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Abstract

This thesis deals with the correlation SUlJCture of annual peak flow series in delail. 1lle

lhesis is in divided into four major parts.

Pan one takes a closer look at the correlation strUcture of annual peak flow series at [wo

scales: scale of one lhat measures shon-term behaviour by the lag-one autocorrelation

coefficient. r(l), and scale ofn, that measures long-term behaviour by Hurst's K. f[ is shown

that there are significant correlation and dependence between Hurst's K and r(1) for both

observed data and data from Monte Carlo experiments which imply that short- and long-term

behaviour cannot be treated separately as is current practice.

Pan two suggests a new approach for quantitatively describing long-term correlation

I.h.ar is rooted in an independent series. 1be results indicate that long-term correlation rooted

in a shon-term independent series can be quantitatively estimated, and the simultaneous

occurrence ofltigh values of Hurst's K and [ow values ofr(l) is. in fact, not an uncommon

phenomenon. A new method of testing for long-term correlation that takes the shan-term

correlation into account is developed.

Pan three further looks at peak flow correlation structure across S?ales based on the

perspective of fractal geometry. A family of probability-seale-threshold curves which

contain more information about the correlation structure of peak flows, ace constructed and

the scaling behaviour of peak flow series is explored.

rn order to take serial correlation into account in flood risle analysis. the concept of



scaling plotting positions (SPP), is developed. in part four. It takes scaling behaviour of peak

flows into account and develops a new plotting position formula in estimation of future

floods. The results of Monte Carlo simulation showed that the estimated quantiles of SPP

are more efficient and robust wben compared with current estimators of flood quantiles.

The study presented in this thesis has provided a view of the correlation structure of

peak flows across scales so that flood risk can be beuer estimated.
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Chapter 1

Introduction

1.1 Context

Hydrology, broadly speaking. is the study of water. One of the definitions of hydrology

(Federal Council for Science and Technology, 1962) is:

.. . .. the science that treats the waters of me Eanh, their occurrence,

circulation. and distribution, their chemical and physical properties, and

their reaction with their environment. incLuding their relation to living

things. The domain of hydrology embraces the full life history of water on

the eanh.·

Water is essential for the survival of living organisms but can also foster disaster

during periods of flooding. In some pans of the world, floods occur frequently, many

resulting in tremendous monetary and emotional loss. physical upheaval, property damage

and loss of life. With the advance of civilisation, the demand for, and the need to control,

such natural disasters is increasing. For the design of flood mitigation measures, the

estimation of the magnitude of flood events according to specified probabilities, is

lherefore essential. This is normally referred to as flood frequency analysis.



The procedure of classical flood frequency analysis involves four main steps:

(I) Selection of data.

The data analysed are required to be independently and identically distributed. The

restriction of homogeneity assures that all observations are from the same population, and

the restriction of independence assures [hat the probability of one hydrologic event does

not affect other occurrences. Two data series of peak flows are commonly used for flood

frequency analysis: the annual maximum series (AM) (e.g. Fuller, 1914; Chow, 1954;

Rossi et aI., 1984), and the peaks over threshold series (pOD(e.g. NERC, 1975). AM

series takes the single maximum peak flow in each year of record, it is necessary to ensure

that the selected annual peaks are independent of one another. The POT series takes all the

peaks over a threshold, where there is more chance of the peak flows being correlated and

the assumption of true independence is less valid.

For the purpose of probability frequency analysis, the data should be unbiased,

independent and homogeneous. Assessment of data quality is usually achieved using

statistical testing techniques.

(2) Choosing a probability distribution.

Since nature's distribution is unknown to hydrologists, reasonable 'flood-like'

distributions should be chosen to fit the observed flood data. The most widely used method

for choosing a probability model is the probability plot. This is a plot of the magnitudes

of flood events versus the probabilities that the magnitudes are or are not exceeded. The



selected data are arranged in order of the magnitude and planed using a suitable ploning

position on probability graph paper. Several "flood-like" distributions, such as the

Pearson Type III distribution, the log Pearson Type III and the general extreme value

distributions are widely used in the estimation of future floods in practice.

(3) Estimating the parameters of the chosen distribution.

Observed peak flows, ignoring the order of their occurrence, are considered as a sample

and are used to estimate the parameters for the chosen parent distribution. The estimation

may be done either mathematically or graphically. In general, a mathematical estimation

can be achieved by the methnd of maximum likelihood, or the method of moments, or L

moments. By graphical fitting, a subjective graphical curve is simply drawn to fit the

planed data by eye, and although this method is the simplest it involves human error.

(4) Making inferences aboul future floods with a given probability.

Historically, since the recognition (Fuller, 1914) that there was no such thing as a single

design flood but rather a choice of different rerum period floods depending on circumstances,

hydrologists have turned to the statistical analysis of extreme flood events in which

observations of peak flows are considered as outcomes of a random experiment in a natural

experimental field. Thus, it is now possible for hydrologists to estimate future floods using

the above procedure based on statistical theory.

However, in a statistical estimation of future floods as outlined, the laner three steps

have to be based on the collected data, which are commonly assumed as independently and



identically distributed. [n shan, the data must satisfy the assumption that annual peak

flows are serially independent. Serially dependent data are usually treated as independent

data because the effect of short-term dependence on annual peak flow estimation is very

small (Srikanthan and McMahon, 1981). Hence, hydrologists have focused. on the study

of probabilistic models and parameter estimation methods involved in steps 2 and 3

without seriously worrying about the correlation structure of annual peak flows.

Although statistics work well in hydrologic estimation, some dissatisfaction with

statistical hydrologic design has been voiced arising from the use of so called long-term

dependent data. Hurst (1951, 1956) found that long-tenn dependence was inherent in

annual flow records of the Nile River and its impact upon the design of the Aswan High

Dam. Chow (1964) cautioned that the variables in actual hydrologic phenomena are likely

to be interdependent to some extent, and the possibility of this interdependence should be

investigated in flood risk analysis. From Carrigan and Huzzen (1967), the specific effects

of neglecting to consider serial correlation could underestimate the population variation of

a peak flow series. In more recent studies, Lye (1987), Booyand Lye (1989), Lye and Lin

(1994) showed that annual maximum flood peak flow series.also exhibit long-range

dependence, and this infonnation should not be discarded and denied by classical

probability analysis. When the series of observatiom exhibits long-term serial correlation,

the variances of the sample statistics are greater than that for either short-term correlation

or independent processes. Mandelbrot and Wallis (1969b) showed that with a typical h

4



value of 0.7, and n of 50. the variance of the sample mean expressed as

is almost twice as large when the data are independent, where Var(x), O'~ and h are

variance of sample mean. variance of sample and Hurst coefficient, respectively. The

studies by Lye (l987) showed !hat long-term. dependence affects the flood estimation.

Taking this into account, the risk associated with future peak flows will significantly

increase.

Therefore, although annual peak flow series are assumed to have no correlation

"structure" in statistical tenns, impacts of long-term. dependence, in fact. cannot be

ignored in flood risk analysis. Hence long·term behaviour based on short-term

independence deserves further investigation.

1.2 Objectives of Thesis

Since the structure of peak flows is directly related to the safety of hydraulic

infrastructures, study of the correlation structure of peak flows is an important aspect in

flood frequency analysis. This thesis has four objectives related to the issue of the

correlation structure of peak: flow series.

Objective one is to investigate the simultaneous occurrence of long-term persistence

and short-term independence of annual peale flows using acwal flow data as well as



simulated data.

h can be demonstrated that independent series can have significantly different levels

of long-term behaviours although they have similar short-term behaviour. This means, lhat

the outcomes in the macro scale are possible for the same degree of disorder in the micro

scale. However, the historical records we observed are one among many possible

outcomes. Of course, the macrocosmic and microcosmic phenomena are related to each

other. To describe the simultaneous occurrence of long-term persistence and short-term

independence of annual peak flows, me Hurst's K and lag one autocorrelation r(l) which

describe the 10ng- and shon-term behaviour of peak flows, respectively, are considered as

random variables. Statistical tests are carried out to test for a statistical relationship

between Hurst's K and c(l) estimated from an analysis of peak flows observed in

Canadian and Chinese rivers.

Objective two is to provide a logically consistent probabilistic approach for

quantitatively describing the correlation structure of annual peak flows.

The idea is, basically, that because Hurst's K and the lag-one autocorrelation

coefficient r(l) are correlated and dependent upon statistical tests, their joint probability

exists and can be estimated by classical statistics. [n olher words, it is possible for us to

look: for a statistical relationship between the long-term persistence and short-term

independence. [n a quantitative way. an approximation for the sampling distribution of

Hurst's K, which is expressed as the sampling distribution for a given lag-one



autocorrelation coefficient r(I), is developed using Monte Carlo simulation.

Objective three is [0 explore the correlation structure of peak: flows using fractal

geometry.

After estimating the "correlation" and "dependence" by the two measures, Hurst's

K, and r(I), which measures objects at scales n and one, respectively. The following

questions arise: What is the real distribution of peak. flows? Can we look at the peak flow

sttuenue across scales? To this end, fractal geometry will be used to explore the struCD.ne

of peak flow series.

Fractal geometry is now widely used in different scientific disciplines to describe the

structure of complex self-similar phenomena and scaling behaviour of physical processes.

However, most investigations in hydrology concerned the scaling behaviour of spatial

rainfall and runoff phenomena (e.g. Venugopal and Foufoula-Georgiou, 1996; Jonas

Olsson and Janusz Niemczynowicz, 1996; Paolo Burlando and Renzo Rosso, 1996;

Puente. 1996; Haitjema and Kelson, 1996). The scaling behaviour of peak flow points

along the time axis has not been investigated.

Logically, since point events can be modelled by the Cantor dust in a fractal world

(Mandelbrot, 1977, 1982), the peak flow points on the time axis, which also form a set

of point events, can also be described by fractals.

Using fractal geometry, we can describe the structure of peak. flows across scales.

The method to be employed to investigate the temporal scaling behaviour of peak flow



poin[S is the functional box counting algorithm (Lovejoy et aI .. 1987) in which two aspects

are emphasised: (1) the peak. flow points distributed on the time axis related to

probabilities; and (2) a set of thresholds defmed in advance. From this. a family of

probability-scale-threshold curves is constructed to explore the scaling behaviour of

temporal peak flow points. Peak flows observed from Canadian and Chinese rivers are

collected and analysed in order to show the scaling structure of peak. flows in nanIre.

Due to the fact that the family of curves consttucted from [n P~ - In l; - Qs is useful

for hydrological engineering srudies, where p~ is the probability that the time interval of

length ~ will include at [east one peak flow eventt and Qs is a given threshold. hence

the fmal objective is to develop a scaling plotting position formula which takes scaling

behavior of peak flows into account for flood risk analysis. The resulting method can be

developed using the probability-scale-threshold curves.

Monte Carlo experiments will be carried out [Q compare the statistical properties of

the scaling approach with traditional estimation in [enns of efficiency and robustness.

1.3 Outline of Thesis

The thesis consists of eight chapters. The context, objectives and outline of the thesis have

been presented in this chapter. In Chapter Two, a closer look at the long- and shan-term

behaviour of annual peak flow series is presented. and a probabilistic approach dealing

with the [oog- and shott-term behaviour of peak flows is proposed in Chapter Three.



Chapter Four provides an introduction to the topic of fractal geometry which will be used

in subsequent chapters dealing with a fractal description of peak flow strUcture. Chapter

Five uses fractal geometry to describe the scaling behaviour of peak flow points. A

scaling plotting position for flood risk analysis is developed in Chapter Six. Chapter Seven

presents conclusions and recommendations. and the statement of originality of the thesis

is described in Chapter Eight.



Chapter 2

A Closer Look at Long- and Short-term Behaviour of

Annual Peak Flow Series

2.1 General

The objective of a flood risk analysis is to relate the magnitude of extreme events to their

frequency through the use of a probability distribution. Thus. annual peak flow data are

usually assumed to be independently and identically distributed. That is. there is no

correlation in time. This customary assumption in Oood risk analysis has been examined

by many investigators. Carrigan and Huzzen (1967) found serial correlation in some of

lhe annual peak flows of rivers in the USA. Srikanthan and McMahon (1981) showed

that the effect of short-term dependence on annual peak flow estimation is small. Wall and

Englot (1985) used five independence tests and found that annual peak flows can be

considered independent for che 57 streams in Pennsylvania.

In comparison with the investigation of shott-term behaviour of flood peak series.

Lye (1981). and Booy and Lye (1989) focused on the 'Oldy of 100g-[erm behaviour. and

demonstrated lhat there is evidence of long·term persisteoce in the annua.I peak flood series

of many Canadian rivers. In a more recent study, Lye and Lin (1994) performed

10



statistical tests for short-term and long-term persistence for annual peak flows and

concluded lbat although short-term serial correlation is practically absent for most of the

peak flow series, significant long-(erm persistence is present for a large number of peak.

flow series leS(ed.

However, previow investigations have only focwed on dealing wilh long-reno

dependence or short-(erm independence separately only, studies of a rela(ionship between

long-rerm dependence and short-leon independence of peak. flow series are absent.

When we are dealing with the long-term and short-term behaviour of peak flows, a

useful analogy is (0 imagine molecular movements, in which individual molecules move

incoherently, representing a shan-range chaIacteristic, but a huge number of panicles can

behave in a coherent fashion. a long-range characteristic.

The evolution of peak flows in time appears (0 resemble molecular chaos. Le. the

long·term. behaviour of such flows forcing 'trends' (0 persis( as gradients produced by

short-rerm disorder motion. Figure 2.1 illustrates three independen( series wilh

significantly different levels of long-term behaviours but they are outcomes from similar

short-rerm behaviour. This means that the oU(comes in dIe macro scale are possible for the

same degree of disorder in the micro scale behaviour. We can observe only one among

possible outcomes lhat gives us an historical record. named "memory" for past evolution.

Among this and the various issues for investigating the serial correlation structure of

annual peak flows, a number of important questions arise. Is mere correlation and

11



dependence between long-term and short-term behaviours in annual peak flow series? Is

simultaneous occurrence of long-term persistence and short-term independence of annual

peak flows a common phenomenon? [s there a new way of describing annual peak flow

series?

To answer the above questions, this chapter deals with the statistical relationship

between long-term and shan-term behaviour of annual peak flow series, which are

measured by Hurst's K and the lag-one autocorrelation coefficient r(1). respectively.

Narural annual peak flow series of 258 rivers caUceted from Canada and China were

analysed. The study focuses on dealing with the statistical properties of these two

statistics. Parametric and non-parametric statistical hypothesis tests will be carried au[ to

test correlation and dependence between Hurst's K and r(1). Monte Carlo experiments

will also be used to show the variation of these two statistics for serially i.ndependem

series.

The results of this study is to provide a basis for a proposed probability model for

dealing with long-term and shan-term behaviours of annual peak flow series.

[n order to satisfy the customary assumption in flood risk analysis, an independent

probability population is argued throughout the chapter.

12
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Figure 2.1 Three independent standardized flow time series with differeotlevels
of the long- term behaviours, where K and r(l) are Hurst's K and lag
one autocorrelation coefficient, respectively.
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2.2 Annual Peak Flows of Canadian and Chinese Rivers

Before investigating me long-term and shorHerm behaviour of annual peak flow series.

an analysis of the statistics of natural annual peak flow series with record length greater

than 30 years for 258 Canadian ( Environment Canada, 1992) and Chinese rivers (Ministry

of Water Resources. (985) was made. Basic statistics on the selected rivers, including

record length. n, mean value, coefficient of variation, Cv, coefficient of skewness. Cs.

Hurst's K. and lag-one autocorrelation coefficient. c(1), are presented in Table 2.1. It can

be seen from Table 2.1 that most of the rivers have small lag-one serial correlation

coefficients, but many rivers have fairly high Hurst's K. The scatter plots. Hurst's K

versus lag-one autocorrelation coefficient r(I), for annual peak flow series observed in

Canadian and Chinese rivers are shown in Figure 2.2. Examination of me scatter plots in

Figures 2.2a - 2.2b, seems to show a correlation between Hurst's K and r(l). In

comparison to this, Figures 2.3a - 2.3b show scatter plots of Hurst's K and the coefficient

variation, Cv, and Hurst's K and coefficient of skewness of peak flow series, Cs.

Apparently, there is no correlation between Hurst's K and these statistics which agrees

with a srudy by Mandelbrot and Wallis (l969b) that the Hurst's statistic is robust against

skewness.

14



Table 2.la Statistics of natural annual peak flows of Canadian rivers (Source of data:
Environment Canada, 1992)

( n - record length in years, r(l) - lag one autocorrelalioncoefficient. K-Hursr's K. CV - coefficiem
of variation. Cs -coefficient of skewness, mean - mean value of annual peak: flows in mJ/s)

River Name r(l) K Cv Cs

AdaIIls River N.lr Squillllt
Asknola It iver Near Keremeds
Athabasca River At Athabllsca
Ausabl. River Near Spring:bank
Badger Creek Near Cartwright
Battle River Near Unwin
Bear River East Brandl At lIear River
Beaverbartk River Nelr IClnsac
Berens River At Outlet Of Long Lake
Boundary Creek Nelr Porth III
Bowron River Near Wells
Bulkley River At Quick
Carrick Creek Nelr carlsrulll
ClrrotRlver Nelr SalIcyBum
Castle River lIear Beaver Mines
Chi llill.ck River At Vedder Crossing
ChiUil/Kk River At Outlet Of Chilliwack Lake
ctearwater River Above Limestone Creek
Clearwat.r River At Outlet Of Clearwater Lake
Col~ia River At Nicholson
ColUlDla River At Donald
Cooks Creek Ne,r East S.lkirk
Cr~ Iliv.r At Fnnk
Dease Iliver At MCO_
Drywood Creek N.ar Twin Butte
elst River At St. Mlrlllrer$ Bay
elst MurDer Riv.r Near Pine Grove
etbow River Above Gtermore 0_
english River Nelr SIOUJl Lookout
Fish Creek Near Priddfs
FLethead River At FLathead
St. Francis River At OUtlet Of Glecler Lake
Fraser River At Shelley
Garnish River Near Gamish
Gods River Below ALIen Rapids
Gr.ss River At ...kosko FaLLs
Halt (Riviere) Pres D East Hereford
Harrison River Near Harris,on Hot Springs
Homathko River At Tha Mouth
Inc:OIIIlIppteux Riv.r Ilear B.aton
(skut River Below Johnson River
Kabinekag..' Riv.r At Highw.., No. 11
Kettle River N.lr Laurier
Ktuane River At outLet of Ktuane Lak.
Kootenay Rlv.r At Newslate
Lahave River At West Northfield
Mcleoc:l RIVer Above Earr,a River
ll'rd River At lower Crossing
Manyberries Craek At Broc:lfn s Fal"ll
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42 .1713 .6321 .3D
42 .. 3199 .6138 .69
47 ·.0454 .6011 3.70
43 '.1311 .4382 .64
30 '.0805 .mo 2.04
36 -.0179 .5794 1.41
35 .2360 .6553 .88
67 -.0957 .n53 .54
31 '.1065 .5686 .71
61 .1189.7462 .40
33 .0549 .6575 .32
58 .1750 .6302 .37
35 .1858 .7854 .69
34 -.0225 .5605 l.D8
44 .0009 .6694 .87
32 .0015 .6625 .45
32 '.0221 .6561 .36
30 .2277 .7847 .83
J8 .2459 .7942 .27
77 ·.0769 .7459 .37
44 -.2825 .6861 .34
32 •. 1557 .5364 1.16
39 .0739 .7650 .68
30 - .3378 .5312 .34
52 .0202 .6876 LOS
63 ·.1401 .6961 1.06
35 ·.0390 .7394 .87
44 -.0611 .6682 .90
60 .0045 .7364 .69
33 .0312 .7937 1.54
60 .1565 .7847 .47
31 .130t .7681 .55
39 ·.1261 .6440 .25
30 .1702 .6t54 .56
39 .2183 .6920 .47
31 .1871 .6131 .57
40 ·.0126 .7454 .36
J8 ..0030 .6207 .27
32 ·.0070 .7379 .52
37 '.0017 .6655 .39
30 • . 0675 .5586 .64
J6 ·.1381 .5526 .31
59 .0668.7096 .34
36 -. 1835 .~46 .25
42 .0648 .7744 .45
73 ·.0398 .7077 .78
34 '.1685 .4906 1.33
42 .2003 .6657 .33
45 .0251 .6927 1.11

.20 246.2

.29 83.3
2.3a 3512.8

.16 180.3

.80 35.6

.67 87.8

.84 39.0

.32 29.5

.24 108.6

.23 47.0
'.02 38.1

.14 587.1

.45 28.1

.48 272.7

.92 146.0

.28 304.6

.23 72.7

.n 89.6

.12 630.8

.18 437.6

.44 712.6

.92 45.3

.20 32.6

.04 611.6
1.02 6.6
1.10 8.0

.71 23.8

.49 63.2

.38 287.3

.75 17.3

.27 2G8.5

.14 213.3

.21 3244.1

.52 56.6

.23 233.7

.35 22.1

.13 68.9

.1B 1281.7

.66 1242.6

.62 298.1
1.00 2392.3

.06 227.2

.00 591.4
'.20 275.5
'.08 1614.5
1.52 230.4

.92 243.6

.11 5370.7

.57 13.1



Table 2.la Continued

SOUthwest MargarM liver lear Upptr Margaree 70 .137. ."'" .3<l ." 36.7
M~Eadlem Creek At IntemlitiOl"lllI Boundiory 53 '."" .5978 1.61 .•5 "..Middle Braok lear co..co 30 .1507 .7261 .36 .n 20.0
Mink Creek Near Eth.lbert 34 '.0631 .67t17 1.<• ... ...
Mistaya liver Near $ukudl_ Crossing 36 '.0022 .6662 ." .5' 33.'
Moyie River At Eutport 5. .1318 .lI4lIl .45 .01 145.9
I_hfl River At OUtlet Of La~ La Croix 66 .1544 .7045 .51 .23 318.5
Petite N.cion (Riviere De La) Pres De Cote-Salnt·Pierre 45 .0350 .5718 .52 .24 69.5
Nith River At Nev It.....rll " .1018 .7443 .5. .17 154.5
Northeast Pond River at Northeast Pond 35 .05l2 .7040 .54 .15 ,.,
NotU~auga River Near Baxter 40 .1563 .7'D3S ... .48 110.1
East o.kvilla Cr"k I ••r Ough 52 '.0lI64 .6365 .5' .,. 39.6
OverflOlfill$l liver At OvarflOlfing River 33 .068Z .6572 .•1 .1' 53.0
peri)ina River "ear Entwistle 34 '.1340 .5901 1.41 .eo 245.5
Petite Nation (Riviere De La) a Portage-Oe-L.-"atlon 46 .0281 .6810 .40 .45 131.4
Pigeon River At Middle falls .5 -.0071 .6914 .60 .35 128.5
Prlirle Creek Near Ro~ky Mountlin Ilouse 31 .0340 .5906 1.10 .44 36.3
Que$nel River Near Q\lunel " .1240 .7227 .30 .1' 766.8
CIlilko River Near Redstone ., -.1820 .6070 .,. .30 300.3
Ri~helleu (Uviera) AWl: Rapldes Fryers 51 .1780 .6333 .30 -.18 923.8
loek Creek Salow Nors. Creek Near InternatlONl SOlndary 52 .0027 .7156 1.26 .54 27.0
Rolph Creek Near .:llIIbell " .0179 .7198 1.40 .15 5.0
Rose.... River Near caribou .1 .1994 .6633 .63 .Z1 47.5
Saint John Rivar At fort (tnt 6Z .1503 .7243 .45 .09 2357.8
Sal_ li".rlle.r S.l_ 40 .0751 .5932 .3Z .1. 243.2
SitIJgl!en River Ne.r Port Elgin 74 '.006Z .6Z" .51 .15 500.4
Sheull: RiY'tr At Nighway NO. 11 31 -.0396 ...., .36 .Z1 209.0
Sftogaaoc Sue. Na.r Tr_ c...oa Ni'lfhNIIY 45 .0458 .6301 .52 .'4 39.6
Si.Ukallll!en Itl".r At Princeton 44 .1125 .69OlI .51 .2. 237.0
Skoot_tta Itl".r liIear Actinolite 30 .1369 .7937 .44 ." ....
SOUth ThOllpSOl'l River At Chue 48 .1321 .669' .31 .14 996.2
South Nation Itlver At $percervl lle 41 .0031 .6213 .60 .21 47.4
St". Mary River Near Marysville 41 '.1097 ..... .31 .24 303.5
Stiklne River At Teleg:raph Creek 34 -.0565 .7322 .3Z .11 2311.1
Stony creek Near NHJ»WII 30 -.1325 ••569 1.20 .34 11.3
Sturgeon Ri".r le.r Barvi~k 35 .3163 .6S85 .11 .3Z 21.6
Swlft=rrent Creek At Many Glacier 54 .0301 .58Jl .71 1.59 28.8
Syderto.. liver Near Alvir'lSton 40 -.06a7 .6494 .5. .20 102.0
Teslln River lIear Tnlin 41 -.0498 .6632 .40 .19 1052.0
Teta!louehe River lIear Wnt Sathurst '1 -.1392 .6201 .50 .21 76.7
North Thonpson Itlver Ne.r Sarriere 44 .0209 .722S .21 .31 1775.0
Torrent ltI".r at 'rl,tol I Pool " -.0593 .6065 .49 .44 203.9
Turtle River Ntar Laurier 40 .1065 .6220 l.Z6 ... 51.2
Upper HurDer liver Near ReidYi lle 60 .2.080 .6620 .32 .24 578.3
Waterhen River Near lIaterhen 34 .5136 .7605 .46 .0. 169.0
loIhitemouth Rivar Near Whltl!lllOUth 42 '.1000 .6767 ••1 .36 113.7
1I11$onRlverNearOa~in 31 .0865 .6598 1.15 .55 44.7
Woody livar Near Sowsm.n 35 .2051 .n15 1.17 .70 66.'
Yukon llvar Abova frank Creell: 36 '.2228 .6463 .17 '.09 ....4
Arrow River Near Arrow liver 30 -.1595 .6173 1.53 .1' '.1
AthabasCII River Selow MdCurrey 31 -.0522 .6314 .4. .,. 2656.1
Atlin liver Near Atlin 39 -.0076 .63n .25 .1. 221.0
Sabine River At Sabi". 41 .0753 .6972 .45 .12 125.3
Sarnt$ Creek Near Needln 36 .1769 .7474 .30 .31 34.3
Seil~ River At Cold Lake Rnt!rve 53 .1830 ••790 1.21 ... 138.5
Seaurivage (Riviere) A Sainte-Etieme 31 .2450 .7lI95 .44 .00 1!2.7
8ell (Riviere) A Semeterre - 2 36 -.1912 .5160 .60 .59 97.8
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Table 2.la Continued

Big Shell9 Creek Near Rossland 40 .0555 .6454
Black River Hell' Wlshlgo 73 .1119 .7306
BowRiverAtBlnff SO -.1324 .6512
Brokenhelld River Nell' Belusejour 46 .0258 .6385
Ceq:betl River At OUtlet Of taq:lbelt like 3a -.0931 .6373
Cariboo River Below Kengaroo Creek 31 .1668.6960
Carrot lliver Hear A,..ley l4 .0039 _6202
Cueade River Nell' Banff 30 .0917 .7815
Castor alveI' At Russell 41 .Z511 .7164
Olitko liver At Outlet Of Chflko Lake 60 -.ODl .7441
Cl. Hlrbour River Near 8ircntOWl 31 .1889 .5880
Clelf'WIur li ....r Nell' locky Mountain House 32 -.0047 .65aJ
ClelntlUr River Near Clearwater station 39 .0454 .6190
Col\,ftt)il River Hear FllnIIQl'lt Kat Sprirogs 43 '.2917 .6680
Conjuring Creek lIelr Russell 30 ·.1471 .6246
Cottonwood River Hear Clneme 34 .0763 .59lJ
Cypress Creek Melr Cleerwlter 30 ·.2764 .6555
OHr Creek At Oeer P,uk 30 -.1069 .7351
OlM'lCan River llear Howser lJ .1740 .5175
East Prairie River Nell' EnUda 30 .ll88O .7481
Elbow River At 8ragg Creek 54 - .0467 .6803
Eroglish River At ~revlUe 67 -.1359 .6998
Et~i River lIelr 8ertwell l4 _044a .66OJ
Fish Creek Nell' Prospect Hill 37 .0165 .7151
FrlSer River At Mansard 36 -.1167 .6774
fraser River At McBride 36 -.0578 .6538
Cander river at big chute 39 -.0151 .6306
Ghost River Melr Sleek Rock Mountain 40 .2299 .6734
Crand River It Loch Lomond 68 ·.0636 .6955
Harrlcana (Riviere) A Alllos 56 -.1638 .41526
Highwood River At Oiebel s Ranch 38 -.0994 .6790
Horse Creek At International 80U'ldary 43 - .0937 .6059
Icelandic River Hear Riverton 30 -.2091 .6543
Indian Irook At Indian falts l4 .1975 .6522
Island Lake River Melr Island Lake 32 ·.om .7043
Kettle River Near ferry 60 .1Dl .1'3a2
Kioojevfs (Riviere) En AVIIl OU LilC PnisslC: 33 -.1239 .5915
Kootenay lI....r At Koot~ Crossing 41 '.0933 .5638
lCootl!f1lly River Heir Skooku.:huck 39 '.Z5S6 .5725
Lardeau River At Marblehead 43 - .2178 .6478
Lepreau liver At Leprelu n -.0206 .5217
Lillooet liver Meal" P~rton 63 .0960 .6400
Little Saskatchewan River Nell' Mil'YledoSI 30 .1651 .n77
Lobstick River Near Styel 32 - .0155 .6Z95
Lodge Creek Hell' Ilberta lOUI'ldIry 38 .0520 .6966
Northeast Marglr" liver At Marglree Valley n .07111 .7323
St. Nary River At Wyeliffe 43 -.0470 .6797
Mr;:JCirnon Creek Heir McCreary 30 .0978 .6294
Mille !les (Ilviere Oes) En AVll Du Lac Des Duu Mantsgne 35 -_l604 .5804
Missinsibi River At Mutice 69 .1060 .72IS5
Moose River Nelr Red Pass 34 .0363 .7169
Hlpg_i Rl~r At Highwy No." 38 .0002 .5602
NISS River Above Sh....l Creek 32 ·.lMl .5877
Neebing Rivel"" Ife.r nUn:ler '.y 35 .1811 .80a2
Nith River Nelr Carning 42: -.0444 .6818
North ItIgntta"lfl River He.r Surk s Fillls 73 '.0120 .6147
North Pine River Near Pine liver 35 .00&4 .6762
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.33 .04 415.8

.34 .07 129.5

.36 .19 217.6
1.10 .83 36.2.

.51 .45 421.5

.31 .18 38J.l
1.29 .55 104.8

.66 .10 36.9

.50 .00 107.1
.26 .22 136.8
.58 .43 ZO.2

1.00 .42 162.9
.26 .16 9154.0
.44 .35 46.0

1.16 .65 3.1
.52. .26 195.0

1.n .60 16.8
.46 .13 7.6
.31 .10 407.8
.93 .30 133.1
.98 .52 60.2
.74 .40 158.6
.92 .17 59.4
.n .42 44.7
.25 .22 2046.1
.25 .2.3 91D.3
.38 '.13 569.0
.n .40 22.7
.42: .44 18.9
.34 .31 190.1
.76 .42 79.0

1.39 .53 8.9
1.21 .48 56.3

.32 .20 139.3

.52 .08 167.5

.34 .07 339.3

.45 .35 41.6

.36 .13 33.7
.32. .39 6n.4
.27 .2.3 282.9
.90 1.01 78.8
.37 .63 529.6

1.06 .45 27.0
1.2.3 .60 26.9
1.54 .69 25.2

.54 .62 176.3

.32 .25 385.3
1.36 1.14 5.6

.53 .02 766.3

.43 .18 M1.0

.40 .25 94.3

.37 .15 121.3

.54 .92 3841.6

.82 .39 24.15

.60 .06 1M.8

.47 .30 44.5

.78 .20 13.4



Table 2.1a Continued

otdN.n River Near Waldron sCorner " -.0769 .7016 .M .48 115.4
Peneina River At Jarvie 31 -.2232 .6155 1.10 .63 Z9S.a
PerillN River Below Peddy Creek n '.1235 .5580 1.49 .as 193.7
Pigeon River At O:.Ittet Of R~ Lake 31 -.1402 .6134 .53 .15 195.5
Poplar River At InternatiONIl Boundliry 5. -.0490 .6452 1.11 .73 24.9
Quesnel River At Likely 64 .1300 .1013 .3Z .12 394.9
Red Oeer River Nel" The Mout:h n ..,.. .63D .as .1. 94.9
Rlen.Ueu (ll:ivie"e) A Slint·Jeilfl 36 -.1122 .6474 .26 -.18 ....1
Iloarit'li River Mell,. Minltonas 30 ·.0409 .•221 1.4> .a9 lS.!!
Roseau River Mear Dc.inion City 49 .om .5569 .as .66 64.5
Ros.....y River At lower Ohio 71 .0529 .7392 .52 .40 ....
S.LlIlOn River Nu,. Prince Geor-ge 36 '.0339 .7110 .44 .20 210.4
SatIlleer'l River Heir v.tkerton 14 .1929 .6744 .sa .n 290.4
Sell river Below Great Island 31 .0". .566S .45 .2S ....2
SlIell River Nell'" Inglis 36 .'306 .73" .9S .52 ZZ.4
Silt.,.,! Cl'll.f liver Nur fort Melson 44 ".0901 .4Z47 .73 .44 198.8
$kHn.l Riftr At US( 41 -.2471 .6171 .35 .43 5053.9
Sloc.., liver lIe.r Crescent VIHey 64 .0748 .7116Z .36 .18 441.8
Southwest MlrglrM River lIear Upper ltIIrv-rte 70 .\355 .7565 .30 .23 36.1
Spt"que Creek lIelr Spt"'l9Ul!' 43 .104J .65" 1.09 .46 19.7
Stell,ko liver At Glenarnan '9 .1617 .8170 .64 .n 74.5
St. Marys lfver At Stflllfltltr 73 '.0413 .1019 .49 .41 408.6
Stuart ltlver Nur Fort St. J~ 56 .2.111 .1512 .'9 .20 3Z2.0
Sturlleol"l Iliver Nellr Fort SlIstatdlewan 54 '.1107 .5265 1.08 .11 26.8
Swift current Creek Below lock Creek 34 '.1198 .6917 1.12 .46 23.4
Sydem_ liver Near Owen Sar.rd 43 .0199 .5915 .., .25 30.3
North ThOllpl5Qn liver At McLure 30 .1653 .6285 .23 .21 1567.3
ThOlllpSQn liver Mear Spenc:" 'ridge 31 . 2194 .7318 .26 ... 2833.0
Turtle River lIear Mil'le Centre 58 '.0587 .668Z .63 .21 127.2
Twenty Mit, Cruk At Balls F"Us 3Z -.0907 .4990 .5. .1. 65.3
Upsal~ftdl River At upsatq..lhdl 45 .0309 _6427 .56 .1. 367_3
Waterton River Near Waterton Part 41 .0376 .6641 1.01 1.37 142.3
White"later Creek Ne,r ll'\temational Bar.rdary " -.0228 .6497 2.11 .81 9.8
WoU Creek At Highway No • ... 34 -.1839 .6507 1.67 1.01 64.9
Yukon liver Above Fr• .,k Creet 36 '.2228 .6463 •• 1 '.09 ....4
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Table 2.1b Statistics of natural annual peak flows of Chinese rivers (Source of data:
Ministry of Water Resources, 1985)

(n - record length in years. r(l) - lag one autocorrelation coefficient. K- Hurst's K. Cv- coefficient
of variation. Cs - coefficiem of skewness. mean - mean value of annual peak: flows in mJ/s)

River Name r(l) K Cv Cs

Oadu River at Tongjizhi 40 .0243 .6735' .n .43 6234.3
Ilenjiang River at Ayanqian n .0671 .m, 1.01 .38 2168.3
Xinan River It Luotonslbu .. .0283 .ro07 .57 ." 8526.1
Fuchenj River at Lueibu 43 '.1056 .59S1 .44 .57 13457.7
Yuanshui River at Llnzhiwen 5. -.1099 .5971 .5. .1. 18046.8
Yangtze River at Yic;hen 109 .1443 .6288 .25 '.11 51244.0
lIongshih. River at QUln 4t .0191 .6790 .36 -.07 11989.5'
Oiersonghua River at Blishan 43 '.0982 .55n .96 .77 3153.2
lIanjiang liver It Shiquan 4t -.17'59 .5600 .7. .J> 7985.4
Hanjilng River at Anklng " .0687 .6803 ... .,. 12287.6
Yellow River at Sanllel'Ul:ia 47 '.0422 .1287 .62 .44 8731.5
Tengtze River at Chuntan 71 .1324 .6530 .J> .09 52663.4
TliLingjieng River at Beibei 4. .1369 .6854 .43 .06 22585.0
Tangtze Rivar at Changshou 86 '.0474 .7231 ." .08 28794.2
Yalonlljieng River at Xiaollngde " '.0045 .7107 .5' .42 8764.3
Jalingjiang River It QongshillUin 4t '.1661 .6248 .5' ." 13366.6
Kongshl.liho River It Yentan 5. '.0287 ,6006 .37 -.02 10804.4
"'ingj inlg River at thipintPU 5. '.0884 .6105 .53 .66 2426.2
Hongshl.l; River at Longtan 47 '.0414 .55'33 ." -.05 10216.8
Jiqjieho River at Shilin " .0538 .",. .51 ." 8334.7
Penshl.li River at Pensk\ui 45 ....5 .6548 .45 ." 10985.8
rellow River at OU;;I .. -.1800 .5868 .4. .27 3811.7
Xiqiho River at Sheqikou 4. .1970 .5465' ... ." 9368.0
Taiziho River It Guanyinllou 4. -.HI02 .5779 1.78 1.28 1447.5'
rall,tjiang River It Lingjiang 52 -.1242 .6381 1.16 .55 3077.6
HuYto River It Jfnllkang .. -.0308 .625' .9. .62 5415.6
HuYto River at Gaol ing .. -.1158 .6003 ... .•5 5353.1
Oadlotho River at Pl.bugou 4. .0666 .7875 .28 .47 4897.2
Jiangjieho River It Gol4»itan 44 .103l .7685 .53 ." 7942.3
Yial ingjiang River It ShamtJ8l9li80 4. .1543 .6760 ... .1 • 4393.0
Jalingjill'l9' River at Wushen 37 .1197 .6131 .59 .22 12443.0
ralu River It Shl,tffeng 39 '.0159 ,6373 .74 .23 13008.1
Hlrtjiang River at HuilOl'lll 37 ·.0876 .634' ... •11 4410.9
Fujiang River It Gl,tiIII"I)'inchang 32 ·.103& .7381 .66 .1. 1351.5
Oangl iao River It erlongshan 38 '.0073 .6950 1.79 1.18 8S7.7
Chalhe River et Talplngzhai ,. .0565 .6142 1.61 .86 425.1
Jinlongxf River It longan 32 .0132 .6696 .53 .45 2662.5
fujiang River It Xiaohtba 3S -.1439 .".- .66 .90 9488.6
Ol,tjfang River It fengten 32 .1059 .7531 .5. -.01 15563.1
fl,tjiang River It Tianxi_l 31 -.0367 .7360 .91 .61 2B19.7
Xlushl,ti River It Zhelln ,. .1531 .6310 .73 .47 4916.0
Luoshul River at Chang.hl,tf ,. '.0086 .5468 1,27 .51 149S.B
Hanjiang Iliver lit Huangjiagang 34 -.1239 .5607 .84 .55 15681.1
Yujiang River It Hem;ian 31 .0701 .8203 ... .25 10557.7
lIeohe River It Hedongdlan 31 -.0106 .7419 .82 .30 1198.0
Yellow River at Gl,tide ,. .1191 ,6466 .32 .29 2399.0
Fl,tjilng River at Taihezhen 3S -.1530 .7306 .61 .44 10016.3
Leishl,ti River at Oongjlang n -.1011 .6596 .64 .38 2202.5
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Table 2.tb Continued

Yellow River ilt Lanzhou " -.1643 .6118 .,. .Z4 3913.2
Chllihe River at Ta;p;ngzhai " .0565 .6142 1.61 .M 425.'
Qujiang River at Donglin 37 -.1362 .5206 .5a ." 5563.1
Dado River at TongjiVli " .0876 .6173 .n .37 6618.3
Qujfang River at Luocl!xi " .0473 .7341 ." -.14 15300.3
aujiang River at ailituo 37 -.0661 .5no .8' .,. 6312.8
Jingshajing River at Pinshan 37 '.0512 .6582 .,. -.01 16854.9
Fujiang RiveI"' at Fujiangqiao " .Ot74 .6193 .5• . 14 5541.6
Fujiang RiveI"' at Xillobl! " -.0458 .6059 .8' .,. 513.3
Qujiang River at Mingyuetan " ',1713 .5325 .•2 .34 484.0
YaogUe River at 1J8rl,ldan " -.0580 ••782 .'4 .05 5"1850.0
Qujiang River at Goudukou 37 .0259 .6194 .82 1.25 17'550.9
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2.3 Theoretical Values of Lag-one Autocorrelation Coefficient

and Hurst Coefficient

2.3.1 Lag-Qne Autocorrelation Coefficient, p(1)

In hydrology. short-term independence refers to the belief that an occurrence of a

hydrological event, such as a maximum annual flood. has no influence on the probability

of occurrence of previous or subsequent flood events.

Short-tenn persistence can be measured by the magnitude of me lag-one correlation

function, p(l), given by

(I)~ CovE X(t),X(I+I))
P Var(X(t))

(2.1)

where X is the basic random variable, and Cov(X(t),X(I+ I» and Var(X(t» the covariance

and variance, respectively. An estimate r(I) of me autocorrelation function. p(l), can be

obtained using (Jenkins and Watts, 1968; Box aod Jenkins, 1970)

r(l) - r.!.D-x,.X)(x..,.X)}I[....!.- j;(x..x)'J
n,., n-l,

(2.2)

where Xj and n are annual flow at time i. and sample size. respectively. and x is the

sample mean given by:
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An estimate of p(l) obtained through Eq.2.2 is negatively biased and the magnirude

of bias being a function of the sample length, n, and of the generating process (Wallis and

O'Connell, 1972),

If an annual peak flow series is considered to be a realisation of a stochastic process,

the lag~one autocorrelation coefficient r(l), can be employed to measure short-term

persistence. It is sufficiem to mention here that the magnirude of the lag·one

autocorrelation function is theoretically zero for an independent stochastic process.

2.3.2 Hurst Coefficient, h

Long-term dependence is the presence in a time series of significant dependence between

observations a long time span apan. In hydrology, it refers [0 the phenomenon that a

quantity (e.g. river flows) can be very large or small and a period of low or high flows can

be extremely long indeed (Manderlbrot and Wallis, 1968). The degree of long-term

persistence is usually measured by the magnitude of the Hurst coefficient, h (Hurst. 1951,

1956),

The concept of the Hurst coefficient originates from a statistic named the "range of

cumulative deparrure from the mean" by Hurst (1951,1956).

Let S(k) be
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(2.3)

the cumulative departures from the mean value in a discrete-time series. The range of the

cumulative depanure from the mean is

R.~MaxS(i}-MinS(/) ie(O.J....n} je(O.J.... ,n} (2.4)

where Max and Min are operators deftning me largest and smallest values, respectively.

Hurst (1951, 1956) srudied the range, R... both theoretically and empirically. His

theoretical study showed that if the series of inflows are independent. with ftnite mean and

variance, i.e. a white noise sequence, then

(2.5)

where sn and n are the standard deviation and sample size. respectively. Hurst coefficient

h is theoretically 0.5. A result from Feller (1951) agrees with Hurst's result. In other

words. Hurst coefficient h is constant and for a normal independent process h=O.5 and

p(l)=O.O. and if O.S<h<l it represents a long-term persistent process. Hurst

coefficients in the range 0 to 0.5 represents an anti-persistent process, that is. there is a

tendency to show decreases in values following previous increases, and increases

following previous decreases (Mand~lbrot, 1977,1982).
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The Hurst coefficient is usually estimated by Hurst's K (HurSt. 1951, 1956). This

estimator has a lower variance than other estimators currently in use and its calculation is

simple and straightforward. Hurst's K is given by (Mandelbrot and Wallis. 1969)

K = log(R./ s.)
log (n/2)

(2.6)

where ~ is the range of cumulative departures from the mean. Sll and n are the standard

deviation and sample size, respectively. K is theoretically 0.5 for independent series. K

has a substantial bias in that it overestimates h for values below 0.70 and underestimates

h for values above 0.70 (Wallis and Matalas, 1970).

2.4 Sampling Distributions of Hurst's K and r(l)

The probability distribution of statistics is known as the sampling distributioD. It is obvious

that the sampling distributions of K and lag-one autocorrelation coefficient r(l) are

functions of random variables and the sample size n.

2.4.1 Relevant Mathematical Expressions

Hurst's K and the lag-one autocorrelation coefficient r(l) as statistics are random variables.

A closer look at the expressions of Hurst's K and the lag-one autocorrelation coefficient

r(l) given in Eqs.2.2 and 2.6, respectively, show both functions contain a kind of
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summation compooeot. that is

in Eq. 2.2 for the autocorrelation coefficient r(1), and

in Eqs. 2.3 to 2.6 for Hurst's K. The similar algebraic snucnue expressed in the Eqs.

2.2 and 2.6 show that both of these estimates are functions of sequence of occurrence in

the series. The theoretical derivation for the relationship between the population h and

p(l) has been made and used in the models of long-leml persiste= bebaviour. Doe such

model is the fast fractional Gaussian noise model (Mandelbrot and Wallis. 1969a). and

the lag-one Markov process (Matalas and Huzzen. 1967).

To illustrate this issue. a simple example of three series of six values of flows in

different orders are shown in Table 2.2 where x, s~ and Cs. are the mean value, standard

deviation and coefficient of skewness. respectively.

The magnitudes of the statistics calculated from the three series. such as the mean

value, x. the standard deviation. 5•. , and coefficient of skewness, Cs•• are the same for

the three series except for the lag-one coefficieol r(1) and Hurst's K. The reason is simple.
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that is. the Slatistics such as mean value, standard deviation, and skewness, are

independent of the order of occurrence but Hurst's K and r(i) are not. This basic outcome

is the primary problem in dealing with short-term and long-term behaviours of hydrologic

series.

Table 2.2 Statistics for the three series having six values in different orders

Series it s. Cs. r(l) K

Series 1: 120 35 91 23 12 58 56.5 59.3 0.26 -0.2092 0.5651

Series 2: 91 23 58 120 35 12 56.5 59.3 0.26 -0.1728 0.4130

Series 3: 35 120 12 58 23 91 56.5 59.3 0.26 -0.6216 0.5474

2.4.2 Sampling Distribution of r(l)

The lag--one autocorrelation coefficient, r(l), calculated from Eq. 2.2 is an approximation

of normal distribution if the parent population is normally distributed (Yevjevich, 1971),

that is:

r(/) - N(-!....
n

(2.7)
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2.4.3 Sampling Distribution of Hurst's K

The distribution of Hurst's K is known to be higWy skewed when the sample size is small

(Mandelbrol and Wallis. 1969b). Many teSean:bers. such as Feller (1951). Anis and

Lloyd (1953). Yevjevich (1967) and Wallis and O'Connell (1973) tried (0 oblain a

sampling disuibution experimentally and theoretically. but a closed form solution to the

sampling distribution of Hurst's K bas DOt yet been obmined due to mathematical

difficulties.

2.5 Statistical Relationship Between Hurst's K and r(l)

The statistical properties such as correlation and dependence between Hum's K and lag

one correlation coefficient r(l) were investigated in order to describe behaviour of annual

peak flow series.

2.5.1 Correlation Between Hurst's K and r(l)

The correlation coefficienr: is a measure of the strength of the linear relationship between

variables. The correlation between Hurst's K and lag-one correlatiOD .coefficient r(t) can

be tested by parametric and Donparametric hypothesis testing.

Before performing the hypothesis test for correlation, a normal uansformation of the

annual peak flows is needed in order satisfy the statistical test and modelling assumptions

in a later Monte Carlo simulation experiment. Both parametric and nooparametric
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hypothesis tests for correlation between Hurst's K and r(l) were carried out.

2.5.1.1 Box·Cox Normal Transformation of Observations

The Box·Cox transformation (Box and Cox. (964) is given by

= x.J._ J 1 '#0
Y. -,1-,

y..,= log x,. A=O
a.S)

where X; and Yi are the observations and the transformed values. respectively. and). is the

transformation parameter estimated by the probability plot correlation coefflCient (PPCC)

method (Lye, 1993).

The statistics of the transformed observations of annual peak flow series from

Canadian and Chinese rivers are shown in Tables 2.3 and 2.4. It can be seen from the

Tables 2.3 and 2.4 that the bulk of coefficient of skewness of the transformed data are

close to zero and PPCC test statistic are greater than the critical value at levels of 5% and

10%. This means that the transformed data can be considered as normally distributed at

significance levels of 5% and 10%.
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Table 2.3a Statistics of Box-Cox transfonned observations of natural annual peak flows
of Canadian rivers

(n • record length in years. 1- transformation parameter. f,l,. - correlation coefficiem. r(l)- lag one
autocorrelation coefficient. K - Hurst's K. Cs - coefficient of skewness)

River Name r, ,(I) K Cs

Adams River Near Sq,ll Lax 42 .210 .986 .2170 .6542 ",01
Ashnola River Near Ker~s 42 .060 .990 -.3397 .5942 .00
Athabasca River At Athabasca 47 '.96<l .99' -.2232 .5963 '.06
Ausable River Hear Spr;ngbank 43 .330 .990 -.1100 .5427 -.04
Badger Cr~k Neill'" Cartwright 30 .090 .994 -.1113 .7410 .0'
Battle River Hear Unwin 36 .000 .993 .0926 .6053 -.01
Belir River East Branch At Belir River 35 -.600 .991 .3331 .6827 ',01
Beaverbank River Hear Kinne .7 -.090 .995 -,0854 .7179 .0'
Berens River At OUtlet Of long Lake 31 .390 .991 -.061' .6156 .0'
Boundary Creek Near Porthl t L ., .420 .987 .1589 .7540 .0.
Bowron River Near 'IIelis 33 1.140 .992 .0594 .6565 .0'
Bulkley River At Quick '8 .330 .995 .1917 .6363 -.01
Carrick Creek Near Carlsrl.6lle 35 .210 .986 .08"; .7500 .0'
Carrot River Near Smoky Burn 34 .240 .990 -.0395 .4783 .04
Castle River Near Beaver Mines 44 -.150 .975 .0488 .7163 .10
Chi II iwack River At Vedder crossing 32 -.150 .987 -.0471 .6565 .0'
Chilliwack River At OUtlet Of ChflllW6Ck lake 32 -.240 .996 -.0334 .6200 -.01
Clearwater River Abov. LilDl!stone Creek 30 -.540 .992 .2:542: .7952 .04
Clearwater River At OUtlet Of Clearwater lake 38 .150 .988 .2:923 .8013 .02
Col~la River At Nicholson n .240 .996 -.0554 .7493 .02
Col~ia River At Donald 44 -.570 .992 -.2801 .7071 .00
Cook' Creek Near Ea't Selkirk 32 .330 .974 -.1437 .5896 .11
Crow River At Frink 39 .270 .987 .1275 .7813 -.05
Deas. River At McDame 30 .840 .993 -.3365 .5335 .02
Drywood Creek Nelr Twin Butte 52 -.060 .961 .0816 .7308 .06
East Rfver At St. Margaret, Bay 63 -.2:70 .996 -.0956 .6589 .01
East Numer River N••r Pine Grove 35 .180 .984 -.0010 .n.. '.06
Elbow River Above Glenaore D. 44 -.2:40 .993 .052:4 .6536 -.02:
E"91 ish River Near Sioux lookout 60 .060 .996 .1282 .n19 -.01
Fish Creek Near Pridell, 33 '.360 .992 .2180 .7979 -.01
Flathead River At Flathead 60 .390 .990 .2:012: .7839 .06
st. Francis Ri ....r At OUtlet of Glacier Lak. 37 .510 .993 .1490 .7709 -.01
Fras.r Ri ...er At Sh.lley 39 .060 .982 -.12:60 .6745 .00
Garni,h Ri ...er Near Garnish 30 -.600 .993 .3070 .6308 .02
Gods River Below Allen Rapids 39 .300 .996 .2:565 .6946 .03
Grass Ri ...er At \Jekusko Falls 31 .120 .994 .1683 .6226 -.02:
lIalL (Ri ... iere) Pres 0 E.st lIereford 40 .510 .990 -.0459 .742:1 .00
Harrison Ri ...er Near Harrison lIot springs 38 .030 .996 .0058 .5955 .01
Homathko Ri ...er At The Mouth 32 -1.440 .994 .1930 .8295 .09
IncOl\ltPPleux Ri ...er Near Beaton 37 -1.350 .991 .1243 .6467 -.01
Iskut Ri ....r Below Johnson Ri ...er 30 -1.470 .991 ..02:53 .5610 .07
Kabfnakag.i Ri ....r At Highway No_ 11 36 .... .996 -.1507 .5527 .00
Kettle Ri ...er Me.,. Laurier '9 1.050 .994 .0648 .7087 .0'
KLuane RI ...er At OUtl.t Of Kluana Lak. 36 1.920 .985 -.1710 .6634 '.04
Kootenay Ri ...er At Hewsate 42 1.2:00 .988 .0593 .mo .04
Laha.... Ri ....r At \Jest Northfield 73 -.390 .986 -.0164 .7004 -.10
Mcleod Ri ...er Abo...e Earra' Ri ....r 34 -.450 .989 -.0192 .5228 .07
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Table 2.3a Continued

Min" Creek: Near Ethelbert 34 .150 .'83 .0540 .- .04
Mistayll River Heir Saskatch_n Crossing 38 -1.410 .990 .0326 .6387 -.01
Moyie Iliver At Ellstpar-t " .810 .996 .1370 .8486 .00
lllIIIiIkan River At Outlet Of Lac La Croix " .'70 .'88 .2004 .715S '.04
Petite Knitlo (Riviere De LI) Pres De tote-Saint-Pierre " .060 .", .03n .6334 .00
!lith River At 11ft' Hadlurll 38 .300 .990 .0359 .na7 .00
Northeast Pond River at Nor-thellst Pond 35 '.360 .973 .0787 .6967 -.06
Nottawasaga River Near Ilxter 40 '.090 .,,' .0978 .6473 .01
East Ollltville Creek Neel" ONIgh 32 .480 .'86 -.0804 .6600 .06
OVerflowing Ili~r At overflowing River 33 .540 .'91 .1200 .684. .00
pel!t);na River Heir Entlollistle 34 '.660 .,,' -.1161 .5639 .00
Petite Nation (Riviere De La) ill Por-tllge-Oe-La-Nation 46 -.450 .". .1131 .6836 -.01
Pigeon River At Middle flUs 65 .180 .,,' .0110 ....0 .04
Prairie Creek Nellr Rocky MOU"'Itiin House 37 -.120 .'88 .1523 .6320 -.03
Quesnel River Nl!8r Quesnel 50 -.150 .m .1792 .7394 -.01
Chilko River Nelr Redstone " -.600 .,,' -.1403 .6037 .00
Richelieu (Riviere) AWl: Rapides Fryers 51 2.070 ."0 .14n .6226 '.Ila
Rock Creek BeloN Horse Creek Near International BOU'ldary " .'60 .- -.0260 .7538 .01
RolphCreekHearlCirilell 53 .'40 .,,' .1821 .7114' -.01
Roseau RiV1:r Near Caribou .7 .600 .". .2035 .- .02
Silint John River At Fort Kent ., .690 .m .1653 .723' .01
Selma River Near SalllKl 40 .240 .990 .1134 .6056 .02
Saugefl'l River Near Port Elgin 74 .600 .". '.0046 .6247 .01
Shekak River At KlghNay No. 11 37 -.240 .m -.0891 .6370 .00
Shogomoc StrellJl Near Trans Canada KighNay 45 .330 .". .063• .6483 -.01
Simi llcaneen River At Princeton 44 .030 .", .On4 .7002 .02
Skootlllllltta River Near Actinolite 30 .450 .- .0922 .7896 -.03
South Th~on River At Chase ,. .JOO .996 .1604 .688' -.01
South Hation River At Spencerville 41 .300 .993 .0473 .6279 -.01
St. Mary River Near Marys,ville 41 -_300 .,,' -.0791 .6122 -.03
Stilcine RIV1:r At Telegraph Creek 34 .'60 .990 -.0537 .7117 '.03
Stony Creek Hear HeepaNa 30 .360 ."0 -.1078 .6700 '.04
Sturgeon River Hear BaMolick 35 .42:0 .990 .3577 .6821 -.02
SNiftcurrent Creek At Many Glacier " '.540 .973 .0199 .612:7 -.22:
SydenhBalRiver Hear AlvinstOl"l 40 .'90 .,'" -.0408 ••772 .04
Teslin IHV1:r Near feslin 41 .4!0 .,,' -.0973 .6503 .02
fetlilgouche RiV1:r Hear West Bathurst 37 .'60 .,,' '.0S38 .6474 .01
HorthTh~llrIRiverHearBarriere 44 -.510 .993 .0588 .7477 .02
forrentRiV1:ratBristolsPool 30 -.540 .m -.0369 .6180 .03
furtle River Hear laurfer 40 -.090 .,,' .0582 .6411 '.04
Upper Hl.aber River Near R,iddville .0 .06<1 .m .1751 .6475 -.01
Waterhen River Hear Waterhen 34 .810 .'70 .5363 .7684 -.07
WhittlllOUth River Hear Whltemouth " .450 .m -.052:1 .6818 .OS
.... i lson RiV1:r Near Dauphin 31 .450 .985 .0698 .7108 .OS
....oody River Hear Bowsman 35 .300 .•86 .2373 .7432: .09
YUkon River Above Frank Creek ,. 1.710 .,,' -.2282 .646' -.07
ArrON River Hear ArrON River 30 .180 ."0 -.1409 .6140 -.01
Athabasca River BelON ,ltd(urray 31 '.630 .'88 -.1082: .6983 -.06
Atlin River Hear Atlin 39 '.150 .,,' .0131 .6389 -.02
Babine RfV1:r At Ilabine 41 .210 .990 .0955 ••983 -.07
Barnes Creek Near Heedles ,. -.840 .989 .2070 .7379 ·.06
Beaver River At Cold lake Reserve 33 -.150 .m .2119 .7001 .00
Beaurivage (RivIere) A Sainte-Etieme 37 1.0s0 .'88 .24" .788' .0.
Bell (Riviere) A Semeterre - 2 36 -.480 .,,' -.1732 .5069 '.01
Big Sheep Creek Near Rosstand 40 .7Il0 .". .0575 .6437 -.01
Stack River Hear Washago 73 ."'0 .", .1078 .7312: .04
SON River At Sanff 1lO .030 .996 -.1306 .6394 -.01
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Table 2.3a Continued

Srobnllucl llive,. lie.,. h,usejour 46
CMlpbeLl River At OUtlet Of C""ll L,b 38
C,riboo Rive" Below ICIl"II,roo Creek 31
C,rrot River Ne,r .MIlley 34
C.leade River He,r Banff 30
Castor River "'t Russell 41
Chilko R!ver .t OUtLet Of Chllko L,ke 60
Clam H,rbour River Nur lirehtOWl 31
Cte.rwater River Me,r Rocky MOlrIuin HOUSe 32:
CLearwn,r River Me.r Cle.r-w'ter Sution 39
CoLUlibi. Ri_r Me.r F.irw:lnt Hot Springs 43
Conjuring Creek Me,r Rl.lSUll 30
Cottonwood River M••,. clr_ 34
Cypress Creek Me,r C1Ur"WI!ter 30
Deer Creek.t Deer Park 30
OIM"C'" RiVet" He,r Kowser 33
E.lt 'r,iri, Ri_r M",. Enilcla 30
ELbow .i_r At Iregg Creek 54
English Rive" At UIIlfr..,ilte 67
Et~illiverlte,rlert_ll 34
Fish Creek He,r "rospect Hitl 31
Fr..er liver "'t H,oSlrd 36
frlU,. River At Melride 36
Ginder ri ...,r It bi, chute 39
Ghost .I ...,r He,r Illck Rock MQU'ltiin 40
Grind ltIver It Loch LClllIl:lF'Il:I 6e
Hlrriuna CRiviere) A Amol 56
Hillhwood Riv,r .t DiaL s R,nch Ja
Hort. Creek.t Int'lTIItlonal SllilIIlMry 43
IcellncHc Ri_r He.,. Ri ....rton 3D
Indian Srook At IncH ... flUS 34
Islard Lib Ri_l" Me,r Illand L,ke JZ
lCettle .i ...e,. IIe.r F.rry 60
ICll'lOj..,il C.i ... iel"e) En ....... l Ou Lie "reilS'c D
lCootlNy liver .t lCootenIY Crossing 41
lCootenly liver lie," SkooklAdNck 39
L,rdelU liver .t "'rbletlead 43
LeprelU liver .t Lepre"" n
lHlooet River He,r PtlliDtrton 63
little SlSkltdl_ lU....r lI..r MirrMdosl ]0
lobstick River lIe'r Sty.L ]2
lqe Creek II.,,. albert. SllilIIlMl"Y Ja
NorthelSt MI!"g.ree Rf....r At M'!"g,rM V.lley n
St. M.ry Rlver ... t \lyCLiffe 43
MeIClnnon Creek Nelr Mcer,,1"Y ]0
MilLe illS CRI ... i'l"e Oil) En ..... l Ou Lac: Oil OueJt Mont.gne]5
Mfssinaibf Rlvel".t Mattice 69
Moose .i ....,. Ne.r Red P'I. 34
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Table 2.3a Continued

P@fft)ina River Below Paddy Creek 3J -.600 .985 -.0061 .5751 .09
Pigeon River At OJtlet Of ROU'ld lake 31 .540 .992 -.1056 .6410 .01
Poplar River At International Bou-dary 56 .090 .99'5 -.1505 .6617 •. 05
Quesnel River At Likely 64 .'80 .993 .1753 .nos -.01
Red Deer River Near The Mouth 33 .540 .989 .1OS1 .6500 .00
Richelieu (Riviere) A Saint-Jean 36 1.920 .989 -. "66 .6535 .00
Roaring River Neer Minitonas 30 .150 .982 .0927 .7030 .06
Roseau River Near Oallinion City 49 .180 .991 .0329 .5626 .01
Roseway River At lower Ohio 71 -.300 .99'5 .Onl .7377 -.02
Salmon River Near Prince Gl!Orge 36 .210 .994 -.0071 .7057 .01
Saugeen River Near ~lIlkerton 74 .210 .994 .1387 .6445 .02
Seal river Below Great Island 31 .000 .988 .0156 .5743 .01
SheLl River Near Inglis 38 .150 .993 .2419 .7823 .06
SikarYli Chief River Near Fort Nelson 44 -.120 .981 -.0505 .5143 .09
Skeen. River At USIC 41 -.510 .996 -.2462 .6571 -.01
Sloean River Near Crescent Valley 64 .180 .991 .1206 .7239 -.02
Southwest Margaree River Near Upper Margaree 70 '.150 .994 .1340 .7486 -.02
Sprague Creek Near Sprague 43 .390 .996 .1755 .6636 .00
Stellako River At GlenaMan 39 .120 .993 .2117 .8288 -.02
St. Marys River At Sti llwater 73 '.270 .996 -.0046 .6491 -.01
Stuart River Near Fort St. J."" 56 .120 .993 .2436 .7507 .00
Sturgeon River Near Fort Saskatchewan 54 .030 .997 -.1468 .6045 .00
Swift Current Creek BeL~ Rock Creek 34 .360 .990 -.1035 .6916 .04
Sydennam River Near Owen SOl...I1CI 43 .420 .994 -.0160 .5732 .05
North Thonpson River At Mclure 30 -.360 .996 .1873 .6540 .00
ThClq)Son River Near Spences Bridge 37 .630 .993 .2354 .7396 -.02
Turtle River Near Mine Centre 58 .300 .996 .0335 .6933 .00
Twenty Mile Creek At Balls Fatts 32 .570 .989 -.1152 .4915 -.01
Upsalquitch River At Upulqultch 45 .390 .991 .0550 .6552 -.01
Waurton River Near Water ton Park 4' -.660 .971 .1325 .7311 -.19
liard River At lower Crossing 42 .690 .976 .1936 .6641 .04
Manyberries Creek At Brodin s Fann 45 .390 .991 .0232 .6857 .01
Southwest Margaree River Near Upper Margaree 70 -.090 .994 .1355 .7492 -.01
McEachern Creek At International BOU'Idary 53 .300 .994 -.0209 .5592 .06
Middle Brook Near G8fft)o 30 .420 .991 .0997 .7069 .03
Wtlitewaur Creek Near International Boundary 53 .150 .989 .0663 .6151 .01
Wolf Creek At Highway No. ,BA 34 -.240 .996 -.0899 .7317 .03
Yukon River Above Frank Creek 36 1.710 .992 -.2282 .6461 -.07
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Table 2.3b Statistics of Box-Cox transformed observations of narural annual peak
flows of Chinese rivers

(n record length. 1..- ttansformation parameter. f.l.-<:orrelation coefficient. ,(1)- lag one
aUTocorrelation coefficient. K - Hurst's K. Cs - coefficient of skewness)

River Name " «I) K C. I
Oadu Itiyt,. It Tongjizhi 40 -1.3&1 .995 .0529 .7122 -.13
Nenjiang River at Ay.-.qian " .'70 .993 .1167 .8050 ".01
XiNn River at luotongbu .. .'80 .... .04" .709Z .0'
futhenj liver It lucibu 4J '.630 .... -.1135 .5938 -.02
Y~i River It lanzhiwan 50 .Z10 .99' -.0843 .5530 '.04
't'.,gu.. River U lldlan '09 1.590 .997 .1419 .6268 -.02
MongshiM liw,. It Ouan 4' 1.320 .995 .0457 .6814 .OZ
Dfersonghua River at 'aish.-. 4J .060 ...5 -.OZ39 .6436 .00
Manjl~ River at Shi~ 4' .'70 .99' -.1241 .5309 .00
Nllnjlang River It~ " .570 •99' ..... ....5 -.02
,.ILOIoI liver at s..en.ia 47 '.120 .... .0004 .7508 .00
TWllIU.e the!" It Cl'u.nt... 71 .... .994 .1319 .6626 .ao
railingji.,g Itf_I" at Reibel 40 .750 .995 .'695 .6947 .00
Tangtze Rivltl" It Chengshou .. .no .994 -.1l538 .nz, .0'
Talongjfang ll:fyer It xi~l__ " -.030 .... .0259 .7384 -.01
JIlfngjf.,.. liYI,. It DOI'lPhiguan 41 .090 .... -.1387 .5689 .00
Kongahufho ll.fver at Ylntan 50 '.080 .99' -.0241 .5'" .OZ
Mingjll'lllJ liver n 1tI1pingpu 50 -1.440 .99' .05~7 .6163 .06
Hongsl'lul Itl~r n longt., 47 1.230 .99' -_0263 .5511 .03
Jiangjleflo River at Shilin " .'70 ..., -.0223 .7314 .04
PtnSl'Iul River at penshul " '.780 .993 -.0974 .5832 .Q1

Ttt tOlil River at Oula 48 -.IZ0 .997 -.1544 .5693 .Q1

lCiqillo River at Sheqilc:ou 40 -.Z10 .99' .,... .5462 .04
rait-iho ltivtr at Guanyil"lllCIU 40 -.030 .993 -.Zn4 .5945 .0'
Totujlang liver n llngjlang 52 -.IZ0 .994 -.0666 .6519 .Q1

Hla'lho lH ver at JInglc:ong 48 .030 .995 -.ons .6097 .02
HlIoho liver at Gaoling 48 .030 .995 -.1Z3J .5905 .04
Oadr.llo River at PubJ;ou .. -1.380 .995 .083' .m, .07
Jiongjitho River at ~itan 44 .Z10 .9~Z .0136 .7428 .ao
VilUngjiang River It Shahuogllliao '0 .350 .995 .1093 .695' .ao
Jat ingjiang River It wustlen 37 ."0 .... .1588 •...5 .09
Vatu River at Shuifeng 39 ."0 .987 -.008lJ .6348 ..,
HlIljllng Ri~r at Huilong 37 .060 .... -.0081 .6568 ..,
Fuj lang River at Guanyinehong " .570 .993 -.0841 .7390 -.03
OOl1it 110 River at IErlongshon '" -1_500 .987 -.0828 .5904 -.05
Chail"t River at raiplngzhoi '0 .000 .994 -.0243 .5185 ..,
Jlnlongxi River at Tongan " -.120 .990 -.0081 .6331 .04
Fujlaf1lJRiveratlClaoh~ " -.390 .990 -.0653 .m, '.05
Qujiang River It Fengton " ."0 .990 .'063 .7530 -.05
Fujh"lJ River It TilMiansi " -.ZI0 .995 .0460 .7191 '.01
lClusllui River It Zhelin " .1Z0 .989 .0'" .5583 .03
luoslluf Rlvllr It Chlngsl'lui " .240 .... -.1209 .5154 .05
Hlnjtong River at Huongjiqang " .210 .985 -.0565 .5900 .0'
Yujfang River It Henxhn " .060 .99' .0450 .8004 .0'
fujilng River It Yoihezhen " .360 .902 -.1340 .7347 .00
leislluf River It OongJlang 3J .060 .995 -.OZ88 ...., .00
8101'1, River at Hedongdion " -.030 .990 .0456 .7158 '.02
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Table 2.3b Continued

Oujiang River at Luoduxl 33 1.530 .992 .0417 .7289 -.02
Oujiang River at Oilituo " .390 .988 .0018 .5573 .02
Yellow River at Guide 3D -.480 .997 .1241 .6558 .01
Yellow River at lanzhou 31 -.240 .993 -.1344 .5964 .02
Jingshajing River at Pinshan 37 1.200 .964 -.0500 .6609 .37
Fujiang River at Fujiangqiao 31 .570 .993 .0000 .6236 -.02
fujiang River at Xiaobe 3D .180 .995 .0017 .5652 .00
Oujiang River at Mingyuetan 31 .300 .991 -.1622 .4957 .04
Chaihe River at Taipingzhai 3D .000 .994 -.0243 .5185 .05
Qujiang River at Donglln " .360 .993 -.1173 .5363 .0'
Oadu River at Tongjiezhi 3D -.420 .994 -.0628 .6484 -.04
Yangtze River at 'oIanxian 3D .600 .990 -.0485 .6906 .02
Qujlang River at Goudukou " -.090 .9:56 .1419 .7256 -.25

Table 2.4 Statistics of Hurst's K and r(I) for Box-Cox transformed data
observed in some Canadian and Chinese rivers

Source Size Statistics Mean Standard Skewness Correlation
(0) error coefficient

Canadian 198 Hurst's K 0.6728 0.0728 -<J.2021 0.5097
Rivers

r(l) 0.0309 0.1483 0.1480

Chinese 60 Hurst's K 0.6522 0.0710 0.2922 0.3373
Rivers

r(l) -<J.0184 0.0999 0.1395

2.5.1.2 t-test of Correlation

A parametric bypothesis test, Hest, was used to test the correlation between two random

variable, Hurst's K and r(I). An assumption is made in the hypothesis iliat Hurst's K and

r(l) are random variables from a bivariate normal distribution. If population correlation

coefficient. p, is theoretically zero, and sample estimate of p given by r, then the

quantity
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I ~ rJrn-2jl(J-r' j (2.9)

has a (-distribution with (0-2) degrees of freedom. where r and n are lhe estimate of p and

the sample size, respectively.

Two-tailed test can be used:

H,: p = 0

Test statistic: (-statistic has a Srudent's [distribution with v = (0-2) degrees of

freedom

Rejection region: I t I > Eon. n-!

Thus the test statistic, t. is calculated from Eq.2.9 and Ho: p=O is rejected at a

given significance level CI if I t I > ~. ~2' The result of (-tests for correlation between

Hurst's K and r(l) calculated from the Box-Cox transformed data is shown in Table 2.5.

It indicates a correlation between Hurst's K and lag-one autocorrelation coefficient r(l)

at the 5% and 10% levels of significance.

Table 2.5 (-tests for correlation between Hurst's K and r(l) from transConned data

t an,n-2 Conclusion

Source

Canadian Rivers

Chinese Rivers

n

198

60

8.294

2.729

0:=5% 0.=10%

1.960 11.645

1.960 1.645

37

a=5%

reject Ho

reject Ho

a=lO%

RejectHo

Reject Ho



2.5.1.3 Spearman's Nonparametric Test of Correlation

The t-test of correlation is based on the assumption that the variables tested are randomly

sampled from a bivariate normal distribution. As mentioned. the lag-one autocorrelation

coefficient. r(1). calculated from Eq.2.2 is approximately normally distributed if the

parent population is normally distributed. but the distribution of Hurst's K is unknown.

Because of the uncertainty concerning the assumption about the form of the population

distributions, nonparametric methods often lead to a more efficient decision in hypotheses

testing. So Spearman's rank correlation coefficient. f l (Olds. 1938). a nonparametric

statistics in testing correlation between two random variables. Hurst's K and r(1), was also

used in this study.

The Spearman's rank correlation coefficient. r" is calculated by using the rank as

lhe paired measuremenLs on the two variables. X and Y, in the formula for correlation

coefficient r. Thus r. is given by

(2.10)

where 11; is the rank of X; ( i=l. 2, ... , n) and Vi is the rank: of Yi 0=1, 2•...• n}.

The null hypothesis that the population value of Spearman's rank correlation

coefficient, PI =0 implies there is no correlation between u and v. The two-tailed test is
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carried out:

H,,: P. = 0

Test statistic: f t , the sample Spearman's rank correlation expressed by Eq. 2.10

Rejection region: [f, I > f, lII1.. II

where f. GIl.• is the critical value for Spearman's correlation coefficient.

The Spearman's Donparametric test for correlation shown in Table 2.6 indicates

correlation between Hurst's K and r(l) at the S% and 10% levels of significance.

Both parametric and nonparamenic tests idenlify correlation between the two random

variables, Hurst's K and r(1), that is, a linear relationship links the long- and shan-term

behaviour which are measured by Hurst's K and lhe lag-oDe autocorrelation coefficient

r(I), respectively. Based on this, an empirical probability approach for dealing with serial

long- and shan-term behaviours will be developed in the next chapter.

Table 2.6 Spearman's nonparametric rest for correlation between Hurst's K and r(l) from
transformed data

f'GIl.n Conclusion

Source r. a=5% a-1O% a=5% a-10%

Canadian Rivers 198 0.498 0.364 0.305 Reject Ho Reject H..
Chinese Rivers 60 0.393 0.364 0.305 Reject H.. Reject H"
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2.5.2 Dependence Between Hurst's K and r(1)

The dependence or independence between Hurst's K and lag-one correlation coefficient

r(l) can be tested by parameuic and nonparametric hypothesis testing. [f the null

hypothesis of independence is rejected, there is dependence between Hurst's K and e(l)

at significant levels.

2.5.2.1 p-lests of Dependence

A parametric hypothesis test, p-test. for dependence was made to test the (wo variables,

Hurst's K and r(l). Assume that the calculated values of Hurst's K and r(l) from Box

Cox transfmmation data by PPCC method shown in Table 2.3 be n samples drawn from

a bivariate normal distribution, N(J.ll' ~. 0'\, O'z. p) lhe independence of those two random

variables will be tested. The statistical hypothesis is

independence: p = O.

Others are

positive correlation: p >0

negative correlation: p < 0

The test is: rejection if
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IPI ;,c' O-ll)

where p is the estimate of p. and c' =zJoV:. and z is approximately N(O.i). The results

of the P-leSt for independence of Hurst's K and. r(l) shown in Table 2.7 rejected

independence at the 5% and 10% levels of significance. i.c.• the Hurst's K and c(l) are

dependence at the 5% and to% levels of significance.

Table 2. 7 p-tests for independence between Hurst's K and r(l) from ttansfonned data

c' Conclusion

Source p a.-S% a.-lO% a.=S% «-10%

Canadian Rivers 198 0.5{)91 0.1393 0.1l73 reject H. Reject H..
Chinese Rivers 60 0.3373 0.2530 0.2130 reject H. Reject H..

2.5.2.2 Xl - Nooparametric test of Dependence

HypOlhesis resting for the independence of two random variables which both come from

a joint normal distribution is equivalent to the p-test for correlation. That is. if variables

X and Y are independent then P~.y =0. But, the situation here is that lag-one autocorrelation

coefficient r(l) is approximately normally distributed (see Yevjevich, 1971), but the

Hurst's K distribution is unknown. Herx:e, a nooparamettic test for dependence between

Hurst's K and r(l) suggests a more efficient test for independence, is required.

A classicalllOllparamenic test for iodepeod= is provided by !be ubiquitous t (see
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Gibbons, 1971; Lehmann, 1975). Suppose (K" r(1),), (K" r(I)" ... , (K", r(l) J be n

samples drawn from the unknown but same distribution. A quantity for the nonparametric

hypothesis test of independence is given by

(2.12)

has a x,2 distribution with (m-l)(s-l) degree of freedom if I1;j is large enough for all i. j.

where ll;j is the accounted number of occurrence and its meaning is shown in Table 2.8a.

Based on the annual peak flows observed at Canadian and Chinese rivers. the -l- test

for the independence was made. If the number of observations n is large, the test smtistic

Xl can be shown [0 possess, approximately. a chi-square distributioD. The observed data

from Canadian and Chinese rivers were combined for testing. To study the data nonnally

distributed in Chapter 3, transformed data also were tested. The results of both observed

and transformed data are shown in Table 2.8b and 2.Se. The tables indicate that the null

hypothesis of independence between Hurst's K and [(1) for Canadian and Chinese rivers

is rejected at the significance levels of 5% and 10%.

Both parametric and nonparametric tests indicate dependence between the two random

variables, Hurst's K and r(1), that is, occurrence of one variable, for example, lag-one

autocorrelation r(1), affects the occurrence of Hurst's K and vice versa. Based on the

dependence between r(l) and Hurst's K. a theoretical assumption about conditional
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probability for long-term persistence given shon-term independence will be developed in

the next chapter.

Table 2 8a A contingency table

n;,

D" D" D" D" D..

n:!1 Dn D" n,. D:!.

m n"" n"., n,., "- ....
n.j D., n.:! D., D.• D

Table 2.8b A coDtingency table for testing the independeDce betweeD Hurst's K and r(1)
for the observed oeak flow from Canadian and Chinese rivers

Hurst's K

r(l) K>0.658 0.580 < KsO.658 KsO.58O Total

r(l)5-o.05 26 41 22 89

-0.05 < ,(1)50.05 41 28 8 77

R(I» 0.05 64 26 2 92

Total 131 95 32 258

X2a_IOS.~ =7.779 1.
2

a_ss." =9.488 X' =37.44

X
2
>X

2
a..IOS ... 1.

2
>X

2
a.5S ... Reject II,
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Table 2.8c A contingency table for testing the independence between Hur.;t's K and r(ll
for the transfocmed data observed at Canadian and Chinese rivers

Hurst'sK

,(l) K>0.658 0.580 < KsO.658 K:;; 0.580 Total

r(t)'-Q.05 27 34 19 80

-0.05<r(I)'0.05 31 22 10 63

R(l» 0.05 78 34 3 115

Tow 136 90 32 258

x.2a._IO~.-4 =7.779 1: <:l_f'Io.4 =9.488 x.' =30.66

X2 >X2
a"IOS.4 X

2 > X
2
'h.S~.4 Reject H"

2.6 Variation of Hurst's K and r(l)

To demonstrate the variation of Hurst's K and the lag-one autocorrelation coefficient r(I),

a simple Monte Carlo simulation for a DonnaI distribution N(O,I) was made. The steps

are as follows:

1) For a given sample size n, 25,000 realizatiorui are sampled from a normal

independent process which bas a mean of zero and standard deviation of one, and

lag-one autocorrelation of zero.

2) Lag-one autocorrelation coefficient r(1) and Hurst's K were calculated for every

replication using Eq.2.2 and Eq.2.6. respectively.
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3} Calculate the mean value, standard error, S nil and St; ,and coefficient of skewness

of lag-one autocorrelation coefficient r(l) and Hurst's K over the 25,000

realizations.

4) Change sample sizes and repeat Steps (I), (2) and (3).

The lengths of samples vary from 20 [0 1,000, covering eight orders of sizes.

Results shown in Figs.2.4 and 2.5 and Table 2.9 provide the information about the

variability of the mean. standard error and skewness of r(l), and Hurst's K as they vary

with sample size.

It can be seen from Figs.2.4 and 2.5 that the means of r(l) and Hurst's K converge

to their theoretical values in a similar fashion but at different rates. That is, the rate of

convergence to its theoretical value of r(l) is much faster than that of Hurst's K as n

increases, even though the magnitudes of standard error of r(l) is much larger than that

of Hurst's K. It can also to be seen that in Table 2.9, for simulated data, the coefficient

of skewness, Cs, of Hurst's K tends to zero as the sample size increases. This implies that

the distribution of Hurst's K Like the distribution of r(l) and can be closely approximated

by a symmetrical distribution as n4' co, even though its exact distribution is unknown.
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Table 2.9 Variation of statistics of Hurst's K and r(l) based on 25.000 replications for
a Donna! independent process

Size r(l) Hurst's K

n Mean S(m Cs Mean S. Cs

20 -0.0495 0.206 0.050 0.6413 0.096 -0.147

30 -0.0317 0.173 0.010 0.6366 0.083 -0.099

50 -0.0191 0.137 0.018 0.6277 0.070 -0.073

80 -0.0119 0.110 0.Q35 0.6186 0.061 -0.019

100 -0.0095 0.099 0.042 0.6151 0.058 -0.017

150 -0.0060 0.081 0.028 0.6091 0.053 -0.007

500 -0.0025 0.045 0.025 0.5917 0.040 0.011

1000 -0.0001 0.032 -0.001 0.5835 0.Q35 0.004

46



I~

oI~~------=:======~I
.c.005

.c.Ol

.c.015

.c.02

.c.025

.c.03

.c.035

.c.04
.c.045
.c.05 LL__~_~ ~_~ ..J

o 100 200 300 400 500 600 700 800 900 1000
n

Figure 2.4a Plots of sample size, n, vs. the mean value of r(l) for the
normal independent process.
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Figure 2.4b Plots of sample size. D. vs. the standard error of r(1).
5.\). for the oormal independent process.
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Figure 2.5a Plots of sample size. n, VS. the mean of Hurst's K for me
normal independent process.
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Figure 2.5b Plots of sample size, n, VS. the standard error of Hurst's K,
S., for the nonnal independent process.
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2.7 Summary

In this chapter. Hurst's K and the lag-oDe aurocorrelation coefficient r(l), which measure

the loog- and short-term behaviours of annual peak flow series. respectively. have been

analysed. Both parametric and nonparametric hypothesis tests show the correlation and

dependence between Hum's K and r( l) of the annual peak flows for Canadian and Chinese

rivers.

The significant correlation between these twO random variables and from the scaner

plots indicated that an approximate linear relationship exists between them. [n principle.

as [(1) increases. Hurst's K increases. and r(1) decreases and Hurst's K decreases. Hence

the long-term behaviour is related to the shon-term behaviour of annual peak: flows.

The dependence between Hurst's K and r(1) thus provides a strong basis to

quantitatively descnbe the simultaneous occurrence of long- am short-term behaviours of

annual peak: flows in the next chaprer.
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Chapter 3

A Probabilistic Approach to Dealing With Long- and

Short-term Behaviour of Annual Peak Flow Series

3.1 General

There are few methods of characterising long-term behaviour: an empirical technique

based on Hurst's K developed by Lye and Lin (1994), the extremal index method of

Leadbetter (1988), and the measure based on the fractional differencing parameter in an

ARIMA model (Hosking, 1984).

For the modelling of Long-tenn persistence, many models are available, but generally

these models are not useful to use for a peak. flow series because of the shan sample sizes.

Most studies of the correlation structure of annual peak: flow series still focus on

discussing the "characterisation of" and "testing for" long-tean persistence and shorHerm

independeoce separately for a peak flow series. Only one smdy concerned the simultaneous

occurrence of shorHerm independence and long-term dependence for peak flow series

observed at Canadian rivers (Lye and Lin. 1994).

Based on the observed correlation and dependence between Hurst's K and lag-one
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autocorrelation coefficiem r(i) as discussed in the previous chapter. which measures the

long- and short-term behaviour of series. respectively, this chapter focuses on

quantitatively describing the simultaneous occurrence of the long-term persisteoce and

short-term independence for annual peak: flow series.

From a theoretical and practical point of view, it is suggested in this study that a

sampling distribution of Hurst's K should be defmed as a probability distribution for a

given lag-one autocorrelation coefficient r(1). An approximation for the sampling

distribution of Hurst's K will be developed using Monte Carlo simulation. Hence. an

estimate of the probability for serially independent population. such as the annual peak

flow series, to exhibit long-term persistence is also provided. The following sections

discuss a probabilistic approach for dealing with loog- and sbort-term behaviour of annual

peak. flow series that could be useful in flood risk analysis.

3.2 Sampling Distribution of Hurst's K

3.2.1 Standard Error of r(l)

(t is clear that it would be rare for the sample autocorrelation coefficient r(l) to be exactly

zero, even though the parent autocorrelation function r (I) is strictly zero for a normal

independent process. It deviates from zero due to chance. In the analysis of annual peak

flow series from Canadian and Chinese rivers. it was found that the standard error of the

autocorrelation coefficient r(1) is much larger than that of Hurst's K. Fig.3.1 presents
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frequency histograms for the Hurst's K and r(l) calculated from the peak flow series

observed in Canadian rivers. The deviation of Hurst's K is much smaller than that of lag

one autocorrelation coefficient r(l) as shown in Fig.3.t. A similar result for generated

independent data is shown in Fig.2.2 and Table 2.9.

The t-test for correlation does nO[ reject a linear relationship between Hurst's K and

r(I). However. the wide range of r(l) along the borizomal axis in Fig.2.2 is related to the

distribution of Hurst's K along the vertical axis. For instance. in Fig.2.2a, for peak flows

observed in Canadian rivers. the minimum values of Hurst's K at 1(1)=-0.2 and 1(1)=0.2.

are 0.465 and 0.655. respectively. The difference of Hurst's K nere is 0.l9. For the

maximum and mean values of Hurst's K at r(l)=-o.2 and 0.2 . mere is also a wide

difference of Hurst's K. It is obvious that the sampling distribution of r(l). which is

related to the magnitudes of Hurst's K. should be taken into account. As such. the

statistical hypothesis testing of long-tenn behaviour proposed by Lye and Lin (l994),

which ignore those differences. is thus not strictly valid. The concept of r(l) is

straightforward and its value is easy to be calculated. In order to emphasise hypothesis

testing for long-tenn behaviour. the information about the disnibution of r(l) should be

taken into account when the sampling distribution of Hurst's K is considered.

52



0.6,--~-_-_-_-~-__-_-_--,

0.5

0.4

0.3

0.2

0.1

oL-~-~-~-""''''''.
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K
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3.2.2 Sampling Distribution of Hurst's K

It is clear from the previous chapter that Hurst's K and the lag-one autocorrelation

coefficient r(l) are correlated and dependent in a probabilistic manner. This provides a

theoretical basis [0 deal with the sampling distribution of Hurst's K which is expressed as

the sampling distribution for a given lag-one autocorrelation coefficient r(l). It has also

been observed that the standard. error of the lag-one autocorrelation coefficient r( 1) is much

larger than that of Hurst's K. In statistical hypothesis testing, such a wide range of r(l)

could increase the test error. Based on these considerations, the sampling distribution of

Hurst's K for a given r(l} can be developed by probability theory and an extensive Monte

Carlo simulation experiment.

3.2.3 Sampling Distribution of Hurst's K for a Given r(l)

3.2.3.1 Defulition of Events of Interest

The probabilicy of an event depends on the occurrence or non-occurrence of one or more

related events. If the occurrence of one event, A, for example, is affected by the

occurrence of another event, say B, then iLS probability is conditional. Otherwise, the

probability is unconditional. For instance, the probability of the event "flood at a given

time" is an unconditional probability. In conttast with this, "a flood occurred yesterday, tt

what is the probability that a flood will occur today? is a conditional probability that

projecLS more accurately than the unconditional one in this case.
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The following events of interest dealing with the correlation structure of an annual

peak flow series are dermed as follows:

Event A: Peak flows exhibiting long-term behaviour measured by Hurst's K

Event B: Peak flows exhibiting shalt-term behaviour measured by r(l)

In Chapter 2, parametric and nonparametric hypothesis tests show that the two

statistics, Hurst's K and lag-one autocorrelation coefficient r(1), are correLated and

dependent. The variation of Hurst's K is LinearLy related to that of the r(l). Due to

dependence. the intersection of two events. AnB, exists and occurs simUltaneously in a

probabilistic manner. In other words. the Long-tenn (event A) and shon-term (event B)

behaviours occur simUltaneously in a physical and theoretical sense. And, the probability

of event A given B has occurred can be quantified using basic probability theory:

Prob(A/B) = Prob (A n B)
Prob(B)

(3.1)

where Prob (13) is the unconditional probability of B and Prob(A0B) is the probability of

the intersection of MB.

Now, consider events A and B to be the numerical events~) and (Rl:5 rl ). These

events A and B can be expressed or measured by the magnitudes of Hurst's K and r(l),

respectively. Assume that K and RI are random variables. The probability of K for the

given Rl in the region Rc is
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(3.2)

which is a conditional probability.

In other words, Eq.3.2 describes the conditional distribution of K given Rl in the

region R.. where K and Rl indicate the random variables Hurst's K and lag-one

autocorrelation coefficient r(l), respectively. Thus. the sampling distribution of Hurst's

K is dermed by a conditional distnbution. which is lhe sampling distribution of Hurst's K

for a given r(l), or equivalently saying the distribution of Hurst's K given Rl that is in Re.

When the disttibution of K given Rl that is in Rc is considered. the form of the

density function in Eq. 3.2 is unknown. The distribution of K given Rl in R, cannot be

found by an analytical approach. lhus an extensive Monte Carlo simulation experiment was

carried out to obtain the probability distribution of K given Rl that is in R.. .

3.2.3.2 Monte Carlo Simulation Producing the Sampling Distribution of

Hurst's K for a Given r(l)

According to the customary assumption in flood risk: analysis. a normal distribution n (0.1)

is chosen as a population process in lhe Morne Carlo simulation. and R1.is assumed to take

a few regions. ~i. i=1.2, ...•m. The Monte Carlo experiment is designed as follows:

1) For a given sample size n. 25,000 samples are generated from a nonnal

independent process with mean zero, standard deviation one, and lag-one

autocorrelation zero. The sample sizes vary from 20 to 10.000, eight orders of
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magnirode.

2) Calculate r(1) and Hurst's K for every sample using Eqs.2 .2 and 2.6.

3) Divide lite [Otal range of calculated r(t) into a several intervals Re,. where

i= 1.2.... , m. In the present study, seven intervals are considered. There are:

r(1)<-o.25. r(1) at [-0.25.-0.15),[-0.15,-0.05), [-0.05,0.05), [0.05, 0.15),

[0. 15,0.25) and r(1) 2: 0.25. Calculate statistics such as mean value, standard

error of Hurst's K. SK. and the coefficiem of variation. Cv, and coefficient of

skewness. Cs for each region.

4) Rank me data of Hurs['s K for the corresponding interval and calculate me

frequency, then a simulated probability distribution of K given Rl in Rp is

obtained. Clearly. the more data generated the more accurate the cumulative

distribution.

The calculated r(l) and Hurst's K from the generated data are illustrated in Fig.3.2

and the cumulative probabilicy distributions of Hurst's K given r(l) in Rei is illustrated in

Fig.3.3. The statistics of the cumulative probability distribution of Hurst's K are

summarised in Table 3.1.

From Fig.3.3 and Table 3.1 it was found that

a) The mean of Hurst's K increases with an increase of r(l).

b) As sample size increases, as expected, the mean of Hurst's K. as well as its

standard error, sl( ,and coefficient of variation, Cv, decreases.
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c) The region of me distribution of Hurst's K becomes narrower as me sample size

increases.

d) The skewness in the distribution of Hurst's K decreases as the r(l) reaches zero

in each sample size. and the distribution of Hurst's K tends [0 be approximately

normal especially for larger sample sizes.

Overall. the sampling distribution of Hurst's K for a given r(l) worked out by

Monte Carlo simulation provides a represenmtion of the long-teno behaviour based on

the short-term properties of the time series; the long- and short-term behaviour being

linked by the conditional distribution of K given that RI is in R...
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Table 3.1 The Statistics of the sampling distribution of K given that Rl is in R,

n R. mean standard Cv C,

30 <-0.25 0.5693 0.0689 0.121 -0.165

(-ll.25. -ll.ISl 0.5890 0.0714 0.121 -0.093

[-ll.15. -ll.OS) 0.6187 0.0702 0.113 -0.132

[-ll.OS.O.OSl 0.6450 0.0693 0.108 -0.182

[0.OS.0.15) 0.671S 0.0696 0.104 -0.262

[ 0.IS.0.25) 0.6988 0.0702 O.tOO -0.275

:l0.2S 0.7265 0.0700 0.096 -0.390

SO <-0.2.5 0.5629 0.0606 0.108 -0.145

[-ll.25. -ll.ISl 0.5885 0.0619 0.105 -0.110

[-ll.IS. -ll.OSl 0.6101 0.0621 0.102 -0.103

[-ll.OS.O.OSl 0.6331 0.0629 0.099 -0.093

[O.OS.O.ISl 0.6535 0.0645 0.099 -0.147

[O.IS.O.25) 0.6759 0.0627 0.093 -0.180

0>.0.25 0.7004 0.OS99 0.086 ·0.30S

80 <-0.25 0.5597 0.0538 0.096 -O.l30

[-0.25. -0.15) 0.5812 0.0578 0.099 -0.133

[-ll.IS.-ll.OS) 0.6008 0.OS69 O.09S -ll.092

[-ll.OS.o.oS) 0.6220 o.osn 0.093 -0.013

[O.OS.O.IS) 0.6424 0.0578 0.090 -ll.086

I O.IS. 0.2S) 0.6660 O.OS64 0.08S -0.202

:lO.25 0.6763 0.0571 0.084 -ll.049

100 <-0.25 0.5597 0.0486 0.087 0.215

[-ll.25.-ll.ISl 0.5748 0.0539 0.094 -ll.069

(-ll.IS.-ll.OS) 0.5964 0.OS37 0.090 -0.100

[-ll.OS.O.OSl 0.6179 O.054S 0.088 -ll.039

[O.OS.O.IS) 0.6381 0.OSS3 0.087 -0.112

[0.IS.0.25) 0.6545 0.0542 0.083 -ll.061

:l0.25 0.6746 0.OS8S 0.081 -0.291
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3.3 New Empirical Percentage Points for Hurst's K

The direct use of the concept of sampling disuibution of Hurst's K for a given r(1) is a

new table of empirical percentage points to test for long-term persistence.

The [-tests shown in Tables 2.5 and 2.6 indicate a correlation between Hurst's K and

lag-one autocorrelation coefficient r(1) at the 5% and 10% levels of significance. And

also. lhe observations and Monte Carlo simulation results show that the deviation of r(l)

is much greater than that of Hurst's K. It can be seen from Figs. 2.2 and 3.2 that the lag

one autocorrelation coefficient r(l) occupies a much wider range along the horizontal axis

than that of Hurst's K along the vertical axis. The infonnation about dIe correlation

between Hurst's K and lag-one autocorrelation coefficient r(l) should be taken into

account. Lye and Lin (1994) proposed. an empirical percentage points for testing 100g

term persistence which ignore the information about the distribution of r(l) which is

related to the distribution of Hurst's K. It is necessary to expand the basic concept in their

proposal and take the information about r(1) into account using the concept of sampling

distribution for a given r(I).

The same Monte Carlo procedure shown in me above section to produce an

approximation of the sampling disttibution of Hurst's K for a given r(l) can be deduced.

For a given significant level ct, me Hurst's K could be selected from Figs.3.3 according

to the different sample sizes and the region of lag-one autocorrelation coefficient r(I).

Table 3.2 shows the new table of empirical percentage points at a=5% and 10% for
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sample sizes of n=30,50, 80, and 100.

The tests for long-term persistence could be carried Qut based on the new empirical

percentage points for Hurst's K. The observed data can be transformed into normal

variables by the Box-Cox ttansformation (Box and Cox. 1964) if the data are not normal.

For dIe transformed data which are approximately normally distributed, calculate Hurst's

K and r(l), then fmd the critical Hurst's K at the given level in the Table 3.2 using the

calculated r(l) and sample size, comparing the observed Hurst's K with the critical Hurst's

K. [f the K value for the observations is greater than (he K value given in the table at the

given significance level for the given size, it can be concluded that the observed series is

long-term dependent at the given significance level.

Table 3.2 Empirical percentage points for Hurst's K for given r(l) for the Donnal
ind Deodeot data. where n - the samole size, a. - the si2I1ificant level

b·sRl<a,

n " <-.25 -.H.05 -.1±.05 .0±.05 .1±.05 .2±.05 ;,(J.25

30 0.6781 0.7016 0.7328 0.7554 0.7794 0.8088 0.8277

50 5% 0.6626 0.6873 0.7084 0.7340 0.7550 0.7740 0.7980

80 0.6446 0.6754 0.6930 0.7173 0.7352 0.7583 0.7937

100 0.6431 0.6606 0.6837 0.7054 0.7290 0.7398 0.7831

30 0.6571 0.6794 0.7091 0.7345 0.7599 0.7890 0.8149

50 0.6393 0.6668 0.6911 0.7153 O.i368 0.7554 0.7789

80 10% 0.6186 0.6560 0.6761 0.6964 0.7169 0.7396 0.7683

100 0.6166 0.6400 0.6652 0.6887 0.7099 0.7250 0.7464
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3.4 A Useful Index, P(lQk,,)

The concept of the sampling distribution of Hurst's K for a given r(L) also provides useful

information in dealing with me serial correlation of annual peak flows. and the results

from the Monte Carlo simulations can shed some light on long- and short-tenn behaviours

of peak flows. This will be described in the next section.

3.4.1 Definition of Events of Interest

The probability for an independent series such as the peak flow series to emibit !ong-tenn

persistence can be defmed using the following arguments.

Hurst's K and r(l) can serve as numerical outcomes of an experiment, let us defme

the events of mterest once more:

Event At: Peak flows exhibiting the long-term persistence identified by K > ka

Event B;: Peak flows exhibiting the short-term independence identified by r(lJ.

i=1,2. .... m

where leo is a special value of Hurst's K which implies that when the observed Hurst's K

is greater than this value, the series exhibit long-lerm persistence, and B I , ~, ... 8 m are

murually exclusive and exhaustive.

The relationship between Hurst's K and r(1) for the observations from Canadian

and Chinese rivers shown in Figure 2.2a-b, and for the synthetic sequences of n shown in

68



Figure 3.4 Venn diagram for events AI' Bi.

Figure 3.2a-h can be expressed as 'intersection' and 'union' of the events in the Venn

diagram. So the relationship between defmed Al and Bi • i=1.2•...m can be expressed on

the Venn diagram as shown in Figure 3.4.

Let A, be an eveot of sample space S such that PiAl) >'0. am the events IB,. 8,.

.... B.l form a panition of the sample space S. where P<B.) >'0. for i= 1. 2..... m.

Events AI and B; are dependent. 'The event Al is seen to be the union of the mutually
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Al =(B,(""\Ar)u( B2 tl AI ) ...u(B",r'lA,)

So. the probability of the event Al is defmed by the total probability theorem

(3.3)

(3.4)

By the defmition of I.he multiplicative law gives the probability of the intersection SinAI

as

P( B, r. A,) : P( A,; B,) P( B,) (3.5)

where PCB;) is the unconditional probability and P(AI/B;) is the conditional probability.

probability of Al for a given Sj _ So. the probability of lhe event Al is obtained by

(3.6)

Funhennore, the evenlS Al and Bi are considered as numerical events ~) and

(Rl~,), as mentioned earlier, where K and Rl are two random variables representing the

Hurst's K and r(1), while Ie and r\ are observations of random variables K and Rl,

respectively. Hence, a set of defmitions can be made according to the above events and

probabilities:
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POQko); be equivalent to P(A.). the probability of a peak flow series exhibiting long

tenn persistence. where ~ is a 'critical value' and can be chosen arbicrarily at the present

time;

P(bi :5 Rl < a,); be equivalent to PCB,). the probability of peak flow series exhibiting

short-tenn independence. where i=l,2, ...• n;

P(IQko I bi:S Rl <aJ: be equivalent to P(A.!B;), the probability ofa peak flow series

exhibiting (ong-term persistence for given Rl that is in Rzi. (bi :5 Rl <3;,).

Hence. Eq. 3.6 can be expressed as

If the critical value of leo has been detennined in Eq.3.7. the probability P(bi :5

Rl < a,) can be obtained directly from Eq. 2.7 based on the distribution of Rl assuming

normality or from Monte Carlo simulation if the parent distribution is not normally

distributed. The conditional probability POQko I bi :5 Rl <a,) can be obtained from the

designed Monte Carlo experiments. so the probability of peak flow series exhibiting long

term persistence, P(IQko), can be determined.
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3.4.2 Estimating P(IQd<J

Based on the sampling distribution of Hurst's K for a given r(l). the suggested procedure

to estimate the probability of a peak flow series exhibiting long-cerm persistence. P(IQko).

is as follows:

(1) Determine the lower bound value ~ .

How do we designate a lower bound value. k;,. to represent the behaviour of long

term persistence? This is one of the most important steps in dealing with long-tenn

persistence. This study suspends discussion of this. and takes ko arbitrarily. Empirically.

Hurst found that Hurst coefficient has a mean orO.73 and a standard deviation of 0.072

(Hurst.. 1951. 1956), hence it is assumed that the magnirude of the lower boundary. ko.

is (0.73-0.072) =0.658, one standard deviation below the mean from Hurst's study.

(2) Detennining the probability P(IQk" I b; :> Rl < aJ.

For the given R,;; and sample size n. the corresponding cumulative probability

distribution curve of Hurst's K shown in Figure 3.3 is selected. The borizonw axis. P.

of the selected cumulative probability distribution curve gives the sampling distribution of

Hurst's K given reI) that is in ~. Once the value of the lower oowxtary leo is designated.

the probabilityp~ bj S Rl < aJ. can be obtained from the cum~lative probability

distribution curves.

Table 3.3 summarises the probabilityP~ b; :> Rl <aJ for the sample size of

0=30, 50, 80, 100 based on the Monte Carlo experiments.
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(3) Determine the probability P(b; ~ Rl <a;).

How do we determine the magnitude of P(b, :5 Rt < a;)? It can be directly calculated

using Eq.2.7 because lhe parent population is normally distributed. therefore Rl is

distributed nonnally, and otherwise it can be simply computed from the results of the

Mome Carlo simulation. Table 3.4 gives the probability, P (b;sRl <aJ, calculated from

Monte Carlo simulation.

(4) Obtain the probability P(IQIcO).

Once the cnnditional probability P(IQk, I I>, ~ Rl < aJ and the probability P(b; ~

Rt < at> are obtained from the Monte Carlo simulations. the probability. P(1Qko). that a

peak flow exhibiting long-term persistence P(IQko), can be obtained from Eq.3.7. In

other words. the elements in Table 3.3 when multiplied by the corresponding elements in

Table 3.4. gives the probability PCK2ko), as required. The results from calculations of the

probability, P(IQk,) are given in Table 3.5.
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Table 3.3 Probability P(lQIc" I b; ~ Rl <aJ calculated from lhe cumulative probability
disttibution shown in Figure 3.3, where ko=O.658

P(~b;~Rl<aJ

b; ~Rl<>; n = 30 n= 50 n = 80 n = 100

< -0.25 0.0973 0.0559 0.0260 0.0400

-O.20±.05 0.1819 0.1373 0.0955 0.0559

-O.10±.05 0.3054 0.2326 0.1639 0.1280

0.00±.05 0.4462 0.3587 0.2745 0.2426

0.10±.05 0.6021 0.4829 0.4038 0.3694

0.20±.05 0.7270 0.6306 0.5734 0.4768

~0.25 0.8312 0.7721 0.6724 0.6100

Table 3.4 Probability of P(b; ~ Rl <>;) calculated from the Monre Carlo simulation

P(b;,Rl <>;)

l>;~Rl<>; n = 30 n- 50 n = 80 n = LOO

< -0.25 0.1050 0.0471 0.0122 0.0069

-O.20±.05 0.1437 0.1269 0.0897 0.0700

-O.1O±.05 0.2131 0.2397 0.2661 0.2648

0.00±.05 0.2221 0.2769 0.3446 0.3801

0.10±.05 0.1656 0.1987 0.2177 0.2247

0.20±.05 0.0980 0.0835 0.0828 0.0482

~0.25 0.0524 0.0291 0.0069 0.0054
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Table 3.5 Probability of P(IQIc,) calculated from Tables 3.3 and 3.4

P«~) ..... (b,SR1<a;) - P(b"Rl<a;jP{IQk,Ib;SR1<a;j

t>t::S;Rl<a. n=30 n = 50 n - 80 n = LOO

< -0.25 0.0102 0.0026 0.0004 0.0003

'{).20±.05 0.0261 0.0174 0.0086 0.0004

'{).1O±.05 0.0651 0.0557 0.0436 0.0339

0.00±.05 0.0991 0.0994 0.0946 0.0922

0.1O±.05 0.0997 0.0959 0.0879 0.0830

0.20±.05 0.0712 0.0527 0.0475 0.0229

~0.25 0.0436 0.0225 0.0046 0.0033

P~ 0.3877 0..3462 0.2872 0.2360

3.4.3 An Estimator for the Population Value ofP~

From Tables 3.3, 3.4 and 3.5 it can be seen Wt

a) The magnitude of the probability P{lQk.1 b; sRI <a;l in Table 3.3 decreases

with an increase in sample size, but increases with increasing values of Ri.

b) The distribution of PCb; SRI <aJ in Table 3.4 shows that random variable Rl

appears to be normally distributed as in the theoretical equation of Eq. 2.7.

Most observations are located between the interval [-0.1.0.1).

cJ In Table 3.5, the probability P(b; S Rl<a;lP{IQl<./ b; S RI<a;l rakes the

maximum values between interval [-0.05,0.15). The magnitudes of probability
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p~, the probability of !he peaIc flow series exhibiriog long-,erm p=isrence,

decreases with increasing sample size.

In view of the above analyses. the probabilities P~) depends on the variation of

both the disaibutiom of r(l) and the conditional probability of Hurst's K given r(l) in R,.

Figure 3.5 shows that the distribution of conditional probability, P(lQkJ bi 5 Rl <aJ.

varies with r(1), bUI probabilily P(b, ~ RI <a;> distribule<! on !he RI-axis iodicales RI is

nOllIlally dislribu<ed. II seems thaI the probabilily P(l>, ~ RI < a;>P(IQk"t 1>, s RI < a;> is

the coodilional probabilily, P~ b; s RI < a;>, weighted by the probabilily, P(l>, s

Rl < 3;}. However. by an examination of the estimation procedure, the calculated P<K2ko>

depends on the sample size as well as the form of the sampling distribution of Hurst's K

for a given r(l) and sampling distributiOD of r(1), and it can serve as an estimator for the

population PCICako) which should exist and represent the proportion of the series

exhibiting long-tenn persistence. TIle expected value of PCK2:ko), moreover, can be

reached if the sampled realisations for a given sample size n are large enough in the Monte

Carlo simulation.

The concept proposed here, an estimate ofP~) representing the probability of

an independenr: series exhibiting Ihe tong-term persistence, is meaningful in dealing with

serial correlation in peak flows discussed. in the next section.
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3.5 Practical implications

3.5.1 A Proposed Quantitative Descriptor for Long-term Persistence

Srodies of serial correlation of annual peak. flows have been ongoing for many years. Until

the recently proposed method for testing long-term dependence by Lye and Lin (t994).

investigators bad discussed the existence of long-term persistence. Their study indicated

that although short-term dependence is virtually absent for most of the peak flow series.

significant long-tenn dependence exists for a large number of peak. flow series tested.

Based on the correlation and dependence between Hurst's K and c(l) investigated in

the previous chapter. a series of definition of events of interest based on probabiliry theory

allows us to develop a new method of quantilatively describing tong-term persistence

rooted in an independent series.

Based on the concept of the sampling distribution of Hurst's K for a given r(I). the

estimator for population P(IQ.ko) and its distribution on the Rl axis. P(bj s: Rl <aJP(K2kJ

bi s: Rl <aJ. shown in Table 3.5 and Figure 3.5 assure that long-term persistence and

shan-term independence can be quantitatively estimated. In flood risk analysis, we have

to assume that the flood record to be analysed is a reliable set of measurements of

independent random events from a population. Because of this. the calculation results from

the data generated from an normal independent process or transformed normal should be

acceptable for the assumed peak flow population.
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3.5.2 A Common Phenomenon

"Is the simultaneous occurrence of long-term persistence and short-term independence a

common phenomenon in annual peak flows?" _ the question was asked in the beginning

of the previous Chapter. The following analysis will answer this.

The probability P(b; S Rl<a,) P(K2k, Ib; S Rl<a,) in Eq.3.7. in fact. is the

probability of inr:ersection of events AI and B; shown in the left of Eq. 3.5. and it is also

expressed by

P( (K ~ k,)n(b, S Rl< a,)) ~ P(K ~k,/b. S RI< a,)P(b, S RI< a,) (3.8)

From probability lheory. the key word for expressing this intersection is "and"

meaning" the event (IQk.,) and me event (bi SRI <a;) occurring simultaneously". and its

probability is P( ~) n (b, :s;: Rl < a;». It is of interest to note that the event (~)

represents a peak flow series exhibiting long-term persistence. and event (hi s: Rl < aJ

represents a peak flow series exhibiting shon-term independence in this swdy. Hence. the

intersection of events dermes the concept of "simultaneous occurrence" for both events.

Furthermore, Table 3.5 and Figure 3.5 s~ow that the probability P«(K2k,) n (b; S

Rl <aJ) for each region of r(l) is greater than zero, and the maximum value for the

individual regions and the (Ota! value for the given sample size 50 are 9.94% and 34.62%,

respectively. Thus. the simultaneous occurrence of long-term persistence and short-term

independence seem not to be an uncommon phenomenon. In fact, besides the above
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quantitative description. observations and generated. data also demonstrate this important

conclusion.

The width of scatter in the horizontal axis. denming r(l). in the scatter plots shown

in Figs.2.2a-b and 3.2a-h decreases with an increase in sample size much faster than that

in the venical axis. denoting Hurst's K. As sample size approaches 10.000 in Fig. 3.2h,

r(l) approaches zero but Hurst's K still takes a wide range, from 0.49 to 0.67. The same

result is found in Table 2.9. that the mean value of Hurst's K is 0.5835 for sample size

1.000, but the mean value of r(I) is at -0.0001 which shows no significant difference

from zero. Theoretically. it seems that long-term persistence is roared in the independent

series as explored in the numerical simulation.

3.5.3 A Useful Result

As mentioned previously. the probabilicy P~ ) and its distribution on the Rl axis.

P(~)" (b," Rl <3;)), i=l,2, ... ,m. sbown in Figure 3.5 are meaningful in the srudy

of long- and shorHerm serial correlation. However, in flood risk analysis, it might play

an important role in understanding the behaviours of long-tenn persistence in an

independent parent probabilicy distribution.

[n chapter 2 we have analysed the annual peak flow series observed at Canadian and

Chinese rivers. Suppose the population of observations be EVI or Pearson Type ill

distributed, and the dara transformed by the Box-Cox method become nnrmally distributed.
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The sampling distribution of Hurst's K should be changed with its parent population

changing. Consequently, the proportion of the long-term persistence, in fact, is changed

after transfonnation. [t is expressed as a change on probability P~) and irs portion

P(~} r'I (bi:s Rl <aJ), i= 1, 2•... , m. Table 3.6 shows the differences of statistics of

the Hurst's K and r(l} for the non-transformed and transformed data in Canadian and

Chinese rivers.

Theoretically, sampling distribution of Hurst's K with EVI parent population should

be different from that of Hurst's K with parent Pearson Type ill in the sense. [0 Table

3.6, the changes of mean and standard error of Hurst's K seem not significant for

transformed. and original one. However, according to the centraIlimit theory that indicates

the nominal significance level is approximately the same, when the sample size becomes

quite large. TItis concept is used to assess suitability of the probability P (IQ:ko ), tllus the

Kolmogorov-Smirnov test(Lilliefors, 1967; Crutch., 1975) of the null hypothesis that the two

large sample distributions are the same is carried out.

Here, we used the sampling distribution of Hurst's K as a population for the hypothesis

test. Based on a visual way ofcomparison, two population samples should be a graph of the

two empirical cumulative distributions. If the two empirical cumulative·distributions differ

greatly, it is expected that the populations being sampled were not the same. If the two

curves were quite close each other, the conclusion that the underlying population distributions

are essentially the same could be made.
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Table 3.6 Statistics of Hucst's K and r( 1) for the original and Box-Cox transfonned
data observed in some Canadian and Chinese rivers

Oa.. Sourt:e size Statistics mean slandard skew- correlation
em:>r ness coefficient

Canadian 198 Hurst'sK 0.6728 0.0728 -0.2021 0.5097
Trans- Rivers
fonna-
Ie<! r(1) 0.0309 0.1483 0.1480

data Chinese 60 Hurst'sK 0.6522 0.0710 0.2922 0.3373
Rivers

r(1) .Q.0184 0.0999 0.1395

Obser- Canadian 198 Hurst'sK 0.6646 0.0715 - 0.0878 0.4801
ved Rivers
data

r(1) 0.0082 0.1380 0.0214

Chinese 60 Hurst'sK 0.6586 0.0708 0.0991 0.3l24
Rivers

r(1) .Q.0128 0.1120 0.1607

The Kolmogorov-Smirnov statistic, 0, is the maximum absolute difference between

two empirical cumulative disaibution fwx:tions. The distrIbution of Dis only related to the

sample size.

The Kolmogorov-Smimov test consists of: accept the hypothesis if

is less than or equal to the given values for the given significant levels

(3.9)

a

KS

0.001

~ 1.95

O.QJ
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if sample sizes are large, say, both 40 or more, where F..(x) and Gm(x) are empirical

cumulative distribution functions, nand m are sample sizes.

Let F..(k) and G.. (k) be empirical cumulative distribution functions for the Hurst's K

of original and transformed data. Figures 3.6a and 3.6b show these empirical cumulative

distributions for the data of Hurst's K observed in Canadian and Chinese rivers.

The large sample distribution of D is known. Let n be large, the Kolmogorov

Smimov test of the null hypothesis that the two large sample distributions, distribution of

Hurst's K transformed, G.. (k), and distribution of Hurst's K from non-transformed data,

are the same. The sample sizes of Hurst's K are 120 and 60 for the data observed in

Canadian and Chinese rivers. respectively. The D-values are 0.1204 and 0.1726 for

Canadian and Chinese rivers, respectively. A conclusion of statistical tests summarised

in Table 3.7 accepts the null hypothesis, that is. the two distributions of Hurst's K from

original and transformed data are the same at the given significant levels.
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Table 3.7 Kolmogorov-Smirnov nonparameaic test that two distributions of Hurst's K
from transformed and non-ttansformed dam are the same

CriticaJValue Condwion

Source KS cx=s% «-10% «-s% «-to%

Canadian Rivers 120 0.933 1.36 1.22 Accept H." Accept H.
Chinese Rivers 60 0.945 1.36 1.22 Accept H., Accept Ho

The Kolmogorov-Smimov test employed here is not only a nonparametric test that

requires few assumptions for their validity, but also for large sample test. A statistical test is

robust for large samples. but not for small samples according to the central limit theory that

the normal significaB:e level is approximately the same as the aue signiflCaIlCC level when

the mill hypothesis holds. 1be results of dle Kolmogorov-Smimov hypothesis test bere are

useful. The conclusion that high probabilities of existence of long-term persistence are

involved in a Donnal independent distributed data may be suitable for the nOD-Donnal

independent series. However further studies and investigation of this issue should be

continued in the future.
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3.6 Summary

In this chapter, the serial correlation structure of annual peak flow series has been

analysed. Based on probability theoty and investigated results in Chapter 2 the Hurst's K

and lag-one autocorrelation coefficient r(l) are correlated and dependent, a probabilistic

approach for dealing with long- and short-term behaviour of annual peak flow series was

proposed.

In this approach, a Monte Carlo simulation was designed to provide a sampling

distribution of Hurst's K for a given r(1). The direct use of this result is new empirical

percentage points for testing long-term persistence superseding that proposed by Lye and

Lin (1994). Also, a useful index, P(IQk,,), the estimator of the population probability

value of the long-term persistence for independent series such as the peak flow series to

exhibit long-term persistence, was proposed and estimated.

The results of the proposed methnds have useful practical implications:

I) The proposed estimator for population P(IQk,,) and its distribution on the Rl axis,

P(bi " Rl <ail P(IQk" I bi " Rl <ail, shown in Table 3.5 and Figure 3.5 assure

that long-term persistence and short-term independence can be quantitatively

estimated.

2) The probability P( (IQk" ) n (hi " RI < ail) for each region of Rl is greater than

zero, and the total value for the small sample sizes range from 23.6% to

38.77%, implying that the simultaneous occurrence of long-term persistence and
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short-term independence appear not to be an uncommon phenomenon.

3) Initial study of the properties of the observed and normally lr3IlSfonned peak flow

data from Canadian and Chinese rivers indicate that the results of this study seem

robust for other distributions if a normal transformation is made.
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Chapter 4

Measurement at Scale ~ :

Basic Concepts of Fractal Geometry

4.1 General

From the classical statistical point of view, we have examined the behaviour of annual

peak flows at two flXed scales. Wt is, one at scale of one, measured by the lag-one

autocorrelation coefficient r(1) indicating high frequency behaviour and another at scale

of n. the sample length, which indicates low-frequency behaviour measured by Hurst's

K. The statistical terms "correlation" and "dependence" for expressing the relationship

becween the two random variables. iag-one autocorrelation coefficiem r(l) and Hurst's K

have also been discussed and explained. Also, based on basic probability theory. an

analysis of Hurst's K and r(l) to show the simullaneOUS occurrence of long-rerm

persistence and shott-term independence in annual peak flows has been performed.

However, what has been done previously is to look at the two separate scales for the
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fearure5 of peak flows. The question that arises is .. how about looking at all scalcs"?

Can this approach leU us more about a flood peak series? To this end, fractal geometry

can be employed.

Fractal geometry, a new science, lets us see the objects across scales. It may thus

give us a more physical and philosophical explanation of the natunl behaviour of peak

flows. Therefore, the topic is now moved to fracral geometry to investigate lhe temporal

strucrure of peak flow series in a fractal domain.

4.2 Fractals: Measurement of Coastlines

Fractal geometry originates from the measurement of the length of a coastline

(Mandelbrot, 1967). For example, the length of the border between Spain and POrDIgal

has two very different measurements: Spain claims 616 miles, while Portugal quotes 758

miles ( Mandelbrot, 1967). Again the length of the coast of Britain in various sources

varies between 4,500 and 5,000 miles. What is happening there? However, based on

Richardson's empirical data (Richardson, 1961), Mandelbrol (1967, 1982) demoDStrated

for us that for all practical purposes, typical coastlines do not have a Euclidean length!

Figure 4.1 shows Richardson's empirical data graphically. On the horizontal axis

the logarithm of the divider setting, t;, is indicated. The vertical axis is for the logarithms

of the coast length,~. The log-log plots will show how the length changes when the
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Figure 4.1 Measurement of coastlines (Mandelbtot, 1982).

divider setting is changed. Mandelbrot (1967) paid panicular attention to the two

constants, b and D. which characterized a power law: length of coast L(~) is nicely

approximated by a power law being bl; 1-0. where l; is a compass setting. The length of

the coastline shows no sign of reaching a fIXed value. The length of me coastline would

increase without limit if the compass setting gets smaller and smaller. [[ is obvious that

the classical measure of a coastline based on Euclidean geometry, in fact. is not

meaningful because the length of the coastline goes to infInity as the l; tends toward.

zero. In other words the coast length behaves as a power law that characterizes the

complexity of the coastline of Britain for example by expressing how fast the length

increases as the scale, l;. is reduced.
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The straight line in the log-log plots shows the behaviour of the coastline that is

similar in shape and struccure over the range of scale. For instance. large bays contain

smaller bays. the small bays contain even smaller bays, and the smaller bays contain even

smaller and smaller bays, and their shapes are similar to the whole. Thus. seLf-similarity

is indicated. Therefore, a fractal is defmed as a shape made of parts similar to the whole

in some way (Mandelbrot, 1977, 1982). The constant D is defined as the fractal

dimension which describes the growth law that reflects how rapidly the coastline develops

as the measure 1;-+0 (Falconer. 1990). FuIthermore, the magnitudes of the fractal

dimension. D, tell us the Level of the complexity, such as the coastline of Britain is more

convoluted than that of South Nrica because the fractal dimension D of the former is

greater than that of the laner.

4.3 Related Concepts of Fractal Geometry

From the view of "measurement at scale' , a complex object, such as a coastline, leads us

to see fractal shapes everywhere: Brownian motion curves, cluster deposited "cree" at

electrodes. river networks, the shape of mountains, swift currents in flow and even brain

waves of human and the pOints of earthquakes. How about the annual peak: flows of

interest herein? So far only one paper bas dealt with temporal peak flows in a fractal

world (Turcotte and Greene, 1993), but the technique used is flawed as will be explained

in Chapter 6.
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Before using fractal geometry to search for invariance across scales in peak flows,

a brief description of the concepts of fractal geometry is given next.

Selr-similarity

A fractal that is invariant under ordinary geometric similarity is cailed self-similar

(Mandelbrot. 1977. 1982). Strict self-similarity over all ranges of scale is found in a

classical mathematical fractal, such as the weU known Cantor set, the Koch curve, and the

Sierpinski gasket etc. Self-similarity over limited ranges of scale is common in narure.

For example a cauliflower, the branches when compared with the whole are similar, only

smaller. These clusters again can be decomposed into smaller clusters. which again are

similar to the whole as well as to the original branches. Are annual peak flows self-similar

on lime axis? If they are. what does it mean, and what are the implications?

Scaling or scale-invariance

Most fractals are invariant under certain transfonnations of scales. They are called

scaling or scale·invariance (Mandelbrot, 1977). Mathematically, points x = (Xl' x!.

x,,) are mapped 10 the !leW points .... = (Ax,. AX" ... , Ax,,) by lbe same ractor A is scaling

or scale-invariance. The scaling property of an object is shown as a straight line in the

customary log-log plot in fractal studies.
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Selr-affinity

(0 many cases the struCD:lCe of the objects is invariant with respect (0 the different

scaling ratio A.;. Thus. a fraet:al that reproduces itself in some sense under an affme

transformation is caned self-affine (Mandelbrot. 1982). An afftne transformation that

transforms from points x = (x.,x:!, ....x,.) into new points x.-. = (A.IXl• ~Xl' •.•• A.,.X J.

where the scaling ratios A\. A.z, ...• An are not all equal is an antisocropic fractaL

The Brownian random process is a typical self-affme distribution under a

transformation that changes the time scale and the length scale by different factors. Based

on the .self~afflDe property of Brownian motion, fractional Brownian motion (fBm) was

proposed (Mandelbrol and Van Ness. 1968; Mandelbrot and WaIlis. 1968. 19690). It is

meaningful thaI the correlation function or IBm. COr(I). expressed by 2'·" -1. tbeoretical1y

implies that Cor(t) is independent of time when H=lh! However, for H--+ Ih it leads to

persistence or antipersistence forever in a time scale! (Mandelbrot. 1977, 1982)

The fractal dimension

The fractal dimension is an imponant measure in fractal geometry, and ilS definition

is based on the idea of "measurement at scale~" (Falconer, 199O). It reflects the degree

of irregularity wben examined at scale~. One of the most widely used fractal dimensions

is the box dimension (or box counting dimension or capacity dimension), 0".

Let S be a subset of Ra
, where n= 1, 2, or 3. The box-counting dimension of Sis:
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(4.1)

if the limit exists. where N(~) is the smallest number of n-dimensional boxes of side length

~ required in order to completely cover S (Falconer, 1990).

The box-eounting dimension, Db' is usually empirically estimated by the gradient of

a In -In graph of N(;) against l; ploned over a suitable range of t;.

4.4 Measurement at Scale I;

Recuming to the concept of measurement at scale, Figure 4.2 shows the measurement at

scale for Hurst's K. lag-one autocorrelation coefficient r(l) and fractal dimension Db'

--- --- --- --- -- ----------------------

Figure 4.2 Measurement at scale.
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Hurst's K is simply considered as the mea.suremeOl at scale n. a long-term scale. lag

one autocorrelation coefficient r(l) at scale ODe, a short-tenn scale. The fractal dimension

Db crosses over various scale related to scales 1 and n. Thus, the fractal dimension Db

plays an important role in looking at the natural behaviour of flood peaks from a non

classical viewpoint.

Recall in Chapters 2 and 3 that we have swdied the behaviour of annual peak flows

at two scales or seen the properties of annual peak flows at high and low frequeocies based

on the traditional principle of .. taking things apart", even though we have used an artful

scheme to connect both, Hurst's K and r(1). But. we viewed this only at the individual

scales. Even though a much better understanding of the natural behaviour of annual peak

flows was achieved by methods discussed in previous chapters. more detailed features

across scales for me peak. flows were not possible using the classical stochastic methods.

Statistics emphasize identification, independence. homogeneity and stationarity of

the observatiom. but fractal geometry has partiality for something being fragment,

irregular, and disordered, and would display an evolution at scale saying "how rapidly

the irregularities develop as l;~ 0". These concepts will be developed in the next Chaprer

so that a totally different description of peak flows can be achieved.
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4.5 Summary

An initial view of the basic concepts of fractal geometry for srudying annual peak flows

has been taken. The "measuremem at scale" provides a useful tool to srudy the serial

correlation structure of annual peak flows in the following Chapters.
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Chapter 5

Scaling Behaviour of Peak Flow Series

5.1 General

Many hydrological time series. such as daily and monthly flow series. which are

continuous or discrete can be described by a random function or a stochastic process that

can serve as an image of the time series and explains the stIUcture of the observatiom.

Peak flows as a set of points distributed in a time axis are isolated points and completely

disordered to the point that classical medIods are unable to distinguish differences among

various cypes of peak flow point selS distributed along the time axis.

Figure 5.1 illustrates the distributions of peak flows along time axis at two Canadian

rivers. Using conventional statistics, it is difficult to explain bow different they are and

how well any mathematical paradigm could "translate" them to an "image", because

previously there was no suitable methodologies to descnbe their behaviour in the time axis.

The application of concept of scaling has achieved some success in the field of

hydrology (National Research Council, 1991), e.g. dealing with spatial and temporal

distribution of rainfall (zawadzki,199O; GoplJl and Waymire, 1990; Kedem and Cltiu,

1987; Lovejoy and Maodelbrat. 1985; Lovejoy and Schertzer, 1990; Waymire, 1985;
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Waymire and Gupta, 1987; Olsson et al .• 1992; Olsson and Janusz Niemczynowicz,

1996; VellUgopal and Foufoula-Georgiou. 1996; Paolo Burlando and Renzo Rosso. 1996;

Puente. 1996; Hairjema and Kelson, 1996) and in discussions about spatial and temporal

scaling disnibution of river flows (Gupta and Waymire, 1990; Wu and Hou. 1991;

Jayawardena and Lai, 1994; Gupta et al., 1996). The temporal scaling behaviour of peak

flows, however. has not been fully considered up to now except that of Turcotte and

Greene (1993) who hypothesized that the annual peak flows are sufficiently scale invariant

over [lme scales from one [0 one hundred years.

Peak flow observations are considered as a point set distribured on a time axis. These

observed points an: then rela[ed to the probabilities of occurences for given mresholds.

Thus, a family of curves can be consttue[e(1 [0 explain the feanue of peak: flow points. A

rechnique in frac£a1 geometry called the ti.mctionaJ box counting procedure will be used [0

construct the family of curves.

A number of peak: flows observed from Canadian and Chinese rivers are subsequently

analysed. It is hypothesised tha[ this approach will provide new insights into me possible

scaling behaviour hidden in peak flow evolution for the river flows investigated.
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5.2 Concept and Methodology

5.2.1 Box-Counting Dimension

The fractal dimension is an important [001 of fractal geometry. and ilS definition is based on

the idea of "measurement at scale ~.. (Falconer. 1990). One of the more widely used fractal

dimensions is the box-counting dimension discussed in Chapter 4.

Broadly speaking. the box-counting dimension £'b. defined in EqA.1 says mat

N(S) - ~- Db for small~. The box-eounting dimension. Dt,. is usually empirically estimated

as the gradient of a In - In graph of N(~) against ~ plotted over a suitable range of~. Then.

using least squares. the regression equation for estimating parameters of the graph line in the

logarithmic domain is obtained, i.e.

(5.1)

where N(~) is the smallest counting number of n-dimensional boxes of side length ~

required to completely cover a set. c is lhe imercept. and ~ is the box counting

dimension.

5.2.2 Functional Box Counting Algorithm

The method. herein employed [0 investigate the temporal scaling behaviour of peak flow

points is the functional box counting algorithm (Lovejoy et at.. 1987). This method
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transforms observations into a set of points whose dimension can be estimated by box

counting.

The fundamental concept of functional box counting is to consider a function. f(x).

which is transformed to an exceedence set:

(AT If (r) > T} (5.2)

where AT is defined by threshold T. If AT exhibi~ scaling behaviour, the number of boxes

to cover AT • Nrt~). can be expressed as

(5.3)

Thus. the functional box counting method characterizes a scale invariant set.

5.2.2.1 Two Aspects of Practical Importance

From an engineering viewpoint, two aspects of practical imponance will be proposed in

the functional box counting algorithm:

A probabilistic approacb

From the perspective of fractal geometry, the measure of peak flow structure is to

look at the feature of peak flows at varying time scales,~. Presupposing peak flow

points are measured by decreasing time scales, 1;. or peak flow points are involved varying

102



time intervals, l;. Ignoring the difference between occurrence of peak flow points within

the same time interval. our interest is in the probability that a step of measure with time

scale, l;, that includes at least one peak flow point. Hypothetically. a fraction or

probability of a time interval including at least one occurrence of peak flows, p~, is a

function of time interval length l;, for a given threshold. This situation is similar to the

construction of a Cantor set (Mandelbrot, 1977, 1982), in which the probability that a step

of length l; includes a line segment that can be obtained through the construction

procedure. However, the relationship between the probability p~ and time intervals, l;,

will reveal the structure of peak flow on the time axis.

Thresbolds available

For a corresponding data set, thresholds will be selected so that the properties of the

temporal scaling behaviour of peak flows which are the events of interest can be

investigated.

For a given threshold, such as an annual maximum flow, the peak flow points can

be transformed from the observed data, suggesting that a peak flow point-process, a lcind

of "POT" series (NERC, 1975), i.e. "Peaks Over Threshold", appeais in the time axis.

then the distribution of the high-level exceedences can be identified.

For example, cODSider the case of the daily flow observed at the Yichan gauging

station, Yantze River, China (Ministry of Water Resources, 1985), as shown in Figure
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5.2a. Let the threshold Qs be 50.000mJ/s. Figure 5.2b shows the point process that is

transformed from the daily flows at the threshold of 50.000 ml/s. The flow points

transformed from the daily flows cue conveniently considered as the instantaneous flows.

in comparison with the whole observed duration. Based on the transformed data in Figure

5.2b. a fract.a.1 analysis of peak points on the time scale will be performed.

5.2.2.2 Box-Counting Dimeosioa in the Probabilistic Approach

The probability. p~ . that an in1erval of length l; includes at least one peak flow evem, can

be obtained through the functional box counting procedure:

Assume probability. p~ . is expressed as the following

(5.4)

where NCl;) and N are the number of an time interval of length ~ and the [OW number of

time intervals, respectively, wbere N = L I ~ and L is the total length of the srudied rime.

Further. let

(5.5)

where V is the toW volume of measured objects, d is the Euclidean dimension of the

object. where its magnitude of a point is zero, of a line one. of a square two, and of the

cube three. Having drawn the In p~ - 10 1; curve and determined the slope of the scaling
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range, an empirical box.-eounting dimension, Db' can be found. The regression equation

for fitting the straight line in a logarithmic domain is

(5.6)

where b is the slope of the straight line.

Inserung Eq. 5.5 into Eq. 5.6, there is

Comparing Eqs. 5.7 and 5.1,

D.=d-b

(5.7)

(5.8)

the empirical box.-eounting dimemion can be obtained by Eq. 5.8. Thus, the relationship

between P~ and ~ is

(5.9)

5,2,3 Construction of the In P, - In ~ - Qs Family of Curves

In order to explore the temporal structure of peak flow points, a family of curves of lnP~

- tn ~ - Qs is proposed.
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5.2.3.1 A Symbolic DescriptioD or Exceedeoces

Supposing that there are observations of the peak flow points within the total observed time

length L shown in Figure S.la, for a given threshold, flows eXceeding this threshold can

be projected on the time axis. located in lhe corresponding time intervals. With lhe aid

of lhe idea of symbolic dynamics (Nicolis and Prigogine. 1989) a description of the

exceedences can be made.

We use the symbol·_", namely "yes R

• to denote occurrence of peak: flows in time

intervals (boxes) of size /;, and similarly, the symbol" ". namely "no". (0 indicate the

non-exceedences in the time intervals. For a given lhreshold, Qs. and the time interval

~i_1 . the peak flow points in Fig.5.2b are: projected into symbols .._ .. or" ... So the peak.

flow sequence is changed into a sequence of symbols shown in Fig.5.3 with l;, •• =730

days as an example.

Changing the length afme time intervals. ;;.. i= 2, 3•...• k. the same exceedeoces

of peak: flow points are projected in the changed time intervals'!;l and the probability. p~.

that a step of interval length l; includes at least one peak flow point. can be estimated. in

which the number of "_" boxes, N(l;), contains at least one .._" sign. over the total number

of boxes. N, for a given threshold. Under the different time intervats. the features of

exceedence points can be described. The procedure proposed is shown in Figure 5.3.

Changing thresholds. with the same procedure performed, the S1IUCtl1Ie or peak flows

is described.
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5.2.3.2 Steps in Construction of a Family of Curves

The three steps to construct a family of curves of In p( - In ~ - Qs are as follows:

1) For a given threshold flood. Qs. calculate p( according to the various scales

l;;. i= 1,2•... k, where k is an integer. N(O is me total number of the symbols

of "'_",andNisaratioofLtol;,.

2) Draw a curve through the scattered pOints In p( - In 1;, over the range of scales.

If a straight line exists. its slope, b, is estimated by the (east squares melhod and

an estimate of box-counting dimension Db for a given threshold Qs can be

determined by Eq. 5.8. where Euclidean dimension. d. of the problem being

considered, is one. If there are several straight line sections. several fractional

dimensions can be detennined over differeot ranges of scales.

3) For a given set of thresholds. the above steps are repeated, resulting in a family

of curves In P, - In ~ - Qs.

If the probability. In p(. linearly increases wilb. the time scale. 1;,. in the log--domain,

then a power law exists

(5.10)

therefore, it can be concluded that the probabilities of occurrence of peak flows are

invariant for a given threshold within the specific scaling range.

As an example, for step one, Figure 5.3 shows the symbolic description of the peak
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flow process for a threshold of 50,000 m)/s; for step [WO. a consoucted curve In p~ -In

l; - Qs with Qs=50.000 m)/s is shown in Figure 5.4a . and Figure 5.4b shows a family

of curves of In p~ - In l; - Qs for the same observations with three different thresbolds.

QS;. i=l. 2. 3.
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5.3 Scaling Behaviour of Peak Flows

Family of curves In p~ - In ~ - Qs can be used to describe [cannes of peak flows across

scales. In order to display the scaling behaviour of peak flows. the longest daily flow

record observed at Yicban on the Yangtze River. China. and the daily flows collected from

a number of Canadian rivers were used as shown in Table 5.1. The daily data are

ttansfonned into peak flow points along a time axis using the functional box counting

algorithm. in wbicl:l the probabilities of exceeding a given threshold arc related to the scale

of measurement in order to give a family of such curves at various ttuesbolds.

The results of a consaucted family of curves In p~ - In !; - Qs are shown in Figures

5.5 and 5.6a-g. The estimates of the box-counting dimensions. Db' of observations at

Yichan. are illustrated in Table 5.2. As expected, all the box-eounting dimensions Db

equal values between 0 and 1. That is, the peak flow points are more than just one point

(dimension 0), and much less than the length of a line or curve (dimension 1).
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Table 5.1 Characteristics of daily flows collected from Canadian rivers
(Environment Canada. 1992)

wsc Prov. Gauging Station Drainage years
Number (km'l

05AJOOI Alia- South Saskatchewan River at Medicine Hat 56.400 1913 -1990

05CC002 Alia- Red Deer Rjver at Red Deer 11.600 1913 -1990

05DFOOI Alia- North Saskatchewan River at Edmonton 28.000 1912-1990

05HGOOI Sask. South Saskatchewan River at SaskatOOn 41.000 1912 ·1990

05KJOOI Man. Saskatchewan River at the Pas 341.000 1913 -1990

08MFOO5 B.C. Fraser River at Hope 217.000 1913 -1990

05DCOOI Man. Red River at Emerson 102.000 1913 -1990

Table 5.2 An illustration of box-counting dimension and corresponding scaling range
of observations at Yichan. Yan nze River. China.

Qs D. Scaling Range Qs D. Scaling Range

29800 0.506 60-200 days 50500 0.136 30 days· I year

38600 0.350 60 days-I yeM 53300 0.095 30 days· I year

40200 0.318 60 days-l year 54600 0.011 30 days- I year

41600 0.298 60 days-l year 55600 0.065 30 days- I year

41900 0.293 60 days-l year 56100 0.064 30 days- I year

42100 0.292 60 days-l year 51800 0.063 30 days- 2 year

43500 0.261 60 days-I year 59000 0.051 30 days- 3 years

44000 0.258 60 days-I year 61000 0.021 30 days- 6 years

45300 0.236 60 days-I year 62300 0.020 30 days- 8 years

46300 0.223 60 days-I yeM 64600 0.Q\8 30 days- 15 years

48000 0.181 60 days-I yeM 66100 0.014 30 days- 25 years

48500 0.118 60 days-I year 66600 0.008 30 days- 50 years

49300 0.161 6Odavs-\ ~.. 11800 0.003 30 davs- 55 years
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Figure 5.5 A family of curves In P, - In ~ - Qs for !he peak: !lows
observed at Yicban. YangtZe River, China.
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Figure 5.6. A family of curves In P, - In ~ - Qs for the peak flows
observed. at Hope, Fraser River, B.C., Canada.
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Figure S.6b A family of curves In P,In ~-Qs for the peak flows
observed at Medicine Hat, South Saskatchewan
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Figure S.6c A family of curves In P, - In ~ - Qs for the peak flows
observed at Red Deer. Red Deer River. Alta .• Canada.
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Figure 5.6<1 A family of curves In P, - In ~ - Qs for the peak flows
observed at Saskatoon, South Saskatchewan River. Sask., Canada.
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Figure 5.6f A family of curves In P, - In ~ - Qs for !he peak flows
observed at Emerson. Red River, Man.,Canada.
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Figure 5.6g A family of curves In P, - In ~ - Qs for !he peak flows
observed at Edmonton. North Saskatchewan River. Alta..
Canada.
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The family of curves In P~ - In c; - Qs in Figures 5.5 and 5.6 contain a set of

"message" or "texts" described by:

Probability P,

The family of curves represents the probability distribution of a time interval

including at least one occurrence of peak flows for a set of thresholds. The variation of

probability P~ in the logarithmic domain as shown in curves Ln P~ - Ln c; - Qs is related to

the variation of C;. tlIe greater the time inrerval c; , me grea[er dIe probability of exceedence

of peak flows. When Hme intervals c; increase to a certain size, tlIe probability dlat the

Hme interval includes at least one occurrence reaches one.

Thresbolds Qs:

Threshold Qs as a parameter in the family of curves In P~ - In c; - Qs reveals the

peak flow strucwre at different levels of thresholds. The temporal strucrure of peak flow

points shown in the curve depends on the tl1reshold, the higher the tltreshold, the sparser

the pattern, me lower dIe threshold Ihe more clustered the peak flow structure. According

to a specified problem, a suitabLe set of thresholds is designed, the peaK flows correlation

structure across scale could be clearly revealed.
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8ox-counting dimeosioo D. :

The slopes of the curves shown in Figs. 5.5 and 5.6 are sreeper. with increasing

thresholds. Qs. which result in decreased box-counting dimensions Db. Thus. the higher

the box-counting dimension. the denser the time structure. and vice versa. In the limiting

case, where the slope of the curve is unity for a special threshold. which we call the upper

threshold. Qs... the box dimension equals zero. That is. they are a set of isolated points.

In conuast. when the slope is zero for a lower limit of threshold. Q~. D.= 1, i.e. a

horizontal line. When D. is between (0.1). some form of scaling of peak flows exists.

Thus. the box-counting dimension used here reveals the temporal scaling behaviour of the

peak flow point set and is a measure of how the peak flow points will fill the time axis

occupied.

Segments of straight lines 00 the curves:

Each In p~ - In 1; -Qs curve is relaled to the temporal distnbution of the occurrence

of peak flows over a threshold. It has a segment of straight line for a certain range of 1;.

Thus. the power law shown in Eq. 5.10 is valid and it makes sense [0 show that an

occurrence of exceedences of flows involved in the time intervals. displays invariance or

self-affInity within the corresponding scaling range. while 1; gets bigger or smaller outside

this range. the power law fails. The wider ranges of saaight lines in the family of curves

also indicate existence of possible correlation across remporal scales due to similar
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variation.

The whole system of peak nows:

[f a family of curves In P~ - In l; - Qs is considered as a system, this system maps

from the peak flow point set to a graphic interpretation which contains all information

about the peak flows distributed on time scale and represents inter-scale correlation

between these observations for a given watershed.

The significance of those results revealing the existence of scaling behaviour of peak

flows is discussed as follows.

5.4 Practical Implications

The proposed family of curves of 10 p( - In l; - Qs gives us a richer insight into the narure

of peak flows. Some practical implications for the family of curves are explained below.

5.4.1 Existence of Scaling Behaviour of Peak Flow

For a wide temporal scale range, a family of curves In p( - In l; - Qs constructed from the

peak flows observed in Canadian and Chinese rivers provided a power law between the

probability of a time interval of length l; including at least one occurrence, p(. and the time

interval of length l;. It appears that there is an existence of scaling behaviour of peak flow

and the same variation of occurrence of peak flows across scale exists. This phenomenon
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resembles the Hurst's phenomenon discussed in Appendix A and Chapter 2.

[0 classical probability theory, a point event process on the time horizon is usually

considered as a Poisson process, {A(t): t>O}, in which events occur instantaneously and

independently on a time axis. and

P{II(I)_Ij_e"(AJ!. 1-0.1.2 ...
i!

(5.lla)

Corresponding to {A(t)}, which also is interpreted as the number of arrival in

intervals, there are arrival epochs, OS t l S tz S ...• and inler-arrival times. t. =t,• ti=t;-lo-••

i=2.3, .... The probability P{t>t} occurs is equal to me probability of no occurrences

P(A(I) =OJ. sueh as

P{T > Ij- P{lI(t) - OJ

_(AJ!e"'
01

=e-h

(5. 11b)

where parameter 11.>0 is the mean £ate of occurrences of events and t>O. So the

probability P{t~t} is expressed by

P{TSI}-I-P{T>lj

- J_e-lz
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We use time scale I; instead of t. and in logarithmic domain we have

In P {TS':}~ln (1- .."') (5.[2)

In the logarithmic domain there is a non-linear relationship between probability P and time

interval of length i; in Eq. 5. [2.

It is believed that the straight segments appearing in the family of curves in a wide

time range are significantly different from the Poisson process. Figure 5.7 shows those

differences between the family of curves and Poisson process for the observations at

Yichan. Yangtze River, China. The differences appear large on most thresholds except for

a few of the highest thresholds.

The proposed family of curves In P~ - In ~ - Qs may serve as a good description of

inter-scale strucNre of peak flows. The difference between the observed distribution of

peak flows and the Poisson model indicates that the proposed curves are a better model of

occurrence of point events.

5.4.2 A Group of Break Points

By looking at a family of curves (Figs. 5.5 and 5.6), the group of break points on most

curves appear regular and suggest some physical meaning.

All points on the family of curves are related to a time interval or to a special

duration on the time axis. With this natation, it is not surprising that a group of break.
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Figure 5.7 A family of curves In P, - In ~ • Qs and Poisson process for
the observations at Yicban. Yangtze River, China.

125



points indicate a special duration in which at least one peak flow occurs. One of the most

interesting group of break points is the first group which is located from the right of the

origin at 5.9 in the In ~ scale corresponding to about one year as shown in Figs. 5.5 and

5.6a.b.c. d. e. f and g. This indicates a period of one year even though lhe occurrences

of peak flows of small and medium magnitudes have various probabilities within this one

year cycle.

Apparently, the break points are inherent in lhe nature of the data rather than the

technique that was applied to generate the curves.

Figures 5.8a and b show the different techniques in choosing the time intervals and

thresholds when drawing curves. They are insensitive ro the appearance of the first group

of break points. for example, for the observations at Hope, Fraser River. B.C., canada.

Conversely. if synthetic data were used ro perfonn the same procedure, their results

will be significantly different.

Here twO types of dara are generated:

Type 1:

The dara are independently and normally distributed. The mean value and standard

deviation across time axis are estimated from those observed at Hope, Fraser River. B.C .•

Canada.

Type 2:

The dara generated can adopt any hydrologic stochastic models with seasonal
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components such as ARMA( Box and Jenkins. 1970) and Cannonical Expansion model

(Spolia and Chander. 1977). The simplified stochastic processes are generated by

considering the daily characteristics:

Let Qij be flow discharge.

Qu QI.Z···QI.}·· Q/.I.
Q,.I Qz.z·- Qz.}" Qz."

Q" Q" ... Q" ... Q,.

Q., Q., ... Q., .. Q••

and their mean values and standard deviations each ensemble are

- I'
Q,= -~Q"m,a,

s, = t,(Q;.,,-Q,)'/(m-l)

[27

(5.13)

(5.14)



where the all parameters. such as sample length. n. and the number of realisations. m.

mean values ~ and standard deviations. Sj across the ensembles of series. are estimated

from the observations at Hope. Fraser River. B.C .• Canada.

We are interested in the peak flows over a given threshold. so generated flow

discharges. Y'i' are simply obtained by

(5.15)

where it is assumed that l;.,j is a normal random variable with zero mean and one standard

deviation. Thus a simple time series of flows can be obtained..

The generated data Type 2 are closer to the observations while Type 1 is noc.

The same procedure of the functional box counting performed on the generated data

Types I and 2 to produce a family of curves is shown in Figs. 5.9 and 5.10. respectively.

From Figs. 5.9 and 5.10. the flfSt group of break: paints matches the one year cycle

in Fig. 5.10. however. nothing matches a one year cycle in Fig. 5.9.

5.4.3 Saturation Points

Most curves arrive at a horizontal line. i.e. P = 1. which implies a saroration point.

Saturation points represent a special time interval in which "yes" intervals for a given

threshold Qs occur with probability 1. [t is reasonable [0 regard this point as a kind of
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upper limit of empirical or observed rerum periods. A straight line inr:ersecrs the

horizontal line at a point, in which P= 1 can be considered as an upper limit of empirical

return period for the corresponding threshold, Qs.

5.5 Engineering Consideration

A family of curves In p~ - In l; - Qs describes the temporal srrucrore of peak flows and is

a parametric set of curves with parameter Qs, In p~ - In l; which can be transfonned into

the form

In P, - f(ln ~.Q.J

In fact, Eq.5.16 concerns two important aspects in engineering hydrology.

5.5.1 Empirical Plotting Positions

(5.16)

For a ftxed. time scale, say l;=365, the probability, p~. serves as an estimate of exceedence

probability corresponding to the threshold Qs. If the annual maximwn flows QSi' i= 1.2•

... , m, are used as thresholds, a set of the empirical plotting positions can be determined.

This is a set of empirical plotting positions which is related to the scaling propenies of

peak flows and incorporated in flood risk analysis. The details of dealing with this topic

will be described in Chapter 6.
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Figure 5.8a A family of curves with special time intervals for the .
observations at Hope, Fraser River, B.C., Caoada.
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the observations at Hope, Fraser River. B.C., Canada.
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Figure 5.9 A family of curves In P, • In ~ • Qs for Type I generated dara
shown in section 5.4.3.

132



0

I
-1 l

-2

-3

C1. -4
S

-5

-7 L-_.L...L_'--_'--_'----'_--'_--'-_--'-__

2 3 4 5 6 7 6 9 10 11
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5.5.2 Risk of Failure

What is the probabilicy of a flood exceedeoce during a design life 1..o? [0 engineering

hydrology. this question is usually answered by using independent processes sucb as lhe

Binomial or Poisson (Linsley, 1958. 1975; Chow, 1964). However. this approach does

not match well with observations as shown in Fig.5.?

It is understandable that if lhe time scale, ~ t in a family of curves In p~ - In l; - Qs

is considered as a design life Lo. the probability, p(. of a time imerval including at least

one occurreoce of exceedence. is, in fact, a risk of failure during the design Life. denO[ed

as R. Thus, Eq.S.16 can be rewritten as

In R - / (In Lo. Q,) (S.I7)

Funhermore. suppose the threshold Qs is given and defined by • design flood QT' the

corresponding design return period, To. can be determined. Hence, Eq.5.L7 can be

expressed as

or

In R - /,(In Lo. To)

To - /, (In LD. In R)

(S.18.)

(S.18b)

Hence, the family of curves In p( - In ~ - Qs can serve as an empirical relation of 10 R-
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In Lo - TD ' which is differeo[ from me Poisson explanation. When design flood QT is

flXed,lhepower law, R- Lo c
, exists, wherec is a constant. Figure 5.11 shows dIe relation

In R-ln Lo -T D observed at Yicha.n, on YangtZe River, China, , where T I , T:! and T] are

rerum periods.
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5.6 Summary

The variability of peak flow points in the time axis is completely disordered and related

to me safety of hydraulic structures. Classical methods do not adequately describe this

behaviour. From a macro scale point of view, in fact. peak flows evolution in time

certainly have their own special behaviour for a given watershed.

This chapter focuses on studies of peak flow series across scales. A method for

transforming observed point processes to a family of CUIVes In p( - In ~ - Qs was proposed

to present the basic characteristics of peak flows along the time axis. The family of curves

In p( - In ~ - Qs thus contaim all information about flood temporal characteristics and

presents the inter-scale correlation structure for a given watershed. It describes the

relationships between various time scales and probabilities of peak flow occurrences. It

also explores scaling behaviour and shows some narural behaviour. such as the naeural

cycles inherent in the peak flow series which cannot be adequately described by classical

methods at scale n or at scale one.

The proposed family of curves In P~ - In l; - Qs is also appropriare for hydrological

practice, it meets two important aspects of flood risk analysis. which are discussed in the

next Chapter.
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Chapter 6

A Scaling Plotting Position for Flood Risk Analysis

6.1 General

Analysis based on fractal geometry in Chapter 5 indicates chat peak flow points

varying with time lnrervaJs follows a power law over wide ranges of time scales. thus a

family of curves In p(-ln ';-Qs. which transforms observations into a graphic explanation.

was developed.

Straight lines in the family of curves indicate observations being invariance across

scales. in other words. a correlation strUCture of peak flows exists. This correlation

struCDJrC, however, includes the feanue of long- [erm persistence.

According to Hum's finding, Mandelbrot (1977, 1982) pointed out !bat an account

for the Hurst phenomenon was a symptom of scaling, so "scaling noise" bad been defined

intuitively. Since the tenn "scaling" indicates a kind of order, scaling noise describes an

order hidden in a flucbJation and can be expressed as a scaling Gaussian random process.

Hence, fractional Brownian motion, in which the box dimension is determined by

2-H (Mandelbrot, 1982), plays an important role in describing and mndelling the

natural feaU1re of observations. The terms "scaling" or "scale-invariaoce" provide a
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broader meaning and a rational basis for describing and exploring the natural behaviour

of peak flows.

A family of curves well describes the scaling behaviour of peak flows over broad

ranges of time scale, thus the family of curves becomes useful if these long-tenn

behaviours are considered in flood risk analysis.

As we know, the main purpose of flood frequency analysis is to estimate flood

magnitudes according to specified probability and the confidence interval of the event

associated with selected probability level. Hydrologic frequerx:y analysis statistically foods

an optimal quantile and its sampling distribution by means of observed sample. Probability

plotting positions which are widely used in flood frequency analysis, are used for the

graphical display of observed floods, and serve as estimates of the probability of

exceedence of those values (Guo, 1990). However, proposed family of curves In P~-ln c;

Qs well presents the scaling behaviour of peak: flows. and are directly related to the

probabilities of exceedences of those observed data. As was mentioned in section 5.5.1.

for a fIxed time interval. l;=1 year. the probability. P~. could serve as an estimate of

exceedence probability corresponding to the threshold Qs. lbis gives empirical plotting

positions, which are based on the measurement of peak flows across scale.

In this chapter, an empirical probability plotting position formula is proposed based

on scaling behaviour of peak flows. Extensive Monte Carlo experiments are carried out

to assess the properties of the proposed plotting position formula and existing standard
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approaches for flood frequency analysis. Also, practical applications of the proposed

method are demonstrated using a number of peak. flow observations from Canadian and

Chinese rivers.

6.2 Standard Flood Risk Analysis

Flood frequency analysis is concerned with estimating a design flood for a given rerum

period and estimating the probability of exceedence of a given flood within a given time

imerval. There are three main uncertainties in flood risk analysis (Wood and Rodriquez;

ltuzbe. 1975): i.e., natural uncertainty, parame[er uncertainty, and model uncertainty.

Because the occurrence of floods is a complex process, our limited understanding of the

process results in increased model uncertainty. Therefore, [0 decrease the model

uncertainties, i[ is important to understand the Daoore of floods.

Two hydrologic data series are commonly used in flood risk analysis: the peaks over

threshold series (pOT) (eg. NERC, 1975) and the anoua! maximum series (AM). A POT

series is a series of data that takes alllhe peaks over a selected level, so the number of

exceedences in the series is greater that the number of years of the record. An AM series

includes the largest values occurring in each of the equally long time in[ervals of the

record. The time interval length is usually taken as one year. The number of exceedences

is equal to lbe number of years of the record (Chow, 1964; Chow er aI., 1988). The words

"peak flows" in Chapter 5 and "annual peak. flows" in Chapter 2 and 3 correspond to the
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POT series and AM series. respectively. It is assumed that annual peak: flows in AM

series are independent of each other. However. there is a greater probability that the peak

flows in a POT series are related and less independent.

Based on the assumption that observed annual peak flows are identically and

independently distributed (iid). standard flood risk analysis assumes that the annual

maximum flows are randomly sampled from an assumed parent probability distribution.

F(Q/9), where 9 is a set of parameters estimated from the sample and Q is a flood

discharge, a random variable.

Therefore, [WO aspects of flood risk estimation to be considered arc: choice of pareD[

probability function F; and choice of parameter estimation method to estimate e.

In reality, since naNce's distribution is unpredictable. reasonable 'flood-like'

distributions have been recommended. For example, the log-Person Type mdistribution

was recommended by the U. S. Water Resources Council in 1967 for use by U. S. Federal

Agencies (Benson. 1968). and the GEV distribution was recommended for use in Britain

by NERC (1975).

According to the suggestion from WMO (1989). in which foul1een candidate

distributions were recommended to be used with annual maximum. the lognonnal

distribution (LN) (Kaczmarek, 1957; Sledinger, 1980) and the Pearsoo Type ill

distribution (Pill) (Matalas and Wallis, 1973, Bobee, 1973; Hua, 1985) are listed in the

first [wo positions by WMO. these are hence considered in this study. The probability
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density functions of Q are expressed as

for Pearson Type ill (Foster, 1924) and

logq ~O

where y = log q

(6.1)

(6.2)

for lognonnal distribution (Chow, 1954), where the parameteIS 30, Pand a. in the Pearson

Type ill and parameters ~ and cr in the lognormal distribution are estimated from observed

samples.

The quantile QT of floods for a given return pericx:1 can be expressed as (Chow, 1951)

(6.3)

or Pearson Type ill and

(6.4)

for lognonnal distribution, where KT and K"._lll are frequency factors for Lognormal and
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Pearson Type ill respectively, I' and cr in Eq. 6.3 and J.l, aDd cr. in Eq.6.4"" population

mean and standard deviation estimated from observed samples.

Various methods for estimating the parameters are commonly used in flood risk

analysis:

the maximum. likelihood method (MI.) which gives unbiased and minimum

variance estimates;

the method of moments (MOM) which is biased and performs poorly for some

models (Malalas and Wallis, 1973) but they are efficient for some distributions

(Lowery and Nash, 1970) such as Pearson Type ill (Song and Ding, 1988; Wu

el aI., 1991);

the method of probability weighted moments (PWM}(Greenwood et al.. 1979)

which is a linear combination of order statistics and is unbiased for small

samples; and

L-momenrs melhod (Hosking, 1990) which is a lim:ar combination of PWM's but

wilh a clearer statistical interpretation. and

graphical curve fitting methods

Among the available methods of parameter estimation. graphical approach

(Dalrymple, 1960; Chow, 1964; Chow et aI., 1988) which cOesisl of fitting a function

visually to the data is favoured by many hydrologists and engineers. It has been widely

used both in hydraulic engineering and hydrologic practice.
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Graphical estimation yields quantile estimation directly ralher than estimates of the

individual parameters. The steps are:

(1) Plot data on a probability graph paper;

Rank observed data from the largest to the smallest value

(6.5)

where n and m are the total number of values to be planed and the rank: of a value,

respectively. Calculate the plotting positions from a selected planing position formula

PI s: Pl"':S; P...· S Pit (6.6)

and then a pair of data is planed on a specially designed probability paper;

(2) Curve fitting;

Once the data have been plotted on probability paper, an eye-guided line or a curve

is drawn through the planed points;

(3) Estimate quantiles.

Estimated quantiles for various rerum periods are selected from the 'best-fit' line.

The key step is to determine a plOlting position lhat estimateS the probability of future

floods. The choice of plotting position fonnula for use on probability graph paper has

been discussed by many authors (Hazen, 1914; Weibull, 1939; Gumbel, 1943, 1947;

Blom, 1958; Tulcey, 1962; Gringorten, 1963; Cunnane, 1978; Guo, 1990).
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6.3 Plotting Position Formulas

A probability plot is a plot of a magnitude of flood versus a probability. Most ploning

position fannulas expressed as probabilities, are special cases of the general fonn:

P. ~ (m-a)
(nd-2a)

(6.7)

where Pm is the plotting probability of the mltl largest value. n is the sample size and a is

a constant. For the Weibull (1939) fannula 0.=0. for the Cunnane (1978) formula

0:=0.4. [or the Gringo"en (1963) [ormula 0:=0.44. and [or the Chegodayev (1955)

fannula 0.=0.3.

Ploning position formulas are usually associated with theoretical order statistics (see

Appendix B). For samples of inrermediate size, the expected value of order statistics is

dependent on a corresponding quantile with a linear relationship (Harter. 1971). Using lhis

linear relationship. the order statistics of a sample can be used to estimate the sample

quantiles.

Let Q\. Qz....• ~ be a simple random sample from a population with probability

density function (pdf). [(q). and cumulative distribution function (edf). F(q). Q,. '6.....

<4 are assumed to be statistically independent and identically distributed. When this

random sample is ranked as <411 ;;: Qui C!:: ••• ;;: QI!III .C!:: ••• C!:: Q(lIl' the mcfl
- order statistic Q(I!II)
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which is a random variable. has a pdf. g.(q). given by

(6.80)

and me cdr, G.(q),

(6.8b)

Let Y",,-I·F(Qc.~, where 0 S Y,,", s I, beeauseO s F(Q",,) s I. The probability density

function of the function y(..., of the random variable FCQ/IIIl). be h",(y)

h. (y) = m( n )y"c (1_y)-'
m

or

h.(y) =[y"C(I_ y)--]/[B(m,n-m+ I»)

where B is a beta function with two parameters m and (n-m+l).

(6.9a)

(6.9b)

Plotting position formulas based on distribution of QIII' in Eq. 6.8 should take

probability density function of parent population into consideration. Formulas associated

with the distribution of YClQ1 should use Eq. 6.9 with free-distribution ofparem Q. Most

of the weU-lcnown plotting position formulas are measures of central tendency of the
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disttibutions of either Ylm} or Q(ml' thus Eqs. 6.8 afld 6.9 are the bases of theoretical

ploning position formulas.

However. plotting position formulas are classified into three groups (Ii et al .• 1984):

Group I. including Weibul (1939). Chegodayev (1955) and Cunnane formulas (1978). is

associated with distribution of Yfml which is distribution free in using Eq. 6.9. Group II.

including Gringorten(1963). WeibuJ (1939), Cbegodayev (1955) and Gumbel (1943)

formulas. is related to the distribution of Qml in Eq. 6.8. Group m is based on the

empirical distribution function. it contains the formulas such as Hazen (1914) and

California (C.S.D.P.W., 1923). Weibul and Chegodayev formulas can be derived from

both Eqs. 6.8 and 6.9 (see Appendix B), so they could be belonged to Groups I and II.

Overall, Eqs. 6.8 and 6.9 as bases of theoretical plotting position formulas, are

derived under the condition that QI' Q2... _, Qn are n independent variables with the same

pdf f(q). In other words, the term "short-term independence" discussed in previous

Chapters is one of the prerequisite conditions for the theoretical plotting position formulas

(see Appendix B).

According to order statistical theory. even through some suggestions of relaxing

assumptions and considering nonidentically disttibuted Qt, Qz....• Qn as well as various

panerns of dependence have been made (David, 1981), statistical long-term properties

have not been discussed yet in srudies of order statistics.
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6.4 Scaling Plotting Positions

6.4.1 Basic Concepts

The basis of the plotting positioo formulas discussed above suggests that the statistical

average of order statistics, such as mean (Weibull formula), median (Gringonen formula)

or mode (Chegodayev formula), is linearly varying with correspooding quantiles. Using

this linear relationship estimated quantiles afe available. However, plotting position

formulas involved in Groups I and II are theoretically derived from the probability

function of Y(m) or order statistics Qcm)' Parent random variable Q. being independent is

the basic assumption for these derivations.

Recall Chapters 2 and 3 dealing with long- and short-term behavior of peak flow

series. Studies indicate that long-term dependence is not uncommon phenomena in peak

flow series as well as in other independent data. Because of long-term persistence, the

variation of parameters and quantiles increases in flood risk analysis, hence, the impacts

of this property on design flood estimation cannot be ignored.

Recall Chapters 4 and 5, proposed family of curves well present correlation suucture

of peak flows based on the measurement at scale. Straight lines over broad ranges in the

family of curves indicate existence of scaling feature of peak flows. This scaling behavior

is related to the long-term persistence of peak flow series.

The thresholds, Qs, in the family of curves, in fact, are ranked as QS(I) " QS(1) " ..

" QS(m) " ... " Qs,., from the right to the left in the family of curves. Furthermore, for
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a given time scale, ~. say ~= 1 year or 365 days. probabilities of exceedences. p~. are

ranked as P~'ClJ s: p~./l)S: .. s: p~.(m) s:... S: P~,(nl from the bottom to the top at this fIxed time

scale. Thus. the ranked QSCml and P('lml could serve as order statistics and corresponding

empirical exceedence probability, respectively.

Consider the concepts described previouslly. ploning position formulas are related

to the order statistics and corresponding exceedeoce probabilities (Hirsch. 1987; Hirsch

and Stedinger, 1987), and serve as an estimate of the probability of exceedence for

observations (Guo. 1990). Theoretical planing positions in Group I are the expectation

of exceedence probability function. E(Y(ml) in Eqs.B.9 and B.lO of Appendix B.

If AM series are considered as a set of thresholds ranked in the family of curves. p~

are exccedence probabilities for the corresponding thresholds. A statistical model to infer

expected value of exceedences is realisable.

AM series are independent and identical distributed within short-term scale. On the

other hand, they are possibly correlated over wider scales according to the calculated

results of P(lQko) in Chapter 3, where PCK2:ko) is the probability of a peak flow series

exhibiting long-term persistence. A family of curves well demonstrates peak flow statistical

characteristics including 100g- term persistence, it should be a basis deaIing with planing

position formula which takes loog- and short-term behaviors into account.

Thus. an empirical plotting position formula is developed. which serve as an estimate

of expectation of exccedence probability, and takes scaling behaviour of peak flows into
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account.

Since this plotting position fonnula is based on the family of curves and relaced to the

scaling behavior of peak flows, it is called from now on a scaling plotting posicion formula

or SPP. The following are the ideas behind che scaling plotting posicion fonnula:

1) Lec empirical probabilicy of exceedences of flood discharges, P~' be a random

variable. Its magnitude is related Co ocher variables, such as the level of exceedence

expressed as a threshold Qs ranked in the family of curves, and che cirne interval

of occurrence of exceedence, ~.

2) The expectation of random variable, P~, can be escirnated by a scatistical model,

chus the problem associated with a statistical model can be expressed as a

relationship between the random variable, P~' and the variables, the level of

exceedence. Qs, and time interval, ~.

3) A linear regression model in log domain is assumed to connect the relationship

between In P, . In ~ and Qs.

4) The observations of variables, P~ , In ~ and Qs, are selected from a family of

curves which presents scaling behaviour of peak flows.

5) Once the expectation of p~ is estimated, a scaling plotting position formula can

be detennined.

Principally, the family of curves is the basis for the statistical estimation of the

proposed planing positions. Since a family of curves well describes scaling behaviour
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including long-term behaviour of peak flows. lbe plotting position formula based on the

family of curves should be more accurate than that of classic plotting position formulas.

Based on the above considerations, the scaling ploning position formula is now

developed.

6.4.2 Scaling Plotting Position Formula

The key of the proposed scaling approach ploning position formula is to construct a

probabilistic model [Q infer expectation of probability of exceedences.

6.4.2.1 A Linear Statistical Model

Let a family of curves In P~-In t; be transformed into a mathematical relationship. Assume

that the probability of occurrence that can be equivalently expressed as the ordinate in a

family of curves, p~, is related to the excecdence level expressed as a threshold. Qs, and

the time interval, ~, in a logarithm domain by:

In p,. P,+P,Q,+p,ln ~+ .. +p,Q,ln~-? (6.10)

where p~ is a random variable having a mean that is a function of non-random variables,

Qs and~, and Po. P., 132 ... 13k are (k:+ 1) unknown parameters, 1') is a random variable

which is normally distributed, 1') - N(O, a).
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Let Z = InP,. Xl = In.;' .X2 = Q, . .... Zk = Q.ln.;'. thus a general linear model of

the form is

Z; fJ,'fJ,XI~fJ,X2~... -fJ.Xk-'l

£('1)=0

Vor('l)=""

Cov('l,,'l,) =O,i" j

(6.11)

where Z is a dependent variable, Xl,X2, Xk are independent variables in the

mathematical sense. The expectation of random variable Z is

(6.12)

Thus E(Z) is a linear function of 130. 131 .. I3t and represents a plane in the Z. Xl.

X2. ... Xk space. The unknown parameters 130' 13 .. ... at can be estimated by the least

squares method. However, there are n-straight lines in a wide range of the family of

curves In P~-ln i;-Qs, hence n- ZIt Zz ... z" on Z and nxk independent observations are

available from the family of curves, and the estimate of the expectation of Z from the

linear regression equation

(6.13)
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or

(6.[4)

is conveniently estimated by the least squares method. where bot b l • ~ ...bt are the

estimates of ~" ~I' ~, ... ~,.

The individual tenns in Eq.6.10 might be numerous, and in fact. a stepwise

regression analysis (Klecka, 1980) and corresponding hypotheses testing are carried out.

At the end, in a stepwise procedure. the significant tenns will be selected for a given

selection criteria.

Once parameters bot bl • b2 ••• b t are estimated, the Eqs. 6.13 or 6.14 can be

oblllioed. Let ~ be 365 days, an empirical plottiog positioo formula can be determined for

givenQs.

6.4.2.2 Aboul Logarithmic Transfonnalion

The estimate of expectation of Z in In-space we deal with is unbiased. This unbiased

estimate is useful for investigation of the statistical properties of scaling behaviour of

flows. However, p( in Eq. 6.14 can be considered as a biased estimate and does not have

the minimum expected error variance. thus correction of bias (Miller, 1984; McCuen and

Soyder, 1986; Koch and SmiI[ie, [986; McCueo et aI., 1990) for plotting position or

empirical reduction of error needs to be achieved. The method for correcting the bias
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suggested by Miller(1984) could used to reduce t.he bias due to the logarithmic

transformation.

6.4.2.3 Steps in SPP Method

Based on the above consideration. the steps of the proposed method to estimate flood

quantiles are as follows:

1) Assume peak flow series Qj' j=l. 2 •...• s. is a n-year POT series and QSi. i=l.

2... _, o. denotes a-year AM flood series where s>o.

2) The functional box. counting procedure is carried out to construct a family of

curves Ln P~-ln l;-Qs. where annual maximum floods. QSj. i= t.2. ,n. are the

thresholds.

3) Based on the family of In P,-In ~-Qs curves. necessary information is obtained

and parameters in Eq. 6.13 or 6.14 are estimared by a stepwise regression

analysis.

4) Let time scale be equal to 365 days in the estimated Eq. 6.13 or 6.14. empirical

plotting positions p~ are calculated and classical graphical curve fitting procedure

is used to fit a curve to the points. and flood quantiles will be estimated from the

fined curve.
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6.5 Applications of SPP Method

In this sDJdy. the scaling approach plotting position formula bas been used [0 estimate lhe

flood quanr.iles in Canadian rivers (Environment Canada, 1992) and at Yichan guage.

Yangtze River. China (Ministry of Water Resources. 1985). The daily flow records of

Canadian Rivers used are shown in Table 6.1.

Table 6.1 Characteristics of daily flows collected from Canadian rivers (Environment
Canada. 1992)

wsc Prov. Gauging Station A(km~ YearsN.-,
OSAlOOI Aha. South Saskatchewan River at Medicine Hat 56.400 1913-1987

OSDFOOI Alia. North Saskatchewan River at Edmomon 28.000 1912-1986

OSHGOOI Sask:. Soulb Saskatchewan River at Saskatoon 4L.OOO 1912-1986

OSKJOOI Man. Saskatchewan River at lhe Pas 347.000 1913-1987

08MFOO5 B.C. Fraser River at Hope 217.000 1913-1987

6.5.1 Calculation of SPP

As an example. a stepwise regression procedure and corresponding statistical hypothesis

tests for the gauge 08MFOO5 of Fraser River at Hope are illustrated in Table 6.2. in which

an empirica11inear regression equation taking the form. Eq. 6.13. where the variables ~.

could be chosen subjectively, e.g. for X;, i= 1,2,3, .. .5 are given by
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Table 6.8 Comparison of SPP with other estimators for the lognormal distribution, where
the units of BQp and SQp are mJ Is but RQp is in dimensionless

P,=.OOI P,=.OO5 Estimation Methods of Quanti1es

n Variable MOM PWM 0.0 0.3 0.4 0.5 SPP

BQPl 72768 74463 79015 75482 75093 74828 105872

BQp, 67426 68507 71595 69134 68859 68330 87216

30 SQpl 7868 8872 11514 9799 9260 8754 12023

SQp, 5609 6146 7463 6550 6255 5976 7877

RQp, 10.81 11.92 14.57 12.82 12.27 11.76 11.36

RQp, 8.32 8.97 10.42 9.39 9.05 76405 9.03

BQpl 71753 72932 75979 74164 73581 72827 102401

BQp, 66676 67473 69616 68326 67901 67365 85044

40 SQPl 6964 7542 9355 8105 7686 7200 9084

SQp, 5050 5257 6235 5564 5335 5062 6011

RQpl 9.71 10.34 12.31 10.93 10.45 9.89 8.87

RQp, 7.57 7.79 8.96 8.14 7.86 7.51 7.07

BQPl 72410 73952 75933 74430 73794 73259 102194

BQp, 67239 67857 69665 68581 68136 67741 84870

50 SQpl 6217 6521 7894 6990 6564 6252 8097

SQp, 4474 4630 5353 4836 4600 4427 5291

RQpl 8.59 8.89 10.40 9.39 8.90 8.53 7.92

RQ" 6.65 6.82 7.68 7.05 6.75 6.54 6.23
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XI' In~

X2=Q. X3=Q.ln~

X4 = (In~/n X5 = Q:"

The criteria for selecting variables [Q enter into the model and for remaining are:

Maximum R1 ·statistic. where R1 is sample mUltiple coefficient of determination;

Ct-statistic (Mallows, 1973) which is a measure of total squared error where L

is the numbers of parameters in regression equation.

[f CL frrst approaches the number of parameters. L, the model is chosen and the

parameter estimates are unbiased (Mallows. 1973; Daniel and Wood. 1980).

A similar procedure was carried out for other Canadian rivers as well as in Yichan.

YangtZe River. China. The results of the stepwise regression are shown in Table 6.3.

Figure 6.1a-e displays me scaling plotting position formula in which the values of p~ have

been empirically corrected. [0 order to limit variation ranges of estimated plotting

positions, the upper and lower limits are corrected to be 0.999 and O.OOt, if estimated

values are greater than 0.999 and less than 0.001, respectively.
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Table 6.2 Stepwise procedure of selecting variables for dependent variable Z for the
gauge 08MF005 of Fraser River at Hope, B.c., Canada

Step I Variable X4 Entered

R-square = 0.5889347 CL =21632.544711 F=1931.28

Variable Parameter Estimate Standard Error

INTERCEP -6.75415176 0.13602869

X4 2.26629944 0.05156964

Step 2 Variable X2 Entered

R-square = 0.8021814 CL =9714.0542746 F = 2731.14

Variable Parameter Estimate Standard Error

INTERCEPT -3.99331376 0.11899806

X2 -0.00031371 0.0000082

X4 2.26629944 0.03578767

Step 3 Variable XI Entered

R-square = 0.8582471 CL =6581.9815232 F = 2716.47

Variable Parameter Estimate Standard Error

INTERCEP -16.95549607 0.57075470

XI -2.00241690 0.08678590

X2 -0.00031371 0.00000697

X4 12.57402310 0.44776942

Step 4 Variable X3 Entered

R-square = 0.9655799 CL =584.08201348 F = 9432.76
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Variable Parameter Estimate Standard Error

INTERCEP -10.13613237 0.30041152

Xl -2.98252622 0.04537894

X2 -0.00 108860 OO1245סס.0

X3 0.00011137 oo172סס0.0

X4 12.57404449 0.22072721

Step 5 Variable X5 Entered

R-square = 0.9759570 CL = 0oooooס6.0 F=1091L.2

Variable Parameter Estimate Standard Error

INTERCEP -17.56273566 0.39770121

Xl -2.98252608 0.03794056

X2 -0.00191028 OO3567סס.0

X3 0.0001l137 oo144סס0.0

X4 12.57404449 0.18454625

X5 0.15700390 0.00651877

Summary of Stepwise Procedure for Dependent Variable Z (significant level ex. =.15)

Step Enter Move PartialR2 Model R2 CL F

1 X4 0.5889 0.5889 21632.545 1931.2847

2 X2 0.2132 0.8022 9714.0543 1452.0548

3 Xl 0.0561 0.8582 6581.9815 532.3665

4 X3 0.1073 0.9656 584.0820 4194.1377

5 X5 0.0104 0.9760 OOסס.6 580.0820

Suppose z= ~o+ ~IXI+ ~,x2+ ... + ~.xk+ ~
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Table 6.3 Scaling planing position Cannulas

wsc I bo b, b, b, b. b,
Number

05AJOOI

Parameter 1-15.8514 -2.2114 -0.0024 0.00024 11.9848

Error 10.21826 0.03334 0.00002 0.000002 0.17113

05DRJOI

Parame,er 1-16.4195 -2.1825 -0.0025 0.0002 12.0223 0.0223

Error 10.29536 0.04409 OO5סס.0 oo3סס0.0 0.22613 0.00325

OSHGOOI

Parameter l·l6.9645 -2.4215 -0.0031 0.00027 12.7852 0.03348

Error 10.2'n07 0.04145 OO3סס.0 0.000002 0.22151 0.00211

OSKJOOI

Parameter I-L2.9662 -2.1965 -0.0072 0.0004 9.3989 0.2484

Error 10.31228 0.31228 0.00011 0.00011 0.19171 0.00893

08MFOO5

Parameuor 1-17.5627 -2.9825 -0.0019 0.00011 12.574 0.1570

Error 10.39770 0.03794 OO3סס.0 oo1סס0.0 0.18454 0.00651

Yichan. YangtZe River. China

Parameter 1-34.6590 -3.2655 -0.0007 0.00002 13.6283 0.2172

Error I 0.62528 0.03967 OO1סס.0 ooסס0.0 0.19146 0.00509

Scaling plotting position fonnula:

P,.",- exp(b,+b,In~+b,Q.+b,Q.In~+b.(ln~r+ b,Q;nj

wbere ~ = 365. and error = standard error.
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AM senes of Fraser River at Hope, B.C.. Canada.
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Figure 6_1b Plotting positions using SPP for AM series of South
Saskatchewan River at Medicine Hat. Alta., Canada.
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6.5.2 Calculation of Flood Quantiles

The Pearson Type ill distribution is now assumed as a parent disaibution. and the

following estimation methods are considered:

1) The conventional moment method (MOM)

2) The PWM method (PWM) (Hosking, 1986, 1990; Soog and Ding, 1988)

3) The maximum likelihood method (ML) (Malalas aod Wallis, 1973; Coog &

Tao, 1979)

4) The graphical curve fitting method (Dalrymple, 1960) where plotting position

formulas come from Groups I. IT and ill.

a) Weibull plotting position formula (0.0) (Weibull, 1939)

b) Cunnaoe plotting position fonnula (0.4) (Cunnaoe, 1978)

c) Hazen plotting position fonnula (0.5) (Hazen, 1914)

d) Chegodayev plotting position fonnula (0.3) (Chegodayev, 1955)

5) Scaling plotting position fonnula (SPP)

The results of quaotiles estimated are illustrated in Table 6.4a-b aod Figure 6.2a-b.
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Table 6.4a Flood quantiles (units: ml/s) estimated from various Canadian Rivers

Probabilitv

Method
0.001 0.002 0.005 0.01 0.02 0.05 0.100 0.200 0.500

WSC Numbe" 05AlOOI

MOM 5675 5185 4532 4033 3409 2854 2332 1792 1028

PWM 6132 5561 4806 4234 3662 2904 2330 1753 986

ML 5546 5077 4452 3973 3538 2836 2327 1800 1040

0.0 6968 6271 5354 4664 3980 3085 2419 1769 958

0.4 6600 5958 5085 4438 3795 2955 2330 1720 958

SPP 7883 7080 6024 5228 4438 3401 2640 1890 955

WSC Numbe" 05HgOOi

MOM 5168 4772 4237 3824 3402 2824 2365 1875 Ll28

PWM 5516 5062 4455 3989 3517 2878 2378 1856 1094

ML 5520 5058 4441 3969 3493 2850 2350 1833 1088

0.0 5871 5372 4707 4198 3684 3684 2452 2452 1092

0.4 5650 5175 4540 4054 3563 2902 2387 1854 1089

SPP 6032 5511 4816 4285 4285 3024 2461 1878 1040

WSC Numbe" 05DFOOI

MOM 6133 5584 4856 4304 3750 3012 2450 1880 1106

PWM 6290 5712 4947 4368 3789 3023 2443 1862 1091

ML 5950 5433 4746 4223 3697 2992 2450 1896 1122

0.0 7304 6572 5612 4890 4174 4174 2549 1878 1053

0.4 6927 6240 5337 4658 3986 3109 2459 1829 1053

SPP 7582 6817 5812 5057 4308 3332 2609 1907 1044
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Table 6.4b Flood quantiles estimated from real data observed at Yichan. Yangtze
River, China

UnilS of auantiles: m Is

Return Period (years)

Method 1000 500 200 100 50 20

MOM 16100 15100 12800 10900 68800 65500

PWM 16500 75000 12800 70900 68800 65100

WL 83700 81200 71600 74700 71600 61200

0.0 8001J0 78000 75200 12900 70300 66500

0.3 79500 71600 74llOO 12500 7001J0 66300

0.' 79300 71400 74600 72300 69800 66200

0.5 79100 moo moo 74400 12200 6600ll

SPP l1J09OO 95900 89000 83800 78400 71000

Figwe 6.2c shows the rnagnimdes of quantiles estimaled by SPP are steeper !ban the

quantiles estimated by other methods. The reasons will be explained in the next section.
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6.6 Comparison Between SPP and Existing Estimators

Statistical experimenlS will be carried out in order to assess the statistical propenies of the

spp estimator and a comparison will be made with existing estimators.

6.6.1 Criterion for Assessment of an Estimator

The choice and appraisal of ploning position formulas have been discussed and the

criterion of the optimum of plotting position of unbiasness and efficiency bas been widely

accepted (Cunnane, 1978). The AM series are sampled from a generated daily flow

process and population paramerers in this scudy are not available, so the subject of bias is

not discussed. The criterion for dIe comparison of the desired statistic is to minimise the

sum of squares of deviations for the estimated quantiles in this study. Since estimated

quantiles are fInal results of estimation, this criterion is acceptable. Thus. relative root

mean square error (RRMSE) of quantiles is used as indices of efficiency for the various

quantile estimators.

Let Qp denote the estimated quantile, the relative roOt mean square error (RRMSE)

is dermed by

where

RQ, ~ SQ, x 100%
BQ,
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and

, <
BQ, ~-:EQ,

K._1

SQ, ~ J-K' irQ, -BQ, j,.,

(6.15b)

(6. 15c)

and K is the number of replications of Monte Carlo experiments. For a flood frequency

analysis procedure to be accurate, it should have low RRMSE.

6.6.2 Generation of Flow Time Series

The SPP estimator is relared to the temporal strUcture of observatior6. daily flow time

series are generated and annual maximum series will be obtained from d1e simulated daily

flow series. rn order to modelloog- and sbort- term dependence the model used here is

the mixed-noise model (Lettenmaier and Burges, 1977; Booyand Lye, 1989) to model the

daily flow series observed at Yichan, YangtZe River, China.

The mixed noise model is given by:

and
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i-/.2..... M (6.16b)

where ~ denotes lIle standard Donnal series, ~ til indicates the standard nannal AR{l)

series with the first-order correlation coefficient ~i' Wi is the weighted coefficient meeting

Wi 2: 0 and 'L'N;1 = I, M is the number of renns, and ~(i) presents the normal independent

random variable with mean 0 and variance 1.

The simulated processes of chis model are modelling M-«t series • that is, a,m. a, t:l.

"', a,t"". obtaining M-~ series. mat is. x.fIl , )(,al•... x,tMl. by Eq.6.16b; then substituting

them into Eq.6.16a to obtain x..; finally obtaining the modelled series of lhe original flood

by inverse stAndardisatioo. Le. 0.. 0. = SoX,+Q. where So • Qare lbe standard

deviation and the mean, respectively.

The estimated parameters of the mixed noise models. W and <D. are shown in Table

6.5 and me corresponding statistics. such as autocorrelation coefficient Ci. i=l,2.3,4.

Hurst'S K, mean value Q. and coefficient of variation CV and coefficient skewness Cs.

of simulated model and observations estimates are shown in Table 6.6.

Table 6.5 The estimated parameters of the mixed noise model of daily flows

i 1 2 3 4 5 6 7 8

W? 0.6232 0.2812 0.0562 0.0067 0.0207 0.0037 0.0049 0.0036

<1>, 0.9200 0.9300 0.9500 0.9915 0.9955 0.9991 0.9996 0.9999
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Table 6.6 Comparison of the statistics between the simulated model and observations

Parame[cr rl r~ rJ r. Hurst's K Q(mJ/s) Cv Cs

Model 0.94 0.54 0.34 0.015 0.735 51SOO 0.170 .(l.IS

Observed 0.92 0.66 0.44 0.00 0.742 51600 0.L71 0.29

6.6.3 Population Distributions and Comparison Methods

The cwo population models. Pearson Type ill (PIlI), and lognormal distribution(LN)

expressed by Eqs.6.1 and 6.2. respectively, are used, and five estimation metllods are

considered in tll.is study. That is:

1) me cOQventiooal moment method. PllIIMOM and LNIMOM

2) the PWM methods, PIIIIPWM and LNIPWM (Ding el aI., 1989)

3) the maximum likelihood method, PIIIIWL (Maralas and Wallis, 1973; Cong and

Tan, 1979)

4) the graphical curve fitting methods, PlIIIFIT and LN/FIT (Dalrymple, 1960)

in which probability plotting position formulas include fonnulas come from

Groups I, II and ill.

a) Welbull plotting position formula, PlIIIO.O and LN/O.O (Weibull, 1939)

b) Cunnane plotting position formula, PlIIIO.4 and LN/O.4 (Cunnane, 1978)

c) Hazen plotting position formula, PlIIIO.5 and LN/O.5 (Hazen, 1914)

d) Chegodayev plotting position formula, PlIIIO.3 and LN/O.3 (Chegodayev,
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1955)

5) scaling approach plotting position formula. PllIJSPP and LN/SPP

The quantiles of floods are estimated using Eqs. 6.3 and 6.4 for Pearwn Type m and

lognormal distributions, respectively.

6.6.4 Monte Carlo Simulation

Monte Carlo experiments consist of the following steps:

1) AM and POT series are sampled from the mixed-noise model with parameters

shown in Table 6.5 and Table 6.6. The AM and POT series sampled from this

model is used for oblaining the SPP estimator, where AM series only are used in

MOM. PWM. ML and graphical curve fitting procedures. AM and POT series

are used in SPP procedure.

2) For a given distribution, such as Pearson Type ill and lognormal distributions,

each selected estimation procedure is perfonned. and corresponding quantiles are

obtained using Eq.6.3 or Eq.6.4.

3) Steps 1-2 are repeated K times and K- quantiles for each procedure are obtained.

then m.e relative root mean square error (RRMSE) of estimators are calculated

using Eq.6.15.

4) Compare RRMSE for each estimation procedure.
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6.6.5. Results of Monte Carlo Experiments

The results of Monte Carlo simulation are illustrated in Tables 6.7 and 6.8 and Figures

6.3-6.4. OveraJlme results show:

I) For lhe pm and lognormal models. the lines of SPP quantiles varying with rerum

periods are steeper than those of the others.

2) The relative foot square errors of the quantiles. R<4. are much smaller than those

by the alternative estimation procedures assessed whether parametric or

nonparamebic sampling was used. In other words. SPP quantile estimator is the

most efficient among the compared estimators.

fn summary, the SPP estimator may be accepted as the most efficient estimator

among those estimation procedures studied. According to the good statistical properties of

SPP estimator, the author agrees with the remark that "Statistical science can pLaya role

in the future developments of nonlinear science and its possible impact on the future

development of statistical science itself." (Chatterjee & Yimaz, 1992). a prediction of the

relationship between fractals and statistics.
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Table 6.7 Comparison of SPP with other estimators for the Pearson Type [IT distribution.
where the units of BQp and SQp are mJ Is but RQp is in dimensionless

P,=.OI Pz::;·OOI Estimation Methods of Quantiles

n Variable MOM PWM 0.0 0.3 0.4 0.5 SPP

BQpl 71374 73256 75727 73941 73258 72579 91742

BQp' 77564 78680 83615 81247 80336 79441 107601

30 SQpJ 6650 7291 8278 7461 7095 6751 8655

SQpl 9151 10132 11766 10353 9789 9267 11927

RQpl 9.32 10.11 11.06 10.09 9.68 9.30 9.44

RQ", 11.80 12.88 14.07 14.74 12.19 11.66 11.08

BQpl 71681 72265 74743 72328 72804 72287 90460

BQp' 78023 78866 82208 80337 79641 78960 105910

40 SQpl 6198 6576 7180 6592 6402 6197 7255

SQ., 8562 9150 9991 9102 8816 8516 10016

RQpl 8.65 9.10 9.61 8.99 8.78 8.57 8.02

RQpz 10.97 11.60 12.15 11.33 11.07 10.79 9.46

BQpl 71897 72279 74667 73523 73054 72539 90004

BQpl 78325 78877 82158 80654 80028 79340 105327

50 SQpl 5323 5601 6173 3376 5453 5265 6035

SQpz 7397 7824 8699 7790 7600 7308 8366

RQPI 7.40 7.75 8.27 7.58 7.46 7.26 6.71

RQpz 9.44 9.92 10.59 9.66 9.50 9.21 7.94
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6.7 Analysis and Discussion

6.7.1 Background ofDevelopmeotofSPP Formula

Recalling Chapters 2 and 3, high probabilities of long-term persistence exist in the peak: flow

series observed in Canada and China. And straight lines appeared in the family of curves in

Chapter 5 indicate an existence ofscaIe-invariance structure. These statistical features should

be incorporated into flood risk analysis.

Classical probability plotting {X>sition formulas are derived from independent random

variables Q•• Qz, .. _, Qn with identical pdf. f(q). The two procedures for cheoretically

developing ploning position formulas are based on lhis iid assumption. The first is based

on the distribution of the probability of order smtistics YCI1l) shown in Eq. 6.9 because of

iid assumption. The second procedure is based on the distribution of O<ml using Eq.6.8,

it also involves the same assumption. Even through order statistics Qml are necessarily

dependent because afthe inequality relation among them (David. 1984). but the variables

Q]. Qz•... , Qn must be statistically independent and identically distributed in the basic

assumptions, otbelWise, planing position formulas cannot be derived from these two

procedures.

However. according to classical iid assumption, some mathematical statisticians

consider to take shan-term dependence of random variables into account (David, 1984),

but long-term correlation strucmre involved in random variables Q], OI, .... Qn. bas not

been considered yet in the ploning position development. Thus, an empirical plotting
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position formula that takes scaling behavior into account is needed to be developed.

6.7.2 Basis of SPP Formula

As Wila er al. (1962) indicated.

"if the sample is large enough, the sample order statistics when plotted against

the corresponding quantiles of the theoretical distribution will tend co yield a

set of approximately collinear points. clustering about a line of slope

passing through the origin...

For samples of intermediate size. the expectation of order statistics has the same

linear relationship with corresponding quantiles. These are the sources most theoretical

plotting position formulas are derived from.

Scaling plotting position fonnula is. in fact. related to this concept. p~ is a random

variable. a probability of exceedences according to corresponding the ranked threshold,

QS(ml' in a family of curves. These ranked threshold. QSrml.and ranked p~ could serve as

order statistics and corresponding empirical exceedence probability. If iid assumption is

made. the same procedure to derived theoretical plotting position formulas could be

processed.

However. SPP is not only agreeing with iid assumption. but. additionally. takes

scaling behavior into account.

A family of curves well exhibits peak: flow correlation structure across scales. SPP
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fonnula is based on lhis. the information about sca1e-invariance including long-term

persistence of peak flows could be caken into account.

Suppose the probability of excced.ence of peak: flows. p~ .is a random variable. it is

related to the variable Qs and ~ , where Qs and ~ are the exceedence level expressed as a

threshold and time scale, respectively. The expectation of exceedence of peak flows. E(pe)

can be estimated using a statistical model.

For a given time scale f.o= 1 year. expected probability of exceedence p~ should be

an empirical plotting position. and corresponding formula is a formula of probability

planing position. Thus, SPP is an approximation of E(YcmJ shown in Eqs. 8.9 and B.IO

of Appendix B, wbere E(YCml) is the expectation of Ycm)'

However. scaling behaviour here is a.lready taken into account in the SPP procedure.

It is. therefore, expected that SPP provided an improved capacity of prediction and a more

ra[ional and comprehensive way of estimating extreme flood events from me underlying

systems. The developmeo[ of SPP fonnula is mus reasonable and reliable.

6.7.3 Comparison of Classical Formulas

The SPP has been demonstrated [0 be a good estima[or in terms of efficiency and

robustness using MODIe Carlo experiments. Additionally. me SPP bas me propeny mat it

is distribution free even though an assumption that Pspp is normally disttibu[ed which has

been made for a linear model.
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6.7.4 Role of SPP Formula in Flood Risk Analysis

In recent years. scale-invariant (fractal) statistics are being utilised in statistics as a new

tenn. Turcotte and Greene (1993) (hereinafter referred to as T & G) have proposed a

scale·invariant approach to flood risk analysis. T & G hypothesised a power law scaling

of peak annual discharge and recurrence interval. Le. me underlying physical processes

are sufficiently scale invariant over time scales from one to one hundred years. T & G

argued that this hypothesis provided a basis for the application of scale-invariant statistics.

The results of their proposal showed that the fractal prediction parallels that of the log

Gumbel distribution. T & G also stated that the Hurst exponent cannot be used for flood

frequency prediction.

T & G's proposal at first glance seems to provide a rational fractal analysis in flood

risk estimation. In fact. the basis of the proposed approach appears weak. and is

conceptually flawed, because:

a) Any prediction of floods must be based on an understanding of the behaviour of

observations. T & G did not investigate the character of the temporal scaling

behaviour of floods. They merely hypothesised to "avoid difficulties with annual

variability"!

b) Mandelbrot (1982) has pointed out that the motivation for assuming scaling must

not be misinterpreted, narure is not strictly homogeneous or scaling. It is

incorrect for T & G to assume that the ratio of ten-year peak discharge to the one-
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year peak discharge equals the latio of the l00-year peak discharge to that of the

IO-year peak, since scaJing fractals should be limited [0 an investigared scaling

range. The remporal scaling range of floods must be identified before making

such an assumption.

c) The equation. N =C1Q..... given by T & G showing lhe relationship between me

number of exceedences N. and corresponding threshold. Q. is a basis of the

proposal, in which the parameters a and Cz are estimated from observed data.

Those curves are not a sufficient proof of an existence of slope a alone. If there

should exist more lhan one slope. the basis of the proposal collapses. Also. most

experiences with flood peaks show that there is no single straight line in a log N

- log Q plotted curve.

d) T & G's resullS showed that the Hurst exponcnc for all ten stations is vinually

constant within a range of 0.66 to 0.73. This indicates that there is some

persisteoce inherent in the observed floods. Fractional Brownian DOise is a model

which reflects long-term characrer of time series. T & G's assumption of

fractional Brownian noise should reflect the persistence inherent in the observed

data. T & G claimed that the value of HI obtained from the RlS analysis does not

correlate with the values of H obtained from the scale-invariant approach. This

is evidence that the scale-invariant procedure is both flawed and incomplete.

e) The proposed method by T & G remains as a conventional statistical rubric based
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on the assumption that the estimated quantiles by T & G's proposal correlate best

with me tog Gumbel. The proposed usage is only a method that assumes a linear

relationship between log QT and log T. The temporal characteristics of me floods

are not laken into account.

Hence, fractal statistics that may be used for risk estimation have not yet been

developed. SPP estimator may yet play an important role in a new review of flood risk

analysis.

6.8 Summary

In this chapter, a scaling ploning position formula has been established. It was shown that

the proposed SPP estimator is pertinent both in efficiency or robusmess among existing

estimation methods by Monte Carlo experiments. Additionally, a number of discussions

of the propenies of SPP formula have been offered. The proposed SPP procedure extracts

more information from underlying systems and takes scaling behaviour into account in

flood frequency analysis and, has an enhanced capacity of prediction over those currently

available.

Additionally, a few interesting points can be made here:

1) Scaling plotting position formula as an empirical plotting position formula has

been developed. It agrees with iid assumption for parent variables and also takes

taking scaling behaviour into account.
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2) A family of curves best describes peak flow correlation structure across scales.

SPP fonnula is based on this, infonnation about scaling behavior including long

tenn persistence of peak flows could be taken into account.

3) Monte Carlo experiments show that SPP quantile estimator is the most efficient

and robust among the compared estimators.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The primary conclusions from this thesis are:

1) A pluralistic view of the correlation structure of peak flows through multiple

measurement scales was made and a physical explanation of the narural behaviour

of peak: flow stnlCwre provided a stronger basis for a deeper understanding of the

complexity of hydrologic phenomena in nawce.

2) lbe Hurst's K and !he lag-one autocorrelation coefficient r(l), which measure the

loog- and shon-term behaviours of annual peak flow series respectively, are

significantly correlated and dependent based on parametric and non-parameuic

hypothesis tests. It indicates that the long-term behaviour of annual peak flows

is related to the shon-term behaviour statistically.

3) The dependence between Hurst's K and r(l) provides a strong basis CO further
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investigare the statistical relationship between the long-term persistence and short

term. independence. From this, the sampling distribution of Hurst's K was

proposed to be expressed as the sampling distribution of Hurst's K for a given

r(1).

4) Based on probability theory and empirical statistical results, a probabilistic

approach for quantitatively dealing with long-term and shan-term behaviour of

annual peak flow series was developed. In this approach,

a) an approximation for the sampling distribution of Hurst's K for a given r(l)

was designed and estimated using Monte Carlo experiments;

b) an estimate of the probability for serially independent population, such as

the annual peak flow series, ta exhibit lang-term persistence was provided

and estimated;

c) empirical pen:enrage pcints propcsed by Lye and Lin (1994) for testing

long-term persistence was revised ta take short-term. behaviour into account.

The results of the proposed approach demonstrate that:

a) the proposed estimator for population P<k2ko) and its· distribution on the

R1 axis assure that long-rerm persistence and short-term. independence can

be quantitatively estimated;

b) the magnimdes of the probability P«(IQIr.) n (b,s RI < aJ) for each region
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of Rl imply that the simultaneous occurrence of long-term. persistence and

shorHenn independence may not be an uncommon phenomenon.

5) Since Hurst's K and lag-one autocorrelation coefficient r( 1) are considered as

measurements at individual scales. i.e. scale at n and one respectively, fractal

geometry, which makes measurement at scale, is necessary to be used to

investigate the feature of peak flow structure.

6) The proposed family of probability-seale-threshold curves, which tramfonns

observed peak flows to a family of curves, weU describe the scaling behaviour

of peak flows and represent corresponding inter-scale correlation srrucmre of

peak flows for a given watershed.

7) A straight line for a certain range l; of a family of In P~ - La l; - Qs curves

implies that the occurrence of exceedances of flows displays invariance within

the corresponding scaling range. In other words, a correlation across scales

exists for the peak: flow points on the time axis.

8) A scaling plotting position formula in which scaling feature of peak: flows is

taken into account was developed and its quantile estimator is more efficient
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and robust compared to current estimators of flood quantiles.

7.2 Recommendations for Further Studies

A number of suggestions are offered for funher srodies:

I) While !he proposed probabilistic approach is a method for quantitatively dealing

with loog- and short-term behaviour of annual peak flow series. me population

distribution this srudy investigated is limited to the normal distribution. Even

though the Kolmogorov-Smirnov hypothesis test shows that high probabilities of

existence of long-term persistence are involved in normal independent distributed

data may be suitable for the non-normal independent series, further studies and

investigation of this issue would enhance the attractiveness of probabilistic

approach.

2) According to Hurst's findings (1951. 1954), long-rerm persistence is related to

the order of occurrence. We cannot simply resample from the individual

observations, because this would destroy the correlation that we are trying to

capture. Design of resam.pling methods such as block bootstrap or suitable

jackknife which can preserve long-term correlation and short-term
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independence is desirable in order to increase the accuracy of simulations.

3) Hurse has shown thae for many of the natural series he investigaeed, the Hurse

coefficient. h, remains larger than cbeoretical value of 0.5 even for large

sample size n. The failure of narural series to accord with theory is termed the

"Hurst phenomenon." The proposed probabilistic approach has quantitatively

estimated cbe probabilityp~ for a theoretical independent series. How

aboue the value ofp~ for a nanua1 series? What: is the differetJ:e between

the theoretical and observed series? Funher explanation of the Hurst

phenomenon would be desirable.

4) We have looked closely at peak flow serial sttucture at individual scales one

and n, and also measured the complexity of peak flows across scales. The

conelatioD among these measurements might be interesting and worth funher

srudying for peak flow point processes.

189



Chapter 8

Statements of Originality

To the best of the author's Icnowledge, the following original contributions were made as

a result of this study.

1) A set of new approaches. descriptions. and modelling techniques are developed

in dealing with 100g- and shon-term behaviour of annual peak flow series based

on classical probability and statistical theories. In particular,

a) sampling distribution of Hurst's K expressed as a sampling distribution of

Hurst's K for a given r(1) was proposed for. a short-term independent

series;

b) Moore Carlo simulations [0 produce the sampling distnbution of Hurst's K

for a given r(1) were designed;

c) more accurate empirical percentage points for testing long-term persisteoce

were produced;

d) an approach of quantitatively describing long-term correlation rooted in

an independent series was provided;

e) a quantimtive descriptor for long-rerm persistence, P~). was dermed
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and proposed. The calculated results provided a means of determining

whether long-term dependence exists in an independent time series; and

f) the conclusion that the simultaneous occurrence of long-term persistence

and short-term independence is not an WlCommon phenomenon in annual

peak flows as well as in normally independent series.

2) A look at the serial correlation structure of peak flows from a fractal view

provided a family of curves In p~ - In!; - Qs which provided a fresh way of

understanding and describing the serial strUcture of natural peak flows. It was

shown that:

a) observed peak flow points can be t:ramformed to a family of curves

describing the distributions of peak flow p'oints along time axis that

classical methods are unable [0 identify;

b) the family of curves is expressed as the relationship between various

time scales and probabilities of peak flow occurrences. It explores

scaling behaviour of peak flows showing natural behaviour. such as the

narural cycles inherent in the peak flow series in which it resides;

c) the occurrence of peak flows in the time axis has a distribution

which differs from an independent Poisson distribution for most time

intervals.

191



3) Based on an increased understanding of the natural behaviour of peak flows,

a scaling planing position formula for flood quantile estimation was proposed

in which the corresponding quantile estimator has important statistic

characteristics:

a) it rakes the correlation structure of peak flows into account in flood risk

analysis;

b) it is efficient among existing quantile estimators;

c) because it follows iid assumption in flood frequency analysis and

considers the long-term correlation strucrore of peak flows, it has an

enhanced capacity of estimation over those currently available.
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Appendix A

The Hurst Phenomenon

The concept of Hurst coefficient as a measure of long-term persistence is introduced as

follows.

Based on smdying the design capacity of reservoirs, H.E. Hurst (1951) observed

an unexpected behaviour of namraJ time series. whicb has become known as the Hurst

phenomenon.

Let x l ,x2•••• , x" be a sequeoc:e of annual inflows into a reservoir over n years. Let

the mean flow in the n year period be denoted by

- / .
x. ~- :tx,

n ,.. ,

The accumulated departure of the flows from the mean flow after y years is

y -

Sy~~(x,-x.)
,./

In the last period, 5",=0. The range of the cumulative departures from the mean is
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R.~mar (s,) - min (s,) ~s.~-S.

where SM and Sm are the largest and smallest values in the set (Sy)'

Hurst studied how me average value of R" changes as a function of n and found

that the expected value of R.. divided by the standard deviation Sn of the n annual

inflows is proportional to n raised [0 some power h.

(A.I)

The exponent h which varies between 0 and 1 is called the Hurst statistic. The

ratio R" I S. is called the rescaled range.

[n addition to river discharges, Hurst investigated a host of other natural

geophysical time series ranging from tree rings to clay varves. All in all, 7S different

phenomenon were used. The total number of series was close to 900 and chey vary in

length from 40 to 2000 ye",.

Eq.A. I implies that the relationship between log E(RIS) and log n is linear with

slope h. To determine h, Hurst defined

&-("..f
S. 2

where K represents an estimate of h for each of the 900 time series he investigated.
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Over all phenomena Hurst's K was found to have an average value of 0.73 with a

standard deviation of 0.08. Asymptotically. for independent nonnal random variables.

Hurst (1956) and Feller (l951) showed that

In other words, h ~O.5 as n becomes large. But Hurst also made the far reaching

discovery that for many of the natural series he investigated. the slope h remains much

steeper than 0.5 even for large values of n. The failure of natural series to accord with

theory is termed the "Hurst phenomenon". This so called phenomenon generated

considerable interest among hydrologists and mathematicians alike since it indicates a

puzzling long term "memory" or "persistence" in the random process that generated

the series.

Conversely, anti-persistent processes, that is h<O.5, on the other hand. tend to

show a decrease in values following previous increases. and show increases following

previous decreases. The record afan anti-persistent process, such as the h=O.l curve,

appears very "noisy". They have local noise of the same order of magnitude as the

total excursions of the record.

In the literarure, there are three main lines of thought explaining the Hurst

phenomenon:
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1) The Hurst pbenomenon is a transitory behaviour. 1be argument is that our

series are simply not long enough to test the steady-state behaviour of R.

which according to the argument is the square-root law. This period of

transition can be reproduced by Markov-autoregressive models. On the basis

of a very long time series, Mandelbrot and Wallis (1968) effectively argue

against this explanation.

2) The Hurst phenomenon is due to nonstationarities in the underlying mean of

the process. This argument claims that a low-frequency, slowly time-varying

mean explains the Hun, bebaviour (KIemes, 1974; Bees and Salas, 1978).

3) The Hurst phenomenon is due to stationary processes with very large memory.

That is, stationary processes that have correlation functions that decay very

slowly in time, much slower that Markov-Gaussian-auroregressive processes.

In the limit. this argument claims infmite memory for natural processes.
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Appendix B

Derivation of Plotting Position of Formulas

As an example to show the basic concepts of plotting {X>sition formulas of Group r.

Weibull (1939) formula is derived as following:

[f the random variables Xl' X!, ...• x" are arranged in the order of magnirude as

"e",) are called the mill order statistic 0= 1,2, ....n). X; are assumed to be

statistically independent and identically distributed with probability density function.

[(X), and cumulative distribution function. F(x}. Then the probability density function of

the mth order statistic Xe:"" is given by

g.(x) = men )f(x)[l- F(x»)"-"[F(x)]'"-')
m

Let YCm) be a function of~ml. in the form,
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(B.2)



where F has the same meaning as above, 0 SY(mJ sl due to the fact that 0 5; F(x) 51.

Hence the probability density function of the random variable Ylm) , h",(Y), should be

h.(y) =g.(r)#/dxj

where

'!l'. =~(I_ F(r)) =_df(r) =-fer)
dr dr dr

i.e.

(8.3)

(B.4)

where 0 S YS 1, m= I-n. rn terms of the beta function. because

B(m.n- m + I) = [r(m)r(n -m + 1)]/[r(n+ I)J

and

then. Eq.B.5 is reduced as

The expectation ofY(m) is

£[Y.] = fyh(yJdy
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(8.7)

(B.8)

(8.9)



i.e.

ElJ';.,] = 1/8(m,n-m+I)[Y·(I-y)-'~

Because of Eqs. 8.6 and B.7, E(Y(ml) should be

ElY.] = 8(m+l,n-m+ 1)18(m,n-m+ I) =ml(n+ I)

(B. 10)

(B.1I)

Thus. we obtain the Weibull fonnula which is distribution-free that is widely used in

engineering hydrology.

Based on the concept of expectation E(X{m» of the order statistic, Weibull formula

can be also derived using Eq.B.l. In this case, probability density function of parent

population., the unifonn distribution., should be taken into consideration.

Hence Weibull fonnula can be derived from two procedures. The first procedure is

based on the Y(lII), the distribution of the probability of order statistics, and is to be

distribution free of X. The second is based on the distribution of "<011) and related to the

uniform distribution.
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