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Abstract

Traditional fisheries management has long operated within a single-species lens.

Yet, the persistent degradation of marine ecosystems, loss of biodiversity, and the

consequential decline in ecosystem services highlight the imperative to embrace

new approaches to resource management. This thesis explores various methods

to advance ecosystem-based fisheries management (EBFM) on the Grand Banks

of Newfoundland (3LNO NAFO divisions), filling knowledge gaps on the impacts

of climate change on snow crab, yellowtail flounder and Atlantic cod biomass and

distribution, and the role of forage species and top predators on the stability of

the Grand Banks community. By using spatio-temporal models, which capture

spatial and temporal correlations in data and account for species habitat prefer-

ences, I detected a northern shift in the average location of biomass for Atlantic

cod, suggesting either a northward movement of the 3NO southern stock or a rapid

recovery of the 2J3KL northern stock. In contrast, the centre of gravity of snow

crab and yellowtail flounder have remained relatively stable over time. I also de-

veloped new spring biomass indices for these species in the 3LNO divisions. I used

species distribution models to forecast changes in focal species distribution and

biomass by the end of the century. These models use bottom temperature data

from three climate models (GFDL-ESM4, IPSL-CM6A-LR, and ACM) and three

emissions scenarios (SSP1-2.6 and SSP3-7.0/SSP4-6.0) to force the projections.

The findings suggest that warming is expected to reduce the biomass of snow crab

and yellowtail flounder, while increasing the biomass of Atlantic cod, especially

in the 3NO stock. Furthermore, I developed a size spectrum model to evaluate
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bottom-up versus top-down controls. My findings indicate that Atlantic cod may

play a more important role than forage fish in the stability of the Grand Banks

community. Overall, this thesis provides critical insights into the application of

EBFM on the Grand Banks. It emphasizes the necessity for adaptive management

strategies in response to climate-driven changes and highlights the importance of

advanced modelling approaches to understanding complex ecological interactions.



General summary

Traditional fisheries management has focused on one species at a time. But as our

oceans face serious threats like habitat loss and declining biodiversity, we need new

ways to protect marine life. This research explores different modelling approaches

to advance ecosystem-based fisheries management (EBFM) on the Grand Banks of

Newfoundland. EBFM aims to maintain ecosystem structure and function. Using

advanced computer models, I tracked historical changes in the locations of snow

crab, yellowtail flounder and Atlantic cod on the Grand Banks. I found that the

centre of gravity of Atlantic cod biomass is moving north, which may be indicating a

northern shift in the 3NO southern stock or an increase in 2J3KL northern stock

biomass , while snow crab and yellowtail flounder have remained in their usual

areas. I also calculated new biomass indices that can be used in future species

assessments. To understand future changes in species distributions, I developed

a species distribution model that uses temperature outputs from different climate

change models and scenarios. The results suggest that warming waters could lead

to fewer snow crab and yellowtail flounder but more Atlantic cod in the Grand

Banks. This patterns suggests a need to develop adaptation plans to help fisheries

overcome the negative impact of climate change. Furthermore, by developing a

model that integrates individual size, I simulated the Grand Banks food web to

better understand the roles of forage fish (capelin and sand lance) and top preda-

tors (Atlantic cod) in the ecosystem. I found a strong top-down control on the

Grand Banks. Overall, this research underscores the importance of incorporating

ecosystem considerations into fisheries management. By understanding species in-

teractions and the impacts of climate change, we can work to prevent or mitigate

harm to marine species and fisheries.
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CHAPTER 1

Introduction

1.1 The Grand Banks of Newfoundland

The Grand Banks of Newfoundland are located to the south and east of the island

of Newfoundland. They include the Grand Bank, Whale Bank, Green Bank, and

St. Pierre Bank, which are all submerged banks found at average depths of 200

meters (DFO, 2007b). In this thesis, I defined the Grand Banks as the NAFO

divisions 3LNO (Figure 1.1).

The Grand Banks are influenced by the colder and nutrient-rich Labrador Current

and the warmer and nutrient-poor North Atlantic Current (the northern branch of

the Gulf Stream), ice formation/melting, and variations in the heat flux and surface

winds (Han et al., 2008). This is a very dynamic system with a marked seasonal

variation in primary production resulting from variations in light availability and

thermocline stratification (Cyr et al., 2024). The thermocline is shallower and

stronger in summer and deeper and weaker in winter. This results in pronounced

winter mixing and nutrient-rich waters (Zhao et al., 2013). However, light limita-

tions reduce winter productivity. In spring, increased light and nutrients lead to a

productivity bloom. By late summer, nutrient depletion and reduced mixing lower

productivity, while autumn brings cooler temperatures and storms that reintroduce

nutrients to the surface, allowing for a brief autumn bloom before declining light

limits productivity again. Winter storms replenish nutrients for the next spring

bloom (Kaiser et al., 2011).

From late spring to fall, the Grand Bank’s vertical temperature structure is dom-

inated by a layer of cold water (0 ◦C) trapped between the seasonally heated top

1
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layer and the warmer slope water due to stratification caused by temperature differ-

ences. This layer, called the cold Intermediate Layer (CIL), can reach 170 m depth

(Cyr and Galbraith, 2021; Cyr et al., 2022). The area occupied by the CIL varies

from one year to the next and is related to the North Atlantic Oscillation (Cyr and

Galbraith, 2021). These features create spatial variability in bottom temperature

on the Grand Banks, with the south (3NO divisions) being warmer than the north

(3L division).

In recent years, a warming trend has been observed in the Northwest Atlantic

(Gonçalves Neto et al., 2021; Saba et al., 2016), including the Grand Banks (Cyr

and Galbraith, 2021) (Figure 1.2). This warming may be influenced not only by

warmer air temperatures, which increase heat transfer to the upper ocean layers,

but also by a slowing of the shelf-break jet. The slower jet reduces the supply

of fresh, cold, and nutrient-rich waters from the Labrador Current to the Grand

Banks (Jutras et al., 2020; Garcia-Suarez et al., 2023). This phenomenon is con-

nected to the hypothesis of a weakening Atlantic Meridional Overturning Circula-

tion (Gonçalves Neto et al., 2021).

The Grand Banks is considered an independent ecosystem production unit within

the Newfoundland and Labrador shelf ecosystem due to its distinct high productiv-

ity and well-defined marine community (Pepin et al., 2014; Koen-Alonso and Cuff,

2018). As my research aims to inform ecosystem-based fisheries management, I

will use the Grand Banks as the spatial scale of analysis, despite some stocks being

managed at different units (e.g., Atlantic cod 2J3KL and 3NO stocks).
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Figure 1.1: Map of the average spring bottom temperature during the historical
period (1996-2019) interpolated over the Grand Banks. Isobaths are indicated
in light grey; Northwest Atlantic Fisheries Organization NAFO divisions bound-
aries are indicated with grey rectangles. Black arrows show the main currents
of the region.



4 1.1. The Grand Banks of Newfoundland

Figure 1.2: Normalized anomalies of bottom temperature in NAFO Divisions
3LNOPs (spring) and 2HJ3KLNO (fall). This time series corresponds to the
average of the two seasons, in which each contribution is represented. The shaded
area corresponds to the 1981-2010 average ±0.5 SD. The numerical values of this
time series are reported in a colour-coded scorecard at the bottom of the figure.
This time series is one component of the NL climate index. Source (Cyr and
Galbraith, 2021)
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1.2 Evolution of the Grand Banks’ fisheries

For approximately 500 years, national and international fishing fleets travelled to

the Grand Banks to catch high-value species such as cod, haddock, and flatfish

species. However, the species began to exhibit signs of overfishing in the 1970s,

which led to the establishment of fishing regulations (mesh size and catch quotas)

and Canada’s decision in 1977 to extend its exclusive economic zone (EEZ) to

200 nautical miles (DFO, 2007a). Since the Grand Banks stretches from national

(within EEZ) to international waters, fisheries are administered by two different

institutions, Fisheries and Oceans Canada (DFO) and the Northwest Atlantic Fish-

eries Organization (NAFO), respectively, advising fisheries in national and inter-

national waters. Despite government efforts to prevent groundfish depletion, most

stocks on the Newfoundland Shelf and Grand Banks collapsed in the early 1990s

(Pedersen et al., 2017). As a result, fishing moratoria were established for many

groundfish species (DFO, 2019). The collapse has been attributed to both overfish-

ing and extremely cold environmental conditions, though there is ongoing debate

about their relative contributions. While overfishing is widely regarded as the

primary driver, particularly for top predators like Atlantic cod, some studies high-

light the role of environmental variability—such as colder temperatures—affecting

recruitment and growth rates. Current research suggests that these factors acted

synergistically, with overfishing weakening the population’s resilience to environ-

mental stressors, contributing to the ecosystem regime shift toward a crustacean-

dominated community (Dempsey et al., 2017; Pedersen et al., 2017).

Since the collapse, the status of numerous fisheries on the Grand Banks has var-

ied: some species and stocks have recovered, others have remained at low levels,

and shellfish have become more prominent. The American plaice (Hippoglossoides

platessoides) 3LNO stock has been under moratorium since 1995, often caught

as bycatch in otter trawl fisheries targeting yellowtail flounder, skate, and redfish
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(Wheeland et al., 2021). Similarly, the Atlantic cod (Gadus morhua) 3NO stock

has been under a moratorium since 1994 and is also bycatch in the same fisheries

as American plaice (Cadigan et al., 2022a). The northern stock of Atlantic cod,

2J3KL, was under a moratorium, with limited stewardship and recreational inshore

fisheries allowed (DFO, 2022b) from 1992 until this year (2024) in which a direct

commercial fishery was opened with a TAC of 18,000 t. The redfish (Sebastes

mentella) 3LN stock is currently open for fishing, having been under a morato-

rium from 1998 to 2009 (Rogers et al., 2022) while the 3O stock remains open

without closure in the past (Wheeland et al., 2022). The turbot (Reinhardtius

hippoglossoides) 3KLMNO stock (Regular, 2023) and the yellowtail flounder (Li-

manda ferruginea) stock 3LNO (Parsons et al., 2023) are also open to fisheries,

with a moratorium on the latter from 1995 to 1997. The witch flounder (Glyp-

tocephalus cynoglossus) fishery stock 3NO is open, following a moratorium from

1995 to 2014, and is often bycatch in yellowtail, redfish, skate, and turbot fisheries

(Parsons et al., 2020). The capelin (Mallotus villosus) stock 2J3KL offshore fishery

has been closed since 1990, though the inshore fishery remains open (DFO, 2022a),

whereas the 3NO stock has been under a moratorium since 1992 (NAFO, 2021a).

The snow crab (Chionoecetes opilio) fishery in the 2HJ3KLNOP4R divisions re-

mains open (DFO, 2023a). In contrast, Northern shrimp (Pandalus borealis) in

3LNO divisions have had no direct fishery since 2015, with a complete fishing halt

from 2015 to 2021 (NAFO, 2021b). Lastly, the thorny skate (Raja radiata) stock

3LNO is open for fishing, with this species predominating (95%) among the mixed

skate catches (Sosebee et al., 2022).

1.3 Ecosystem-based fisheries management

The Fisheries Act is Canada’s primary legislation for protecting fish and their habi-

tats (Fisheries Act, 1985). In 2019, the Act was modernized through Bill C-68 to
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highlight sustainable management, best practices, and the adoption of precaution-

ary and ecosystem-based approaches. Single-species fisheries management often

fails to consider species interactions, bycatch, and environmental variability, in-

cluding the impacts of climate change (Hilborn, 2011). Hence, transitioning from

single-species management to ecosystem-based fisheries management (EBFM) is

crucial for implementing the updated Act. Globally, only 2% of assessed stocks

include environmental or ecosystem information (Skern-Mauritzen et al., 2016),

though this percentage is now higher in the US (24%) (Marshall et al., 2019) and

Canada (46%) (Pepin et al., 2022).

EBFM recognizes that fish populations are influenced by interactions with other

species (Pikitch et al., 2012), habitat change (Armstrong et al., 2021), climate

change (Hollowed et al., 2013; Bell et al., 2022), and human activities (Hilborn

et al., 2020). These changes increase the uncertainty in the scientific basis for

decision-making in single-species fisheries management approaches. Ecosystem-

based fisheries management (EBFM) addresses these challenges by integrating

ecosystem considerations into the decision-making process, aiming to preserve

ecosystem integrity (structure and function) while meeting societal and human

needs (Pikitch et al., 2004). Advancing EBFM requires the use of multiple ap-

proaches and models, as no single model can fully capture the complexity of marine

ecosystems (Geary et al., 2020). Employing different models offers complementary

insights, addresses various aspects of ecosystem dynamics, and validates results

through cross-model comparisons. Integrating EBFM into routine management

practices is crucial for effectively addressing ecosystem uncertainty, especially in

highly dynamic regions like Newfoundland and Labrador.
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1.4 Research objectives

This thesis explores various methods to advance EBFM on the Grand Banks of

Newfoundland, focusing on changes in habitat, climate and predator-prey interac-

tions (Figure 1.3). In particular, it aims to fill knowledge gaps about species habi-

tat preferences, the impacts of climate change on snow crab, yellowtail flounder

and Atlantic cod biomass and distribution, and the role of forage species (capelin

and northern sand lance), and top predators on the stability of the Grand Banks

community.

Figure 1.3: Overview of factors explored in advancing ecosystem-based fish-
eries management (EBFM) on the Grand Banks. Components related to habitat
changes, climate effects, and predator-prey interactions are shown in green; fish-
ing impacts and other anthropogenic activities are marked in red, indicating they
are not directly assessed in this dissertation.

I focused on the post-collapse period (1996-2019) to avoid issues related to the

change of fishing gear in the bottom trawl multi-species survey (i.e., very low catch-

ability for shellfish and forage species). I also focused on the spring data because
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the fall surveys, particularly in 2004–2006, were affected by the absence of deep sets,

reduced coverage, and extended timelines due to vessel breakdowns and unplanned

changes (Brodie et al., 2007). The thesis is divided into six chapters (including in-

troduction (Chapter 1) and general conclusions (Chapter 6). Chapter 2 establishes

the groundwork by reviewing the existing literature on ecosystem-based fisheries

management (EBFM). It compiles information on the tools and models available

for implementing EBFM and explores how to integrate ecosystem information into

current management processes. By identifying methods and research directions,

this chapter lays the foundation for the subsequent chapters. Chapter 3 exam-

ines historical changes in species biomass and distribution using spatio-temporal

models whereas Chapter 4 explores projections of species distribution to the end

of the century under three climate models and low and high emissions scenarios.

Both chapters 3 and 4 focus on snow crab (Chionoecetes opilio), yellowtail flounder

(Limanda ferruginea), and Atlantic cod (Gadus morhua). These species were se-

lected due to their varying recovery trajectories following the groundfish collapses

in the early 1990s and their significance to Newfoundland and Labrador’s fishing

sector. Chapter 5 focuses on developing a multispecies size spectrum model to eval-

uate bottom-up controls (driven by forage fish) versus top-down controls (driven

by Atlantic cod) in the Grand Banks. This model incorporates the size distribu-

tion and interactions of eleven key species that constitute the major community of

the Grand Banks. It captures the dynamics of growth, species interactions, and

changes in trophic niches throughout their life stages. Through simulations, I as-

sessed the direct and indirect ecological consequences of changing biomass on the

target species- capelin, sand lance, and Atlantic cod- and evaluated their impor-

tance for the stability of the Grand Banks’ community. Understanding the role

of these species within the ecosystem enables us to anticipate how changes in one

part of the food web might cascade throughout the entire community. Finally,

Chapter 6 synthesizes the findings from the previous chapters and highlights the
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major contribution of this research towards advancing EBFM implementation on

the Grand Banks of Newfoundland.



CHAPTER 2

Managing resources under

changing conditions

2.1 Abstract

The management of natural resources is currently more challenging than ever

before. Climate change and human population growth pose a threat to marine

ecosystems as we know them. In order to preserve ecosystems, biodiversity, and

ecosystem services, management of biological resources must adopt a holistic strat-

egy. Ecosystem-Based Fisheries Management (EBFM) enables these objectives by

managing natural resource use at the ecosystem level. However, EBFM objec-

tives and implementation can sometimes be unclear, particularly when framed in

the context of shifting conditions. This research reviews the strategies available

for managing marine biological resources within the EBFM framework and in a

changing environment. The purpose of this publication is to guide the decision

on whether and how to change current management strategies in order to achieve

policy goals. The manuscript starts with a review of ecosystem indicators and

ecosystem models used to detect and describe changes in ecosystem dynamics and

stocks productivity under present and future conditions. Then, I summarize the

different frameworks and methods available for integrating this information into

the decision-making process. Currently, some of the options available to integrate

ecosystem realism into the fisheries advice include using ecosystem models in the

Management Strategy Evaluation (MSE) process, adjusting single species reference

points with ecosystem information, and implementing risk-equivalent empirical ap-

proaches. However, barriers that impede the adoption of these techniques exist,

11
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and I conclude the study by identifying them and providing literature-based solu-

tions to overcome them from an interdisciplinary perspective.

2.2 Introduction

Management of natural biological resources has historically used a one-species

framework. However, the continual loss of ecosystems, biodiversity, and the re-

sulting loss of ecosystem services in both terrestrial and marine systems (Leclère

et al., 2020; Nicholson et al., 2021; Worm et al., 2006) demonstrates the necessity

of adopting new techniques for managing natural resources. Many of the ecosys-

tem services we acquire from the ocean, such as provisioning (e.g. food security),

climate regulation and maintenance (e.g. protection against coastal erosion), and

cultural functions (e.g. recreation and traditions) are supported by marine biodi-

versity; Therefore, its removal has detrimental local and global effects. The decline

of marine biodiversity may be attributable to overfishing (FAO, 2020), climate

change (Worm and Lotze, 2021), and other anthropogenic stressors such as habitat

degradation and pollution (Sala and Knowlton, 2006). Increasing human popula-

tion exerts further stress on marine ecosystems and their capacity to deliver benefits

for humans, resulting in complicated dynamics with numerous competing objec-

tives that society must address (e.g. sustainability and food security) (Karnauskas

et al., 2021).

Current fisheries management is mostly centred on constructing single-species mod-

els to assess population dynamics of the target stock and its response to alterna-

tive management scenarios (Hilborn and Walters, 2013; Skern-Mauritzen et al.,

2016). However, this strategy has some limitations. On one hand, traditional

single-species fisheries management often does not account for species interactions,

bycatch, and habitat destruction, which conflicts with conservation strategies de-

signed to protect and conserve marine wildlife (such as “The Endangered Species
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Act” and “The Marine Mammal Protection Acts” in the United States and “The

Species At Risk Act” in Canada) (Hilborn, 2011). Another limitation of single-

species stock evaluations is their reliance on models that make strong assumptions

on population processes such as reproductive success, mortality, and growth, of-

ten assuming these processes remain constant (stationarity) over time (Britten

et al., 2017; Vert-Pre et al., 2013). Environmental variability and climate change

could disrupt some of these processes, rendering this strategy ineffective (O’Leary

et al., 2020). Climate change alters ocean conditions, such as currents, coastal up-

wellings, and water temperature, hence affecting primary productivity and species

distributions and abundance on local and global scales (ICES, 2021). These ongo-

ing changes in marine ecosystems increase the uncertainty surrounding decisions

regarding fisheries management. These changes are especially true for small for-

age fish species since they are extremely susceptible to environmental fluctuation

(Bakun et al., 2010). These findings highlight the necessity of adopting a holistic

strategy, such as ecosystem-based fisheries management (EBFM), rather than keep

focusing on a single species frame.

Ecosystem-Based Fisheries Management seeks to conserve the integrity (structure

and function) and diversity of ecosystems, as well as satisfy societal and human

demands for food and socioeconomic advantages, without degrading ecosystems

(Pikitch et al., 2004; Zhou et al., 2010). Implementing EBFM is a challenging

task that has suffered some reluctance from regulatory institutions due to concerns

related to the lack of clarity on EBFM objectives and implementation process (Lid-

ström and Johnson, 2020; Trochta et al., 2018). However, efforts have been made

to overcome these concerns and currently, implementing EBFM is totally feasible

(Murawski, 2007; Patrick and Link, 2015). A global review of fish stock assess-

ments indicated that only 2% of them incorporate information regarding external

drivers of productivity (Skern-Mauritzen et al., 2016). Nonetheless, the implemen-

tation of EBFM moves in a spectrum of incremental complexity and, when looking
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at EBFM in a broader context, Marshall et al. (2019) found that ecosystem in-

formation is integrated in 24% of 206 fish stocks assessed in the US, although

its inclusion is more often qualitative than quantitative. Similar results have been

found in Canada, with 21of the 178 stocks assessed including environmental factors

quantitatively (Pepin et al., 2022). Even though the full implementation of EBFM

still needs some work, an improvement in the status of marine species populations

has been observed, probably due to combined progress in EBFM implementation

and single species models (Link and Marshak, 2021).

Numerous authors, such as Essington and Punt (2011), have argued that the tran-

sition from SSFM to EBFM should be gradual, building on conventional methods

rather than replacing them entirely. In contrast, Berkes (2012) emphasized the need

to move beyond traditional techniques and adopt interdisciplinary approaches to

avoid repeating past mistakes. In any case, fostering the adoption of EBFM as

well as promoting ecosystem restoration and conservation are required to achieve

global conservation targets (such as UN Sustainable Development Goals-SDGs14

Life below water and Global Post-2020 Biodiversity targets), safeguarding wildlife,

and preserving national economies and wellbeing (Razzaque et al., 2019; Ward

et al., 2022). Due to the cumulative long-term effects of human activities on ma-

rine ecosystems and biodiversity, which have caused a shift in ecosystem baselines

(Pauly et al., 1995; Rodrigues et al., 2019), the management of marine resource

use is likely more difficult now than ever. This paper provides a guideline for

managing marine biological resources in a changing environment and within the

EBFM approach. In particular, I focus on the use of ecosystem indicators and

ecosystem models to detect and describe changes in ecosystem dynamics and stock

productivity under present and future scenarios. Then, frameworks and tools for

incorporating this information into the current existing management process are

presented.
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2.3 Managing marine biological resources in a

changing environment

Marine biological resource management often entails monitoring the productivity

of the target species over time and activating a management response when pre-

defined values or reference points are attained (Hall and Mainprize, 2004). How-

ever, significant changes are being observed in aquatic systems driven by climate

change (e.g. temperature increment, water column stratification, ocean acidifica-

tion, changes in ocean circulation, among others), which may alter the productivity

and distribution of marine species (Barange et al., 2018; ICES, 2021). In general,

marine species are moving poleward at an average of 72 km/decade and deeper in

the water column (Poloczanska et al., 2013). Severe decreases in species biomass

have already been attributed to alterations in ecological conditions driven by cli-

mate change (Litzow et al., 2019; Lotze et al., 2019). As a result, reference points

could become ineffective if they remain based on historical productivity levels, fail-

ing to account for shifts in ecosystem productivity. This puts species at risk of

overfishing, as current fishing pressure may be unsustainable under changing envi-

ronmental conditions, even before noticeable biomass declines occur (Britten et al.,

2017). Detecting changes in the prevailing conditions of an ecosystem is, therefore,

the first step in determining whether to implement new management measures,

at least for those species that are likely to be impacted by those changes. This

section summarizes steps for managing marine biological resources under shifting

conditions (Figure 2.1).

2.3.1 Detecting changes in ecosystem prevailing conditions

Indicators enable evaluation of an ecosystem’s status and identification of changes

in the prevailing conditions, serving as the foundation for deciding on new manage-

ment actions. A good indicator must have a theoretical foundation, be sensitive to
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Figure 2.1: Guideline for managing marine biological resources in shifting
conditions.

a perturbation, be easily quantifiable, cost-effective, and straightforward to com-

prehend (Rice and Rochet, 2005; Rochet and Rice, 2005). No single indicator can

capture all the changes that may be occurring in an environment; therefore, a com-

bination of indications is required (Fulton et al., 2005). To save time and resources,

the number of indicators should be maintained as low as feasible while still meet-

ing management requirements (Rice and Rochet, 2005). Two groups of indicators

can be identified in the literature: (i) indicators derived from individuals, popula-

tions, and communities such as size-based (e.g. fish size and size spectra slope),

trophic-based (e.g., mean trophic level of the community), life-history-based (e.g.,

life span), and species-based indicators (e.g., species richness) (Coll et al., 2016;

Tam et al., 2017). They can be defined using data from surveys, captures, and

ecological models (Briton et al., 2019) and provide pertinent information on the

ecosystem’s integrity, stability, and resilience. (ii) Ecosystem-level indicators that

give information on the ecosystem’s production limits. They allow the assessment

of whether an ecosystem has been overfished or perturbed (Fogarty et al., 2016;
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Libralato et al., 2019; Link and Watson, 2019). Indicators that can exhibit a warn-

ing signal before a regime shift occurs in the ecosystem are crucial for developing

management strategies that prevent unintended ecosystem changes. In this sense,

ecosystem-level indicators are a good starting point for detecting changes in the

ecosystem since they track few ecosystem components and hence, they are rela-

tively quick to calculate. For instance, the Fogarty index evaluates the ratio of

total catches to total primary productivity in the ecosystem, detecting early signs

of ecosystem overfishing (Link and Watson, 2019). Ecosystem regime shift could

also be detected by using trend analysis (e.g. sequential t-test analysis of regime

shift -STAR; (Punt et al., 2014)) and shiftograms (Lindegren et al., 2012).

2.3.2 Understanding ecosystem and species response to dif-

ferent pressures

Changes in species biomass and distribution can be predicted using species distri-

bution models that link the distribution of the target species with abiotic variables

(Leach et al., 2016), joint species distribution models that allow linking the distri-

bution of the target species to abiotic and biotic variables (Sadykova et al., 2017)

and community joint species distribution models (Tikhonov et al., 2020). To model

the future impact of climate change on the ecosystem level, ecosystem models could

be developed and forced with climate change scenarios to forecast the medium and

long-term impact of climate change on species productivity (Holsman et al., 2020).

Ecosystem models (EMs) are essential tools for ecosystem-level work, and have been

implemented in a variety of disciplines, including natural resource management

(Grüss et al., 2017), wildlife conservation (Rendall et al., 2021), agriculture Balbi

et al. (2015), and environmental health (Topping and Lagisz, 2012). Ecosystems,

in a nutshell, consist of biological components, the abiotic environment (non-living

components), the processes and interactions within them, and the physical area
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where they function (Geary et al., 2020). Ecosystem models can describe those in-

teractions and hence, be used to enhance understanding of a system and predict its

response to different pressures (Fulton et al., 2014). For modelling marine ecosys-

tems, qualitative (e.g. conceptual models) and quantitative approaches could be

used to describe the ecological and socioeconomic facet of the fishery, and the re-

lationships between them (Kasperski et al., 2021; Plagányi, 2007). In the present

study, the classification of O’Farrell et al. (2017); Plagányi (2007) were combined

to provide a complete description of marine ecosystem models approaches based

on their structures. Specific model examples were also included to complement

this description Table 2.1. Ecosystem models can be used to inform strategic and

tactical management advice. Strategic advice focuses on broad policy issues like

achieving biodiversity goals, maintaining ecosystem services, and accounting for

socioeconomic considerations; providing long-term directions. Tactical advice, on

the contrary, operates on a finer scale and provides short-term advice; it requires

the specification of harvest control rules to meet the policy goals (Collie et al.,

2016; Howell et al., 2021). Developing an ecosystem model to inform fisheries

management entails finding a compromise between model complexity (and related

uncertainties) and model performance to answer the management question (the

“sweet spot”; Collie et al. (2016)). Therefore, before constructing an ecosystem

model, a good practice would be defining the objectives (whether they are de-

scribing, forecasting, or deciding on management actions), considering the spatial

scale and temporal dynamics, and thinking on the focus of our model in terms of

ecosystem components (individual species, aggregated groups, or whole-ecosystem)

and ecosystem processes that regulate ecosystem dynamics (trophic dynamics, dis-

persal, perturbations that impact individual components, and perturbations that

affect the whole ecosystem) (Geary et al., 2020).

There are other approaches that could be useful for assessing the future impact of

climate change on marine ecosystems. For instance, game theory approaches could
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Table 2.1: Literature-based summary of ecosystem model approaches with
examples of specific models (adapted from O’Farrell et al., 2017 and Plagányi,
2007)
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aid in comprehending the shift in migration pathways of highly migratory species.

Mariani et al. (2016) developed a migration game model for tunas that focuses on

migrating dynamics leading to the “ideal free distribution strategy”, which is the

evolutionary strategy of habitat selection in which species distribute across multi-

ple patches to minimize competition and maximize fitness. This type of model is

not only useful for researching highly migratory species but also the distributional

changes of transboundary and straddling populations since it provides the foun-

dation for a discussion on how changes in species distribution affects international

agreements (Palacios-Abrantes et al., 2022; Pinsky et al., 2018). Another example

includes using trait-based models, which describe the structure and functioning of

ecological communities from the organisms’ properties (Barnett et al., 2019).

The trait-based method relies on the Darwinian principle of natural selection, which

holds that individuals within a species optimize their fitness and performance by

adapting to their environment (Kiørboe et al., 2018). Monitoring trait variations

(e.g. morphology, physiology and phenology measurements) within an ecosystem is

useful for capturing system-level responses to climate change and enables improved

management advice (Barnett et al., 2019). Size spectrum models are one example

of the trait-based models gaining prominence for estimating the impact of climate

change on stock productivity (Forestier et al., 2020; Fulton and Gorton, 2014).

These methodologies are getting special attention because they can lead to the

creation of climate-adaptive strategies that could enhance the resilience of the

fishing sector (Bryndum-Buchholz et al., 2021).

Moreover, ecosystem models could benefit from the integration of new methodolo-

gies such as biodiversity models (i.e., models that project the current state of or the

effect of environmental change on the biological components of ecosystems, such as

genes, species, functional groups, and communities; (Weiskopf et al., 2022)) for un-

derstanding the ecosystem response to a perturbation or management intervention
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and so evaluate different goals. Loss of biodiversity impacts species and genetic

diversity from local to global biodiversity pools (Harvey et al., 2017) and reduces

an ecosystem’s ability to recover after a disturbance (Sala and Knowlton, 2006).

Biodiversity models can replicate environmental impacts on biodiversity by explic-

itly or indirectly incorporating biological processes. In particular, macroecological

models stand out for their ability to capture ecological processes relevant to species

and ecosystem-level (Pollock et al., 2020). For instance, macroecological models

that represent β-diversity (compositional dissimilarity among species between lo-

cations) can be used to address the effects of habitat alteration on biodiversity

(Hoskins et al., 2020).

2.3.3 Deciding on a management action

To achieve global conservation objectives, we must create and implement frame-

works that permit the incorporation of ecosystem realism into management rec-

ommendations. In fisheries management, this include the Integrated Ecosystem

Assessments (Levin et al., 2018), the NAFO roadmap (Koen-Alonso et al., 2019)

and the Marine Strategy Framework Directive (EU, 2008). The implementation

of such frameworks result in the creation of plans and reports that can inform

managers (e.g. integrated ecosystem plans (Denit, 2016), fisheries ecosystem plans

(Levin et al., 2018), and ecosystem overview reports (ICES, 2021; Stephenson et al.,

2019). Although decision-making can still occur using qualitative assessments or

expert judgment, a quantitative evaluation of the performance of the different man-

agement actions is recommended, commonly referred to as Management Strategy

Evaluation (MSE); Ecosystem models could be utilized as part of the MSE process

to determine the most appropriate management action that will allow us to reach

our goal (Kaplan et al., 2019; Lucey et al., 2021). The MSE process fundamen-

tally depends on defining objectives and performance measurements, addressing

uncertainties, identifying potentially feasible management alternatives, simulating
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management option applications, presenting results, and selecting a management

strategy (Punt et al., 2016a). It comprises two key components, the operational

model and the management strategy (including the assessment process, which ide-

ally is not simply a variant of the operational model). The feedback loop between

the two is a crucial component of MSE since it allows for the identification of both

the management action to be implemented and the ecosystem response to that

action (Perryman et al., 2021). Simulating MSE with ecosystem models has been

done for a number of management objectives, including defining harvest control

rules that take into account the important role of forage species in the ecosystem

(Punt et al., 2016b), defining spatial closures (Dichmont et al., 2013), considering

risk equivalency and tiered harvest strategies (Dichmont et al., 2017), and evalu-

ating how combinations of management levers can meet multispecies fishery and

EBFM objectives (Fulton et al., 2019; Fulton and Gorton, 2014).

Furthermore, ecosystem and environmental information could be used to adjust

single-species reference points and so incorporate more realism into the decision-

making process (Townsend et al., 2019; Bentley et al., 2021). For example, target

fishing mortality calculated by single-species models can be re-scaled using ecosys-

tem model’s outputs (Howell et al., 2021). The previous example used adjusted

fishing mortality FECO to set the fishing quota in the previous example. This

approach has been applied in the Irish Sea to identify environmental drivers influ-

encing the productivity of the target stock and in the United States to account for

the effect of a forage fish species as a driver of the striped bass population (as the

species’ primary source of food) (Howell et al., 2021).

In the case of the unavailability of multispecies and/or ecosystem models, a way to

include ecosystem realism in the advice is by explicitly considering environmental

factors in the single-species MSE process. For example, Punt et al. (2022) devel-

oped a framework to integrate the effect of temperature and pH on growth and
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survival of king and snow crab, and decide on harvest control rules. In another

example, Pacific sardine management includes the use of an environmental buffer

(called EMSY ) to account for the impact of temperature on the productivity of the

stock. EMSY is based on a three-year average of the California current sea surface

temperature and is incorporated directly into the harvest control rule and allow-

able catch (Hill et al., 2017). Finally, risk-equivalent approaches could quantify the

risk of a status quo management strategy under different climate change scenarios

and define the fishing exploitation rates required to reach the policy goal (Duplisea

et al., 2021).

2.4 Discussion: barriers and solutions

The sluggish adoption of EBFM can be attributed in part to the complexity that

develops while operating at the ecosystem level and the structural inertia of the

management systems, particularly the need to conform to current administrative

frameworks (Howell et al., 2021; Marshak et al., 2017)). In this context, path

dependency (i.e. earlier decisions barring specific future options) has been identi-

fied as a factor preventing decision-makers from adopting alternative management

strategies and causing institutions to stagnate in sub-optimal phases (Méndez et al.,

2019). Because adopting a new strategy needs funds for getting information -data,

investment in training, and time for learning and executing the models, resource

restrictions often result in path dependence (Fulton, 2021). This, together with

the short-term goals focus of fisheries management (Kirk et al., 2007), limits the

adoption of the strategies described in this manuscript. Moreover, the methodolo-

gies presented here account for more components (ecological, social, and economic)

than those applied in single-species fisheries management; Thus, scientists need to

work with managers and decision-makers to fill knowledge gaps. Finally, includ-

ing stakeholders and local community members in the process could contribute to

minimizing the trade-off between achieving policy goals (e.g. conservation goals)
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and socioeconomic issues (e.g. maintaining economic revenue or food provision-

ing) (Christie et al., 2017). Identifying users’ needs is crucial for the success of

the policy goal and requires the inclusion of stakeholders in the decision-making

process. This inclusion involves building relationships, considering cultural pro-

tocols, and organizing regular meetings and workshops (Iwamoto et al., 2019).

Knowledge co-production is a popular method for enhancing knowledge trans-

fer. The process for producing high-quality co-production knowledge should be

context-oriented (situated within a particular social, economic, and ecological con-

text), pluralistic (recognize the different experiences and knowledge of the actors

involved in the process), goal-focused (goals clearly specified and agreed among

actors), and interactive (participatory method with continual interaction among

actors) (Norström et al., 2020). In their evaluation of how EMs have been used

to inform managers in the United States, Townsend et al. (2019) determined that

regular communication and collaboration among stakeholders, modellers, and man-

agers were essential to the success of the process. Participation of diverse actors

in the decision-making process improves comprehension of the research’s obstacles

and limitations, as well as the establishment of a sense of ownership that fosters

broad communication and, eventually, boosts awareness among other members

(Cvitanovic et al., 2015). Other approaches to enhance knowledge exchange in-

clude hiring scientists in decision-making agencies (e.g. NOAA, DFO or CSIRO)

or directly integrating them in the decision-making process (e.g. as members of

scientific advisory or participatory assessment groups), utilizing knowledge bro-

kers (individuals who are embedded within the research team or institution and

act as intermediaries to facilitate knowledge exchange), and boundary organiza-

tions (similar to knowledge brokers but not ingrained within the research team or

institution) (Cvitanovic et al., 2015). These strategies may assist in overcoming

obstacles to adopting novel methods such those presented in this study. A fur-

ther reluctance to include these methods into the decision-making process is the
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uncertainty associated with them (e.g. uncertainty relates to observation and esti-

mation, model, implementation, and communication; (Link et al., 2010)). However,

several options have been proposed to quantify and express model uncertainties,

such as model ensembles, fitting models to observations and data, performing risk

analysis, sensitivity analysis on the input parameters and model, outputs visual-

ization, and implementing a MSE approach (Geary et al., 2020; Link et al., 2010;

Peterman, 2019). Model ensembles consist of multiple ecosystem models applied

to the same system, which are used to evaluate any ecosystem response with uncer-

tainty quantified by comparing model outputs. Due to the features incorporated

in each model, unique dynamics and structures can be captured by distinct mod-

els. Hence, similar outcomes across models imply the consistency of such outcomes

(Lewis et al., 2021). Using numerous models also decreases the uncertainty ampli-

fication caused by model predictor reliance (Dahood et al., 2020). There are two

sorts of model comparison: the development of alternative models using the same

inputs, calibration and validation methodologies, and the construction of models

separately (Kaplan et al., 2019; Kasperski et al., 2021). Additionally, conceptual

and qualitative models could be combined with stakeholder-mapping exercises to

find information gaps and highlight uncertainty in a participative process (Roun-

sevell et al., 2021). Finally, visualization tools, serious gaming, and gamification

could be utilized to stimulate learning, motivate and inspire collaboration, so fa-

cilitating the attainment of desired results (Fulton, 2021). Last but not least, fully

implementing EBFM requires understanding ocean exploitation as a socioecolog-

ical system in which resources, users, and government entities are fundamentally

interconnected (Ostrom, 2009). EBFM could benefit from the use of ecological

models (Table 2.1) to simultaneously address the ecological and human dimensions

(henceforth referred to as coupled socioecological system models) (Kasperski et al.,

2021). A lot of work still remains in this field as, until now, most indicators used to

account for the human dimension mostly relate to economic objectives associated
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with fisheries (e.g. revenue, fishing effort, and market price). Fewer indicators

have been employed to evaluate community health, food security, compliance, and

oversight (Hornborg et al., 2019). Coupled socioecological system models typically

have greater uncertainty than ecosystem models, as they incorporate sociological

and political aspects (Fulton et al., 2014). Using coupled socioecological system

models within a MSE framework could elucidate pertinent trade-offs resulting from

competing EBFM’s ecological, economic, and social objectives (e.g. conservation

objectives versus economic rewards) and co-benefits derived from a particular man-

agement action (Fulton et al., 2014; Kaplan et al., 2021).

2.5 Conclusions

Ecosystem-Based Fisheries Management requires reforming the governance and in-

stitutional framework by incorporating scientists and stakeholders into the decision-

making process, resulting in a decentralized management system with shared decision-

making power among actors. Implementing EBFM differs based on data availability

and management objectives, requiring identification of EBFM objectives in a col-

laborative manner from the outset. This collaboration should continue throughout

the entire process to allow the co-production of knowledge. In addition, eliminating

path dependency requires offering the necessary resources and training, and em-

ploying an approach that fits the management action timeline. EBFM should seek

satisfactory solutions (agreed upon among stakeholders) rather than an ideal one

given the conflicting objectives between different groups and the interactions in the

ecosystem (Fogarty, 2014). Typically, this search for satisfactory solutions requires

comparing several management approaches to a predetermined set of objectives

throughout the management strategy evaluation process.

The complete adoption of EBFM requires first developing indicators that account

for the ecological and human dimensions of the fisheries. These indicators can
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be used to establish thresholds for management objectives. Thereby, ecological

indicators could be used to alert us to the need to change current management

strategies by detecting changes in the ecosystem prevailing conditions (Libralato

et al., 2019; Link and Watson, 2019).

Ecosystem-Based Fisheries Management objectives can be evaluated within the

MSE framework with ecosystem models as operational models (ideally, coupled

socioecological system models that allow for the assessment of trade-offs between

the ecological, social, and economic aspects of the fishery) (Fulton et al., 2014;

Kasperski et al., 2021). Ecosystem models can predict the response of the ecosys-

tem and/or target species to different pressures (Section 2.3) and so inform suitable

management decision (Fulton et al., 2014). However, for an ecosystem model to

aid in decision-making, it must be adapted to the pertinent policy question. In ad-

dition, the components and spatio-temporal scales of the ecosystem model should

fit the management purpose and model capability, and it should focus on the

ecosystem components directly affected by the management action (Geary et al.,

2020). Finally, less data-demanding approaches which also allow the incorporation

of ecosystem realism into the management advice exist, such as adjusting single

species reference points with ecosystem information (Howell et al., 2021), imple-

menting risk-equivalent empirical approaches (Duplisea et al., 2021) and explicitly

including environmental effects in the single species MSE process (Hill et al., 2017;

Punt et al., 2022).

The most comprehensive strategy for offering long-term strategic guidance for

achieving policy goals in a changing environment would be to couple these mod-

els with climate change projection scenarios to establish climate-smart adaptation

plans that strengthen the fishing industry’s resilience in the medium and long term

(Bryndum-Buchholz et al., 2021). In this sense, trait-based models, biodiversity

models, species distribution models, and game theory are powerful methods to
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assess future changes in marine ecosystems, especially related to climate change

and habitat modification (Barnett et al., 2019; Forestier et al., 2020; Pollock et al.,

2020). Therefore, the implementation of such a strategy is needed to advance de-

cisions regarding suitable policies and actions for accomplishing local and global

conservation and biodiversity goals.



CHAPTER 3

Decadal changes in species

biomass and distribution

3.1 Abstract

Canadian fisheries management has embraced the precautionary approach and the

incorporation of ecosystem information in scientific assessments, though its appli-

cation in policy decisions remains more limited. Accurate estimation of fish stock

biomass is crucial for ensuring sustainable exploitation of marine resources. Spatio-

temporal models can provide improved indices of biomass because they capture

spatial and temporal correlations in data and can account for environmental fac-

tors influencing biomass distributions. In this study, I developed a spatio-temporal

generalized additive model (st- GAM) to investigate the relationships between bot-

tom temperature, depth, and the biomass of three key fished species on the Grand

Banks from 1996 to 2019: snow crab (Chionoecetes opilio), yellowtail flounder

(Limanda ferruginea), and Atlantic cod (Gadus morhua). My findings revealed

changes in the centre of gravity of Atlantic cod that could be related to a northern

shift of the southern 3NO stock within the Grand Banks or to a faster recovery

of the northern 2J3KL stock in last 5 years. Atlantic cod also displayed hyperag-

gregation behaviour, with the species showing a continuous distribution over the

Grand Banks when biomass is high. These findings suggest a joint stock assess-

ment between the 2J3KL and 3NO stocks would be advisable. However, barriers

such as differing management priorities and regulatory frameworks may need to

be addressed to achieve collaboration between the two distinct regulatory bodies

29
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(i.e., DFO and NAFO) in charge of managing the stocks. Snow crab and yellow-

tail flounder centres of gravity have remained relatively constant over time. I also

estimated novel indices of biomass, informed by environmental factors (tempera-

ture and depth) that were compared to the traditional strata-based biomass indices

used in the stock assessments. My study represents a step towards ecosystem-based

fisheries management for the highly dynamic Grand Banks.

3.2 Introduction

Stock assessments aim to evaluate the status of a population by evaluating biomass

and fishing mortality relative to reference points to define catch limits (Punt, 2023).

Time series of biomass indices are often used to calibrate stock assessment models,

primarily derived from fisheries-independent data collected from scientific surveys.

These surveys commonly employ a stratified-random sampling design to gener-

ate estimates of absolute biomass by using area-swept information (Martell, 2008;

Smith, 1990). This approach involves dividing the study area into different strata

based on specific characteristics, such as depth or habitat type. Within each stra-

tum, random samples are collected. Random stratified sampling increases the

precision of the estimates when the population is homogenously distributed among

strata. However, variability in habitat preference may exist within strata, compro-

mising the robustness of this approach (Morin, 2011). This approach also requires

sampling all strata at each sampling event, which is not always possible due to

inclement weather, and ship repairs, among others.

Spatial correlation is a common feature of fisheries data. It occurs when observa-

tions collected at different locations are not independent of each other, as nearby

observations tend to be more similar than distant observations (Tobler, 1970). If

unaccounted for, spatial correlation can lead to biased estimates of biomass and

abundance (McGilliard et al., 2015). This issue also applies to the correlation of
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objects through time (i.e., temporal correlation) (Cressie and Wikle, 2015). Spatio-

temporal generalized mixed effect models (GLMMs) and generalized additive mod-

els (GAMs) can account for spatial correlation that characterize fisheries survey

data (Thorson et al., 2015). The latter are more flexible because they are fit using

smoothing spline terms, making them especially useful for addressing non-linear

relationships (Mart́ınez-Minaya et al., 2018). These models explicitly account for

both spatial and temporal correlations in a dataset (Redding et al., 2017), and can

incorporate information about environmental variables that may be driving species

biomass and distribution (Lloret-Lloret et al., 2021). Another advantage of these

methods is that they employ spatial interpolation throughout the region of inter-

est, helping to address incomplete sampling issues (Mart́ınez-Minaya et al., 2018).

Spatio-temporal models can improve predictions for areas and years with little or

no data and can be more precise than with design-based methods (i.e., strata-based

index) and conventional GLMMs and GAMs (i.e., without spatio-temporal effects)

(Shelton et al., 2014; Grüss and Thorson, 2019).

My study focuses on the practical application of spatio-temporal Generalized Addi-

tive Models (st-GAMs) (Thorson et al., 2016) to understand the biomass dynamics

and distributional changes of snow crab (Chionoecetes opilio), yellowtail flounder

(Limanda ferruginea), and Atlantic cod (Gadus morhua) on the Grand Banks of

Newfoundland from 1996 to 2019. The Grand Banks is a highly productive region

where two distinct water masses, the Labrador Current and the Gulf Stream, con-

verge. The Labrador Current brings fresh and nutrient-rich waters, while the Gulf

Stream carries warmer and saltier waters. This combination of conditions makes

the Grand Banks a productive but also dynamic and highly variable ecosystem

(Han et al., 2008, 2011). The Grand Banks experienced a regime shift in the early

1990s characterized by the collapse of Atlantic cod, yellowtail flounder and other

groundfish species. However, species such as snow crab and northern shrimp pro-

liferated during that time (Koen-Alonso and Cuff, 2018). The shift was attributed
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to a combination of factors, including overfishing and changes in environmental

conditions (Dempsey et al., 2017). In the last 5 years, the species in my study

have exhibited different dynamics, with snow crab experiencing a significant de-

cline, Atlantic cod remaining persistently low and yellowtail flounder recovering

to pre-collapse levels. Currently, the yellowtail flounder fishery is operating as a

Marine Stewardship Council (MSC) certified fishery (Knapman et al., 2020).

The Grand Banks constitute an independent ecosystem production unit within the

Newfoundland and Labrador Shelf, characterized by high ecosystem productivity

and a well-defined marine community (Koen-Alonso and Cuff, 2018; Pepin et al.,

2014). I used this ecosystem production unit as the spatial scale of focus and ex-

amined how it relates to the management units of the study species. My study

contributes to the evolving landscape of ecosystem-based fisheries management by

applying advanced modelling techniques to uncover spatio-temporal patterns in

snow crab, yellowtail flounder and Atlantic cod dynamics. These species were se-

lected based on their variable responses post-collapse, their cultural and economic

fisheries importance, and their distinct movement behaviours. Gadoids are stream-

lined swimmers; flatfish are bottom- dwellers that perform undulatory movements,

and snow crabs have legs that allow for lateral movement. These adaptations

are shaped by the specific ecological niches and lifestyles of each species. By in-

corporating environmental variables into the analysis (bottom temperature and

depth) and considering spatial correlation , I explored species-habitat associations

and calculated environmental-informed biomass indices that can be used in stock

assessment models. Finally, I assessed the effect of fishing on the environmental-

informed biomass indices.
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3.3 Material and Methods

3.3.1 Data sources

Multi-species survey

Fisheries and Oceans Canada (DFO) has conducted annual stratified-random mul-

tispecies bottom trawl surveys on the Grand Banks, located in the Northwest

Atlantic since 1971 (Rideout et al., 2021) (Figure 3.1). The survey is conducted in

spring and fall and has changed sampling gear and coverage over time. Fall surveys

range from September to December [mean observations of 275 per year], although

in 2014 the survey took place in January and only 140 samples where taken. Fall

surveys have had issues with an absence of deep sets, reduced coverage, and tim-

ing extensions due to vessel breakdowns and unplanned changes, particularly in

2004–2006 (Brodie and Stansbury, 2007). In contrast, the spring survey (April-

June) has had more consistent coverage [mean observations of 282.5 per year],

although the 2006 and 2017 surveys had lower coverage [194 and 191 observations,

respectively]. To limit variability introduced by changes in the surveys, I utilized

data from surveys conducted in spring (6,780 observations in total). Since 1996,

spring surveys have been conducted with the CCGS Alfred Needler and Campelen

1800 shrimp trawl gear, sampling up to 732 meters in depth. The trawl survey

collects data on the abundance, size, and biomass of numerous groundfish and

shellfish species, in addition to other biological information (i.e., size, maturation

status, body condition, stomach contents) (Rideout and Ings, 2019).

Biomass data were used to create two response variables for each species: pres-

ence/absence and conditional-to-presence-biomass (i.e., biomass > 0). Abiotic ex-

planatory variables were bathymetry (here called depth) and bottom temperature,

also obtained from the DFO bottom trawl survey (Table 3.1). These covariates
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Figure 3.1: The Grand Banks of Newfoundland (grey). Solid lines indicate
the management unit boundaries of the North Atlantic Fisheries Organization
(NAFO) divisions (3L, 3N and 3O).

were selected based on their well-known relationship with the distribution and pro-

ductivity of the study species (Windle et al., 2012; Colbourne and Walsh, 2006;

Drinkwater, 2005). The relationship between the study species and salinity is less

understood in this region and was not considered here. Finally, I assumed that

expected fish biomass is proportional to the area surveyed (referred to as the swept

area); thus, I included the swept area (log-transformed) as offset in all the models

to account for the variation in effort.

Prediction grid

I created a 5x5 km grid for the Grand Banks with 274,461 grid points. I used grid-

ded bathymetry data with spatial resolution of 15 arc seconds (≈ 0.004◦) obtained
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Table 3.1: List of response and explanatory variables included in the st-GAM

Name Description Units

Explanatory variable
Depth Bathymetry at sampling

location
metres

Temperature Bottom Temperature at
sampling location

ºC

Response variable
Occurrence &
conditional-
to-presence
biomass

Presence/absence and
biomass of snow crab
(Chionoecetes opilio)

Kg.tow−1

(live
weight)

Occurrence &
conditional-
to-presence
biomass

Presence/absence and
biomass of Atlantic cod
(Gadus morhua)

Kg.tow−1

(live
weight)

Occurrence &
conditional-
to-presence
biomass

Presence/absence and
biomass of yellowtail
flounder (Limanda fer-
ruginea)

Kg.tow−1

(live
weight)

from the General Bathymetric Chart of the Oceans (GEBCO) project and manip-

ulated it with the R package marmap (Pante and Simon-Bouhet, 2013) to extract

depth values at the center of each grid point. Rasters of bottom temperature data

for the same period (1996-2019) were provided by DFO. These rasters were created

using data from different sources (DFO multispecies survey, Atlantic Zone Mon-

itoring Program (AZMP) hydrographic campaigns, International Oceanographic

Campaigns (IOC), ARGO program, etc) (Cyr et al., 2022). All data were verti-

cally averaged in 5 m bins, and a linear interpolation was applied to fill the missing

bins. I selected the data corresponding to the spring season (April- June), for

which data were averaged on a regular 0.1◦ × 0.1◦ grid. Horizontal linear interpo-

lation was applied to address missing data on grid cells (full description in (Cyr

et al., 2022)). I tested the correlation between these databases (i.e., GEBCO and

DFO temperature interpolation) with trawl station observations to assess accuracy

(Figure A.2 and Figure A.3).

https://www.gebco.net
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Fishing and strata-based biomass indices data

Finally, fishing data aggregated at the division level were obtained from the NAFO

STLATLANT database. Strata-based indices of snow crab (DFO, 2023a), yellow-

tail flounder (Parsons et al., 2021) and Atlantic cod (Rideout et al., 2021) were

collected from the stock assessments of the species over the same time period

(1996-2019) and compared to the new environmental-informed indices.

3.3.2 Spatio-temporal modelling

An exploratory analysis highlighted that species biomass data have two main fea-

tures, namely strong spatial and temporal dependence and a large proportion of

observed zeros (i.e., zero-inflated data). To address this reality, I developed a delta-

gamma generalized additive model (GAM) using the R-package sdmTMB (Ander-

son et al., 2022). This model separately analyzes species occurrence (biomass

information is transformed to 0 and 1 according to species absence and pres-

ence, respectively) and conditional-to-presence biomass (observations with positive

biomass values) and combines both predictions in a final biomass estimate (Thor-

son et al., 2015). To model the non-linear relationship between explanatory and

response factors, covariates were included in the model as random factors with a

smoothing term (p-splines) (Anderson et al., 2022). Depth was log-transformed

for better model convergence. Delta gamma models are commonly used in the

literature to perform analyses similar to this one (Paradinas et al., 2020; Pennino

et al., 2022). I considered Z(s, t) to be the spatiotemporally distributed occurrence

and W (s, t) the conditional-to-presence biomass at location s and time t. The final

model formulation is:

Z(s, t) ∼ Bernoulli(π(s, t)) (3.1a)

W (s, t) ∼ Gamma(µ(s, t), ϕ) (3.1b)

logit(π(s, t)) = βZ + Yi +
I∑

i=1

fi(Xi(s, t)) + VZ(s, t) (3.1c)

https://www.nafo.int/Data/STATLANT-21A
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log(µ(s, t)) = βW + Yi +
I∑

i=1

fi(Xi(s, t)) + VW (s, t) (3.1d)

where π(s, t) represents the probability of occurrence at location s and time t; and

µ(s, t) and ϕ are the mean and variance of the conditional-to-presence biomass,

respectively. The linear predictors, which represent the intercept of each variable

associated with the parameter π(s, t) and µ(s, t), are represented by βZ and βW ,

respectively. The survey year was added as a fixed effect in the model (Yi). fi

represents any function applied to the covariates Xi, which in the present study

were smoothing terms (p-splines). VZ(s, t) and VW (s, t) refer to the spatio-temporal

structure of the occurrence and conditional-to-biomass model, respectively.

sdmTMB relies on the integrated nested Laplace approximation (INLA) to dis-

cretize the space by defining a Delaunay triangulation mesh, which in turn creates

an artificial set of neighbours over the study area, and Gaussian Markov ran-

dom fields (GMRF) to model spatial dependencies between observations (Ander-

son et al., 2022; Lindgren and Rue, 2015). My approach involved constructing a

Delaunay triangulation mesh with a defined minimum distance of 20 km, resulting

in a mesh comprising 467 vertices (Figure A.1). I tested different mesh configura-

tions, accounting for the spatial distribution of sampling locations and evaluated

model performance to avoid overfitting. The mesh scale was selected based on a

balance between spatial resolution and computational efficiency, ensuring it was

fine enough to capture meaningful spatial patterns without introducing excessive

complexity. Cross-validation techniques were used to verify that the results were

consistent across different configurations. To test which model performs better, I

evaluated the spatial effect by running a model with and without the spatial com-

ponent. The spatio-temporal component was modelled as the Kronecker product of

the spatial effect and the temporal effect, which was tested using three approaches:

1) a first-order autoregressive effect (AR1), with a parameter ρ regulating the de-

gree of autocorrelation between random field deviations from one year to the next;
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2) a random walk (RW); and 3) an independent and identically distributed (iid)

process, where the random fields are independent across time steps. These were

tested to determine which performed better.

3.3.3 Model selection and validation

I calculated Pearson’s rank correlation index and the variance inflation factor

(V IF ) of the covariates before the model ran. This step helped avoid correlation

and collinearity among explanatory variables (Zuur et al., 2010). I did not find any

substantial correlation among the covariates (R < 0.6 and V IF < 3), allowing us

to proceed with including depth and bottom temperature in the st-GAM.

To assess the importance of bottom temperature, depth, and the spatial component

on species spatial distribution, Akaike differences were used instead of stepwise vari-

able selection because they account for model selection uncertainty (Akaike, 1981;

Burnham and Anderson, 2004). To test model predictability, I carried out a k-fold

cross-validation in which data were randomly split in k = 4 folds of equal size. In

each iteration, one of the folds is held to test the data, while the other 3 are used

to train the model. Then, I used the expected log pointwise predictive density

(ELPD) to evaluate the model’s predictive accuracy (Anderson et al., 2022; Ve-

htari et al., 2017). To validate models, residuals were visually inspected to ensure

that spatial patterns were not detected and that residuals were normally distributed

for snow crab (Figure A.9, Figure A.10 and Figure A.11); yellowtail flounder (Fig-

ure A.12, Figure A.13 and Figure A.14); and Atlantic cod (Figure A.15, Figure A.16

and Figure A.17).

3.3.4 Biomass index and centre of gravity calculation

I summed up the estimated biomass from the predictions and multiplied them by

cell area to calculate the biomass index. In the case of snow crab, species catchabil-

ity in the bottom trawl survey was lower than 1 (Dawe et al., 2010). To account for
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this issue, a conversion factor was calculated using a Delury depletion regression

analysis on fishery catch rate data from logbooks from 2000 to 2016 (Mullowney

et al., 2017) and biomass estimates were adjusted (divided) by a factor of 0.126.

Agreements between the new biomass indices (spatially-aggregated biomass) and

strata-based indices (strata-aggregated biomass) reported in the stock assessment

of snow crab (DFO, 2023a), yellowtail flounder (Parsons et al., 2021) and Atlantic

cod (Rideout et al., 2021) were assessed by using the coefficient of determination,

R2. For snow crab, the strata-based indices were estimated using fall survey data,

whereas my environmental-informed indices were estimated using spring data. The

models used in the assessment of all stocks except 3NO Atlantic cod require biomass

indices as input (snow crab assessment uses biomass trends, yellowtail flounder a

Schaefer surplus production model and 2J3KL Atlantic cod a state-space model).

Therefore, the new biomass indices developed in the present study are comparable

and could be used in the assessment of the species. Finally, we estimated the centre

of gravity of the populations with the following formula:

CGy =

n∑
i=1

xiwi

n∑
i=1

wi

(3.2)

where CGy is the centre of gravity at a given year, xi is the location (x or y-

coordinates) of the grid cell, wi is the species biomass estimated at each grid cell i,

and n is the total number of grid points in the study area (n = 274, 461) (Hollowed,

1992). I also calculated the species centre of gravity directly from the data using

mean weight.
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3.3.5 Fishing impact

I was unable to account for the impact of fishing due to a lack of spatially resolved

fishing effort data that could be integrated into the model. Despite this limita-

tion, I endeavoured to explore the fishing effect on species biomass using a linear

regression model with species biomass at the divisional level (3L, 3N, and 3O) as

the response variable and fishing catch data aggregated at the same level (NAFO

STLATLANT database) as the explanatory variable. I only investigated yellowtail

flounder and snow crab because the commercial Atlantic cod fishery on the Grand

Banks has remained closed since 1992 due to the slow recovery after its collapse,

with individuals being captured as bycatch and in recreational (known as the food

fishery) and small vessel, inshore commercial fisheries (DFO, 2019).

3.4 Results

For all species, models that included spatial effects produced better fit. Similarly,

models that included bottom temperature and depth effects as covariates performed

better (Table 3.2). My results showed that the spatial effect explained most of the

variability in the biomass data, followed by depth and temperature, respectively

(Table 3.2-∆AIC values). I also tested different spatio-temporal configurations

(AR1, RW and iid) and found that the autoregressive spatiotemporal structure

(AR1) had higher predictive accuracy for snow crab and yellowtail flounder, while

independent and identically distribution (iid) performed better for Atlantic cod

(Table 3.2-∆ELPD values). AR1 has a ρ parameter that indicates the degree of

correlation from one year to the next. I found that yellowtail flounder biomass had

ρ = 0.73 and snow crab biomass had ρ = 0.71.

https://www.nafo.int/Data/STATLANT-21A
https://www.nafo.int/Data/STATLANT-21A
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Table 3.2: Models used to identify the best configuration based on Akaike
Information criteria differences (∆AIC) and expected log pointwise predictive
density weights (∆ELPD). The model structure indicates the different configu-
rations tested in the model. Note that bottom temperature (temp) and depth
were added as smoothing terms (p-spline). df indicates the degree of freedom,
AIC is the Akaike information criteria, and ∆AIC indicates differences among
AICs. ELPD is the expected log pointwise predictive density, and differences
among ELPDs are indicated by ∆ELPD. The best model configuration is in
bold.

Model structure df AIC ∆AIC ELPD ∆ELPD

snow crab
biomass year + temp + depth + spatial + AR 65 16165.08 0.00 0.066 0.000
biomass year + temp + depth + spatial + RW 63 16227.41 -62.33 0.017 -0.048
biomass year + temp + depth + spatial + iid 63 16380.88 -215.80 0.017 -0.049
biomass year + depth + spatial + iid 59 16421.67 -256.59 -0.010 -0.077
biomass year + spatial + iid 55 16719.23 -554.15 -0.057 -0.123
biomass year + spatial 53 17429.39 -1264.31 -0.379 -0.446
biomass year 49 22066.03 -5900.95 -1.123 -1.190

yellowtail flounder
biomass year + temp + depth + spatial + AR 65 25270.75 0.00 -2.601 0.000
biomass year + temp + depth + spatial + RW 63 25320.52 -49.77 -2.632 -0.031
biomass year + temp + depth + spatial + iid 63 25406.76 -136.01 -2.614 -0.013
biomass year + depth + spatial + iid 59 25416.07 -145.32 -2.646 -0.044
biomass year + spatial + iid 55 25624.18 -353.43 -2.652 -0.050
biomass year + spatial 53 25998.47 -727.72 -2.882 -0.281
biomass year 49 33741.03 -8470.28 -4.392 -1.791

Atlantic cod
biomass year + temp + depth + spatial + AR 65 26026.72 0.00 -1.121 -0.007
biomass year + temp + depth + spatial + RW 63 26241.75 -215.03 -1.220 -0.106
biomass year + temp + depth + spatial + iid 63 26126.11 -99.39 -1.113 0.000
biomass year + depth + spatial + iid 59 26315.88 -289.16 -1.119 -0.006
biomass year + spatial + iid 55 26990.33 -963.61 -1.194 -0.081
biomass year + spatial 53 28139.83 -2113.11 -1.500 -0.387
biomass year 49 31308.14 -5281.42 -2.195 -1.082

3.4.1 Spatial and covariate effects

The spatial random field represents consistent deviations in space through time that

are not accounted for by depth and bottom temperature covariates. Higher spatial

deviations were found in the north of the Grand Banks for snow crab occurrence,

while they were higher near the nose and tail of the Banks for snow crab biomass

(Figure 3.2 a&b). Higher spatial deviations of yellowtail flounder probability of

occurrence and biomass were both found in the southern part of the Grand Banks

(Figure 3.2 h&i). Higher spatial deviations of Atlantic cod occurrence were found



42 3.4. Results

in the western part of the Banks and in the 3O division, while spatial deviations

were higher in the south (3NO division) and around the Grand Banks’ periphery for

Atlantic cod biomass (Figure 3.2 o&p). Higher probability of snow crab occurrence

and biomass was associated with colder temperatures, below 0 ◦C (Figure 3.2 c&d),

and at depths of about 100 m for occurrence and 450 m for biomass (Figure 3.2

e&f). For yellowtail flounder, both higher probability of occurrence and higher

biomass were predicted for temperatures close to 3 ◦C and shallower depths around

80 m (Figure 3.2 j&m). Atlantic cod probability of occurrence was predicted to be

highest at temperatures close to 3 ◦C and depths of 300 m (Figure 3.2 q&r). Highest

biomass of Atlantic cod was predicted to occur at 5 ◦C and at depths between 200

and 400 m (Figure 3.2 s&t). Combined predictions of the delta gamma models

indicate that snow crab biomass is higher in the north of the Banks, with a hotspot

located in the northeast, and in the southeastern edge of the Banks (Figure 3.2 g).

The yellowtail flounder biomass hotspot is found south of the Banks (Figure 3.2 n).

Finally, Atlantic cod biomass is higher in the north and periphery of the Banks, as

well as in the southeast (Figure 3.2 u).

3.4.2 Biomass indices

A decline in the snow crab relative biomass index was observed over time, reaching

a minimum of 33.72 t in 2016 (Figure 3.3 a). Although there has been a small recov-

ery since then, the current biomass index of snow crab was 85% lower in 2019 than

at the beginning of the time series in 1996. Yellowtail flounder relative biomass has

fluctuated over time, peaking in 2006 (597.88 t), 2012 (538.31 t) and 2008 (424.83

t) (Figure 3.3 b). However, the biomass plummeted to its lowest value in 2016

(119.96 t) and has remained relatively low since then, with a biomass of 171.12 t in

2019. Similarly, Atlantic cod biomass has fluctuated over time, reaching its highest

value in 2013 (150.07 t), with smaller peaks in 1999 (100.6 t) and 2006 (100.04 t)

(Figure 3.3 c). Since 2014, the relative biomass of Atlantic cod has declined, hitting
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Figure 3.2: Spatial random field deviations summed across all years of snow
crab probability of occurrence (a) and biomass (b), yellowtail flounder probabil-
ity of occurrence (h) and biomass (i), and Atlantic cod probability of occurrence
(o) and biomass (p). Temperature smoothed effects on snow crab probability of
occurrence (c) and biomass (d), yellowtail flounder probability of occurrence (j)
and biomass (k), and Atlantic cod probability of occurrence (q) and biomass (r).
Depth smoothed effect on snow crab probability of occurrence (e) and biomass
(f), yellowtail flounder probability of occurrence (l) and biomass (m), and At-
lantic cod probability of occurrence (s) and biomass (t). Note that depth has
been log-transformed. Biomass density units are kg/25 km2. Delta gamma com-
bined biomass prediction of snow crab (g), yellowtail flounder (n) and Atlantic
cod (u) over the Grand Banks. Predictions made on a 5x5 km grid.
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a record low of 19.30 t in 2017, a similar biomass level when the stock collapsed in

the mid-1990s (31.12 and 20.39 t in 1996 and 1997, respectively). As of 2019, the

biomass of Atlantic cod on the Grand Banks was rather low compared to the his-

torical series (43.17 t). My model effectively generated an environmental-informed

biomass index that showed trends consistent with strata-based indices reported in

the stock assessments of the studied species. For yellowtail flounder, my biomass

index had a high correlation (R2 = 0.92), with the strata-based index falling within

the confidence interval. For snow crab, the correlation with the strata-based index

was also high (R2 = 0.84). However, some disparities were evident between the

indices, as my analysis indicates slightly higher biomass estimates, particularly at

the beginning of the time series. Note that I am comparing the biomass index cre-

ated using spring data with the strata-based biomass index created using fall data.

Unfortunately, no established index exists for Atlantic cod in the 3LNO division

since this species is considered two separate stocks (i.e., 2J3KL and 3NO). As a

result, I compared my biomass index to the index used to assess the 3NO stock, as

it more accurately represents cod biomass within the Grand Banks, resulting in a

correlation of R2 = 0.63.

3.4.3 Centre of gravity

The Centre of gravity indicates the central point of a population distribution. In

the case of snow crab, the centre of gravity shifted slightly toward the northwest

of the Grand Banks over time (Figure 3.4 a). The centre of gravity of yellowtail

flounder has remained relatively stable (Figure 3.4 b). Atlantic cod had the greatest

changes in the centre of gravity, first moving eastward and then northward at the

end of the time series (Figure 3.4 c). I also calculated the species centre of gravity

directly from the data using mean weight, which displayed similar trends but are

slightly more spread out in Figure A.8. This difference can be attributed to the
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Figure 3.3: Biomass indices of snow crab (orange), yellowtail flounder (green)
and Atlantic cod (blue) on the Grand Banks of Newfoundland (3LNO division)
estimated from the spatio-temporal delta gamma GAM. Shaded areas indicate
the 95% confidence interval. The black dashed line indicates the strata-based
index of the species (units in tonnes x1000). R2 is the coefficient of determina-
tion.

spatio-temporal model predicting biomass in years and locations with sampling

gaps.

3.4.4 Fishing effect

My findings suggest a negative relationship between snow crab biomass and fishing

(measured as catch) in divisions 3L and 3N, although these relationships were not

statistically significant (p = 0.1 and 0.9, respectively). Similarly, I observed a

negative relationship between yellowtail flounder biomass and fishing in divisions

3N and 3O. These relationships were also not statistically significant, although the
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Figure 3.4: Centre of gravity of snow crab (a), yellowtail flounder (b) and
Atlantic cod (c) on the Grand Banks of Newfoundland. Points indicate mean
values and bars indicate variance. Colours represent years (from 1996 to 2019),
with more recent years in yellow.



Chapter 3. Biomass indices 47

fishing effect was more pronounced in division 3N (p = 0.08 and 0.48, respectively)

(Figure A.4).

3.5 Discussion

My findings highlight the importance of considering spatial heterogeneity in fish-

eries survey data, as the spatial component accounted for the majority of observed

variance for all three species (Table 3.2). The spatial component explains variance

that is not accounted for by the covariates depth and temperature. I observed

that spatial effects differed between the occurrence and biomass processes for snow

crab and Atlantic cod, but not for yellowtail flounder. These differences have been

found in other studies and may be indicating spatial differences between species

life stages, which are ignored in the occurrence analysis but get weighed in the

biomass analysis (Izquierdo et al., 2021). Likewise, I noted a disparity in the re-

lationship between biomass and depth for snow crab in both the occurrence and

biomass processes, which is likely linked to the preference of adult snow crab for

deeper waters (Mullowney et al., 2018). Biomass hotspots are more restrictive than

occurrence hotspots since biomass is higher only in areas with suitable conditions

(e.g., environmental, reduced competition, prey availability), whereas individuals

have a wide spatial range where they can be found (Izquierdo et al., 2021).

The new biomass indices presented in this study overcome issues related to gaps in

sampling by interpolating among missing data points. Missing data were important

in the years 2015 and 2017 due to incomplete sampling during those periods (Ride-

out and Ings, 2019; Brodie and Stansbury, 2007). They also account for species

habitat-presence (i.e., depth and temperature) when predicting in unsampled loca-

tions and address spatio-temporal correlation. Predicted model biomass estimates

align closely with those obtained using strata-based methods, with some disagree-

ments for snow crab and Atlantic cod. In the case of snow crab, the assessment of
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the stock is done using data from the fall trawl survey. This is because spring data

are considered to be less reliable because certain population components may be

sampled relatively poorly during this time, coinciding with the mating and moult-

ing periods (Mullowney et al., 2014a). In my analysis, I applied the conversion

factor used to account for the low catchability of snow crab in the fall bottom

trawl survey (Dawe et al., 2010; Mullowney et al., 2018). The development of this

conversion factor was created using data from 2000 to 2016. Thus, the disparities

observed in the biomass indices, particularly during the early stages of the tem-

poral series, could potentially be explained by the exclusion of certain years and

differences between fall and spring data. Spring data correspond to the pre-fishing

season; the higher biomass observed in the new biomass index compared to the fall

index could also be attributed to this. For Atlantic cod, differences are mostly due

to the comparison of 3NO to 3LNO Atlantic cod.

The models used in the assessment of all stocks included in my analysis, except

3NO Atlantic cod, require biomass indices as input (snow crab assessment uses

biomass trends, yellowtail flounder a Schaefer surplus production model and 2J3KL

Atlantic cod a state-space model). Therefore, the new biomass indices developed

in the present study could be used in the assessment of the species. The use of

spatio-temporal indices to fit stock assessments has been shown to improve estimate

precision compared to design-based indices (Shelton et al., 2014; Cao et al., 2017).

Consequently, this approach has been adopted by governmental bodies such as

DFO and the United States National Oceanic and Atmospheric Administration

(NOAA) to conduct the assessment of species such as northern shrimp (Pandalus

borealis) (DFO, 2023b) and yelloweye rockfish (Sebastes ruberrimus) (Haggarty

et al., 2021). However, it is important to acknowledge that calculating these indices

is computationally intensive and presents implementation challenges. For example,

spatial confounding (i.e., unaccounted spatial effects influencing the relationships

between predictors and response variables) may exist, leading to bias in predictions
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(Clayton et al., 1993). Thus, accurately defining the spatial component is crucial

in spatio-temporal models (Commander et al., 2022).

The centre of gravity has been used to evaluate the impacts of climate, fishing pres-

sure and other anthropogenic factors on the average location of marine populations

(Adams et al., 2018; Friedland et al., 2021). A shift in species’ centre of gravity

may create challenges and risks for managing resources when species move outside

of historical fishing areas or management boundaries (Ojea et al., 2020; Sumaila

et al., 2020). The temperature distribution over the Grand Banks is not uniform,

with the south and the north warmer than the centre. Additionally, this area un-

dergoes natural cyclical periods of cold and warmth (Cyr et al., 2022). Changes in

species distribution (here reflected as changes in the centre of gravity) can be an

early sign of water warming on the Grand Banks due to natural variability and/or

to climate change (Gonçalves Neto et al., 2021; Saba et al., 2016). However, shifts

in species distribution may also be influenced by other factors such as competition,

prey availability, habitat degradation and fishing (Adams et al., 2018; Robinson

et al., 2017). My results indicate that snow crab is the most sensitive species to

warming as its biomass declined as temperature increases, in agreement with other

observations in Newfoundland and Labrador, where cold events have been asso-

ciated with higher recruitment of snow crab (Dawe et al., 2008; Marcello et al.,

2012).

I found that yellowtail flounder tolerates a wide range of temperatures, with a

preference for 3 ◦C. This interpretation agrees with the literature, stating that

yellowtail flounder can survive wide fluctuations in temperature (Perry and Smith,

1994; Walsh, 1992). The persistence in the yellowtail centre of gravity on the

Grand Banks is likely related to a weak current regime allowing for the retention

of eggs and larvae in the southern part of the Grand Banks (Simpson and Walsh,

2004)—hypothesized as a nursery ground (Brodie et al., 2010). Atlantic cod has
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a preference for warmer waters compared to yellowtail flounder and snow crab,

favoring temperatures around 5 ◦C. The northward shift in the center of gravity

of Atlantic cod could be explained by a faster recovery of the 3L component of the

2J3KL northern stock, or it may indicate a northern shift of the southern 3NO

stock as a response to warming in the region due to a northern shift of the Gulf

Stream (Gonçalves Neto et al., 2021).

Management of natural resources is a complex task that should consider ecological

processes and how they relate to administrative boundaries. When management

units are solely defined based on these administrative boundaries, decisions can

have unintended consequences for the ecosystem (Kerr et al., 2014). My analysis

of Atlantic cod showed a continuous distribution over the Grand Banks during

years of higher biomass (Figure A.7), indicating hyperaggregation behaviour (i.e.,

aggregation of fish in a location during a period of low abundance (Rose and Kulka,

1999). While this behaviour can decrease individual competition and maximize fit-

ness, it can also increase the vulnerability of the species to fishing because of range

contraction (Burgess et al., 2017). Previous studies have documented the mixing

of Atlantic cod stocks (Smedbol et al., 2002; Tulk et al., 2017), suggesting that a

joint assessment of the population and management decisions at the 2J3KL and

3NO management units, similar to the approach taken with snow crab, would be

prudent. However, the pursuit of such collaborative efforts may face institutional

barriers, given that these two Atlantic cod stocks fall under the purview of distinct

regulatory bodies, namely DFO and NAFO. NAFO is a regional fisheries manage-

ment organization responsible of the management of high seas fishery resources,

while DFO manages resources within the Canadian economic exclusive zone. Both

entities apply the precautionary approach and reference points to manage the re-

sources (DFO, 2006; NAFO, 2004), however, differences in management strategies,

regulatory frameworks, and governance structures across these governing entities

may exist. Fostering this joint assessment would require both the DFO and NAFO
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to engage in collaborative workshops to share best practices, align priorities, and

agree on management strategies.

Ocean warming (natural or driven by climate change) has been identified as the pri-

mary driver of snow crab decline in Newfoundland, while fishing and competition

may have had localized impacts (Mullowney et al., 2014b). Overfishing is generally

blamed for the decline of yellowtail flounder stocks in the early 1990s, but the pro-

ductivity of the species was also strongly influenced by climatic conditions during

the collapse and subsequent recovery (Brodie et al., 2010). In the present analysis,

even though I could not directly account for the fishing effect in my models, I as-

sessed the effect of fishing on species biomass at a coarser spatial resolution—the

NAFO division level. I found that, even though the negative effect of fishing (i.e.,

landed catches) on species biomass was important in certain divisions (such as 3L

and 3N for snow crab, and 3N for yellowtail flounder), these relationships were

not statistically significant (refer to Figure A.4). The divisions with the strongest

fishing effect overlapped with those in which species had a biomass hotspot. This

result is not surprising since fishers harvest on aggregations of individuals and not

homogeneously across the entire area. However, the non-significance (p > 0.05) of

the fishing effect on the new biomass indices suggests that additional factors likely

contribute to the observed decline in species biomass.

My analysis is based on spring survey data, and therefore, the distribution pat-

terns I observed may differ during other seasons. Species distribution is highly

influenced by seasonal cycles, particularly in temperate areas, due to variations in

environmental factors, light availability, and nutrient supply (Kaiser et al., 2011;

Lloret-Lloret et al., 2020). Atlantic cod of the 2J3KL stock seek refuge near the

continental shelf edge in winter and move to shallow coastal waters and onto the

Grand Banks plateau during spring and summer for feeding (DFO, 2022b). It is

possible that the difference in the timing of the survey could affect the trends in
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species distribution found in this study. This could be addressed by incorporating

survey timing as a fixed or random effect in the model to adjust for variations in

survey dates. Similarly, snow crab undergo seasonal migrations related to moulting

and mating (Mullowney et al., 2018). It is likely that I am missing information

on species affinity for habitats that rely on seasonal variations. In addition, I used

aggregated size and sex information of species to predict biomass. Distribution

differences among species life stages may exist, including potential shifts in habitat

preferences between juvenile and adult stages (Tanaka et al., 2019).

As species range shift in different directions and rates, it is likely that predator-prey

interactions will also change (Selden et al., 2018). The availability and abundance

of prey directly impact the population dynamics and distribution of predators

(Sydeman et al., 2015; Richardson et al., 2014). When prey species become scarce,

predators may experience declines in body condition and overall population size

(Petrie et al., 2022). The diminishing abundance of capelin, the primary prey of

Atlantic cod, has been identified as a contributing factor to the decline in Atlantic

cod growth potential (Petrie et al., 2022) and body condition (Regular et al., 2022)

of the 2J3KL stock. Fisheries harvest of other prey items of the Atlantic cod (i.e.

snow crab and northern shrimp) could further exacerbate the issue of food limi-

tation, hampering stock recovery (Petrie et al., 2022; Regular et al., 2022). On

the other hand, predators like Atlantic cod can play a regulatory role in shaping

prey populations. In the Barents Sea, Atlantic cod has been identified as a regula-

tor of the snow crab population, impacting both its distribution and productivity

(Durant et al., 2023; Holt et al., 2021). A comparable phenomenon could poten-

tially exist between these species on the Grand Banks. The examination of the

distribution maps (Figure 3.2 g and u) reveals limited overlap between Atlantic

cod and snow crab in the Grand Banks. The limited overlap could be primarily

attributed to the preference of snow crab for lower temperatures (below 0 ◦C),

however, snow crab distribution may also be regulated by Atlantic cod presence.
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Future studies could explore predator-prey dynamics and species competition using

alternative methodologies such as joint species distribution models (Clark et al.,

2014; Pollock et al., 2014). Additionally, incorporating substrate type in future

research could provide valuable insights into the habitat preferences of demersal

and benthic species of the Grand Banks. Future research could enhance ecosys-

tem understanding by incorporating predation-prey interactions (Rutterford et al.,

2023; Laman et al., 2018), integrate multiple sources of data (Grüss and Thorson,

2019) and forecast climate change impacts on the Grand Banks under different

emissions scenarios (Thompson et al., 2023). My work could serve as a foundation

for the development of spatial management strategies since it provides fine-scale

information on biomass distribution. This information is crucial for establishing

effective conservation areas and spatial closures (Lawler et al., 2010; Abad et al.,

2020).

3.6 Conclusions

The introduction of novel indices offers a practical avenue for informed decision-

making and underscores the importance of comprehensive approaches to fisheries

management. My study revealed a continuous distribution of Atlantic cod across

the Grand Banks and a possible northern shift of the species, emphasizing the

need for joint management of the 2J3KL and 3NO stocks. The research presented

here holds promise for enhancing sustainability of Canadian fisheries by improving

our understanding of the interactions between environmental variables and species

distributions.





CHAPTER 4

Forecasting species biomass to

2100

4.1 Abstract

Species Distribution Models (SDMs) are tools for understanding climate-induced

habitat changes, yet their outcomes depend heavily on climate model selection.

This study compares biomass projections for three key species on the Grand Banks

of Newfoundland—snow crab, yellowtail flounder, and Atlantic cod—known to be

responsive to warming. We use Earth system models (GFDL-ESM4, IPSL-CM6A-

LR) and a regional ocean model system (Atlantic Climate Model (ACM)) under

varying emissions scenarios to assess long-term biomass trends and distributional

shifts driven by future ocean warming on the Grand Banks. Results indicate de-

clining biomass for snow crab and yellowtail flounder with rising temperatures,

whereas Atlantic cod is anticipated to exhibit biomass gains, particularly in the

southern Grand Banks. Variations in biomass projections among climate models

were noticeable, with IPSL forecasting the most drastic decline. ACM and GFDL

biomass projections were more similar to each other than GFDL and IPSL pro-

jections, likely because ACM was downscaled from GFDL. The difference between

GFDL and ACM likely arises from the coarse spatial resolution of ESMs, leading

to insufficient resolution of the bathymetry and incorrect current patterns, which,

in turn, affect the bottom temperature field. These findings underscore the im-

portant role of climate model selection in SDM-derived biomass projections. We

also partitioned uncertainty by sources and found that the relative contribution of

variability by component changes by species. As temperatures continue to rise, the

55
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urgency of implementing adaptive management strategies to minimize impacts on

Newfoundland and Labrador fisheries becomes increasingly evident, including, for

example, adjustments of fishing quotas, area closures and gear restrictions (Pinsky

and Mantua, 2014). SDM outputs can aid in strategic decision-making, providing

valuable insights for medium and long-term planning in fisheries management.

4.2 Introduction

Species distribution models (SDMs) have become increasingly important as the

marine environment changes rapidly. Distributions of species in space and/or time

are modelled as a function of a range of physical, environmental, and ecological

variables. SDMs have been implemented with a diverse range of statistical tools,

including classic regression models (e.g., generalized linear models- GLMs, general-

ized additive models- GAMs, and generalized linear mixed models GLMM) (Becker

et al., 2020), machine learning algorithms (e.g., random forest and artificial network

analysis) (Luan et al., 2020), climatic envelope methods (e.g., dynamic bioclimatic

envelope models) (Fernandes et al., 2013; Cheung et al., 2016) and decision tree

methods (e.g., boosted regression trees) (Yu et al., 2020). To forecast climate

change impacts on species distributions, environmental outputs from Earth system

models (ESMs) and regional ocean modelling systems (ROMS) are commonly used

to forecast into the future (Cheung et al., 2016; Florko et al., 2021). ESMs simulate

the Earth’s entire climate system, focusing on global-scale interactions between the

atmosphere, oceans, land surfaces, and ice. They provide insights into long-term

climate trends and variability (Stock et al., 2011; Skogen et al., 2018). Variation

in ESM projections can arise due to differences in forcing, process configuration,

feedbacks, and horizontal and vertical resolutions (IPCC, 2021; Merrifield et al.,

2023). In contrast, ROMS concentrate on specific regions or domains of the ocean,

offering higher spatial resolutions to study fine-scale processes such as coastal dy-

namics, boundary currents, and mesoscale eddies (Drenkard et al., 2021; Kearney
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et al., 2021). The low spatial resolution of ESMs can make it challenging to ade-

quately represent regional processes, as they are primarily designed to emphasize

global-scale dynamics (Stock et al., 2011). ESMs also do not appropriately repre-

sent depths less than 50 m in shallow coastal regions (Stock et al., 2011). However,

in many cases, these models are the only available information to project species

distribution under climate change scenarios (IPCC, 2021).

Newfoundland and Labrador, located on the east coast of Canada, is a dynamic

region that undergoes significant climatic variations, oscillating between warm and

cold periods on decadal scales (Cyr and Galbraith, 2021). Within it, three ma-

jor geographical subunits characterized by distinct productivity and a reasonably

well-defined major marine community (aka ecosystem production units), have been

identified: Newfoundland shelf (North Atlantic Fishery Organization (NAFO) di-

visions 2J3K), Grand Banks (3LNO) and Flemish Cap (3M) (Pepin et al., 2014;

Koen-Alonso et al., 2019). A key feature of the Newfoundland system is the cold

intermediate layer (CIL), consisting of a water layer below 0 ◦C. It forms during

winter as a cold surface layer and remains as an intermediate layer separate from

the surface (roughly 0-50 m) when waters warm in spring (Cyr and Galbraith,

2021). The presence of the CIL heavily impacts the Grand Banks because of the

shallow depth of the oceanic plateau, creating distinct temperature patterns within

the Banks. Moreover, recent observations suggest a trend of warming ocean tem-

peratures on the Grand Banks (Cyr et al., 2022). This warming may be influenced

not only by warmer air temperatures that increase the heat transfer to the upper

layers of the oceans but also by a slowing down of the shelf-break jet, which reduces

the supply of the fresh, cold and nutrient-rich waters of the Labrador Current to

the Grand Banks slopes (Jutras et al., 2020; Garcia-Suarez et al., 2023; Rutherford

et al., 2024).

In the Newfoundland and Labrador region, a shift from a warm to cold phase
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in the 1990s, coupled with intensive fishing, triggered alterations in ecosystem

productivity, leading to a substantial decline in most groundfish stocks and a surge

in invertebrate biomass on the Newfoundland Shelf (Pedersen et al., 2017) and

the Grand Banks (Dempsey et al., 2017). Responding to the groundfish collapse,

several fishing moratoria were imposed in 1992 and 1994 on the Newfoundland Shelf

and the Grand Banks, respectively, to facilitate the recovery of groundfish stocks

(e.g., Atlantic cod, yellowtail flounder, haddock, among others). The impact of the

collapse was profound, affecting both harvesters and plant workers in the province,

with over 35,000 individuals losing their source of livelihood (Mather, 2013). In

the present study, we focused on three key fisheries species of the Grand Banks

that exhibited distinct responses to the collapse: yellowtail flounder (Limanda

ferruginea), Atlantic cod (Gadus morhua) and snow crab (Chionoecetes opilio).

The yellowtail flounder fishery was closed from 1994 to 1997 at the 3LNO divi-

sion and rebounded, currently operating as a Marine Stewardship Council (MSC)

certified fishery (Brodie et al., 2010; Knapman et al., 2020). Yellowtail flounder in-

habits the east coast of North America, from Newfoundland to the Chesapeake Bay

(Brodie et al., 2010), with biomass peaking on the Grand Banks at approximately

3 ◦C (in spring), and tolerating a wide temperature range 1-6 ◦C (Ruiz-Diaz et al.,

2024). In contrast, Atlantic cod stocks (3NO and 2J3KL) remain at low levels

compared to historical baselines, with only a modest increase in biomass observed

in the 2J3KL stock, primarily driven by the 2J3K divisions (DFO, 2022). This sit-

uation has resulted in the persistent closure of the directed fishery for both stocks

(Rideout et al., 2021; DFO, 2022b). Atlantic cod, found across the North Atlantic

Ocean, avoids temperatures exceeding 12 ◦C (Drinkwater, 2005). In the Grand

Banks, higher biomass of Atlantic cod is found at at 5-6 ◦C (in spring) on the

Grand Banks (Ruiz-Diaz et al., 2024).

Following the collapse, Newfoundland and Labrador’s fishing industry diversified
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its targets, focusing on invertebrate species like snow crab. Snow crab has become

the province’s most valuable species, with a value of $761 million CAD in 2022,

representing 58% of the total landed value of all fisheries resources in NL (Mather,

2013; NL Government, 2023). A recent study found that the species is moving from

Subarctic to Arctic environments (Mullowney et al., 2023). This suggests that with

future warming, the species may experience biomass losses on the Grand Banks,

where most of the Newfoundland and Labrador quota (59%) is currently allocated.

In addition to potential biomass losses due to future warming, it is important to

consider that species may also exhibit northward shifts on the shelf or migrate into

deeper waters as they seek suitable habitats.

The climatological changes mentioned above may present a pressing issue for New-

foundland and Labrador’s fishing sector, which in 2022 contributed $1.4 billion

CAD to the local economy and currently employs over 17,000 people across 400

communities (NL Government, 2023). Thus, the objectives of this study are: i)

to produce and compare biomass projections for three contrasting species on the

Grand Banks of Newfoundland under two emission scenarios; and ii) to evaluate the

importance of climate model choice in these types of projections. In particular, we

compared species biomass projections using the Coupled Model Intercomparison

Project (CMIP) 6 earth system models IPSL-CM6A-LR (Boucher et al., 2020) and

the GFDL-ESM4 (Dunne et al., 2020) under low (SSP1-2.6) and high (SSP3-7.0)

emissions scenarios, and the ROMS Atlantic Canada model (from now on referred

as ACM) (Laurent et al., 2021; Rutherford et al., 2024) as climate forcings. The

ACM model was forced by anomalies from the GFDL’s high-resolution coupled

model, CM2.6, with a rapid increase in CO2 that resembles the SSP4-6.0 scenario

(Garcia-Suarez et al., 2023). While these results are only projections and should

be interpreted with caution, they provide valuable guidance for fisheries manage-

ment strategies by detecting changes in habitat suitability and anticipating future

https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2023-gp/atl-14-eng.html
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biomass trends. In assessing differences in biomass projections, we specifically ana-

lyzed the influence of climate model choice and emissions scenario, including varia-

tions in temperature fields under low (SSP1-2.6) and high (SSP3-7.0 and SSP4-6.0)

emissions pathways.

4.3 Material and Methods

4.3.1 General approach

We used SDMs to characterize current species distributions, with temperature and

depth as key drivers. These models aim to capture the general changes associated

with climate-driven shifts in temperature. To achieve this objective, we defined

temperature fields for the Grand Banks using various emissions scenarios (low

- SSP1-2.6 and high – SSP3-7.0 and SSP4-6.0-) generated by multiple climate

models (IPSL, GFDL and ACM), thereby capturing uncertainty surrounding these

projections. Subsequently, we will utilize the SDMs and the projected temperature

fields to forecast the expected distributions of the focal species between the present

and 2100 under different climate change scenarios. Finally, we assessed variability

as a function of climate models and emissions scenarios.

4.3.2 Oceanographic and biological survey data

Fisheries and Oceans Canada (DFO) has conducted annual stratified random multi-

species trawl surveys in Newfoundland and Labrador since 1971, with these surveys

experiencing important modifications in survey design, coverage, species recorded,

and gear over time (Brodie and Stansbury, 2007). One major change in these

surveys was the introduction of the Campelen trawl gear (i.e., 1800 shrimp trawl)

in 1995-1996 (Brodie and Stansbury, 2007). The previous survey trawl was En-

gels. This change improved catches of small-sized fishes and marked the start of

the time series recording for commercial shellfish species. Georeferenced data on
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presence/absence and biomass for the focal species of this study, as well as water

temperature and depth, come from DFO spring surveys on the Grand Banks be-

tween 1996 and 2019. This survey do not collect environmental data other than

temperature, that is why we focused on assessing temperature as a driver of species

distribution. For predicting biomass, we created grids with a 5×5 km spatial reso-

lution which included gridded bathymetry information with a 15 arc seconds spatial

resolution from the general bathymetric chart of the oceans project (GEBCO) and

spring bottom temperature data interpolated over the Grand Banks with a spatial

resolution of 0.1◦ × 0.1◦ (Cyr et al., 2022) (Figure 4.1). Bathymetry data repre-

sented depths from 35 to 750 m since those were the depths sampled in the RV

trawl survey.

4.3.3 Climate models and emissions scenarios

We considered both low and high emissions scenarios to assess their impacts on

snow crab, yellowtail flounder, and Atlantic cod distributions on the Grand Banks.

We used three models to characterize these scenarios. The ACM uses ROMS ver-

sion 3.5, a terrain-following, free-surface, primitive equation ocean model (Haid-

vogel et al., 2008; Laurent et al., 2021). It was configured with 30 vertical levels

(layers are thinner in shallower water and thicker in deeper water), with a min-

imum water depth of 10 m, and an approximate horizontal resolution of 10 km

(240× 120 horizontal grid cells). The model encompass the Gulf of Maine, Scotian

Shelf, East Newfoundland Shelf, Grand Banks, and the Gulf of St. Lawrence, has

been demonstrated to accurately capture regional circulation patterns (Brennan

et al., 2016), and represent biogeochemical properties well (Laurent et al., 2021).

The ACM was calibrated to observed values (Laurent et al., 2021). In comparison,

IPSL-CM6A-LR (Boucher et al., 2020) and GFDL-ESM4 (Dunne et al., 2020) are

ESMs with a coarser spatial resolution of approximately 100 km. These models

produce a much poorer agreement with observed temperatures, salinity, nitrate,

https://www.gebco.net
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Figure 4.1: Map of the average spring bottom temperature during the historical
period (1996-2019) interpolated over the Grand Banks. Isobaths are indicated
in light grey; Northwest Atlantic Fisheries Organization NAFO divisions bound-
aries are indicated with grey rectangles. Black arrows show the main currents
of the region.
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and chlorophyll observation in the Grand Banks than the ACM (Laurent et al.,

2021). ESMs also do not appropriately represent depths less than 50 m (Stock

et al., 2011).

For biomass projections, we used annual averages of the sea bottom tempera-

ture (potential temperature on bottom – thetao bot) sourced from the Coupled

Model Intercomparison Project (CMIP) 6 ESMs IPSL-CM6A-LR (Boucher et al.,

2020), GFDL-ESM4 (Dunne et al., 2020) and the ROMS ACM (Laurent et al.,

2021; Rutherford et al., 2024). We used the shared socioeconomic pathway (SSP)

and representative concentration pathways (RCP) scenarios SSP3-7.0 for IPSL and

GFDL, and SSP4-6.0 for ACM as the high emissions scenarios due to availability,

and the low emissions scenario SSP1-2.6 (van Vuuren et al., 2011). Unfortunately,

the low emissions scenario was not available for ACM (Figure 4.2 a&b). Note

that while the specifics of these scenarios do not align perfectly among models,

they are similar enough for general comparisons and characterizations. Finally,

we bias-corrected annual bottom temperatures projections of the climate models

to the local spring observations by calculating the mean values from 2015 to 2019

and subtracting the difference between predictions and observations (see Figure B.9

and Figure B.10). We selected these years because the projections and observations

time overlapped.

4.3.4 Modelling approach

Species distribution models

To build species distribution models, we used the R package sdmTMB (Anderson

et al., 2022). sdmTMB fits models with maximum marginal likelihood through

template model builder (TMB; (Kristensen et al., 2015)) and incorporates the

stochastic partial differential equation approach (SPDE; (Lindgren and Rue, 2015))

for approximating spatial Gaussian random fields, drawing from the methodology
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Figure 4.2: Maps and time series of average annual bottom temperature projec-
tion on the Grand Banks. a, Time series of average annual bottom temperature
for the model domain. The historical period is represented by a black line, while
the IPSL-CM6A-LR, GFDL-ESM4, and ACM models are indicated by yellow,
purple and green lines, respectively. Dashed lines represent the low emissions
scenario (SSP1-2.6), and solid lines depict the high emissions scenario (SSP4-6.0
for ACM, and SSP3-7.0 for GFDL and IPSL). b, Maps of mean annual bottom
temperature projections by climate model (GFDL, IPSL and ACM) and RCP
scenarios at the end of the century (period 2071-2100).

established in the integrated nested Laplace approximation (INLA) R package (Rue

et al., 2009; Lindgren and Rue, 2015).

Two population variables were used as response variables to characterize the species

distributions. Firstly, a presence/absence variable was considered to measure the

probability of species occurrence. Secondly, species biomass was used as an indi-

cator of the conditional-to-presence-biomass. Abiotic explanatory variables were

bathymetry (here called depth) and bottom temperature. After some preliminary

analysis, covariates were added to the model as curvilinear effects to account for
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their non-linear relationships. Finally, we included swept-area by the survey gear

(log-transformed) as an offset in the model to account for sampling effort (Anderson

et al., 2022).

The general form of the SDM is a delta (hurdle) generalized linear mixed effects

model (GLMM). We test two different families, delta gamma and delta lognormal.

We considered Z(s, t) to be the occurrence and W (s, t) the conditional-to-presence

biomass at location s and time t. The model formulation can be written as follows:

Z(s, t) ∼ Bernoulli(π(s, t)) (4.1a)

W (s, t) ∼ Gamma(µ(s, t), ϕ) or W (s, t) ∼ lognormal(µ(s, t), σ2) (4.1b)

logit(π(s, t)) = βZ +
I∑

i=1

fi(Xi(s, t)) + VZ(s, t) (4.1c)

log(µ(s, t)) = βW +
I∑

i=1

fi(Xi(s, t)) + VW (s, t) (4.1d)

where π(s, t) represents the probability of occurrence at location s and time t;

µ(s, t) is the mean; and ϕ and σ are the variance of the conditional-to-presence

biomass for the gamma and lognormal distribution respectively. The linear predic-

tors, which represent the intercept of each variable associated with the parameter

π(s, t) and µ(s, t), are represented by βZ and βW , respectively. fi represents any

function applied to the covariate Xi, which in the present study was a second-

degree polynomial function. VZ(s, t) and VW (s, t) refer to the spatial structure of

the occurrence and conditional-to-biomass model, respectively.

Our model aimed to identify the optimal average spatial relationships that describe

the distribution patterns, treating individual years as replicates. We created a

mesh with a cutoff of 15 km, which resulted in 761 nodes. We refrained from

incorporating spatiotemporal variations (i.e., autoregressive model of order one

(AR1) and random walk (RW)) as well as fixed temporal covariates (i.e. year as
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a fixed effect) into the model because of challenges in projecting these effects over

an extended period into the future (Liu et al., 2023).

Model selection

We compared four different model configurations (Table B.1, Table B.2 and Ta-

ble B.3). To select the best fitting, we calculated model Akaike information criteria

(AIC), an estimator of model prediction error commonly used in model selection

(Burnham and Anderson, 2002). We also quantified the percent deviance explained

when comparing model configurations to an intercept-only null model, using rela-

tive log-likelihood between models (Liu et al., 2023). Finally, we visually inspected

the quantile residual plots (Figure B.1, Figure B.3 and Figure B.5).

Additionally, we assessed model performance during the historical period by com-

paring mean biomass values observed to those predicted and calculated the area

under the curve (AUC) and the Pearson correlation (R). We assessed future pre-

dictability by implementing the leave-future-out strategy in which we trained our

model with data from 1996 to 2016 and tested it against the last 3 years of the

time series (2017-2019).

Biomass projections to 2100

We analyzed time series projections of biomass as a percentage change between the

historical period (1996-2019) and each future year. Then, we compared projections

among climate models and low (SSP1-2.6) and high (SSP4-6.0 for ACM, and SSP3-

7.0 for IPSL and GFDL) emissions scenarios. We ran simulations to the end of the

century because temperature projections from RCPs scenarios increasingly diverge

after 2050 (Pershing et al., 2021; Sobie et al., 2021). Changes in spatial patterns

of species biomass were assessed by calculating the biomass difference:

∆Biomass = BFut,K(i, j)− BHist(i, j) (4.2)
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Where BFut,K represents the biomass at the coordinates (i, j) for the end of cen-

tury period (2077-2100) under the high emissions scenario for climate model K;

BHist(i, j) is the biomass at the same coordinates for the historical period (1996-

2019).

We called this difference in biomass: ∆Biomass. To enhance visual clarity, distri-

butions in the figure were constrained between the 0.1 and 99.9th percentiles range

due to the presence of a few extreme values in ∆Biomass.

4.3.5 Biomass uncertainty evaluation

We assessed point-wise prediction uncertainty of species distribution models during

the baseline period (1996-2019) by conducting 100 simulations based on the joint

precision matrix of our model (Thompson et al., 2023). The precision matrix, often

referred to as the inverse covariance matrix, characterizes the relationships between

variables assuming a multivariate normal distribution (Anderson et al., 2022). The

variability in these simulations, and hence the level of prediction uncertainty, is

directly influenced by the precision matrix. We repeated this approach to assess

biomass projections from each climate model under the high emissions scenarios at

the end of the century (period 2077-2100). Finally, we partitioned uncertainty in

the biomass estimates among climate models and RCPs by fitting a linear model,

with annual biomass estimates as a response variable and climate models (GFDL,

IPSL and ACM) and scenarios (low and high emissions) as covariates, allocating

residual error to parameter uncertainty (ei):

Biomassi = β0 + β1X1i + β2X2i + ei (4.3)

Biomassi represents the annual biomass estimate for the i-th observation; β0 is the

intercept term; β1 and β2 are coefficients corresponding to the predictor variables
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X1 (climate model) and X2 (emissions scenario), respectively. Finally, ei represents

the residual error term, capturing unexplained variation in the biomass estimates.

Dominance analysis is a statistical technique used to assess the relative importance

of predictor variables in explaining variance in a dependent variable, and was ap-

plied to evaluate the relative importance of each component (Morley et al., 2020;

Brodie et al., 2022). We smoothed the results by computing 10-year averages to

mitigate noise and highlight the underlying trends. We acknowledge that having

three climate models and only two scenarios – only one in the case of the ACM

model – may induce bias in assessing predictors’ importance.

4.4 Results

For all species, models that best explained spatial patterns of biomass distribution

included depth and temperature as fixed effects and the spatial random field (Ta-

ble B.1, Table B.2 and Table B.3). The spatial random field represents biomass

deviations in space that are not accounted for by covariates. Its inclusion substan-

tially improved model performance, especially for yellowtail flounder and Atlantic

cod. Models estimates are available in Table B.4.

We used the model fit to predict biomass estimates of the focal species on the

Grand Banks of Newfoundland in 1996 and 2019 (Figure 4.3, Figure 4.4 and

Figure 4.5). Then, we forecasted to 2100 under the low and high emissions.

The predictive capacity of the models varies among species, with highest pre-

dictability in yellowtail flounder (Pearson correlation = 0.74; AUC = 0.97), fol-

lowed by snow crab (Pearson correlation = 0.55, AUC = 0.89) and Atlantic cod

(Pearson correlation = 0.55, AUC = 0.82) (Figure B.7). We also assessed the out-

of-sample predictability, training our model with data from 1996 to 2016 and test-

ing it for the period 2017:2019. The predictability was (Pearson correlation = 0.7;

AUC = 0.97) for yellowtail flounder, (Pearson correlation = 0.41, AUC = 0.89)
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for snow crab and (Pearson correlation = 0.47, AUC = 0.79) for Atlantic cod

(Figure B.8).
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Figure 4.3: Map of snow crab biomass distribution over the Grand Banks
obtained from the combined prediction of the delta lognormal model. Biomass
is in log scale.

Our findings underscored a long-term decline in the projected biomass of snow

crab for all climate models and scenarios except for GFDL under the low emissions

scenario (Figure 4.6). If we focus on the values at the end of the century (2077-

2100), greater losses were observed for the high emissions scenario, especially for

IPSL model -47% [± 1.67% SD], followed by ACM -10.4% [± 1.59% SD] and GFDL

-14.68% [± 1.59% SD]. Under the low emissions scenario, biomass trends fluctuate

around the historical average. Values at the end of the century (2077-2100) for

IPSL projected biomass losses of -3.8% [± 1.6% SD], whereas GFDL projected

biomass gains of 3.7% [± 1.57% SD].

We also observed a long-term decline in yellowtail flounder biomass for the IPSL

model under the low and high emissions scenarios -8.4% [± 0.38% SD] and -29%

[± 0.36% SD], respectively (Figure 4.7). Biomass projections at the end of the
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Figure 4.4: Map of yellowtail biomass distribution over the Grand Banks ob-
tained from the combined prediction of the delta gamma model. Biomass is in
log scale.
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Figure 4.5: Map of Atlantic cod biomass distribution over the Grand Banks
obtained from the combined prediction of the delta lognormal model. Biomass
is in log scale.
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Figure 4.6: Projections of snow crab biomass by climate model and emis-
sions scenario. a, Projections under low emissions (SSP1-2.6, left) and high
emissions scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and
GFDL-ESM4 scenario, right). b, Projections by climate models for low and high
emissions scenarios. Biomass changes are relative to the predicted values of the
reference period (1996-2019), indicated by the shaded grey area. Solid coloured
lines depict average projected biomass, while shaded areas indicate standard de-
viations based on the precision matrix runs. Zero change is represented by a
horizontal dashed line.

century (2077-2100) for the GFDL model under both emissions scenarios indicated

biomass values close to the historical average, -1.4% [± 0.38% SD] for the low

emissions and 0.39% [± 0.38% SD] for the high emissions scenario. Finally, the

ACM model suggests a small increase in biomass at the end of the century (period

2077-2100) of 4.45% [± 0.34% SD].

SDMs projected a long-term decline in Atlantic cod biomass for the GFDL-low

emissions scenario of -11.9% [± 0.53% SD] at the end of the century (2077-2100),

and an increase in biomass for the rest of models and scenarios (Figure 4.8).
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Figure 4.7: Projections of yellowtail flounder biomass by climate model and
emissions scenario. a, Projections under low emissions (SSP1-2.6, left) and high
emissions scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and
GFDL-ESM4 scenario, right). b, Projections by climate models for low and high
emissions scenarios. Biomass changes are relative to the predicted values of the
reference period (1996-2019), indicated by the shaded grey area. Solid coloured
lines depict average projected biomass, while shaded areas indicate standard
deviations based on the precision matrix runs. Zero change is represented by a
horizontal dashed line.

Biomass projection for IPSL-low emission scenario indicates a gain of almost 18%

[± 0.53% SD] at the end of the century. Under the high emissions scenario, GFDL

oscillates around the historical average but showed an increase of 6.22% [± 0.53%

SD] at the end of the century (period 2077-2100). IPSL and ACM both showed a

similar trend of biomass gain at the end of the century, reaching values of 28.6%

[± 0.54% SD] and 23.8% [± 0.52% SD], respectively.

The analysis revealed a consensus among earth system models (IPSL and GFDL)

regarding the locations with the most pronounced losses in snow crab biomass,
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Figure 4.8: Projections of Atlantic cod biomass by climate model and emis-
sions scenarios. a, Projections under low emissions (SSP1-2.6, left) and high
emissions scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL-CM6A-LR and
GFDL-ESM4 scenario, right). b, Projections by climate models for low and high
emissions scenarios. Biomass changes are relative to the predicted values of the
reference period (1996-2019), indicated by the shaded grey area. Solid coloured
lines depict average projected biomass, while shaded areas indicate standard de-
viations based on the precision matrix runs. Zero change is represented by a
horizontal dashed line.

specifically at the north and south of the Grand Banks. However, ACM depicted

a less pronounced decline (Figure 4.9 a).

The majority of yellowtail flounder biomass changes were observed on the southeast

shoal of the Grand Banks. GFDL and ACM mostly agreed on projected spatial

biomass changes. In contrast, IPSL suggested a stronger decline in the southern

part of the southeast shoal (Figure 4.9 b). Spatial biomass patterns for Atlantic

cod showed the biggest disagreement among climate models (Figure 4.9 c). GFDL
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Figure 4.9: Spatial patterns of species biomass changes (in kg/25km2) for
a, snow crab; b, yellowtail flounder and c, Atlantic cod on the Grand Banks
of Newfoundland by climate model (GFDL-ESM4, IPSL-CM6A-LR and ACM)
under the high emissions scenarios (SSP4-6.0 for ACM and SSP3-7.0 for IPSL
and GFDL) during the 2077-2100 period relative to the historical period (1996-
2019). The Avalon Peninsula is the southern piece of land (in grey).
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predicted losses in the north and southern edge, with some gains on the southern

shoal. IPSL indicated biomass losses on the southeastern shoal and gains on the

rest of the Banks. Finally, ACM projected gains mostly in the south of the Banks.

4.4.1 Uncertainty

We observed marked spatial variability in SDM biomass projections during the

historical period (1996-2019), with standard deviations of biomass ranging from 0

to 4 kg/25km2 for snow crab, yellowtail flounder and Atlantic cod (Figure 4.10-

SDM). For snow crab, the periphery and the southeast shoal of the Grand Banks

showed high variability (Figure 4.10 a). For yellowtail flounder, variability was

higher in the northern part of the Banks and on the periphery (Figure 4.10 b). In

the case of Atlantic cod, variability was pronounced around the Avalon Peninsula

and on the periphery of the Banks (Figure 4.10 c).

Variability in biomass projections amplified between the historical period to the end

of the century (2077-2100), where the standard deviation of the biomass increased,

especially for yellowtail flounder (30 kg/25 km2) (Figure 4.10 and Figure 4.11).

Uncertainty partitioning

We partitioned uncertainty to assess the relative contribution of each compo-

nent: climate model, scenario and SDM parameters (Figure 4.12). For all three

species—snow crab, yellowtail flounder, and Atlantic cod—climate model uncer-

tainty was the dominant factor contributing to biomass uncertainty across all years,

consistently showing the highest influence (above 50%). However, the contribution

of SDM parameters and scenarios varied over time. For snow crab and yellowtail

flounder, the influence of SDM parameters and scenarios increased slightly after

2050, indicating that assumptions and parameterizations in SDMs, along with spe-

cific future scenarios, become more critical for determining biomass uncertainty as

projections extend further into the future (Figure 4.12 a & b). A similar trend was
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Figure 4.10: Spatial uncertainty of SDM biomass estimates (historical period;
1996-2019) and climate models projections (GFDL, IPSL and ACM) at the end of
the century (2077-2100) measured as the standard deviation from 100 simulation
draws (kg/25 km2) for (a) snow crab, (b) yellowtail flounder and (c) Atlantic cod
projected biomass.

observed for Atlantic cod, with increasing contributions from SDM parameters and

scenarios over time, though the changes were less pronounced compared to snow

crab and yellowtail flounder (Figure 4.12 c).

4.5 Discussion

Depth and temperature are known to be key factors that determine the distribution

and survival of many species, including snow crab (Windle et al., 2012), yellowtail

flounder (Simpson and Walsh, 2004; Colbourne and Walsh, 2006) and Atlantic

cod (Drinkwater, 2005; Linner and Chen, 2022). As expected, both depth and
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Figure 4.11: SDM biomass estimates (historical period; 1996-2019) and climate
models projections (GFDL, IPSL and ACM) at the end of the century (2077-
2100) measured as the mean from 100 simulation draws (kg/25 km2) for (a) snow
crab, (b) yellowtail flounder and (c) Atlantic cod projected biomass. Log scale
for better interpretation of spatial differences.
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Figure 4.12: Relative uncertainty in biomass projections for a, snow crab; b,
yellowtail flounder and c, Atlantic cod, partitioned across climate models (i.e.,
IPSL, GFDL and ACM), emissions scenarios (low-SSP1-2.6 and high-SSP4-6.0
& SSP3-7.0) and SDM parametrization.

temperature were relevant variables to explain spatial distribution. The best fitting

models also included the spatial random field that explains variability not captured

by the covariates.

Projected changes in species biomass to 2100 under low and high emissions scenar-

ios showed an overall decline in snow crab and yellowtail flounder biomass com-

pared to the historical period (1996-2019), whereas Atlantic cod is expected to gain

biomass across the 21st century under the high emissions scenario. However, in

the GFDL simulation, biomass declines through the mid-century before increasing.

While there are differences in the magnitude of biomass projections across climate

models, a consensus in the direction of changes was evident in all models except for

GFDL-low emissions scenarios. This divergence can be attributed to the GFDL-

low emissions scenario forecasting a decline in bottom temperature by the end of

the century, in contrast to temperature increases projected by the other models and

scenarios. The IPSL model projected the biggest warming on the Grand Banks.

Changes in species’ geographic distributions can be analyzed by focusing on their

range boundaries. At leading edges, species expand into new territories as environ-

mental conditions improve, while at trailing edges, population extirpations lead to

range contractions (Pinsky et al., 2020). Marine ectotherm species tend to fully
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use their potential latitudinal ranges in relation to their thermal tolerance limits

(Sunday et al., 2012), and distribution shifts are thought to be higher at the leading

edge than at the trailing edge (Poloczanska et al., 2013), although this is case spe-

cific (Robinson et al., 2015). Snow crab commonly occurs in subpolar and Arctic

regions, favouring cold water environments below 5 ◦C (Foyle et al., 1989). On the

Grand Banks of Newfoundland, higher biomass has been observed at temperatures

close to 0 ◦C (in spring) (Ruiz-Diaz et al., 2024). As stenothermics, snow crabs

respond strongly to changes in bottom temperature, particularly during their juve-

nile period (Dionne et al., 2003). Snow crabs on the Grand Banks of Newfoundland

are at the trailing edge of their distribution, corresponding to their upper thermal

threshold, making them particularly susceptible to ocean warming. A recent study

detected a general shift in snow crab distribution from the Newfoundland region

into the Arctic (Mullowney et al., 2023). Here, all models predicted that snow crab

biomass on the Grand Banks will decline throughout the 21st century under the

high emission scenarios while remaining close to the historical period under the low

emissions scenario.

On the Grand Banks, yellowtail flounder thrive in sea bottom temperatures ranging

from 1-6 ◦C in spring (Ruiz-Diaz et al., 2024). Despite their ability to tolerate a

broad range of temperatures, there is evidence that stock productivity declines

significantly at both extremes of the temperature range (Brodie et al., 2010). The

case of yellowtail flounder is interesting as spatial uncertainty widely amplifies over

time, which was not the case for snow crab and Atlantic cod. Yellowtail flounder

distribution is centred around the southeast shoal of the Grand Banks due to the

presence of a mild current system, facilitating the retention of eggs and larvae

(Brodie et al., 2010). This region is considered as a nursery ground for yellowtail

flounder (Simpson and Walsh, 2004), and is the area in which higher warming is

expected on the Grand Banks (Figure 4.2 b). We found that yellowtail flounder

biomass projections are expected to remain close to the historical average for GFDL
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and slightly higher for ACM, but to be negatively impacted for the IPSL model

under high and low emissions scenarios.

Atlantic cod tolerate higher temperatures than the other two species, with a peak

in biomass at 5 ºC on the Grand Banks in spring (Ruiz-Diaz et al., 2024). Our

analysis indicates that, by the end of the century, most climate models (excluding

the GFDL-low emissions scenario) predict an increase in Atlantic cod biomass on

the Grand Banks. In particular, the ACM showed the greatest biomass gains.

These results contrast with findings in the Gulf of Maine, where biomass decrease

was noted with ocean warming (Fogarty et al., 2008; Pershing et al., 2015), but are

in agreement with forecasted thermal habitat for cod on the Newfoundland and

Labrador shelf (Cote et al., 2021). The difference can be attributed to the distinct

thermal environments of these regions. The Gulf of Maine has an average bottom

temperature of 7.1 ◦C (Fogarty et al., 2008), while the Grand Banks experiences

significantly cooler temperatures, averaging 1.34 ◦C during our historical period

(1996-2019). This movement suggests that Atlantic cod could potentially benefit

from moderate warming in the Grand Banks, while those in the Gulf of Maine may

be experiencing temperatures beyond their physiological limits, leading to declines

in biomass (Pinsky et al., 2020). Gains in Atlantic cod biomass are expected to

occur mostly in the southern Grand Banks (3NO stock).

Variability in the predictive capacities of the SDMs directly impacts the reliability

of biomass projections. For instance, our leave-future-out cross-validation showed

that yellowtail flounder model exhibited the highest predictability (Pearson corre-

lation = 0.7; AUC = 0.97), indicating more confidence in its biomass projections.

Conversely, Atlantic cod model showed lower predictability (Pearson correlation =

0.47; AUC = 0.79), suggesting greater uncertainty in biomass projections for this

species. Snow crab falls in between with moderate model predictability (Pearson

correlation = 0.41; AUC = 0.89).
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The low spatial uncertainty of the SDMs indicated consistency in the biomass

predictions during the historical period (1996-2019). However, projecting to 2100

under the high emissions scenario (SSP3-7.0 for IPSL and GFDL and SSP4-6.0 for

ACM) showed increased uncertainty, especially for yellowtail flounder. This finding

aligns with other species distribution studies (Thuiller et al., 2019; Thompson et al.,

2023), reflecting challenges in extrapolating predictions to novel conditions and/or

the model’s capacity to capture the underlying mechanisms governing species dis-

tributions (Brodie et al., 2022). In all species, there is a notable overlap between

regions with biomass absence and areas of high uncertainty (see Figure B.2, Fig-

ure B.4 and Figure B.6). Furthermore, observation uncertainty, linked to bias in

the sampling coverage, can lead to an incomplete depiction of a species’ entire

environmental niche (Reum et al., 2020). While the Grand Banks region has rel-

atively comprehensive sampling coverage, we anticipate observation uncertainty

to be more pronounced near the Avalon Peninsula since, in this area, indepen-

dent inshore sampling is performed, and at the periphery of the Grand Banks,

corresponding to deeper waters that are less sampled (Rideout and Ings, 2019).

Depth sampling limitation may contribute to the higher uncertainty observed in

the biomass predictions for the three species at the periphery of the Grand Banks.

Another possible explanation relates to the spatial resolution of the climate models,

which increases bias near the slope of the banks.

Variation in spatial warming among climate models is crucial to understanding

uncertainty surrounding species distribution projections. In the present analy-

sis, we found greater variation among climate models than among scenarios. We

also found differences in the variability of the temperature projections, with ACM

temperature increasing steadily, while the ESMs, GFDL and IPSL showed high

variability. This is likely due to the low spatial resolution of ESM, leading to incor-

rect circulation patterns due to inaccuracies in the bathymetry (Figure B.11 and
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Figure B.12). In a dynamic coastal region like the Grand Banks, changes in circu-

lation patterns, particularly the strength of the shelf break current, play a crucial

role in determining sea bottom temperature on the Grand Banks (Garcia-Suarez

et al., 2023; Rutherford et al., 2024). These small-scale circulation features are

poorly captured by ESMs, and can even vary among ROMs (Rutherford et al.,

2024). In the same way, the cold intermediate layer is a key feature of the Banks

that also affects the temperature pattern distribution, with colder waters prevailing

in the northern Grand Banks due to the advection of winter-origin waters from the

Labrador shelf, and warmer temperatures observed in the southern Grand Banks,

including the shallow southeast shoal (Cyr and Galbraith, 2021). The CIL falls

within a specific depth range (50-200 m); thus, models with high bathymetry bias

would likely misrepresent the CIL.

4.5.1 Model caveats and assumptions

The SDMs used here do not capture mechanistic drivers of species distribution

based on functional traits and physiological constraints – thus, reducing confidence

in the projections. For instance, in the Bering Sea, the recent collapse of the snow

crab population has been linked to elevated water temperatures (Szuwalski et al.,

2023). Despite these temperatures not exceeding the thermal limits of the species,

they heightened the crabs’ caloric requirements. This, together with a restricted

distributional range, resulted in a mass starvation event (Szuwalski et al., 2023).

Therefore, it is important to acknowledge that ocean warming can trigger unfore-

seen ecological responses. Moreover, when including the spatial component in our

model, we are assuming that the biotic and abiotic conditions (all but temperature

and depth) are going to remain the same in the future. This assumption may not be

correct. For instance, seasonality affects marine species in terms of reproduction,

feeding, and migration. Shifts in seasonal timing, such as earlier phytoplankton

blooms due to warming, can disrupt these processes. For demersal species, this may
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lead to mismatches in prey availability, affecting feeding success and growth rates.

Ultimately, these changes can impact species distribution and biomass. Shifts in

species distributions can affect predator-prey dynamics, community structure, and

ecosystem structure and functioning (Albouy et al., 2014; Selden et al., 2018).

However, neglecting to consider unexplained spatial correlation in species distribu-

tion modelling can result in several problems, including an increased likelihood of

false positive findings, misinterpretation of the relationships between environmen-

tal factors and species distribution, and decreased model accuracy (Laxton et al.,

2023). The inclusion of the spatial random field could impact the estimates of fixed

effects due to spatial confounding, which refers to a situation where predictors in

the model are correlated with spatial or spatio-temporal effects, potentially leading

to bias (Clayton et al., 1993). When confounding exits, spatial random fields may

absorb variability associated with climate variables, potentially leading to an un-

derestimation of the true impacts of climate change on species biomass (Thompson

et al., 2023). A key caveat of this analysis is the limited number of environmental

predictors used in the species distribution models. While temperature and depth

were included, other important factors, such as primary productivity, which may

change dramatically under climate change, were not considered. This narrows

the focus to primarily thermal changes, while other oceanographic variables, such

as nutrient availability and deoxygenation, may also have significant impacts on

species distributions in the future. Incorporating a broader range of environmental

variables could provide a more comprehensive view of potential changes.

As fish populations shift, it’s important to consider how fisheries management

efforts can be adapted to more effectively manage and conserve marine resources

(Ruiz-Dı́az, 2023; Pinsky et al., 2021). The projections generated by our SDMs

offer a broad overview of potential changes in thermal habitat suitability, providing

initial insights into the types of changes that could occur. It is important to note

that while these projections indicate projected biomass changes, they should not
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be interpreted as definitive predictions. Nonetheless, these results hold significant

relevance for fisheries management. Firstly, they confirm that changes in habitat

suitability are indeed anticipated with warming waters, which could have varying

impacts on different fisheries. While some fisheries may face challenges due to these

changes, severely depleted stocks like 3NO cod may potentially benefit. Secondly,

our findings underscore the potential of SDMs to inform medium and long-term

planning for fisheries management. Projections of species biomass and spatial

distributions offer valuable insights into the spatial dimension of these changes,

aiding in strategic decision-making.



CHAPTER 5

Top-down vs bottom-up

ecosystem control

5.1 Abstract

The Grand Banks of Newfoundland is a highly dynamic and productive ecosys-

tem that has sustained important fisheries for centuries. However, a regime shift

occurred in the early 1990s, altering community structure and leading to the impo-

sition of moratoria on many fisheries. There is contrasting evidence about whether

the Grand Banks of Newfoundland ecosystem is bottom-up (resource driven) or top-

down (predator driven) controlled. Using a multispecies size spectrum model, this

study assesses the direct and indirect ecological consequences of changing biomass

of the target species capelin, sand lance (forage species) and Atlantic cod (top

predator), to evaluate their importance for food web stability. Changing biomass

of target species leads to shifts in biomass and mean body weight across trophic

levels both above and below the target species. All species show a linear relation-

ship between mortality and biomass except for the Atlantic cod, which showed a

non-linear response with increasing mortality. On the one hand, an increase in for-

age fish biomass led to a gain in piscivores, large benthivores and losses in medium

benthivores, whereas a decrease in forage fish biomass resulted in the opposite

trend. These changes are also mirrored in the species mean body weight. On the

other hand, increasing biomass of Atlantic cod led to larger changes in the com-

munity, with increases in the main prey species (capelin, sand lance and northern

shrimp), snow crab and thorny skate, while the other species declined. Reduc-

ing Atlantic cod biomass resulted in increases in redfish, snow crab and medium

85



86 5.2. Introduction

benthivores, and a decline in main prey items, large benthivores and piscivores.

Again, these changes were mirrored in the species’ body weight. When Atlantic

cod biomass increased by 17%, a drastic shift in the system was observed, with

the main prey species going functionally extinct. We discuss the ecological reasons

behind these changes and conclude that Atlantic cod may play a more important

role in maintaining the Grand Banks’s food web stability than forage fish.

5.2 Introduction

The question of whether food webs are bottom-up (resource) or top-down (preda-

tor) driven is one of the most fundamental in ecology (Frank et al., 2006, 2007;

Lynam et al., 2017). This topic has been actively debated on the Grand Banks,

with studies suggesting both top-down (Bundy, 2001) and bottom-up control (Bu-

ren et al., 2014; Cyr et al., 2024).

Forage fishes are central to the productivity of marine ecosystems, playing a crucial

role in the marine food web by transferring energy from lower trophic levels, such

as plankton, to higher trophic levels that can include commercially important fish

species, marine mammals, and seabirds (Pikitch et al., 2012; Eddy et al., 2021).

Forage fish are typically short-lived and experience large cyclical fluctuations in

population size (also known as boom-and-bust cycles) driven by environmental

conditions and density-dependent processes (Lewis et al., 2019). On the one hand,

fluctuations in forage fish populations can greatly impact dependent predators, af-

fecting food web structure (Gjøsæter et al., 2009; Cury et al., 2011). On the other

hand, top predators play an important role in marine ecosystems by regulating

the population dynamics of prey species and maintaining the balance of the food

web (Frank et al., 2005). This predatory pressure has been found to foster biodi-

versity and contribute to the stability of the marine community (Ellingsen et al.,

2015). Shifts in forage fish and top predator abundance can trigger large changes
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in community structure known as trophic cascades, which can propagate up and

down in trophic levels (Andersen and Pedersen, 2010). Trophic cascades produce

indirect effects that extend two or more links away from the primary interaction

(Pace et al., 1999; Frank et al., 2005).

The Grand Banks of Newfoundland, situated southeast of the Island of New-

foundland, are a series of submerged seamounts with an average depth of 200

meters (DFO, 2007b). This dynamic system is shaped by the colder, nutrient-rich

Labrador Current from the north and the warmer, nutrient-poor North Atlantic

Current, the northern branch of the Gulf Stream from the south (Cyr and Gal-

braith, 2021). The Grand Banks experience pronounced seasonal variation in pri-

mary production, marked by a robust spring bloom and a moderate fall bloom.

These variations are driven by changes in light availability and nutrient mixing

above the thermocline (Cyr et al., 2024). Additionally, the region undergoes milder

and colder winters, which typically occur on a decadal scale linked to the North

Atlantic Oscillation, the principal driver of atmospheric variability in the North

Atlantic (Cyr and Galbraith, 2021).

On the Grand Banks, the primary forage species consist of capelin (Mallotus villo-

sus) and northern sand lance (Ammodytes dubius) (Winters, 1983). Capelin typi-

cally occupies offshore areas of the northern Grand Banks and undertakes inshore

migrations during the summer months to spawn (Crook et al., 2017). The 2J3KL

stock is commercially fished in an inshore roe fishery in coastal Newfoundland, and

its status is evaluated annually by Fisheries and Oceans Canada (DFO) (DFO,

2022a). The southern stock, 3NO, is not commercially exploited and is assessed

by the Northwest Atlantic Fisheries Organization, NAFO (Tretyakov, 2015). The

species can be found to depths of 250 m and inhabits pelagic water with a temper-

ature range from -1.5 to 6 ◦C (Rose, 2005). Diet studies indicate that capelin is

an important prey for several abundant fishes in the region, including Atlantic cod
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(Gadus morhua), as well as marine mammals and seabirds (Gonzalez et al., 2006;

Tam and Bundy, 2019). Sand lance, while also an important prey (Gonzalez et al.,

2006; NL Government, 2020), has received considerably less attention relative to

capelin as it is not commercially fished (Boldt et al., 2022; Robertson et al., 2022).

Two species of sand lance occur in this region: A. dubius, which occupies more

offshore waters, and A. americanus, which occurs farther inshore but occasionally

overlaps with A. dubius (Winters and Dalley, 1988). In contrast to capelin, sand

lance inhabits shallower waters (generally < 100 m) and occurs in sandy areas of

the Grand Banks (Staudinger et al., 2020). Spawning occurs in winter between

November and March, and migratory behaviour is not as apparent as in capelin

(Dalley and Winters, 1987; Morrison and Davoren, 2024). Both sand lance species

burrow in sand to avoid predation and prefer waters ranging from 1 to 11 ◦C (NL

Government, 2020).

Atlantic cod is a dominant predator in many ecosystems, including the Grand

Banks (Link et al., 2009). In the Grand Banks, Atlantic cod inhabit waters with

temperatures ranging from -2 to 11 ◦C and depths up to 400 m (Ruiz-Diaz et al.,

2024). They are batch spawners, spawning from February to June and peaking in

May (Myers et al., 1993). The species overwinters close to the edge of the con-

tinental shelf and migrates in spring and summer onto the plateau of the Grand

Banks (DFO, 2022b). During the larval stage, they feed on phytoplankton and

small zooplankton, particularly copepods (Myers et al., 1993). As they grow, At-

lantic cod prey on a variety of smaller fish, invertebrates, and medium to large

fish (Bundy et al., 2000; Gonzalez et al., 2006; Tam and Bundy, 2019). Adult

cod are apex predators on the Grand Banks and have few natural predators, with

harp seals being one of the most important (Stenson, 2013). During the fishing

moratorium, which was announced following the stock collapse in the early 1990s,

removals from the northern stock were permitted in stewardship and recreational

inshore fisheries and as bycatch in the otter trawl fisheries of yellowtail flounder,
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skate and redfish (DFO, 2022b). The directed commercial fishery opened again in

2024 with a total allowable catch of 18,000 t (DFO, 2024). The southern Grand

Banks stock, meanwhile, remains under moratorium (Rideout et al., 2021).

A dramatic decline in capelin biomass was observed during 1990-1991, with the

northern stock dropping from 6 million tons in the late 80s to 0.02-0.06 million

tons (99%) (Lewis et al., 2019). Similarly, a decline was noted in the southern

stock in 1993, although the magnitude is less clear due to poor monitoring in this

region (Tretyakov, 2015). Since then, both stocks have shown minimal recovery

(Murphy et al., 2021, 2024; Tretyakov, 2015). Shifts in capelin life history traits

before and after the collapse have also been detected, including declines in body

condition size- and age-at-maturity and delayed spawning, the latter of which has

been associated with weak year classes (Murphy et al., 2021; Buren et al., 2019).

The low recovery of capelin has been related to changes in life-history traits and

bottom-up processes, including early sea ice retreat, which determines spring bloom

timing and, in turn, the dynamics of the main prey of capelin, the copepod Calanus

finmarchicus, which is also the main prey of sand lance (Buren et al., 2014; Lewis

et al., 2019; Staudinger et al., 2020). The decline in capelin biomass coincided with

the collapse of groundfish populations, including Atlantic cod, American plaice, yel-

lowtail flounder, and an increase in invertebrate biomass (i.e., snow crab, northern

shrimp) (Koen-Alonso and Cuff, 2018). The groundfish collapse was attributed to

a combination of overfishing and cooler environmental conditions (Dempsey et al.,

2017). Several groundfish fisheries went into moratoria after the stock collapse, and

some fisheries have yet to reopen (i.e., southern American plaice, southern Grand

Banks Atlantic cod, capelin) (see Table C.1 for further details). Less is known

about the response of sand lance before the collapse because it was not monitored.

However, the species has been sampled in the bottom trawl survey since the fall

of 1995, although its catchability is low (Brodie and Stansbury, 2007). A recent

study improved the sand lance abundance index by combining trawl data with
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stomach content information, considering the consumption rates of Atlantic cod

and American plaice (Robertson et al., 2022). The study found that sand lance

abundance has fluctuated since 1995, with notable peaks in 1998-2000, 2004-2009,

and 2012-2015.

Our research evaluates the direct and indirect ecological consequences of changing

biomass on the following target species: capelin and sand lance (forage species)

and Atlantic cod (top predator). We seek to determine which of these species leads

to profound changes in community structure and stability. To achieve this, we de-

veloped a multispecies size spectrum food web model, a physiologically structured

model that describes fish communities by accounting for variations in diet and eco-

logical roles as individuals grow (Scott et al., 2014; Blanchard et al., 2017). Body

growth and age-at-maturation are food-dependent, with processes formulated at

the individual level. The primary components include growth, mortality, and re-

production driven by size-dependent predation and maturation (Scott et al., 2014).

Using this model, we represented the major components of the Grand Banks fish

community (see species included in Figure 5.1) and assessed how changes in the

biomass of capelin and sand lance (both separately and jointly) and Atlantic cod

may change biomasses and mean body weights of other species composing the food

web. Through this research, we aim to elucidate bottom-up (driven by forage fish)

vs top-down (driven by Atlantic cod) controls on the Grand Banks’ food web.

5.3 Materials and Methods

5.3.1 General approach

To understand the roles of forage species and top predators in the Grand Banks

community, we developed a multispecies size spectrum food web model using the

mizer modelling framework (Scott et al., 2014). Mizer is a dynamic, size-based

ecosystem model that represents predation interactions and growth processes at the
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Snow crab
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Redfish

Yellowtail flounder
Witch flounder American plaice

Thorny skate

Turbot

Atlantic cod

Capelin

Sand lance

Figure 5.1: Species included in the size spectrum model. (1) Invertebrates,
orange; (2) Planktivorous, blue; (3) medium benthivorous, brown; (4) large
benthivorous, green; (5) Plank-piscivorous, yellow; (6) Piscivorous, purple. Solid
lines indicate predator-prey links, with arrows pointing at predators. Dashed
lines indicate cannibalism. Species image sources: Fisheries and Oceans Canada
(DFO) and National Oceanic and Atmospheric Administration (NOAA).

individual level and fully resolves the size structure of species and the community

(Scott et al., 2014). However, in our case, we only capture a fraction of the species

in the ecosystem. The model was calibrated using 11 years of average biomass

estimates (2000-2010) from the multispecies bottom trawl survey. Then, it was

validated by forcing it with a time series of fishing mortality and evaluating how

well the model was able to match yield and biomass trends from the entire period

(1996-2019).

5.3.2 Multispecies size spectrum model description

The model used in this study relies on three key assumptions: (i) individual energy

budgets drive community-level energy flows; (ii) predator-prey size ratios primarily

determine trophic interactions; and (iii) vital rates are closely related to individual

body sizes, following allometric scaling relationships used to estimate biological

rates (Andersen et al., 2016). These assumptions enable dynamic growth, repro-

duction, and mortality rates to emerge from trophic interactions (Andersen and

Beyer, 2006; Hartvig et al., 2011).
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The model involves various biological processes, including prey selection (based

on species-specific and size-based preferences) and energy allocation (encountered

prey are assimilated, and energy is allocated to respiration, growth, and reproduc-

tion depending on individual size). The model formulates the size spectrum as a

function of mortality (µ) and growth rate (g) using the McKendrick–von Foerster

equation (McKendrick, 1926; Von Foerster and Stohlman, 1959); Equation (5.1).

Recruitment introduces individuals into the size spectrum at the smallest body

size, typically the egg size. This is represented as a boundary condition Equa-

tion (5.2). The feeding kernel, which determines the distribution of prey sizes that

a predator feeds on, is governed by the size ratio between predators and prey and

is described by a log-normal function (Scott et al., 2014). The model also includes

a background resource spectrum, which feeds smaller individuals and planktivo-

rous species. Dynamics of the size spectrum are governed by predation rates and

a semi-chemostat equation, which determines the time evolution of the resource

spectrum (De Roos et al., 2008; Scott et al., 2014) (see Table C.2 for full details in

model equations).

∂Ni(w)

∂t
+

∂gi(w)Ni(w)

∂w
= −µi(w)Ni(w) (5.1)

gi(w0)Ni(w0) = Ri (5.2)

where gi is the growth rate (mass per time), µi the mortality (per time), Ni the

size spectrum of species i, Ri the recruitment (number of recruits or eggs per time)

of species i, and w0 the individual’s egg size.

For fishes and invertebrates, recruitment depends on egg production and follows

a Beverton–Holt-type stock-recruit function, in which the maximum recruitment

helps scale the abundance of species (see Table C.2). Body growth rates depend

on prey availability, while death rates are influenced by predation, fishing, and
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external mortality. Further documentation on the model framework is available in

the R package mizer (Scott et al., 2014).

In mizer, mortality not accounted for by fishing or predation is considered external

morality and accounts for additional losses such as those due to disease or senes-

cence. By default, mizer assumes that the external mortality is a species-specific

constant Z0i independent of size. The value of Z0i is either specified as a species

parameter or it is assumed to depend allometrically on the asymptotic size, winf ;

Equation (5.3) (Scott et al., 2014). Specifically, external mortality is calculated as:

Z0i = Zpi × (winfi)
Ze (5.3)

where Zpi is pre-factor or base mortality rate for species i, representing mortality

that is independent of body size (e.g., due to predation by unmodelled predators,

disease, etc.) and is set to 0.6 by default; winfi is the body size of an individual of

species i; and Ze is the exponent that controls how external mortality scales with

body size (winfi) (Scott et al., 2014). This assumption conforms with life history

theory such that larger, longer-lived species generally experience lower mortality

rates than smaller, short-lived species (Thorson et al., 2017). Further, maintaining

constant external mortality across size classes has the practical benefit of prevent-

ing an unrealistic buildup of large-bodied, high-trophic-level individuals (Andersen

et al., 2016).

5.3.3 Parameterization

The model domain corresponds to the Northwest Atlantic Fisheries Organization

(NAFO) divisions 3L, 3N and 3O (Figure 5.2). We obtained regional biomass esti-

mates for groundfish from DFO spring trawl surveys of the Grand Banks between

1996 and 2019. Trawl surveys have been conducted by DFO in Newfoundland

and Labrador annually since 1971 but with some modifications in survey design,
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sampling gear, and spatial coverage over time (Brodie and Stansbury, 2007). Of

particular note, the survey was initially performed using Engels (145 high lift otter

trawl) sampling gear but later changed to a Campelen trawl (i.e., 1800 shrimp

trawl) in 1995-1996 (Brodie and Stansbury, 2007). This change improved catches

of small-sized fish and enabled abundance estimates of commercial shellfish species.

Biomass estimates were obtained for groundfishes using design-based methods im-

plemented in the Rstrap package (Regular et al., 2020). For snow crab, we obtained

biomass estimates from the stock assessment for the 3LNO divisions. This was done

because the catchability of snow crab is low in the DFO trawl survey (Dawe et al.,

2010). For forage fish, catchability in the trawl survey is also low. We, therefore,

used a capelin biomass estimate from acoustic data, though this sampling only

covers the 3L region of the stock, where most capelin occurs (DFO, 2022a). We

used the biomass index from the bottom trawl survey for the northern sand lance.

Fixed and species-specific parameters, including maximum size, size at matura-

tion, and length-weight relationship parameters, are detailed in Table C.3 and

Table C.4. For groundfishes, we assumed maximum length, Linf, corresponding

to the maximum observed length from the trawl survey over the calibration pe-

riod 2000-2010, as recommended elsewhere (Delius et al., 2023). Age- and length-

at-maturity were primarily obtained from stock assessments when available (see

Table C.5). Size-at-maturation corresponds to females as they limit reproductive

output and reach maturity at larger sizes than males. However, for snow crab, we

used size-at-maturation values associated with males because males are larger than

females and the fishery targets males only. Parameters for length-weight relation-

ships were estimated from DFO trawl survey data. In the case of one fish species,

thorny skate, we used values from Fishbase, corresponding to Flemish Cap thorny

skate (Froese and Pauly, 2024). Shrimp length-weight relationships were provided

by DFO.
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Figure 5.2: Map of the Grand Banks. Black rectangles represent the NAFO
divisions 3L, 3N and 3O. Isobaths are indicated with backlines and show depths
up to 1000 m.

Predation interactions in mizer are based on the size selectivity of predators, repre-

sented by a log-normal feeding kernel. The mean preferred predator-to-prey mass

ratio and width are adjusted during calibration, with default values set to 100 and

1, respectively, for cod-like predators (Hartvig et al., 2011). These values were

modified as needed: lower for piscivores and higher for omnivores and planktivores

(Szuwalski et al., 2017; Jacobsen et al., 2017) (Table C.3).

To parameterize the prey species preference of predators, species interaction coef-

ficients were assigned a value of 1 (present in predator diet) or 0 (absence in diet)

based on stomach content information from Gonzalez et al. (2006) and a previously

developed Ecopath model (Bundy et al., 2000) (Figure C.1). By adopting the de-

fault value of 1, the model implicitly assumes that prey is fed upon in proportion

to their relative encounter rates by the predator (Hartvig et al., 2011).
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Figure 5.3: A) Historical time series of biomass (kg) for the whole model
domain was calculated using RV trawl data, and B) fishing mortality rates were
calculated as the ratio between catches and biomass. The time average period
(2000-2010) is highlighted in grey, and average values are indicated by squares,
with colour representing species.

The time series of species biomass was calculated using the bottom trawl data and

the R-strap R package (Figure 5.3 A). Catches were obtained from stock assess-

ments (Table C.6). Fishing effort was calculated using the ratio between catches

and biomass (Figure 5.3 B) because several species were not assessed (e.g., sand

lance), and others were assessed at different management units (e.g., Atlantic cod,

redfish, turbot, capelin). To deal with the inconsistency between management

units, we used the following approaches: in the case of Atlantic cod, we used the

catches of the southern stock (3NO). We used catches in the 3O stock for redfish

since this stock is the most exploited. In the case of turbot, we used catches from

the 3KLMNO divisions. Finally, we used the NAFO STATLANT database for

capelin to obtain catch information. Sand lance is not a commercial species; there-

fore, catches were assumed to be zero. Moreover, this species has low catchability

as bycatch.

Fishing mortality, F, is imposed on individuals by size selective fishing gear. F is a

product of size-dependent gear selectivity function (the ability of a gear to capture

individuals by size, ranging from 0 to 1), fishing effort (a measure of the fishing
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intensity) and catchability (an additional scalar that relates population abundance

to F) (Scott et al., 2014). We used a length-based sigmoid selectivity function

based on two parameters, l25 and l50, which determine the length at which 25%

and 50% of the stock are captured, respectively (Figure C.2). These parameters

were estimated from the size distribution data collected from bottom trawl catches

by calculating the 25th percentile and the 50th percentile of the length of the

catches. Next, we calculated the average fishing mortality over the (2000-2010)

calibration period and used it as a baseline in the calibration. We set catchability

to 1, thus allowing the use of fishing effort as a direct measure of fishing mortality

under constant selectivity (Benoit et al., 2022).

5.3.4 Model calibration

Model calibration proceeded in an iterative manner. First, we brought the model

to equilibrium by adjusting initial reproduction efficiency values using the steady()

function in mizer, exploring other parameters if unrealistic values (> 1) were re-

turned. Next, we calibrated biomass by scaling initial species biomasses to match

observed relative biomasses without altering the size structure. We then tuned

growth by modifying intake and metabolism parameters if feeding levels were high,

but growth was low (Audzijonyte et al., 2023). Reproductive parameters were

calibrated by adjusting the maximum recruitment parameter (Rmax) while fixing

reproductive efficiency (erepro = 1), using the quasi-Newton method with box con-

straints (L-BFGS-B) to minimize the sum of squared errors between modelled and

empirical relative biomass, with a penalty to prevent species extinction (Blanchard

et al., 2014). We ensured long-term species co-existence by running simulations

for 100 years. Finally, we tested different reproduction levels to assess species’

sensitivity to fishing and compared them to expected ranges based on species’ life-

history characteristics (Audzijonyte et al., 2023). The emergent diets, feeding levels
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and predation mortality were features of the model we intended to evaluate in the

calibration procedure.

5.3.5 Model validation

To validate the model, we evaluated observed and modelled size-at-age values

(Blanchard et al., 2014) for fish species using age-length keys obtained from Rstrap.

We selected age-length keys corresponding to the year 2005, which is in the middle

of our calibration period (2000-2010). This information was unavailable for snow

crab, northern shrimp, northern sand lance and thorny skate. Additionally, we

forced the model with time-varying fishing mortality to assess correlations between

predicted and observed time series of biomass and catch (Blanchard et al., 2014).

5.3.6 Model scenario

We implemented four exploratory types of simulations to identify the relative im-

portance of forage fish and Atlantic cod. In the first three scenarios, we evaluated

the response of the Grand Banks’ community to increases and decreases in exter-

nal mortality on (1) capelin, (2) sand lance and (3) both capelin and sand lance.

Specifically, under each scenario, we evaluated changes in biomass and mean body

size when mortalities were increased/decreased by 5%, 10%, 15% and 30% (Ta-

ble 5.1). The range of values used in the simulations was designed to account for

a broad spectrum of possible outcomes. In the fourth scenario, we instead applied

the same increases and decreases in mortality but to Atlantic cod. In doing so,

we sought to identify the relative importance of forage fish and cod in governing

community structure.

Using the calibrated model as our starting point, we adjusted the external mor-

tality values (Z0) according to each scenario and projected 1000 years, ensuring

equilibrium was reached. To account for small oscillations in biomass and weight,

we calculated the 11-year average values at the end of the simulations (990-1000
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Table 5.1: Values of external mortality used for running the simulations. The
original represents the values in the calibrated model. The percentage values
indicate the mortality increased and decreased relative to the original value

External mortality (Z0) Capelin Sand lance Atlantic cod

original 0.24 0.216 0.045

Increasing external mortality
5% 0.251 0.227 0.048
10% 0.263 0.238 0.05
15% 0.275 0.248 0.052
30% 0.311 0.281 0.059

Decreasing external mortality
5% 0.23 0.2 0.043
10% 0.21 0.19 0.04
15% 0.2 0.18 0.038
30% 0.16 0.15 0.031

years). We then calculated the relative change in variables (biomass or mean body

weight) between the calibrated model and the equilibrium values under the scenario

as follows (Reum et al., 2024):

∆Xi =
Xsimi,j −Xorii

Xorii
× 100 (5.4)

Where X represents the variable of interest (i.e., biomass or weight) of species

i. Xsim correspond to the variable of interest during the simulation j, and Xori

represents the variable of interest in the original (unmanipulated) simulation.

5.4 Results

5.4.1 Model calibration

The calibrated model produced biomass levels that closely matched average ob-

served values (Pearson’s correlation coefficient, R = 0.8) but were, on average,

biased slightly higher than the observations (−0.28; Figure C.3 and Figure C.4).
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The model also demonstrated plausible resilience to fishing, as indicated by the fish-

ing mortality rate at maximum yield under equilibrium conditions (Figure C.5).

Feeding levels ranged from 0.5 to 0.75 (Figure C.6). The model also produced

plausible ontogenetic shifts in the diets of the species groups, with all species ini-

tially feeding on background resources and shifts towards invertivory and piscivory

with size (Figure C.7). Predation pressure was highest on capelin, followed by

sand lance and northern shrimp. Higher mortality rates were observed for capelin,

followed by sand lance and northern shrimp (Figure C.8).

5.4.2 Model validation

Species growth rates predicted by the model were consistent with observed growth

rates, achieving R2 > 0.9 for all assessed species except American plaice, which was

slightly lower, R2 = 0.89 (Figure C.9). Additionally, when forced with F time series

the model captured trends in yield and biomass (Figure C.10 and Figure C.12). For

yield, species with relatively high Pearson’s correlation between observed and mod-

elled values (R > 0.7) included American plaice, Atlantic cod, yellowtail flounder,

and thorny skate. Species with moderate correlation (0.4 < R < 0.7) were redfish,

turbot, witch flounder, northern shrimp, and snow crab. Capelin exhibited a low

correlation (R < 0.1). For biomass, most species showed a moderate correlation

between modelled and observed values (0.4 < R < 0.7), including American plaice,

turbot, yellowtail flounder, sand lance, northern shrimp, snow crab, and thorny

skate. Correlations were lower (R < 0.2) for Atlantic cod, redfish, witch flounder,

and capelin (Figure C.11 and Figure C.13).

5.4.3 Simulations

Scenarios involving increased or decreased mortality in capelin and sand lance

resulted in linear, proportional changes in their biomasses (Figure 5.4 and Fig-

ure 5.5). For example, a 30% increase in mortality for both species led to declines
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in biomass of 15% for capelin and 11% for sand lance (Figure 5.4). Conversely, a

30% decrease in mortality resulted in increases in biomass of 21% for capelin and

15% for sand lance (Figure 5.5. The response of Atlantic cod biomass to external

mortality increase was non-linear. Initially, cod biomass declined with increasing

external mortality, with a maximum reduction of 16% for a 15% increase in mor-

tality. However, when mortality reached 30%, the decline in biomass stabilized

(Figure 5.4). A decrease in cod mortality resulted in a linear increase in biomass,

with a 66% rise corresponding to a 30% reduction in mortality (Figure 5.5).

Figure 5.4: Increasing target species mortality. Change in biomass of capelin
(orange), sand lance (green) and Atlantic cod (blue) as a result of the mortality
scenarios. Mortality scenarios were run for each species individually.

5.4.4 Changing forage species biomass

Modifying capelin biomass led to larger changes in the biomass and mean body

weight of non-target species compared to similar changes in sand lance biomass.

These changes were even more pronounced when capelin and sand lance were mod-

ified simultaneously (Figure 5.6 and Figure 5.7).

Capelin Scenario

When capelin biomass declined by 15%, the species experiencing the largest reduc-

tions in biomass were turbot (-4%), American plaice (-1.7%), sand lance (-0.9%),
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Figure 5.5: Decreasing target species mortality. Change in biomass of capelin
(orange), sand lance (green) and Atlantic cod (blue) as a result of the mortality
scenarios. Mortality scenarios were run for each species individually.

Figure 5.6: Decreasing forage fish biomass. Relative changes (in percentage)
in A) biomass and B) mean body weight for species included in the Grand
Banks’ multi-species model under different mortality increase scenarios of the
target forage species (capelin, sand lance and combined). The colour intensity
indicates the level of mortality, with darker colours showing greater changes.
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Figure 5.7: Increasing forage fish biomass. Relative changes (in percentage)
in A) biomass and B) mean body weight for species included in the Grand
Banks’ multi-species model under different mortality decrease scenarios of the
target forage species (capelin, sand lance and combined). The colour intensity
indicates the level of mortality, with darker colours showing greater changes.

redfish (-0.42%), and Atlantic cod (-0.35%). In contrast, species that benefited

from the decrease in capelin included witch flounder (1.4%), yellowtail flounder

(0.8%), northern shrimp (0.7%), snow crab (0.09%), and thorny skate (0.06%)

(Figure 5.6 A). Similar trends were observed in mean body weight. On the one

hand, species with the greatest decreases in body weight included turbot (-1.4%),

sand lance (-0.73%), Atlantic cod (-0.5%), and American plaice (-0.45%). On

the other hand, witch flounder (1%), yellowtail flounder (0.75%), northern shrimp

(0.3%), snow crab (0.12%), redfish (0.11%), and thorny skate (0.08%) increased in

weight (Figure 5.6 B).

When capelin biomass increased by 21%, species that experienced declines in

biomass included medium benthivores, witch flounder (-3.3%), yellowtail floun-

der (-2.2%), and snow crab (-0.28%). Species that saw an increase in biomass were

turbot (5.7%), sand lance (3.5%), American plaice (2%), Atlantic cod (0.77%),



104 5.4. Results

thorny skate (0.55%), northern shrimp (0.3%), and redfish (0.09%) (Figure 5.7 A).

In terms of body weight, the species with reductions were witch flounder (-2.4%),

yellowtail flounder (-1.9%), redfish (-0.5%), and snow crab (-0.3%). Conversely,

species that gained weight included sand lance (2.4%), turbot (1.8%), Atlantic

cod (0.76%), northern shrimp (0.33%), American plaice (0.3%), and thorny skate

(0.2%) (Figure 5.7 B).

Sand Lance Scenario

A 12% decline in sand lance biomass led to reductions in the biomass of turbot

(-1.7%), thorny skate (-1.27%), American plaice (-0.9%), redfish (-0.7%), snow

crab (-0.4%), yellowtail flounder (-0.3%), and Atlantic cod (-0.04%). Conversely,

biomass increases were observed in northern shrimp (1%), capelin (1%), and witch

flounder (0.2%) (Figure 5.6 A). In terms of body weight, the most notable decreases

were seen in turbot (-0.7%), thorny skate (-0.65%), American plaice (-0.43%),

redfish (-0.3%), snow crab (-0.18%), Atlantic cod (-0.13%), and yellowtail flounder

(-0.12%). In contrast, species that experienced increases in mean body weight

included northern shrimp (0.54%), capelin (0.52%), and witch flounder (0.12%)

(Figure 5.6 B).

An increase in sand lance biomass by 17% resulted in declines in the biomass of

witch flounder (-1.18%), yellowtail flounder (-0.9%), and northern shrimp (-0.05%).

Species that gained biomass included turbot (2.9%), thorny skate (1.9%), American

plaice (1.6%), capelin (1.25%), and, to a lesser extent, redfish (0.26%), Atlantic cod

(0.25%), and snow crab (0.06%) (Figure 5.7 A). Regarding mean body weight, de-

clines were observed in witch flounder (-1.3%), yellowtail flounder (-0.83%), redfish

(-0.06%), and snow crab (-0.015%). Conversely, species that saw increases in mean

body weight included turbot (1.1%), thorny skate (1%), capelin (0.6%), American

plaice (0.52%), Atlantic cod (0.32%), and northern shrimp (0.03%) (Figure 5.7 B).
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Combined Scenario

The effects became more pronounced when both capelin and sand lance biomasses

declined simultaneously. Species that experienced the largest decreases in biomass

included turbot (-6.8%), American plaice (-3%), thorny skate (-1.5%), redfish (-

0.8%), Atlantic cod (-0.42%), and snow crab (-0.05%). Conversely, species that saw

increases in biomass were witch flounder (2.5%), yellowtail flounder (1.2%), and

northern shrimp (1.1%) (Figure 5.6 A). In terms of mean body weight, species with

declines included turbot (-2.3%), American plaice (-0.9%), Atlantic cod (-0.72%),

and thorny skate (-0.7%). Species that experienced increases in mean body weight

were witch flounder (1.7%), yellowtail flounder (1.1%), northern shrimp (0.5%),

snow crab (0.08%), and redfish (0.008%) (Figure 5.6 B).

An increase in both capelin and sand lance biomasses led to declines in witch floun-

der (-4.3%), yellowtail flounder (-2.5%), and northern shrimp (-0.36%). Species

that gained biomass included turbot (7.9%), American plaice (3.5%), thorny skate

(2.25%), Atlantic cod (1%), redfish (0.6%), and snow crab (0.02%) (Figure 5.7

A). Regarding mean body weight, declines were observed in witch flounder (-3%),

yellowtail flounder (-2.2%), redfish (-0.4%), and snow crab (-0.12%). Species that

gained weight were turbot (2.7%), thorny skate (1.1%), Atlantic cod (1%), Amer-

ican plaice (0.8%), and northern shrimp (0.006%) (Figure 5.7 B).

5.4.5 Changing Atlantic cod biomass

We observed a pronounced shift in the biomass of many non-target species in re-

sponse to changes in Atlantic cod biomass (Figure 5.8 and Figure 5.9). When At-

lantic cod biomass decreased by approximately 17%, substantial declines were seen

in sand lance (-89.51%), northern shrimp (-87%), capelin (-79%), turbot (-77%),

American plaice (-68%), and thorny skate (-6%). In contrast, biomass increased

in redfish (79%), snow crab (69%), witch flounder (57%), and yellowtail flounder

(47%) (Figure 5.8 A). Changes in mean body weight were also notable, with the



106 5.4. Results

largest decreases observed in sand lance (-58%), northern shrimp (-52%), capelin

(-46%), American plaice (-26%), turbot (-17%), and thorny skate (-4%). Increases

in body weight were recorded for witch flounder (55%), yellowtail flounder (50%),

redfish (42%), and snow crab (36%) (Figure 5.8 B).

Figure 5.8: Decreasing Atlantic cod biomass. Relative changes (in percentage)
in A) biomass and B) mean body weight for species in the Grand Banks’ multi-
species model under different mortality increase scenarios for Atlantic cod. The
colour intensity indicates the level of mortality increase, with darker colours
showing greater changes.

When Atlantic cod biomass increased by 66%, declines were observed in medium

benthivores, yellowtail flounder (-82%) and witch flounder (-70%), redfish (-62%),

turbot (-35%), and American plaice (-25%). In contrast, increases were seen in

capelin (378%), sand lance (350%), and northern shrimp (98%), with moderate

increases in thorny skate (25%) and snow crab (15%) (Figure 5.9 A). Changes in

Figure 5.9: Increasing Atlantic cod biomass. Relative changes (in percentage)
in A) biomass and B) mean body weight for species in the Grand Banks’ multi-
species model under different mortality increase scenarios for Atlantic cod. The
colour intensity indicates the level of mortality decrease, with darker colours
showing greater changes.
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mean body weight were also pronounced, with the largest increases in sand lance

(185%), capelin (117%), and northern shrimp (63%), and moderate increases in

thorny skate (12%) and snow crab (9.5%). Meanwhile, moderate declines in mean

body weight were observed in witch flounder (-57%), yellowtail flounder (-53%),

redfish (-44%), American plaice (-38%), and turbot (-34%) (Figure 5.9 B).

5.4.6 Importance of the Target Species on the Food Web

In simulations where forage species biomass changes, other species in the commu-

nity exhibited linear responses, with more substantial changes observed as capelin

biomass decreases compared to sand lance (Figure 5.10 B). Similar linear responses

were observed when forage fish biomass increased (Figure 5.11 B). However, the

response differed when Atlantic cod biomass decreased, leading to more complex

responses from non-target species. Once Atlantic cod mortality exceeded 16%,

the non-target species drastically increased/decreased (Figure 5.10 A). This indi-

cates that exceeding a 16% decline in cod biomass triggered a shift in community

biomass. When we decreased Atlantic cod biomass above 18% (corresponding to an

increase in external mortality of 40%), the system was not able to reach equilibrium,

with the main prey species of the community (capelin, sand lance and northern

shrimp) going functionally extinct. When we increased Atlantic cod biomass, we

observed a linear response with non-target species, although capelin and sand lance

showed a steep increase in biomass (above 300% gain) when cod biomass increased

above 32% (Figure 5.11 A). After this point, the system did not reach equilibrium

as Atlantic cod biomass kept increasing due to a functional extinction of medium

benthivores.

5.5 Discussion

Using a multispecies size spectrum model, this study assesses the direct and in-

direct ecological consequences of changing the biomass of capelin and sand lance
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Figure 5.10: Decreasing target species biomass. Relative change (in percent-
age) in non-target species biomass relative to the decline in the target species
(capelin, sand lance and Atlantic cod). The mortality increase scenario is in-
dicated with grey triangles, with lighter colours representing lower mortality
scenarios and darker colours representing higher mortality scenarios. Species
are indicated by colour lines

Figure 5.11: Increasing target species biomass. Relative change (in percentage)
in non-target species biomass relative to the decline in the target species (capelin,
sand lance and Atlantic cod). The mortality increase scenario is indicated with
grey triangles, with lighter colours representing lower mortality scenarios and
darker colours representing higher mortality scenarios. Species are indicated by
colour lines
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(forage species) and Atlantic cod (top predator), and evaluates their importance

for the stability of the community. Our findings reveal that shifts in the biomass of

these target species induce changes in both biomass and mean body weight across

different trophic levels. In the bottom-up scenario, increases in forage fish biomass

lead to higher biomass and mean body weight in piscivores and large benthivores

species, while medium benthivores species decline. Overall, the decline in capelin

had a more pronounced effect on non-target species within the Grand Banks com-

munity compared to a decline in sand lance. This suggests that capelin may have a

more important role as an energy source in the Grand Banks food web, in line with

many studies that highlight the critical role of capelin in the system (Buren et al.,

2014; Regular et al., 2022). Moreover, capelin is smaller than sand lance, allowing

it to be consumed by smaller predators which are more numerous in the system.

Finally, a simultaneous increase in biomass of both forage fish species led to more

pronounced changes in non-target species biomass and weight than simulating each

species individually. This aligns with the portfolio theory (Figge, 2004; Schindler

et al., 2010), suggesting that diversity among forage fish enhances the stability of

Grand Banks communities by maintaining similar ecosystem functions.

Several studies have documented that Atlantic cod biomass often increases in re-

sponse to a rise in capelin biomass in Newfoundland (Buren et al., 2014; Koen-

Alonso et al., 2021). Our results support this trend but also indicate that other

species may benefit more from increases in capelin biomass than Atlantic cod. For

example, turbot experienced a 5.7% increase, sand lance saw a 3.5% increase, and

American plaice rose by 2%. Increasing sand lance biomass had a greater positive

effect on thorny skate biomass (1.9%) compared to the effect of increasing capelin

biomass, which resulted in a smaller increase in thorny skate biomass (0.55%). This

finding is in line with the literature highlighting the importance of sand lance in

the diet of thorny skate (Gonzalez et al., 2006; Tam and Bundy, 2019). Atlantic

cod was the only species for which the decline in mean body weight was notably
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greater than the decline in biomass in response to reductions in forage fish biomass.

For example, in the capelin decline scenario, Atlantic cod’s biomass declined by

0.35%, whereas its body weight dropped by 0.5%. Similarly, in the sand lance de-

cline scenario, the biomass decreased by only 0.04%, while the body weight fell by

0.13%. One possible explanation is that the broad and omnivorous feeding habits

of Atlantic cod (Link et al., 2009; Berard and Davoren, 2020) may enable them to

maintain their overall biomass, but the strain on their high-energy resources (par-

ticularly capelin) can result in lower body weight. In fact, there are examples in

the literature linking the poor body condition of Atlantic cod to capelin availability

(Mullowney and Rose, 2014; Koen-Alonso et al., 2021; Regular et al., 2022). Thus,

changes in forage fish biomass capelin and sand lance seem to have a larger effect

on Atlantic cod individual growth and body condition than on its overall biomass.

In the top-down scenario, when we decreased Atlantic cod biomass, we observed big

declines in the main prey items of the community, forage fish and northern shrimp,

and a moderate decrease in piscivores and large benthivores. While the species

expected to gain biomass are snow crab, redfish and medium benthivores. Snow

crab is expected to see an increase in biomass of 69% with declining Atlantic cod

biomass. Large increases in macroinvertebrates, such as snow crab and northern

shrimp, have been reported to follow declines in Atlantic cod in nine continental

shelf ecosystems (Worm and Myers, 2003). In the Northwest Atlantic Ocean, snow

crab populations are primarily regulated by top-down mechanisms in the years

leading up to fishery recruitment and by temperature in the post-settlement years

(Boudreau et al., 2011). Similarly, Atlantic cod has been identified as a key regu-

lator of snow crab populations in the Barents Sea, affecting their distribution and

productivity (Durant et al., 2023; Holt et al., 2021). Our results for the Grand

Banks suggest that Atlantic cod also plays an important role in controlling snow

crab populations. However, we did not observe an increase in northern shrimp

biomass, likely due to its position in the food web as a key prey for many species,
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particularly redfish (Gonzalez et al., 2006), whose biomass is also dramatically in-

creasing in our simulations (79%). Redfish are characterized by long lifespan (> 50

years), slow growth, late maturation, and episodic production of large year classes

(Cadigan et al., 2022b), and are heavily predated upon by Atlantic cod and turbot.

They rely on zooplankton, shrimp, and other small invertebrates (Gonzalez et al.,

2006; Cadigan et al., 2022b).

Turbot and American plaice are expected to experience biomass loss in response

to changes in Atlantic cod biomass, with a more pronounced impact when cod

biomass decreases. This might seem counterintuitive, suggesting that the system’s

responses are not straightforward and cannot always be anticipated. The decline in

these large benthivores may be related to increases in redfish and snow crab popu-

lations, which heavily prey on capelin, sand lance, and shrimp. Large benthivores

might compete with redfish at early life stages, with redfish potentially outcom-

peting them due to their plankt-piscivorous diet. As a predator of both species

(Gonzalez et al., 2006; Tam and Bundy, 2019), an increase in cod biomass intensifies

predation pressure, directly reducing the biomass of turbot and American plaice.

Reducing Atlantic cod biomass can thus have complex, cascading effects through-

out the food web, influencing various trophic levels differently (Frank et al., 2005).

Bundy (2001) observed that the Newfoundland food web experienced larger fluctu-

ations under top-down control than bottom-up control in Ecopath with Ecosystem

simulations. Our results align with these findings, demonstrating that changes in

forage fish biomass lead to variations in non-target species biomass of ±5%, with

turbot experiencing slightly greater changes. In contrast, increasing or decreasing

Atlantic cod biomass resulted in changes ranging from -90% to over 300%.

We also noted a non-linear response in Atlantic cod biomass with increasing exter-

nal mortality. A 16% decline in cod biomass led to an important restructuring of

the system, where cod biomass remained relatively stable while non-target species
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experienced drastic changes. However, when the decline in cod biomass exceeded

17%, the system failed to reach equilibrium due to the functional extinction of key

prey species (driven by intense predation by redfish, snow crab and medium benthi-

vores, which biomass drastically increased). This pattern indicates that moderate

reductions in Atlantic cod biomass may trigger trophic cascades, which can take

an extended period to propagate through the food web (Frank et al., 2005). In

addition, reductions beyond this threshold can even lead to a regime shift, causing

profound and irreversible changes within the community (Daskalov et al., 2007;

Casini et al., 2008).

Strong (1992) argues that top-down structuring is atypical and signifies biological

instability. Overfishing large predators disrupts the balance between predator and

prey populations, hindering predator recovery due to increased predation and com-

petition for food from prey, especially during the predators’ early life stages (Frank

et al., 2007). Continuing fishing and bycatch in low productivity conditions could

also delay recovery (Shelton et al., 2006). Ecosystems under top-down control

are particularly vulnerable to fishing exploitation compared to those regulated by

bottom-up processes (Petrie et al., 2009). In the Northwest Atlantic, the collapse

of cod has led to dramatic increases in invertebrate biomass (Dempsey et al., 2017;

Koen-Alonso and Cuff, 2018) and significant cascading effects throughout the food

web (Frank et al., 2005). Despite reductions in fishing pressure, the recovery of top

predators like cod has not occurred in the Grand Banks, highlighting the complex

and often unpredictable nature of ecosystem responses to such disturbances (Frank

et al., 2006).

Our findings highlight the critical role of Atlantic cod in the Grand Banks, demon-

strating that its decline can cause significant disruptions to ecosystem stability,

potentially more so than changes in forage species alone. This emphasizes the need
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for ecosystem and multispecies models to inform management decisions. Size-

spectrum models, in particular, offer valuable insights by capturing the ecological

realism of size-structured vital processes, ontogenetic life-history traits, and tropho-

dynamic interactions (Andersen et al., 2016). Mizer models are versatile tools for

studying both top-down and bottom-up controls in ecosystems. Our findings un-

derscore the significant top-down impact of Atlantic cod on ecosystem stability,

aligning with Benoit et al. (2022), which demonstrated that top predator mortal-

ity has a stronger influence on community size structure than changes in smaller

species. Conversely, mizer models also capture bottom-up effects. For example,

Audzijonyte et al. (2023) found that increased plankton abundance positively af-

fects fish biomass and yields. Thus, mizer models effectively illustrate the influence

of both top-down and bottom-up controls, depending on the focus of the study.

As ecosystem approaches increasingly complement traditional single-species man-

agement frameworks (Link and Marshak, 2021; Pepin et al., 2022; Ruiz-Dı́az, 2023),

these models provide a comprehensive understanding of the broader impacts asso-

ciated with targeting individual species within the ecosystem.

Limitations and future directions

The lack of comprehensive monitoring data for sand lance and capelin introduces

uncertainty in their biomass estimates. In the case of sand lance, we had to rely on

bottom trawl survey data, which have low catchability for this species (Tretyakov,

2015). For the capelin data, we used acoustic surveys that cover only part of

the study area (the northern portion of the Banks), where most of the capelin is

found (DFO, 2022a). Working with forage species can be challenging since their

biomasses can be difficult to quantify due to large spatial variation and their strong

population responses (i.e. changes in abundance and/or distribution) to environ-

mental variability (Lewis et al., 2019). Future research should aim to address these
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limitations by incorporating more detailed and accurate data on forage species,

which requires better monitoring. Additionally, my model predicted biomass for

Atlantic cod, turbot and thorny skate higher than observed in the bottom-trawl

survey, which may have implications on the model interpretation. While focus-

ing on the recent post-collapse period is justified due to decreased productivity

following the regime shift, it is important to recognize that excluding historical

information may limit our understanding of potential changes in the ecosystem.

Bottom-up effects can be expected to be strongest in cases where a predator is

a specialist relying to a great extent on the availability of the particular forage

fish (Engelhard et al., 2014). In our model, we kept the predator-prey diet matrix

relatively simple, based on presence and absence. Including information on the

proportion of each prey in the diet would provide finer results, capturing these

dependencies more accurately. This is an area where the model could be further

improved. Moreover, our model does not consider changes in habitat, evolutionary

changes, or Allee effects as a result of a drastic decline in species biomass (Hutchings

and Reynolds, 2004).

Bottom-up studies in the region have explored how environmental conditions—such

as temperature and the timing of the spring bloom—impact primary and secondary

productivity, and how these effects scale up to forage fish and higher trophic lev-

els. These studies have demonstrated that such environmental factors are impor-

tant drivers of ecosystem dynamics (Cyr et al., 2024; Boyce et al., 2015). Our

study focused exclusively on the direct effects of changes in forage fish biomass

on the food web, without addressing the interactions between primary and sec-

ondary productivity. Hence, we could benefit from exploring how primary and

secondary productivity drives bottom-up dynamics. The model could be further

improved to account for the effect of climate change on the Grand Banks ecosys-

tem, particularly associated with ocean warming -affecting species metabolic rates
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and predator-prey encounter- and changes in primary production (Reum et al.,

2020; Woodworth-Jefcoats et al., 2019).

Finally, the inclusion of other apex predators like harp seals, which are known

to be important predators of cod (Stenson, 2013), could help solve some of the

questions regarding the lack of recovery of Atlantic cod and other groundfish species

(Trzcinski et al., 2006; Chassot et al., 2009).





CHAPTER 6

General conclusions

Ecosystem-based fisheries management (EBFM) provides a framework for consider-

ing the broader ecological interactions and dependencies within marine ecosystems,

aiming to maintain ecosystem function and structure. Unlike single-species fish-

eries management, which often focuses on individual species in isolation, EBFM

accounts for the complex ecological systems in which fish exist. The severe con-

sequences of overlooking ecosystem variability were evident in the Grand Banks

and other regions of Atlantic Canada during the groundfish collapse, prompting

initiatives like the Atlantic Zone Monitoring Program and other ecosystem-focused

efforts by DFO since the late 1990s (Therriault et al., 1998). However, the recent

collapse of the Bering Sea snow crab stock is a stark reminder that there is still

work to be done to integrate ecosystem information into stock assessments. The

sudden disappearance of 10 billion crabs was linked to neglected ecosystem factors:

ocean warming reduced the cold pool, an essential refuge for young crabs from

predation, and increased caloric intake led to mass starvation among the crabs

(Szuwalski et al., 2023). Additionally, early warning signs, such as shifts in age

and size at maturity, hinted at underlying issues within the population. Adopt-

ing an ecosystem-based approach enables us to better anticipate and address the

risks associated with ecosystem changes, ultimately fostering more sustainable and

resilient fisheries.

6.1 Implications for regional fisheries manage-

ment

My research aims to advance EBFM of the Grand Banks of Newfoundland by ex-

ploring predator-prey dynamics, species habitat-preferences and response to ocean

117
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warming.

This thesis further proves that environmental variability and predator-prey in-

teractions influence fish stock productivity and distribution. The Grand Banks

ecosystem is influenced by a range of factors, including environmental variability

(Cyr and Galbraith, 2021; Cyr et al., 2022), climate change (Gonçalves Neto et al.,

2021; Saba et al., 2016), fishing pressure (Hutchings and Myers, 1994), and shifts in

community structure (Pedersen et al., 2017; Dempsey et al., 2017; Koen-Alonso and

Cuff, 2018). The historical analysis in Chapter 3 revealed the habitat preferences

of snow crab, yellowtail flounder, and Atlantic cod concerning temperature and

depth. Snow crab was found to be particularly sensitive to temperature, favour-

ing waters close to 0 ◦C. Yellowtail flounder preferred temperatures around 3 ◦C

while Atlantic cod favoured warmer waters, approximately 5 ◦C. Additionally, a

northward shift in Atlantic cod biomass was observed over time, suggesting either a

distributional shift or an increase in the northern stock’s biomass. In contrast, the

biomass centers of gravity for snow crab and yellowtail flounder remained relatively

stable. Snow crab’s sensitivity to temperature increases makes it particularly vul-

nerable to the future impacts of climate change in the region. Projections indicate

a rise in bottom temperatures from 1.6 ◦C to 2.2 ◦C by the end of the century.

An even more drastic scenario is expected under the IPSL climate model, which

projects an increase in temperature of 5 ◦C. Climate change significantly affects

fisheries productivity, with ocean warming already leading to a reduction in global

fisheries production (Free et al., 2019). The projections for the Grand Banks in

Chapter 4 suggest that ocean warming will decrease the biomass of snow crab while

increasing the biomass of Atlantic cod under high emission scenarios. In the case

of yellowtail flounder, declines in biomass were observed under the IPSL model,

while GFDL and ACM revealed biomass increase. In contrast, under low-emission

scenarios, species biomass tends to fluctuate around historical averages. The in-

crease in Atlantic cod biomass, coupled with its strong predation pressure on snow
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crabs (Durant et al., 2023; Holt et al., 2021), will exacerbate the decline in snow

crab populations. All these changes pose considerable challenges for the snow crab

fishing sector in the long term.

The choice of climate model greatly influences the projected magnitude of changes

in biomass. Earth system models predict larger biomass losses than regional

oceanographic models, likely due to the misrepresentation of the cold intermedi-

ate layer caused by bathymetry biases in earth system models (Stock et al., 2011;

Rutherford et al., 2024). This contrast highlights the importance of using regional

oceanographic models over earth system models, when available, to achieve more

accurate biomass projections. Despite differences in the magnitude of changes, all

models agreed on the direction of these changes. The findings from Chapter 4 can

inform the development of Climate-Resilient Fisheries Policies, which are designed

to explicitly address the impacts of climate change and incorporate long-term envi-

ronmental forecasts (Holsman et al., 2019). This approach can help anticipate and

mitigate future challenges in the fishing industry through, for example, proactive

adjustments of quotas, spatial closures, and gear restrictions (Pinsky and Mantua,

2014)

The spatio-temporal models used in Chapter 3 enabled the identification of species

biomass hotspots and the calculation of environmentally informed biomass indices.

This approach is currently being adopted by organizations such as DFO and NOAA

for calculating standardized biomass indices (DFO, 2023b; Haggarty et al., 2021).

The new spring biomass indices for snow crab, yellowtail flounder, and Atlantic cod

in the 3LNO division could be used as inputs in future stock assessment models.

These indices are particularly noteworthy for snow crab, as previous assessments

focused only on fall data, and for Atlantic cod, which is managed as two separate

stocks (2J3KL and 3NO). Hence, no index exists for the 3LNO division. Overall,
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the findings from Chapter 3 provide valuable insights about the stocks and can

inform management and spatial conservation strategies.

6.2 Bottom-up vs top-down influences

The multispecies size spectrum model of Chapter 5 demonstrated that changes

in the biomass of capelin, sand lance, and Atlantic cod causes shifts in biomass

and mean body weight across both higher and lower trophic levels. Notably, these

changes are more pronounced under the top-down scenario, highlighting the cru-

cial role of Atlantic cod in maintaining the stability of the Grand Banks ecosystem.

When Atlantic cod biomass declined more than 17%, a dramatic shift in the sys-

tem occurred, with many prey species going functionally extinct. These findings

indicate a stronger top-down control on the Grand Banks of Newfoundland than

bottom-up control. However, it is important to note that the bottom-up effect was

tested by altering the biomass of forage species rather than primary and secondary

productivity, which has been shown to be important for the region in other studies

(Buren et al., 2014; Cyr et al., 2024). Hence, it is likely that both processes play

a role in controlling the system.

Regional-scale studies suggest that temperature, species diversity, and exploita-

tion pressure all influence trophic control in marine ecosystems (Worm and Myers,

2003; Frank et al., 2006, 2007). Boyce et al. (2015) identified temperature as the

most significant factor driving the spatial patterns of trophic control across marine

ecosystems, both directly and indirectly, through its effects on primary production,

biodiversity, and omnivory. Strong consumer control has been found in cold ecosys-

tems, where temperatures are below 5 ◦C(Boyce et al., 2015). In these ecosystems,

apex consumers limit the abundance of other consumers, and their removal can

cause cascading effects down the food chain.



Chapter 6. Chapter 6 - conclusions 121

Ecosystems under top-down control are particularly vulnerable to fisheries exploita-

tion compared to those regulated by bottom-up processes (Petrie et al., 2009). In

the Grand Banks, the collapse of cod and other groundfish species in the early

1990s triggered cascading effects throughout the food web (Frank et al., 2005),

with low recovery observed for many groundfish stocks despite the implementation

of moratoria. While evidence suggests that reducing fishing pressure alone can

lead to species recovery (Hilborn et al., 2020), the situation in the Grand Banks

reveals a more complex reality. This system has undergone a restructuring of the

community (Koen-Alonso and Cuff, 2018), altering predator-prey interactions. For

example, increases in invertebrates and medium benthivores may lead to poten-

tial predation on or competition with the early life stages of cod (Hutchings and

Rangeley, 2011). Moreover, alterations in species’ life history traits, such as re-

duced age and size at maturity, have been documented in the region (DFO, 2022b;

Murphy et al., 2021). These changes may increase natural mortality and reduce

the ability of species to respond to environmental variability, making recovery more

difficult even when fishing pressure is reduced (Planque et al., 2010; Hutchings and

Rangeley, 2011). Therefore, understanding food web dynamics is crucial for devel-

oping effective management plans that ensure the sustainability of both target and

non-target species.

6.3 Future research directions

The insights gained from understanding the impacts of climate change and predator-

prey dynamics on the Grand Banks are essential for informing fisheries management

strategies. This thesis also contributes to the promotion of EBFM implementation

globally by synthesizing and outlining methods to integrate ecosystem informa-

tion into current advisory practices (Chapter 2). Effective management requires

an adaptive approach that incorporates ecological complexity and environmental
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variability to minimize negative impacts on the stocks (Gaines et al., 2018). Ac-

tions taken over the next decade can help us adapt to species redistributions and

minimize negative impacts on fisheries and dependent communities, promoting a

sustainable future (Free et al., 2020; Melbourne-Thomas et al., 2021). I suggest the

following directions to move this thesis further, from strategic insights to tactical

applications:

Precautionary approach Given the uncertainties associated with environmen-

tal variability, adopting a precautionary approach is prudent. This means

erring on the side of caution in decision-making to prevent overexploitation

and ensure the long-term health of marine ecosystems. My findings reveal

that snow crab is particularly sensitive to increasing bottom temperature

compared to yellowtail flounder and Atlantic cod. One way to implement

this is by adding a precautionary buffer to biological reference points based

on ecosystem conditions (Mildenberger et al., 2022). Additionally, the new

biomass indices we developed can be utilized in stock assessments to bet-

ter inform these reference points. Such measures will help safeguard against

unforeseen adverse effects and support ecosystem resilience.

Dynamic management Fisheries management must be flexible and responsive

to changing environmental conditions. This involves continuously updat-

ing management plans based on the latest scientific data and projections.

Adaptive management allows for adjustments in fishing quotas, seasons, and

protected areas to align with current ecosystem states (Pinsky and Mantua,

2014). In my thesis, I focused on the long-term effect of climate change on

the target species. However, species distribution models (SDMs) can be used

in a more tactical way. For example, they have been used with sub-seasonal

environmental forecasts to facilitate dynamic spatial management, which can
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help identify optimal times and areas for fisheries to maximize target catch

and avoid bycatch (Roberts et al., 2023).

Multispecies models for informed fisheries management Multispecies mod-

els offer a comprehensive approach to understanding the complex interac-

tions within marine ecosystems, making them particularly necessary for fish-

eries management in situations where there are strong dependencies between

predators and prey, as these interactions influence stocks productivity. In the

Barents Sea, a multi-model approach improved understanding of trophic in-

teractions between cod, capelin, polar cod and copepods under varying fishing

pressures, helping managers predict how changes in prey stocks affect preda-

tor stocks like Atlantic cod (Nilsen et al., 2022). In practice, multispecies

models could be used as the operational model in the management strategy

evaluation, allowing the testing of different management strategies that are

ecologically informed (Hollowed et al., 2020). They could also be used to

refine single-species reference points with ecosystem information (Townsend

et al., 2019; Howell et al., 2021).

The MIZER multispecies model developed in this thesis underscores the cru-

cial role of Atlantic cod in maintaining ecosystem stability and the risks

associated with their overexploitation. This model could be enhanced by

incorporating seals into the system. Seals have been identified as a factor

contributing to the slow recovery of Atlantic cod (Bundy, 2001). By adding

seals to the model, we can better understand their effects on prey species and

gain a clearer picture of the overall ecosystem dynamics. Additionally, the

model can be re-calibrated with the therMIZER version, which accounts for

the effect of temperature on species metabolism (Woodworth-Jefcoats et al.,

2019; Reum et al., 2024). Warming accelerates species metabolism, increasing
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their intake requirements and thereby affecting community dynamics. More-

over, the size spectrum model could integrate primary productivity outputs

from climate models to simulate ecosystem responses to future bottom-up

processes (Reum et al., 2020; Rose et al., 2024).

6.4 Final remarks

Overall, this thesis advances ecosystem-based fisheries management by enhancing

our understanding of predator-prey dynamics, species habitat preferences, and re-

sponses to ocean warming on the Grand Banks of Newfoundland. By examining the

complex interactions within the entire ecosystem, my research provides compelling

evidence that environmental variability and predator-prey relationships influence

fish stock productivity and distribution. The projected impacts of climate change

on the Grand Banks ecosystem present a complex scenario with significant impli-

cations for fisheries management. The potential decline in snow crab biomass and

the increasing predation pressure from growing cod biomass underscore the need

for a holistic approach to managing these species. The size spectrum model also

indicates that rising Atlantic cod biomass will lead to a decline in large and medium

benthivores, as well as piscivorous and plank-piscivorous species. However, given

the strong top-down control detected in the Grand Banks, the reopening of the

northern cod stock (2J3KL), which is currently just above the critical zone, could

have unintended consequences for the food web. These findings reinforce the impor-

tance of incorporating ecosystem information into fisheries management decisions.

Future research should focus on refining these models, integrating emerging data,

and exploring innovative management strategies to address the ongoing challenges

facing the Grand Banks of Newfoundland effectively.
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APPENDIX A

Supplementary material for

Chapter 3

A.1 Mesh details and covariates

Delaunay triangulation mesh

Figure A.1: Left graph displays the Delaunay triangulation mesh used in the
models with a cutoff = 20 km. Grey dots indicate observations. Right graphs
shows an histogram of the distance between sampling sites in Km.

Mesh description

fm mesh 2d object:

Manifold: R2

V / E / T: 467 / 1359 / 893
Euler char.: 1
Constraints: 39 boundary edges (1 group: 0), 0 boundary edges
Bounding box: (622.1104, 1350.0463)× (4679.981, 5548.451)× (0, 0)
Basis d.o.f.: 467
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158 A.1. Mesh details and covariates

Correlation between covariates observation and data used to predict

Figure A.2: Correlation between observed bathymetry (obtained from the
bottom trawl survey) and GEBCO bathymetry used to predict. .
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Figure A.3: Correlation between observed bottom temperature (obtained from
the bottom trawl survey) and DFO interpolated bottom temperature data used
to predict.



160 A.1. Mesh details and covariates

Relationship between species biomass and fishing effort at division level

Figure A.4: Linear relationship between biomass and catches of snow crab (a)
and yellowtail flounder (b) calculated at division level (3L, 3N and 3O).
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Delta gamma biomass prediction per year

Figure A.5: Maps of snow crab biomass distribution over the Grand Banks
obtained from the combined prediction of the delta gamma model. Biomass is
in log scale.



162 A.1. Mesh details and covariates

Figure A.6: Maps of yellowtail flounder biomass distribution over the Grand
Banks obtained from the combined prediction of the delta gamma model.
Biomass is in log scale.
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Figure A.7: Maps of Atlantic cod biomass distribution over the Grand Banks
obtained from the combined prediction of the delta gamma model. Biomass is
in log scale.
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Changes in the centre of gravity calculated from the dataset

Figure A.8: Changes in the centre of gravity of snow crab (left), yellowtail
flounder (center) and Atlantic cod (right).

A.2 Models validation

Snow crab model outputs

Spatiotemporal model fit by ML [’sdmTMB’]

Formula: biomass ∼ 0 + as.factor(year) + s(depth log) + s(tempatfishing)

Mesh: mesh
Time column: year
Data: data
Family: delta gamma(link1 = ’logit’, link2 = ’log’)

• Delta/hurdle model 1

Family: binomial(link = ’logit’)

coef.est coef.se

as.factor(year)1996 0.84 0.65
as.factor(year)1997 0.96 0.65
as.factor(year)1998 1.15 0.64
as.factor(year)1999 2.09 0.65
as.factor(year)2000 1.83 0.65
as.factor(year)2001 1.87 0.65
as.factor(year)2002 2.78 0.66
as.factor(year)2003 1.87 0.65
as.factor(year)2004 1.04 0.64
as.factor(year)2005 0.65 0.64
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as.factor(year)2006 -0.34 0.66
as.factor(year)2007 -0.68 0.64
as.factor(year)2008 -0.56 0.64
as.factor(year)2009 0.45 0.64
as.factor(year)2010 0.56 0.64
as.factor(year)2011 0.75 0.65
as.factor(year)2012 0.07 0.65
as.factor(year)2013 -0.04 0.64
as.factor(year)2014 0.02 0.65
as.factor(year)2015 -0.50 0.67
as.factor(year)2016 -0.53 0.65
as.factor(year)2017 -0.38 0.67
as.factor(year)2018 -0.51 0.65
as.factor(year)2019 -0.22 0.64
sdepth log 5.75 6.84
stempatfishing -4.48 0.79

Smooth terms:

Std. Dev.

sds(depth log) 5
sds(tempatfishing) 0

Spatiotemporal AR1 correlation (rho): 0.86
Matern range: 145.52
Spatial SD: 1.82
Spatiotemporal SD: 1.22

• Delta/hurdle model 2

Family: Gamma(link = ’log’)

coef.est coef.se

as.factor(year)1996 4.38 0.33
as.factor(year)1997 4.02 0.33
as.factor(year)1998 4.06 0.33
as.factor(year)1999 3.83 0.33
as.factor(year)2000 3.31 0.33
as.factor(year)2001 3.28 0.33
as.factor(year)2002 3.29 0.33
as.factor(year)2003 3.43 0.33
as.factor(year)2004 2.61 0.33
as.factor(year)2005 2.66 0.34
as.factor(year)2006 2.36 0.36
as.factor(year)2007 2.66 0.35
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as.factor(year)2008 2.55 0.35
as.factor(year)2009 3.08 0.34
as.factor(year)2010 2.49 0.34
as.factor(year)2011 2.83 0.34
as.factor(year)2012 2.64 0.35
as.factor(year)2013 2.33 0.34
as.factor(year)2014 2.38 0.35
as.factor(year)2015 1.62 0.37
as.factor(year)2016 1.17 0.35
as.factor(year)2017 1.76 0.40
as.factor(year)2018 1.67 0.36
as.factor(year)2019 2.06 0.35
sdepth log 8.43 4.60
stempatfishing 2.84 4.94

Smooth terms:

Std. Dev.

sds(depth log) 3.28
sds(tempatfishing) 1.57

Dispersion parameter: 0.93
Spatiotemporal AR1 correlation (rho): 0.71
Matern range: 97.00
Spatial SD: 1.15
Spatiotemporal SD: 1.22

ML criterion at convergence: 8017.538
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Snow crab model diagnostic plots

Figure A.9: Histogram (left) and quantile-quantile normality (QQ) plot for
snow crab biomass model (right) with random effects estimated with MCMC
while fixing fixed effects at their MLE values.
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Figure A.10: Plot of snow crab biomass model residuals against each explana-
tory variable, depth (upper plot) and temperature (lower plot).
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Figure A.11: Spatial and temporal distribution of residuals based on snow
crab biomass model.
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Yellowtail flounder model output

Spatiotemporal model fit by ML [’sdmTMB’]

Formula: biomass ∼ 0 + as.factor(year) + s(depth log) + s(tempatfishing)

Mesh: mesh
Time column: year
Data: data
Family: delta gamma(link1 = ’logit’, link2 = ’log’)

• Delta/hurdle model 1

Family: binomial(link = ’logit’)

coef.est coef.se

as.factor(year)1996 -4.85 1.47
as.factor(year)1997 -4.75 1.51
as.factor(year)1998 -6.53 1.47
as.factor(year)1999 -3.97 1.45
as.factor(year)2000 -3.45 1.45
as.factor(year)2001 -4.78 1.46
as.factor(year)2002 -5.44 1.46
as.factor(year)2003 -4.36 1.46
as.factor(year)2004 -4.61 1.44
as.factor(year)2005 -3.82 1.43
as.factor(year)2006 -0.65 1.44
as.factor(year)2007 -2.37 1.42
as.factor(year)2008 -1.88 1.41
as.factor(year)2009 -4.88 1.44
as.factor(year)2010 -3.33 1.42
as.factor(year)2011 -2.11 1.41
as.factor(year)2012 -1.11 1.41
as.factor(year)2013 -1.95 1.41
as.factor(year)2014 -1.87 1.42
as.factor(year)2015 -3.51 1.45
as.factor(year)2016 -4.05 1.43
as.factor(year)2017 -3.52 1.48
as.factor(year)2018 -3.05 1.43
as.factor(year)2019 -3.62 1.44
sdepth log -13.32 6.31
stempatfishing -2.56 3.62

Smooth terms:
Std. Dev.

sds(depth log) 2.85
sds(tempatfishing) 1.61
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Spatiotemporal AR1 correlation (rho): 0.82
Matern range: 231.86
Spatial SD: 2.69
Spatiotemporal SD: 1.55

• Delta/hurdle model 2

Family: Gamma(link = ’log’)

coef.est coef.se

as.factor(year)1996 3.22 0.54
as.factor(year)1997 3.26 0.55
as.factor(year)1998 3.20 0.54
as.factor(year)1999 4.42 0.52
as.factor(year)2000 4.25 0.52
as.factor(year)2001 3.77 0.54
as.factor(year)2002 2.90 0.54
as.factor(year)2003 3.89 0.53
as.factor(year)2004 3.74 0.52
as.factor(year)2005 4.56 0.51
as.factor(year)2006 5.09 0.51
as.factor(year)2007 4.70 0.50
as.factor(year)2008 4.81 0.50
as.factor(year)2009 4.00 0.52
as.factor(year)2010 4.56 0.51
as.factor(year)2011 4.83 0.50
as.factor(year)2012 5.31 0.50
as.factor(year)2013 4.73 0.50
as.factor(year)2014 4.43 0.51
as.factor(year)2015 4.28 0.52
as.factor(year)2016 3.36 0.51
as.factor(year)2017 3.48 0.53
as.factor(year)2018 4.35 0.51
as.factor(year)2019 3.79 0.52
sdepth log 0.58 4.92
stempatfishing -0.78 1.94

Smooth terms:

Std. Dev.

sds(depth log) 2.42
sds(tempatfishing) 0.78

Dispersion parameter: 1.25
Spatiotemporal AR1 correlation (rho): 0.73
Matern range: 128.11
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Spatial SD: 1.25
Spatiotemporal SD: 1.55

ML criterion at convergence: 12570.374

Yellowtail flounder diagnostic plots

Figure A.12: Histogram (left) and quantile-quantile normality (QQ) plot for
yellowtail flounder biomass model (right) with random effects estimated with
MCMC while fixing fixed effects at their MLE values.
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Figure A.13: Plot of yellowtail flounder biomass model residuals against each
explanatory variable, depth (upper plot) and temperature (lower plot).
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Figure A.14: Spatial and temporal distribution of residuals based on yellowtail
flounder biomass model.
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Atlantic cod model output

Spatiotemporal model fit by ML [’sdmTMB’]

Formula: biomass ∼ 0 + as.factor(year) + s(depth log) + s(tempatfishing)

Mesh: mesh
Time column: year
Data: data
Family: delta gamma(link1 = ’logit’, link2 = ’log’)

• Delta/hurdle model 1

Family: binomial(link = ’logit’)

coef.est coef.se

as.factor(year)1996 0.27 0.50
as.factor(year)1997 -0.35 0.51
as.factor(year)1998 -0.41 0.50
as.factor(year)1999 0.85 0.51
as.factor(year)2000 0.73 0.51
as.factor(year)2001 0.93 0.51
as.factor(year)2002 0.14 0.51
as.factor(year)2003 0.10 0.51
as.factor(year)2004 -0.55 0.51
as.factor(year)2005 0.52 0.51
as.factor(year)2006 1.31 0.54
as.factor(year)2007 1.14 0.52
as.factor(year)2008 1.07 0.51
as.factor(year)2009 0.53 0.51
as.factor(year)2010 0.38 0.51
as.factor(year)2011 0.13 0.51
as.factor(year)2012 1.20 0.52
as.factor(year)2013 1.37 0.52
as.factor(year)2014 1.24 0.52
as.factor(year)2015 1.12 0.53
as.factor(year)2016 1.19 0.51
as.factor(year)2017 -0.18 0.56
as.factor(year)2018 0.66 0.51
as.factor(year)2019 0.82 0.51
sdepth log -7.72 7.90
stempatfishing 2.21 4.73

Smooth terms:
Std. Dev.

sds(depth log) 8.94
sds(tempatfishing) 3.04
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Matern range: 189.74
Spatial SD: 1.04
Spatiotemporal SD: 0.85

• Delta/hurdle model 2

Family: Gamma(link = ’log’)

coef.est coef.se

as.factor(year)1996 4.01 0.33
as.factor(year)1997 4.37 0.35
as.factor(year)1998 4.51 0.34
as.factor(year)1999 4.71 0.33
as.factor(year)2000 4.57 0.33
as.factor(year)2001 4.49 0.33
as.factor(year)2002 3.89 0.34
as.factor(year)2003 4.22 0.34
as.factor(year)2004 4.00 0.34
as.factor(year)2005 4.73 0.33
as.factor(year)2006 5.07 0.35
as.factor(year)2007 4.83 0.33
as.factor(year)2008 4.97 0.33
as.factor(year)2009 4.61 0.34
as.factor(year)2010 4.31 0.33
as.factor(year)2011 4.46 0.33
as.factor(year)2012 5.33 0.33
as.factor(year)2013 5.55 0.33
as.factor(year)2014 5.60 0.34
as.factor(year)2015 5.03 0.35
as.factor(year)2016 4.12 0.33
as.factor(year)2017 3.71 0.41
as.factor(year)2018 4.60 0.34
as.factor(year)2019 4.19 0.33
sdepth log -5.21 4.98
stempatfishing 1.32 3.20

Smooth terms:

Std. Dev.

sds(depth log) 3.07
sds(tempatfishing) 1.68

Dispersion parameter: 0.75
Matern range: 95.97
Spatial SD: 0.98
Spatiotemporal SD: 0.85
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ML criterion at convergence: 13000.057

Atlantic cod diagnostic plots

Figure A.15: Histogram (left) and quantile-quantile normality (QQ) plot for
Atlantic cod biomass model (right) with random effects estimated with MCMC
while fixing fixed effects at their MLE values.



178 A.2. Models validation

Figure A.16: Plot of Atlantic cod biomass model residuals against each ex-
planatory variable, depth (upper plot) and temperature (lower plot).



Appendix A. Supplementary material for Chapter 3 179

Figure A.17: Spatial and temporal distribution of residuals based on Atlantic
cod biomass model.
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B.1 Models diagnostics by species

Snow crab

Table B.1: Candidate species distribution models for snow crab that were eval-
uated for fit to observed data. Akaike information criteria (AIC), Akaike weights
(∆ AIC) and out-of-sample log likelihood (Loglik) measures were used to identify
the best model. Loglik are displayed as negative loglikelihood values for easier
interpretation, with lower values indicating the model with better predictability.
Depth and temperature were represented as second order polynomials and depth
was log transformed. Df indicates the degree of freedom. The best scoring mod-
els are indicated in bold. Deviance explained is the percent deviance explained
when compared to an intercept-only null model.

Model Family Configuration df AIC
Neg. Log
Likelihood

Deviance
explained

∆AIC
∆Neg. Log
Likelihood

4 delta gamma biomass ∼ depth 7 21002 10494.03 55.60 % 2859 1437.537

3 delta gamma
biomass ∼ temp +

depth
11 19941 9959.721 57.86 % 1798 903.228

2 delta lognormal
biomass ∼ temp +
depth | spatial 15 18143 9056.493 61.69 % 0 0

1 delta gamma
biomass ∼ temp +
depth | spatial 15 18204 9087.013 61.56 % 61 30.52
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Figure B.1: Quantile residuals for the four model configurations described in
Table 1.
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Figure B.2: Spatial patters of snow crab SDM residuals for the binomial (a)
and lognormal (b) component.
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Yellowtail flounder

Table B.2: Candidate species distribution models for yellowtail flounder that
were evaluated for fit to observed data. Akaike information criteria (AIC),
Akaike weights (∆ AIC) and out-of-sample log likelihood (Loglik) measures were
used to identify the best model. Loglik are displayed as negative loglikelihood
values for easier interpretation, with lower values indicating the model with
better predictability. Depth and temperature were represented as second order
polynomials and depth was log transformed. Df indicates the degree of freedom.
The best scoring models are indicated in bold. Deviance explained is the percent
deviance explained when compared to an intercept-only null model.

Model Family Configuration df AIC
Neg. Log
Likelihood

Deviance
explained

∆AIC
∆Neg. Log
Likelihood

4 delta gamma biomass ∼ depth 7 28083 14034.51 62.25 % 1729 872.64

3 delta gamma
biomass ∼ temp +

depth
11 27713 13845.29 62.75 % 1359 683.42

2 delta lognormal
biomass ∼ temp +
depth | spatial 15 26578 13273.86 64.30 % 224 111.99

1 delta gamma
biomass ∼ temp +
depth | spatial 15 26354 13161.87 64.6 % 0 0
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Figure B.3: Quantile residuals for the four model configurations described in
Table 2.
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Figure B.4: Spatial patters of yellowtail flounder SDM residuals for the bino-
mial (a) and gamma (b) component.
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Atlantic cod

Table B.3: Candidate species distribution models for Atlantic cod that were
evaluated for fit to observed data. Akaike information criteria (AIC), Akaike
weights (∆ AIC) and out-of-sample log likelihood (Loglik) measures were used
to identify the best model. Loglik are displayed as negative loglikelihood val-
ues for easier interpretation, with lower values indicating the model with better
predictability. Depth and temperature were represented as second order polyno-
mials and depth was log transformed. Df indicates the degree of freedom. The
best scoring models are indicated in bold. Deviance explained is the percent
deviance explained when compared to an intercept-only null model.

Model Family Configuration df AIC
Neg. Log
Likelihood

Deviance
explained

∆AIC
∆Neg. Log
Likelihood

4 delta gamma biomass ∼ depth 7 31406 15695.98 59.9 % 4419 2217.67

3 delta gamma
biomass ∼ temp +

depth
11 30408 15193.14 61.25 % 3421 1714.83

2 delta lognormal
biomass ∼ temp +
depth | spatial 15 26987 13478.31 65.63 % 0 0

1 delta gamma
biomass ∼ temp +
depth | spatial 15 27845 13907.38 64.53 % 858 429.07
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Figure B.5: Quantile residuals for the four model configurations described in
Table 3.
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Figure B.6: Spatial patters of Atlantic cod SDM residuals for the binomial (a)
and lognormal (b) component.
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B.2 Model predictability

Historical period

a)

b)

c)

Figure B.7: Predictive performance of species distribution models for a) snow
crab, b) yellowtail flounder, and c) Atlantic cod. The left panels display the
Pearson correlation coefficients between predicted and observed values for the
gamma component. The right panels present the area under the curve (AUC)
for the binomial component.
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Out-of-sample cross-validation

a)

b)

c)

Figure B.8: Out-of-sample predictive performance of species distribution mod-
els for a) snow crab, b) yellowtail flounder, and c) Atlantic cod from 2017 to 2019.
The left panels show the Pearson correlation between predicted and observed val-
ues for the gamma component, while the right panels display the area under the
curve (AUC) for the binomial component.
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B.3 SDMs outputs

Table B.4: Estimates and confidence intervals for snow crab, yellowtail flounder
and Atlantic cod based on the fitted species distribution model

Effect Term Estimate Std. Error Conf. Low Conf. High

Snow crab

Fixed Intercept 0.493 0.496 -0.478 1.47
Fixed poly(depth, 2)1 35.7 9.42 17.2 54.1
Fixed poly(depth, 2)2 -49.5 5.14 -59.6 -39.5
Fixed poly(tempatfishing, 2)1 -38.7 5.54 -49.6 -27.8
Fixed poly(tempatfishing, 2)2 0.525 3.9 -7.12 8.17
Random Matern range 150 26.4 160 211
Random Spatial sd 1.73 0.235 1.33 2.26

Yellowtail flounder

Fixed Intercept -2.89 2.02 -6.84 1.06
Fixed poly(depth, 2)1 -167 15.1 -196 -137
Fixed poly(depth, 2)2 6.9 11 -14.7 28.5
Fixed poly(tempatfishing, 2)1 4.59 7.2 -9.52 18.7
Fixed poly(tempatfishing, 2)2 -28.8 5.51 -39.5 -18
Random Matern range 399 122 220 726
Random Spatial sd 2.77 0.736 1.65 4.67

Atlantic cod

Fixed Intercept 0.454 0.256 -0.0478 0.956
Fixed poly(depth, 2)1 -20.2 7.86 -35.7 -4.83
Fixed poly(depth, 2)2 -93.1 4.98 -103 -83.3
Fixed poly(tempatfishing, 2)1 38.3 4.82 28.8 47.7
Fixed poly(tempatfishing, 2)2 -50.8 3.47 -57.6 -44
Random Matern range 117 20.4 82.8 164
Random Spatial sd 1.10 0.115 0.898 1.35
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B.4 Temperature bias correction

Figure B.9: Original temperature outputs derived from climate models

Figure B.10: Temperature outputs derived from climate models corrected to
observations using years 2015-2019.
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B.5 ESM bathymetry bias assessment

To calculate bathymetry bias among climate models (i.e., IPSL and GFDL) and ob-
servations (bathymetry values from the GEBCO project), we performed depth data
interpolation or re-gridding from climate model outputs to align with the spatial
grid resolution of observed data. This interpolation process ensured a consistent
spatial alignment between model outputs and observational data. Subsequently,
we extracted the depth values from both the observed dataset and the interpolat-
ed/regridded datasets for each climate model at each grid cell and calculated the
relative error as:

ZCM,K(i, j)− Zobs(i, j)

Zobs(i, j)
(B.1)

Where ZCM,K represents the bathymetry at the grid cell (i, j) of climate model K;
ZHist(i, j) is the bathymetry at the same grid cell for the observations.
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Figure B.11: Relative bathymetry error of the IPSL model relative to obser-
vations.
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Figure B.12: Relative bathymetry error of the GFDL climate model relative
to observations.
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C.1 Supporting Tables

Grand Banks stocks and fisheries status

Table C.1: Information on the Grand Banks stocks and fisheries status
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MIZER Size spectrum model equations and parameters

Table C.2: Multispecies size spectrum model equations
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Table C.3: Fixed input parameters

Table C.4: Species-specific input parameters
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Table C.5: Species maturity information. Lmat is the length at maturity and
age−mat is the age at maturity
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Table C.6: 10 year average (1996-2006) species catch data.
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C.2 Supporting Figures

Figure C.1: Species interaction matrix. Blue indicates absence (value = 0);
red indicates presence (values =1); Orange indicates cannibalism (value = 0.02).
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Figure C.2: Selectivity of the gear
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Figure C.3: Observed (blue) and modelled (red) equilibrium biomass of the 11
species included in the Grand Banks model.

Figure C.4: Model calibration results. Log 10 predicted versus log 10 observed
(time-averaged) biomass. Pearson’s correlation coefficients (R) are shown in
panel (A) and proportion of bias (pb) in panel (B).
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Sensitivity to fishing

Figure C.5: Sensitivity to fishing. Yield versus Fishing mortality
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Model outputs

Figure C.6: Feeding levels
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Figure C.7: Proportion of species in the diet
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Figure C.8: Predation mortality by resource size
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Figure C.9: Predicted (blue line) and observed (gray circles) individuals size-
at-age data for each species. R2 is the proportion of variance for predicted growth
that is explained by the observed growth. Note that size-at-age information was
not available for snow crab, northern shrimp, sand lance and thorny skate.
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Forcing the model with time series of fishing mortality

Figure C.10: Observed and predicted yield over time
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Figure C.11: Predicted vs observed yield. Corr represents Pearson correlation
values



212 C.2. Supporting Figures

Figure C.12: Observed and predicted biomass over time
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Figure C.13: Predicted vs observed biomass. Corr represents Pearson correla-
tion
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