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Abstract 

Short-Term Load Forecasting (STLF) is a critical and complex task that plays a vital role in the 

efficient management of electricity generation, transmission, and distribution. Recent research has 

made strides in this field through the application of advanced deep learning techniques to enhance 

the accuracy and reliability of load predictions. The first study introduces a novel deep neural 

network tailored for STLF at Memorial University of Newfoundland (MUN). This model 

integrates electric load data with meteorological information and features a 1D Convolutional 

Neural Network followed by an Encoder-Decoder Network with an attention mechanism, showing 

superior performance compared to traditional Gated Recurrent Unit (GRU) and Long Short Term 

Memory (LSTM) models. The study also focuses on optimizing the input horizon using the 

algorithm. 

The second study focuses on Multi-Energy Systems (MES) and presents a Multi-Task Learning-

based approach for load forecasting. It features a cutting-edge deep learning architecture designed 

to forecast multiple loads simultaneously. Applied to the University of Austin Tempe Campus, 

this approach employs a Deep Temporal Convolutional Neural Network (D-TCNet) to effectively 

capture spatial and temporal correlations in the data, resulting in improved forecasting accuracy 

across different energy types and seasons. 

The third study compares various Recurrent Neural Network (RNN)-based time-series forecasting 

algorithms, including LSTM, GRU, Bi-directional GRU, and Bi-directional LSTM, on electric 

load data from MUN. The Bi-directional GRU model emerged as the top performer, achieving the 

highest R2 score and the lowest Mean Squared Error (MSE) and Mean Absolute Error (MAE) for 

day-ahead predictions. 
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Collectively, these studies demonstrate the power of deep learning in enhancing the precision and 

effectiveness of short-term load forecasting, offering promising avenues for optimizing energy 

system operations. 
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Chapter 1: Introduction 

1.1 Literature Review 

Load forecasting is a crucial tool for a power service provider. In the short term, it can 

significantly aid daily operations. Load predictions help operators anticipate peak hours and 

prevent issues like load shedding. Over a longer horizon, it assists maintenance staff in 

planning activities necessary to keep equipment in good running condition. Accurate load 

demand predictions can also influence policy and the future direction of the organization. 

Decisions regarding the expansion of current facilities or purchasing new units depend on these 

predictions. Financially, an increase in forecasting error correlates with higher operating costs. 

A one percent increase in forecasting error is associated with a $10 million increase in 

operating costs [1]. 

The load forecasting problem is often formulated as a time-series problem, where past 

values are used as inputs for the forecasting algorithm. Based on the prediction horizon, the 

problem can be divided into different types: 

Ultra/Very Short-Term Load Forecasting: This type of forecasting predicts load a few 

minutes into the future. It is used in preventive control and emergency management of power 

systems [2]. Different organizations can use these predictions to adjust power scheduling in 

real time. 

Short-Term Load Forecasting: Predicting the electric load one hour to one week ahead falls 

under short-term load forecasting. This type of forecasting significantly impacts system 

reliability. Underestimation can put the system under immense pressure, leading to power 

shortages or outages, while overestimation results in excess power generation and wasted 
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resources [3]. This forecasting is also crucial for generation scheduling, such as optimizing the 

release of hydro reservoirs for hydro-power generation and determining the unit commitment 

function for thermal generation units to minimize operation costs [3]. 

Medium-Term Load Forecasting: This involves predicting electric load from several weeks 

to several months ahead. Medium-term load forecasting is important for setting electricity 

prices, network management scheduling, and deciding power distribution mechanisms [4]. 

Long-Term Load Forecasting: Forecasting electricity demand over a planning horizon 

longer than one year is known as long-term load forecasting. System adequacy is established 

based on these forecasts. As peak load is the worst-case scenario, it is used as the prediction 

target. Peak load predictions are tested against system capacity for generation, transmission, 

and distribution [5]. These predictions are crucial for decisions related to expansions or 

additions of new units to the power utility company's present capacity. 

Another classification for forecasting is based on the number of factors involved in making 

predictions. Algorithms can be divided into univariate and multivariate approaches: 

Univariate Time-Series Forecasting: This method uses only past load values to predict 

future values. 

Multivariate Time-Series Forecasting: This method uses multiple types of data to predict 

electric load demand. Since electric load can depend on various factors other than past load 

values, this method is preferable. It allows for more flexible and sophisticated approaches for 

future load predictions. Meteorological data and features describing holidays and workdays 

can be included. Some prediction methods use a multistep approach, constructing complex 
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features with an algorithm. These derived features are then used to make predictions, as 

exemplified in [6]. 

Prediction algorithms can also be categorized into parametric and non-parametric methods: 

Parametric Algorithms: These algorithms predict based on a fixed number of parameters, 

independent of the amount of data. Examples include linear regression, Autoregressive 

Moving Average (ARMA), and Autoregressive Integrated Moving Average (ARIMA). 

Non-Parametric Algorithms: These algorithms do not assume any structure about the data 

and freely learn and predict based on patterns and structures in the data. Decision trees, support 

vector machines, and deep neural networks are considered non-parametric methods. 

Some of the major challenges faced in electric load forecasting are as follows:  

1. Data Quality and Availability: 

Incomplete or Noisy Data: Load data often contains gaps or noise, which can reduce the 

accuracy of forecasting models. Data might be missing due to equipment malfunctions, 

communication errors, or human mistakes. 

Granularity and Resolution: The available data may lack the necessary granularity (e.g., 

hourly or sub-hourly intervals) or sufficient historical coverage, making it difficult to capture 

detailed consumption trends. 

2. Integration of Renewable Energy Sources: 

Variability and Uncertainty: Renewable energy sources like wind and solar are highly 

variable and unpredictable, adding complexity to load forecasting. Their intermittent nature 

introduces more uncertainty, especially in short-term forecasts. 
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Grid Flexibility: Balancing renewable energy sources with traditional power generation 

requires highly accurate load forecasts to maintain grid stability. 

3. Evolving Consumption Patterns: 

Changing Consumer Behavior: Shifts in consumer energy usage, influenced by factors like 

smart appliances, electric vehicles, and demand-side management, require load forecasting 

models to adapt to these evolving patterns. 

Demand Response Programs: Increased participation in demand response programs, where 

consumers alter their usage based on price signals or incentives, adds variability to 

consumption patterns, making forecasting more difficult. 

4. External Factors and Uncertainty: 

Weather Conditions: Weather plays a major role in electricity demand (e.g., changes in 

temperature affecting heating and cooling). Sudden weather fluctuations or inaccurate weather 

predictions can reduce the accuracy of load forecasts. 

Economic and Social Factors: Economic growth, industrial activity, and population changes 

impact energy demand, but these factors are often difficult to predict and incorporate into 

forecasting models. 

5. Complexities in Multi-Energy Systems: 

Interdependence Between Energy Sources: Multi-energy systems (e.g., electricity, gas, 

heat) involve interactions that must be modeled together. Predicting how different types of 

energy sources interact adds complexity to the forecasting process. 
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Distributed Energy Resources (DERs): The growing use of distributed generation, like 

rooftop solar, and energy storage, such as batteries, shifts the energy supply model away from 

centralized power plants, complicating load predictions. 

6. High Dimensionality of Data: 

Large Input Space: Forecasting models often require a wide range of variables, such as 

weather data, socioeconomic factors, and past load values. Managing and processing this high-

dimensional data efficiently is a challenge. 

Feature Selection: Identifying the most important variables (e.g., meteorological, economic, 

or time-series factors) is crucial to improving accuracy while reducing computational costs. 

7. Temporal and Spatial Variations: 

Short-Term vs. Long-Term Forecasting: Different forecasting horizons (short-term, 

medium-term, and long-term) come with distinct challenges, requiring models to account for 

immediate fluctuations and long-term trends. 

Spatial Resolution: Forecasting across different spatial scales, from building-level to 

regional or national, demands that models be both accurate and adaptable to varying levels of 

aggregation. 

8. Model Selection and Scalability: 

Complexity of Models: AI-based models, such as neural networks and LSTMs, show 

promise but often require vast amounts of data, expertise, and computational power to develop 

and deploy. Balancing complexity and interpretability is an ongoing challenge. 
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Generalization: Ensuring that a forecasting model trained on one dataset or region can 

generalize effectively to other locations or time periods is difficult. Ensuring scalability across 

different grid sizes is also a concern. 

9. Uncertainty in Predictions: 

Confidence Intervals and Risk Assessment: Forecasting models need to provide not only a 

point estimate but also a measure of the uncertainty around that prediction, especially in 

scenarios where miscalculations could lead to significant financial or operational issues. 

10. Integration with Smart Grids: 

Real-Time Adjustments: As smart grids evolve, the need for real-time load forecasting 

becomes more critical. Continuously updating and adjusting forecasts in near real-time 

presents both technical and computational challenges. 

Cybersecurity Risks: With the growing reliance on digital infrastructure and smart 

technology, forecasting systems are increasingly vulnerable to cyber-attacks, which could 

undermine data integrity and prediction accuracy. 

Exponential Smoothing and Autoregressive methods have traditionally been the baseline 

for time series forecasting. However, these approaches require manual selection of inputs and 

rely on prior assumptions about the data. Specifically, ARIMA, one of the most widely used 

methods, assumes a linear relationship between future values and past observations, making it 

less effective in modeling highly non-linear patterns. 

In contrast, time series data often display temporal dependencies, meaning that similar time 

points can lead to different future behaviors. Deep learning models, by comparison, have 

shown far greater potential for time series prediction because of their ability to capture complex 
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features and patterns within the data. For example, Artificial Neural Networks (ANNs) have 

demonstrated superior generalization ability in tasks like water quality prediction. Long Short-

Term Memory (LSTM) networks, in particular, have outperformed traditional methods in 

short-term load forecasting, and both LSTM and Bi-directional LSTM have consistently 

delivered better results for day-ahead forecasting in independent buildings compared to more 

conventional approaches. 

For campus load forecasting, traditional machine learning methods have also been explored. 

Rational Quadratic Gaussian Process Regression (RQ-GPR) was found to perform best among 

conventional methods. In another study, a combination of k-means clustering followed by an 

LSTM algorithm was used for campus load prediction. Additionally, a CNN + sequence-to-

sequence model, trained on residential data, outperformed conventional RNN and LSTM 

models, further highlighting the advantages of newer techniques. While earlier models in this 

field have utilized the Luong attention mechanism other attention mechanisms have not been 

explored.  

The goal of this research is to provide a state-of-the-art deep learning based short-term load 

forecasting method. The said method is an encoder-decoder model with Bahdanau Attention 

to capture long-range dependencies. The model also utilizes a 1D-Convolutional Neural 

Network to capture dependencies among different features. The proposed method aims to solve 

some of the challenges mentioned above which include high dimensionality of data and model 

generalization ability. 

The second part of the research is concerned with multi-energy systems and provides a new 

deep learning based custom architecture for load forecasting. This proposed approach utilizes 
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multi-task learning to improve the accuracy of the current models. This method also aims to 

provide an efficient solution for high dimensionality data by utilizing distance correlation. 

Below is an introduction of major techniques and methods used in load forecasting. It also 

introduces major components used in the proposed architectures.  

1.2 Major Techniques 

In this section we will be reviewing the algorithms typically used for electric load forecasting. The 

latest work done by using those techniques is also explained in detail.  We will start by describing 

the statistical models followed by artificial intelligence based models. We end this section by 

describing the common evaluation metrics used for electric load forecasting and their pros and 

cons. 

1.2.1 Statistical Models  

Statistical models can be divided into 2 main categories based on the number of variables they 

employ for forecasting. These include univariate and multi-variate load forecasting models.  
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Statistical Models

Univariate Models

Multivariate Models

1. Exponential Smoothing 
2. Autoregressive Model

3. Moving Average Model
4. Autoregressive Moving Average 

Model (ARMA)
5. Autoregressive Moving Integrated 

Average Model (ARIMA)
6. Seasonal Autoregressive Moving 

Integrated Average Model (SARIMA)
7. Univariate Grey Models

1. Autoregressive Moving Integrated 
Average Model with Exogenous 

Variables (ARIMAX)
2. Seasonal Autoregressive Moving 

Integrated Average Model with 
Exogenous Variables (SARIMAX)
3. Vector Autoregression (VAR)

4. Bayesian Vector Autoregression 
(VAR)

5. Multivariate Grey System Models

 

Figure 1: Basic Overview of Statistical Models 
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1.2.1.1 Univariate Models: 

Univariate Models only employ past values from a single variable to make future predictions for 

the same variable. These models try to capture the seasonalities and trends in the data to estimate 

future values. 

a. Exponential Smoothing:  
Exponential Smoothing is a type of classical univariate approach to forecasting in which the 

weighted averages of past values are used to predict values in the future. The weights decay 

exponentially for older values. There can be up to nine different types of exponential smoothing 

methods based on the seasonality and trend (and additive, multiplicative or damped additive nature 

of their appearance) [7].  Some of these methods include: 

 Simple exponential smoothing 

 Holt’s linear method 

 Additive damped trend method 

 Additive Holt’s Winter method 

 Multiplicative Holt’s Winter method 

 Holt-Winters’ damped method 

b. Autoregressive Model: 
Autoregressive Model is similar to application of regression method using the lagged values of the 

target variable itself. The order of an autoregressive model depends on the number of lagged values 

used by it. An autoregressive model of order p represented by AR(p) would use past p values to 
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forecast the future. If we consider 𝑷𝒕 to be the value of interest, then a pth order autoregressive 

model would use this equation for prediction. 

𝑷𝒕 = 𝑨𝟏𝑷𝒕−𝟏 + 𝑨𝟐𝑷𝒕−𝟐 + ⋯ + 𝑨𝒑𝑷𝒕−𝒑 + 𝑩 + 𝑪𝒕 (𝟏) 

Here 𝑪𝒕 represents the white noise and 𝑨𝟏-𝑨𝒑 are the coefficients and B is a constant. 

c. Moving Average Model: 
In a moving average model, the predicted value (or target value) can be thought of as a weighted 

moving average of past forecast errors [7]. A moving average model of order q would utilize past 

q forecast errors and is represented as MA(q). 

𝑷𝒕 = 𝑻𝟏𝑪𝒕−𝟏 + 𝑻𝟐𝑪𝒕−𝟐 + ⋯ + 𝑻𝒒𝑪𝒕−𝒒 + 𝑪𝒕 + 𝑴 (𝟐) 

Here 𝑻1-𝑻𝒒 represent the coefficients for the residual terms. The residual terms (𝑪𝒕−1-𝑪𝒕−𝒒) are 

the differences between the predicted and actual values at their respective time steps. 𝑴 represents 

the mean. 

d. Autoregressive-Moving Average (ARMA) Model: 
When moving average and autoregressive predictions are combined in a single model then we get 

a ARMA model. The prediction for a time step t represented by  𝑷𝒕 would be written as follows 

for a ARMA(p,q) model where p represents the order of autoregressive portion while q represents 

the order of moving average part: 

𝑷𝒕 = 𝑴 + ∑ 𝑨𝒊𝑷𝒕−𝒊

𝒑

𝒊=𝟏

+ ∑ 𝑻𝒊𝑪𝒕−𝒊

𝒒

𝒊=𝟏

+ 𝑪𝒕 (𝟑) 

Here autoregressive and moving average predictions are combined.   
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e. Autoregressive Integrated Moving Average (ARIMA) Model: 
ARIMA model is obtained by combining the autoregression algorithm with the moving average 

algorithm after performing differencing on a homogenous nonstationary time series. An 

ARIMA(p,d,q) model consists of an autoregression model of order p, a differencing of order d 

,and a moving average model of order q. Differencing is done to make the model stationary. Hence 

the ARIMA model can be written as:  

𝑃′
𝑡 = 𝑀 + ∑ 𝐴𝑖𝑃′

𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝑇𝑖𝐶𝑡−𝑖

𝑞

𝑖=1

+ 𝐶𝑡 (4) 

The only difference is that 𝑷′
𝒕 is the differenced value and the order of differencing can be higher 

than 1. A first-order differencing is given as: 

𝑃′
𝑡 =  𝑃𝑡 − 𝑃𝑡−1 (5) 

f. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model: 
A SARIMA model is used to forecast univariate time-series which exhibits a seasonality. 

Seasonality can be described as presence of strong periodic patterns [8]. SARIMA model 

introduces other parameters which handle seasonality. A SARIMA(p,d,q)(P,D,Q)s has the 

parameters p,d and q which are same as a non-seasonal ARIMA model but also introduces P,D 

and Q to represent the order of seasonal auto regression, seasonal differencing and seasonal 

moving average respectively. The subscript “s” represents the frequency of repeating pattern. 

g. Univariate Grey System theory-based models: 
Grey system theory was introduced in 1980s and is well known method for studying systems with 

partially known information. This approach requires limited amount of data to study systems with 

unknown characteristics. The methods classify systems based on the amount of information 

available related to system. A black system has no available information while a white system is 
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completely known. A system where only partial information is available is termed a grey system 

[9]. Univariate grey system models include:  

G (1,1): It would be described as a first order grey system model for single variable. It employs a 

differential equation to model the behavior of a data series. 

G (2,1): It would be described as a second order grey system model for single variable. It would 

be able to capture more complex phenomenon compared to first order model. 

1.2.1.2. Multivariate Models: 

Multivariate methods employ multiple interdependent variables to capture patterns in the data and 

use that to improve the forecasting accuracy. Multivariate models include:  

a. Autoregressive Integrated Moving Average with Exogenous Variables 

(ARIMAX) Model: 
An ARIMAX model is a modification of ARIMA model to handle multivariate time-series. This 

model uses exogenous variables in addition to the lagging values of the time-series to make 

forecasts.  

b. Seasonal Autoregressive Integrated Moving Average with Exogenous 

Variables (SARIMAX) Model: 
Like ARIMAX, SARIMAX model is a modification of SARIMA model which can be used for a 

multivariate time series. This model uses additional or exogenous variables to predict the future 

values of the target variable while also handling seasonality. 

c. Vector Autoregression (VAR): 
Vector auto regression is a type of multivariate time series forecasting algorithm which treats the 

future values of a particular variable in a time series as a function of past values of variable itself 

and past values of other variables in the system. 



26 
 

26 

 

d. Bayesian Vector Auto egression (BVAR): 
BVAR is a type of vector autoregression which uses Bayesian framework to improve the 

forecasting capability of standard VAR Model. Rather than using fixed values for lagged values 

in a traditional VAR model, BVAR uses random variables with prior probabilities as input for the 

model. BVAR models offer regularization by incorporating priors to prevent overfitting. BVAR 

offers more robust prediction performance as it leverages prior distributions. 

e. Multivariate Grey System theory-based models: 
Grey system theory-based models can also be used for multiple variables. It would be described 

as a G (1, N) model. This type of model would model a primary variable by using N-1 related 

variables.  

1.2.2 Artificial Intelligence-Based Models: 

1.2.2.1 Artificial Neural Networks:  

Artificial Neural Networks (ANNs) are at the heart of deep learning. They consist of various node 

layers where each node takes input from nodes of the previous layer and assigns weights to each 

of these inputs. This computation is passed through an activation function (Sigmoid, ReLU, or 

Hyperbolic Tangent), which allows the network to learn highly non-linear features as computation 

proceeds deeper into the model. A simple artificial neural network consists of an input layer, an 

output layer, and a hidden layer. 

ANNs can be divided into various types based on the types of inputs they can handle and the type 

of computations they perform. Different types of ANNs are as follow: 

a. Recurrent Neural Networks:  
Recurrent neural networks (RNNs), which were first introduced as Hopfield networks [10], are 

ideal as they can handle sequential data, and information from past data points is used to carry out 
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computation, which not only affects the output but also the information carried to other data points. 

A recurrent neural network can take arbitrarily long sequences of input data and can generate 

arbitrarily long output. Based on the number of inputs and outputs, an RNN can be divided into 

one-to-one, one-to-many, many-to-one, and many-to-many architectures.  

Based on the computations in a single RNN unit, this network can be divided into Simple RNNs, 

Gated Recurrent Units (GRUs) [11], and Long Short-Term Memory (LSTM) [12].  

Based on the information flow, an RNN can be divided into unidirectional and bidirectional. A 

unidirectional RNN only uses information from previous time steps in its computation, while a 

bidirectional RNN [13] uses information from past and future time steps to generate the output.  

A model which uses two separate RNNS is called sequence to sequence model [14] or an encoder-

decoder model. Such a model can generate arbitrarily long sequence of output from an input. They 

can also capture complex dependencies in the data to generate predictions. One other major 

advantage of sequence to sequence models is that attention mechanism [15] can be applied to these 

models which allows the model to focus on different parts of the input while generating each part 

of the output sequence. The figure below shows a sample encoder decoder model. Each of the 

block represents an RNN block that could either be an LSTM or GRU block. It takes input and 

passes information among different blocks. The output is not shown here as it depends on the 

problem statement. In a many-to-many problem for example, the output of each decoder would be 

one complete output. In a many-to-one scenario, only output from the final block would be used.  
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Figure 2: An RNN-based Encoder-Decoder Model 

b. Transformer Networks: 
 Transformer Networks were originally introduced in [15]. They are they are part of many state-

of-the-art models in Natural Language Processing (NLP). Models. They employ multiple 

mechanisms which include self-attention, multi-head attention, positional encoding and encoding-

decoding. Self-attention mechanism allows the model to weigh the importance of different parts 

of the input sequence relative to each other. Multi-head attention breaks down a sequence and 

performs self-attention of each portion simultaneously Each of these attention operations is called 

a head. Encoder-decoder architecture divides the model into two separate portions. Encoder takes 

the input sequence and passes it along to the decoder which generates an output. Transformers do 

not consider position of the inputs (words or values). To remedy this, positional encoding is used 

to feed information about each input in the sequence. All these modifications to the architecture 

allow parallelization during model training unlike RNNs which process the information 

sequentially.  
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c. Convolutional Neural Networks (CNNs): 
CNNs [16] are a type of neural network which are used on structured grid data like an image. 

Primarily they consist of convolution layers, pooling layers and fully connected layers. 

Convolutional layers consist of a convolution operation which generates a feature map by passing 

a kernel through the data. Pooling layer reduces the size of the feature map and fully connected 

layer is obtained by unrolling the feature map and making the final prediction. 

Some of the major CNNs used for time series forecasting include 1D-CNNs [17], Temporal 

Convolutional Networks (TCNs) [18]and WaveNet [19]. 

1D-CNNs can be used to capture temporal features in a time series. The convolution is applied 

over the temporal dimension of the data. In modern time series forecasting research, 1D-CNNs are 

typically used along with other state-of-the-art algorithms to achieve better performance. In [20], 

1D-CNNs are combined with Transformers for intraday stock prices. CNNs capture short term 

dependencies while Transformers model long term dependencies. The model performs better than 

exponential moving average model, ARIMA model and DeepAR model. In [21], RNN based 

LSTM model is combined with 1D-CNN for predicting Euro/United States Dollar (USD) 

exchange rate. Here, CNN is used to capture short-term dependencies while RNN based model 

captures long term dependencies.   

TCNs are another type of convolutional neural networks which use a combination of techniques 

to make them suitable for time series forecasting including casual convolutions, dilated 

convolutions and residual connections. Casual convolutions modify the original convolution 

operation so temporal order of the data is respected. Dilated convolutions ensure a bigger receptive 

field which allow us to capture long range dependencies. Residual connections are also employed. 
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These allow the training of deeper networks preventing exploding or diminishing gradients. In 

[22], TCN outperforms LSTM based RNN network in load forecasting on two datasets.  

WaveNet is a deep generative model to produce raw audio waveforms. It utilizes dilated 

convolutions to model long range temporal dependencies. This type of network has been used for 

time series forecasting. In [23], a WaveNet based encoder-decoder architecture is utilized to make 

short-term load forecasting predictions on French Grid data. In this work, the architecture performs 

better than multiple models such as LSTM based RNN, GRU based RNN, ARIMA, 1D-CNN and 

ConvLSTM. 

d. Neural Basis Expansion Analysis of Time Series (N-BEATS): 
N-BEATS is a deep neural network introduced in 2019 in [24]. The architecture consists of blocks 

in a stacked architecture. Each block consists of a trend component to capture long-term 

dependencies and a seasonal component to capture periodic and seasonal patterns in the data. Each 

block performs a neural basis expansion which transforms an input time-series into a higher 

dimensional space to extract temporal features. Multiple block makes a stack. And prediction from 

one stack is used by another to further refine the predictions. In [25], an evolutionary method using 

N-BEATS to predict energy consumption for individual customers in a smart grid. In [26], a hybrid 

algorithm is employed using N-BEATS algorithm, Transformer mechanism, Convolutional layers 

and Mish activation function for forecasting cryptocurrency portfolios.  

e. Hybrid Networks: 
These models combine different methodologies to cover weaknesses and improve forecasting 

performance of algorithms. One of the examples is Auto encoders + Recurrent Neural Networks. 

Autoencoders reduce dimensionality of the data and denoise it while RNN is used capturing 

temporal features and forecasting. Another example is CNN + LSTM. CNNs are used for capturing 
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spatial features while LSTM is focused on temporal features and forecasting. 

Artificial Intelligence Based 
Techniques

Artificial Neural 
Networks

Support Vector 
Machines

Fuzzy Logic
Wavelet Neural 

Networks

1. Recurrent Neural Networks
2. Transformer Networks

3. Convolutional Neural Networks 
4. Neural Basis Expansion Analysis of 

Time Series 
5. Hybrid Networks

 

Figure 3: Artificial Intelligence based Algorithms 

Latest work in hybrid models for time series forecasting involve [27] which combines Recursive 

Empirical Model Decomposition (REMD) with LSTM model to improve forecasting performance. 

REMD is used to decompose the data in intrinsic mode functions (IMFs) and then LSTM is used 

to predict the future values of those IMFs. Final value is obtained by accumulating different IMFs. 

In [28], LSTM is combined with random forests (RF) and CNN for forecasting. And it shows 

superior performance compared to conventional forecasting techniques. In this model, CNN is 

responsible for capturing spatial features while LSTM captures temporal dependencies. Random 

Forest (RF) algorithm is then used for making the final prediction.  
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1.2.2.2. Support Vector Machines: 

Support vector machines (SVMs) are a type of supervised machine learning algorithm used in 

regression and classification. In a classification problem, SVMs use a kernel function to generate 

a decision boundary (hyperplane) between different classes using only the data points close to 

the hyperplane. These points are called support vectors. A variation of SVM called Support 

Vector Regression (SVR) [29] uses only a subset of data outside the preset margin and generates 

a best-fit hyperplane. A time series can be formulated as a regression problem, and support 

vector regression can be used to generate predictions [30]. 

1.2.2.3 Fuzzy Logic: 

Fuzzy logic [31] is a branch of propositional calculus with truth values between 0 and 1. It is 

different from classical logic, which only has binary truth values. In fuzzy logic, 0 and 1 represent 

the extreme cases, while the values in between represent intermediate degrees of truth, imitating 

human reasoning. Fuzzy logic does not require the input and output values to be numerical, so 

natural language can also be used. This type of approach can be quite beneficial when historical 

data is not in the form of numerical data but rather in the form of linguistic values [32]. This 

technique has been applied to short-term load forecasting [33]. 

1.2.2.4. Wavelet Neural Network: 

A wavelet neural network combines the classical neural network with wavelet analysis. All the 

variables are fed to the input layer, which is connected to the hidden layer with units called 

wavelons. They convert the input variables to dilated and translated versions of the mother 

wavelet. This layer is followed by the output layer, which generates the prediction [34]. Wavelet 

neural networks have been used for short-term load forecasting, where they are trained in fewer  
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Table 1: Summary of Major Techniques in Literature 

Reference Contributions 

[7] . Exponential smoothing: Uses weighted averages of past values with 

exponential decay. 

. Autoregressive (AR): Predicts using lagged values of the target variable. 

. Moving Average (MA): Uses past forecast errors as a moving average for 

predictions. 

. ARMA: Combines AR and MA for time series predictions. 

. ARIMA: Adds differencing to ARMA for non-stationary series. 

. ARIMAX: Incorporates exogenous variables with ARIMA. 

. SARIMAX: Handles seasonality and external variables. 

[8] . SARIMA: Extends ARIMA to handle seasonal patterns in data. 

[9] . Grey system models (G1,1 and G2,1): Models with limited data using grey 

system theory. 

[10] . Artificial Neural Networks (ANN): Learns complex non-linear patterns in 

data. 

[11] . Recurrent Neural Networks (RNN): Handles sequential data with memory 

from past steps. 

[15] . Transformer Networks: Uses attention mechanisms for parallel sequence 

processing. 
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[16] . Convolutional Neural Networks (CNN): Captures short-term dependencies 

in structured data. 

[24] . N-BEATS: Uses stacked blocks to capture trends and seasonality. 

[27] . Hybrid Networks (e.g., CNN + LSTM): Combines models for better 

accuracy. 

[29] . Support Vector Machines (SVM): Applies support vectors for time series 

regression. 

[31] . Fuzzy Logic: Uses fuzzy logic for forecasting with linguistic data. 

[34] . Wavelet Neural Network: Combines wavelet analysis with neural networks 

for forecasting. 

 

1.2.3. Evaluation Metrics 

1.2.3.1. Mean Squared Error: 

Mean Squared Error (MSE) is an evaluation metric used to judge the performance of a forecasting 

technique. It is calculated by averaging the squares of the residuals (the difference between the 

predicted and actual values). Due to squaring, the value is always positive and is quite sensitive to 

outliers. As the estimator or algorithm improves, the value of MSE approaches zero. 

 

𝑀𝑆𝐸 =
∑ (𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁

𝑖=1

𝑁
(6) 
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1.2.3.2. Root Mean Squared Error: 

Root Mean Squared Error (RMSE) is an evaluation metric obtained by taking the square root of 

the Mean Squared Error (MSE). Its values range from 0 to infinity, with 0 representing a model 

with residuals amounting to 0. This metric is more sensitive to outliers compared to Mean Absolute 

Error (MAE) due to the squaring of the residuals. However, RMSE is preferred over MSE because 

it is on the same scale as the data. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁

𝑖=1

𝑁
(7) 

1.2.3.3. Mean Absolute Error: 

Mean Absolute Error (MAE) is an evaluation metric obtained by taking the average of the absolute 

values of the residuals. Since the absolute value is used, the value is always positive. As a more 

accurate algorithm is used, the residuals become smaller, and the average value decreases. Hence, 

a better estimator or algorithm would have a value closer to 0.  

𝑀𝐴𝐸 =
∑ |𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙|

𝑁
𝑖=1

𝑁
(8) 

 

MAE is less sensitive to outliers since residuals are not squared. It has been argued that MAE is 

the most natural measure of average error and is unambiguous; hence, it should be used for inter-

comparison of average model-performance error. Compared to MAE, RMSE does not have a clear 

interpretation as it is a function of MAE, the distribution of error magnitudes, and 𝑁1/2 [38].  

1.2.3.4. R2 Score: 

R2 Score is also referred to as the coefficient of determination. It is calculated as follows:  
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𝑅2 = 1 −
∑ (𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁

𝑖=1

∑ (𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑀)2𝑁
𝑖=1

(9) 

It can be seen from the mathematical formulation that the coefficient of determination can have a 

maximum value of 1 for an estimator that predicts all the ground truth values with complete 

accuracy. However, this evaluation metric can also have a negative value. A lower value would 

indicate a worse model. The value of the coefficient of determination would be 0 if the model 

predicts a constant mean value as the output. 

Here M is the mean of all the observed values and is defined as:  

𝑀 = ∑(𝐺𝑖)

𝑁

𝑖=1

(10) 

1.2.3.5. Mean Absolute Percentage Error: 

Mean absolute percentage error (MAPE) can be defined by the equation below:  

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙
|

𝑁

𝑖=1

% (11) 

 

It is a percentage value obtained by averaging the absolute values of the ratio of error (𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 −

𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and actual value 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙. The mean is multiplied by 100 to obtain the percentage. A 

lower value would imply that a model is better while a higher value would indicate a worse 

performing model. This evaluation metric is scale independent hence it can be used to measure 

model performance across multiple datasets. But one of  the major issues with percentage based 
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evaluation metrics is that they become infinite or undefined when  𝑃𝑎𝑐𝑡𝑢𝑎𝑙 becomes 0. Another 

weakness of this metric is that it assumes a meaningful 0 so they make no sense when forecasting 

temperatures on Celsius scale. Finally, the MAPE also suffers from penalizing positive errors 

much more heavily compared to negative errors [39]. this has led to the use of symmetric errors 

[40].  

Evaluation Metrics

Root Mean Squared Error 

Mean Squared Error

R2 Error

Mean Absolute Error

Mean Arctangent Absolute 
Percentage Error

Median Absolute Percentage 
Error

Mean Absolute Percentage 
Error

 

Figure 4: Evaluation Metrics 

1.2.3.6. Mean Arctangent Absolute Percentage Error: 

This new metric has been proposed to overcome the issues with MAPE metric producing indefinite 

or infinite values when actual values are close to zero. If we look at the adjacent side of a triangle 

as absolute actual value and opposite side as absolute value of difference between actual and 

forecast value, the MAPE can be seen as a slope in the form of a ratio. Mean arctangent absolute 

percentage error (MAAPE) allows us look at the error as the slope but in the form of an angle.  

It can be defined as:  



38 
 

38 

 

MAAPE =
1

𝑁
∑ arctan (|

𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙
|)

𝑁

𝑖=1

(12) 

The arctangent function applied to absolute values is bounded with the range [0,
𝜋

2
]. This property 

of the function prevents infinite values for zero or close to zero actual values. It is also more robust 

to outliers due to its bounded nature. If extremely large errors have important implications for 

algorithm performance, then MAAPE is not a suitable metric [41]. 

1.2.3.7. Median Absolute Percentage Error: 

Median absolute percentage error can be defined as follow:  

𝑀𝑑𝐴𝑃𝐸 = median(|
𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙
|) (13) 

As median is used instead of mean as the measure of central tendency in this case, the effect of 

outliers is reduced. This evaluation metric is preferred when we need to reduce the effect of outliers 

on algorithm selection or evaluation. 

1.2.3.8. Mean Absolute Scaled Error: 

To define Mean Absolute Scaled Error (MASE), we first define the scaled error (SE) as 

:  

𝑆𝐸𝑖 =
𝑃𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙

∑ |𝑃𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑖−1,𝑎𝑐𝑡𝑢𝑎𝑙|
𝑁
𝑖=2

𝑁 − 1
⁄

(14)
 

We simply take the mean of the scaled error to obtain MASE as: 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑆𝐸𝑖|) (15) 
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This method compares the MAE for a given forecast with the mean absolute error of a one-step 

naïve prediction model. If the metric is lower than one, it indicates that on average, the 

performance of the forecasting algorithm is better than the naïve model. Conversely, if the value 

is higher than one, then it shows that MAE calculated for the forecasts generated by the algorithm 

is worse than a naïve mode [39]. 

1.3 Major Contributions of the Research Work 

Major Contributions of the research work are summarized below.  

Part 1: 

1. A novel deep learning network architecture for short-term electric load forecasting. The 

architecture uses a hybrid neural network to make use of spatiotemporal patterns in the data 

for forecasting. It consists of a 1D CNN and a GRU-based encoder-decoder with Bahdanau 

attention for short-term electric load forecasting. Author has not observed the use of this 

attention mechanism in the literature for multivariate short term load forecasting for 

campuses. 

2. Input horizon optimization for more accurate forecasting results, This novel neural network 

decouples the input window length from number of training parameters. This allows much 

faster training times for longer input windows. 

3. Robustness testing framework for deep neural network algorithms. A robustness testing 

framework is developed and utilized to assess the change in model performance in case of 

addition of noise to the data.  

4. Model performance comparison between the proposed architecture and other popular 

algorithms for campus electric load forecasting. Data used for this comparison study is 

taken from Memorial University St. John’s Campus along with metrological data of the 
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city. Comparison is carried out with other deep learning techniques which include a GRU-

based RNN, an LSTM-based RNN, and 1D CNN + Encoder Decoder model without 

attention. The model shows a higher R2 Score and lower MAPE, MAE, and MSE.    

 

Part 2: 

The main purpose of the work in part two is focused on electric load forecasting for multi energy 

systems using multi task learning. The major contributions of that work are summarized below:  

1. Investigate the coupling relationship between cooling, heating and electric loads using 

distance correlation across 4 seasons of the year.  

2. Propose a novel multi-task learning based approach for short-term load forecasting. First, 

distance correlation analysis is used to investigate coupling relationship between multiple 

load time series. Appropriate input variable selection is carried out based on the analysis. 

The selected load data along with exogenous variables are used as input to D-TCNet which 

is a TCN based forecasting network.   

1.4 Thesis Outline   

The thesis consists of five chapters. First chapter is focused on the problem statement and the 

literature review.  

Second chapter is mainly focused on the comparison between different electric load forecasting 

algorithms using a dataset from MUN. The main focus of this chapter is the use of conventional 

recurrent neural networks and their use in electric load forecasting.  

The third chapter proposes a novel electric load forecasting algorithm which combines 1D 

convolution, sequence to sequence model and attention mechanism for electric load forecasting. 

The chapter also investigates the performance of this algorithm on MUN electric load dataset. The 
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input horizon optimization is also performed to ensure optimal performance and finally a 

robustness testing framework is proposed and tested on the algorithm.  

The fourth chapter is concerned with multi energy systems and load forecasting for those 

systems. A novel architecture is proposed which uses distance correlation and multi task learning 

to perform load forecasting for heating, electric and cooling loads. 

The final chapter ends with concluding remarks and research contributions of the research. The 

chapter also proposes future prospects of the research in the field of electric load forecasting as 

well as load forecasting of multi energy systems.  
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Chapter 2: Short-Term Campus Load Forecasting using CNN-

based Encoder-Decoder Network with Attention  

The chapter is currently under review in Energies. The manuscript was submitted on 20th of August 

2024. The manuscript has been accepted and article has been published.  

Abstract  

Short-Term Load Forecasting is a challenging research problem and has a tremendous impact on 

electricity generation, transmission, and distribution. A robust forecasting algorithm can help 

power system operators to better tackle the ever-changing electric power demand. This paper 

presents a novel deep neural network for short-term electric load forecasting for the St. John’s 

campus of Memorial University of Newfoundland (MUN). The electric load data is obtained from 

the Memorial University of Newfoundland and it is combined with metrological data of St. John’s. 

This is used to formulate a multivariate time-series forecasting problem. A novel deep learning 

algorithm is presented consisting of a 1D Convolutional Neural Network which is followed by an 

Encoder Decoder Based Network with attention. The input used for this model is the electric load 

consumption and metrological data while the output is the hourly prediction of the next day. The 

model is compared with Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM) 

based Recurrent Neural Network. A CNN-based Encoder-Decoder Model without attention is also 

tested. The proposed model shows a lower Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Mean Absolute Percentage Error (MAPE), and a higher R2 Score. These evaluation 

metrics show an improved performance compared to GRU and LSTM-based RNNs as well as the 

CNN-Encoder Decoder model without attention. An MAE of 407 kW and a MAPE of 3.37% has 

been achieved our proposed architecture. 

Keywords: Load Forecasting; Convolutional Neural Network; Time Series Forecasting 
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2.1 Introduction 

Modern power systems require an uninterrupted supply of electricity and which demands the least 

amount of error when determining electric load demand. [1]. Accurate day-ahead load forecasting 

is critical the for system’s operation [2]. The financial impact of load forecasting accuracy is also 

very critical. 1% raise in forecasting error is associated with a 10-million-dollar increase in 

operating costs [3]. Hence, it is extremely important to increase the accuracy of load forecasting 

algorithms. Based on the forecasting horizon, load forecasting problem can be divided into 3 major 

categories: (1) Short-term load forecasting deals with intervals ranging from one hour to one week, 

(2) Medium-term forecasting deals with predicting electricity demand from one week up to 1 year 

and (3) Long-term forecasting deals with predictions longer than 1 year [4]. Forecasting methods 

can also be divided based on the number of inputs required by the algorithm. They can be divided 

into a multi-factor forecasting approach which uses multiple variables to predict the load demand 

and a time-series approach in which the algorithm only uses the univariate load data [5]. 

Forecasting algorithms can also be divided into statistical models, artificial intelligence-based 

models, and hybrid methods [6]. 

Statistical Algorithms can be divided into [6]: 

1. Autoregressive (AR) Model 

2. Moving Average (MA) Model 

3. Autoregressive Moving Average (ARMA) Model 

4. Autoregressive Integrated Moving Average (ARIMA) Model 

5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 

6. ARIMAX and SARIMAX models 
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7. Kalman Filtering Algorithm 

8. Grey Models 

9. Exponential Smoothing (ES) 

Artificial Intelligence and computational intelligence-based algorithms can be divided into: 

1. Artificial Neural Network Algorithms (ANN) 

2. Extreme learning machines (ELM) 

3. Support Vector Machines (SVM) 

4. Fuzzy Logic 

5. Wavelet Neural Networks (WNN) 

6. Genetic Algorithms (GA) 

7. Expert System 

Exponential Smoothing and Autoregressive approaches have been considered the baseline for time 

series forecasting but for these approaches, we have to manually set the number of inputs to use 

and also make apriori assumptions about the data [7]. In particular, ARIMA is one of the most 

popular approaches but the algorithm works under the assumption that future values are linearly 

related to the observed data points, hence it is unsuitable for modeling highly non-linear behaviour 

[8]. 

Time series exhibit temporal dependencies which cause two identical points in time to exhibit 

different behaviour in the future. For time series prediction tasks, deep learning architectures show 

greater potential due to their ability to learn complex features and patterns in the data. For water 

quality prediction tasks, ANN was found to have a greater generalization ability [9]. For short-

term forecasting, Long Short Term Memory (LSTM) architecture showed superior performance 
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[10]. For day-ahead forecasting in independent buildings, either LSTM or Bi-directional LSTM 

showed superior performance compared to more conventional techniques [11]. 

For campus load forecasting, conventional machine learning techniques were employed in [12] 

and it was found that Rational Quadratic Gaussian Process Regression (RQ-GPR) showed the best 

performance. In [13], k-means clustering algorithm is used followed by LSTM algorithm for 

prediction of campus load data. In [14], a CNN + sequence to sequence model is proposed which 

is trained on residential data to achieve better performance compared to conventional RNN or 

LSTM models. Previous works in similar ANNs have used Luong attention mechanism but use of 

Bahdanau attention is absent from any literature for 1D CNN + Sequence to Sequence attention 

models. Work focuses on that model for campus load forecasting. Additionally, an extensive input 

horizon optimization study is performed to find optimal input horizon for the algorithm. 

Robustness of the algorithm is also studied by adding noise to the input data. 

The work focuses on a novel deep-learning technique for electric load forecasting. It consists of a 

convolutional neural network followed by an encoder-decoder model with attention. The main 

contribution of the work includes: 

1. A novel deep learning network architecture for short-term electric load forecasting. The 

architecture uses a hybrid neural network to make use of spatiotemporal patterns in the 

data for forecasting. It consists of a 1D CNN and a GRU-based encoder-decoder with 

Bahdanau attention for short-term electric load forecasting. Author has not observed the 

use of this attention mechanism in the literature for multivariate short term load 

forecasting for campuses. 
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2. Input horizon optimization for more accurate forecasting results, This novel neural 

network decouples the input window length from number of training parameters. This 

allows much faster training times for longer input windows. 

3. Robustness testing framework for deep neural network algorithms. A robustness testing 

framework is developed and utilized to assess the change in model performance in case 

of addition of noise to the data.  

4. Model performance comparison between the proposed architecture and other popular 

algorithms for campus electric load forecasting. Data used for this comparison study is 

taken from Memorial University St. John’s Campus along with metrological data of the 

city. Comparison is carried out with other deep learning techniques which include a 

GRU-based RNN, an LSTM-based RNN, and 1D CNN + Encoder Decoder model 

without attention. The model shows a higher R2 Score and lower MAPE, MAE, and 

MSE.    

The paper is divided into 5 Sections. In Section II, data would be described (campus load 

information and metrological data) are provided and the basic characteristics of the data are 

presented. In Section III, the algorithms are discussed. In Section IV, the procedure and simulation 

results are discussed. Finally, Section V concludes the paper.  

 

2.2 Data Description 

2.2.1. Campus Load Information 

Memorial University of Newfoundland (MUN) is located in St. John’s Newfoundland and 

Labrador (NL). The average temperature of the city can range from 6 degrees Celsius to as high 

as 21 Degrees Celsius. Due to this harsh weather, the heating system represents a very significant 
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portion of the total electric load. MUN employs hot water plants to fulfil its heating requirements. 

During the harsh weather of winter, the boilers operate at full capacity while during summer the 

load is decreased and usually half of the boilers are used. The boilers use oil to operate and can 

consume up to 70000 barrels of oil annually to heat more than 50 buildings across the campus. 

University uses two meters to monitor the electric load. Meters log data every 15 minutes. We will 

conduct our analysis on hourly data. Figure 1 is a line plot which shows the trend of electricity 

consumption for MUN St. John’s campus with a data resolution of 1 hour.  

 

Figure 5: MUN electric load 

The average electric load by weekday can be seen in the figure 2 below. The decreased load during 

weekends is quite evident. There are minor differences across the week but a major change is 

observed between electricity consumption for weekdays and weekends. Understandably, 

weekdays have a higher consumption of electricity compared to weekends. Figure 3 is a bar plot 

similar to Figure 2 but it represents the average electricity consumption for each month. Given the 

weather of St. John’s, it is quite evident that months with higher average temperature (summer & 

spring) have a lower electricity consumption compared to months with lower ambient temperature 

(winter & fall). 
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Figure 6: Average electric load by day 

 

Figure 7: Average electric load by month 

2.2.2. Metrological Data 

Metrological data has a significant impact on energy consumption so this data will be used in 

the forecasting strategy. Typically used variables for forecasting include temperature, relative 

humidity, visibility, cloud cover, rainfall, precipitation, dew point, wind speed, and wind chill [15] 

[16]. This metrological data was obtained from weather.gc.ca. Our data will be using the following 

metrological factors [12]: 
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1. Dry Bulb Temperature: The temperature visible on a thermometer when it is exposed to 

the air in the absence of moisture and radiation is called dry bulb temperature. It is proportional to 

the mean kinetic energy of the air molecules. 

2. Dew Point: The temperature required at constant pressure to achieve a relative humidity of 

100% is called the dew point of the air. It is directly proportional to the moisture in the air. 

3. Relative Humidity: At any given temperature, the water mass ratio to air mass represents 

absolute humidity. Relative humidity is obtained by dividing absolute humidity by the maximum 

possible humidity at any given temperature. 

4. Wind Direction: It represents the direction of the blowing wind. A value of 0 denotes that 

the wind is calm. A value of 9 represents that wind is blowing from the east while a value of 36 

means that the wind is blowing from the north.  

5. Wind Speed: It is the speed of the wind. It is measured at a distance of 10m from the 

ground. In our data, we are using km/h as the measuring unit.  

6. Visibility: Visibility is the distance at which an object of tangible size can be observed. In 

our data, we are using kilometers as the measuring unit.  

7. Atmospheric Pressure: The atmospheric pressure is the force exerted per unit area at the 

height of the measuring station.  

After concatenating metrological and electric data, we obtain our complete training dataset. 

Table 2 shows all the chief features of the complete dataset which is then fed to pre-processing 

pipeline.   
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Table 2: Training dataset parameters 

Parameter Value 

Data start date 2016 ndJanuary 2 

Data end date March 31st 2020 

Data interval 1 hour 

Total data points 37221 

Features 8 

 

2.3. Background Knowledge 

2.3.1. Algorithms 

2.3.1.1. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

The SARIMA algorithm is the variation of the Autoregressive Integrated Moving Average 

(ARIMA) algorithm which handles the seasonality in the data. ARIMA itself is a generalized case 

of the Autoregressive Moving Average (ARMA) algorithm. An ARIMA algorithm the has 

following components:  

Autoregressive Model: Autoregressive model is a common way to model a time series. Equation 

1 represents the time series as an autoregressive model. It means that the future values of a time 

series are linearly related to the previous values in the time series. The order of the time series 

represents the number of previous values. For example, if a time series has an autoregressive order 

of p, then it means that the any value in that time series can be written as a linear combination of 

previous p values. Such a time series would be called an AR(p) time series [17]: 
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𝑦𝑡 =  𝛿 +  𝜑1𝑦𝑡−1 +  𝜑2𝑦𝑡−2 + ⋯ +  𝜑𝑝𝑦𝑡−𝑝 + 𝜖𝑡 (1) 

Here 𝜖𝑡 represents the white noise Here 𝑦𝑡 can be seen as a regression p lagging values hence 

it is an AR(p) model. 

Moving Average Model: Moving average model is a way to model a time series as a linear 

combination of past forecasting errors. Equation 2 represents the time series as a moving average 

model. A moving average model of order q can be represented as MA(q). Each value in such a 

time series can be thought of as a moving average of past q forecasting errors. This can be observed 

in equation 2.  

𝑦𝑡 =  𝜇 + 𝜖𝑡 − 𝜀𝑡−1𝜃1 − ⋯ − 𝜀𝑡−𝑞𝜃𝑞 (2) 

Here 𝜇 represents the mean. (𝜖𝑡,… 𝜀𝑡−𝑞) represent the past errors while (𝜃1…𝜃𝑞)  

An ARIMA Model is obtained by combing these two models with differencing to induce 

stationarity on the time series. The order of differencing is represented by the parameter d. Hence 

the ARIMA(p,d,q) model is represented by three parameters i.e. p,d, and q, each representing the 

order of Auto regression, differencing, and moving average of the model.  

2.3.1.2. Long Short-Term Memory Recurrent Neural Network 

Recurrent neural networks are a type of artificial neural network which are capable of handling 

sequential data. A simple RNN network takes the input value of the sequence and combines it with 

the hidden state from the previous timestamp and uses an activation function to generate the hidden 

state for the next timestamp. RNNs are susceptible to exploding and vanishing gradients. To 

resolve this issue, RNN cells are modified using various gates. Long Short Term Memory (LSTM) 

[18] artificial neural network consists of LSTM cells and each cell has an input gate, output gate 
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and forget gate. Through these gates, an LSTM cell can forget or pay attention to different parts 

of a sequential input [19].  

Forget Gate: The forget gate (𝑓𝑡) determines what data needs to be forgotten from a network’s 

long-term memory /cell state (𝑐𝑡) based on the new input 𝑥𝑡 and hidden state obtained from the 

previous time step (ℎ𝑡−1). 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (3) 

Input Gate: The input gate (𝐼𝑡) determines which information needs to be added to the network 

based on the current input and hidden state from the previous step. The gate also generates a 

candidate hidden state (𝑐̂𝑡) by using a tangent hyperbolic activation function. Finally, the cell state 

at time 𝑡 represented by 𝑐𝑡 is calculated as well: 

𝐼𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝐼𝑥𝑥𝑡 + 𝑊𝐼ℎℎ𝑡−1 + 𝑏𝐼) (4) 

𝑐̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) (5) 

𝑐𝑡 = 𝑓𝑡. 𝑐𝑡−1 + 𝑐̂𝑡. 𝐼𝑡 (6) 

Output Gate: The output gate (𝑂𝑡) generates the hidden state (ℎ𝑡) which is passed over to the 

next LSTM cell.  

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (7) 

ℎ𝑡 = 𝑂𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (8) 

All the variables represented by 𝑊 and 𝑏 represent weights and biases (respectively) learned 

by the network on training. The ⊗ symbol represents pointwise multiplication. 
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Figure 8: A basic LSTM unit 

2.3.1.3. Gated Recurrent Unit 

Gated Recurrent Units are a type of Recurrent neural network in which a single unit has 2 gates 

(reset gate and update gate). [20]. GRUs also do not have cell states and instead, they use hidden 

states to pass the information to the next time step. Compared to LSTMs, this network is simpler 

and takes less time to train.  

The basic description of the gates is given below:  

Reset Gate: The reset gate decides how much of the previous information needs to be forgotten. 

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑥𝑥𝑡 + 𝑊𝑟ℎℎ𝑡−1 + 𝑏𝑟) (9) 

Update Gate: The update gate in the GRU decides how much of the information from 

previous time steps need to be passed to the next blocks. 

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧𝑥𝑥𝑡 + 𝑊𝑧ℎℎ𝑡−1 + 𝑏𝑧) (10) 

First, the reset gate is used to create a candidate vector (ℎ̂𝑡) following:  

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑧𝑥𝑡 + 𝑊ℎ(𝑟𝑡 ⊗ ℎ𝑡−1) + 𝑏ℎ𝑡) (11) 

Finally, the update gate is used to generate the hidden state as follows:  
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ℎ𝑡 = 𝑧𝑡 ⊗ ℎ̂𝑡 + (1 − 𝑧𝑡) ⊗ ℎ𝑡−1 (12) 

2.3.1.3. Bi-Directional Recurrent Neural Networks 

Bi-directional RNNs process the data in both directions using two separated hidden layers 

before feeding it to 

the same output layer [21]. This architecture can be used for both, LSTM Recurrent Neural 

Networks (Bi-Directional LSTM) and Gated Recurrent Networks (Bi-Directional GRU). 
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Figure 9: A basic GRU unit 

2.3.1.4. Convolutional Neural Network 

Convolutional neural networks (also referred to as Shift Invariant Artificial neural networks) 

consist of filters that slide along the input features to create feature maps. Typical convolutional 

neural network architectures usually consist of convolutional layers with a pooling layer between 

two convolutional layers and finally dense or fully connected layers.  

A convolutional layer performs convolutional operations using filters or kernels to generate 

feature maps. Important parameters include the stride and filter size. Each neuron of a feature map 

is connected to neurons in the previous layer referred to as the receptive field of that neuron.  
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The activation value of a neuron located at (i,j) location in the kth feature map of layer l is 

obtained by passing the feature map through an activation function which adds the ability to 

learn nonlinear patterns to a network. The activation value can be represented as: 

𝑎𝑖,𝑗,𝑘
𝑙 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊𝑘

𝑙𝑇
𝑥𝑖,𝑗

𝑙 + 𝐵ℎ
𝑙 ) (13) 

Here, 𝑥𝑖,𝑗
𝑙  represents the input while 𝑊𝑘

𝑙𝑇
and 𝐵ℎ

𝑙 are weights and biases. Activation functions 

used could be ReLU, tanh, or sigmoid.   

Pooling operation is used to sample the feature map. It introduces shift invariance to the 

network. Max pooling [21] and average pooling [22] are the typical pooling operations employed 

in convolutional networks. Pooling layers are placed between 2 convolutional layers.  

A network usually consists of a number of convolutional layers with pooling layers in between. 

The earlier layers in a network learn low-level features while the layers after that learn more 

abstract or higher-level features. In case when a convolutional neural network is used for image 

classification, the earlier layers will learn features such as lines, edges, and corners while later 

layers would learn more abstract features which are built on top of previous low-level features.  

After several convolutional and pooling layers, one or more fully connected layers are added at 

the end of the network. This fully connected layer performs high-level reasoning, although it can 

be replaced by a 1x1 convolution layer [23].  This layer is then connected to the output layer. A 

loss function is generated using the output of this layer and true outputs from the training dataset. 

This loss function is then minimized to obtain network parameters (weights and bias terms). A 

popular optimization algorithm used for minimizing loss function is stochastic gradient descent 

[24].  
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2.3.1.5. Sequence to Sequence (Seq2Seq) Model 

As the name implies, this model converts an input sequence to an output sequence. The length 

of both sequences can be different. The model consists of two recurrent neural networks. The input 

is fed to a network called encoder network while we get an output from a model called the decoder 

network.  

The encoder model is a recurrent neural network that takes an input sequence. At each time step 

in the recurrent neural network, the GRU or LSTM block takes the input of that time step and 

produces an output and a hidden state. The hidden state is passed along to the next LSTM/GRU 

block which uses it along with input from that time step to generate a hidden state for the next 

block. The hidden state generated by the last LSTM/GRU block is used as the initial hidden state 

for the decoder part. It is called the context vector.  

The decoder is an RNN consisting of either GRUs or LSTMs. The first decoder block uses a 

hidden state to generate output value and a hidden state for the next LSTM/GRU block. Each block 

will use the output and hidden state from the previous block.  

2.3.1.6. Sequence to Sequence (Seq2Seq) Model with Attention 

The motivation for using the attention mechanism stems from the underperformance of the 

basic encoder-decoder model for long sequences. This is caused by the use of a fixed-length 

context vector.  

When using the attention mechanism, an alignment score is calculated by using a vector 

consisting of all the encoder hidden state vectors as well as the output generated from the decoder 

block of the previous time step. Using alignment scores, attention weights are generated using the 



60 
 

60 

 

Softmax Activation function and finally, a context vector is generated by using attention weights 

and encoder hidden states. 

2.3.1.7. Proposed Custom Architecture: 

The proposed custom architecture consists of a 1D convolution neural network (CNN). The 1D 

CNN provides temporal features to the next model which is the encoder-decoder model. The 

encoder-decoder model also has an attention mechanism. The attention mechanism helps the 

encoder-decoder model to pay attention to more important patterns in the extracted temporal 

features. Both the encoder and decoder consist of GRU units. After the encoder-decoder model, a 

fully connected layer is used. The 24 output cells of the fully connected layer are the predicted 

outputs representing the predicted hourly load profile of the model.   

2.3.2. Evaluation Metrics 

2.3.2.1. Mean Absolute Error  

Mean absolute error is the average of the absolute difference between a predicted/forecasted 

value and ground truth. It can be written as:  

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ |𝑃𝑖 − 𝐺𝑖|

𝑁
𝑖=1

𝑁
(14) 

Here, 𝑃 and 𝐺 are predictions and ground values respectively. 𝑁 is the number of values in the 

dataset. If an estimator is more accurate, it would result in a lower MAE. An inaccurate estimator 

would result in a higher MAE. One major drawback of the MAE is that it is scale dependent (it 

uses same scale as that of the dataset). Being scale dependent means that it cannot be used to 

compare algorithm performance across different datasets.  
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2.3.2.2. Mean Squared Error  

Mean Squared Error is the average of the squared difference between the predicted values and 

ground truth. This evaluation metric is based on Euclidean distance. It can be written as:  

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
∑ (𝑃𝑖 − 𝐺𝑖)

2𝑁
𝑖=1

𝑁
(15) 

This evaluation metric is based on Euclidian distance. An accurate estimator would have a 

lower MSE while an inaccurate estimator would have a higher MSE. Compared to MAE, MSE is 

more sensitive to outliers since errors are squared. MSE is scale dependent so it should only be 

used to compare algorithm performance for same dataset. 

2.3.2.3. R2 Score 

It is also referred to as the coefficient of determination. It can have a maximum value of 1which 

would indicate that the model has predicted every ground truth value correctly. It can also have 

negative values with no limit since an estimator can be arbitrarily worse. If the ground truth is non-

constant and the model predicts a constant mean value, then the R2 value would be 0. The formula 

for this metric is given by the relationship below:  

𝑅2 = 1 −
∑ (𝑃𝑖 − 𝐺𝑖)

2𝑁
𝑖=1

∑ (𝐺𝑖 − 𝑀)2𝑁
𝑖=1

(16) 

Here M is the mean of all the observed values and is defined as:  

𝑀 = ∑(𝐺𝑖)

𝑁

𝑖=1

(17) 

It is evident from 15 that 𝑅2 would have a value of 1 for a model with all the predicted values 

equal to ground truths as (𝑃𝑖 − 𝐺𝑖)2 would be 0. For a baseline model that only predicts mean 
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values, 
∑ (𝑃𝑖−𝐺𝑖)2𝑁

𝑖=1

∑ (𝐺𝑖−𝑀)2𝑁
𝑖=1

 would be 1, and the overall value would be 0. Adding high number of features 

to the model can increase the R2 score of the model even though it might have lower prediction 

power. Similarly, a model with non-random residuals can have high score while still being fairly 

inaccurate. So it is always advisable to use coefficient of determination with other metrics such as 

mean squared error, mean absolute error and mean absolute percentage error.  

2.3.2.4. Mean Absolute Percentage Error (MAPE): 

Mean Absolute Percentage Error (MAPE) is an evaluation metric that is defined as:  

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐺𝑖 − 𝑃𝑖

𝐺𝑖
|

𝑁

𝑖=1

(18) 

This metric is independent of the scale of data and can be used to compare an algorithm across 

different time series. Although if a time series has zero or near zero values, this evaluation metric 

becomes infinite. It also penalizes negative and positive errors asymmetrically.  A more accurate 

algorithm would have lower MAPE compared to a less accurate model. 

2.3. Proposed Solution 

2.4.1 Methodology 

2.4.1.1. Data Cleaning 

Data cleaning and data preprocessing are divided into two different steps as they represent different 

set of procedures used on the dataset. Typically, data cleaning consists of initial set of methods 

while data preprocessing occurs downstream of data cleaning and involves more advanced 

techniques. 
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Data cleaning is performed on the data to make it consistent and remove any discrepancies. Some 

of the major data cleaning procedures involve: 

a. Removal of outliers which could be extremely large values, extremely small values or non-

plausible values (such as negative values for temperature in Kelvin). They might be a part 

of the dataset because of a number of reasons including faulty instrument or some errors in 

data collection software. 

b. Removal of any NA (Not available) values from the dataset. These values represent gaps 

or breaks in the data. 

The outliers are detected based on inter quartile range (IQR). These outliers are then represented 

as NA values. These NA values along with any gaps in the dataset are filled using forward filling 

method. The method involves filling any breaks or outliers in the data with values from previous 

timestamp. Data was analyzed again to find any missing values and outliers. None were found 

after the procedure.  

2.4.1.2. Data Preprocessing 

In this step, data standardization is performed. Data Standardization is carried out for each feature 

separately. This process helps the model converge faster. It is also called Z-Score Normalization. 

It is more robust to any outliers in the data compared to data normalization. Equation 19 shows 

the basic formula for the standardization of a single feature. 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 −  𝑀

𝛼
(19) 

Here M is the meanwhile α is the standard deviation. 
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Secondly, a sliding windowing function is implemented. Data windowing is done to create input-

output pairs from a continuous time series. Since we are using the hourly input, we will be dividing 

the time series into continuous slices while striding 24-time steps which correspond to one 

complete day. The output of the network would be an hourly prediction of one complete day.  

After data windowing, we divide the dataset into 3 portions. These are the training set, validation 

set, and test set. 75% of the data is used for training, 15% for validation while remaining 10% of 

the data is used for testing. 

2.4.1.3. Network Architecture 

The networks used for training include RNNs (LSTM, GRU), a 1D CNN + Encoder-Decoder 

model as well as a custom architecture consisting of a 1D CNN followed by an encoder-decoder 

model with attention. The difference between the above 2 models is the attention mechanism. 

Following this, a fully connected layer generates the desired output. The complete proposed 

architecture is shown in Figure 8. 

Model consists of three main parts. The first part is the 1D CNN model which aims to embed the 

spatial features in the model. These features include metrological features present in the original 

data. The second part is the RNN network based on LSTM model. This portion of the model is 

concerned with temporal features of the data. The dataset is fed to network in the form of windows 

so LSTM model tries to capture the temporal patterns and features in the data. Finally, we have 

the attention mechanism which is part of the temporal network. Attention mechanism is typically 

used for capturing long range dependencies. Here, this mechanism would capture long range 

temporal features would could be missed by a simple RNN or LSTM.  
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2.4.1.4. Training 

Finally, the training set is used to train the data. Huber loss is used along with Adams optimizer.  

𝐻𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠 = {

1

2
(𝑃 − 𝐺)2     𝑓𝑜𝑟 (𝑃 − 𝐺) ≤ 𝛿

𝛿 . (|𝑃 = 𝐺| −
1

2
𝛿) ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20) 

Equation 20 defines the Huber loss. This loss function is non-linear (quadratic) for small values 

of the residual (P-G) and linear for larger residuals. As a result, this function combines the 

sensitivity of Mean Squared Error (MSE) with the robustness of Mean Absolute Error (MAE).  

Each of the algorithms is trained up to 100 epochs. An early stopping routine is implemented 

for a more efficient training process and to save time. Validation loss is monitored and the best 

results are saved based on its minimum value. Finally Mean Absolute Error (MAE), Mean Squared 

Error (MSE), Mean Absolute Percentage Error (MAPE), and R2 values are tabulated on the test 

data to evaluate the model performance. Table 4 shows training and inference times on GTX 970m 

and i7 4720 HQ with 16 GB Memory for the model with best performance.  

   

Table 3: Training Hyperparameters 

Hyperparameters Values 

Epochs 100 

Loss Function Huber Loss 

Batch Size 128 

Optimizer Adams Optimizer 

Early Stopping Patience 20 

Early Stopping Parameter Validation Loss 

Input Features 10 

Output Window Width 24 

Input Window Width 672 
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Table 4: Training and Inference time 

Parameter Value (seconds) 

Training time 257.4 

Inference time .21 

2.4.1.5. Results 

a. Model Comparison  
Data cleaning and preprocessing were done in Python 3.9 using pandas and Numpy. Keras was 

used to create deep learning models and compare various evaluation metrics. We can see graphs 

of electric load prediction by all the models. By looking at the prediction graphs in Figure 9, it can 

be seen that the models have learned the daily electric usage profile quite well. The proposed 

model has the lowest MAPE, MSE, and MAE. The proposed model also shows the highest R2 

score. We also compare this to some of the other forecasting models found in literature which 

include Rational Quadratic Gaussian Process Regression (RQ-GPR), which is used in [12] for 

interpolation however we are interested in forecasting future values while training the model on 

past information. We compare our model with this algorithm. Similarly model proposed in [14] 

called Sequence to Sequence + Luong Attention is also trained and compared with our trained 

algorithm. RQ-GPR has the weakest performance compared to all the other algorithms as it is a 

conventional machine learning techniques compared to rest of the methods which employ deep 

learning. GRU based RNN is the second weakest performer followed by LSTM. Using 1D CNN 

+ Sequence to Sequence model significantly improves the performance. Adding Luong attention 

as mentioned in [14] improves the performance further but the best performance is achieved by 

employing the proposed method which shows lower MAPE, MSE and MAE. It also shows a higher 

R2 score which corresponds to better forecasting potential compared to rest of the algorithms.  
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b. Input Horizon Optimization 
We have obtained all the results for an input window of 672 time steps, 672 time steps 

correspond to 28 days (24 x 28 = 672). Since the model uses a 1D CNN Network, the number of 

learning variables is independent of the input size of each training example. This allows us to 

further optimize the model by varying the input horizon. Using a larger input window would allow 

the network to capture more dependencies among variables but it also reduces the number of 

training samples we can have. This can lead to overfitting as a more complex model requires more 

training examples. The use of a 1D CNN-based network allows the optimization of the input 

horizon without increasing the number of trainable parameters in the network. Another similar 

architecture with an LSTM-based encoder-decoder is also used for comparison. The input window 

was changed from 24 to 672 with an interval of 24. This corresponds to the input horizon ranging 

from 1 to 28 days. The results are tabulated in Table 7. The evaluation metrics used are MAPE, 

MAE, MSE, and R2 Score. It can be observed from the table below that the GRU-based proposed 

model performs the best overall with an 8-day (or 192 time steps) input horizon. 
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Figure 10: Model Pipeline 
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Figure 11: Proposed Network Architecture  
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Figure 12: Predictions for various days using the algorithms 



70 
 

70 

 

Table 5: Results for various algorithms 

Algorithm/Metric MAE (kW) R2 Score MSE (kW2) MAPE (% age) 

LSTM 442.94 0.77 340026.33 3.64 

GRU 493.72 0.739 386019.62 4.05 

1D CNN + Encoder 

Decoder 

423.326 

 

0.8011 

 

294162.21 

 

3.51 

RQ-GPR [12] 450.21 0.71 401264.54 4.98 

Sequence to 

Sequence + Luong 

Attention [14] 

410.11 0.795 298765.45 3.40 

Proposed Network 

Architecture 

407.308 0.805 287346.33 3.37 

c. Robustness Testing 
To ensure that the trained algorithm is sufficiently robust and invariant to perturbations in the 

data, noise is added to the testing set, and evaluation metrics are reevaluated to check for any major 

changes. Gaussian White Noise is added to the load variable in the data with 0 mean and different 

standard deviations. 

Table 6: Robustness testing with different cases 

Case Study 

Details 

Test 

Parameters 

Evaluation Metrics 

% ∆MAE % ∆MSE % ∆MAPE % ∆R2 

1 [0,50] Average 

 

1.241453 4.06674 0.417076 0.89951 

Maximum 

 

1.863907 5.261097 1.003151 1.157584 

Standard 

Deviation 

 

0.283457 0.509466 0.285956 0.112588 

2 [0,75] Average 

 

1.85939 5.20309 1.051538 1.111195 
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Maximum 

 

2.71684 6.87143 1.879937 1.437032 

Standard 

Deviation 

 

0.393231 0.663161 0.397011 0.13982 

3 [0,100] Average 

 

2.796778 6.779848 2.024935 1.405992 

Maximum 

 

4.115265 9.339956 3.419123 1.944015 

Standard 

Deviation 

 

0.546864 0.948765 0.559865 0.203264 

4 [0,125] Average 

 

4.02232 8.966153 3.297807 1.807394 

Maximum 

 

5.781688 12.74125 5.005656 2.662423 

Standard 

Deviation 

 

0.624861 1.205047 0.629848 0.268467 
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Figure 13: Basic robustness testing pipeline 

Cases are studied with over 100 tests for each case. A case is defined as [μ,σ], where μ is the 

meanwhile σ is the standard deviation of the normal distribution of the added noise.  

Figure 9 shows the basic robustness testing pipeline while Figure 11 shows the probability distribution 

functions of the 4 cases studied of added noise. These results obtained after conducting over 100 tests 

are tabulated in Table 5. The highest percentage deviation was observed for MSE which was close to 

12%, this can be explained by the fact that any outliers in the added noise would have affected the 

score in a more significant manner compared to MAE, MAPE, and the R2 score. The rest of the 

metrics show a maximum deviation of around 6%. The average percentage deviation of the metrics 

scores also does not exceed 9% (for MSE). Overall the model is fairly unaffected by the added noise. 
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Figure 14: Violin plot showing variation in evaluation metrics for each case 

 

Figure 15: Probability distribution functions of added noise 
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2.5. Conclusion 

The model is trained on real-world data and shows a higher R2 Score and lower MSE, MAE, and 

MAPE compared to other conventional LSTM-based and GRU-based models. The difference in 

performance achieved by the attention mechanism is also evident as the model with attention 

performs better (Higher R2, lower MAE, MSE, and MAPE) compared to the similar model without 

attention. An analysis was also carried out to find optimal input window sizes while also changing 

the basic RNN block from GRU to LSTM. The input window size of 8-day or 192 time steps with 

a GRU-based encoder decoder performs the best with the lowest MAE, MAPE, and the highest 

R2 Score. Robustness testing of the proposed method was also conducted and shows that the 

proposed model is unaffected by the added perturbations to the data. 

Table 7: Different input horizons 

Architecture Train 

Steps 

MSE 

kW2 

MAE 

kW 

R2 

Score 

MAPE 

(*100 

%) 

GRU 24 536352.076 541.330 0.663 0.045 

 48 464480.438 501.336 0.708 0.043 

 . . . . . 

 . . . . . 

 168 328631.031 435.952 0.786 0.037 

 192 284889.734 408.822 0.814 0.034 

 216 287705.298 412.394 0.812 0.035 

 . .  . . 

 . . . . . 

 . . . . . 

 648 364983.889 458.885 0.754 0.038 

 672 385770.860 471.314 0.739 0.039 
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LSTM 24 508925.840 533.137 0.680 0.045 

 48 488299.198 532.989 0.693 0.045 

 . . . . . 

 . . . . . 

 168 344335.384 448.178 0.776 0.038 

 192 356604.350 465.067 0.767 0.039 

 216 345513.005 452.298 0.775 0.038 

 240 302698.183 421.951 0.802 0.035 

 264 400005.317 477.321 0.738 0.040 

 . . . . . 

 . . . . . 

 648 413153.544 505.153 0.721 0.042 

 672 368893.385 473.734 0.751 0.039 
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Chapter 3: A Novel Multi-Task Learning Based Approach to 

Multi-Energy System Load Forecasting  

The chapter is currently under review in IEEE Open Access Journal of Power and Energy. A 

revision  for the manuscript was requested on August 20th. 

Abstract 

Multi-Energy Systems (MES) allow optimal interactions between different energy sources. 

Accurate load forecasting for such intricate systems would greatly enhance the performance and 

economic incentive to employ them.  This article proposes a state-of-the-art deep learning based 

architecture to forecast multiple loads. The algorithm utilizes load correlations to select optimal 

input parameters. These optimal inputs are fed to D-TCNet (Deep – Temporal Convolution 

Network). This network uses multi-layer perceptrons (MLP) to encode the spatial relationship 

among exogenous variables which is fed to a Temporal Convolutional Network (TCN). The TCN 

resolves temporal information in the multi-load time series which is used for forecasting these 

loads for fixed output horizon. The proposed novel method is used on the energy consumption 

data for multi energy system of University of Austin Tempe Campus. The proposed method shows 

improved performance across all three energy types as well as all four seasons. 

Index Terms— Multi-Energy Systems, Multi-Task learning, Temporal Convolutional Network 
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3.1. Introduction 

Multi-Energy Systems (MES) offer a unique solution for overall efficient energy usage by 

employing interaction between energy sources. Compared to conventional independent energy 

systems, MES offer better performance in technical, environmental and economic terms [1]. MES 

achieve a much better balance between energy supply and demand using the interactions [2]. 

Accurate load forecasting algorithms would prove extremely beneficial in operation and 

maintenance of such systems. However, the interactivity of energy sources gives MES an inherent 

complexity not found in independent systems. The relationships between electric, cooling and 

heating loads vary round the year and the interactions between these loads gives rise to complex 

relationships which further increase the challenge associated with MES load forecasting.  

In a conventional energy system, future energy or load requirements are highly dependent on 

metrological features and past energy consumption. In MES, it is very important to quantify the 

coupling relationships among different loads. Researchers have also used Pearson correlation 

analysis to quantify correlations before feeding data to the prediction algorithm [3] [4]. Pearson 

correlation analysis only quantifies linear dependencies among the data and fails to account for 

intricate non-linear relationships [5]. In the current literature Maximum Information Coefficient 

(MIC) has been used to mitigate this issue [6]. In this article we will be using Distance Correlation 

(Dcor) for coupling analysis. Although, both the MIC and Dcor can be used for non-linear 

relationships, Dcor exhibits higher statistical power and ordering of dependencies is preserved 
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even with the introduction of noise in the data [7]. On top of that Dcor is simpler to calculate and 

is not an approximation like MIC.  

3.2 Literature Review 

Deep Learning is a state of the art technology capable to modeling complex non-linear functions 

using hierarchical structure. This structure allows these models to extract high level features from 

low level mappings. Complexity of the model depends on the number of hidden layers in a 

hierarchy [8]. Deep learning has revolutionized multiple fields including image processing, natural 

language processing and time-series forecasting.  

In case of time-series forecasting, the hidden layer based structure allows the deep learning models 

to extract complex spatial and temporal features from the time-series. These features are used by 

downstream layers to identify key patterns which are used for forecasting. In case of integrated 

energy systems, another factor in the form of complex coupling relationships emerge due to 

inherent interplay among energy variables (heating, cooling and electricity). Researches have used 

multiple forecasting techniques to untangle this challenge.  

In [9], researches create a digital twin for a IES and used deep neural network (DNN) for load 

forecasting. In [10], the researchers use MIC to characterize load correlations and utilize stacking 

based ensemble learning consisting of Random Forests, Gradient Boosting Decision Trees and 

Support Vector Regression. Researchers use multi-task learning (MTL) with bootstrapping, 

improved slap swarm algorithm and multi-kernel extreme learning machine for load forecasting 

of integrated energy system in [11].  

Authors used Bi-directional Long Short Term Memory (Bi-LSTM) Network for short-term load 

forecasting but only considered using MIC for coupling relationship [6].  
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Temporal Convolutional Network (TCN) [12] is an architecture utilizing casual and dilated 

convolutions. It shows strong capability for time-series forecasting and there has not been enough 

research in employing this network for short-term load forecasting while employing multi-task 

learning for multi-energy systems. Combining the temporal convolution network with multi-layer 

perceptron would allow the model to learn complex spatiotemporal features.  

Table 1 consolidates all the current literature on multi energy load forecasting. 

The main purpose of the work is summarized below as:  

1. Investigate the coupling relationship between cooling, heating and electric loads using 

distance correlation across 4 seasons of the year.  

2. Propose a novel multi-task learning based approach for short-term load forecasting. First, 

distance correlation analysis is used to investigate coupling relationship between multiple 

load time series. Appropriate input variable selection is carried out based on the analysis. 

The selected load data along with exogenous variables are used as input to D-TCNet which 

is a TCN based forecasting network.    

3.2. Data Description 

3.2.1. Generic Multi-Energy System 

A Multi-Energy system utilizes the transfer among different forms of energy to improve efficiency, 

sustainability and environmental performance. Such systems also have a higher degree of 

flexibility. Figure 1 shows the energy interaction structure of a generic multi-energy system.  
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Figure 16: Generic Multi-Energy System 

In the figure, power and gas supply are stored and/or converted to electricity, heating and cooling. 

There are various devices/modules in the second or energy conversion layer to achieve the 

transformation of energy from one type to the other. Here PTH is the device used for converting 

power to heating and GTP converts gas to power such as a gas turbine. CTH and HTC are the 

devices for converting cooling to heating and heating to cooling respectively. Depending on the 

system design that can be achieve simultaneously by a heat exchanger.   

3.2.2. Campus Data Analysis 

The dataset in use is from University of Austin Tempe Campus. Data is extracted using Campus 

Metabolism (a website for energy monitoring and historic data storage). It is the heating, cooling 

and electricity consumption data for the integrated energy system powering the campus ranging 

from 2016 to 2019.  
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(a) 

 

(b) 

 

(c) 

Figure 17: (a) Electric load data from 2019 

(b) Heating load data from 2019 

(c) Cooling load data from 2019 

Table 2 shows all the major data features of the input data including the number of temporal and 

metrological variables used. Figure 2 shows the electric, cooling and heating data from 2019 for 

the campus. It can be seen from the energy usage profiles that there is a clear increase in the use 

of electric and cooling loads during summer and fall. High number of students on campus coupled 

with relatively high temperatures on campus create a surge in electricity and cooling demand 

during early fall. Heating loads show a different trend here as demand is understandably lower 

during summer but very high in winter. Next, the dataset is divided into different seasons and 

exploratory data analysis is performed to analyze if data actually belongs to same or different 
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distribution. Violin plot is a great tool to assess this. We not only get the mean for each of the 

different seasons but we can also observe the distribution of target variables. Figure 3 shows the 

violin plots. 

Table 8: Current research in multi energy system load forecasting 

It’s quite evident that apart from having quite different means, the distribution of data is also quite 

different. Moreover, the daily energy usage profiles are also quite different for different seasons. 

So it’s logical to train, validate and test the data for separate seasons independently.  

Reference 
Publication 

Date 
Predictive Model Output Data Interval 

[13] 2016 
Long Short Term 

Memory based RNN 

Cooling, electricity and 

heating 
1 hour 

[14] 2020 
Deep Belief 

Network 

Gas, electricity and 

heating 
1 hour 

[15] 2021 
Deep Belief 

Network 

Gas, electricity and 

heating 
1 hour 

[16] 2014 

Non-linear 

autoregressive 

model for 

exogenous variables 

(NARX) 

Cooling, electricity and 

heating 
1 hour 

[17] 2019 CNN 
Gas, electricity and 

heating 
1 hour 

[18] 2022 Bi-directional GRU 
Cooling, electricity and 

heating 
1 hour 

[19] 2022 CNN-GRU 
Cooling, heating, 

electricity and gas 
1 hour 

[20] 2023 CNN 
Cooling, electricity and 

heating 
1 hour 

[21] 2023 

Custom Architecture 

with Fully 

connected layer, 

convolution and 

residual block 

Cooling, electricity and 

heating 
1 hour 
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3.3. Algorithm 

The algorithm proposed in this article first involves dividing the data into different seasons so they 

can be processed separately. After data division, coupling between three energy variables is 

analyzed using distance correlation analysis. Energy variables (cooling, heating and power) with 

higher correlations are coupled together. As a result, we have three different sets of input variables 

used for each season. These sets are fed to the preprocessing pipeline and then to the multi-task 

learning deep neural network. The network proposed for this task is D-TCN. It consists of multi-

layer preceptrons (MLP) followed by temporal convolution network. The MLP encodes the spatial 

information while TCN deals with the temporal dependencies in the data. The output from three 

MLP + TCN streams is concatenated and used for forecasting.  

 
(a) 

 

(b) 

 

(c) 

Figure 18: (a) Electric load violin plot 

(b) Heating load violin plot 

(c) Cooling load violin plot 
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Data is first divided into seasons based on the months. Summer data is from June to August. 

Following that, till November it is fall. After fall, till February it is winter. Finally, autumn starts 

in March and ends in May. After the data is divided, each of the dataset undergoes distance 

correlation analysis to find out the optimal input variables for D-TCN algorithm.  

3.3.1 Distance Correlation Analysis 

Distance Correlation or Distance Covariance is a metric used to measure the degree of dependence 

or interrelationships between two random variables or vectors. Unlike Pearson correlation 

coefficient, a value of zero implies independence between two vectors or variables.  

Distance Correlation is defined as:  

𝑑𝐶𝑜𝑟2(𝑥, 𝑦) =
𝑑𝐶𝑜𝑣2(𝑥,𝑦)

√𝑑𝑉𝑎𝑟2(𝑥)𝑑𝑉𝑎𝑟2(𝑦)
(1)

We will be using distance correlation to calculate the coupling between all three load variables 
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across four seasons (Spring, Summer, Winter and Autumn). And based on the strength of the 

relationship, input variables are selected for algorithm.  

Table 9: Salient data features 

Parameter Value 

Data start date 1st January 2016 

Data end date 31st December 2019 

Data interval 1 hour 

Number of 

observations 

35063 

Number of 

metrological features 

6 

Number of temporal 

features 

21 

 

Input Data

Time based 
features

Electric Load 
Data

Electric load 
previous Hour

Electric load 2 
hours back

Electric load last 
day at same time

Electric load last 
week at the same 

day

Electric load last 
year at same date

Electric Load 3 
hours back

Cooling 
Load Data

Cooling load 
previous hour

Cooling load 2 
hours back

Cooling load last 
day  at same time

Cooling load last 
week at the same 

time

Cooling load last 
year at same date

Cooling load 3 
hours back

Heating Load 
Data

Heating load last 
hour

Heating load 2 
hours back

Heating load last 
dame at same 

time

Heating load last 
week at the same 

time

Heating load last 
year at the same 

time

Heating load 3 
hours back

Day of the 
week

Month Year

Metrological 
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Dry Bulb 
Temperature

Dew Point

Relative 
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Precipitable 
Water

Atmospheric 
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Figure 19: Features used in the forecasting algorithm 
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Figure 20: Basic algorithm for MES load forecasting 

Distance correlation analysis for the energy variables is carried out and the results show that 

correlation between energy variables vary between different seasons. For example, heating and 

cooling data have a very high coupling during winter season as the MES might be using the excess 

heat for cooling but the relationship is very weak during summer months. We will be using a cut-
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off value of 0.4 to separate the highly coupled energy vectors from loosely coupled energy 

consumption data for each season. The highly coupled data would be used as input for MTL 

algorithm for each season separately. 

The variables with distance correlation of less than 0.4 are not used in the MTL algorithm while 

the variables with a distance correlation above this limit would be considered as inputs for the 

proposed forecasting algorithm. 

Distance Correlation 

Analysis

Input Data for Heating 

Load Forecasting

Input Data for Electric 

Load Forecasting

Input Data for Cooling 

Load Forecasting

Temporal Convolution 

Network
Temporal Convolution 

Network

Temporal Convolution 

Network

Hidden LayerHidden Layer Hidden Layer

Heating Load OutputElectric Load Output Cooling Load Output

Input Data

Data Concatenation

Multi Layer Perceptron Multi Layer Perceptron Multi Layer Perceptron

 

Figure 21: Proposed Architecture 
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Autumn Distance Correlation 

 

Spring Distance Correlation 

 

Summer Distance Correlation 

 

Winter Distance Correlation 

Figure 22: Distance Correlation heat maps 

Table 10: Table for selected input variables based 

on distance correlation analysis 

Season Energy 

Variable 

Input variable 

Heating Cooling Electric 

Summer Heating    

Cooling    

Electric    

Winter Heating    

 Cooling    



91 
 

91 

 

 Electric    

Autumn Heating    

 Cooling    

 Electric    

Spring Heating    

 Cooling    

 Electric    

     

Selected   Removed  

Table 3 consolidates the results for distance correlation analysis by highlighting the selected input 

variables for each season and each input stream for D-TCN algorithm. Autumn and spring use all 

the available energy variables due to strong correlations observed in the coefficients while the 

same is not true for summer and winter. There is a very coupling between heating and electricity 

as well as heating and cooling in both of these  

 seasons. For this reason, these variables are removed as inputs when predicting heating loads.  

3.3.2. Data Preprocessing 

First basic exploratory data analysis is performed before data preprocessing pipeline. This is done 

to ensure there are no extreme outliers or NaN (not a number) values in our data. Outliers are 

identified and removed using inter-quartile range method.  Any data point which is outside of the 

[Q1 – 3 * IQR, Q3 + 2 * IQR] window is replaced using forward filling method. Here Q1 

represents the first quartile, Q3 is the third quartile. 

Data preprocessing consists of three main steps. Data windowing, data partition and finally data 

standardization. Data windowing is necessary to pose a load forecasting problem for the neural 

network to learn.  
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Data is divided based on stride (s), window size (w) and output target size (o). As we are working 

with hourly data, we pose the problem as taking weekly data and generating the next hour 

prediction. We will be using a stride of 1, window size of 168 and output target size of 1. 

1 2 3 4 5 6 7

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

Stride (s)

Window size (w)

Output target size (o)

 

Figure 23: Data Windowing 

Figure 8 shows data windowing where stride (s) is 1, output target size is also 1 and window size 

is 3. After data windowing, we divide the data into train, validation and test split. We use 80% of 

data for training, 10% for validation and test respectively. It is made sure that training data is 

always from the past. Next step is data standardization.  

Data standardization (or z-score normalization) is employed to ensure that model converges faster. 

For each feature, we take the difference between feature mean and that value and divide it by 

standard deviation. This is done for each data window separately. The data standardization for ith 

feature is done as:  
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𝑥̂𝑖 =
𝑥𝑖 −  𝜇𝑖

𝜎𝑖

(2) 

Here 𝜇𝑖 is the mean while 𝜎𝑖 is the standard deviation for ith feature while 𝑥̂𝑖 is the standardized 

feature .  𝜇𝑖 is defined; 

𝜇𝑖 =
1

𝐽
∑ 𝑥𝑖,𝑗

𝐽

𝑗=1

(3) 

Here J is the total number of samples for ith feature. 𝜎𝑖 is defined as:  

𝜎𝑖 = √
1

𝐽
∑

 

(𝑥𝑖,𝑗 − 𝜇𝑖)
2

𝐽

𝑗=1

(4) 

3.3.3. Deep Temporal Convolutional Network (D-TCNet) 

The proposed deep neural network for forecasting is based on TCN and MLP. MLP is used for 

finding the spatial correlations among different features as well as to reduce the dimensions of the 

data similar to word embedding in natural language processing. Data first passes through the MLP 

and then it moves to TCN which resolves the temporal relations in the data. The data from three 

input streams (heating, cooling and electricity) is concatenated after passing through MLP and 

TCN which is then used for forecasting of three energy types in our MES.  

3.3.3.1. Temporal Convolutional Neural Network:  

TCN was originally proposed in [12] for action segmentation. Since TCN allows parallel 

computation of outputs, it shows better performance while training.  

TCN consists of casual and dilated convolutions. Adding residual block is also a major 

modification worth discussing. Casual convolutions ensure that the model learns only from the 
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past time steps. In a casual convolution, the output only depends on the previous input time steps 

only. However, in order to have a full history coverage or to have a big receptive field for the 

model, a very deep model would be required. Dilations are introduced to mitigate this issue. 

Dilated convolutions ensure a fixed distance between input time steps to ensure a much bigger 

receptive field. In a TCN model, dilation value is varied across layers exponentially and in order 

to ensure that there are no holes in the receptive field, the kernel size must be as big as the base of 

the exponential.  

Other than adding dilated convolutions, residual blocks are introduced. A residual block consists 

of a few layers with same dilation factor and a residual connection. It further reduces the number 

of layers required to achieve a larger receptive field.   

Input

Dilation = 1

Dilation = 2

Output

Dilation = 4

 

Figure 24: Simple TCN block 

Figure 9 shows a TCN architecture with casual and dilated convolutions from input to output. The 

illustrated network increases dilation exponentially in each layer.  

A complete TCN uses residual blocks which constitute of simple TCN blocks, weight 

regularization, activation function and dropout layer for regularization. Figure 10 shows a 

complete residual block in detail. 
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Figure 25: A complete residual block 

3.3.3.2. Multi-layer Perceptron (MLP): 

The other major component of the D-TCNet is the MLP layer. It is used before the TCN block to 

reduce the dimension of input to TCN blocks. The MLP encodes the spatial information between 

variables while TCN resolves the temporal component. The proposed network consists of three 

separate MLP layers for 3 sets of inputs for the multi-task learning.   

The complete network consists of three input streams which take data from three input datasets. 

Each dataset is used for predicting the respective energy demand in this multi-task learning 

problem. Following the input stream, we have MLP followed by residual TCN blocks. The output 

from the three TCN blocks is concatenated and fed to another MLP which produces three outputs. 

Each of the output is the energy forecast.   



96 
 

96 

 

After extensive hyperparameter optimization, the most optimal features for the network are given 

below:  

 

Table 11: Network Parameters 

Parameter Value 

MLP Embedding dimension 8 

TCN kernel size 8 

TCN Dropout 0.2 

TCN activation function Leaky ReLU 

Number of TCN Blocks 3 

3.3.3.3. Loss Function, Optimizer and Training Routine: 

Loss function is the metric which is minimized by the neural network algorithm using an optimizer. 

Mean squared error is the loss function employed for training the neural network. This loss 

function is defined as:  

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝐴𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

(5) 

Here A is the vector of actual values while P is the vector of predicted values.  

We employ Adam’s optimizer [22] for minimizing the loss function. Rest of the training routine 

features are given in table 5 below. 

Table 12: Training Routine Parameters 

Parameter Value 

Max epochs 200 

Initial Learning Rate 0.01 
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Learning rate reduction 

on plateau 

Reduction Patience 10 

Reduction factor 0.5 

3.3.4. Evaluation Metrics:  

3.3.4.1. Mean Absolute Percentage Error (MAPE):  

MAPE is a scale independent evaluation metric which can be used to compare algorithm 

performance across different time series as well. For any forecasting algorithm, a lower MAPE 

translates to better performance. Although, one major drawback faced by this metric is that it does 

not penalize positive and negative errors symmetrically. Equation 4 describes MAPE.  

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
|

𝑁

𝑖=1

(6) 

Here A is the actual value while P is the predicted value by the algorithm. Number of samples is 

N.  

3.4.4.2. Mean Absolute Error (MAE): 

Mean absolute error is obtained by taking the mean of absolute difference between actual and 

predicted values. A model with higher accuracy would have a lower MAE. Although mean 

absolute error is symmetric i.e. it penalizes positive and negative errors equally, it is scale 

dependent so it cannot be used to compare algorithms across different data sets.  

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
∑ |𝐴𝑖 − 𝑃𝑖|𝑁

𝑖=1

𝑁
(7) 
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3.4. Results  

First we start with a brief description of the evaluation metrics used for algorithm assessment. 

3.4.1. Performance Evaluation: 

As algorithm is trained separately for each season, algorithm performance is compared separately 

as well. We will compare our proposed model to support vector machine (SVM), Random Forest 

(RF) algorithm and LSTM. We also compare the algorithm to state-of-the-art load forecasting 

algorithms such as multi-task learning least square support vector machine (MTL-LSSM), mutual 

information coefficient based bidirectional LSTM (MIC + Bi-LSTM) and separation fusion + 

improved CNN. The proposed model shows improved performance compared to these algorithms. 

Lastly we compare it to single-task learning approach similar to proposed method with only 

difference being that there is no concatenation so there are three separate input-output streams.  

This comparison is done to show the effectiveness of multi-task approach and information sharing 

layer compared to learning tasks separately.  

Table 13: Results for Autumn 

Algorithm 
Load 

Type 

Evaluation Metrics 

MAPE (%) RMSE (KW) 

SVM 

Electric 7.7 2154.1 

Heating 9.8 251.5 

Cooling 12.1 3698.2 

RF 
Electric 6.2 1854.2 

Heating 7.4 212.3 
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Cooling 10.1 2918.5 

LSTM 

Electric 4.2 997.6 

Heating 5.1 129.7 

Cooling 8.7 2314.5 

MIC + Bi-

LSTM 

[6] 

Electric 2.2 N/A 

Heating 4.1 N/A 

Cooling 7.4 N/A 

Single-

Task 

Approach 

Electric 2.4 756.1 

Heating 4.4 108.4 

Cooling 7.9 1917.8 

Multi-Task 

Approach 

Electric 1.9 605.1 

Heating 4.2 101.2 

Cooling 6.9 1645.1 

 

Table 14: Results for Spring 

Algorithm 
Load 

Type 

Evaluation Metrics 

MAPE (%) RMSE (KW) 

SVM 

Electric 6.1 1976.2 

Heating 13.1 250.8 

Cooling 11.9 3218.3 

RF 

Electric 5.7 1716.6 

Heating 8.4 212.7 

Cooling 8.1 2798.5 

LSTM 

Electric 3.4 1046.7 

Heating 5.5 140.9 

Cooling 7.9 2567.7 

MIC + Bi-

LSTM 

Electric 2.1 N/A 

Heating 3.7 N/A 
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[6] Cooling 3.5 N/A 

Single-

Task 

Approach 

Electric 2.2 811.1 

Heating 3.8 101.1 

Cooling 3.5 1134.7 

Multi-Task 

Approach 

Electric 2.1 768.6 

Heating 3.5 99.8 

Cooling 3.1 976.8 

    

 

Table 15: Results for Summer 

Algorithm 
Load 

Type 

Evaluation Metrics 

MAPE (%) RMSE (KW) 

SVM 

Electric 7.2 1956.8 

Heating 9.5 298.1 

Cooling 12.5 5067.1 

RF 

Electric 6.1 1838.4 

Heating 5.0 135.4 

Cooling 7.7 4567.6 

LSTM 

Electric 3.6 1428.5 

Heating 2.6 53.4 

Cooling 3.9 2547.5 

MIC + Bi-

LSTM 

[6] 

Electric 2.4 N/A 

Heating 2.1 N/A 

Cooling 2.2 N/A 

Separation 

Fusion + 

CNN [20]  

Electric 2.3 N/A 

Heating 1.5 N/A 

Cooling 2.7 N/A 

Electric 2.3 N/A 
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MTL-

LSSM [11] 

Heating 3.3 N/A 

Cooling 3.8 N/A 

Single-

Task 

Approach 

Electric 2.5 1129.6 

Heating 2.3 50.4 

Cooling 2.1 1545.5 

Multi-Task 

Approach 

Electric 2.1 801.5 

Heating 1.5 48.1 

Cooling 2.0 1359.5 

    

 

Table 16: Results for Winter 

Algorithm 
Load 

Type 

Evaluation Metrics 

MAPE (%) RMSE (KW) 

SVM 

Electric 6.6 2413.3 

Heating 10.5 768.4 

Cooling 17.1 5472.9 

RF 

Electric 6.0 2187.4 

Heating 7.6 345.7 

Cooling 12.1 2098.6 

LSTM 

Electric 3.8 1015.4 

Heating 4.9 210.7 

Cooling 9.1 1456.8 

MIC + Bi-

LSTM 

[6] 

Electric 2.5 N/A 

Heating 3.2 N/A 

Cooling 5.1 N/A 

Separation 

Fusion + 

CNN [20] 

Electric 1.5 N/A 

Heating 3.0 N/A 

Cooling 1.9 N/A 
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MTL-

LSSM [11] 

Electric 1.9 N/A 

Heating 3.5 N/A 

Cooling 3.9 N/A 

Single-

Task 

Approach 

Electric 2.6 710.3 

Heating 3.6 154.8 

Cooling 5.2 870.4 

Multi-Task 

Approach 

Electric 1.4 680.5 

Heating 2.7 125.7 

Cooling 2.1 774.7 

 

It can be seen that proposed Deep TCN algorithm has shown the lowest (and hence best) MAPE 

and RMSE. It performs better than the single-task learning approach in every scenario as the 

information sharing layer helps it combine information from all three input streams.   

There are two big leaps in accuracy when analyzing the metrics. First jump is observed when we 

move from conventional machine learning algorithms to deep learning approaches and second leap 

is observed when moving from deep learning to distance correlation (DCor) based approach which 

accounts for coupling information among energy variables.  

A significant decrease in training time is also observed when shifting from single-task to multi-

task learning as instead of training three independent models, one model outputs all three energy 

variables. Figure 11 shows the improvement in training time when employing multi-task learning 

compared to single task learning. The training time has been reduced to a third here. 
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Figure 26: Training time comparison 

3.5. Conclusion 

The work presents a new feature selection method and a novel TCN-based forecasting model for 

multi-energy systems. The feature selection method uses distance correlation to quantify coupling 

among heating, cooling and electricity variables. Highly correlated variables are then selected. The 

TCN-based network uses multi-task learning approach to forecast all three energy variables 

simultaneously. The effectiveness of the proposed method is verified by increased accuracy 

compared to other algorithms in a detailed analysis which divides the data seasonally. The use of 

proposed method significantly improves MAPE and RMSE compared to other state-of-the-art 

algorithms.  
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Chapter 4: Campus Electric Load Forecasting Using Recurrent 

Neural Networks 

The work was presented in the 12th International Conference on Smart Grid (icSmartGrid), Setubal, 

Portugal, 2024 

Abstract 

Short-Term Load Forecasting is a challenging research problem and has a tremendous impact on 

the generation, transmission, and distribution of electricity. In this paper, different Recurrent 

Neural Network (RNN) based time-series forecasting algorithms are applied to the electric load 

data obtained from the Memorial University of Newfoundland. These algorithms include Long 

Short Term Memory (LSTM), Gated Recurrent Network (GRU), Bi-GRU and Bi-LSTM. The data 

is trained on the previous week and its accuracy for the next day is measured using hourly 

forecasts. The accuracy of these algorithms is compared for day-ahead forecasting potential. Bi-

GRU based RNN shows best performance among the tested algorithms with the highest R2 score 

and lowest Mean Squared Error (MSE) and Mean Absolute Error (MAE). 

Keywords: Time-series Forecasting, Deep Neural Networks, Long Short Term Memory, Gated 

Recurrent Unit  

4.1 Introduction 

Modern power systems require an uninterrupted electricity supply and that demands the least 

amount of error when determining electric load demand. [1]. Accurate day-ahead load forecasting 

is critical the for system’s operation [2]. The financial impact of load forecasting accuracy is also 

very critical. 1% raise in forecasting error is associated with 10 million dollars in operating costs 

[3]. Hence, it is extremely important to improve the accuracy of load forecasting algorithms.  
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Load forecasting problem can be divided into 3 major categories based on the duration or length 

of forecasting horizon: (1) Short-term load forecasting deals with intervals ranging from one hour 

to one week, (2) Medium-term forecasting deals with predicting electricity demand from one week 

up to 1 year and (3) Long-term forecasting deals with predictions longer than 1 year [4]. 

Forecasting methods can also be divided based on the number of inputs required by the algorithm. 

They can be divided into multi-factor forecasting approach which uses multi variables to predict 

the load demand and time-series approach in which the algorithm only uses the univariate load 

data [5]. Forecasting algorithms can also be divided into artificial intelligence-based models, 

statistical models and hybrid methods [6]. 

Statistical Algorithms can be divided into [6]:  

1. Autoregressive (AR) Model 

2. Moving Average (MA) Model  

3. Autoregressive Moving Average (ARMA) Model 

4. Autoregressive Integrated Moving Average (ARIMA) Model 

5. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model  

6. ARIMAX and SARIMAX models  

7. Kalman Filtering Algorithm 

8. Grey Models 

9. Exponential Smoothing (ES) 

Artificial Intelligence and computational intelligence-based algorithms can be divided into: 

1. Artificial Neural Network Algorithms (ANN) 

2. Extreme learning machines (ELM) 

3. Support Vector Machines (SVM) 
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4. Fuzzy Logic  

5. Wavelet Neural Networks (WNN) 

6. Genetic Algorithms (GA) 

7. Expert System 

Exponential Smoothing and Autoregressive approaches have been considered baseline for time 

series forecasting but for these approaches we have to manually set the number of inputs to use 

and also make a-priori assumption about the data [7]. In particular, ARIMA is among the most 

popular approaches but the algorithm works under the assumption that future values are linearly 

related to the observed data points, hence it is unsuitable for modeling highly non-linear behavior 

[8]. Time series exhibit temporal dependencies which cause two identical points in time to exhibit 

different behavior in the future. For time series prediction tasks, deep learning architectures show 

greater potential due to their ability to learn complex features and patterns in the data. Among the 

conventional machine learning techniques, Rational Quadratic Gaussian Process Regression 

(GPR) and exponential GPR are the best performing algorithms for short-term load forecasting on 

campus loads [9]. For water quality prediction tasks, ANN was found to have a greater 

generalization ability [10]. Machine Learning algorithms have also been used for state of health 

(SOH) prediction of batteries for electric vehicle [11]. Machine learning algorithms have been 

used in multiple other applications as shown in [12], [13], [14], [15] and [16]. For short-term 

forecasting, Long Short Term Memory (LSTM) architecture showed superior performance [17]. 

For day-ahead forecasting in independent buildings, either LSTM or Bi-directional LSTM showed 

superior performance compared to more conventional techniques [18].  

The work focuses on a comparison between various forecasting methods for day-ahead load 

prediction for the Memorial University of Newfoundland. The paper is divided into 5 Sections. In 
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Section II, data would be described (campus load information and metrological data) is provided 

and basic characteristics of the data are presented. In Section III, the algorithms are discussed. In 

Section IV, the procedure and simulation results are discussed. Finally, Section V concludes the 

paper.  

4.2 Data Description 

Memorial University of Newfoundland (MUN) is located in St. John’s Newfoundland and 

Labrador (NL). On the average temperature of the city can range from -6 Degrees Celsius to as 

high as 21 Degrees Celsius.  

 

Figure 27 Electric Load Data 

Due to this harsh weather, heating system represents a very significant portion of the total electric 

load. MUN employs hot water plants to fulfill its heating requirements. During the harsh weather 

of winter, the boilers operate at full capacity while during summer the load is decreased and usually 

half of the boilers are used.  

The boilers use diesel to operate and can consume up to 70000 barrels of oil annually to heat more 

than 50 buildings across the campus. University uses two meters to monitor the electric load.  

Meters log data every 15 minutes. We will conduct our analysis on hourly data.  
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The average electric load by weekday can be seen in the graph below. The decreased load during 

weekends is quite evident.  

We can also break down the average load consumption on monthly basis. It is evident from the 

figure 3 that load during summer months is lower than compared to winter as heating requirements 

are comparatively lower 

Metrological data has a significant impact on energy consumption so this data will be used in the 

forecasting strategy. Typically used variables for forecasting include temperature, relative 

humidity, visibility, cloud cover, rainfall, precipitation, dew point, wind speed and wind chill [19] 

[20].  

Our data will be using the following metrological factors: 

1. Dry Bulb Temperature:  The temperature visible on a thermometer when it is exposed to the air 

in absence of moisture and radiation is called dry bulb temperature. It is proportional to mean 

kinetic energy of the air molecules.  

2. Dew Point: The temperature required at constant pressure to achieve a relative humidity of 100% 

is called the dew point of air. It is directly proportional to the moisture in air. 

3. Relative Humidity: At any given temperature, the ratio of water mass to air mass gives 

represents absolute humidity. Relative humidity is obtained by dividing absolute humidity by 

maximum possible humidity at any given temperature.  

4. Wind Direction: It represents the direction of blowing wind. A value of 0 denotes that the wind 

is calm. A value of 18 represents that wind is blowing from the south while a value of 27 means 

that the wind is blowing from the west.  



111 
 

111 

 

5. Wind Speed: It is the speed of the wind. It is measured at a distance of 10m from the ground. In 

our data we are using km/h as the measuring unit.  

6. Visibility: Visibility is the distance at which an object of tangible size can be observed. In our 

data, we are using kilometers as the measuring unit.  

7. Atmospheric Pressure: The atmospheric pressure is the force exerted by the atmosphere per unit 

area at the height of the measuring station.  

Table 1 shows all the dataset parameters which will be used in training simulation. It shows the 

interval between data points, data start date, end date and number of features used for the 

simulation. This metrological data was obtained from weather.gc.ca. 

The metrological data is concatenated with load data to make the input dataset.  

Table 17: Training dataset parameters 

Parameter Value 

Data start date January 1st 2015 

Data end date March 31st 2019 

Data interval 1 hour 

Total data points 37221 

Features 8 

.  
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Figure 28  Average Electric Load by Weekday 

 

Figure 29 Average Electric Load by Month 

4.3. Background Information 

4.3.1. Algorithms 

4.3.1.1. Long Short-Term Memory Recurrent Neural Network: 

Recurrent neural networks are a type of artificial neural network which are capable of handling 

sequential data. A simple RNN network takes the input value of the sequence and combines it with 

hidden state from previous timestamp and uses an activation function to generate the hidden state 

for the next timestamp. RNNs are susceptible to exploding and vanishing gradients. To resolve 

this issue, RNN cells are modified using various gates. Long Short Term Memory (LSTM) [21] 

artificial neural network consists of LSTM cells. Each cell performs a set of mathematical 

operations called gates. Each cell has a forget gate, input gate and output gate. Through these gates, 

an LSTM cell is able to forget or pay attention to different parts of a sequential input [22].  
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Forget Gate: The forget gate (ft) determines what data needs to be forgotten from a network’s 

long-term memory /cell state (ct) based on the new input xt and hidden state obtained from the 

previous time step (ht-1).c 

ft = sigmoid(Wfxxt + Wfhht-1 + bf) (1) 

Input Gate: The input gate (It) determines which information needs to be added to the network 

based on the input and hidden state from the last step. Input gate also generates a candidate hidden 

state (ĉt) by using a tangent hyperbolic activation function. Finally the cell state at time t 

represented by ct is calculated as well: 

It = sigmoid(WIxxt + WIhht-1 + bI) (2) 

ĉt = tanh(Wcxxt + Wchht-1 + bc) (3) 

ct = ft. ct-1 + ĉt. It (4) 

Output Gate: The output gate (Ot) is responsible for generating the hidden state (ht) which is 

passed over to the next cell in the sequence.  

Ot = sigmoid(Woxxt + Wohht-1 + bo) (5) 

ht = Ot ⊗ tanh(ct) (6) 

All the variables represented by W and b represent weights and biases (respectively) learned by 

the network on training. The ⊗ symbol represents pointwise multiplication. 
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Figure 30: A basic LSTM Network 

4.3.1.2. Gated Recurrent Unit 

Gated Recurrent Units are a type of Recurrent neural network in which a single unit has 2 gates 

(reset gate and update gate). [23]. GRUs also do not have cell states and instead they use hidden 

state to pass the information to the next time step. Compared to LSTMs, this network is simpler 

and takes less time to train.  

The basic description of the gates is given below:  

Reset Gate: The reset gate decides what portion of the information from previous time step can be 

forgotten.  

rt = sigmoid(Wrxxt + Wrhht-1 + br) (7) 

Update Gate: Update gate in the GRU decides what portion of the information from previous time 

steps can be passed to the next blocks.  

zt = sigmoid(Wzxxt + Wzhht-1 + bz) (8) 

First, the reset gate is used to create a candidate vector (ĥt) follow:  

ĥt = tanh(Wzxt + Wh(rt ⊗ ht-1) + bht) (9) 
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Finally, the update gate is used to generate the hidden state as follow:  

ht = zt ⊗ ĥt + (1-zt) ⊗ ht-1 (10) 

ht-1

ht

xt

σ 

σ 

tanh

ht

rt

1-zt

zt   t

 

Figure 31: A Basic GRU Unit 

4.3.1.3. Bi-Directional Recurrent Neural Networks 

Bi-directional RNNs process the data in two directions using two different hidden layers before 

feeding it to 

the same output layer [24]. This architecture can be used for both, LSTM Recurrent Neural 

Networks (Bi-Directional LSTM) and Gated Recurrent Networks (Bi-Directional GRU). The 

difference between two architectures can be observed from the comparison of Figure 6 and Figure 

7. 

4.3.2 Evaluation Metrics: 

4.3.2.1. Mean Absolute Error (MAE) 

Mean absolute error is the average of the absolute difference between a predicted/forecasted value 

and ground truth. It can be written as:  
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Mean Absolute Error =
∑ |Pi-Gi|

N
i=1

N
(11) 

Here, P and G are prediction and ground values respectively. N is the number of values in the 

dataset. If an estimator is more accurate, it would result in a lower MAE. An inaccurate estimator 

would result in a higher MAE. It is a scale dependent metric, which means that the MAE values 

cannot be compared across different datasets to compare performance. MAE is also not 

differentiable at zero. As most optimization algorithms rely on differentiation, they would have 

trouble updating model parameters around that point. As a result, the learning process might face 

slow convergence or oscillatory behavior. This could be a problem especially when this metric is 

used as a loss function. Other optimization algorithms such as mean squared error could alleviate 

this problem as it is differentiable at x = 0. 

4.3.2.2. Mean Squared Error 
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Figure 32: A Unidirectional Network 

Figure 33: A bidirectional network 
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Mean Squared Error is an evaluation metric obtained by calculating the average of the squared 

difference between the predicted values and ground truth. This evaluation 

metric is based on Euclidean distance. It can be written as:   

Mean Squared Error =
∑ (Pi-Gi)

2N
i=1

N
(12) 

This evaluation metric is based on Euclidian distance. An accurate estimator would have a lower 

MSE while an inaccurate estimator would have a higher MSE. Compared to MAE, MSE is more 

sensitive to outliers since errors are squared. MSE, like MAE, is also scale dependent which limits 

its ability to measure algorithm performance across different datasets. 

4.3.2.3. R2 Score 

R2 score is also called the coefficient of determination. It can have a maximum value of 1which 

would indicate that the model has predicted every ground truth value correctly. It can also have 

negative values with no limit since an estimator can be arbitrarily worse. If the ground truth is non-

constant and the model predicts a constant mean value, then R2 value would be 0. The formula for 

this metric is given by the relationship below:  
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R2 = 1-
∑ (Pi-Gi)

2N
i=1

∑ (Gi-M)2N
i=1

(13) 

Here M is the mean of all the observed values and is defined as:  

M = ∑(Gi)

N

i=1

(14) 

It is evident from 15 that R2 would have a value of 1 for a model with all the predicted values 

equal to ground truths as (Pi-Gi)
2 would be 0. For a baseline model that only predicts mean values, 

∑ (Pi-Gi)2N
i=1

∑ (Gi-M)2N
i=1

 would be 1 and overall value would be 0. 

4.4. Methodology & Simulation Results 

4.4.1. Methodology 

The basic process after the data collection includes data cleaning, data preprocessing and training. 

The basic description of these processes is as follow: 
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4.4.1.1. Data Cleaning 

Data cleaning and data preprocessing are distinct steps, each involving different procedures 

applied to the dataset. Typically, data cleaning is the initial phase, while data preprocessing follows 

Raw Data

Training Data Validation Data Test Data

Ensure Continuity Find and fill  NA values

Z Score Normalization Output

Input

Processed Training Data Processed Validation Data Processed Test Data 

Model Training

Sliding Window

Model Evaluation

Figure 34: Basic Model Pipeline 
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and involves more advanced techniques. Data cleaning aims to ensure consistency and remove 

discrepancies in the data. Major procedures in data cleaning include: 

a. Outlier Removal: Identifying and eliminating extremely large, extremely small, or implausible 

values (e.g. negative temperatures in Kelvin). Outliers can result from faulty instruments or data 

collection errors. 

b. NA (Not Available) Values Removal: These values indicate gaps or breaks in the data and need 

to be addressed. 

Outliers are detected using the interquartile range (IQR) method and are then marked as NA values. 

These NA values, along with any gaps, are filled using the forward filling method, which replaces 

breaks or outliers with values from the previous timestamp. The dataset is reanalyzed to ensure no 

missing values or outliers remain, and none are found after this process. 

4.4.1.2. Data Preprocessing 

In this step, data standardization is performed. data standardization is carried out for each 

feature separately. This process helps the model converge faster. It is also called Z-Score 

Normalization. It is more robust to any outliers in the data compared to data normalization. 

Equation 15 shows the basic equation for normalization of a single feature. 

xnormalized =
x- M

α
(15) 

Here M represents the mean while α is the standard deviation. This technique enhances the 

convergence speed of optimization algorithms by preventing larger values from overshadowing 

the learning process. It also aids in detecting outliers. Additionally, it reduces bias by ensuring that 

all features are on the same scale, minimizing the influence of features with higher magnitudes. 
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By standardizing the scale of data points, it facilitates easier comparison between different datasets 

and features. 

Secondly, windowing function is implemented. Data windowing is done to create input-output 

pairs from a continuous time series. Since we are using the hourly input from last 7 days, we will 

be dividing the time series into continuous slices of 168 time steps while striding 24 time steps. 

The output of the network would be hourly prediction of one complete day (24 time steps).  

After data windowing, we divide the dataset into 3 portions. These are training set, validation set 

and test set. 80% of the data makes up the training set while 10 % of the data is used for validation 

and finally the remaining 10% is used for testing.   

4.4.1.3. Training 

Finally, the training set is used to train the data. Huber loss is used along with Adams optimizer. 

Huber loss can be defined as: 

Huber loss = {

1

2
(P-G)2     for (P-G) ≤ δ

δ . (|P = G|-
1

2
δ) ,     otherwise

(16) 

This loss function is non-linear (quadratic) for small values of the residual (P-G) and linear for 

larger residuals. As a result, this function combines the sensitivity of Mean Squared Error (MSE) 

with the robustness of Mean Absolute Error (MAE).  Huber loss is also more suitable for gradient 

based optimization methods as it provides a smooth gradient at 0 unlike MAE which is non-

differentiable at that point. Huber loss is also quite flexible as changing the parameter δ allows the 

control over the transition between quadratic and linear behavior. Huber loss also helps with data 

that has a lot of noise as it offers a smooth transition between linear and quadratic loss.  
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Figure 35: Predictions of various days using the algorithm 

For comparison, each of the algorithms is trained up to 100 epochs.  Early Stopping routine is 

implemented for a more efficient training process and save time. Validation loss is monitored and 

the best results are saved based on its minimum value. Finally Mean Absolute Error (MAE), Mean 

Squared Error (MSE) and R2 values are tabulated on the test data to evaluate the model 

performance. The architecture used for training of deep learning models is shown in Figure 10. 

We use 3 RNN units (either LSTM, GRU or their bidirectional counter parts), followed by 2 dense 

layers. The first dense layer has 128 units while the second one is the output layer with 24 units. 

The system used for training and inference is a GTX 970m and i7 4720 HQ with 16 GB Memory. 
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4.4.2. Simulation Results: 

Data cleaning and preprocessing were done in python 3.9 using pandas and Numpy. Keras was 

used to create the deep learning models and compare the various evaluation metrics. We can see 

graphs of electric load prediction by all the models. By looking at the prediction graphs in Figure 

9, it can be seen that the models have learned the daily electric usage profile quite well. GRU and 

Bi-GRU models show better MAE and MSE compared to their counter parts (LSTMs and Bi-

LSTMs). The Mean Absolute Error and Mean Squared Error are also given in the table below: 

Table 18: Evaluation Metrics on test set 

Algorithm LSTM Bi-LSTM GRU Bi-GRU 

MAE 

(kW) 
573.13 503.05 490.13 424.09 

R2 Score 0.654 0.73 0.731 0.790 

MSE 

(kW2) 
530192.57 414496.58 411932.35 321941.44 

 

Input 

(168 

Units)

RNN 

Block 

128 

Hidden 

Units

(LSTM/

GRU)

Dense 

Layer 

(128 

Cells)

Output 

(24 

Units)

RNN 

Block 

128 

Hidden 

Units

(LSTM/

GRU)

RNN 

Block 

128 

Hidden 

Units

(LSTM/

GRU)

 

Figure 36: Basic Architecture Used for Deep Learning Algorithm 

4.5. Conclusion 

It can be seen that GRU and Bi-GRU algorithms perform better than the conventional LSTM and 

Bi-LSTM algorithms despite being simpler models. As LSTM and Bi-LSTM models have higher 
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complexity and higher number of learnable parameters, they tend to overfit the data while GRU 

and Bi-GRU are simpler models. 
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Chapter 5: Conclusion and Future Work 
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5.1. Conclusion 

Electric load forecasting is a challenging research problem. It has a great impact on maintenance 

planning, future expansions and organization policy. It can also help alleviate problems such as 

load shedding. An increase in forecasting error actually correlates with operating costs. Our work 

focuses on using state-of-the-art artificial intelligence based algorithms to optimize the electric 

load forecasting.  

When comparing the performance of conventional load forecasting algorithms using recurrent 

neural networks, it is evident that GRU and Bi-GRU outperform LSTM and Bi-LSTM. Bi-GRU 

is the best-performing algorithm, followed closely by GRU. Since LSTM and Bi-LSTM have more 

trainable parameters, they are more prone to overfitting the data compared to Bi-GRU and GRU 

models. 

Next we compare the sequence-to-sequence models to the conventional RNN models and present 

a novel sequence-to-sequence based network with attention. The model, trained on real-world data, 

demonstrates a higher R2 score and lower MSE, MAE, and MAPE compared to other conventional 

LSTM-based and GRU-based models. The impact of the attention mechanism is also clear, as the 

attention-enhanced model outperforms its counterpart without attention, achieving a higher R2 

score and lower MAE, MSE, and MAPE. Additionally, an analysis was performed to identify 

optimal input window sizes while switching the basic RNN block from GRU to LSTM. The model 

with a GRU-based encoder-decoder and an 8-day (192 time steps) input window size achieved the 

best performance, with the lowest MAE, MAPE, and the highest R2 score. Robustness testing of 

the proposed method indicates that the model remains unaffected by added perturbations to the 

data. 
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Finally, the multi-energy systems are studied. We utilize the multi-task learning framework for 

load forecasting for such systems. This work introduces a new feature selection method and a 

novel TCN-based forecasting model for multi-energy systems. The feature selection method 

employs distance correlation to measure the coupling among heating, cooling, and electricity 

variables, selecting those with the highest correlation. The TCN-based network utilizes a multi-

task learning approach to simultaneously forecast all three energy variables. The effectiveness of 

the proposed method is validated by a detailed, seasonally divided analysis, demonstrating 

increased accuracy compared to other algorithms. The proposed method significantly improves 

MAPE and RMSE compared to other state-of-the-art techniques. 

5.2 Future Work 

Future work for load forecasting would include investigating the performance of the novel electric 

load forecasting algorithm presented in chapter 2 on various other datasets. In our investigation 

we focused on real world data from a single MUN campus but investigating the algorithm on other 

datasets would provide valuable insight into the performance of the algorithm in much more 

comprehensive manner.   

Another horizon for research would be to change the architecture and introduce a bi-directional 

encoder decoder instead of the standard encoder decoder and investigate its performance on 

multiple electric load datasets. 

Encoder decoders have an advantage in generating arbitrarily long sequences of output. Use of 

attention mechanism would allow the network to handle long-range dependencies in a much better 

fashion. So using the proposed architecture or a modified version could be used for medium or 

long-term electric load forecasting.  
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For the multi-energy system based forecasting algorithm proposed in chapter 3, more research can 

be done on other multi-energy based datasets to investigate the performance. Another variation for 

the architecture would be to replace the TCN with an encoder decoder based model. Investigating 

the performance for this modification could allow for a better performing algorithm.  
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