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Abstract

A comparison of three different isotropic non-linear elastic models uncovers subtle but important
differences in the acoustoelastic responses of a material slab that is subjected to dynamic deformations
during a pump-probe experiment. The probe wave deformations are small and are superimposed on larger
underlying deformations using three different models: Landau-Lifshitz (using its fourth-order extension),
compressible neo-Hookean model (properly accounting for volumetric deformations), and an alternative
neo-Hookean model (fully decoupled energies due to distortional isochoric and volumetric deformations).
The analyses yield elasticity tensors and respective expressions for the propagation speeds of P-wave and
S-wave probes for each model. Despite having many similarities, the different models give different
predictions of which probe wave types will have speeds that are perturbed by different pump wave types.
The analyses also show a conceptual inconsistency in the Landau-Lifshitz model, that a simple shear
deformation induces a stress and a shear wave probe speed that depend on the second-order elastic
constant A\, which controls resistance to volumetric changes and thus should not be present in the
expressions for shear stress and shear wave probe speeds. Thus, even though the Landau-Lifshitz model is
widely used, it may not always be the best option to model experimental data.

1. Introduction

Understanding non-linear acoustoelastic wave propagation in solids is important for non-destructive testing
applications [ 1—4]. All acoustoelastic techniques are based on the fact that propagating wave speeds vary with
deformation or applied stress, whether those stresses are static or dynamic. While the experimental principles of static
acoustoelasticity are considered to be well-established [5], the consistency of some theoretical results [6, 7] has been
questioned [5].

Thus, the theoretical underpinnings of dynamic acoustoelasticity and associated experimental conditions
require more understanding. The present work compares several different theoretical models that are relevant to
experimental investigations of static and dynamic acoustoelasticity.

Dynamic acoustoelastic testing [8—10] is gaining popularity for characterizing the structure of complex solids
such as bones [11], rocks [8, 12] and other materials [9]. In such experiments, a large amplitude (pump) wave
provides a dynamic deformation field, which perturbs the speed of a second (probe) wave. The probe wave amplitude
is sufficiently small that its influence on the pump-induced deformation can be neglected. One appeal of the pump-
probe approach is that it can be applied under field conditions using artificial sources and receivers [ 13]. Although the
pump-induced deformation fields used in dynamic acoustoelastic testing are typically smaller than static
deformations induced by mechanical presses (for example), nonlinear wave effects in rocks can be observed at strains
aslowas 10~%, and thus dynamic acoustoelastic testing is feasible even with small strains [14]. Furthermore, this sort
of testing can be performed in the presence of both a static deformation (due to an applied load) and a pump-induced
dynamic deformation [15], as shown in figure 1.

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. A schematic diagram of a dynamic acoustoelastic pump-probe experiment. The pump source generates a dynamic
deformation field that perturbs the speed of the probe wave (produced by the source and detected at the receiver). An optional static
deformation can be induced by an applied load. The pump and probe source waves can have either P or S polarizations. The upper-
case (X;) and lower-case (x;) coordinate systems correspond to the reference and current configurations of the sample, respectively.

The primary challenge with modelling static and dynamic acoustoelasticity is that, in order to apply the
theory in a tractable manner, we must make assumptions about the nature of the material as well as the nature of
the waves.

To provide a better foundation for applying theoretical models to dynamic acoustoelastic experiments, this
paper outlines three different isotropic models and their assumptions. The emphasis is on demonstrating that,
even in an isotropic material, pump waves can perturb the wave speeds of sensing probe waves in qualitatively
different ways, depending on the choice of model. After giving continuum mechanics definitions related to
deformations (section 2), section 3 summarizes results for strain-energy functions of a variable-order model
(Landau-Lifshitz in its fourth-order extension), as well as two different compressible neo-Hookean models.
Then, section 4 presents general wave speed expressions for probe waves (P- and S-wave) for each model, and
section 5 considers their application to an experimental scenario with both static and dynamic predeformations.
Section 6 discusses the obtained theoretical results, and gives additional explanations in the context of non-
linear elasticity. Short conclusions are given in section 7.

2. Basic continuum mechanics: deformations

For all three elastic models described herein, the basic aspects of continuum mechanics apply. In particular, the
focus is on how a deformation changes a material from its reference configuration to a current configuration. A
schematic representation of one such material is shown in figure 1.

A material point in the reference configuration %, is labelled by a position vector X, and this point in the
current configuration 4 at time ¢ is labelled by a position vector x. Deformation is described by the vector field
X, which relates the position of a particle in the reference configuration to the position of the same particle in the
current configuration: x = x(X, t). The deformation gradient tensor, denoted F, is defined by

F = Grady,

where Grad is the gradient operator defined with respect to X. The left and right Cauchy-Green deformation
tensors are related to the deformation gradient and defined by

B = FF', and C = F'F, (1)
respectively. Volumetric deformation is accounted for by
J = detF. )

In the absence of deformation in the reference configuration and for the isochoric, volume preserving
deformation (2) reduces to ] = 1. The Green (Lagrangian) strain tensor can be obtained from

R
E_Z(FF D). 3
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3. Isotropic non-linear elastic models

While for the linear isotropic material there is only one universal model (all materials are treated as Hookean
solids in linear elasticity), the situation in nonlinear elasticity is much more complicated and there are different
models even for isotropic (nonlinear) materials. Thus, it is impossible to indicate a general universal model in
nonlinear elasticity suitable for all cases. One of the aims of this paper is to shed light on the differences of
different nonlinear elastic models specifically within the context of acoustoelasticity.

Many different non-linear elastic models exist, including neo-Hookean [16], Mooney-Rivlin [17], Gent [18],
Arruda-Boyce [19], Blatz-Ko and Ogden models [20], and Landau-Lifshitz [21, 22]. The Landau—Lifshitz (L-L)
is a third-order model that is frequently used in acoustoelastic applications because it can accommodate
different orders of non-linearity (by expanding it to the next order). However, this model has a large number of
fitable parameters, some of which have unclear physical meanings. Furthermore, the L-L model does not
provide a clear way of capturing volumetric deformations. Other models, such as neo-Hookean models, are
better suited to deal with both distortional and dilatational deformations. In a modified neo-Hookean model, it
is also feasible to decouple energies due to distortional isochoric and volumetric deformations. The following
subsections describe each of these three models in more detail.

3.1.Landau-Lifshitz model: adjustable order of non-linearity
The L-L model was initially proposed as a third-order expansion of the strain-energy function, W, in terms of the
Green strain tensor E. Itappears that formulas for wave speeds as a function of strain, relevant for the fourth-
order model have not been derived in the literature in a general form. Therefore, we first recall the fourth-order
expansion of this model.

The fourth-order expansion of the L-L elasticity model is built from a third-order expansion of the strain
energy function®, which gives us

A A C
WL, b, I;) = 3112 + ph + 313 + BLL + ;IF

+ ELL + FI*L + GI} + HI, 4)

where invariants

L=tE L=tE, L=uE,

Aand p are second-order elastic constants (Lamé’s parameters), A, B, C are the third-order elastic constants, and
E, F, G, H are the fourth-order elastic constants. Thus, this model allows for a choice of non-linearity order. For
example, dropping fourth-order terms in (4) leads to a third-order strain-energy function, and to a second-
order stress-strain relation, since taking a derivative reduces the order of nonlinearity by one.

Since the strain-energy function (4) depends on the Green strain tensor E, it is convenient to work with the
second Piola-Kirchhoff stress tensor, S, which is a derivative of strain-energy W with respect to E. Since (4)
depends on E through invariants I, I, I, we use a chain rule to obtain second Piola-Kirchhoff stress tensor as

oW owoL OWOL , OW 0L
== 2

" OB OLOE 0L OE 0L OB ©)
We calculate the required derivatives of the invariants
%:1, %:213, %:3122, (6)
where Iis the identity tensor. From the strain energy function (4), we also obtain
%—VI‘: = M, + BL + CI? + EL, + 2FLL + 4HI, (7)
aa—lvf = 1 + BL + FI? + 2GL, ®)
AU A/3 + EL. 9)

0L

The derivation is based on Taylor series expansion formula for the function of three variables W(I}, I, I;) near the point of zero strain.

3
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Substituting the previous expressions (6), (7), (8), (9) into (5), we obtain a general expression for stress

S= %—Vg = (M + BL + CI? + ELy + 2FLL + 4HI)I
+ 2(uu + BIL + FI? 4+ 2GL)E + (A + 3EL)E% (10)

3.2.Neo-Hookean model 1: volumetric deformations
The L-L model and its fourth-order extension is frequently used in acoustoelastic applications, but there is no
clear term in expression (4) that specifically pertains to volume deformations. A simple calculation (given in
appendix A) for simple shear leads to an expression in stress components containing Lamé’s parameter A, which
measures the resistance to volume deformation. This is problematic because simple shear does not induce a
volumetric deformation. To mitigate these limitations, we consider a compressible neo-Hookean model, where
volumetric deformations are clearly captured by changes in the determinant of the right Cauchy-Green
deformation tensor.

A compressible neo-Hookean model can take the form [23]

WL -3 - JE + 2an Ry, )

where Aand pare Lamé’s parameters in the reference configuration and we use another set of invariants of the
right Cauchy-Green deformation tensor (1),.

The stress can be expressed in terms of first Piola-Kirchhoff stress tensor, from the derivative of the strain-
energy function with respect to the deformation gradient tensor

0
P= 6_F(W(Il) IZ) 13)):
where the strain-energy is defined in terms of invariants used for isotropic materials
1
L=tC, L= 2 {(trC)? — trC?}, L = detC.
The choice of first the Piola-Kirchhoff stress is convenient here because the strain-energy function (11) depends

onC,and C = F'F.
Using a chain rule and the following relations

Oh _op, b opp—oper, 2B oppT,
OF OF OF
we obtain
P = 2WF + 2Ws(LF — FE'F) + 2W;LF T, (12)

where W1, W,, Wj are partial derivatives of Wwith respect to I}, I, I3, respectively.
For completeness, the expression for Cauchy stress o can be found using a standard relation

Jo = PF' = 2W;B + 2W, (L1 — B)B + 2W5 L1,

where B = FF" is the left Cauchy-Green deformation tensor and J = detF.
Specifically, for the strain energy (11) we obtain

Jo =B + AnL — )L (13)

3.3. Neo-Hookean model 2: fully decoupled energies due to distortional isochoric and volumetric
deformations
In neo-Hookean model 1 (11), the first term is sensitive to both distortional and dilatational deformations. It will
be shown that decoupling energies has an effect on the action of P- and S-waves (pumps) on probes. We recall
that P- and S-wave pumps are related to dilatational /compressional and shear (distortional) deformations,
respectively.

To this end, consider the strain-energy function

_HF E ERTY)
sz(ﬁ 3)+2(I 1%, (14)

where I, = trC and k is the bulk modulus. The first term is only sensitive to distortional, isochoric deformations
and the second term is sensitive to volumetric deformations.




10P Publishing

Phys. Scr. 97 (2022) 125012 A Melnikov et al

Any deformation gradient can be decomposed into
F = J5F,

where F is a distortional part of the deformation gradient [23]. Accordingly, in terms of the right Cauchy-Green
deformation tensor,

C=1I°C
Therefore, the invariant I; accounting for pure distortional deformation is
L=tC=t(;°C) =1 tC=1I"k

The first Piola-Kirchhoff stress tensor can be obtained from (14) after some rearrangements

1
P= uI§1/3(7511F*T + F) + k(I — JB)F . (15)

4. Wave speeds in different models

Since dynamic acoustoelasticity experiments interpret wave speed changes (inferred from changes in
traveltimes), this section derives wave speed expressions from each of the three models by using the theory of
infinitesimal deformations [24] (such as small amplitude probe waves), superimposed on large deformations
(such as large amplitude pump waves or static deformation induced by a press machine).

4.1. Equation of motion, elasticity and acoustic tensors
Consider an incremental equation of motion [24] (Ch. 6)

O*u

o’
where T is the increment in the nominal stress tensor corresponding to the displacement u, caused by the probe
wave, and p is a mass density in the current configuration. The nominal stress tensor is a transpose of first Piola-
Kirchhoff stress tensor.

An increment in the nominal stress tensor is given by the constitutive law

diviy = p (16)

Topi = Aopigitij,g» (17)

where A is the fourth-order elasticity tensor (defined in component form by expression (24)).
Substituting (17) in (16), we obtain

62ui

ot

The small amplitude probe wave propagates within a small area of the sample and we assume that in this area
deformation is essentially homogeneous and static due to the low-frequency pump wave. Basically, we assume

that changes in the deformation are so small that they can be neglected (during a short time window required for
the probe to travel across the sample). Therefore, equation (18) can be rewritten

(Aopigittig)p = P (18)

azl/l,‘
Aopigjtjgp = P EER (19)
In general, the probe wave displacement can be written
u=mf(n-x — 1),
where fis a twice differentiable function, unit vector m represents polarization direction, unit vector n gives
propagation direction, and vis the propagation speed of a probe wave. We then obtain
0%u;
I = mjf"(n - x — vt)ngny, (20)
Ox40x,
and
9%u; " 2
ﬁ:mif (n-x —vt)v- @1

Substituting these into (19) and multiplying both sides of (19) by J = po/ p, where p, is a mass density in the
reference configuration, we obtain




10P Publishing

Phys. Scr. 97 (2022) 125012 A Melnikov et al

]-AOpiqj”pnqmj = P0V2mi, (22)

which is analogous to the Christoffel equations but for non-linear elastic case. More compactly, we can rewrite
(22)as

Q(m)m = p,v’m, (23)

where Qjj(n) = J Aqpiginip 1y is the acoustic tensor. Finally, in the current configuration, elastic tensor moduli
can be obtained for the compressible case [25]
o*w

J Agjik = Fo Fig————.
o Jat OF;, OFs

(24)

Based on these tensor expressions, we now consider each of our three models separately, and substitute the
specific forms of strain energy Winto equation (24). From this, we derive expressions for how a pump wave (that
causes changes in W) affects the velocity of a probe wave (via changes in the velocities determined by the moduli
in the LHS of (24)). A summary of results from all possible probe-pump combinations is shown in table 1.

4.2. Wave speeds: L-L model
We substitute strain-energy function (4) into (24). The details of this calculation leading to expression (25) are
given in appendix B. After some lengthy rearrangements, we obtain

J Agiik = (X + 2CL + 2FL + 12HI})Bj; By
+ (2B + 3E + 4FL)B;; My
+ (2B + 4FL + 3E)BgM;; + 8GM;; My,
+ (u + BL + FIY + 2GL)(BiBy; + BjBy)
+ (A + 3AL) (B My + BiMj)
+ Bji6i(AL + BL + CI? + EL + 2FL L, + 4HL)
+ 2M; 8y (p + BL + FI? + 2GL) + Mj 8y, (25)

where B = FF is the left Cauchy-Green deformation tensor. Also, in (25) we have introduced two new
quantities: Eulerian symmetric tensors M = FEF” and M = FE2F. Note that expression (25), as expected, is
consistent with linear elastic theory. In the reference configuration, where J=1,I, =, =1 =0,B =1,

M = M = 0, we recover the classical expression Agjix = A + (665 + 016k).

In total, there are 9 expressions for probe wave speeds”’, and each expression would be evaluated for 10 cases
of deformation caused by a pump wave. We show the result for a P-wave probe propagating in the X; direction
and S-wave probe propagating in X; direction and polarized in X; direction for any underlying deformation.
This accommodates any kind of underlying deformation, whether static deformations or pump waves, since
such deformations manifest in the following equations via tensors B, M, M, and the invariants I, I, I.

For this example case, the P-wave probe speed from (23) and (25) is

povii = J Aot = (A + 2CL + 2FL + 12HI) By By

+ (2B + 3E + 4FL)B; M,

-+ (2B + 4FL + 3E)B; 1My, + 8GM; 1 My,

+ 2(u + BL + FI? + 2GL) BBy,

+ 2(A + 3AL) B My,

+ Bu(\L + BL + CI? + EL + 2FLL + 4HL)

+ 2M; (0 + BL + FI? + 2GL) + M. (26)

and the S-wave probe speed is

povsi = JAoi313 = (A + 2CL + 2FL + 12HI?) B3B3
+ (2B + 3E + 4FL) B3 M3
+ (2B + 4FhL + 3E)Bi3Mi3 + 8GMi3Ms,
+ (1 + Bh + FI? + 2GL)(Bi3B15 + Bi1Bs3)
+ 2(A + 3AL) B3 M3
+ Biy(\L + BL + CI? + EL + 2FLL + 4HE)
+ 2My (@ + BL + FIP + 2GL) + My, 27)

> More precisely, these are speeds v, where i € {1,2,3},j € {1,2,3}; indices iand j correspond to the direction of polarization and direction
of propagation of a wave, respectively.
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Table 1. Summary of probe wave types whose speeds are perturbed by each pump wave type. v indicates a
perturbation; X indicates no perturbation; X" indicates a weak perturbation due to deformation inan
unconstrained direction. In speed v;;, i denotes polarization direction and j indicates propagation direction.

L-Lmodel (4)

P-wave pump S-wave pump
probe
Py Py, Ps; Spher. P Si2 S13 Sa1 S S32 S31
P v v v v v v v v v v
P2 v v v v v v v v v v
P33 v v v v v v v v v v
S31 v v v v v v v v v v
So1 v v v v v v v v v v
S12 v v v v v v v v v v
S32 v v v v v v v v v v
S23 v v v v v v v v v v
s13 v v v v v v v v v v
Neo-Hookean model 1 (11)
P-wave pump S-wave pump
probe
Py, Py, P33 Spher. P Siz Si3 Sa1 Sa3 S32 Ss1
P v v v v v v X X X X
P2 v v v v X X v v X X
P33 v v v v X X X X v v
531 v x* x* v v v X X X X
S5 v x* x* v v v X X X X
S12 x* v x* v X X v v X X
535 x* v x* v X X v v X X
$23 x* x* v v X X X X v v
S13 x* x* v v X X X X v v
Neo-Hookean model 2 (decoupled energies) (14)
P-wave pump S-wave pump
probe
Py Py, P33 Spher. P Siz Si3 Sn S3 S5z S31
P v v v v v v v v v v
P22 v v v v v v v v v v
P33 v v v v v v v v v v
$31 v x* x* X v v X X X X
So1 v x* x* X v v X X X X
S12 x* v x* X X X v v X X
S32 x* v x* X X X v v X X
$23 x* x* v X X X X X v v
S13 x* x* v X X X X X v v

Table 1 shows that, in the L-L model, the probe will be sensitive to perturbations caused by the pump wave
for all pump/probe cases.

4.3. Wave speeds: neo-Hookean model 1
For the strain-energy function (11) from (12), we obtain in component form

oW _ pFo + Mn L — p)F,".
OFia '
The second derivative of the strain-energy function is
o*w
————— = 1bibap + NFiz iyt — (\InJI, — p)F . F5,
8F,-08Fkﬂ HOik O k8 x/_s H) Lok g
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where we have used
a(FiT)ia —1p—
— = aleﬁil'
OFys
Thus, using (24), the final result for elasticity tensor is
JAgjik = 11Bjibix + A6;idk + (1w — Nn I) 636 (28)

This means that for P-wave probes, from (28) and (23), we obtain in compact form
PoVi% = JAgiii = pBii + A — )\ln\/T3 + 29)

where v;; is the velocity of a P-wave probe traveling along, and hence polarized along, X;. (The i indices in the rest
of the equation indicate the components of those tensors; no summation for i is implied here).

From expression (29), we see that P-wave probes will always depend on volumetric deformations through
the invariant I5, and therefore will always be perturbed by a P-wave pump (see table 1). However, there are only
some cases when a P-wave probe will be affected by an S-wave pump. To show this, consider deformation
gradients that correspond to alarge underlying shear wave and calculate the corresponding left Cauchy-Green
deformations tensors. There are six cases of shear deformation:

[1 v 0] 1+ v 0

(Fl=1]0 1 o} [Bi] = ¥ 1 0} (30)
[ 0 1] | 0 0 1]
(10 ] [1++2 0 7]

=101 0o} [B.] = o 10} (31
[0 0 1] | v 0 1]
(1 0 0] (1 4 ]

[Fs]l=1~ 1 0}, Bsl =1~ ~24+1 0} (32)
[0 0 1] | 0 0 1]
B 0] (1 0 0]

[F,] = Lyl [BJ=]0 7>+ 1 ~|, (33)
[0 0 1] [0 1 1]
1 0] [1 0 0 ]

[Fs]=(0 1 0], Bs]=|(0 1 v |, (34)
[0 v 1] [0 v 1+ 97]
(1 0 0] (1 0~ ]

[F]=]0 1 0f, [BJ=]0 1 0 |, (35)
| Y 1] v 0 2+ 1]

where for simplicity we denote amount of shear by v = Ju;/0X;.

By noting the position of 7, we can quickly determine which probe waves will be influenced by a P-wave
probe. There will be an effect on the P-wave probe when the propagation direction of the probe aligns with the
polarization direction of the S-wave pump. (For example, for a probe travelling in the X;-direction, (30) and
(31), the amount of shear y will influence the speed of a P-wave probe according to formula (29) for the P-wave
probe, because of the dependence of B on . Note the positions of yin the matrix expressions (30) and (31) of
deformations gradients corresponding to shear deformations. This means that influencing shear wave pumps
will be the waves, propagating in the X, direction and polarized in X; direction, and propagating in the X3
direction with polarization in X, direction). We record the obtained results in table 1.

Note that here although simple shear deformation implies that each deformation gradient is such that ] = 1,
P-wave probe waves are in some cases influenced by the shear waves, which may seem counterintuitive. It is
pertinent to mention analogous counterintuitive situation in non-linear elasticity for a stress-strain relationship,
when simple shear deformation leads to diagonal components of stress and thus, unlike in the case of linear
elasticity, the stress is not purely deviatoric, but also includes a pressure component. This is known as Kelvin
effect in non-linear elasticity [23, 24].

Summarising we see that for the model (11) P-wave probes will always depend on volumetric deformations
through invariant I3, and therefore on P-wave pump, and in some cases, depending on their mutual orientation,
P-wave probes will be also affected by shear wave pumps.

By examining (28) and (23) for shear wave probes we obtain 6 cases, which are expressed in terms of the
components of the left Cauchy-Green deformation tensor.

8
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For shear wave probes propagating in X; and polarized in X; direction and shear wave probes propagating in
X, and polarized in X, direction, we obtain

p0V321 = JAoi313 = ,001/221 = JAo1212 = pBi1. (36)

For shear wave probes propagating in X, and polarized in X, direction and shear wave probes propagating in
X, and polarized in Xj direction, we obtain

Ponzz = J Ao = P0V322 = JA323 = 1B (37)

For shear wave probes propagating in X3 and polarized in X, direction and shear wave probes propagating in
X5 and polarized in X direction, we obtain

Povas = JAw32 = povis = JAosis1 = 11Bss. (38)

The key observation from (36), (37), (38) and (30)—(35) is that in order for a probe wave to sense the pump,
propagation direction of a S-wave probe should coincide with the polarization direction of the S-wave pump.
We record the obtained results in table 1.

4.4. Wave speeds: neo-Hookean model 2 (decoupled energies)
From (15), the first derivative (first Piola-Kirchhoff stress tensor) in component form is

ow _ 1. _
oF. el 1/3(_311FmT + Fia) + k(5 — JB)F," (39)
1

Using (39), the second derivative is

W ( 2) YA T
L A [ ) VE) ot (R ol R
8Fia 6Fkﬂ Hw 3 3 kB 3 i i

1 2 _ 2
+pudy 3(_§Fk¢3FiaT + EIIFakIE@il + 5ik5a:3)

+kQLEy — JEFG)E,T — k(I — JE)F, F5'.

Using (24), the elasticity tensor is
2. -1 1
J Aojin = M(_§)13 351k(—§115ji + Bji)
i 2 1
+ ply 3(f§Bk155j + g[léjk&i + leéik)

+ kLS — L 6w 8 — k(I — )66 (40)

For P-wave probes, from (40) and (23), in compact form
2 _1f5 1
povii = J Aviiii = pls 511 - gBii + kI, (41)

where v;; is the P-wave probe velocity in direction X;. (As above, the i indices in the rest of the equation indicate
the components of respective tensors; no summation for 7 is implied).

Opverall, P-wave probes will always be influenced by S-wave pumps through the invariant I}, and influenced
by P-wave pumps through the invariant I (see table 1). We can also recover the classical expression in the
reference configuration from (41) by recalling that bulk modulus k = % {t + A, toobtain p, vlf = A+ 2u.

By examining (40) and (23) for shear wave probes we obtain 6 cases, which are expressed in terms of
components of left Cauchy-Green deformation tensor.

For shear wave probes propagating in X;, we obtain

povir = J Aoisis = povar = J Aoz = MI;%BH- (42)
For shear wave probes propagating in X,, we obtain

povia = J Ao = povis = J Aoz = ,UI;%BZZ- (43)
For shear wave probes propagating in X3, we obtain

Povss = JAosa3 = poviz = JAoz131 = ,U,I;%B“. (44)

Analyzing the obtained results (42), (43), (44) for S-wave probes and using (30)—(35), we conclude that the
probe will sense the pump if the propagation direction of the probe aligns with the polarization direction of
the pump.
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Note it can be shown that
B=1IB.

Therefore, the speeds of shear probe waves (42), (43), (44) will not depend on dilation/compression or,
equivalently, a spherical P-wave, which is indicated in table 1.

5. Calculations for an example configuration

To demonstrate calculations of probe wave speed changes, we use an example configuration shown in figure 1
based on experimental work by [15], in which they applied a static load and a pump wave. Pump shear wave
transducers (the source and the receiver) are attached to the X,X; plane. Probe P- and S-wave transducers (the
sources and the receivers) are attached to the X, X; plane. A staticload, such as applied by a press machine, acts
along X;.

5.1. Calculations: L-L model
The total deformation gradient is

F = EF,

where F, corresponds to a static deformation due to the applied load and F, is the dynamic deformation
corresponding to the pump wave. In matrix form,

(A 0 0

[Fi] =
[0 0 A

where A, Ay, A3 are (principal) stretches in the directions X, X5, X3, and

A Melnikov etal

0 X O}, (45)

1

00

o,

(F]=|—-— 1 0f,

0

(9)(31

01

where U, is the displacement induced by the pump wave. Therefore, the total deformation gradient is

A

0 0

oU,

[F] =

)\16— X 0

X1

0

0 X

(46)

(47)

A matrix expression of the Green strain tensor (3) is

)\12+(

oU,
X1

2
))\12— 1 AIAZ% 0

X1

1
E:—
[E] 5

)\1 /\2 %
3x1

0

A—1 0

0 A—1]

From (47), we also obtain a matrix expression for the left Cauchy-Green deformation tensor

[B] =

The Eulerian tensor M has components

A

2% N
6x1

0

My,
M] = | My
0

)\12 %
8)(31

Y |
—=| + X 0
Bxl ) :

0

0 %

M, O
My, 0 |,
0 Ms;

(48)

(49)

(50)

10
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where
My = 2o a2y
2 1| M Ox, 1 >
1,00, ou, ) 1 oU,
Mjp=M;= N2 N+ [ =222 — 1|+ =82 ==,
12 21 218)(?1(1 (8)(31) 1 2128)(31
N EAYINNCLAR
My ==N[=2|[N+[=2|N-1
2 2 l(axl)( ! 8)(?1 !
2
+A5A3(%) + 1A§(A§ -1,
8)(31 2

1
M;; = E)é()\% — 1.

Our example considers a P-wave probe travelling (and polarized) along X,. Thus, both vectors m and n will
have components (0, 1, 0). Thus, we find from (23) that for a P-wave probe

Povsr = T Ao2220- (5D

For an S-wave probe that propagates along X, with polarization along X3, the unit vectors n and m have
components (0, 1,0) and (0, 0, 1), respectively. Applied to (23), this gives

Povis = J Aoxas. (52)

To show the wave speed corresponding to the model (4), we use (51) and (25) to express the P-wave probe
speed as

povh = (A + 2 + 2Ch + 2FL + 12HI? + 2Bl + 2FI
+ 4GL)B,,By, + (2A + 6AL + 4B + 6E
+ 8FL)By; My, 4+ 8GMy, My, + (M + BL + CI?
+ EL + 2FLL + 4HIY) B,
+ 2Myy(pn + BL + FI? + 2GL) + M. (53)

We note that, in the reference configuration where predeformation reduces to the identity tensor and the strain
tensor reduces to the zero strain tensor, we recover classical result for P-waves pv; = A\ + 2u. Similarly,
from (52) and (25) for the underlying deformation (47), the S-wave probe speed is

povsr = (i + BL + FI? + 2GL) By, Bs;
+ (ML + BL + CI? + EL + 2FLL + 4HI)By,
+ 2My(pn + BL + FIF + 2GL) + M. (54)

The expressions for invariants I, I, and I5 are quite lengthy, so they are shown in appendix C.

To demonstrate that the above expressions are physically reasonable, figure 2 compares the phase speeds of
probe waves (either P or S) when they are perturbed by both a dynamic pump (S-wave) and a static load.

For context, we model the solid with parameters that are appropriate for Crab Orchard sandstone (from
[26]): mass density p = 2285 kgm >, 1 = 7.6 GPa, A = 4.6 GPa, A = —3.49 - 10* GPa, B= —4.705 - 10" GPa,
C = —2.695 - 10* GPa). Since there is no data available for fourth-order material constants, we use L-L model up
to the third-order of expansion. We model the displacement caused by a sinusoidal S-wave pump

U, = Asin(kx; — wt),

where A is the amplitude (3.83-10~° m), k is wave number (261 m ') and w is the angular frequency of the pump
wave (2 7 - 90 kHz). The required derivative in (47) is

% = Ak cos(kx; — wt).

8)(?1
The deformation caused by the static load induces a sample stretch A, so figure 2 shows how the probe wave
speed changes with sample stretch due to the static deformation. In the experimental setup (figure 1), the lateral
sides of the sample are not constrained, therefore the sample will be deformed in the directions perpendicular to
the vertical load. Thus, our calculations assume that vertical and stretches along X; and X, directions are
connected by the approximate formula \y = A, = \/ 1 — 0.19(\3 — 1), which follows from Biot definition of
Poisson’s ratio for finite strains with v = 0.19. Figure 2 shows that our calculations yield faster probe speeds
under compressive static load (A < 1) and slower under tensile load (A > 1), and P-waves probes travel faster
than S-wave probes; both of these trends are expected. What is harder to see on the scale of the figure is that there

11
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Figure 2. Calculation of phase speed variation for probe waves (P-wave (blue) and S-wave (red)) when perturbed by both a dynamic
(sinusoidal) S-wave pump and a static pre-deformation ), using the L-L model.

are also small variations in phase speed due to the dynamic pump (~10 m s~ ', which is contained within the
dimensions of the plot markers). We see that the range of variation due to the pump wave not independent of the
predeformation: compressive loads cause less variation in the pump-induced perturbation relative to tensile
loads.

5.2. Calculations: neo-Hookean model 1
For neo-Hookean model 1 in (11), P-wave probes with equation (29) yield

Povar = JAozza = 1By + A — An (I + p,

where from (49)
2
By = Af(%) + A5 (55)
8x1
and also
ou, Y ou, Y
I = detC — detB — mg(_z) LA - mg(_Z) . (56)
8x1 axl

Analogously, the speed of a S-wave probe is

ou, Y
PoV322 = Jolyz3 = UBp = ul/\f(a—;) + )\4
1

5.3. Calculations: neo-Hookean model 2 (decoupled energies)
Using expression (41), the P-wave probe speeds are

_1(5 1
Po"zzz = J Ao = uls 3(511 — ngz) + kL,

50 \2
where I, = trC = trB = A} + )\12(%) + M+ N
1

Similarly, (43) gives S-wave probe speeds

1
pove = J Aoz = pl; B

The other required expressions By, and I5 are the same as in section 5.2 and given by expressions (55) and (56).

Results for neo-Hookean models (11) and (14) are qualitatively similar to results above, so we do not show
them here. The main difference between all neo-Hookean models and the L-L model is that the neo-Hookean
models appear to be much less sensitive, in that the dynamic perturbations caused by the pump wave are so small
that they can be neglected.

12
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6. Discussion

Our results present detailed and systematic theoretical underpinnings for static and dynamic acoustoelastic
testing for isotropic non-linear elastic materials. This is particularly relevant for dynamic acoustoelastic effects in
pump-probe experiments, since we find that the ways in which pump waves are predicted to perturb a probe
wave depend on the choice of model. Below, we discuss where gaps still exist in linking models with experiments,
and show how the present work begins to address such gaps.

The primary challenge with modelling dynamic acoustoelasticity is that, in order to apply a theoryina
tractable manner, it is necessary to make assumptions about the nature of the material as well as the nature of the
waves. Itis not always feasible to determine whether such assumptions are valid in a given experimental
situation.

For example, [27] is one of the first to use dynamic acoustoelastic testing to determine a full set of third-
order elastic constants (/, m and n). While their experiments were dynamic, the theoretical analyses involved
athird-order model [28] that was previously used for static acoustoelastic testing, which requires an
assumption that the underlying strain field traversed by the probe wave is homogeneous and static. In
another case [5], wave speeds were derived in terms of principle stretches, which is a scenario that would be
suitable for samples under hydrostatic pressure and/or uniaxial, biaxial or triaxial tests, but not appropriate
for shear wave deformations [8]. In principle, shear deformation can be expressed in terms of principal
stretches along the Lagrangian or Eulearian principal axes [24]. However, if the levels of shear deformation
change, then principal axes also change, making the theoretical approach used in [5] very difficult to execute
in practice. Thus, it is very challenging to design an experiment that rigorously satisfies all the assumptions of
agiven model.

There is great potential for development of models required for static and dynamic acoustoelastic testing.
For example, the L-L model, which is an expression of a strain-energy function up to the third-order of non-
linearity in the strain E, was first sketched in different notation in Volume 7 (p. 107) of a very popular general
course of physics [21] with no detailed analysis. Nonetheless, this model became a default model in many
acoustoelastic studies. Here, we present useful developments by extending this model to the fourth-order in E,
and providing a full expression of the elasticity tensor (25) as well as full expressions for P-wave and S-wave
probe speeds associated with this model for any underlying deformation, including shear deformation.

In developing further the L-L model, we also uncovered a conceptual flaw in it. In more traditional non-
linear elastic models [23], volumetric deformations are captured by introducing detC in the strain-energy
function, since its physical meaning is the square of the volume ratio between the current and reference
configurations (dv/dV ). However, the L-L model uses traces of strain E, so it is not clear how pure volumetric
deformations are captured. This leads to a troubling consequence that calculation of stress using expression (10)
for simple shear leads to an expression in which the stress depends on Lamé’s parameter A, which is a measure of
how easily a material can undergo volumetric deformations. Since simple shear does not change volumetric
deformation, the presence of Lamé’s parameter A here cannot be justified. Similarly, our calculations show that
the L-L model leads to S-wave probe speeds that depend on the linear elastic parameter A (such as in (27)). More
details of our calculations on these troubling consequences and some remarks on parameter A within the context
oflinear and nonlinear elasticity are given in appendix A.

Given the limitations of the L-L model, we also considered two neo-Hookean models. In the first version
described in (11), the second and the third terms clearly depend on invariant I; = detC, and thus they have a
clear physical meaning. Note that the first term in (11), as a function of invariant I;, depends both on distortional
isochoric and dilatational deformations. In the second version described in (14), the energies due to distortional
and dilatational deformations are fully decoupled. Note that the first term in (14) activates only if we have
distortional deformation and the second term activates only if volumetric deformations are present.

As away to compare all three models, table 1 summarizes when a certain type of probe wave will have a speed
that is perturbed by a given pump wave type. Even though all three models are isotropic, the static and dynamic
deformations cause differences in when shifts in probe wave speeds occur. In the L-L model, any probe wave will
be perturbed by any type of pump. However, this is not the case for the two neo-Hookean models, and there are
consequences for the energy splitting with respect to which probe waves feel which pump wave perturbations.
For example, in the decoupled model (version 2), spherical P-waves pumps have no impact on S-wave probes
and P-wave probes will be perturbed by all P- and S-wave pumps, which is different from the coupled model
(version 1).

Itis worth describing the different results of each model in broad terms, focusing on the probe wave
speed perturbations that are central to our study. Since shear waves do not change volume, we may intuitively
think that S-wave pumps are not supposed to influence P-wave probes, (which should sense on pressure

13
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changes in the material). Table 1 shows that this is not universally true in our models. For example, all P-wave
probes are perturbed by any P-wave pump, as expected. However, our results show that large amplitude
S-waves (while still being volume preserving) may still influence P-waves (compare the first three lines in
table 1 for model (11)). To explain this, we point to the Kelvin effect, which appears only in nonlinear
elasticity [23, 24]: for a simple shear deformation, linear elasticity does not yield diagonal components in the
stress tensor, but it does yield such diagonal elements in non-linear elasticity.

Now, let us consider the case when P-waves represent pumps and S-waves represent probes. In this case,
P-wave pumps will influence the S-wave probes only if polarization direction and propagation direction of
P-wave pumps coincides with the propagation direction (propagation direction corresponds to the second
index) of S-wave probes. Physically, this can be explained in the following way. Imagine that an S-wave probe
(with polarization normal to polarization of P-wave pump) propagates in the region of compression (or
rarefaction) caused by the P-wave pump. In a transverse wave the source excites neighbouring molecules in the
direction perpendicular to the propagation direction of the wave, in turn these molecules due to intermolecular
forces pull other neighboring molecules causing oscillation of the neighboring region of molecules and this
process continues, and thus the transverse wave propagates. In the region of compression (or rarefaction), the
P-wave pump changes the forces by means of which the neighboring molecules interact. This leads to changes in
the time of interaction between the neighboring molecules and hence we expect that S-wave probe will
propagate with a different speed. Finally, consider the case of S-wave pumps and S-wave probes. From table 1 we
observe that the S-wave pump will influence the S-wave probe in cases when polarization direction of the pump
wave (S-wave) coincide with the propagation direction of probe wave (S-wave). Using similar arguments as
those used for P-wave pump and S-wave probe, the action of the S-wave pump on the S-wave probe can be
explained.

Finally, even though we have highlighted the relevance of our models for dynamic deformations, it is
important to emphasize that our derivations apply equally well to static deformations. Static deformation has
relevance for dynamic pump-probe experiments under field conditions, since earth solids are often deformed
due to gravitational forces. Similarly, the compressive load of large masses of water are important to consider at
depth in oceans. Accounting for predeformation/prestress in these situations could have a significant effect in
models designed to calculate propagation speeds of probe waves.

7. Conclusions

In this paper, we considered three non-linear isotropic models for acoustoelasticity. Our derivations relied on
the context of modern continuum mechanics, based on a theory of small deformations superimposed on large
deformations [24], and yielded elasticity tensors and propagation speeds of P- and S-wave probes. Our results
are general and can be applied to different types of underlying deformations and probe waves, including
different polarizations and propagation directions. In doing this, we found that whether a specific probe wave
will be sensitive to another specific pump wave will depend on the material model. Furthermore, it is evident that
the results for P- and S-wave probes are different even though all considered material models were isotropic,
non-linear elastic models. Also, we have concluded that usage of L-L model leads to an inconsistent result,
namely that simple shear deformation induces a stress that depends on the Lamé parameter A and shear wave
probes also depend on A, which is inconsistent with the definition of A related to resistance to volumetric
deformations.

Acknowledgments

Funding is acknowledged from Natural Sciences and Engineering Research Council (NSERC) Canada through
grants IRCPJ 491 051-14 and 2018-04888, as well as from Chevron and InnovateNL.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

14



10P Publishing

Phys. Scr. 97 (2022) 125012 A Melnikov et al

Appendix A. Stress calculation for simple shear deformation for Landau-Lifshitz model
and some remarks about parameter \

Let us consider isochoric distortional deformation (simple shear)

v 0
[F] = 1 0
0 1

S O

where v = % is the amount of shear. The considered deformation does not change volume, as confirmed by
2

detF = 1. (A.1)

The Green (Lagrangian) strain tensor can be obtained from expression (3). The non-zero components of
Green (Lagrangian) strain tensor are

0 E, O
[El=|En En 0},
0 0 0

1 1
where E12 = E21 = E’Y, E22 = 5’72

The required expression for squared E is

E} EpEy 0O
(Bl = | E)Ey E2+ E2 0
0 0 0

We calculate the required invariants

1 1 1

h==v, Lb=—=@v+79 L=-037v"+199,

2 4 8
P=2v, F=29 Lh=—Qy+7.
P e 8

Substituting the preceding expressions into (10), we obtain the components of the second Piola-Kirchhoff
stress tensor

A B C E
Su==7 4+ =y + ) + =+ =Gy 40
n=27v+ &0+ oy 8(7 7%

F H 3,92

+ =7+ 1)+ =+ A+ ZEy)—,

4(7 7% 57 ( 27)4

B F G
Sp=3581=(u+ ;72 + 274 + 7(272 + vH)y
3 3
+ (A + ZEyh)—,
( 27)4

A B C E
Sn="7+ =@V + )+ =+ -3+

2 4 4 8

F H

+ 2t 4 A0 4 246

4(7 7% >

B F G

(R e A e e e ) b e
2 4 2
3 2

+ (A + ZEy)—,

( 27)4

A B C E
Si3 =77+ =277+ ) + =t + =Byt +9°
n=_7+ @70+ 8(7 7%

F H

+Z(2y4+76)+?76.

We see that despite the fact that we are dealing with a volume preserving deformation, A is present in the
expressions of components Sy 1, S», S33 which cannot be justified physically.
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Let us make several remarks about the physical meaning of A in the context of linear and nonlinear elasticity.
Since we can write the classical connection for parameter A

A=K — %u, (A.2)

where £ is the bulk modulus and K = 1/ is the compressibility, it is true that A depends on both compressibility
Kand shear modulus x. Nonetheless, we have to emphasise that compressibility K is only included in A. Let us
consider the expression for weighted stress in equation (13). According to the formula (13), for shear (isochoric)
deformation, it makes sense that the resulting expression for stress will not include term with A, because in this
case I; = 1 and since bulk modulus « is included only in A according to (A.2), notin p. For shear deformation p
comes from the term p(B — I) in formula (13) for the respective stress.

For comparison, in linear elastic case we have

o= Atre)l + 2pue. (A.3)

Therefore, for shear isochoric deformation (tre = 0) the resulting expression for stress has a term with y (no
term with A). Thus, we note the physical consistency of model (11) with linear elastic case.

Furthermore, let us consider the term \ In \/E Iin expression (13). It makes sense that due to the large value
of Aitis hard to change the volume, and because of that even small changes in volume (and thus in I5) will result
in high stress.

In summary, we note that A is not fully decoupled from p and it has a complicated physical meaning,
nonetheless, we argue that for the overall physical consistency p should appear in the expression for stress from
other terms (not from the terms containing \) when we are dealing with isochoric deformations.

Appendix B. Some details of derivation of elasticity tensor for fourth-order elasticity
model

Using the chain rule
oW  OW OEy,
OF.  OEg, OF,

Using a product rule and a chain rule, we obtain

W 9*W  OE,; OE, " oW 9 ( OEy, (B.1)
OFo0Fy  OEg,0E,; OFxy OF  OEg, OFis\ OFq ) '
From (3) we obtain in index notation
1
E(-?w = E(Fmﬁme - 6(%.})
and thus
OEy, 1
:_Ew60+Fi6ua' B.2
OF, 2( 0 90.a) (B.2)
Also,
OE,, 1
—— = —(Fjr 6,3 + Fi\6:3). B.3
OFe, 2( kr 0+ kv 678) (B.3)
Therefore,
0 ( OFEq, 1
%(371) = 5(&1{&.}559(1 + 6ik6686wa)~ (B-4)
Thus, substituting expressions (B.2), (B.3) and (B.4) in (B.1), after some rearrangements, we obtain
2 2
ow___oW Fe Fi, + a—w5ik-
OF;, OFs OE,,OE 3 OE,z
Thus, from (24) we obtain
O*W ow
JAvjik = Fo Fi Fiy Fiy + Fo Fig—0ix. (B.5)

aan aEﬂ,«/ﬂ aEaﬂ
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Using the strain energy function (4), we obtain

ow

o (ML + BL + CI? + EL + 2FLL + 4HI) b,

+ (4 + Bh + FI} + 2GL)(Eay + Eun)

+ (A + 3EL) (B (B.6)
and

O*wW
OEauOE 5

+2FL6.5 + 4FLE5 + 12HI?6.5) b0
+(B'y3 + 2F1167;8 + 4GE~/8)(an + Ewa)
+(p + Bl + FI? + 2GL) (8065 + 6./ 0ap)
+3E67;5(E2)aw + (A + 3E11) (6(V'yEﬂw + E(wéwﬂ) (B7)

= (8,5 + 2BE.5 + 2Ch6.5 + 3E(E?) 5

Substituting (B.6) and (B.7) into (B.5), after some rearrangements, we obtain expression for elasticity tensor
given in equation (25).

Appendix C. Calculation of invariants I, I, I5

We calculate the invariants I, I, and I3, required in expressions (53) and (54), for the specific deformation (47)

L= 0.5()\12 + XN -3+ (%)/\f],
3x1

2 2
L= o.zs(Af(%) + N - 1) +0.25(\ — 1)2
X]

2
+0.25(\; — 1)® + o.sfogAg(%] )
89(31

Next quantities become quite cumbersome and complicated. In order to simplify notation we introduce in this
section \; = a, \, = b, \s = cand % =
Thus, we obtain
L=(((a*d%/2 + a*/2 — 1/2)* + (a’b?d?) /4)((a’d*)/2
+a?/2 —1/2) + (b?/2 — 1/2)((b*/2 — 1/2)*

+ (a?b?d?) /4).
We find that

IF=(a* % d/4 + (a* * dD/2 + a*/4 + (@ * b? x d?) /2
+(@*xbH)/2+ @ xctxd?)/2 4 (a*xcH)/2
—Bxa’xd>)/2 — B3 xad/2+ b*/4 + (b%* c?)/2
—B*bD)/2+c*/4—BxcH/2+9/4,

L=(a%*d%/8 + (3%a®+d"/8+ (3xa*d>)/8+ a’/8
+ B atxb?*xdH/8+Bxatxb>xd?)/4+ (B *a*xb?/8
+Bxatxc?xdy)/84+ Bxa*xc2xd)/4+ B xatxc?)/8
—9xa*xdhH/8 — (9 xa*xd?)/4— (9 *a")/8
+Bxa?xb*+xd?/8+ 3 xa’*bh/8
+Bxatxb>xc?*xd?)/44+ 3 xa?xb?xc?)/4
—O*xa?xb?xd)/4— 9 xa’xb>)/4+ B *a’xctxd?/8
+Bxatxch/8—O*xaxctxd?/4— (9%a?xc?)/4
+ Q7 *a*xd?)/8 4+ (27 xa?)/8 + b°/8 + (3 x b* x c?)/8
— 9 xbYH/84+ B xb2xcH/8 — (9% b**c?)/4+ (27 x b?)/8
+c%/8 — (9 % cY/8 4+ (27 * ¢?) /8 — 27/8,
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LL = (((a®>* d®/2 + a?/2 — 1/2)> + (b*/2 — 1/2)?
+(c%/2 —1/2)> + (@ * b* x d»)/2) * ((a® x d*)/2
+a%/2 +b?/2 4+ c*/2 — 3/2).

The complete matrix expression of M is very long, therefore, we only give component My, required in (53)
and (54)

My =bx (b%/2 —1/2) « (b * a? * d®)/2 + b * (b%/2 — 1/2))
+(@axbxdx((axdx*xb>)/24+axdx* (a®>*d>/2
+a%/2 —1/2)/2) +axdx (((a*xdxb?/2
+axdx ((a>*d?/2+ a?/2 — 1/2)) * ((a*> * d*)/2
+a%/2 =1/ +@xbxdx* ((bxa*>xd>)/2
+bx* (b*/2 - 1/2)))/2).
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