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Abstract

Zonal jets play a crucial role in influencing the dynamics and transport properties

of planetary atmospheres and oceans. Despite their importance, the precise mech-

anisms governing their formation, equilibration, and maintenance remain a topic

of ongoing investigation. This thesis aims to leverage deep learning techniques to

gain new insights about zonal jets and develop efficient predictive models. We fo-

cus on applying these techniques to a low-order model (LOM) of the stochastically

excited two-dimensional Boussinesq system, which can capture the essential inter-

actions between the zonal jet and the associated turbulence. Various deep learning

architectures like feed-forward neural networks, statistics-informed neural networks,

and physics-informed neural networks are developed and trained on large ensembles

of LOM simulations to analyze the dynamics of zonal jets. We demonstrate that such

deep learning models can capture the underlying statistical properties and predict

the long-term behavior of these jets. The capabilities of the trained models are also

explored by extracting physical insights based on the analysis. For example, we can

use our neural network to understand the physical mechanism behind jet mainte-

nance. These findings have implications for improving our understanding and ability

to predict geophysical turbulence. We also compare our deep learning results with the

results of the statistical state dynamics (SSD) theory of turbulence. This comparison

is used to test the correspondence of SSD with the real behaviour of the stochastic

system and identify areas where it could be improved.
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Chapter 1

Introduction

1.1 General Topic and Background

Zonal jets are prominent features in the Earth’s atmosphere and ocean, as well as

in the atmospheres of other planets in the solar system. They are characterized by

strong, east-west oriented currents and often play crucial roles in shaping planetary

climates and circulation patterns [28]. The velocities of these jets vary across latitudes

or depths, creating distinct regions with different flow characteristics [28, 69, 18, 6, 2].

On Earth, zonal jets in the atmosphere such as the polar jet stream play a crucial

role in the general circulation of the climate system, governing the transport of heat

and moisture and affecting the dynamics of weather and climate [32, 74]. In the oceans,

jets such as the Antarctic Circumpolar Current (ACC) are key drivers of the global

thermohaline circulation, influencing the distribution of heat, salt, and nutrients,

which in turn affect climate patterns. The Equatorial Deep Jets (EDJs) are important

for the transport of oxygen in the equatorial ocean, and it has been speculated that

they also drive atmospheric variability on certain timescales [52, 9, 79, 14].

Beyond Earth, zonal jets are also a defining characteristic of the gas giants in our

solar system, particularly Jupiter and Saturn. The distinct banded patterns visible

on these planets are associated with powerful zonal jets, which provide invaluable ob-

servational examples of atmospheric climates where jets are a dominant feature. The

existence of zonal jets on both Earth and other planets suggests that comprehensive

theories of zonal jet formation and maintenance should be capable of explaining their
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occurrence and characteristics across a wide range of planetary environments. [79, 82].

1.2 Motivation

The study of zonal jets is essential for understanding atmospheric and oceanic dy-

namics as they play a crucial role in influencing large-scale circulation and tracer

transport [6]. Zonal jet systems also provide important examples of the interactions

between turbulence and coherent flows. As interactions of this type are ubiquitous

in the climate system, studies of zonal jets present valuable opportunities to advance

our understanding of these dynamics.[28, 8].

Interactions between turbulence and the mean flow influence the dynamics of both

weather and climate. Weather and climate models rely on simplified models called

‘parameterizations’ to represent these interactions. Studies of zonal jets are critical

to further inform our understanding of these interactions, which underpins the devel-

opment of improved parameterizations. Zonal jets significantly influence atmospheric

and oceanic phenomena, affecting precipitation distribution, extreme weather event

frequency, and long-term climate patterns [1, 49]. Improved representation of these

jets and their associated interactions in predictive models can lead to more accurate

forecasts of atmospheric and oceanic states, benefiting sectors reliant on weather and

climate forecasts, such as agriculture, water management, and emergency response

planning [3, 49].

Zonal jets present an opportunity to deepen our fundamental understanding of

fluid dynamics and turbulence. These jets arise from and are maintained by a balance

of forces, including planetary rotation, stratification, and turbulence. Their study

offers a window into understanding physical processes such as inverse energy cascades,

wave mean flow interactions, potential vorticity mixing, and the dynamics of the

statistical state of the turbulence [62, 77, 20, 24]. Insights gained from zonal jets

improve our understanding of the principles that govern rotating, stratified fluids,

with broader applications across astrophysics and plasma physics.
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1.3 Study of Zonal Jets

Observational studies have been instrumental in characterizing zonal jets in the at-

mosphere and oceans of the Earth. Techniques such as satellite measurements and in

situ data collection have provided valuable insight into the properties of these jets,

including their strength, structure, and temporal variations [52, 22]. These studies

have highlighted the widespread presence of zonal jets in the global ocean and their

essential function in the transport of heat and nutrients [75]. Atmospheric observa-

tions have further elucidated the variability of these jets, their impact on weather

patterns, and their sensitivity to climate change.

To understand the origins and behaviors of zonal jets, researchers have devel-

oped various theoretical models. These models range from conceptual frameworks

like the Rhines scale and potential vorticity staircase to more comprehensive math-

ematical theories such as statistical state dynamics (SSD), also known as stochastic

structural stability theory (SSST) or the second-order cumulant expansion (CE2)

[27, 62, 43, 20, 25]. These models have emphasized the significance of inverse energy

cascade, potential vorticity mixing, and eddy-mean flow interactions in jet formation

and maintenance. While these models offer valuable insights, they also rely on major

simplifications of fluid dynamics, such as the quasi-linear approximation and diffusion

of energy in spectral space. These simplifications are never exactly realized in fun-

damental fluid dynamics, so data-driven methods based on observations, laboratory

experiments, or direct numerical simulations are desirable to examine the accuracy of

these models.

Numerical simulations have become essential for investigating zonal jet dynamics

due to the lack of analytical solutions to the nonlinear equations of fluid dynamics that

represent turbulent flows. These simulations have been instrumental in dissecting the

features of zonal jets, exploring their interactions with eddies and waves, and under-

standing their responses to different forcing and dissipation scenarios [8, 39, 4]. Sim-

ulations have also been used to study conceptual predictions such as the anisotropic

inverse energy cascade, and the Rhines scale [72]. However, the computational re-

sources required by these simulations, especially at high Reynolds numbers, constrain

the scope of parameter exploration and the time duration of the numerical integra-

tions.
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1.4 Traditional Challenges

The study of zonal jets presents a significant challenge due to the multiscale nature of

their dynamics. These jets arise from interactions between large-scale mean flows and

smaller-scale turbulent eddies, spanning a range of spatial and temporal scales [77].

High-resolution simulations are essential for capturing this range of scales, which in

turn requires significant computational resources. The nonlinear and chaotic charac-

teristics of turbulent flows add another layer of complexity, making it challenging to

isolate and comprehend the various physical processes governing the formation and

persistence of zonal jets.

One of the main obstacles to studying zonal jets is the scarcity of observational

data, particularly in deep-ocean regions [85]. Although satellite observations and in

situ measurements have provided insight into the structure and variability of zonal

jets in the Earth’s atmosphere and upper ocean, deep-ocean data is less comprehen-

sive. [74]. Observations in the deep ocean rely on a sparse network of moorings and

hydrographic surveys, making it difficult to validate theoretical models and numerical

simulations [5].

1.5 Deep Learning of Zonal Jet Dynamics

Deep learning, a subset of machine learning, has been instrumental in addressing a

wide variety of challenges in many scientific fields. Deep neural networks excel in iden-

tifying important patterns within large datasets and often outperform the capabilities

of conventional methodologies on pattern recognition tasks [46, 30]. In the realm of

physical sciences, the versatility of deep learning is evident through its applications

ranging from quantum mechanics to physical oceanography [16, 7]. These successes

underscore deep learning’s potential to enhance our understanding of complex phe-

nomena.

Training deep neural networks on datasets derived from simulations or observations

of zonal jet systems has the potential to identify fundamental features and processes

underpinning zonal jet formation, equilibration, and maintenance, which are difficult

to obtain using traditional methods of analysis. [15, 84].

By assimilating patterns from data, deep neural networks can model the core
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dynamics of zonal jets with greater computational efficiency than comprehensive sim-

ulations [34]. These models can serve various purposes, including predicting zonal

jet evolution under different conditions, pinpointing parameters conducive to jet for-

mation, and evaluating the impact of initial states and model assumptions on out-

comes. Furthermore, deep learning facilitates the creation of hybrid models like the

physics-informed neural network that can potentially merge data-driven insights with

physics-based principles to produce more precise and reliable predictions of zonal jet

dynamics [50].

The goal of this thesis is to apply deep learning to the study of zonal jet dynamics.

The research questions we aim to tackle are as follows:

1. In what ways can deep learning facilitate identifying the processes that drive

zonal jet maintenance?

2. What are the optimal network architectures and training methodologies for deep

neural networks modeling zonal jets?

3. How do deep learning-based data-driven models stack up against traditional

numerical and theoretical models in terms of precision, computational efficiency,

and clarity of interpretation?

4. Is it feasible to use deep learning to develop hybrid models that integrate data-

driven and physics-informed approaches, thereby enhancing the accuracy and

capability of our models?

1.6 Thesis Structure

This thesis is organized into five main chapters. Chapter 1 introduces the general

topic and background, provides a literature review, discusses the need for change and

the limitations of traditional methods, and presents the research problem, questions,

aims, and objectives. Chapter 2 provides historical context for the study of zonal jets,

including their discovery, offering a historical overview of their discovery, observations,

and significance to the climates of Earth and other planets. Chapter 3 introduces the

theoretical concepts central to this thesis in the areas of zonal jet physics and ma-

chine learning, discussing zonal jets and deep learning in detail. Chapter 4 presents
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the methodology, including an overview of the approach, data generation and explo-

ration, baseline models, and the development of deep learning models such as feed-

forward neural networks, statistics-informed neural networks, and physics-informed

neural networks. This chapter also covers model training and validation techniques.

Chapter 5 presents the results and discussion, interpreting the findings, comparing

the performance of different models, and discussing the implications for understanding

zonal jet dynamics and the potential for future research.



Chapter 2

History of The Scientific Study of

Zonal Jets

The study of zonal jets has a long history, with observations dating back to the 17th

century when Giovanni Cassini first observed them on Jupiter [58]. These banded

structures can extend for thousands of kilometers and persist for decades or centuries,

and have been observed on Jupiter and Saturn, as shown in Figure 2.1 [40].

On Earth, zonal jets were first recognized in the early 20th century with the

discovery of the subtropical jet streams and the polar front jet [47]. These atmospheric

jets significantly influence weather patterns and climate variability by transporting

heat, moisture, and momentum, guiding the large-scale atmospheric disturbances we

know as weather systems [37], and acting as waveguides for large-scale atmospheric

waves, such as Rossby waves [77]. The position and strength of atmospheric zonal

jets affect regional climate patterns, including temperature, precipitation, and the

frequency and intensity of extreme weather events [33].

In Earth’s oceans, the existence of zonal jets like the Antarctic Circumpolar Cur-

rent (ACC) and the Equatorial Deep Jets (EDJs) was not recognized until the latter

half of the 20th century, with the ACC being discovered through early oceanographic

expeditions in the 1950s and 1960s [64], and the EDJs being identified from observa-

tional data in the 1970s [26]. The ACC, the strongest current system in the world’s

oceans, connects the Atlantic, Pacific, and Indian Ocean basins, facilitating the ex-

change of water masses and the redistribution of heat, salt, and nutrients [64]. The
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Figure 2.1: Left: Zonal wind profile of Jupiter (Tollefson et al. 2017) superimposed on
a photo taken by the Hubble Wide Field Camera in 2014; Right: Zonal wind profile
of Saturn superimposed on an image created by Björn Jónsson by combining Cassini
and Voyager images and removing the rings.

EDJs, alongside the other components of the equatorial circulation, including the

Equatorial Undercurrent (EUC) and the Equatorial Countercurrents (ECCs), are in-

tegral to the tropical ocean circulation. These jets transport warm water from the

western to the eastern Pacific, influencing El Niño and La Niña events and affecting

nutrient distribution and marine ecosystem productivity.

In Figure 2.2, the wavy, ribbon-like patterns in the equatorial regions of the Pacific

and Atlantic Oceans indicate the presence and influence of the Equatorial Deep Jets

(EDJs) on the surface ocean dynamics and temperatures. While the EDJs themselves

are subsurface currents flowing at depths of around 300-500 meters, their signature is

evident in the distinct equatorial patterns visible in this visualization of global ocean

conditions.

Zonal jets also significantly influence the distribution and migration of marine

species, including commercially important fish stocks. The strong currents associated

with these jets can act as barriers to the dispersal of marine organisms, creating dis-

tinct biogeographic regions. At the same time, the jets can facilitate the long-distance
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Figure 2.2: Visualization of global ocean currents at the surface, generated using data
from the OSCAR (Ocean Surface Current Analyses Real-time) v2.0 dataset and the
Earth & Space Research Organization.

transport of larvae and other planktonic organisms, contributing to the connectivity

of marine populations across vast distances.

Foundational Studies

The study of zonal jets has been shaped by several seminal works that have shaped the

conventional description of their dynamics. One of the most influential contributions

was made by Peter B. Rhines in his 1975 paper, “Waves and turbulence on a beta-

plane” [62]. In this work, Rhines introduced the concept of what is now known as the

“Rhines scale,” a characteristic length scale that emerges from the interplay between

turbulent eddy interactions and Rossby wave dynamics. The Rhines scale, defined

as Lβ =
√
U/β, where U is the root-mean-square velocity, and β is the latitudinal

gradient of the Coriolis parameter, sets the width of the zonal jets that form in a

turbulent flow constrained by differential rotation (i.e., the beta effect). Rhines’ work

provided a theoretical framework for understanding the anisotropic cascade of energy

in beta-plane turbulence, arguing that energy is preferentially transferred to larger

zonal scales until it reaches the Rhines scale, at which point the flow organizes itself

into alternating zonal jets.

Numerical simulations have played a crucial role in validating and extending the
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theoretical predictions of Rhines and others. The pioneering work of Williams (1978)

[81] and Vallis and Maltrud (1993) [78] demonstrated the spontaneous emergence of

zonal jets in two-dimensional turbulent flows on a beta-plane, again suggesting the

importance of the anisotropic inverse energy cascade in the formation of these struc-

tures. These studies also highlighted the importance of the Rhines scale in predicting

jet structure.

Observational studies have provided compelling evidence for the existence of zonal

jets in planetary atmospheres and oceans. The Voyager missions to the outer solar

system revealed the stunning banded structure of the giant planets, with zonal wind

speeds reaching up to 400 m/s on Jupiter [40]. High-resolution observations of the

Earth’s atmosphere and oceans have also revealed the presence of multiple zonal jet

structures, such as the subtropical jet streams and the equatorial deep jets [52, 63].

Laboratory experiments have further advanced our understanding of zonal jet dy-

namics. The work of Read et al. (2004) [60] demonstrated the spontaneous emergence

of zonal jets in a rotating, stratified fluid in a laboratory setting, providing a valuable

experimental analog for the study of planetary atmospheres. Subsequent experiments

by Espa et al. (2010) [23] and others have further explored the parameter space of jet

formation, investigating the influence of factors such as the strength of the background

rotation and the nature of the forcing on the properties of the emergent jets.

Theoretical studies have continued to advance our understanding of the mecha-

nisms governing the formation and maintenance of zonal jets. The application of

statistical theories like the SSD has provided new insights into the role of eddy-mean

flow interactions in the maintenance of zonal jets [27, 24, 25]. These theories have

been successfully applied to geophysical and astrophysical flows, highlighting the uni-

versality of the mechanisms underlying zonal jet formation.



Chapter 3

Theoretical Concepts

3.1 Zonal Jets

The formation and maintenance of zonal jets are intimately linked to the presence of

turbulent eddies and waves in the flow. The turbulent field of waves and eddies is char-

acterized by its characteristic length scale L and velocity scale U . Turbulence plays a

crucial role in the transport of energy, momentum, and tracers in geophysical flows.

Understanding the interaction between turbulence and the mean flow is essential for

elucidating the mechanisms underlying zonal jet formation and maintenance.

The width of the jets is related to the Rhines scale, LR =
√
U/β, which emerges

as a balance between the inverse energy cascade and the beta-effect. The Rhines scale

represents the length scale at which the turbulent eddy field transitions from isotropic

to anisotropic, and energy begins to be channeled into zonal modes. This scale has

been shown to provide a good estimate of the observed width of zonal jets in both

numerical simulations and planetary atmospheres [25].

The analogy of zonal jets being a stretched-out version of an eddy provides a

useful conceptual framework for understanding the relationship between these two

fundamental structures in geophysical turbulence. Consider an eddy with a charac-

teristic length scale L and velocity scale U . If this eddy is stretched in the zonal

direction while its meridional extent remains fixed, the resulting structure resembles

a zonal jet. The stretching process increases the zonal length scale of the eddy, Lx,

while the meridional length scale, Ly, remains unchanged, leading to an increase in
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the aspect ratio of the structure, defined as Lx/Ly.

To further investigate the dynamics of zonal jets and their interaction with tur-

bulent eddies, it is necessary to delve into the fundamental equations governing fluid

motion. The Navier-Stokes equation, which represents the conservation of momentum

in a viscous fluid, and the Boussinesq approximation, which simplifies the treatment

of stratified flows, provide the foundation for deriving the key equations that describe

the evolution of zonal jets.

In the following section, we will present a detailed derivation of the equations

that make up the LOM, starting from the Navier-Stokes equation and the Boussinesq

approximation. We will explore the physical interpretation of the various terms in the

equation and discuss the implications for the dynamics of zonal jets.

Equations & Derivations

To gain a deeper understanding of the dynamics of zonal jet formation and mainte-

nance, we start with the fundamental equations of fluid motion and derive the key

equations that describe the evolution of zonal jets and their interaction with turbulent

eddies.

The Navier-Stokes equation, which represents the conservation of momentum in a

viscous fluid, can be written as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + F, (3.1)

where u is the velocity vector, t is time, ρ is the fluid density, p is the pressure, ν is

the kinematic viscosity, and F represents external forces acting on the fluid, such as

gravity or the Coriolis force.

In stratified geophysical flows, where density variations are small compared to

the mean density, the Boussinesq approximation is often employed to simplify the

Navier-Stokes equation while still capturing the essential dynamics. Under this ap-

proximation, the equation becomes

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p− ρ′

ρ0
gẑ + ν∇2u + F, (3.2)
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where ρ0 is the reference density, ρ′ is the density perturbation, g is the gravitational

acceleration, and ẑ is the unit vector in the vertical direction.

To investigate the dynamics of zonal jets and their interaction with turbulent ed-

dies, we consider the zonal momentum equation under the Boussinesq approximation

in a two-dimensional (x, z) domain:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
− rmu, (3.3)

where u is the zonal velocity, w is the vertical velocity, p is the pressure, ρ0 is the

background density, and rm is the Rayleigh drag coefficient. We use Rayleigh drag

rather than viscosity for consistency with recent studies and as a simple representation

of turbulent dissipation

To separate the mean flow from the turbulent eddies, we decompose the flow

variables into a zonal mean and a perturbation

u = U + u′, w = W + w′, (3.4)

where U and W are the zonal mean velocities, and u′ and w′ are the perturbation

velocities. The zonal mean is defined as

U(z, t) =

∫
u(x, z, t) dx, (3.5)

and similarly for W .

Substituting the decomposition into the zonal momentum equation, taking the

zonal average, and applying periodic boundary conditions in the zonal direction, we

arrive at the zonal mean momentum equation

∂U

∂t
= − ∂

∂z
u′w′ − rU. (3.6)

The term u′w′ is the Reynolds stress, which represents the average zonal momen-

tum flux due to the turbulence. The divergence of the Reynolds stress, − ∂
∂z
u′w′, acts

as a forcing term in the zonal mean momentum equation, driving the evolution of the

mean zonal flow U .
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The Reynolds stress plays a crucial role in the formation and maintenance of

zonal jets, as it represents the interaction between the mean flow and the turbulent

eddies. Positive values of the Reynolds stress divergence indicate a convergence of

zonal momentum, which accelerates the mean flow, while negative values indicate a

divergence of zonal momentum, which decelerates the mean flow.

To close the system of equations and predict the evolution of the mean flow, ad-

ditional information about the eddy field and its statistical properties is required.

One approach is to parameterize the Reynolds stress in terms of the mean flow gra-

dients, using eddy viscosity or diffusivity coefficients. Another approach is to derive

additional equations for the higher-order moments of the eddy field, such as the eddy

kinetic energy or the eddy enstrophy, and to solve them simultaneously with the zonal

mean momentum equation. This approach is known as the moment closure method,

and the specific method we use in this study is the Statistical state dynamics, which

is based on the moment closure method closed in second order.

Applying Statistical State Dynamics

Statistical state dynamics (SSD) is a powerful framework for studying the behavior of

complex, turbulent systems by focusing on the evolution of statistical quantities, such

as mean flows and covariance matrices. In the context of zonal jet formation, SSD

provides a valuable tool for understanding the interaction between the mean flow and

the turbulence and for predicting the emergence and maintenance of zonal jets.

The central idea of SSD is to approximate the eddy-eddy non-linearity in the gov-

erning equations by a stochastic forcing term, effectively replacing the deterministic

evolution of the eddies with a stochastic process. This approximation allows for the

derivation of closed equations for the mean flow and the eddy covariance matrix.

In its full form, the SSD equations for the evolution of the mean flow U and the

eddy covariance matrix C can be written as
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dC

dt
= A(U)C +CA(U)T + εQ, (3.7)

dU

dt
= R− rmU, (3.8)

R = L(C), (3.9)

where R is the Reynolds stress divergence, which is a linear operator L that maps the

covariance matrix C to the Reynolds stress divergence, i.e., R = L(C). The operator

A(U) encodes the dynamics of the perturbations and their interaction with the mean

flow U , ε is a small parameter that controls the strength of the stochastic forcing, and

Q is the covariance matrix of the stochastic forcing.

The linear operator L relates the second-order turbulent statistic, the Reynolds

stress divergence R, to the covariance matrix C. Specifically, the Reynolds stress

divergence is given by

R =
1

4
k(k2+ − k2e)C13, (3.10)

where C13 is the covariance between the excited and sheared streamfunction compo-

nents, C13 = 〈ψeψ+〉.

The SSD equations can be further simplified by making the quasi-equilibrium

approximation, which assumes that the turbulent eddies quickly adjust to the evolving

mean flow. Under this approximation, the time derivative of the covariance matrix is

set to zero

0 = A(U)C +CA(U)T + εQ. (3.11)

Solving this equation, which is called the time-independent Lyapunov equation,

yields a functional relationship between the mean flow U and the eddy covariance

matrix

C∗ = F (U), (3.12)
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where F is a matrix-valued function that gives the equilibrium turbulence statistics,

C∗, as a function of the mean flow structure U .

The resulting SSD equations for the mean flow U can be written as

dU

dt
= L[F (U)]− rU, (3.13)

which expresses the evolution of the mean flow in terms of the mean flow itself, without

explicitly resolving the eddy dynamics.

By focusing on the statistical properties of the flow rather than the detailed dy-

namics of individual eddies, SSD provides a theoretically tractable framework for

investigating the emergence and maintenance of large-scale structures, such as zonal

jets, from small-scale turbulence that is autonomous and deterministic and is thus

amenable to standard techniques of applied mathematics including stability analysis

and bifurcation theory [71].

One of the key advantages of the SSD approach is its ability to analyze zonal

jet formation while bypassing the need for long numerical simulations that explicitly

characterize turbulent statistics through brute force. This makes SSD a valuable

tool for understanding the fundamental mechanisms underlying jet formation and for

predicting the properties of jets under different forcing and dissipation conditions.

Linearized SSD Analysis

SSD provides a framework for understanding the evolution of mean flows and tur-

bulence statistics in geophysical flows. A crucial aspect of analyzing such systems

is understanding their behavior around equilibrium states, which can be achieved

through linearization.

For the standard parameters used in our study, the zonal jet fluctuates around an

equilibrium value of U ≈ 0.15 and R ≈ 0.01. These values correspond to the fixed

point of the SSD system, representing the long-term (t→∞) state where the system

reaches a stable equilibrium.

Recall that the SSD system is described by the following equations:
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dU

dt
= R− rmU, (3.14)

dC

dt
= A(U)C +CA(U)T + εQ, (3.15)

R = L(C). (3.16)

With he fixed points of this system, denoted by U∗, C∗, and R∗, we satisfy the

time-independent equations:

rmU
∗ = R∗, (3.17)

R∗ = L(C∗), (3.18)

0 = A(U∗)C∗ +C∗A(U∗)T + εQ. (3.19)

To analyze the system’s behavior near these fixed points, we introduce small per-

turbations δU(t) and δC(t) around the equilibrium values:

U0 = U∗ + δU(t), (3.20)

C0 = C∗ + δC(t). (3.21)

Linearizing the SSD equations around the fixed point, we obtain a set of linear

equations governing the evolution of these perturbations. This linearized system pre-

dicts that the perturbations δU(t) and δC(t) will decay exponentially over time:

δU = δUe−λ
∗t, (3.22)

δC = δCe−λt, (3.23)

R = L(δC)e−λt, (3.24)

where δU is a scalar representing the initial perturbation amplitude of the mean flow,

δC is a matrix representing the initial perturbation of the covariance matrix, and λ
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is the decay rate determined by the eigenvalues of the linearized system.

These exponential decays are illustrated in Figure 3.1, which shows the evolution

of the mean flow, covariance, and Reynolds stress divergence perturbations after being

initialized with random disturbances.

Figure 3.1: Exponential decay of the mean flow perturbation δU , the Reynolds stress
divergence perturbation δR, and a representative component of the covariance matrix
perturbation δC, specifically δC1,1, over time. The y-axis is plotted on a logarithmic
scale to highlight the exponential decay.

We are particularly interested in the relationship between the mean flow per-

turbation δU(t) and the Reynolds stress divergence perturbation δR(t) during this

exponential decay regime.

Using the linearized equations, we can express the ratio between these perturba-

tions as:
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U − U∗

R−R∗
=
δUe−λt

δRe−λt
(3.25)

=
δU

δR
(3.26)

= K = constant, (3.27)

where K is a constant that can be diagnosed from simulations of the linearized

system. This constant represents the proportionality between the mean flow and

Reynolds stress divergence fluctuations near the equilibrium state.

To determine the value of K, we initialize the linearized system with a small

perturbation around the equilibrium state. Specifically, we add a small noise of 5%

to the equilibrium values of U∗ and C∗ obtained from a long-time integration of the

SSD system. The system is then allowed to evolve, and we observe the exponential

decay of U and R back to their equilibrium values. From the simulations, we find

that K ≈ 19.13.

Once K is known, we can predict the relationship between the Reynolds stress

divergence R and the mean flow U in the fluctuating turbulent system using the

following equation:

R = R∗ +
(U − U∗)

K
. (3.28)

This formula provides a linearized approximation of the system’s dynamics around

the equilibrium state, allowing us to predict the Reynolds stress divergence based on

the mean flow fluctuations and the diagnosed constant K.

Challenges in Zonal Jet Studies

The study of zonal jet dynamics faces numerous challenges arising from the complex

nature of the underlying physical processes, the limitations of existing theoretical and

numerical models, and the scarcity of observational data.

One of the primary difficulties is the multiscale nature of the problem. Zonal jets

emerge from the interactions between large-scale mean flows and small-scale turbulent
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eddies, spanning a wide range of spatial and temporal scales. Capturing the full

spectrum of these interactions requires high-resolution numerical simulations that can

resolve both the large-scale jet structure and the small-scale eddy dynamics, which can

be computationally expensive and may not be feasible for long-term climate studies

or for exploring a wide range of parameter spaces.

While statistical state dynamics (SSD) provides a powerful framework, it relies

on assumptions and approximations that may not always hold in realistic geophysical

flows. The quasi-equilibrium approximation is sometimes used to assume that the

turbulent eddies quickly adjust to the evolving mean flow. Another simplification is

the representation of eddy-eddy non-linearity, which is often treated as a stochastic

forcing term that may not capture the full complexity of the turbulent interactions.

Furthermore, SSD relies on the ergodic assumption, which states that the statisti-

cal properties of the turbulent flow, such as the mean and covariance, can be obtained

by averaging over either a sufficiently long period or a sufficiently large zonal ex-

tent. This assumption may be violated when there are relatively few independent

eddies/degrees of freedom across the zonal extent. This occurs, for example, in the

Earth’s atmosphere, where we only have a handful of eddies in the atmospheric storm

track. In these cases, zonal means are still noisy quantities that do not accurately

reflect the long-term time average.

The scarcity of observational data also hinders the study of zonal jets. While

satellite observations and in-situ measurements have provided valuable insights into

the structure and variability of zonal jets in Earth’s atmosphere and oceans, the

spatial and temporal coverage of these observations is often limited, particularly for

the deep ocean and the atmospheres of other planets. This lack of comprehensive

observational data makes it challenging to validate and constrain theoretical models

and assess the realism of numerical simulations.

To address these challenges, new approaches and tools are essential in the study of

zonal jets. Data-driven methods like deep learning have the potential to leverage the

vast amounts of data generated by numerical simulations and observations to uncover

hidden patterns and relationships that may not be apparent from traditional analysis

techniques.
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3.2 Deep Learning

Deep learning (DL) has its roots in the broader domain of machine learning (ML),

which has been a subject of active research and development for several decades

[45, 31]. Machine learning, at its core, involves the development of algorithms and

statistical models that enable computer systems to perform specific tasks effectively

without being explicitly programmed [11]. However, the limitations of traditional ma-

chine learning approaches, particularly in handling complex, high-dimensional data,

have paved the way for the emergence of deep learning [68].

The foundational ideas of neural networks can be traced back to the 1940s, with

the introduction of the McCulloch-Pitts neuron model [53]. This early work laid the

groundwork for the development of the perceptron, a simple linear classifier, by Frank

Rosenblatt in 1958 [66].

The perceptron, which mimics the behavior of a single neuron, forms the building

block of artificial neural networks. As shown in Figure 3.3, the perceptron takes in

weighted inputs, applies an activation function, and produces an output, similar to

how a biological neuron processes signals. However, the limitations of single-layer

perceptrons, as highlighted by Minsky and Papert in 1969 [54], led to a temporary

decline in the popularity of neural networks.

The resurgence of interest in neural networks came with the introduction of back-

propagation, a training algorithm that enables the learning of multi-layer networks,

by Rumelhart, Hinton, and Williams in 1986 [67]. This breakthrough allowed for

the creation of more complex and powerful neural network architectures capable of

learning intricate patterns and representations from data.

Deep learning refers to the use of artificial neural networks with multiple layers,

as illustrated in Figure 3.2. These deep neural networks can learn hierarchical repre-

sentations of data, with each layer capturing increasingly abstract features [83]. The

ability to learn such representations from raw data, without the need for manual

feature engineering, is one of the key advantages of deep learning over traditional

machine learning methods.

A crucial property of deep neural networks is their ability to serve as universal

function approximators. The Universal Approximation Theorem, proved by Cybenko

[19] and Hornik [38], states that a feed-forward neural network with a single hidden
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Figure 3.2: A simple multi-layer neural network with an input layer, hidden layers,
and an output layer

layer containing a finite number of neurons can approximate any continuous function

on compact subsets of Rn, under mild assumptions on the activation function. This

theorem provides a theoretical foundation for the expressive power of neural networks

and their potential to model complex relationships in data.

The success of deep learning can be attributed to several factors, including the

availability of large-scale datasets, advancements in computational hardware (partic-

ularly GPUs), and the development of effective training algorithms and regularization

techniques [45]. These advancements have enabled the training of deep neural net-

works with millions of parameters on vast amounts of data, leading to breakthroughs

in various domains such as natural language processing [80], speech recognition [36],

and reinforcement learning [55]. One of the earliest accomplishments of deep learning

is outperforming human experts and traditional computer programs in chess and Go

[70]. The ability to learn and master game strategies has captured the public’s imag-

ination and showcased the power of deep learning in solving challenging problems.

The ability of deep learning models to automatically learn relevant features from

raw data has made them particularly attractive for tackling complex problems in

the physical sciences. By leveraging the expressive power of deep neural networks,

researchers can uncover hidden patterns, model complex relationships, and make ac-

curate predictions in fields such as quantum mechanics [16], fluid dynamics [15], and

climate science [61].
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Deep learning offers a promising approach to analyzing and modeling the inter-

actions between large-scale mean flows and small-scale turbulent eddies. By training

deep neural networks on extensive datasets obtained from simulations or observational

data, we gain insights into the fundamental mechanisms governing the maintenance

of zonal jets.

Fundamental Concepts

The landscape of ML is diverse, with a variety of approaches classified based on the

nature of the learning signal or feedback available to the system. These include su-

pervised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning [73]. Deep learning, particularly, excels in scenarios where the complexity and

volume of the data surpass the capabilities of traditional machine learning techniques

[45].

The term “deep” in deep learning refers to the use of multiple layers in neural

networks, which allows these models to learn hierarchical representations of data [68].

This depth enables the network to perform feature extraction at various levels of

abstraction, making it particularly powerful for tasks involving unstructured data

such as images and text [44].

The core of deep learning is the concept of a neuron, or node, inspired by the

biological neuron in the human brain. As shown in Figure 3.3, each neuron receives

input, processes it, and passes on its output to the next layer in the network. The

input to a neuron is a weighted sum of outputs from neurons in the previous layer,

and the weights are the parameters that the network learns during training. The

neuron’s output is typically by a non-linear activation function to capture complex

patterns [31].

Mathematically, the output of a single neuron can be expressed as

y = f

(
b+

n∑
i=1

wixi

)
, (3.29)

where y is the output of the neuron, f is the activation function, wi are the weights,

xi are the inputs, b is the bias term, and n is the number of inputs.
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Figure 3.3: A single neuron with inputs (x1, x2, ...xn), its corresponding weights
(w1, w2, ...wn), a bias b, and activation function f applied to the weighted sum of
the inputs [48]

It’s important to choose the right activation function while creating a deep neural

network. Some commonly used activation functions include the sigmoid function,

hyperbolic tangent (tanh) function, and the rectified linear unit (ReLU) function [56].

The ReLU function, defined as f(x) = max(0, x), and illustrated in Figure 3.4, has

become particularly popular due to its simplicity and effectiveness in deep networks.

Figure 3.4: The ReLU activation function, f(x) = max(0, x)

Without a non-linear activation function, we would essentially have a linear model,

regardless of the number of layers or neurons. The non-linearity allows the network
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to learn complex, non-linear mappings between the input data and the target output.

The ReLU activation function is particularly well-suited for this purpose because it

preserves the properties of the linear model for positive inputs while setting negative

inputs to zero.

Deep neural networks are composed of multiple layers of interconnected neurons,

with each layer learning increasingly abstract representations of the input data. The

most basic architecture is the feed-forward neural network (FNN), also known as the

multi-layer perceptron (MLP) [66]. In an FNN, the neurons are organized into an

input layer, one or more hidden layers, and an output layer. The information flows in

a single direction, from the input layer through the hidden layers to the output layer.

The training of a deep neural network involves adjusting the weights and biases

to minimize a loss function, which quantifies the discrepancy between the network’s

predictions and the desired outputs. The choice of loss function is crucial as it directly

impacts the model’s performance and the learning dynamics.

One of the most commonly used loss functions for regression tasks is the Mean

Squared Error (MSE), which is defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (3.30)

where yi represents the true value, ŷi denotes the predicted value by the FNN, and n

is the total number of observations.

The optimization process is typically performed using the backpropagation algo-

rithm [67], which efficiently computes the gradients of the loss function with respect

to the network’s parameters. The gradients are then used to update the parameters

using optimization techniques such as stochastic gradient descent (SGD) [12] or its

variants, such as the Adam optimizer [42].

The backpropagation algorithm relies on the chain rule of calculus to propagate

the gradients from the output layer back to the input layer. For a single neuron, the

gradient of the loss function L with respect to the weight wi can be expressed as

∂L

∂wi
=
∂L

∂y

∂y

∂z

∂z

∂wi
(3.31)
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Figure 3.5: (a) is a standard neural network. (b) is the same network after applying
Dropout layers. Circles with dotted lines indicate nodes that have been dropped.
(Source: [10])

where z = b+
∑n

i=1wixi is the weighted sum of the inputs, and y = f(z) is the output

of the neuron.

Regularization techniques are employed to prevent overfitting and improve the

generalization performance of deep neural networks. Dropout is a particularly effective

regularization technique that randomly drops out (sets to zero) a fraction of the

neurons during training, which helps prevent the network from relying too heavily on

any single neuron or feature. Mathematically, dropout can be expressed as

ỹ = m� y (3.32)

where ỹ is the output of the neuron with dropout applied, m is a binary mask

vector sampled from a chosen random distribution, and � denotes element-wise mul-

tiplication. [31]. Figure 3.5 shows the effects of applying this technique in a standard

neural network model.

Batch normalization is a technique that helps accelerate the training of deep neural

networks by addressing the internal covariate shift problem. During training, the

distribution of inputs to each layer can change as the parameters of the previous

layers are updated. This shift in the input distribution, known as the internal covariate

shift, can slow down the training process and make it more difficult for the network

to converge.

Internal covariate shift occurs because the constant changes in the parameters
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of earlier layers affect the input distribution of subsequent layers. This can cause

gradients to become unstable, leading to slower convergence or even divergence of the

training process.

To address this issue, batch normalization normalizes the inputs to each layer by

subtracting the batch mean and dividing by the batch standard deviation, followed

by a linear transformation with learnable parameters. This ensures that the input

distribution remains stable throughout the training process, accelerating convergence

and improving the learning process. Additionally, it acts as a form of regularization,

reducing the risk of overfitting and enhancing the network’s generalization perfor-

mance.

Motivation for the Deep Learning Approach

Deep learning offers a data-driven approach that complements and extends the ca-

pabilities of traditional theoretical methods, such as the statistical state dynamics

(SSD). [A diagram illustrating the complementary relationship between deep learning

and traditional theoretical methods in studying zonal jets.]

One of the primary advantages of deep learning is its ability to learn from data

without the need for explicit programming or a priori assumptions about the underly-

ing physical processes. This is particularly valuable in the study of zonal jets, where

the interactions between turbulence, waves, and mean flows can give rise to emergent

phenomena that are difficult to identify using traditional approaches such as numeri-

cal simulations [79]. By training deep neural networks on large datasets generated by

numerical simulations or observational measurements, we can uncover hidden patterns

and relationships that may not be apparent from traditional analyses.

Deep learning methods can implicitly account for physics that is neglected in theo-

retical frameworks such as SSD. This may be crucial for understanding the multiscale

nature of zonal jet dynamics, where the interactions between eddies and mean flows,

as well as eddy self-interactions, can span a wide range of spatial and temporal scales

[79]. By leveraging the hierarchical structure of deep neural networks, we can learn

representations of the data that capture these multiscale features and provide a more

comprehensive picture of the underlying physical processes.

Another key advantage of deep learning is its ability to handle large and complex
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datasets. As the resolution of numerical simulations and the volume of observational

data continue to increase, traditional theoretical methods may struggle to keep pace

with the growing computational demands and complexity of datasets. Deep learning,

on the other hand, thrives on large datasets and can efficiently extract meaningful

features and patterns from high-dimensional data. This is particularly relevant for

studying zonal jets in the context of climate modeling, where the integration of mul-

tiple physical processes and the need for long-term simulations can generate massive

amounts of data [61].

Moreover, deep learning can help bridge the gap between theoretical models and

observational data. By training deep neural networks on a combination of simulated

and observed data, we can develop hybrid models that incorporate the strengths of

both approaches. These hybrid models can provide a more realistic representation of

zonal jet dynamics and help identify discrepancies between theoretical predictions and

real-world observations. This is crucial for improving our understanding of the phys-

ical mechanisms underlying zonal jet formation and maintenance and for developing

more accurate and reliable models of atmospheric and oceanic circulation.

Deep learning should not be seen as a replacement for traditional theoretical meth-

ods, but rather as a complementary approach that can provide additional insights and

can be used to test existing theories. The SSD, for example, provides a solid foun-

dation for understanding the linear stability of zonal jets and the role of eddy-mean

flow interactions in their formation and maintenance [25, 24]. Deep learning can

build upon these insights by capturing eddy self-interaction effects and higher-order

correlations that are difficult to incorporate into the SSD framework.

Furthermore, deep learning can help guide the development of new theoretical

models by identifying key features and relationships in the data that may not be

immediately apparent from traditional analyses. By exploring the learned representa-

tions of deep neural networks, we can gain new insights into the physical mechanisms

underlying zonal jet dynamics and use this knowledge to refine existing theories or

develop new ones.



Chapter 4

Methodology

4.1 Overview

This thesis aimed to develop a new approach to investigate the equilibration and

maintenance characteristics of zonal jets by implementing deep learning techniques.

The research commenced with an in-depth study of the low-order model (LOM)

developed by Fitzgerald and Farrell [27], which provided a simplified yet insightful

framework for studying zonal jet behavior in two-dimensional stratified turbulence.

The LOM captured several essential interactions between the zonal jet and pertur-

bations, allowing for a more tractable analysis of the underlying mechanisms driving

the zonal jet formation and maintenance. This model served as a foundation for gen-

erating training datasets and validating the deep learning models developed in this

study.

Extensive simulations were performed using the LOM to generate training datasets

for the deep learning models. The parameter values and initial conditions were care-

fully selected based on the findings of previous studies [27, 18] and the physical un-

derstanding of zonal jet dynamics to ensure that the generated datasets were repre-

sentative of the relevant flow regimes.

Statistical analysis was carried out to better understand the data from the LOM

simulations. This included the examination of the conditional probability distribution

P (R|U), which quantifies the likelihood of observing a particular value of the Reynolds

stress (R) given a specific value of the zonal jet velocity (U). The autocorrelation
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function of the zonal jet velocity U was analyzed to determine the appropriate lag

for subsampling the dataset, effectively reducing the temporal resolution of the data

while preserving the essential information about the zonal jet dynamics.

A suite of deep learning models tailored for studying zonal jet dynamics was de-

veloped and implemented. These models were designed to complement and extend

the capabilities of traditional theoretical approaches, such as statistical state dynam-

ics (SSD) [25, 18, 5]. The deep learning models employed in this study included

feed-forward neural networks, statistics-informed neural networks (SINN) [85], and

physics-informed neural networks (PINNs) [59]. The choice of these architectures was

guided by their proven success in modeling complex physical systems and their ability

to incorporate prior knowledge and physical constraints into the learning process.

The training of the deep learning models was carried out using appropriate opti-

mization algorithms and loss functions, with careful consideration given to ensuring

physical consistency. Extensive validation procedures, such as k-fold cross-validation

[31], were employed to assess the models’ generalization capabilities and accuracy in

predicting zonal jet emergence and evolution. Performance metrics, including the

mean squared error (MSE) and the mean absolute error (MAE), were computed to

quantify the agreement between the model predictions and the ground truth data.

The models’ ability to capture the statistical properties of the flow was evaluated

to ensure that the learned dynamics were physically consistent with the underlying

system.

The results obtained from the trained models were compared with established

methods like SSD to demonstrate the complementary nature of the deep learning

approach. This comparative analysis highlighted the advantages and limitations of

deep learning in capturing the dynamics of zonal jet formation while also identifying

areas where the two approaches could complement each other. By combining the

insights gained from deep learning with the theoretical foundations provided by SSD

and other methods, a more comprehensive understanding of zonal jet dynamics was

sought.

The trained deep learning models were subjected to physical interpretation and

analysis, to extract insights about the formation and maintenance mechanisms of

zonal jets.
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4.2 Data Generation and Exploration

Low-Order Model (LOM)

The LOM developed by Fitzgerald and Farrell [27] provides a simplified framework

for studying zonal jet dynamics in 2D stratified turbulence. The LOM captures sev-

eral essential interactions between the zonal jet and perturbations using a severely

truncated system that represents the zonal jet and perturbations with a few Fourier

components. This simplification allows for a more manageable analysis of the com-

plex dynamics involved and dramatically reduced computational time to simulate the

system. The model includes a stochastic excitation term,
√
εξ, that drives the system,

representing the effects of external forcing and eddy-eddy non-linearity.

To obtain the LOM, Fitzgerald and Farrell [27] chose the stochastic excitation

to excite a single standing wave mode so that S is proportional to sin(kx) sin(mz).

They analyze the interaction between the excited mode and a zonal jet with vertical

wavenumber mU , neglecting the horizontal mean buoyancy, B, as it plays no role

in the linear instability responsible for zonal jet formation [27]. The perturbation

streamfunction, ψ′, the perturbation buoyancy, b′, and the zonal jet, U , are written

in the form of low-order Fourier truncations as

ψ′(x, z, t) = ψe sin(kx) sin(mz) + ψ+ cos(kx) cos((m+mU)z), (4.1)

b′(x, z, t) = be cos(kx) sin(mz) + b+ sin(kx) cos((m+mU)z), (4.2)

U(z, t) = U sin(mUz). (4.3)

In the original model of Fitzgerald and Farrell [27], the difference wavenumber

components were also included, but experimentation showed that including only the

sum wavenumbers gave qualitatively similar results. In this work, we retain only the

sum of wavenumbers.

The equations of motion for the coefficients are obtained by substituting the ex-

pansions (4.1)-(4.3) into the quasi-linear (QL) equations and projecting each term

onto the structure functions. For example, the contribution to the ψe equation from

the mean flow interaction terms in the vorticity equation is given by
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(
−k

2
e

4

)−1 ∫ 1

0

dx

∫ 1

0

dz(sin(kx) sin(mz))(−U∂x∆ψ′+(∂xψ
′)Uzz) = − 1

2k2e
(k2+−m2

U)Uψ+,

(4.4)

where k2e = k2 +m2 and k2+ = k2 + (m+mU)2 [27].

The LOM is most compactly written in a vector-matrix form where the state

vectors of the excited and sheared wave components are defined as φe = (ψe, be)
T and

φ+ = (ψ+, b+)T . From this, we obtain

(
φ̇e

φ̇+

)
=

(
W e 0

0 W+

)(
φe

φ+

)
+ U

(
0 Le,+

L+,e 0

)(
φe

φ+

)
+
√
εξ, (4.5)

U̇ =
1

4
k(k2+ − k2e)ψeψ+ − rmU, (4.6)

where ε is the energy injection rate and ξ = (2
√

2η/ke, 0, 0, 0)T , with η being Gaussian

white noise with unit variance [27]. The operators We and W+ encode the gravity

wave dynamics of the excited and sheared components and are given by

We =

(
−1 k/k2e

−kN2
0 −1

)
, (4.7)

W+ =

(
−1 −k/k2+
kN2

0 −1

)
. (4.8)

The operators Le,+ and L+,e encode the interactions between the zonal jet and the

perturbations and are given by

Le,+ =

(
− k

2k2e
(k2+ −m2

U) 0

0 k
2

)
, (4.9)

L+,e =

(
− k

2k2+
(m2

U − k2e) 0

0 −k
2

)
. (4.10)
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Equation (4.5) is the LOM analog of the eddy evolution equation. The LOM

demonstrates that zonal jets can form spontaneously under certain parameter condi-

tions due to feedback between the zonal jet and the perturbation statistics.

For a simpler representation, the LOM can be written as a set of coupled ordinary

differential equations (ODEs):

ds

dt
= A(U)s+

√
εS, (4.11)

dU

dt
= R− rU, (4.12)

R = constant× ψeψ+. (4.13)

Here, s = (ψe, be, ψ+, b+) represents the state vector of the excited and sheared

components of the streamfunction and buoyancy, as defined earlier. The linear oper-

ator A(U) encodes the dynamics of the perturbations and their interaction with the

zonal jet, U .

The LOM also demonstrates that zonal jets can form in stochastically excited flows

in which the vertical wavenumber of the zonal jet is not contained in the excitation

spectrum [27]. This finding highlights the ability of the LOM to capture the essen-

tial interactions between the zonal jet and perturbations, even when the excitation

spectrum does not directly force the zonal jet wavenumber.

The simplicity and ability to reproduce key features make it an attractive frame-

work for theoretical and computational investigations. However, as a severely trun-

cated system, the LOM does not capture all details present in more comprehensive

models or real-world flows. Additionally, the LOM does not accurately model the

finite-amplitude equilibration of the zonal jet, which is an important aspect of zonal

jet dynamics in nature.

Deep learning techniques can be leveraged to build upon the LOM and gain new

insights into the physics of zonal jet formation and maintenance. By integrating deep

learning with the LOM, we can develop a proof of concept for understanding the full

systems and discover ways to effectively incorporate deep learning into these systems.

One potential avenue for integrating deep learning with the LOM is to use neural

networks to learn the underlying dynamics of the system from data generated by the

model. By training a neural network on the time series of the zonal jet, U , and the
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perturbation fields, ψ′ and b′, we can develop a data-driven model that captures the

essential features of the LOM’s dynamics.

Deep learning can also be used to explore the parameter space of the LOM more

efficiently. By training a neural network to predict the behavior of the system under

different parameter combinations, we can identify the regions of parameter space that

are most likely to exhibit interesting or important dynamics, such as the spontaneous

formation of zonal jets. This can help guide future theoretical and computational

investigations, allowing researchers to focus their efforts on the most promising areas

of study.

Ultimately, the goal of integrating deep learning with the LOM is to develop a

framework for understanding the full systems of zonal jet dynamics in a more trans-

parent and interpretable way. By using the LOM as a proof of concept, we can

demonstrate the potential of deep learning to uncover the underlying physics of these

complex systems and pave the way for more effective integration of deep learning into

comprehensive models of geophysical and astrophysical fluid dynamics.

Dataset Preparation

Solving the LOM using the Euler-Maruyama Method

To generate the dataset for studying zonal jet dynamics, we use the Euler-Maruyama

method, a numerical scheme designed for solving stochastic differential equations

(SDEs). SDEs are differential equations that incorporate a stochastic term, repre-

senting the influence of random or unpredictable forces on the system’s dynamics.

The Euler-Maruyama method is an extension of the classical Euler method, which

is used for solving ordinary differential equations (ODEs). In the case of SDEs, an ad-

ditional term is introduced to account for the stochastic component, typically modeled

as a Wiener process or Brownian motion.

Mathematically, the Euler-Maruyama method approximates the solution of an

SDE of the form:

dXt = a(Xt, t) dt+ b(Xt, t) dWt (4.14)
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where Xt is the state variable, a(Xt, t) is the deterministic drift term, b(Xt, t) is the

diffusion term, and dWt represents the increments of the Wiener process.

The Euler-Maruyama method discretizes the time interval [0, T ] into N equal

subintervals of width ∆t = T/N . Starting from an initial condition X0 = x0, the

state variable Xt is updated at each time step using the following recursive formula:

Xn+1 = Xn + a(Xn, tn) ∆t+ b(Xn, tn) ∆Wn (4.15)

where ∆Wn = Wtn+1−Wtn are independent and identically distributed normal random

variables with mean zero and scaled with
√

∆t.

The presence of the term
√

∆t in the ∆Wn is crucial for ensuring the correct

scaling of the random increments. This scaling arises from the properties of the

Wiener process, which has independent and stationary increments with a variance

proportional to the time interval.

Unlike deterministic numerical methods, the Euler-Maruyama method introduces

randomness into the solution, capturing the stochastic nature of the underlying sys-

tem. This randomness is essential for accurately modeling phenomena influenced by

random or unpredictable forces, such as turbulence or external noise.

The accuracy of the Euler-Maruyama method depends on the choice of the time

step ∆t. Smaller time steps generally lead to more accurate solutions but also increase

computational costs. Higher-order methods, such as the Milstein method, can provide

better accuracy but at the expense of increased complexity.

Calculating the Conditional Probability

The conditional probability P (R|U) has been a key part of our datasets and the

statistical analysis of the relationship between the Reynolds stress R and the zonal jet

velocity U in the LOM. It quantifies the likelihood of observing a particular value of

the Reynolds stress given a specific value of the zonal jet velocity, providing insights

into the statistical dependence between these two variables.

Mathematically, the conditional probability P (R|U) is defined as the ratio of the

joint probability distribution P (R,U) to the marginal probability distribution P (U)

[57, 29]:
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P (R|U) =
P (R,U)

P (U)
, (4.16)

where P (R,U) represents the probability of observing a specific combination of R

and U values, and P (U) represents the probability of observing a specific value of U ,

regardless of the value of R.

In practice, the conditional probability P (R|U) is estimated from the LOM dataset

by constructing a 2D histogram of the Reynolds stress and zonal jet velocity values.

The range of U values is divided into a set of NU equally spaced bins, denoted as

{U1, U2, . . . , UNU}, and the range of R values is divided into a set of NR equally

spaced bins, denoted as {R1, R2, . . . , RNR}.

The 2D histogram is then constructed by counting the number of data points

falling into each bin defined by the U and R intervals. Let nij denote the count of

data points in the bin corresponding to the i-th U bin and the j-th R bin. The joint

probability P (Rj, Ui) is estimated as

P (Rj, Ui) =
nij
N
, (4.17)

where N is the total number of data points in the LOM dataset.

The marginal probability P (Ui) is estimated by summing the counts across all R

bins for each U bin

P (Ui) =

NR∑
j=1

P (Rj, Ui) =

∑NR
j=1 nij

N
. (4.18)

Finally, the conditional probability P (Rj|Ui) is computed by dividing the joint

probability P (Rj, Ui) by the marginal probability P (Ui)

P (Rj|Ui) =
P (Rj, Ui)

P (Ui)
=

nij∑NR
j=1 nij

. (4.19)

The resulting conditional probability distribution P (R|U) characterizes the statis-

tical relationship between the Reynolds stress and the zonal jet velocity. By examining

how the R distribution varies across different U bins, we can gain insights into the
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nature of the turbulent momentum flux and its role in the formation and maintenance

of the zonal jets [27, 25, 18, 5].

The conditional probability P (R|U) is a valuable target variable for training mod-

els to learn the statistical relationship between the Reynolds stress and the zonal jet

velocity. By incorporating it into the loss function or the model architecture, we can

guide the learning process towards capturing the essential features of the turbulent

momentum flux and its dependence on the large-scale flow [31, 11].

For example, a deep learning model can be trained to predict the conditional

probability distribution P (R|U) given the zonal jet velocity U as input. The model

can be implemented to produce a probability distribution over the R bins for each

input U value. By minimizing the loss function during training, the deep learning

model can learn to accurately reproduce the statistical relationship between R and U

as captured by the conditional probability distribution P (R|U). The trained model

can then be used to make predictions of the Reynolds stress distribution for new

values of the zonal jet velocity, providing a powerful tool for investigating the feedback

mechanisms between turbulence and large-scale flows in the LOM.

Autocorrelation & Subsampling

The autocorrelation function is used to analyze the temporal coherence and mem-

ory of the time series of the zonal jet velocity U in the LOM. It quantifies the similarity

between the signal and a delayed version of itself as a function of the lag, providing

insights into the persistence and periodicity of the underlying dynamics [13].

The autocorrelation of U is calculated to determine the appropriate lag for subsam-

pling the dataset. The goal is to identify the lag at which the autocorrelation function

first crosses a specified threshold, such as 1/e, indicating a significant decrease in the

correlation between data points separated by this lag.

To compute the autocorrelation function, we first calculate the fluctuations of the

zonal jet velocity around its mean value

U ′(t) = U(t)− Ū , (4.20)

where U ′(t) represents the fluctuations, U(t) is the zonal jet velocity at time t, and Ū

is the mean value of U over the entire time series.
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The autocorrelation function R(τ) is then computed as

R(τ) =
1

N − τ

N−τ∑
t=1

U ′(t)U ′(t+ τ), (4.21)

where τ is the lag, and N is the total number of data points in the time series.

To ensure that the autocorrelation function ranges between -1 and 1, we normalize

it by the variance of the fluctuations

ρ(τ) =
R(τ)

R(0)
, (4.22)

where ρ(τ) is the normalized autocorrelation function, and R(0) is the autocorrelation

at zero lag, which is equal to the variance of the fluctuations.

The optimal lag for subsampling the dataset is determined by finding the lag at

which the normalized autocorrelation function first crosses a specified threshold, such

as 1/e. This lag, denoted as τc, is then found by observing the intersection point.

With the critical lag τc determined, the dataset is subsampled by selecting every

τc-th data point, effectively reducing the temporal resolution of the data while pre-

serving the essential information about the zonal jet dynamics [41]. By doing this,

the computational burden associated with training deep learning models on large

datasets was also reduced as it removes redundant data points that do not contribute

significantly to the learning process.

Moreover, subsampling based on the autocorrelation function ensures that the

dataset captures the relevant time scales of the zonal jet dynamics since it is deter-

mined by the intrinsic properties of the system rather than an arbitrary choice of

subsampling interval [41].

4.3 Baseline Models and Proof of Concept

Before the development and implementation of our deep learning models, it was es-

sential to establish a proof of concept that demonstrates the feasibility of learning

patterns and performing prediction tasks on the LOM data. Traditional ML models,
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such as XGBoost and linear regression, were used as baseline models [17, 35].

Traditional Machine Learning Models

Gradient Boosted Random Forest

XGBoost, short for eXtreme Gradient Boosting, is a powerful machine learning tech-

nique that combines multiple simple models (called weak learners) to create a strong

predictive model. In this case, the weak learners are decision trees, which are a type of

model that makes predictions by following a series of rules based on the input features

[17].

The core idea behind XGBoost is to train a sequence of decision trees, where each

subsequent tree is trained to correct the mistakes made by the previous trees. This

is achieved by minimizing an objective function that measures the difference between

the predicted values and the actual values while also penalizing overly complex models

to prevent overfitting [17].

Mathematically, the objective function of XGBoost can be expressed as

L(φ) =
n∑
i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk). (4.23)

Here, L(φ) is the objective function to be minimized, l(yi, ŷi) measures the dif-

ference between the true value yi and the predicted value ŷi for the i-th data point,

Ω(fk) penalizes the complexity of the k-th decision tree fk, and K is the total number

of trees in the ensemble [17].

XGBoost uses a technique called gradient boosting to minimize the objective func-

tion. At each iteration, the algorithm computes the gradients of the loss function with

respect to the predicted values and uses these gradients to guide the construction of

the next decision tree. The new tree is then added to the ensemble, and the process is

repeated until a specified number of trees is reached or a certain performance criterion

is met [17].
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Linear Regression

Linear regression is a simple yet powerful machine learning algorithm that aims to find

the best-fitting linear relationship between the input features and the target variable.

In other words, it tries to find a straight line (or a plane in higher dimensions) that

best describes the relationship between the input features and the target variable

[35, 51].

The linear regression model can be expressed as

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε, (4.24)

where y is the target variable, x1, x2, . . . , xp are the input features, β0, β1, . . . , βp are

the coefficients that define the linear relationship, and ε is an error term that accounts

for the noise or unexplained variation in the data.

The coefficients β0, β1, . . . , βp are estimated using a method called least squares,

which minimizes the sum of squared differences between the predicted values and the

actual values in the training data.

4.4 Deep Learning Models

In our exploration, we developed and implemented many deep learning models on

the datasets initially created. In this section, we will talk about some of the most

promising models we worked with, such as Feed-forward Neural Networks, Statistics-

Informed Neural Networks, and Physics-Informed Neural Networks.

4.4.1 Feed-forward Neural Networks

Feed-forward Neural Network (FNN) is the simplest kind of artificial neural net-

work architecture, and it serves as the foundation for understanding more com-

plex deep learning models. In this model, information moves in only one direc-

tion—forward—from the input nodes, through the hidden nodes (if any), and finally

to the output nodes. There are no cycles or loops in this network, hence the term

“feed-forward.”
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The architecture of an FNN consists of three main types of layers: the input layer,

one or more hidden layers, and the output layer. The input layer receives the initial

data, the hidden layers process the data by performing weighted sums and applying

activation functions, and the output layer produces the final predictions.

In our work with this model, the dataset generated by the LOM is used as the

training data where the input features are derived from the zonal jet flow, and the out-

put is the Reynolds stress divergence, indicative of turbulence. The primary objective

of the FNN is to discern the intricate mapping from these inputs to the corresponding

outputs, thereby encapsulating the complex interplay between the zonal jet flow and

the emergent turbulence.

To introduce non-linearity into the model—essential for capturing the non-linear

dynamics of the system—we use the ReLU activation function. The model’s perfor-

mance is then quantified using the MSE as the loss function.

We also incorporate normalization layers that standardize the input features to

have a mean of zero and a standard deviation of one. This normalization is critical

as it ensures that no single feature disproportionately influences the model’s learning

due to its scale. Dropout layers are integrated into the FNN to mitigate the risk of

overfitting. During the training phase, these dropout layers randomly deactivate a

subset of neurons, compelling the network to develop more robust features that are

not overly reliant on any individual neuron [31].

The batch size is shaped by the lag value derived from the autocorrelation analysis,

which enhances both the stability of the gradient descent and the convergence rate

during the training process.

For optimization, we utilize the Adam optimizer, facilitating a more efficient con-

vergence to the optimal set of weights within the network [31].

Our FNN architecture is designed with multiple hidden layers to support the

network’s ability to model the sophisticated relationship between the zonal jet flow

and turbulence. The depth of the network and other hyperparameters, such as the

number of neurons in each layer and the learning rate, all undergo a process of trial-

and-error and thorough fine-tuning to refine the model’s performance and predictive

capabilities.
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Adding Physical Constraints

While the MSE is a common choice for a loss function, it cannot directly capture the

underlying physical relationships between the input and output variables. To address

this limitation and incorporate physical grounding into the data-driven model, we

introduce a custom loss function that combines the MSE loss with an additional term

related to the conditional probability P (R|U).

The custom loss function is defined as:

L = MSE(R, R̂) + λ

∫
R

|1− P (R|U)|dR, (4.25)

where MSE(R, R̂) is the standard mean squared error between the true Reynolds

stress divergence R and the predicted value R̂, P (R|U) is the conditional probability

of observing R given the zonal jet mean flow U , and λ is a weighting factor that

controls the relative importance of the integral penalty term.

The integral penalty term,
∫
R
|1 − P (R|U)|dR, measures the absolute difference

between the predicted conditional probability P (R|U) and the desired behavior, which

is typically informed by the underlying physics of the problem. By minimizing this

term, the model is encouraged to learn representations that align with the expected

physical relationships between the input and output variables.

The integral penalty term acts as a regularizer, penalizing deviations from the de-

sired conditional probability distribution and guiding the model towards solutions that

are consistent with the known physical principles governing the zonal jet dynamics.

From a mathematical perspective, the custom loss function can be interpreted as a

combination of two objectives: minimizing the mean squared error to ensure accurate

predictions of the Reynolds stress divergence and minimizing the integral penalty term

to enforce consistency with the expected conditional probability distribution.

4.4.2 Statistics-Informed Neural Networks

In situations where the underlying governing equations are unknown or difficult to

specify, Statistics-Informed Neural Networks (SINNs) provide a data-driven approach

to modeling stochastic dynamical systems, just like our system. The key innovation
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of the SINN framework lies in its loss function design. Rather than seeking a direct

pathwise approximation of the stochastic dynamics, the SINN constructs simulated

trajectories that align with the example trajectories in terms of their statistical prop-

erties. This is achieved by incorporating terms in the loss function that penalize

the differences between the predicted and true statistical characteristics, such as the

probability density function (PDF) and autocorrelation function (ACF) of the target

variable.

The theoretical foundation of SINN is based on the universal approximation theo-

rem for stochastic systems and the projection-operator formalism for stochastic mod-

eling [85]. The universal approximation theorem states that, under certain conditions,

a recurrent neural network (RNN) with Gaussian white noise as input can universally

approximate arbitrary stochastic systems.

This theorem provides a theoretical justification for the modeling capacity of

stochastic RNNs and the approach of embedding random noise into the system. By

leveraging this theoretical insight, SINNs employ Long Short-Term Memory (LSTM)

networks, a specific type of RNN, to capture non-Markovian memory effects that the

underlying stochastic system might exhibit.

The SINN architecture consists of a multi-layer LSTM component to learn the

temporal dynamics of stochastic processes and a dense layer attached to the output

gate of the LSTM as a “read-out” device. The model uses a stream of independent

and identically distributed (i.i.d.) random numbers as input to the model. This input

serves as the entropy source, allowing the SINN to generate different realizations of

the stochastic process through deterministic operations.

The loss function used to train SINNs incorporates terms that penalize the differ-

ence between the predicted and true statistical properties of the target variable, such

as the PDF and ACF. The loss function includes terms that penalize the difference

between the predicted and true PDF and ACF

L(θ) = λ1||PDF (h(Wt; θ))−PDF (Xt)||2+λ2||ACF (h(Wt; θ))−ACF (Xt)||2, (4.26)

where θ represents the trainable parameters of the SINN, h(Wt; θ) represents the

SINN’s prediction of the target variable Xt, and λ1 and λ2 represent weighting factors
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that control the relative importance of the PDF and ACF terms.

By minimizing this loss function, the SINN learns to accurately reproduce the

statistical behavior of the target stochastic process, capturing the complex interactions

and temporal dependencies inherent in the system.

4.4.3 Physics-Informed Neural Network

Now, while the simple FNN model and the SINN model rely solely on data to learn the

underlying patterns and relationships, the Physics-Informed Neural Network (PINN),

introduced by Raissi et al. in 2019 [59], incorporates additional physical constraints

into the models in the form of differential equations. This method has gained sig-

nificant attention due to its ability to incorporate physical laws governed by partial

differential equations (PDEs) or ordinary differential equations (ODEs) into the learn-

ing process of neural networks.

By incorporating the governing equations of a system into the loss function of the

neural network, PINNs ensure that the learned solution satisfies the physical laws

of the system, leading to more accurate and physically consistent predictions. This

approach also allows for the solution of inverse problems, where some parameters or

terms in the governing equations are unknown and need to be inferred from the data.

The key idea behind PINNs is to represent the solution of the governing equations

using a neural network and train the network to minimize a loss function that consists

of two parts: the data loss and the physics-informed loss. The data loss measures

the discrepancy between the network predictions and the available data, while the

physics-informed loss quantifies the residual of the governing equations.

Let’s consider a general form of a system of ODEs:

du

dt
= f(t,u;λ), (4.27)

where u(t) = [u1(t), u2(t), ..., un(t)] is the vector of state variables, t is the independent

variable (e.g., time), f is a vector-valued function representing the right-hand side of

the ODEs, and λ denotes the parameters of the system.

To solve our LOM using PINNs, we approximate the state variables and the zonal
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jet using a neural network uθ(t), where θ represents the network parameters (weights

and biases). The network takes the independent variable t as input and outputs the

approximated state variables and zonal jet.

The loss function for training the PINN consists of two parts:

1. Data loss:

Ldata =
1

Nd

Nd∑
i=1

‖uθ(ti)− ui‖2 , (4.28)

where Nd is the number of available data points, ui is the observed value of the state

variables and zonal jet at time ti, and ‖·‖ denotes the Euclidean norm.

2. Physics-informed loss:

Lphysics =
1

Nf

Nf∑
i=1

∥∥∥∥duθdt (ti)− f(ti,uθ(ti);λ)

∥∥∥∥2 , (4.29)

where Nf is the number of collocation points, and duθ
dt

(ti) is computed using automatic

differentiation.

The total loss is then defined as a weighted sum of the data loss and the physics-

informed loss:

L = Ldata + αLphysics, (4.30)

where α is a hyperparameter that balances the contribution of the two loss terms.

The network parameters θ are learned by minimizing the total loss using gradient-

based optimization algorithms like the Adam optimizer [59].

4.4.4 Model Training and Validation

Effective training and validation of deep learning models are essential for ensuring their

accuracy, generalization ability, and reliability in capturing the underlying dynamics

of complex systems. Now, we will focus on the key components of the training process

to discuss their impacts.
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Optimization Algorithms

Optimization algorithms are responsible for updating the model’s parameters (weights

and biases) iteratively to minimize the defined loss function. One of the most widely

used optimization algorithms in deep learning is Stochastic Gradient Descent (SGD)

[65]. SGD updates the model parameters in the direction of the negative gradient

of the loss function, computed using a randomly selected subset of the training data

(mini-batch).

However, SGD can be sensitive to the choice of the learning rate and may converge

slowly, especially for complex problems. This is where the Adam optimizer plays its

part [42].

Adam combines the advantages of two other popular optimization algorithms,

AdaGrad [21] and RMSProp [76], by adapting the learning rate for each parameter

based on the first and second moments of the gradients.

It has been shown to perform well in the training of PINNs [59] since its adaptive

learning rate and momentum-like behavior help in quickly converging the models on

hard problems.

Loss Functions

In a simple FNN, the loss function measures the discrepancy between the model’s

predictions and the available data. Two commonly used data loss functions are the

Mean Squared Error (MSE) and the Mean Absolute Error (MAE).

The MSE loss is defined as:

LMSE =
1

N

N∑
i=1

(yi − ŷi)2, (4.31)

where N is the number of data points, yi is the true value, and ŷi is the model’s

prediction.

The MAE loss is defined as:
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LMAE =
1

N

N∑
i=1

|yi − ŷi|. (4.32)

The MSE loss penalizes larger errors more heavily due to the squared term, while

the MAE loss treats all errors equally. The choice between MSE and MAE depends

on the specific problem and the desired properties of the solution. For our case, the

MSE loss is more suitable since we want to emphasize the importance of accurately

capturing the larger-scale features of the zonal jet dynamics. The MAE loss is some-

times preferred when we aim to obtain a solution that is less sensitive to outliers and

noise in the data.

Activation Functions

Activation functions introduce non-linearity into the model, enabling it to learn com-

plex patterns and relationships in the data. Some commonly used activation functions

in deep learning include:

1. Sigmoid: σ(x) = 1
1+e−x

2. Hyperbolic Tangent (Tanh): tanh(x) = ex−e−x
ex+e−x

3. Rectified Linear Unit (ReLU): ReLU(x) = max(0, x)

4. Leaky ReLU: LeakyReLU(x) = max(αx, x), where α is a small positive constant.

The sigmoid and tanh functions are bounded and differentiable, but they can suffer

from the vanishing gradient problem. The ReLU function, on the other hand, is

unbounded and has a constant gradient for positive inputs, which helps in alleviating

the vanishing gradient problem. However, ReLU can lead to ”dead” neurons if the

inputs are consistently negative. The Leaky ReLU function addresses this issue by

allowing a small negative slope for negative inputs.
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For our FNN models, using ReLU in the hidden layers helps in learning the non-

linear dynamics of the zonal jet. However, for the PINN model, since the physics-

informed loss involves computing the derivatives of the network’s output with respect

to the input (time), using activation functions that are continuously differentiable,

such as tanh or sigmoid, leads to more stable and accurate gradient calculations.

Hyperparameters

Hyperparameters are the settings that control the learning process of a deep learning

model, such as the learning rate, batch size, and number of epochs:

1. Learning Rate: The learning rate determines the step size at which the model’s

parameters are updated in the direction of the negative gradient of the loss function.

A higher learning rate can lead to faster convergence but may also cause the model to

overshoot the optimal solution and oscillate. A lower learning rate can result in slower

convergence but may help in finding a more stable and accurate solution. In practice,

the learning rate is often tuned using techniques such as learning rate scheduling,

where the learning rate is gradually decreased over the course of training.

2. Batch Size: The batch size refers to the number of training examples used in

each iteration of the optimization algorithm. Larger batch sizes can lead to more

stable gradient estimates and faster convergence, but they also require more memory

and computational resources. A smaller batch size can introduce more noise in the

gradient estimates but may help escape local minima and regularize the model. The

choice of the batch size often depends on the available computational resources and

the specific problem at hand.

3. Number of Epochs: An epoch is a complete pass through the entire training

dataset. The number of epochs determines how many times the model is exposed to

the training data during the learning process. A higher number of epochs can lead to

better fitting of the data but may also cause overfitting if the model starts to memorize

the training examples. A lower number of epochs may result in underfitting, where

the model fails to capture the underlying patterns in the data. The optimal number of

epochs can be determined using techniques such as early stopping, where the training

is stopped when the model’s performance on a validation set starts to degrade.

Other important hyperparameters include the number of hidden layers and neurons
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in the neural network, the regularization techniques (e.g., L1 or L2 regularization),

and the weighting factors of the loss functions. These hyperparameters can be tuned

using techniques such as trial-and-error or grid search, where different combinations

of hyperparameters are evaluated and the best-performing combination is selected.

Model Validation: Assessing Model Performance

Evaluating the performance of our deep learning models is crucial to ensure their

effectiveness and reliability. Before discussing any of the results, let’s understand

simply the process of assessing the quality of neural network predictions, both visually

and through quantitative metrics.

Visual Assessment

We can visually compare the predicted outputs with their true values to evaluate a

model’s performance by plotting the true input values against the predicted neural

network outputs, as well as the true input values against the true output values.

If the “True Input vs. Predicted Output” plot closely resembles the ”True Input

vs. True Output” plot, it indicates that the neural network has effectively learned the

underlying patterns and relationships within the system. As the difference between

these two plots diminishes, it suggests that the neural network is acting as an accurate

solver for the system, capturing the dynamics with high fidelity.

Quantitative Assessment

Quantitative metrics offer a more objective and precise evaluation of a neural net-

work’s performance. Two commonly used metrics in this context are the Mean

Squared Error (MSE) and the R-squared (R2) value.

A lower MSE value indicates that the neural network’s predictions are closer to the

true values, suggesting better performance. Conversely, a higher MSE value implies

larger deviations between the predicted and true values, indicating poorer perfor-

mance.

The R2 value measures the proportion of the variance in the true values that can
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be explained by the neural network’s predictions. It ranges from 0 to 1, with a value

closer to 1 indicating a better fit between the predicted and true values.

A higher R2 value indicates that the neural network’s predictions are better able

to capture the variability in the true values, suggesting a more accurate representation

of the underlying patterns of the system.

Monitoring Training Progress

It is also essential to monitor the training progress of a neural network to ensure that

it is learning effectively and avoiding issues such as overfitting or underfitting. This

can be achieved by plotting the training loss and validation loss over the course of

training epochs.

The training loss represents the error or difference between the neural network’s

predictions and the true target values during the training process. The validation

loss, on the other hand, represents the error or difference between the predictions and

the true values on a separate validation dataset.

Ideally, both the training loss and validation loss should decrease and converge to

a low value, indicating that the neural network is learning the patterns in the data

effectively and making accurate predictions. However, if the training loss continues

to decrease while the validation loss starts to increase, it suggests that the model is

overfitting to the training data and may not generalize well to unseen data.

Probability Distributions: Color Plots

Since the relationship between input variables (e.g., jet strength) and output variables

(e.g., turbulence) can be complex and nonlinear, visualizing the probability distribu-

tions of the true and predicted outputs can provide valuable insights into the neural

network’s performance.

These color plots represent the relationship between the input variable (e.g., jet

strength) and the output variable (e.g., turbulence), with the color scale indicating

the probability density or ”Probability Density” of the data points. By comparing

the color plot of the true output with the color plot of the predicted output, we can

assess how well the neural network has learned to capture the underlying patterns
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and distributions.

If the predicted output plot closely resembles the true output plot, with the scatter

points aligning well and the color patterns being similar, it indicates that the neural

network has effectively learned the intricate relationships and probability distributions

within the system.

Prediction Quality: Predicted vs. True Values

Another valuable tool for evaluating the performance of a neural network is the scatter

plot of predicted values versus true values accompanied by a 45-degree reference line.

In these plots, each point represents an individual data point, with the x-axis

representing the true values and the y-axis representing the corresponding predicted

values by the neural network. The 45-degree line represents the ideal scenario where

the predicted values perfectly match the true values.

If the scatter points cluster closely around the 45-degree line, it indicates that the

neural network is making accurate predictions and effectively capturing the underlying

patterns in the data. Conversely, if the points deviate significantly from the 45-degree

line, it suggests that the neural network is struggling to learn the true relationships

and patterns within the system.



Chapter 5

Results and Discussion

This chapter presents the results of applying deep learning techniques to study zonal

jet dynamics with the low-order model (LOM) of two-dimensional stratified turbu-

lence. We first establish a baseline understanding of the system’s dynamics using

linear regression and XGBoost models. These models demonstrate the feasibility of

learning patterns and performing prediction tasks on the LOM data.

We then discuss the findings of the deep learning models, including feed-forward

neural networks (FNNs), statistics-informed neural networks (SINNs), and physics-

informed neural networks (PINNs). These models were designed to complement and

extend the capabilities of traditional theoretical approaches like statistical state dy-

namics (SSD) by leveraging the vast amounts of data generated by LOM simulations.

We discuss the findings and performance evaluation of each model, highlighting their

strengths and limitations in capturing the dynamics of zonal jets.

Finally, we compare the performance of the different models, emphasizing the

complementary nature of the deep learning approach to traditional methods. We

discuss the implications of our findings for understanding zonal jet dynamics and the

potential for future research in this area.
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5.1 Baseline Models: Proof of Concept

5.1.1 Linear Regression Model

The linear regression model is used as a baseline model to understand the relationship

between the input variable (U) and the target variable (zonal jet dynamics). This

approach provides a starting point for further analysis and model refinement.

Model Performance

The model’s performance was evaluated using the Mean Squared Error (MSE) and

the Coefficient of Determination (R-squared, R2). The MSE measures the average

squared difference between predicted and true values, while the R2 value represents

the proportion of variance in the target variable explained by the model.

Metric Value
MSE 0.0054
R2 0.0014

Table 5.1: Performance metrics for the linear regression model.

The linear regression model achieved an MSE of 0.0054 and an R2 value of 0.0014.

The very low R2 value indicates that the linear model explains only a negligible portion

of the variance in turbulence (R), suggesting a poor fit to the data.

Figure 5.1: True Input vs Predicted Output
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Predicted vs. True Values

Figure 5.1 shows a scatter plot comparing the predicted turbulence values (R)

from the linear regression model with the true values. The significant scatter of points

away from the ideal 45-degree line (representing perfect agreement) further confirms

the model’s poor performance.

Comparing the Outputs

Figure 5.2: True Input vs Predicted Output

Figure 5.2 uses scatter plots to visualize the relationship between jet strength (U)

and turbulence (R). The true output exhibits a complex, non-linear pattern. In

contrast, the predicted output shows a simple linear trend, highlighting the linear

regression model’s inability to capture the complex relationships in the data.

Limitations

The linear regression model’s poor performance underscores its limitations in mod-

eling the complex dynamics of zonal jets. The low R2 value, the scatter in the pre-

dicted vs. true values plot, and the failure to capture non-linear patterns in the color

plots all point to the inadequacy of a linear model for this task.

Zonal jet dynamics are influenced by non-linear interactions between factors like
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turbulence, planetary rotation, and stratification. These complexities cannot be ade-

quately represented by a simple linear model.

XGBoost Model Analysis

The XGBoost model was employed as another baseline model to investigate the re-

lationship between jet strength (U) and turbulence (R) in zonal jet dynamics. XG-

Boost, a machine learning algorithm that combines multiple decision trees, is capable

of capturing non-linear relationships in data.

Model Performance

The XGBoost model achieved an MSE of 0.0054 and an R2 of 0.0013. The low R2

value indicates that the model explains only a small fraction (0.13%) of the variance

in turbulence (R), suggesting a poor fit to the data.

Metric Value
MSE 0.0054
R2 0.0013

Table 5.2: Performance metrics for the XGBoost model.

Predicted vs. True Values

Figure 5.3: Predicted vs. True Values
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Figure 5.3 shows a scatter plot comparing the XGBoost model’s predicted turbu-

lence values (R) with the true values. While some points cluster around the diagonal

line, indicating agreement between predictions and true values, significant scatter

suggests the model struggles to capture the complex dynamics accurately.

Comparing the Outputs

Figure 5.4: True Input vs Predicted Output

Figure 5.4 also uses scatter plots to visualize the relationship between jet strength

(U) and turbulence (R). Much similar to the Linear Regression model, the true output

here exhibits a complex, non-linear pattern, whereas, the predicted output shows a

simple linear trend, also highlighting this model’s inability to capture the complex

relationships in the data.

Inability to Capture the Patterns

Both the linear regression and XGBoost models showed their limitations in accu-

rately representing the relationship between jet strength (U) and turbulence (R). The

linear regression model, restricted to linear relationships, failed to capture the inher-

ent non-linearity of the system. XGBoost, despite its ability to model non-linearity,

could not fully capture the patterns underlying the relationship due to its reliance on

partitioning the input space.
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Figure 5.5: Predicted vs. True Values

5.1.2 XGBoost Model with Conditional Probability Data

Even though the XGBoost model was unable to learn the patterns in the relationship

between jet strength (U) and turbulence (R), it was able to predict the conditional

probability (P (R|U)) using jet strength (U) and turbulence (R) as input features.

Model Performance

The performance of this version XGBoost model was also evaluated using the

MSE and R2. This time, it achieved an MSE of 0.0669 and an R2 of 0.9957, in-

dicating excellent performance in predicting the conditional probability. The value

further reinforces the model’s exceptional performance, as it implies that the model

can explain approximately 99.57 % of the variances in the conditional probability.

Metric Value
MSE 0.0669
R2 0.9957

Table 5.3: Performance metrics for the XGBoost model.

Predicted vs. True Values

Figure 5.5 shows a scatter plot comparing the true output values with the predicted

values from this model. The data points cluster tightly around the 45-degree line,

indicating a strong agreement between the predicted and true values. This strong
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Figure 5.6: Prediction Error vs Density

linear relationship between the predicted and true values confirms the high R2 value

obtained, indicating that the model has successfully captured the underlying patterns

and relationships in the data.

Error Distribution

Figure 5.6 displays the distribution of prediction errors using a kernel density

estimation (KDE) plot. A KDE plot is a way to visualize the probability distribution

of a dataset. The plot shows a unimodal distribution centered around zero, suggesting

that the model’s predictions are generally well-calibrated and have a low tendency for

large errors.

True Output vs. Predicted Output

Figure 5.7 uses color-coded scatter plots to visualize the relationship between jet

strength (U), turbulence (R), and the conditional probability (P (R|U)). The color

scale represents the probability density, with warmer colors indicating higher densities

and cooler colors indicating lower densities.

The color plot of the predicted output closely resembles the true output plot,

demonstrating that the XGBoost model has successfully captured the complex pat-

terns and distributions in the data.

Interpretation
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Figure 5.7: Color Plots to visualize the relationship between jet strength (U), turbu-
lence (R), and the conditional probability (P (R|U))

This version of the XGBoost model with a changed input and output data effec-

tively captured the complex dynamics of zonal jets, as evidenced by the low MSE,

high R2 value, and the strong agreement between the predicted and true values. While

demonstrating promising results in capturing the patterns of zonal jets, it also high-

lighted the need to explore more sophisticated modeling techniques. XGBoost, as

a tree-based ensemble method, relies on partitioning the input space into distinct

regions and making predictions based on simple rules within each region.

From Baseline Models to Deep Learning

The baseline models, linear regression and XGBoost, served as a crucial proof of

concept, demonstrating the feasibility of using machine learning to model zonal jet

dynamics while also showing their limitations which called the need for more sophisti-

cated approaches. Linear regression, inherently limited to linear relationships, failed

to capture the complex, non-linear dynamics evident in the data. While XGBoost,

with its ability to model non-linearity, showed both promising and disappointing re-

sults. The ability of deep learning models to learn hierarchical representations of

data, capture both spatial and temporal complexities, and process sequential infor-

mation makes them well-suited for modeling the evolution of zonal jets over time and

understand the underlying patterns.
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5.2 Deep Learning Models

Feedforward Neural Network (FNN) Models

We analyze the performance of two Feedforward Neural Network (FNN) models in

predicting zonal jet strength (R) based on zonal wind speed (U). The first model,

referred to as the ”Simple FNN,” uses only zonal wind speed (U) as input. The second

model, the ”FNN with Features,” incorporates additional features derived from U to

enhance its predictive capabilities.

5.2.1 Simple FNN Model

Model Performance

The Simple FNN model’s performance was evaluated using the Mean Squared

Error (MSE) on a separate test dataset.

Metric Value
Test MSE 0.0054

Table 5.4: Performance metrics for the Simple FNN model.

The model achieved a test MSE of 0.0054, suggesting initially promising perfor-

mance in predicting zonal jet strength (R) based solely on zonal wind speed (U).

Predictions vs. True Values

Figure 5.8 presents a scatter plot comparing the Simple FNN model’s predicted

zonal jet strength (R) values with the true values. While the points cluster around the

45-degree line (representing perfect agreement), a closer examination reveals that the

model struggles to capture the non-linear relationship between U and R accurately.

Training and Validation Loss

Figure 5.9 displays the training and validation loss curves during the training

process for the Simple FNN. The steady decrease and convergence of both curves

suggest that the model is learning effectively and generalizing well to unseen data.

However, the relatively high MSE values indicate that the model’s predictive accuracy

is limited.
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Figure 5.8: Scatter plot comparing the model’s predicted turbulence values (R) with
the true values. The red line represents perfect agreement.

True Output vs. Predicted Output

Figure 5.10 visually compares the true zonal jet strength (R) values (blue dots)

with the Simple FNN model’s predicted values (orange dots) against the input zonal

wind speed (U). The plot reveals a distinct pattern in the true output, where higher R

values occur at intermediate U values, indicating a complex, non-linear relationship.

The Simple FNN model fails to capture this non-linearity effectively, as its predictions

follow a more linear trend.

5.2.2 FNN Model with Features

To improve the model’s ability to capture the complex relationship between zonal

wind speed and zonal jet strength, additional features were incorporated into the

FNN model. These features include:

- U autocorr: Autocorrelation processed data from U , capturing temporal de-

pendencies in the zonal wind speed.

- mov avg: Moving average of U with a window size of 100, smoothing out short-

term fluctuations.

- mov avg2: Moving average of U with a window size of 1000, capturing longer-term

trends.
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Figure 5.9: Training and validation loss of the model over training epochs. The blue
line represents the training loss, and the orange line represents the validation loss.

- mov avg3: Moving average of U with a window size of 10000, representing even

longer-term variations.

Model Performance

The FNN with Features model achieved a test MSE of 0.0805, a significant im-

provement over the Simple FNN model.

Metric Value
Test MSE 0.0805

Table 5.5: Performance metrics for the FNN with Features model.

Predictions vs. True Values

Figure 5.11 shows a scatter plot comparing the FNN with Features model’s predic-

tions for turbulence (R) with the true values. The points cluster more tightly around

the diagonal line compared to the Simple FNN model, indicating improved predictive

accuracy.

Training and Validation Loss

Figure 5.12 displays the training and validation loss of the FNN with Features

model over training epochs. An epoch refers to one complete pass through the entire
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Figure 5.10: Scatter plots comparing the true output and the predicted output. The
x-axis represents jet strength (U), and the y-axis represents turbulence (R)

training dataset. The decreasing training and validation loss, along with their conver-

gence, suggest that the model is learning effectively and generalizing well to unseen

data.

Color Plots: True Output vs. Predicted Output

Figure 5.13 shows scatter plots comparing the true output with the FNN with

Features model’s predicted output. The FNN with Features model demonstrates a

marked improvement in capturing the complex, non-linear relationship between U

and R, as evidenced by the closer resemblance of the predicted output to the true

output. The smoother color gradient in the predicted output suggests that the model

is producing continuous, probabilistic predictions, which is desirable for capturing

real-world variability.

Discussion

The inclusion of additional features significantly enhanced the FNN model’s ability

to capture the complex relationship between zonal wind speed and zonal jet strength.

The FNN with Features model achieved a lower test MSE and exhibited a better
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Figure 5.11: Scatter plot comparing the model’s predicted turbulence values (R) with
the true values. The red line represents perfect agreement.

visual agreement between predicted and true values compared to the Simple FNN

model. This improvement highlights the importance of feature engineering in ma-

chine learning, where carefully selected features can provide the model with valuable

information for making accurate predictions.

The results suggest that incorporating temporal dependencies and smoothing out

short-term fluctuations in the zonal wind speed through features like autocorrela-

tion and moving averages can significantly improve the model’s ability to capture

the underlying dynamics of zonal jets. This finding underscores the importance of

considering the temporal evolution of the input variables when modeling complex

geophysical phenomena.

Enhancing Performance with Custom Loss Functions

This section builds upon the previous analysis of simple FNN models by introduc-

ing a modified FNN model that incorporates a custom loss function. This custom loss

function is designed to capture the specific statistical relationship between zonal wind

speed (U) and turbulence (R), as represented by the conditional probability P (R|U).

5.2.3 FNN with Custom Loss Function

Model Performance
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Figure 5.12: Training and validation loss of the model over training epochs. The blue
line represents the training loss, and the orange line represents the validation loss.

The FNN with Custom Loss Function model was trained to predict the conditional

probability P (R|U) given U and R as inputs. The model’s performance was evaluated

using the MSE on a separate test dataset.

Metric Value
Test MSE 0.0034

Table 5.6: Performance metrics for the FNN with Custom Loss Function model.

The model achieved a test MSE of 0.0034, a significant improvement over both

the Simple FNN (MSE: 0.0054) and the FNN with Features (MSE: 0.0805) models.

This lower MSE suggests that the custom loss function effectively guided the model

towards learning the conditional probability distribution P (R|U).

Predictions vs. True Values

Figure 5.14 shows a scatter plot comparing the FNN with Custom Loss Function

model’s predicted conditional probability values with the true values. The close align-

ment of the data points with the 45-degree line indicates a strong agreement between

the predicted and true values, demonstrating the model’s effectiveness in capturing

the conditional probability distribution.

Training and Validation Loss

Figure 5.15 displays the training and validation loss curves during the training
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Figure 5.13: Scatter plots comparing the true output and the predicted output

process for the FNN with Custom Loss Function. The consistent decrease and con-

vergence of both curves suggest that the model is learning effectively and generalizing

well to unseen data.

Color Plots: True Output vs. Predicted Output

Figure 5.16 presents color plots comparing the true conditional probability dis-

tribution P (R|U) with the predicted distribution from the FNN with Custom Loss

Function model. The color scale represents probability density, with warmer colors

indicating higher densities. The close resemblance between the true and predicted

color plots highlights the model’s ability to accurately capture the complex, non-

linear relationship between U and R as represented by the conditional probability

distribution.

Discussion

The FNN with Custom Loss Function model demonstrated superior performance

compared to the previous FNN models. This improvement can be attributed to the

custom loss function, which explicitly guided the model towards learning the condi-

tional probability distribution P (R|U). By incorporating this statistical relationship
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Figure 5.14: Scatter plot comparing the model’s predicted turbulence values (R) with
the true values. The red line represents perfect agreement.

into the loss function, the model was able to capture the dependencies between zonal

wind speed and turbulence more effectively.

The results highlight the importance of tailoring the loss function to the specific

characteristics of the problem being addressed. In this case, the custom loss function

enabled the FNN model to learn a more accurate representation of the zonal jet dy-

namics, leading to improved predictions and a deeper understanding of the underlying

physical mechanisms.

5.2.4 Statistics-Informed Neural Networks (SINNs)

Previous sections explored the capabilities of feedforward neural networks (FNNs)

in modeling zonal jet dynamics. While FNNs showed promise, their limitations in

capturing complex temporal dependencies and accurately representing the system’s

statistical properties motivated the exploration of a more sophisticated approach:

Statistics-Informed Neural Networks (SINNs).

SINNs leverage the power of deep learning, specifically Long Short-Term Memory

(LSTM) networks, to learn the underlying statistical properties of zonal jet systems

directly from data. LSTMs are a type of recurrent neural network that excel at

processing sequential information, making them well-suited for capturing the temporal
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Figure 5.15: Training and validation loss of the model over training epochs. The blue
line represents the training loss, and the orange line represents the validation loss.

evolution of zonal jets. Unlike FNNs, which focus on point-to-point predictions, SINNs

aim to reproduce the statistical characteristics of the system, such as the probability

density function (PDF) and the autocorrelation function (ACF).

Capturing the Variability of Zonal Jet Dynamics

Figure 5.17 illustrates the inherent variability and complexity of zonal jet dynamics

by showing multiple realizations of the relationship between zonal wind speed (U) and

zonal jet strength (R). Each colored dot represents a single realization, highlighting

the non-linear and turbulent nature of the system. This complexity highlights the

need for models capable of capturing the intricate patterns and statistical properties

present in the data.

Target Empirical Statistics

Figure 5.18 presents the target empirical statistics that serve as the benchmark

for the SINN model. These statistics include:

• Autocorrelation Function (ACF): The ACF (left panel) measures the cor-

relation between the zonal jet strength at different time lags. The exponential

decay observed in the ACF indicates the presence of memory effects and tem-

poral correlations in the system.
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Figure 5.16: Scatter plots comparing the true output and the predicted output. The
x-axis represents jet strength (U), and the y-axis represents turbulence (R)

Figure 5.17: Multiple realizations of the interactions of zonal jets (U) and turbulence
(R)

• Probability Density Function (PDF): The PDF (center panel) describes

the probability distribution of zonal jet strength. The unimodal and symmetric

distribution suggests an underlying stochastic process governing the dynamics.

• ACF for Squared Target Variable (q2): The ACF for q2 (right panel)

provides insights into the higher-order statistical moments of the system.

The SINN model is trained to reproduce these target empirical statistics, ensuring

that it accurately captures the statistical behavior of the zonal jet system.

Equilibrium Probability Density Function
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Figure 5.18: Some Target Empirical Statistics

Figure 5.19 compares the exact PDF of the target data (red line) with the PDF

generated by the trained SINN model (green dashed line). The close alignment be-

tween the two PDFs demonstrates the SINN model’s ability to accurately capture the

equilibrium probability distribution of the zonal jet system. This accurate representa-

tion of the equilibrium PDF is crucial for understanding the long-term behavior and

statistical properties of the system.

Trajectory Comparisons: Short-Term and Long-Term Dynamics

Figures 5.20 and 5.21 compare the trajectories generated by the SINN model

(orange line) with those from a traditional Euler-Maruyama (EM) simulations (blue

line). The close agreement between the trajectories, both in the short-term and long-

term regimes, highlights the SINN model’s ability to accurately capture the dynamics

of the zonal jet system over a wide range of time scales. This capability is particularly

valuable for applications like climate modeling, where accurate long-term predictions

are essential.

Discussion

The SINN model demonstrated superior performance compared to the FNN mod-

els in capturing the complex dynamics and statistical properties of zonal jet systems.

This success can be attributed to the use of LSTMs, which effectively handle tempo-

ral dependencies, and the focus on reproducing target empirical statistics, ensuring

accurate representation of the system’s statistical behavior.

The SINN approach offers a powerful and flexible framework for modeling complex

geophysical phenomena. Its ability to learn directly from data, capture temporal
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Figure 5.19: Comparison of the true PDF and predicted PDF

dependencies, and accurately represent statistical properties makes it a valuable tool

for advancing our understanding of zonal jet dynamics and other complex systems.

5.2.5 Physics-Informed Neural Networks (PINNs)

Previous sections explored data-driven approaches, including FNNs and SINNs, for

modeling zonal jet dynamics. While these models demonstrated the ability to learn

from data, they did not explicitly incorporate the underlying physical laws governing

the system. This section introduces Physics-Informed Neural Networks (PINNs), a

novel approach that integrates deep learning with physical principles, enabling the

discovery of governing equations and the calibration of unknown parameters directly

from data.

Objective and Methodology

The objective of our PINN implementation is to leverage symbolic regression, a

machine learning technique for discovering mathematical expressions, to uncover the

underlying ordinary differential equations (ODEs) governing the zonal jet system.
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Figure 5.20: Comparison of the true PDF and predicted PDF

Figure 5.21: Comparison of the true PDF and predicted PDF
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Specifically, we aim to discover the equations for the perturbation streamfunction

(ψe) and the sheared wavenumber component (ψ+), assuming knowledge of the ODE

governing the zonal jet mean flow (U).

Our methodology involves:

1. Generating Observational Data: Using the Euler-Maruyama method, we

generate data from a known ODE system, representing the time evolution of R

(Reynolds stress divergence) and U (zonal jet mean flow). This data serves as

the target for the PINN to learn.

2. Training the PINN: The PINN is trained using a combination of two loss

functions:

• ODE Residual Loss: Measures the discrepancy between the predicted

and true values of the ODEs, ensuring the learned equations accurately

describe the system’s dynamics.

• Data Loss: Quantifies the difference between the model’s predictions and

the observational data, ensuring the learned equations reproduce the ob-

served behavior.

3. Discovering Equations and Calibrating Parameters: By minimizing the

combined loss, the PINN learns to approximate the unknown ODEs for ψe and

ψ+ and calibrate any unknown parameters within these equations.

Observational Data Generation

Figure 5.22 shows the observational data generated from the known ODE system

using the Euler-Maruyama method. This data, representing the time evolution of R

and U , serves as the ground truth for the PINN to learn.

Training and Loss Functions

Figure 5.23 depicts the evolution of the ODE loss (left panel) and data loss (right

panel) during the PINN training process. The fluctuating ODE loss indicates the

model’s efforts to minimize the residuals of the governing ODEs, while the decreasing

data loss suggests the model is progressively improving its fit to the observational

data.
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Figure 5.22: Simulation data of our ODE system

Figure 5.23: Simulation data of our ODE system

Figure 5.24: Evolution of the unknown parameters during the training process
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Figure 5.25: Comparison of Predictions with True Values

Parameter Evolution

Figure 5.24 illustrates the evolution of two unknown parameters, a and b, during

the training process. The convergence of both parameters towards their true val-

ues (indicated by the red dashed lines) demonstrates the PINN’s ability to calibrate

unknown parameters within the governing equations directly from data.

Prediction Accuracy

Figure 5.25 compares the PINN’s predictions for u1 (related to ψe) and u2 (related

to ψ+) with the true values. The close agreement, particularly in capturing the

oscillatory behavior and overall trends, demonstrates the PINN’s ability to accurately

represent the complex dynamics of the zonal jet system.

Discussion

The PINN model successfully discovered the underlying ODEs governing the zonal

jet system and calibrated unknown parameters directly from data. This achievement

highlights the potential of PINNs in advancing our understanding of complex geo-

physical phenomena, particularly in scenarios where analytical solutions or explicit

knowledge of the governing equations are lacking.

The integration of physical principles into the deep learning framework enables

PINNs to provide physically consistent and interpretable predictions. This approach

offers a promising route for closing the gap between data-driven and physics-based

modeling.
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5.3 Summary

This chapter presented a comprehensive analysis of various machine learning models

applied to the study of zonal jet dynamics. Starting with baseline models like linear

regression and XGBoost, we established the feasibility of using machine learning to

predict zonal jet strength based on zonal wind speed. However, these models exhibited

limitations in capturing the complex, non-linear, and turbulent nature of the system.

The exploration of deep learning models, specifically FNNs, demonstrated im-

proved performance. The Simple FNN model, using only zonal wind speed as input,

struggled to capture the non-linear relationship accurately. Incorporating additional

features derived from zonal wind speed, such as autocorrelation and moving aver-

ages, significantly enhanced the model’s predictive capabilities, as evidenced by the

FNN with Features model. Further improvement was achieved by introducing a cus-

tom loss function tailored to capture the conditional probability distribution between

zonal wind speed and turbulence, leading to the FNN with Custom Loss Function

model, which outperformed all previous models.

Finally, the implementation of Statistics-Informed Neural Networks (SINNs) and

Physics-Informed Neural Networks (PINNs) showcased the potential of integrating

deep learning with statistical and physical constraints. SINNs, leveraging LSTM net-

works, successfully captured the temporal dependencies and statistical properties of

the zonal jet system. PINNs, by incorporating physical laws into the learning pro-

cess, demonstrated the ability to discover governing equations and calibrate unknown

parameters directly from data.

These findings highlight the power and versatility of machine learning, particu-

larly deep learning, in modeling complex geophysical phenomena like zonal jets. By

incorporating statistical and physical constraints, deep learning models can provide

accurate predictions, uncover hidden patterns, and offer valuable insights into the un-

derlying physical mechanisms governing these systems. This research paves the way

for further exploration of deep learning applications in zonal jet dynamics, includ-

ing the development of more sophisticated models, the integration of multiple data

sources, and the exploration of hybrid approaches that combine machine learning with

traditional numerical simulations.
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5.4 Future Directions

This research has laid a strong foundation for further exploration of zonal jet dynamics

using deep learning. Several promising avenues for future research emerge from the

findings presented in this thesis.

First, the analysis of the Physics-Informed Neural Network (PINN) model will

be completed. This involves a more thorough investigation of the model’s ability to

discover the governing equations for ψe and ψ+, including a detailed comparison of

the discovered equations with the true equations used to generate the observational

data. Additionally, the PINN’s capability to calibrate unknown parameters will be

further explored by testing its performance on datasets with varying levels of noise

and missing data. This analysis will provide valuable insights into the robustness and

generalizability of PINNs in uncovering the underlying physics of zonal jet systems.

Second, the research will dig deeper into the phenomenon of jet reversals, where

the zonal jet undergoes a dramatic shift in direction. These reversals are associated

with significant changes in weather patterns and can contribute to extreme weather

events. By utilizing the deep learning models developed in this thesis, we aim to

investigate the precursors and drivers of jet reversals, potentially leading to improved

forecasting and mitigation strategies. The ability of deep learning models to capture

complex temporal dependencies and non-linear interactions makes them particularly

well-suited for studying these dynamic and often unpredictable events.

Finally, a more comprehensive comparison and analysis will be conducted between

the deep learning models and the Statistical State Dynamics (SSD) model. This will

involve using the SSD model as a reference for evaluating the deep learning models’

performance and vice versa. By comparing the predictions, statistical properties, and

physical interpretations derived from both approaches, we aim to identify areas where

the models can complement each other and potentially lead to a unified framework

that integrates data-driven learning with theoretical insights.
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