

This results in false peaks that are not in fact present in the star’s pulsation [17].

Using techniques such as residual analysis, it is easy to determine these false peaks,

which we do in V CVn’s case. In some cases, this can present as symmetric peaks

mirrored around the main periods. Looking at fig. 2.2 we do see peaks surrounding

the main periods that are in symmetric locations, however, the peak at around 0.01

days does not have a symmetric power as the 5407-day period. For this reason, there

is a non-zero chance that this peak is not simply an artefact of data analysis but

occurring in the star itself.

It is not clear what Kiss et al. mean by “cross-production”, the theoretical

background is missing from the paper. It is likely that they are referring to “cross-

harmonics”, which are real frequencies occuring in a star and are a linear combination

in a multi periodic star. This can be described with the equation:

fjk = jf1 + kf2 (2.1)

where j and k are integers [17]. This is likely the reason they write off the 5407-day

period as an artefact such as in eq. 1.7 and fig. 2.3 but is in fact a real phenomenon.

There are multiple stars that exhibit this type of variation, of one example is TU
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Figure 2.3: A different Fourier analysis of V CVn’s light curve performed by Kiss et
al. (2000). The image is taken from fig. 5 of [6].

Cassiopeia (TU Cas) where currently 25 cross-harmonic periods have been observed

occurring in the star [17].

While TU Cas is a Cepheid variable, the principle of cross-harmonics are applicable

to any star that displays multiple periods that are distinct and not a harmonic of one

another [17]. For this reason, we will be applying this formula to the calculated

frequencies of pulsation using stellar modelling codes to determine if LSPs or even an

extra-long LSP such as V CVn’s could be caused by cross-harmonics.



Chapter 3

Methods

As this is an experimental project, I require a method to model LPVs, and then

calculate the periods that occur at different points in their evolution. There are a

plethora of coding suites and programs that allow for users to obtain stellar models,

one of the most prolific being “Modules for Evolution in Stellar Astrophysics”, or

“MESA” [18][19][20][21][22]. I also utilize the MESA-compatible stellar pulsation

calculator “GYRE” to then calculate the radial pulsation periods during various points

in the stars’ evolution [23] [23].

The method utilized for calculating the radial stellar pulsation frequencies in

GYRE requires an initial input in MESA file format. This is done through obtaining

a stellar evolution track on the HRD and then inputting detailed information about

the star at one age point into GYRE to calculate the eigenvalues (which are the fre-

quencies) of the stellar pulsation equations. This two-step process is then finished by

plotting and analyzing the data in Python. I discuss this process in further detail in

the remainder of this chapter, beginning with the MESA evolution tracks.

3.1 MESA

“Modules for Experiments in Stellar Astrophysics”, or MESA, is a FORTRAN 95

based open-source code developed to make stellar models, and can model a variety of

stellar phenomena [22][24]. The development was fronted by Bill Paxton but has many

more contributors than can be done justice in one sentence [22][21][20][19][18][25]. It
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is a collection of modules that allows the user to perform a variety of experiments

ranging from calculation stellar evolution tracks to obtaining theoretical light curves

[24]. We utilize MESA to calculate the evolution tracks of the stars with the desired

initial mass on the HRD, which can then be input to GYRE. The process of calculating

these tracks is discussed in section 3.1.2. The numerical methods are briefly discussed

in the following section; more detailed information about the operation of MESA can

be obtained from the MESA release papers [22][21][20][19][18][25], and the MESA

website [24].

3.1.1 Numerical Methods

While the focus of this project is not the computation, the process is briefly described

in this section; more detailed solver schematics can be found in the MESA release

papers, namely [22], [21], [20], [19] and [18]. MESA uses a Newton-Raphson solver

to find the multidimensional, nonlinear roots of the stellar system and advance the

evolution of a stellar model [22]. The basic equation is given in eq. 3.1, where yi is a

trial solution taken from the previous iteration of the model that has been modified

using evolution conditions [22].

0 = ~F (~y) = ~F (~yi + δ~yi) = ~F (~yi) +

[
d~F

d~y

]
i

δ~yi +O
(
δ~yi

2
)

(3.1)

In this equation, ~Fi is a residual, δ~yi is the correction, and d~F
d~y

is a Jacobian matrix

[22]. The solution for the properties of the stars are reached through iteratively

improving the trial solutions until one is accepted when it meets a set of convergence

criteria [22]. In most cases, the trial solution is reached relatively quickly in one or

two iterations, aside from complex evolution regimes such as the onset of He flash

[22]. If the first iteration does not have satisfactory residuals, the program reduces

the timestep and tries again [22]. In essence, if the properties of a star change “too

quickly”, the program reduces the time in between steps to ensure the changes are

recorded properly. “Complex evolution regimes” in this case refers to where the

system is highly nonlinear, and the program is driving the time step to lower and

lower values. A lower timestep limit can be given to the program that will terminate

the run if reached [22]. Given that we are calculating stellar properties well into He
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flash this does become a issue. To get around this we simply set a lower timestep

limit and allow simulations to run for longer times.

3.1.2 Calculating the Evolution Tracks

As the initial mass function of stars dictates, more low-mass than high-mass stars form

when interstellar dust begins collapsing [1]. For this reason, combined with the knowl-

edge of which stars tend to go into the LPV regime, we select 0.85, 0.9, 1, 1.1, 1.2, 1.3M�

for investigation. The reason 0.85 M� and not 0.8 M� was used is due to MESA

having issues reaching convergence at degenerate regimes in very low masses. we

limit the maximum mass at 1.3 M� due to time constraints, as well as uniformity

in schemes used during evolution. The same schemes were applied throughout these

mass models, and only initial mass, time step limits, and model number limits were

changed. Varying the mass a large amount from the default of the test suite could

cause improper parameters to be used for these lower masses. We also only calculate

6 evolution tracks due to the short timeline of this thesis, as each evolution run takes

anywhere from 2 to 4 hours.

MESA uses a number of modules that calculate different variables in a star: the

modules we use are the opacity (kap), equation of state (eos) modules. Recalling the

equation of state from section 1.1, we need to be able to define a state for the material

inside the star: it may not necessarily follow the ideal gas relation. The eos module

will determine which inputs to use for the equation of state of the material depending

on the location and properties of transition regions in the star [24]. Similarly, the kap

module combines the opacity data and determines which sources contribute to the

overall opacity, and the location of blends between them [22]. Finally, there are other

controls that can be used to determine initial mass, limits of timesteps and model

numbers, mixing length parameters, and more. The controls that tell MESA what

parameters and calculation schemes to use are stored in namelist files that can be

edited by the user to suit the needs of the project. The same overshooting, mixing

length, mass loss, and metallicity were used for all masses, for which an example can

be seen in A.

The calculation scheme was based on the MESA test case which evolves a 1 M�

from pre-main sequence to the formation of a white dwarf. We altered this test

suite to cut out the pre-main sequence and post-termination point AGB (TPAGB)
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Figure 3.1: The evolution track of a 1 M� star using MESA displaying the different
regions of evolution schemes the code uses.

calculations, and varied the initial mass in the namelists for each respective mass

being modelled. This evolution module uses separate calculations for each region of

the HRD that uses different schemes to evolve (e.g. core H burning, core He burning,

shell H burning). The different regions are demonstrated in figure 3.1. Aside from

the main sequence, each section used the last values of the previous section and then

continues the evolution using the new commands. To determine where to end a

section and start the next one a variety of commands were used, which can be seen

in Appendix A.

As MESA calculated the evolution tracks, for every 10 models generated, a “pro-

file” file was output. These are a detailed summary of around 100 of the stars parame-

ters at a single timestep. Profile files are readable by GYRE, and are used in the next

step of the process in calculating the pulsation periods. During the AGB phase, the

frequency of outputting a profile file was increased in order to get higher-resolution

period calculations in the next step. This was taken from outputting a profile file

every 10000 models, to every 10 models. In some circumstances, the resolution was
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changed after a first evolution track run, and the run resumed using the “./re xphoto”

command. This does not cause a change in any of the evolution tracks greatly, it just

increases the resolution so the evolution track is more detailed. An example of this is

given in fig. 3.2, where the high resolution is apparent though the existence of curves

rather than lines. The overall shape is preserved, but the exact location on the HRD

becomes much more refined.

3.2 GYRE

To obtain frequencies of the pulsations of stars modelled using MESA, we rely on

GYRE: a stellar oscillation code that is compatible with MESA models [23]. GYRE

solves the fundamental stellar pulsation equation using the “Magnus Multiple Shoot-

ing” scheme for solving linearized pulsation equations, and is written in FORTRAN

2008 [23]. The compatibility with MESA allows for the previously calculated stellar

evolution tracks to be input and the pulsation frequencies calculated based on the

profile read into GYRE. While there are multiple ways of taking MESA-calculated

evolution models and calculating stellar oscillation parameters using GYRE, we rely

on the method outlined by the example walkthrough outlined on the GYRE website

[26].

The walkthrough method is not adapted to handle large inputs of profiles from

evolution track calculations at once, and requires manual input of each file. To avoid

this inconvenience, we write a namelist with desired parameters as indicated in the

walkthrough, and place all profile files in both GYRE and data file format in the same

directory. We then employ a bash script to cycle through each profile and output the

pulsation frequency, χ2 value, radial order, and number of iteration the code loops

through before achieving a desirable result. This data was then read into Python for

plotting using the Python packages PyGyre and Mesa Reader [27] [28].

3.2.1 Numerical Methods

Actually modelling stellar pulsation is not very different from modeling evolution,

except the time scales of calculation are much shorter. Recall the taught string analogy

from earlier. Mathematically this can be described with the wave equation that can
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(a)

(b)

Figure 3.2: The evolution tracks of a 1.3 M� star in the AGB region with a low
resolution (a) and a high resolution (b).
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be numerically solved for its eigenvalues and eigenvectors describing the modes of

oscillation in the string. This is similar to what GYRE does with stellar oscillation

[23]. GYRE begins with a radial displacement perturbation trial solution ξr of the

form:

ξr(r, θ, φ; t) = Re
[√

4πξ̃r(r)Y
m
` (θ, φ) exp(−iσt)

]
(3.2)

The ordinary differential equation (ODE) governing radial displacement is than

discretized on a spatial grid decomposing them into a system of first-order ODEs.

These equations are then solved in a matrix for their eigenvalues, which yield the

frequencies of oscillation. As mentioned previously, the focus of this project is not

the computational methods of the coding suite, and more information can be learned

about GYRE from [23] and [26].

3.2.2 Pulsation Frequencies Calculation

In order to calculate the pulsation frequencies, the profile files from MESA are read

into the GYRE file directory. Then using a bash script file, a command is executed

to cycle through all profiles and calculate the corresponding fundamental, 1st, 2nd,

3rd, and 4th overtone modes at each point. A range of 100 days to 10000 day periods

are specified as a search range, only in the radial mode of l = 0. Both the adiabatic

and non-adiabatic cases of pulsation frequencies are calculated. Non-adiabatic cases

of pulsation are more complicated to solve, the method of this calculation if described

in [26]. Non-adiabatic cases are useful when dampening or growth of modes are

of interest. Calculating the non-adiabatic case requires non-adiabatic effects being

included in the oscillation equations, and are outlined in [23]. In essence, accounting

for non-adiabatic effects will yield calculations of amplitude of period so rates of

change of periods can be detected. The adiabatic case yields the frequencies with the

same amplitude throughout, so the same period change rate calculation cannot be

performed. While this is not the purpose of this project, the non-adiabatic case is

calculated for the sake of comparison between methods and computational rigor.

Once the calculation command is executed, GYRE begins dumping the data in the

terminal and in log files that can be read into Python using the package PyGYRE [28].

An example frequency calculation is given in fig. 3.3. Following this, each period was
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Figure 3.3: Result of adiabatic period calculations of a 1 M� star in the AGB region
of evolution.

subtracted and added to each other to form a linear combination of frequencies. Note

that from eq. 4.1, the linear combination can occur with different integer coefficients

of the frequencies being added. There is no way of determining the boundaries of what

maximum coefficient to use; in the case of TU Cas, there were 25 cross-harmonics.

Setting an upper limit would be purely based off a guess, and for this reason only

the case of j = 1 and k = 1 for eq. 4.1 is considered. This is also consistent with

Kiss et al. (2000)’s argument of cross-production [6]. The resulting cross-harmonic

calculation is displayed in fig. 3.5. Considering this, each possible combination of

periods from fundamental to 4th order was calculated, for which the python scheme

can be seen in app. C. This process was then repeated for all masses of evolution;

the results of this analysis is described in the following chapter.
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Figure 3.4: Result of adiabatic period calculations of a 1 M� star in the AGB region
of evolution.

Figure 3.5: Result of cross-harmonics calculation of a 1 M� star in the AGB region
of evolution.



Chapter 4

Results and Discussion

We now move to discuss the results in three parts and their implication. The first

section will discuss the evolution tracks and the quality of the evolution models used

to calculate the pulsation periods. The next part will discuss the calculated pulsation

periods and their implications and evolution over time. The final part will discuss

the cross-harmonic frequency calculations and whether they are a potential cause of

LSPs. The potential for future research and shortcomings of this thesis will also be

discussed as an additional section, followed by a summary of conclusions.

4.1 Evolution Tracks

After the first step of calculating the evolution tracks, we obtain 6 separate HRDs for

each mass calculated. Figures 4.2 through 4.4 display each evolution track individu-

ally, while 4.1 displays all tracks together for easy comparison. Looking at fig. 4.1,

there are many interesting features that do not persist in all evolution tracks. This

could be due to a variety of reasons; each one will be discussed in order of increasing

mass. Recall that only evolution data from the AGB region will be used to calculate

periods using GYRE. Because of this, some interesting features are commented on,

but become irrelevant for period calculations.

In fig. 4.2a, the 0.85 M� track has a long extended horizontal branch that is

not observed in any other evolution track. This feature is especially distinguishable

from other models in fig. 4.1. The reason for this is unclear; a few options could
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Figure 4.1: Evolution tracks 0.85, 0.9, 1, 1.1, 1.2, 1.3 M� displayed together on the
HRD for the purpose of comparison.

explain this behaviour. The first option is that there is an unidentified issue with

very low-mass calculations in MESA, and this feature is purely artificial. The next

option could be that with the parameters used combined with the very low mass,

we are in the regime of an extreme horizontal branch star (EHB). EHB stars are

extremely hot stars that can travel to the far left regimes of the horizontal branch

[29][30]. This is quite unlikely, as EHB stars are O-type stars, which means they

are around 20,000-30,000 K and far out of the range of the model at hand [30].

Another reason this is unlikely is due to the origin of EHBs: currently the most

accepted explanation is that these stars form in binary systems [30]. Obviously this

would give our model no reason to become an EHB, and thus the likely culprit is

a computational phenomenon. Exploring the reasoning behind this branch would

require some computational knowledge of conducting stellar evolution models, and

is left to future research. However the long horizontal branch does not occur in the

AGB, and we are left with a seemingly normal AGB ascent for this mass. For this

reason, we continue with the analysis of the 0.85 M� star.
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(a)

(b)

Figure 4.2: The evolution tracks of a 0.85 M� (a) and 0.9 M� (b) solar mass stars
calculated using MESA
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Comparatively, the evolution track of 0.9 M� given in fig. 4.13f looks much more

“normal”, except for a feature in the top right corner during He flash. This is a normal,

real feature that only appears due to the timestep selection in this regime. Other

masses also displayed this variation, but they did not get plotted due to the longer

timesteps skipping over this region. The evolution is as expected and satisfactory for

0.9 M�. This is also the case for the 1 M�, 1.1 M�, 1.2 M�, and 1.3 M� solar mass

stars given in fig. 4.3 through 4.4.

It is worth noting the messy-looking feature on the top right hand that occurs

during the AGB phase for both 1.2 M� and 1.3 M� stars. This feature is likely

a thermal pulse (TP) as mentioned during section 1.1. The behaviour during this

phase will be further examined in 4.2. The next results that will be discussed is the

calculation of the pulsation periods and the subsequent frequency calculation.

Some of the tracks also display a partial overlap between the AGB and end of the

horizontal branch tracks. This is simply caused by “resuming” the MESA run from a

point right before the AGB and is not a point of concern. The effects of performing

the resume is further discussed in the next section.
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(a)

(b)

Figure 4.3: The evolution tracks of a 1 M� (a) and 1.1 M� (b) solar mass stars
calculated using MESA
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(a)

(b)

Figure 4.4: The evolution tracks of a 1.2 M� (a) and 1.3 M� (b) solar mass stars
calculated using MESA
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4.2 Pulsation Periods

After using MESA to calculate the evolution tracks and using the profiles to calculate

the pulsation periods with GYRE, we are left with pulsation periods throughout each

star’s evolution on the AGB. Figures 4.11 through 4.11 display the result of adiabatic

and non-adiabatic frequency calculations in the AGB region for each mass.

Beginning with 0.85 M�, we observe a steady period increase in both the adiabatic

and non-adiabatic cases. The difference between the two calculations is quite stark:

for the adiabatic case, each mode is continuous, but this is not the case for the non-

adiabatic periods. This condition is observed throughout all non-adiabatic cases from

fig. 4.2a to 4.11. This could indicate an issue with root-finding for the non-adiabatic

periods, as it looks like the correct periods are being calculated, but different modes

are being assigned causing the abrupt discontinuity. Another interesting feature that

comes with this is that the same modes are being reported simultaneously with dif-

ferent periods. All these factors contribute to a conclusion that non-adiabatic root

finding needs further investigation. Additionally, as the mass of the model increases,

the difference between the periods of the non-adiabatic and adiabatic modes increase.

This is especially evident in the maximum frequency of fig. 4.11. While this does

not result in a definite dismissal of the accuracy of the adiabatic calculations, it could

indicate a need for re-examination. We leave this investigation up to future research,

and continue with the analysis assuming the validity of adiabatic period calculations.

The next observation that needs to be addressed is large gaps in the period cal-

culations for some of the masses. This is observed in the 0.9 M� and 1.3 M� period

calculations. the most likely cause of this is the methodology: recall that during the

AGB phase, the frequency of outputting a profile file was increased greatly, and the

run resumed from the approximate switch point to the AGB regime. In doing so, se-

lecting a starting point right before the beginning of AGB would mean the time step

is much larger for the first few points until the AGB begins. Once the AGB begins

and MESA start using the command in the AGB inlist, the time between outputs is

greatly reduced. This is the reason for the large gaps, and is not an issue of concern

for the accuracy of the period calculations. Fig. 4.11 (a) and (a) display the large

gap, while (c) and (b) are zoomed in to the actual AGB region.

Continuing with the evaluation of each mass’ period calculation, we consider the
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(a) (b)

Figure 4.5: The period calculations in the AGB region of a 0.85M� star with adiabatic
(a) and non-adiabatic (b) pulsations.

(a) (b)

Figure 4.6: The period calculations in the AGB region of a 0.9 M� star with adiabatic
(a) and non-adiabatic (b) pulsations.
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(a) (b)

Figure 4.7: The period calculations in the AGB region of a 1 M� star with adiabatic
(a) and non-adiabatic (b) pulsations.

1 M� and 1.1 M� calculations. The period steadily increases before a sharp drop

right before the end of the AGB phase. The reason for this abrupt drop is unclear,

but could indicate the beginning of a thermal pulse that continues past the end of

the MESA-defined AGB phase. In fact, all calculations abruptly cut-off when there

is clearly still periodic behaviour past this point. Assuming periodicity must remain

continuous and cannot display instantaneous changes, this indicates that periodicity

continue past the point where we cut the calculation. The reason for this cut is because

the stopping condition of “TPAGB” was used as a command for MESA, which can

be seen in appendix A. This condition stops the run at the end of the AGB, which

MESA defines as H-rich envelope mass below 10−2 M� [24]. This causes every run to

terminate at a similar relative point as evidenced by fig. 4.1.
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(a) (b)

Figure 4.9: The period calculations in the AGB region of a 1.2 M� star with adiabatic
(a) and non-adiabatic (b) pulsations.

(a) (b)

Figure 4.8: The period calculations in the AGB region of a 1.1 M� star with adiabatic
(a) and non-adiabatic (b) pulsations.

We see further evidence for thermal pulses in the 1.2 M� and 1.3 M� period

calculations. In fig. 4.9, we observe a sharp spike indicating a sudden change in

period lasting about 20000 years, which is consistent with the behaviour of a thermal

pulse. We can compare this to a model of TPAGB period changes performed by Joyce

et al. (2024), where they made a comprehensive characterization of the TPAGB star

R Hydrae in order to fit observational data to theoretical data [31]. In doing so, they
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present a figure of a computational model of a 1.5M� star with solar metallicity, which

is given in fig. 4.10 alongside the period calculations of this study. In comparing the

overall shapes, this sudden change in the model we present is concluded to likely be

a thermal pulse. This same argument is applied to our 1.3 M� model, where the

enlarged region is given in fig. 4.13c. Both features in the 1.2 M� and 1.3 M� models

are thus thermal pulses.

(a) (b)

(c) (d)

Figure 4.10: The adiabatic period calculations in the AGB region of a 1.2 M� star
given in (a). The region of thermal pulse is then enlarged in (b). Figure 5 of Joyce
et al. (2024) is given in (c), displaying a computational model of a 1.5 M� solar
metallicity star’s thermal pulses. Figure (d) is also from Joyce et al. (2024), and is
included to show the shape of a single thermal pulse [31].
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(a)
(b)

(c) (d)

Figure 4.11: The period calculations in the AGB region of a 1.3M� star with adiabatic
(a) and non-adiabatic (b) pulsations. The highlighted regions in (a) and (b) are given
in (c) and (d) respectively.

We can also make some comments about the period calculations when compared

to the observational data discussed in section 2. The star V CVn by nature of being

a multi-mode pulsator had two closely spaced periods at 192 and 186 days. In masses

of 0.85 M� to 1.3 M� only the 1 M� and above masses achieve periods consistent

with V CVn. Outside of thermally pulsing regions, no model displays two closely-

spaced periods occuring simultaneously such as in V CVn. However, thermally pulsing

regions so indeed display closely spaced period possibilities as the period is reaching

a minima. We cannot definitively make conclusions about V CVn’s mass or what

part of pulsation it is in from this data as we do not have an upper mass limit that
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caps how large V CVn could be. However, the observation that closely spaced periods

only occur during thermally pulsing phases is interesting and worth considering the

implications of. This is discussed further in section 4.4. Next we move to discuss the

results of the cross-harmonic calculations.

4.3 Calculation of Cross-Harmonics

After applying the scheme given in appendix C for computing cross-harmonic periods,

we obtain the graphs given in fig. 4.13 for all adiabatic cross-harmonics. The reason

we leave out non-adiabatic periods is because of issues with the cross-harmonic cal-

culation. This is demonstrated in fig. 4.12, where the non-adiabatic cross-harmonic

periods are reduced to only a few points in time. This is the case for all non-adiabatic

cross-harmonic calculations; they are not depicted in figures to avoid redundancy.

The reason behind this is not fully clear, but comes from the cross-harmonic calcu-

lation code. The scheme only performs the cross-harmonic calculation if two modes

occur at the exact same point in time to around the 5th decimal place in years. The

likely explanation is that in the non-adiabatic calculation, the absence of some modes

during some points in time is causing the code to not calculate the cross-harmonics

at that point in time. While this is an issue with the code, this is not an issue caused

by the computational model. The time requirements of this project did not allow for

the correction of the cross-harmonic scheme, and is thus left for future research. We

continue our analysis with the adiabatic cross-harmonic calculations.
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(a) (b)

Figure 4.12: The cross-harmonic period calculations in the AGB region of the 0.85 M�
adiabatic model (a) and non-adiabatic model (b).

The first factor to check is whether we see a period 5-10 times any of the pulsation

periods. The maximum cross-harmonic period occurs in the 1.3 M� model of 400

days, which is much shorter than the maximum pulsation period of the 800 day

pulsation period in fig.4.11. In fact, all cross-harmonic periods are shorter than the

maximum period of their corresponding pulsation period model. This makes sense

when we consider the cross-harmonic formula from earlier:

fjk = jf1 + kf2 (4.1)

adding two frequencies will only cause a higher frequency, which corresponds to

a shorter period. However, we cannot forget the Kiss et al (2000)’s formula of cross-

production included both adding and subtracting the period. This still does not

negate that the lowest frequency will always be lower than product of the lowest

frequency subtracted from a different frequency. This also justifies only examining

the case where j = 1 and k = 1, as any case where j, k > 1 will only increase the

resulting frequency, decreasing the cross-harmonic period.

Next, keeping in mind that LPVs are categorized as having a pulsation frequency

of 100 days or more, do we achieve any periods that are contenders for LSPs? Within

the current standards of LPVs being between 5-10 times the main period, we would

need a period of at least 500 to 1000 days. This automatically rules out the 0.85 M�
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and 0.9 M� models. The cross harmonics of the remaining models do show periods

of > 100 days, but no periods between 500-1000 days.

This conclusion rules out the possibility of LSPs being caused by cross-harmonics

for the models presented in this study. However, the original fundamental to 4th

overtone models do indeed exhibit periods between 500 to 1000 days, and given that

the average period of the model increases with mass, masses above 1.3 M� would

display longer periods. Could these potentially be LSPs? We know that Mira variables

oscillate in the fundamental mode, which would make them ineligible for the models

presented here as the overtone periods are all shorter than the fundamental. SRVs do

pulsate in first and second overtone modes, which could potentially mean that the LSP

is caused by the longer, fundamental mode frequency. To be able to do this, we would

need to know the main oscillation frequency, which is that of the highest amplitude.

As mentioned previously, this is done by using non-adiabatic calculations of period to

determine the growth and dampening rates of the oscillation modes. Given that we

are unsure of the validity of the non-adiabatic calculations, this would require further

research on modelling these pulsations non-adiabatically.

As a final note, we also are interested in the cause of V CVn’s extra-long period of

5407 days. Given that a traditional LSP was not achievable with cross-harmonics, the

possibility of an extra-long LSP is out of the question. However, should higher masses

be investigated there is potential of achieving periods on the order of thousands of

days. We observed fundamental mode pulsations of 1200 days with a 1.3 M� model,

and the maximum period of pulsation are increasing with mass. However, this would

require the star to be pulsating in the first or second overtone, and the LSP to be

the fundamental mode. We can not make a conclusive statement on this due to the

absence of the non-adiabatic calculations as explained previously.

4.4 Future Research Potential

Due to the time constraints of an undergraduate honours thesis, there were inevitably

parts of this research that could have been explored but are left to future work for the

sake of brevity. In this section, we briefly discuss aspects of this project that show

considerable promise for future research in studying LSPs and cross-harmonics.
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(a)
(b)

(c) (d)

(e) (f)

Figure 4.13: The adiabatic cross-harmonic calculations of 0.85 M� (a), 0.9 M� (b),
1 M� (c), 1.1 M� (d), 1.2 M� (e), and 1.3 M� (f).
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The major aspect of this project that was left for future research was the non-

adiabatic pulsation period calculation. While this does not deem this study obsolete,

performing this analysis would solidify the conclusions of this study. As an example,

obtaining non-adiabatic growth and dampening of the amplitudes of pulsation would

allow for analyzing what mode the star is pulsating in at a given time. With this in-

formation, one would be able to then determine if LSPs could be a longer fundamental

mode pulsation as mentioned in the previous section.

We also do not touch upon LPV period-luminosity (PL) sequences: LPVs are

known to follow distinct PL sequences similar to Cepheid variables [32]. Different

regions of this PL sequence correspond to different types of LPVs, with one specifically

reserved for LPVs with long secondary periods [32]. Fitting models on this PL model

could provide more insight into the model we use. Alongside this, not all LPVs

display long secondary periods. This could be explained with an LSP corresponding

to a thermal pulse as mentioned in the previous section, but further investigation is

needed in population dynamics of LPVs in order to come to a conclusion about this.

Another aspect of analysis that would prove interesting results is performing these

models for a larger mass range, and fitting observational brightness data of LPVs

such as V CVn to the theoretical light curve. This analysis is similar to the analysis

of Joyce et al. (2024) from [31]. This would mean obtaining luminosity vs. time

data artificially with a high resolution, around 100 years, which is V CVn’s recorded

luminosity data length. MESA does have the capability of doing this, but obtaining

the high-resolution luminosity vs. time data might prove difficult.

Finally, there are many stellar parameters we could vary such as metallicity and

mass loss rate (wind) that could affect the periods of pulsation. We use uniform

values across all models except for mass. Varying these parameters could provide

more interesting conclusions, which is also a shortcoming of this thesis that we discuss

next.

4.5 Shortcomings of this Thesis

The most obvious point of contention would be the adiabatic vs. non-adiabatic models

of pulsation periods. As mentioned previously, the discrepancies between the two

models do not discredit the adiabatic models, but the issue would need to be explained
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or resolved before the findings can be presented as concrete evidence. Should the non-

adiabatic model be dismissed as irrelevant, the difference in period calculations need

to be explained and an error margin for adiabatic modelling needs to be introduced.

The next issue is discussed in the beginning of this thesis, and is related to the pul-

sation mechanism of LPVs. As mentioned, the interplay of pulsation and convection

is not fully understood, and the exact mechanism driving LPV pulsation is unknown.

In this model, we employ a general opacity mechanism while maintaining all other

properties of LPV such as a large convective envelope and mixing length parame-

ters, as well as mass loss rates and starting masses. Having an unknown pulsation

mechanism, there is inevitably some differences that would arise from employing a

scheme different from an opacity mechanism during the evolution tracks. The effects

of different pulsation mechanisms should be investigated.

Finally, just as it is a potential for future research, not exploring the effects of

varying mass loss rates and mixing length parameters leaves their effects open to

interpretation. Only considering 6 mass regimes under hyper-specific conditions that

is not necessarily reflective of LPV population dynamics. Changing any parameter

could cause changes in the calculated periods and the subsequent cross-harmonics.



Chapter 5

Summary and Conclusions

Throughout this thesis, we have investigated potential of LSPs being caused by cross-

harmonic periods during the AGB phase using the stellar modelling code MESA and

the frequency calculation code GYRE. We begin by calculating the evolution tracks

on the HRD of six mass models of 0.85 M�, 0.9 M�, 1 M�, 1.1 M�, 1.2 M�, and

1.3 M�. We then move on to using GYRE to calculate the pulsation frequencies for

the AGB phase during which they become LPV stars. Once the pulsation frequencies

are calculated we calculate the potential cross-harmonic periods to determine whether

a long secondary period is achievable. Under the methods we use we do not observe

any periods to be contenders for long secondary periods from the cross-harmonic

calculations. We do not observe evidence for an extra-long secondary period such as

the one observed in V CVn of 5407 days. However, we do observe periods that are

consistent with traditional long secondary periods in the pulsation period calculations.

For these periods to be an LSP, the star would need to be pulsating in the first or

second overtone with the highest amplitude. Additionally, this phenomenon would

need to be proved for all LSPs and not just specific conditions as used in this study.

Based on this, we reject the possibility of LSPs being caused by cross-harmonics

only for the models presented in this study. The conditions of the model are too

specific for the conclusion to be applied with a broad brush to all LPVs. These specific

conditions are the mass range selected for modelling, the pulsation mechanism used,

only considering the adiabatic case, and the non-exploration of varying parameters

such as metallicity and mass loss. However, this does leave us with potential for future

research that could lead to shows promising results.
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[2] Márcio Catelan and Horace A. Smith. Pulsating Stars. en. Google-Books-ID:

tFhVDwAAQBAJ. John Wiley & Sons, Mar. 2015. isbn: 978-3-527-40715-6.

[3] Conny Aerts. “Asteroseismology”. In: Physics Today 68.5 (2015), pp. 36–42.

[4] Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar Structure and

Evolution. en. Astronomy and Astrophysics Library. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012. isbn: 978-3-642-30255-8 978-3-642-30304-3. doi: 10.

1007/978-3-642-30304-3. url: http://link.springer.com/10.1007/978-

3-642-30304-3 (visited on 03/01/2024).

[5] C. Aerts, J. Christensen-Dalsgaard, and D. W. Kurtz. Asteroseismology. en.

Astronomy and Astrophysics Library. Dordrecht: Springer Netherlands, 2010.

isbn: 978-1-4020-5178-4 978-1-4020-5803-5. doi: 10.1007/978-1-4020-5803-

5. url: https://link.springer.com/10.1007/978-1-4020-5803-5 (visited

on 02/19/2024).

[6] Laszlo L Kiss et al. “Multiperiodicity in semiregular variables-II. Systematic

amplitude variations”. In: Astronomy and Astrophysics Supplement Series 145.2

(2000), pp. 283–292.

[7] Da-Run Xiong and Li-Cai Deng. “Solar-like and Mira-like oscillations of stars—A

uniform excitation mechanism”. In: Research in Astronomy and Astrophysics

13.11 (2013), p. 1269.

[8] Micha l Pawlak. “Do Miras show long secondary periods?” In: Astronomy &

Astrophysics 669 (2023), A60.



47

[9] John R Percy. “Long Secondary Periods in Pulsating Red Giants: A Century of

Investigation”. In: arXiv preprint arXiv:2209.09144 (2022).
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Appendix A

MESA Code

The following code is taken from the adapted version of the “inlist to end agb” file

of the “1M pre ms to wd” test suite that is available on default download of MESA.

This file is used to evolve a 1 solar mass star on the main sequence through the AGB

phase.

&star_job

show_log_description_at_start = .false.

load_saved_model = .true.

load_model_filename = ’end_core_he_burn.mod’

save_model_when_terminate = .true.

save_model_filename = ’end_agb.mod’

required_termination_code_string = ’envelope_mass_limit’

change_D_omega_flag = .true.

new_D_omega_flag = .true.

pgstar_flag = .true.

/ ! end of star_job namelist

&eos

!Uses default regimes when left empty

/ ! end of eos namelist

&kap Zbase = 0.02d0



52

kap_file_prefix = ’gs98’

use_Type2_opacities = .true.

/ ! end of kap namelist

&controls

write_pulse_data_with_profile = .true.

pulse_data_format=’GYRE’

envelope_mass_limit = 1d-2 ! Msun

energy_eqn_option = ’eps_grav’

use_gold2_tolerances = .true.

num_trace_history_values = 2

trace_history_value_name(1) = ’rel_E_err’

trace_history_value_name(2) = ’log_rel_run_E_err’

! Adapt max_model_number to let simulation run long enough

max_model_number = 20000

stop_at_phase_TP_AGB = .true. !Stopping condition to end at TPAGB phase

am_nu_visc_factor = 0

am_D_mix_factor = 0.0333333333333333d0

D_DSI_factor = 0

D_SH_factor = 1

D_SSI_factor = 1

D_ES_factor = 1

D_GSF_factor = 1

D_ST_factor = 1

varcontrol_target = 1d-3

delta_lgL_He_limit = 0.01d0

cool_wind_full_on_T = 9.99d9

hot_wind_full_on_T = 1d10

cool_wind_RGB_scheme = ’Reimers’

cool_wind_AGB_scheme = ’Blocker’

RGB_to_AGB_wind_switch = 1d-4

Reimers_scaling_factor = 0.8d0

Blocker_scaling_factor = 0.7d0 ! 0.8d0

initial_mass = 1.0 !Change this parameter for different masses

initial_z = 0.02d0

stop_at_phase_TP_AGB = .true.

am_nu_visc_factor = 0

am_D_mix_factor = 0.0333333333333333d0

D_DSI_factor = 0

D_SH_factor = 1

D_SSI_factor = 1
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D_ES_factor = 1

D_GSF_factor = 1

D_ST_factor = 1

varcontrol_target = 1d-3

delta_lgL_He_limit = 0.01d0

cool_wind_full_on_T = 9.99d9

hot_wind_full_on_T = 1d10

cool_wind_RGB_scheme = ’Reimers’

cool_wind_AGB_scheme = ’Blocker’

RGB_to_AGB_wind_switch = 1d-4

Reimers_scaling_factor = 0.8d0

Blocker_scaling_factor = 0.7d0 ! 0.8d0

! mixing

! the mixing used here is a demonstration of options, not a specific endorsement.

! for your own use, you should experiment with the options.

use_other_mesh_delta_coeff_factor = .true.

! use xtra_coeff_os option. see run_star_extras.

mesh_dlog_pp_dlogP_extra = 0.25

mesh_dlog_cno_dlogP_extra = 0.25

mesh_dlog_3alf_dlogP_extra = 0.225

mesh_dlog_burn_c_dlogP_extra = 0.225

mesh_dlog_burn_n_dlogP_extra = 0.225

mesh_dlog_burn_o_dlogP_extra = 0.225

mesh_logX_species(1) = ’h1’

mesh_logX_min_for_extra(1) = -6

mesh_dlogX_dlogP_extra(1) = 0.25

mesh_logX_species(1) = ’he4’

mesh_logX_min_for_extra(1) = -6

mesh_dlogX_dlogP_extra(1) = 0.25

overshoot_scheme(1) = ’exponential’

overshoot_zone_type(1) = ’any’

overshoot_zone_loc(1) = ’any’

overshoot_bdy_loc(1) = ’any’

overshoot_f(1) = 0.014

overshoot_f0(1) = 0.004

T_mix_limit = 1d4

! output

photo_interval = 50

profile_interval = 1 !changed from 100

history_interval = 10

terminal_interval = 10
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write_header_frequency = 10

/ ! end of controls namelist

&pgstar

Grid6_win_flag = .true.

Grid6_win_width = 11

!Grid6_file_flag = .true.

Grid6_file_dir = ’png’

Grid6_file_prefix = ’grid6_’

Grid6_file_interval = 5 ! output when mod(model_number,Grid6_file_interval)==0

Grid6_file_width = -1 ! (inches) negative means use same value as for window

Grid6_file_aspect_ratio = -1 ! negative means use same value as for window

Summary_Burn_xaxis_name = ’mass’

Summary_Burn_xaxis_reversed = .false.

Summary_Burn_xmin = 0.00 ! -101d0 ! only used if /= -101d0

Summary_Burn_xmax = 2.1 ! only used if /= -101d0

Abundance_xaxis_name = ’mass’

Abundance_xaxis_reversed = .false.

! power xaxis limits -- to override system default selections

Abundance_xmin = 0.00 ! -101d0 ! only used if /= -101d0

Abundance_xmax = -101d0 ! only used if /= -101d0

Abundance_log_mass_frac_min = -6 ! only used if < 0

!Profile_Panels4_win_flag = .true.

!Profile_Panels4_win_width = 6

! Abundance window -- current model abundance profiles

!Abundance_win_flag = .true.

Abundance_win_width = 9

Abundance_win_aspect_ratio = 0.75 ! aspect_ratio = height/width

/ ! end of pgstar namelist



Appendix B

GYRE Code

B.1 Namelist for oscillation calculations

This is the namelist used to tell GYRE what parameters and controls to use to

calculate the frequencies of a given model.

&constants

/

&model

model_type = ’EVOL’ ! Obtain stellar structure from an evolutionary model

file_format = ’MESA’ ! File format of the evolutionary model

file = ’profile1.data.GYRE’ !make sure this is set to the first profile file in the model

/

&mode

l = 0 ! Harmonic degree

/

&osc

outer_bound = ’VACUUM’ ! Assume the density vanishes at the stellar surface

nonadiabatic = .TRUE.

/

&rot

/

&num

diff_scheme = ’MAGNUS_GL2’

/

&scan

grid_type = ’LINEAR’
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freq_min = 0.0001

freq_max = 5.0

freq_min_units = ’ACOUSTIC_DELTA’

freq_max_units = ’ACOUSTIC_DELTA’

n_freq = 200

/

&grid

w_osc = 10 ! Oscillatory region weight parameter

w_exp = 2 ! Exponential region weight parameter

w_ctr = 10 ! Central region weight parameter

/

&ad_output

summary_file = ’summaryA.h5’ ! File name for summary file

summary_item_list = ’l,n_pg,freq,freq_units,E_norm,M_star,L_Star’ ! Items to appear in summary file

detail_template = ’detail.l%l.n%n.h5’ ! File name template for detail files

detail_item_list = ’l,n_pg,omega,x,xi_r,

xi_h,c_1,As,V_2,Gamma_1’ ! Items to appear in detail files

freq_units = ’CYC_PER_DAY’ ! Units of freq output items

/

&nad_output

summary_file = ’summaryNA.h5’ ! File name for summary file

summary_item_list = ’l,n_pg,freq,freq_units,E_norm,M_star,L_Star’ ! Items to appear in summary file

detail_template = ’detail.l%l.n%n.h5’ ! File name template for detail files

detail_item_list = ’l,n_pg,omega,x,xi_r,

xi_h,c_1,As,V_2,Gamma_1’ ! Items to appear in detail files

freq_units = ’CYC_PER_DAY’ ! Units of freq output items

/

B.2 Bash script used to iterate through profile files

This is the bash script used to iterate through each profile file and output the frequency

calculations as “summary” files. The controls for the given calculations are in a

namelist file, given in the previous section. When executing this file, make sure that

this bash script, the gyre.in namlist file, and all output files in a “profile.data.GYRE”

format are in the same directory. Also ensure that the path of the namelist file is set

to the correct namelist.

#!/bin/bash

# Define the path to your namelist file

gyre_in_file="/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/1SolarMassGyre/1MmstoagbAGBGyre/gyre.in"



57

# Define the base name of the profile file

profile_base="profile"

#summaryA_base="summaryA"

#summaryNA_base="summaryNA"

# Define the number of profile files you have

num_profiles=5

# Loop through each profile number

for ((profile_num = 1; profile_num <= num_profiles; profile_num++)); do

# Define the path to the current profile file

profile_file="${profile_base}${profile_num}.data.GYRE"

# Replace the profile file in gyre.in

sed -i "s/file = ’profile[0-9]\+.data.GYRE’/file = ’${profile_file}’/" "$gyre_in_file"

# Run your program with the modified gyre.in file

$GYRE_DIR/bin/gyre "$gyre_in_file"

cp summaryA.h5 summaryA${profile_num}.h5

cp summaryNA.h5 summaryNA${profile_num}.h5

done



Appendix C

Python Code for Plotting

This section goes through obtaining each plot for a 1 Solar Mass model. The plots

obtained with the following code is an HRD, the periods for fundamental, 1st, 2nd,

3rd, and 4th overtones, and the mixed frequencies of each frequency combination.

The first code snippet yields the HRD:

#importing necessary packages

import matplotlib.pyplot as plt

import mesa_reader as mr

import numpy as np

import pandas as pd

import pygyre as pg

import os

import matplotlib.ticker as mticker

from matplotlib.ticker import ScalarFormatter

#Plotting the HRD for a 1 Solar Mass Star

h1 = mr.MesaData(’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/test_suite/

1MmstoagbAGBprofs/LOGS_to_start_he_core_flash/history.data’)

v1 = mr.MesaData(’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/test_suite/

1MmstoagbAGBprofs/LOGS_to_end_core_he_burn/history.data’)

k1 = mr.MesaData(’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/test_suite

/1MmstoagbAGBprofs/LOGS_to_end_core_h_burn/history.data’)

j1 = mr.MesaData(’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/test_suite/

1MmstoagbAGBprofs/LOGS_to_end_agb/history.data’)

logh1_Teff=(h1.log_Teff)

logv1_Teff=(v1.log_Teff)

logk1_Teff=(k1.log_Teff)

logj1_Teff=(j1.log_Teff)

#LOG files

logs1agb = mr.MesaData(’/home/gsherren/Desktop/mesa_zipped/mesa-
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r23.05.1/star/test_suite/1MmstoagbAGBprofs/LOGS/history.data’)

logs1agb_Teff=(logs1agb.log_Teff)

fig, axes = plt.subplots()

fig.set_figwidth(6)

fig.set_figheight(6)

plt.plot(logv1_Teff,v1.log_L,label= "Horizontal Branch", color=’b’)

plt.plot(logk1_Teff,k1.log_L,label= "Main Sequence", color=’orange’)

plt.plot(logj1_Teff,j1.log_L,label= "Asymptotic Giant Branch", color=’magenta’)

plt.plot(logh1_Teff,h1.log_L,label= "Red Giant Branch",color=’crimson’)

###

plt.plot(logs1agb_Teff,logs1agb.log_L,label= "AGBextraprofs", color=’k’)

###

ax = plt.gca()

plt.gca().invert_xaxis()

plt.tick_params(axis=’x’, which=’minor’, labelsize=12)directory_paths = [

’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/0.9SolarMassGyre/0.9MmstoagbStartHeFlashGyre/’,

’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/0.9SolarMassGyre/0.9MmstoagbCoreHeDepleteGyre/’,

’/home/gsherren/Desktop/mesa_zipped/mesa-r23.05.1/star/0.9SolarMassGyre/0.9MmstoagbAGBGyre/’,

]

plt.tick_params(axis=’y’, which=’major’, labelsize=12)

plt.xlabel("$\log \ T_{eff}$ [K]", size = 14)

plt.ylabel("$\log(L/L_{\odot})$", size = 14)

plt.title("1 $M_{\odot}$ Evolution on the HRD", size = 14)

plt.xscale("log")

plt.legend( fontsize="10")

ax.xaxis.set_minor_formatter(mticker.ScalarFormatter())

plt.show()

Next, plotting the periods of 5 modes:

# Plot the results

cmap = plt.get_cmap(’hsv’)

for i in range(1, 6):

for j in range(i + 1, 6):

plt.plot(addsubage[f’{i}{j}’], 1/np.array(frequencysub[f’{i}{j}’]), marker=’.’,

linestyle=’None’, color=cmap((i + j) / 10), label=f’Fundamental Mode-1st Overtone’)

plt.plot(addsubage[f’{i}{j}’], 1/np.array(frequencyadd[f’{i}{j}’]), marker=’.’,

linestyle=’None’, color=cmap((i + j + 5) / 10), label=f’Fundamental Mode+1st Overtone’)

plt.xlabel(’Age[Years]’)

plt.ylabel(’Period[Days]’)
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plt.title(’1 $M_{\odot}$ Adiabatic Frequency Operations’)

plt.legend()

plt.show()

Finally, the calculation scheme for obtaining the mixed frequencies:

#Calculating the mixed frequencies

# Initialize dictionaries to store results

addsubage = {f’{i}{j}’: [] for i in range(1, 6) for j in range(i + 1, 6)}

frequencysub = {f’{i}{j}’: [] for i in range(1, 6) for j in range(i + 1, 6)}

frequencyadd = {f’{i}{j}’: [] for i in range(1, 6) for j in range(i + 1, 6)}

for age_idx, age_value in enumerate(age_listn[n_pg_filters[0]]):

matching_indices = {n_pg_filter: np.where(np.array(age_listn[n_pg_filter]) == age_value)[0]

for n_pg_filter in n_pg_filters}

if all(matching_indices[n_pg_filter].size > 0 for n_pg_filter in n_pg_filters):

for i in range(1, 6):

for j in range(i + 1, 6):

age_values_i = np.array(age_listn[i])[matching_indices[i]]

age_values_j = np.array(age_listn[j])[matching_indices[j]]

matching_age_indices = np.where(age_values_i == age_values_j)[0]

if len(matching_age_indices) > 0:

addsubage_values = age_values_i[matching_age_indices]

frequencysub_values = np.abs(np.array(frequency_listsn[i])[matching_indices[i]]

[matching_age_indices] - np.array(frequency_listsn[j])[matching_indices[j]]

[matching_age_indices])

frequencyadd_values = np.abs(np.array(frequency_listsn[i])[matching_indices[i]]

[matching_age_indices] + np.array(frequency_listsn[j])[matching_indices[j]]

[matching_age_indices])

addsubage[f’{i}{j}’].extend(addsubage_values)

frequencysub[f’{i}{j}’].extend(frequencysub_values)

frequencyadd[f’{i}{j}’].extend(frequencyadd_values)

else:

for i in range(1, 6):

for j in range(i + 1, 6):

addsubage[f’{i}{j}’].append(np.NaN)

frequencysub[f’{i}{j}’].append(np.NaN)

frequencyadd[f’{i}{j}’].append(np.NaN)

# Plot the results

cmap = plt.get_cmap(’hsv’)

for i in range(1, 6):

for j in range(i + 1, 6):

plt.plot(addsubage[f’{i}{j}’], 1/np.array(frequencysub[f’{i}{j}’]), marker=’.’,

linestyle=’None’, color=cmap((i + j) / 10), label=f’Fundamental Mode-1st Overtone’)

plt.plot(addsubage[f’{i}{j}’], 1/np.array(frequencyadd[f’{i}{j}’]), marker=’.’,

linestyle=’None’, color=cmap((i + j + 5) / 10), label=f’Fundamental Mode+1st Overtone’)

plt.xlabel(’Age[Years]’)

plt.ylabel(’Period[Days]’)

plt.title(’1 $M_{\odot}$ Adiabatic Frequency Operations’)

plt.legend()

plt.show()


