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Abstract

This thesis deals with the correlation structure of annual peak flow series in detail. The
thesis is in divided into four major parts.
Part one takes a closer look at the correlation structure of annual peak flow series at two

scales: scale of one that short-term b iour by the lag-one autocorrelation

coefficient, r(1), and scale of n, that measures long-term behaviour by Hurst’s K. Itis shown
that there are significant correlation and dependence between Hurst's K and (1) for both
observed data and data from Monte Carlo experiments which imply that short- and long-term
behaviour cannot be treated separately as is current practice.

Part two suggests a new approach for quantitatively describing long-term correlation

that is rooted in an independent series. The results indicate that long-term correlation rooted

in a short-term independent series can be itatively esti d, and the si
occurrence of high values of Hurst's K and low values of r(1) is, in fact, not an uncommon
phenomenon. A new method of testing for long-term correlation that takes the short-term
correlation into account is developed.

Part three further looks at peak flow correlation structure across scales based on the
perspective of fractal geometry. A family of probability-scale-threshold curves which
contain more information about the correlation structure of peak flows, are constructed and
the scaling behaviour of peak flow series is explored.

In order to take serial correlation into account in flood risk analysis, the concept of



scaling plotting positions (SPP), is developed in part four. It takes scaling behaviour of peak
flows into account and develops a new plotting position formula in estimation of future

floods. The results of Monte Carlo simulation showed that the estimated quantiles of SPP

are more efficient and robust when pared with current esti of flood
The study presented in this thesis has provided a view of the correlation structure of

peak flows across scales so that flood risk can be better estimated.
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Chapter 1
Introduction

1.1 Context

Hydrology, broadly speaking, is the study of water. One of the definitions of hydrology
(Federal Council for Science and Technology, 1962) is:
“... the science that treats the waters of the Earth, their occurrence,
circulation, and distribution, their chemical and physical properties, and

their ion with their envi including their relation to living

things. The domain of hydrology embraces the full life history of water on
the earth.”
Water is essential for the survival of living organisms but can also foster disaster
during periods of flooding. In some parts of the world, floods occur frequently, many

resulting in tremendous monetary and i loss, p

p I, property damage
and loss of life. With the advance of civilisation, the demand for, and lin: need to control,
such natural disasters is increasing. For the design of flood mitigation measures, the
estimation of the magnitude of flood events according to specified probabilities, is

therefore essential. This is normaily referred to as flood frequency analysis.



The procedure of classical flood frequency analysis involves four main steps:
(1) Selection of data.

The data lysed are required to be independently and identically distributed. The

restriction of homogeneity assures that all observations are from the same population, and
the restriction of independence assures that the probability of one hydrologic event does
not affect other occurrences. Two data series of peak flows are commonly used for flood
frequency analysis: the annual maximum series (AM) (e.g. Fuller, 1914; Chow, 1954;
Rossi et al., 1984), and the peaks over threshold series (POT)(e.g. NERC, 1975). AM
series takes the single maximum peak flow in each year of record, it is necessary to ensure
that the selected annual peaks are independent of one another. The POT series takes all the
peaks over a threshold, where there is more chance of the peak flows being correlated and

the ion of true indep is less valid.

For the purpose of probability frequency analysis, the data should be unbiased,

independent and hc A of data quality is usually achieved using
statistical testing techniques.

(2) Choosing a probability distribution.

Since nature's distribution is unknown to hydrologists, reasonable 'flood-like'
distributions should be chosen to fit the observed flood data. The most widely used method
for choosing a probability model is the probability plot. This is a plot of the magnitudes

of flood events versus the probabilities that the magnitudes are or are not exceeded. The



selected data are arranged in order of the magnitude and plotted using a suitable plotting
position on probability graph paper. Several “flood-like” distributions, such as the
Pearson Type III distribution, the log Pearson Type III and the general extreme value
distributions are widely used in the estimation of future floods in practice.

(3) Estimating the parameters of the chosen distribution.
Observed peak flows, ignoring the order of their occurrence, are considered as a sample
and are used to estimate the parameters for the chosen parent distribution. The estimation

may be done either ically or graphically. In general, a mathematical estimation

can be achieved by the method of maximum likelihood, or the method of moments, or L-

moments. By graphical fitting, a subjective graphical curve is simply drawn to fit the

plotted data by eye, and although this method is the simplest it involves human error.
(4) Making inferences about future floods with a given probability.

Historically, since the recognition (Fuller, 1914) that there was no such thing as a single
design flood but rather a choice of different return period floods depending on circumstances,
hydrologists have turned to the statistical analysis of extreme flood events in which
observations of peak flows are considered as outcomes of a random experiment in a natural
experimental field. Thus, it is now possible for hydrologists to estimate future floods using
the above procedure based on statistical theory.

However, in a statistical estimation of future floods as outlined, the latter three steps

have to be based on the collected data, which are commonly assumed as independently and



identically distributed. In short, the data must satisfy the assumption that annual peak

flows are serially indep Serially dep

data are usually treated as independent
data because the effect of short-term dependence on annual peak flow estimation is very
small (Srikanthan and McMahon, 1981). Hence, hydrologists have focused on the study
of probabilistic models and parameter estimation methods involved in steps 2 and 3
without seriously worrying about the correlation structure of annual peak flows.
Although statistics work well in hydrologic estimation, some dissatisfaction with
statistical hydrologic design has been voiced arising from the use of so called long-term
dependent data. Hurst (1951, 1956) found that long-term dependence was inherent in
annual flow records of the Nile River and its impact upon the design of the Aswan High
Dam. Chow (1964) cautioned that the variables in actual hydrologic phenomena are likely
to be interdependent to some extent, and the possibility of this interdependence should be
investigated in flood risk analysis. From Carrigan and Huzzen (1967), the specific effects
of neglecting to consider serial correlation could underestimate the population variation of
a peak flow series. In more recent studies, Lye (1987), Booy and Lye (1989), Lye and Lin
(1994) showed that annual maximum flood peak flow series.also exhibit long-range
dependence, and this information should not be discarded and denied by classical
probability analysis. When the series of observations exhibits long-term serial correlation,
the variances of the sample statistics are greater than that for either short-term correlation

or ind d Mandelbrot and Wallis (1969b) showed that with a typical h

P P




value of 0.7, and n of 50, the variance of the sample mean expressed as

Var(¥)=ocin™?

is almost twice as large when the data are independent, where Var(¥), ¢ and h are
variance of sample mean, variance of sample and Hurst coefficient, respectively. The
studies by Lye (1987) showed that long-term dependence affects the flood estimation.
Taking this into account, the risk associated with future peak flows will significantly
increase.

Therefore, although annual peak flow series are assumed to have no correlation
"structure” in statistical terms, impacts of long-term dependence, in fact, cannot be
ignored in flood risk analysis. Hence long-term behaviour based on short-term

independence deserves further investigation.

1.2 Objectives of Thesis

Since the structure of peak flows is directly related to the safety of hydraulic
infrastructures, study of the correlation structure of peak flows is an important aspect in
flood frequency analysis. This thesis has four objectives related to the issue of the
correlation structure of peak flow series.

Objective one is to investigate the simultaneous occurrence of long-term persistence
and short-term independence of annual peak flows using actual flow data as well as

5



simulated data.

It can be d d that indep series can have significantly different levels
of long-term behaviours although they have similar short-term behaviour. This means, that
the outcomes in the macro scale are possible for the same degree of disorder in the micro

scale. However, the historical records we observed are one among many possible

outcomes. Of course, the ic and mi ic ph are related to each

other. To describe the simultaneous occurrence of long-term persistence and short-term
independence of annual peak flows, the Hurst’s K and lag one autocorrelation r(1) which
describe the long- and short-term behaviour of peak flows, respectively, are considered as
random variables. Statistical tests are carried out to test for a statistical relationship
between Hurst's K and r(1) estimated from an analysis of peak flows observed in

Canadian and Chinese rivers.

Objective two is to provide a logicall i probabilistic approach for
quantitatively describing the correlation structure of annual peak flows.
The idea is, basically, that because Hurst's K and the lag-one autocorrelation

coefficient r(1) are correlated and dependent upon statistical tests, their joint probability

exists and can be esti d by i st In other words, it is possible for us to
look for a statistical relationship between the long-term persistence and short-term

Ina itative way, an approximation for the sampling distribution of

Hurst's K, which is expressed as the sampling distribution for a given lag-one



autocorrelation coefficient r(1), is developed using Monte Carlo simulation.

Objective three is to explore the correlation structure of peak flows using fractal
geometry.

After estimating the “correlation” and “dependence” by the two measures, Hurst’s
K, and r(1), which measures objects at scales n and one, respectively. The following
questions arise: What is the real distribution of peak flows? Can we look at the peak flow
structure across scales? To this end, fractal geometry will be used to explore the structure
of peak flow series.

Fractal geometry is now widely used in different scientific disciplines to describe the

structure of 1f-simil and scaling behaviour of physical processes.

However, most investigations in hydrology concerned the scaling behaviour of spatial
rainfall and runoff phenomena (e.g. Venugopal and Foufoula-Georgiou, 1996; Jonas
Olsson and Janusz Niemczynowicz, 1996; Paolo Burlando and Renzo Rosso, 1996;
Puente, 1996; Haitiema and Kelson, 1996). The scaling behaviour of peak flow points
along the time axis has not been investigated.

Logically, since point events can be modelled by the Cantor dust in a fractal world
(Mandelbrot, 1977, 1982), the peak flow points on the time axis, which also form a set
of point events, can also be described by fractals.

Using fractal geometry, we can describe the structure of peak flows across scales.

The method to be employed to investigate the temporal scaling behaviour of peak flow



points is the functional box counting algorithm (Lovejoy et al., 1987) in which two aspects
are emphasised: (1) the peak flow points distributed on the time axis related to
probabilities; and (2) a set of thresholds defined in advance. From this, a family of
probability-scale-threshold curves is constructed to explore the scaling behaviour of
temporal peak flow points. Peak flows observed from Canadian and Chinese rivers are
collected and analysed in order to show the scaling structure of peak flows in nature.

Due to the fact that the family of curves constructed from In P - In & - Qs is useful
for hydrological engineering studies, where Py is the probability that the time interval of
length & will include at least one peak flow event, and Qs is a given threshold, hence
the final objective is to develop a scaling plotting position formula which takes scaling
behavior of peak flows into account for flood risk analysis. The resulting method can be
developed using the probability-scale-threshold curves.

Monte Carlo experiments will be carried out to compare the statistical properties of

the scaling approach with traditional estimation in terms of efficiency and robustness.

1.3 Outline of Thesis

The thesis consists of eight chapters. The context, objectives and outline of the thesis have
been presented in this chapter. In Chapter Two, a closer look at the long- and short-term
behaviour of annual peak flow series is presented, and a probabilistic approach dealing
with the long- and short-term behaviour of peak flows is proposed in Chapter Three.

8



Chapter Four provides an introduction to the topic of fractal geometry which will be used
in subsequent chapters dealing with a fractal description of peak flow structure. Chapter
Five uses fractal geometry to describe the scaling behaviour of peak flow points. A
scaling plotting position for flood risk analysis is developed in Chapter Six. Chapter Seven

conclusions and i and the of originality of the thesis

is described in Chapter Eight.



Chapter 2
A Closer Look at Long- and Short-term Behaviour of
Annual Peak Flow Series

2.1 General

The objective of a flood risk analysis is to relate the magnitude of extreme events to their

frequency through the use of a probability distribution. Thus, annual peak flow data are

usually to be independently and identi distributed. That is, there is no

correlation in time. This customary assumption in flood risk analysis has been examined
by many investigators. Carrigan and Huzzen (1967) found serial correlation in some of
the annual peak flows of rivers in the USA. Srikanthan and McMahon ( 1981) showed
that the effect of short-term dependence on annual peak flow estimation is small. Wall and
Englot (1985) used five independence tests and found that annual peak flows can be
considered independent for the 57 streams in Pennsylvania.

In comparison with the i igation of short-term iour of flood peak series,

Lye (1987), and Booy and Lye (1989) focused on the study of long-term behaviour, and

d that there is evi of long-term persi in the annual peak flood series

of many Canadian rivers. In a more recent study, Lye and Lin (1994) performed
10



statistical tests for short-term and long-term persistence for annual peak flows and
concluded that although short-term serial correlation is practically absent for most of the
peak flow series, significant long-term persistence is present for a large number of peak
flow series tested.

H , previous i igati have only focused on dealing with long-term

dependence or short-term independence separately only, studies of a relationship between
long-term dependence and short-term independence of peak flow series are absent.

When we are dealing with the long-term and short-term behaviour of peak flows, a

useful analogy is to imagi lar mo! in which individual molecules move
incoherently, representing a short-range characteristic, but a huge number of particles can
behave in a coherent fashion, a long-range characteristic.

The evolution of peak flows in time appears to resemble molecular chaos. i.e. the
long-term behaviour of such flows forcing 'trends’ to persist as gradients produced by
short-term disorder motion. Figure 2.1 illustrates three independent series with
significantly different levels of long-term behaviours but they are outcomes from similar
short-term behaviour. This means that the outcomes in the macro scale are possible for the
same degree of disorder in the micro scale behaviour. We can observe only one among
possible outcomes that gives us an historical record, named “memory” for past evolution.

Among this and the various issues for investigating the serial correlation structure of

annual peak flows, a number of important questions arise. Is there correlation and



dependence between long-term and short-term behaviours in annual peak flow series? Is
simultaneous occurrence of long-term persistence and short-term independence of annual
peak flows a common phenomenon? [s there a new way of describing annual peak flow
series?

To answer the above questions, this chapter deals with the statistical relationship
between long-term and short-term behaviour of annual peak flow series, which are
measured by Hurst’s K and the lag-one autocorrelation coefficient r(1), respectively.

Natural annual peak flow series of 258 rivers collected from Canada and China were
analysed. The study focuses on dealing with the statistical properties of these two
statistics. Parametric and non-parametric statistical hypothesis tests will be carried out to
test correlation and dependence between Hurst’s K and r(1). Monte Carlo experiments
will also be used to show the variation of these two statistics for serially independent
series.

The results of this study is to provide a basis for a proposed probability model for
dealing with long-term and short-term behaviours of annual peak flow series.

In order to satisfy the customary assumption in flood risk analysis, an independent

probability population is argued th hout the chapter.
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Figure 2.1 Three independent standardized flow time series with different levels
of the long- term behaviours, where K and r(1) are Hurst's K and lag-
one autocorrelation coefficient, respectively.
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2.2 Annual Peak Flows of Canadian and Chinese Rivers

Before investigating the long-term and short-term behaviour of annual peak flow series,
an analysis of the statistics of natural annual peak flow series with record length greater
than 30 years for 258 Canadian ( Environment Canada, 1992) and Chinese rivers (Ministry
of Water Resources, 1985) was made. Basic statistics on the selected rivers, including

record length, n, mean value, coefficient of variation, Cv, coefficient of skewness, Cs,
Hurst’s K, and lag-one autocorrelation coefficient, r(1), are presented in Table 2.1. Itcan
be seen from Table 2.1 that most of the rivers have small lag-one serial correlation
coefficients, but many rivers have fairly high Hurst’s K. The scatter plots, Hurst’'s K
versus lag-one autocorrelation coefficient r(1), for annual peak flow series observed in
Canadian and Chinese rivers are shown in Figure 2.2. Examination of the scatter plots in
Figures 2.2a - 2.2b, seems to show a correlation between Hurst’s K and r(l). In
comparison to this, Figures 2.3a - 2.3b show scatter plots of Hurst’s K and the coefficient
variation, Cv, and Hurst’s K and coefficient of skewness of peak flow series, Cs.

Apparently, there is no correlation between Hurst’s K and these statistics which agrees
with a study by Mandelbrot and Wallis (1969b) that the Hurst’s statistic is robust against

skewness.



Table 2.1a Statistics of natural annual peak flows of Canadian rivers (Source of data:
Environment Canada, 1992)
( n - record length in years, r(1) - lag one autocorrelation coefficient, K-Hurst’s K. Cv - coefficient

of variation, Cs -coefficient of skewness, mean - mean value of annual peak flows in m’/s)

River Name n (1) K Cv Cs mean
Adams River Near Squilax 42 .6321 .30 .20 266.2
Ashnola River Near Keremeds 42 .6138 .69 .29 83.3
Athabasca River At Athabasca 47 6011 3.70 2. 3512.8
Ausable River Near Springbank 43 .4882 .64 .16 180.3
Badger Creek Near Cartwright 30 L7720 2.06 .80 35.6
Battle River Near Unwin 36 L5796 1.41 .67 87.8
Bear River East Branch At Bear River 35 6553 .88 -84 39.0
Beaverbank River Near Kinsac 67 .7253 .56 .32 29.5
Berens River At Outlet Of Long Lake 3 5686 .71 .26 108.6
Boundary Creek Near Porthill 61 7462 40 .23 47.0
Bowron River Near Wells 33 6575 .32 -.02 38.1
Bulkley River At Quick 58 .6302 .37 1% 587.1
Carrick Creek Near Carlsrume 35 7854 .69 .45 28.1
Carrot River Near Smoky Burn 36 .5605 1.08 .68 2.7
Castle River Near Beaver Mines 44 6694 .87 .92 146.0
Chilliwack River At Vedder Crossing 32 .6625 .45 .28 304.6
Chilliwack River At Outlet Of Chilliwack Lake 32 6561 .36 .3 7.7
Clearwater River Above Limestone Creek 30 7 .83 .2 89.6
Clearwater River At Outlet Of Clearwater Lake 38 7962 .27 .12 630.8
Columbia River At Nicholson ke 7459 .37 .18 437.6
Columbia River At Donald 44 .34 44 712.6
Cooks Creek Near East Selkirk 32 64 1.16 .92 45.3
Crow River At Frank 39 7650 .68 .20 32.6
Dease River At McDame 30 5372 .34 .04 611.6
Drywood Creek Near Twin Butte 52 687¢ 1.05 1.02 6.6
East River At St. Margarets Bay &3 6961 1.06 1.10 8.0
East Humber River Near Pine Grove 35 73 .87 N 3.8
Elbow River Above Glenmore Dam 44 .6682 .90 .49 63.2
English River Near Sioux Lookout 60 .69 .38 287.3
Fish Creek Near Priddis 33 L7937 1.54 .75 17.3
Flathead River At Flathead 60 7867 47 .27 208.5
St. Frencis River At Outlet Of Glacier Lake 37 .7681 .55 .14 213.3
Fraser River At Shelley .21 32641

Garnish River Near Garnish

Gods River Below Allen Rapids

Grass River At Wekusko Falls

Hall (Riviere) Pres D East Hereford
Harrison River Near Harrison Hot Springs
Homathko River At The Mouth

Incomappleux River Near Beaton

Iskut River Below Johnson River
Kabinakagami River At Highway No. 11
Kettle River Near Laurier

Kluane River At Outlet Of Kluane Lake
Kootenay River At Newgate

Lahave River At West Northfield

McLeod River Above Embarras River

Liard River At Lower Crossing 33

Manyberries Creek At Brodin s Farm 45 L0251 .6927 1.11 .57 13.1

n
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Table 2.1a  Continued

Southwest Margaree River Near Upper Margaree
McEachern Creek At [nternational Soundary

Middle Brook Near Gambo
Mink Creek Near Ethelbert

Mistaya River Near Saskatchewan Crossing

Moyie River At Eastport
Namakan River At Outlet Of Lac La Croix

Petite Nation (Riviere De La) Pres De Cote-Saint-Pierre

Nith River At New Hamburg

Northeast Pond River at Northeast Pond
Nottawasaga River Near Baxter

East Oakville Creek Near Omagh
Overflowing River At Overflowing River
Pembina River Near Entwistle

Petite Nation (Riviere De La) a Portage-De-La-Nation

Pigeon River At Middle Falls

prairie Creek Near Rocky Mountain House
Quesnel River Near Quesnel

Chilko River Near Redstone

Richelieu (Riviere) Aux Rapides Fryers

Rock Creek Below Horse Creek Near [nternational Boundary

Rolph Creek Near Kimball
Roseau River Near Caribou
saint John River At Fort Kent
salmo River Near Salmo

iver Near Port Elgin

Ri
Shekak River At Highway No. 11

Skootamatta River Near Actinolite
South Thompson River At Chase
South Nation River At Spencerville
St. Mary River Near Marysville
Stikine River At Telegraph Creek
Stony Creek Near Neepawa

River Near Barwick
Swiftcurrent Creek At Many Glacier
Sydenham River Near Alvinston
Teslin River Near Teslin
Tetagouche River Near West Bathurst
North Thompson River Near Barriere
Torrent River at Bristol s Pool
Turtle River Near Laurier
Upper Humber River Near Reidville
Waterhen River Near Waterhen
Whitemouth River Near Whitemouth
Wilson River Near Dauphin
Woody River Near Bowsman
Yukon River Above Frank Creek
Arrow River Near Arrow River
Athabasca River Below McMurray
Atlin River Near Atlin
Babine River At Babine
Barnes Creek Near Needles
Beaver River At Cold Lake Reserve
Beaurivage (Riviere) A Sainte-Etienne
Bell (Riviere) A Senneterre - 2

GRuwd FeEbu.uny

I

$alsgs
DI

&
h+

ML

B3ads;

w

o
aNbhukoLLroNNolihooNoomD

N-EH]

2
BE. &g

SRERBN:




Table 2.1a  Continued

Big Sheep Creek Near Rossland
Black River Near Washago
Bow River At Banff
Brokenhead River Near Beausejour
Campbell River At Outlet Of Campbell Lake
Cariboo River Below Kangaroo Creek
Carrot River Near Armley
Cascade River Near Sanff
Castor River At Russell
Chilko River At Outlet Of Chilko Lake
Clam Harbour River Near Birchtown
Clearwater River Near Rocky Mountain House
Clearwater River Near Clearwater Station
Columbia River Near Fairmont Hot Springs
Conjuring Creek Near Russell
Cottonwood River Near Cinema
Cypress Creek Near Clearwater
Deer Creek At Deer Park
r Near Howser

ie River Near Enilda
Elbow River At Bragg Creek
English River At Umfreville
Etomemi River Near Bertwell
Fish Creek Near Prospect Hill
Fraser River At Hansard
Fraser River At McBride
Gander river at big chute
Ghost River Near Black Rock Mountain
Grand River at Loch Lomond
Harricana (Riviere) A Amos
Highwood River At Diebel s Ranch
Horse Creek At International Boundary
Icelandic River Near Riverton
Indian Brook At Indian Falls
Island Lake River Near Island Lake
Kettle River Near Ferry

Kinojevis (Riviere) En Aval Du Lac Preissac

Kootenay River At Kootenay Crossing
Kootenay River Near Skookumchuck
Lardeau River At Marblehead

Lepreau River At L

Lillooet River Near Pemberton

Little Slsklt:heﬁr\ River Near Minnedosa
Lobstick Rive L

Lodge Creek e

stya
alberta Boundary

Northeast Margaree River At Margaree Valley

St. Mary River At Wycliffe
McKinnon Creek Near McCreary

Mille Iles (Riviere Des) En Aval Du Lac Des Duex Montagne
e

Missinaibi River At Mat
Moose River Near Red Pass

Nagagami River At Highway No.11

Nass River Above Shumal Creek

Neebing River Near Thunder Bay

Nith River Near Canning

North Magnetawan River Near 8urk s Falls
North Pine River Near Pine River
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Table 2.1a  Continued

Oldman River Near Waldron s Corner
Pembina River At Jarvie

Pembina River Below Paddy Creek
Pigeon River At Outlet Of Round Lake
Poplar River At International Boundary
Quesnel River At Likely

Red Deer River Near The Mouth
Richelieu (Riviere) A Saint-Jean
Roaring River Near Minitonas

Roseau River Near Dominion City
Roseway River At Lower Ohio

Salmon River Near Prince George
Saugeen River Near Walkerton

Seal river Below Great Island

Shell River Near Inglis

Sikanni Chief River Near Fort Nelson
Skeena River At USK

pr
Stellako River At Glenannan

St. Marys River At Stillwater

Stuart River Near Fort St. James

Sturgeon River Near Fort Saskatchewan

Swift Current Creek Below Rock Creek
Sydenham River Near Owen Sound

North Thompson River At McLure

Thompson River Near Spences Bridge

Turtle River Near Mine Centre

Twenty Mile Creek At Balls Falls
Upsalquitch River At Upsalquitch

Waterton River Near Waterton Park
Whitewater Creek Near International Soundary
Wolf Creek At Highway No. 16A

Yukon River Above Frank Creek
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Table 2.1b  Statistics of natural annual peak flows of Chinese rivers (Source of data:
Ministry of Water Resources, 1985)

(n - record length in years, (1) - lag one autocorrelation coefficient, K- Hurst's K, Cv- coefficient

of variation, Cs - coefficient of skewness, mean - mean value of annual peak flows in m’/s)

River Name a (1) K Cv Cs  mean

Dadu River at Tongjizhi 43 6236.3
Nenjiang River at Ayangian .38 2168.3
Xinan River at Luotongbu .35 852.1
Fuchenj River at Lucibu 57 13457.7
Yuanshui River at Lanzhiwan .16 18046.8
Yangtze River at Yichan =11 51244.0
Hongshihe River at Duan -.07 11989.5
Diersonghua River at Baishan .77 3153.2
Hanjiang River at Shiquan .33 7985.4
Hanjiang River at Ankang .20 12287.6
Yellow River at Sanmenxia .46 B731.5
Yangtze River at Chuntan .09 52663.4
Yailingjiang River at Beibei .06 22585.0
Yangtze River at Changshou .08 28794.2
Yalongjiang River at Xiaolangde 42 8766.3
Jalingjiang River at Dongshiguan .31 13366.6
Hongshuiho River at Yantan -.02 10804.4
Mingjinag River at Zhipingpu .66 2426.2
Hongshui River at Longtan -.05 10216.8
Jiangjieho River at shilin .31 8837
Penshui River at Penshui .35 10985.8
Yellow River at Daxia .27 3811.7
Xigiho River at Shagikou 35 9368.0
Taiziho River at Guanyingou 128 1447.5
Yalujiang River at Lingjiang 55 3077.6
Hunho River at Jingkang .62 5415.6
Hunho River at Gaoling .65 5353.1
Daduho River at Pubugou 47 4897.2
Jiangjieho River at Goupitan 31 7962.3
Yialingjiang River at Shanhuangmiao L6 4393.0
Jalingjiang River at Wushen 22 12643.0
Yalu River at Shuifeng .23 13008.1
Hunjiang River at Huilong 71 4410.9
Fujiang River at Guanyinchang .16 1351.5
Dongliao River at Erlongshan 1.18  857.7
Chaihe River at Taipingzhai .86 425.1
Jinlongxi River at Yongan 45 2662.5
Fujiang River at Xiacheba .90 9488.,

Qujiang River at Fengtan -.01 15563.1
Fujiang River at Tianxiansi .61 2819.7
Xiushui River at Zhelin 47 4916.0
Luoshui River at Changshui . 51 1495.8
Hanjiang River at Huangjiagang 55 15681.1
Yujiang River at Henxisn .25 10557.7
Bache River at Hedongdian .30 1198.0
Yellow River at Guide .29 2399.0
Fujiang River at Taihezhen .4 10016.3
Leishui River at Dongjiang 33 -.1011 .6596 N .38 202.5
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Table 2.1b  Continued

Yellow River at Lanzhou
Chaihe River at Taipingzhai
Qujiang River at Danglin
Dadu River at Tongjizhi
Qujiang River at Luoduxi
Qujiang River at Qilituo
Jingshajing River at Pinshan
Fujiang River at Fujiangqiao
Fujiang River at Xiacba
Qujiang River at Mingyuetan
Yangtze River at Wanxian
Qujiang River at Goudukou
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Figure 2.2a Plots of r(1) vs. Hurst's K for annual peak flows observed
at Canadian rivers.
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Figure 2.2b Plots of r(1) vs. Hurst's K for annual peak flows observed
at Canadian and Chinese rivers.
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Figure 2.3a Plots of coefficient of variation (Cv) vs. Hurst's K for annual
peak flows observed at Canadian and Chinese rivers.
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Figure 2.3b Plots of coefficient of skewness (Cs) vs. Hurst's K for annual

peak flows observed at Canadian and Chinese rivers.
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2.3 Theoretical Values of Lag-one Autocorrelation Coefficient
and Hurst Coefficient

2.3.1 Lag-One Autocorrelation Coefficient, p(1)
In hydrology, short-term independence refers to the belief that an occurrence of a
hydrological event, such as a maximum annual flood, has no influence on the probability
of occurrence of previous or subsequent flood events.

Short-term persistence can be measured by the magnitude of the lag-one correlation
function, p(1), given by

Cov( X)), X(t+1))

2.1
Var (X(1) ) @b

p(l)=

where X is the basic random variable, and Cov(X(t),X(t+1)) and Var(X(t)) the covariance
and variance, respectively. An estimate r(1) of the autocorrelation function, p(1), can be

obtained using (Jenkins and Watts, 1968; Box and Jenkins, 1970)

)= (25005 s M B3 @2

where x; and n are annual flow at time i, and sample size, respectively, and X is the

sample mean given by:
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An estimate of p(1) obtained through Eq.2.2 is negatively biased and the magnitude
of bias being a function of the sample length, n, and of the generating process (Wallis and
O’Connell, 1972).

If an annual peak flow series is considered to be a realisation of a stochastic process,
the lag-one autocorrelation coefficient r(1), can be employed tc measure short-term
persistence. It is sufficient to mention here that the magnitude of the lag-one

autocorrelation function is theoretically zero for an independent stochastic process.

2.3.2 Hurst Coefficient, h

Long-term dependence is the presence in a time series of significant dependence between
observations a long time span apart. In hydrology, it refers to the phenomenon that a
quantity (e.g. river flows) can be very large or small and a period of low or high flows can

be extremely long indeed (Manderlbrot and Wallis, 1968). The degree of long-term

is usually o by the itude of the Hurst coefficient, h (Hurst, 1951,
1956). '

The concept of the Hurst coefficient originates from a statistic named the “range of
cumulative departure from the mean” by Hurst (1951,1956).

Let S(k) be
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k -
Stk) =% (x.-x) 2.3)
=
the cumulative departures from the mean value in a discrete-time series. The range of the

cumulative departure from the mean is
R.=Max S(i)-Min S() ie(0,1...n) je(0l..n) 2.4)

where Max and Min are operators defining the largest and smallest values, respectively.
Hurst (1951, 1956) studied the range, R,, both theoretically and empirically. His
theoretical study showed that if the series of inflows are independent, with finite mean and
variance, i.e. a white noise sequence, then

B p2sp @)
Sn

where s, and n are the standard deviation and sample size, respectively. Hurst coefficient
h is theoretically 0.5. A result from Feller (1951) agrees with Hurst’s result. In other
words, Hurst coefficient h is constant and for a normal independent process h=0.5 and
p(1)=0.0, and if 0.5<h<1 it represents a long-term persistent process. Hurst
coefficients in the range O to 0.5 represents an anti-persistent process, that is, there is a
tendency to show decreases in values following previous increases, and increases
following previous decreases (Mandelbrot, 1977,1982).
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The Hurst coefficient is usually estimated by Hurst’s K (Hurst, 1951, 1956). This
estimator has a lower variance than other estimators currently in use and its calculation is
simple and straightforward. Hurst’s K is given by (Mandelbrot and Wallis, 1969)

K =108(R/s0)

log (w/2) @6

where R, is the range of cumulative departures from the mean, s, and n are the standard
deviation and sample size, respectively. K is theoretically 0.5 for independent series. K
has a substantial bias in that it overestimates h for values below 0.70 and underestimates

h for values above 0.70 (Wallis and Matalas, 1970).

2.4 Sampling Distributions of Hurst’s K and r(1)
The probability distribution of statistics is known as the sampling distribution. It is obvious
that the sampling distributions of K and lag-one autocorrelation coefficient r(1) are

functions of random variables and the sample size n.

2.4.1 Relevant Mathematical Expressions
Hurst’s K and the lag-one autocorrelation coefficient r(1) as statistics are random variables.
A closer look at the expressions of Hurst’s K and the lag-one autocorrelation coefficient

r(1) given in Egs.2.2 and 2.6, respectively, show both functions contain a kind of
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summation component, that is
et - -
r(l) ~¥(x.-x)(x1-%)
=l
in Eq. 2.2 for the autocorrelation coefficient r(1), and

Ri% i(x. -x)
=l

in Egs. 2.3 to 2.6 for Hurst's K. The similar algebraic structure expressed in the Egs.

2.2 and 2.6 show that both of these estil are functions of seq of occurrence in

the series. The theoretical derivation for the ionship b the population h and
p(1) has been made and used in the models of long-term persistence behaviour. One such
model is the fast fractional Gaussian noise model (Mandelbrot and Wallis, 1969a), and
the lag-one Markov process (Matalas and Huzzen, 1967).

To illustrate this issue, a simple example of three series of six values of flows in
different orders are shown in Table 2.2 where X, s, and Cs, are the mean value, standard
deviation and coefficient of skewness, respectively.

The i of the statisti d from the three series, such as the mean

value, X, the standard deviation, s, , and coefficient of skewness, Cs, , are the same for

the three series except for the lag-one coefficient r(1) and Hurst’s K. The reason is simple,
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that is, the statistics such as mean value, standard deviation, and skewness, are

independent of the order of occurrence but Hurst’s K and r(1) are not. This basic outcome

is the primary problem in dealing with short-term and long-term behaviours of hydrologic

series.

Table 2.2  Statistics for the three series having six values in different orders

Series X Sy Cs, (1) K
Series 1: 120 35 91 23 12 58 56.5 59.3 | 0.26 | -0.2092 0.5651
Series 2: 91 23 58 120 35 12 56.5 59.3 | 0.26 | -0.1728 0.4130
Series 3: 3512012 58 23 91 56.5 59.3 | 0.26 | -0.6216 0.5474

2.4.2 Sampling Distribution of r(1)

The lag-one autocorrelation coefficient, r(1), calculated from Eq. 2.2 is an approximation

of normal distribution if the parent population is normally distributed (Yevjevich, 1971),

that is:

)~ NE
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2.4.3 Sampling Distribution of Hurst's K

The distribution of Hurst’s K is known to be highly skewed when the sample size is small
(Mandelbrot and Wallis, 1969b). Many researchers, such as Feller (1951), Anis and

Lloyd (1953), Yevjevich (1967) and Wallis and O’Connell (1973) tried to obtain a
sampling distribution experimentally and theoretically, but a closed form solution to the

d due to

sampling distribution of Hurst’s K has not yet been

difficulties.

2.5 Statistical Relationship Between Hurst’s K and r(1)

The statistical properties such as correlation and dependence between Hurst’s K and lag-
one correlation coefficient r(1) were investigated in order to describe behaviour of annual

peak flow series.

2.5.1 Correlation Between Hurst’s K and r(1)

The correlation coefficient is a of the h of the linear relati ip between
variables. The correlation between Hurst’s K and lag-one correlation coefficient r(1) can

be tested by p ic and ic hypothesis testing.

Before performing the hypothesis test for a normal transfc ion of the
annual peak flows is needed in order satisfy the statistical test and modelling assumptions
in a later Monte Carlo simulation experiment. Both parametric and nonparametric
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hypothesis tests for correlation between Hurst's K and r(1) were carried out.

2.5.1.1 Box-Cox Normal Transformation of Observations
The Box-Cox transformation (Box and Cox, 1964) is given by

x' -1
=5-L =0
Ya= 77 4 @9

V= log x,, A=0
where x; and y; are the observations and the transformed values, respectively, and A is the
transformation parameter estimated by the probability plot correlation coefficient (PPCC)
method (Lye, 1993).

The statistics of the transformed observations of annual peak flow series from
Canadian and Chinese rivers are shown in Tables 2.3 and 2.4. It can be seen from the
Tables 2.3 and 2.4 that the bulk of coefficient of skewness of the transformed data are
close to zero and PPCC test statistic are greater than the critical value at levels of 5% and
10%. This means that the transformed data can be considered as normally distributed at

significance levels of 5% and 10%.
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Table 2.3a Statistics of Box-Cox transformed observations of natural annual peak flows
of Canadian rivers

(n - record length in years, A- transformation parameter, r; - correlation coefficient, r(1)- lag one

autocorrelation coefficient, K - Hurst’s K, Cs - coefficient of skewness )

River Name n A o) K Cs
Adams River Near Squilax 42 .210 986 .2170 .6542 -.01
Ashnola River Near Keremeds 42 .060 .990 -.3397 .5942 .00
Athabasca River At Athabasca 47 -.960 991 -.2232 .5963 -.06
Ausable River Near Springbank 43 .330 .990 .04
Badger Creek Near Cartwright 30 .090 .99 .05
Battle River Near Unwin 36 .000 .993 -.01
Bear River East Branch At Bear River 35  -.600 991 -.01
Beaverbank River Near Kinsac 67 -.090 .995 .01
Berens River At Outlet Of Long Lake 3 -390 991 .05
Boundary Creek Near Porthill 61 .420 .987 .06
Bowron River Near Wells 33 1.140 992 .01
Bulkley River At Quick 58 .330 .995 -.01
Carrick Creek Near Carlsrume 35 .210 .986 .05
Carrot River Near Smoky Burn 34 .260 .990 .04
Castle River Near Beaver Mines 4 -.150 975 .10
Chilliwack River At Vedder Crossing 32 -.150 .987 .05
Chilliwack River At Outlet Of Chilliwack Lake 32 -.240 .996 -.01
Clearwater River Above Limestone Creek 30 -.540 .992 .04
Clearwater River At Outlet Of Clearwater Lake 38 .150 .988 .02
Columbia River At Nicholson 77 .240 996 .02
Columbia River At Donald 4 -.570 .992 .00
Cooks Creek Near East Selkirk 32 330 9764 N
Crow River At Frank 39 .27 .987 -.05
Dease River At McDame 30 840 993 .02
Drywood Creek Near Twin Butte 52 -.060 961 .06
East River At St. Margarets Bay 63 -.270 996 .01
East Humber River Near Pine Grove 35 .180 984 -.06
Elbow River Above Glenmore Dam 46 -.260 .993 -.02
English River Near Sioux Lookout 60 .060 .996 -.01
Fish Creek Near Priddis 33 -.360 .992 -.01
Flathead River At Flathead 60 -390 .990 .06
St. Francis River At Outlet Of Glacier Lake 37 510 993 -.01
Fraser River At Shelley 39 .060 .982 .00
Garnish River Near Garnish 30 -.600 .993 .02
Gods River Below Allen Rapids 39 .300 .996 .03
Grass River At Wekusko Falls 31 120 .99 -.02
Hall (Riviere) Pres D East Hereford 40 .510 .990 .00
Harrison River Near Harrison Hot Springs 38 .030 996 .01
Homathko River At The Mouth 32 -1.440 .99 .09
Incomappleux River Near Beaton 37 -1.350 991 -.01
Iskut River Below Johnson River 30 -1.470 99 - 07
Kabinakagami River At Highway No. 11 36 660 .996 .00
Kettle River Near Laurier 59 1.050 996 .0648 . .05
Kluane River At Outlet Of Kluane Lake 36 1.920 .985 -.1710 .6634 -.04
Kootenay River At Newgate 42 1.200 .988 0593 .7720 04
Lahave River At West Northfield 73 -.39 .986 -.0164 .7006 -.10
McLeod River Above Embarras River 36 -.450 .989 -.0192 .5228 .07
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Table 2.3a  Continued

Mink Creek Near Ethelbert 34
Mistaya River Near Saskatchewan Crossing 38
Moyie River At Eastport 59

Namakan River At Outlet Of Lac La Croix 66
Petite Nation (Riviere De La) Pres De Cote-Saint-Pierre 43
Nith River At New Hamburg 38

Northeast Pond River at Northeast Pond 35
Nottawasaga River Near Baxter 40
East Oakville Creek Near Omagh 32
Overflowing River At Overflowing River 33
Pembina River Near Entwistle 3
Petite Nation (Riviere De La) a Portage-De-La-Nation 46
Pigeon River At Middle Falls 65
Prairie Creek Near Rocky Mountain House 37
Quesnel River Near Quesnel 50
Chilko River Near Redstone 62

Richelieu (Riviere) Aux Rapides Fryers s1
Rock Creek Below Horse Creek Near International Boundary 32
Rolph Creek Near Kimball 53

Roseau River Near Caribou 67
Saint John River At Fort Kent 62
Salmo River Near Salmo 40
Saugeen River Near Port Elgin 7%
Shekak River At Highway No. 11 37
Shogomoc Stream Near Trans Canada Highway 45
Similkameen River At Princeton &
Skootamatta River Near Actinolite 30
South Thompson River At Chase 48
South Nation River At Spencerville 3
St. Mary River Near Marysville 41
Stikine River At Telegraph Creek 3%
Stony Creek Near Neepawa 30
Sturgeon River Near Barwick 35
Swiftcurrent Creek At Many Glacier 54
Sydenham River Near Alvinston 40
Teslin River Near Teslin 41
Tetagouche River Near West Bathurst 37
North Thompson River Near Barriere 44
Torrent River at Bristol s Pool 30
Turtle River Near Laurier 40
Upper Humber River Near Reidville 60
Waterhen River Near Waterhen 34
Whitemouth River Near Whitemouth 42
Wilson River Near Dauphin 31
Woody River Near Bowsman 35
Yukon River Above Frank Creek 36
Arrow River Near Arrow River 30
Athabasca River Below McMurray 3
Atlin River Near Atlin 39
Babine River At Babine 41
Barnes Creek Near Needles 38
Beaver River At Cold Lake Reserve 33
Beaurivage (Riviere) A Sainte-Etienne 37
Bell (Riviere) A Senneterre - 2 36
Big Sheep Creek Near Rossland 40
8Black River Near Washago 3
Bow River At Banff 8
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Table 2.3a  Continued

Brokenhead River Near Beausejour
Campbell River At Outlet Of Campbell Lake
Cariboo River Below Kangarco Creek
Carrot River Near Armley
Cascade River Near Banff
Castor River At Russell
Chilko River At Outlet Of Chilko Lake
Clam Harbour River Near 8irchtown
water River Near Rocky Mountain House
Clearwater River Near Clearwater Station
Columbia River Near Fairmont Hot Springs
Conjuring Creek Near Russell
Cottonwood River Near Cinema
Cypress Creek Near Clearwater
Deer Creek At Deer Park
Duncan River Near Howser
East Prairie River Near Enilda
Elbow River At Bragg Creek
English River At Umfreville
Etomami River Near Bertwell
Fish Creek Near Prospect Hill
Fraser River At Hansard
Fraser River At McBride
Gander river at big chute
Ghost River Near Black Rock Mountain
Grand River at Loch Lomond
Nnrrinm (Riviere) A Amos
Highwood River At Diebel s Ranch
Horse Creek At International Boundary
Icelandic River Near Riverton
Indian Brook At Indian Falls
Island Lake River Near Island Lake
Kettle River Near Ferry
Kinojevis (Riviere) En Aval Du Lac Preissac
Kootenay River At Kootenay Crossing
Kootenay River Near Sk
Lardeau River At Marblehesd
Lepreau River At Lepresu
Lillooet River Near Pemberton
Little Saskatchewan River Near Minnedosa
Lobstick River Near Styal
Lodge Creek Near alberta Boundary
Northeast Margaree River At Margaree Valley

r M 30
Mille Iles (Riviere D l) En Avll Du Lac Des Duex Montagne
&9

Missinaibi River At Mattice

Moose River Near Red Pass

Nagagami River At Highway No.11

Nass River Above Shumal C:

Neebing River Near Thunder Bay

Nith River Near Canning

North Msgnetawan River Near 8urk s Falls
Korth Pine River Near Pine River

Oldman River Near Waldron s Corner
Pembina River At Jarvie

591
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Table 2.3a  Continued

Pembina River Below Paddy Creek

Pigeon River At Outlet Of Round Lake
Poplar River At International Boundary
Quesnel River At Likely

Red Deer River Near The Mouth

Richelieu (Riviere) A Saint-Jean

Roaring River Near Minitonas

Roseau River Near Dominion City

Roseway River At Lower Chio

Salmon River Near Prince George

Saugeen River Near Walkerton

Seal river Below Great Island

Shell River Near Inglis

Sikanni Chief River Near Fort Nelson
Skeena River At USK

Slocan River Near Crescent Valley
Southwest Margaree River Near Upper Margaree
Sprague Creek Near Sprague

Stellako River At Glenannan

St. Marys River At Stillwater

Stuart River Near Fort St. James
Sturgeon River Near Fort Saskatchewan
Swift Current Creek Below Rock Creek
Sydenham River Near Owen Sound

North Thompson River At McLure

Thompson River Near Spences Bridge
Turtle River Near Mine Centre

Twenty Mile Creek At Balls Falls
Upsalquitch River At Upsalquitch
Waterton River Near Waterton Park

Liard River At Lower Crossing
Manyberries Creek At Brodin s Farm
Southwest Margaree River Near Upper Margaree
McEachern Creek At International Boundary
Middle Brook Near Gambo

Whitewater Creek Near International Boundary
Wolf Creek At Highway No. 16A

Yukon River Above Frank Creek
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$

993

EEFERRELE

34



Table 2.3b Statistics of Box-Cox transformed observations of natural annual peak
flows of Chinese nvcrs

(n - record length, A- I ion coefficient, r(1)- lag one

autocorrelation coefficient, K - Hurst's K, Cs - coefficient of skewness)

River Name o A <% (i) K Cs

Dadu River at Tongjizhi .995  .0529 .7122 -.13

Nenjiang River at Ayangian .993  .1167 .8050 -.01
Xinan River at Luotongbu 996 .7092 .01
Fuchenj River at Lucibu .996 -.1135 .5988 -.02
Yuanshui River at Lanzhiwan 991 -.04
Yangtze River at Yichan .97 -.02
Hongshihe River at Duan 995 .02
Diersonghua River at .985 .00
Hanjiang River at Shiguan 993 00
Hanjiang River at Ankang 992 -.02
Yellow River at Sarmenxia .996 .00
Yangtze River at Chuntan 996 -00
Yailingjiang River at Beibei 995 -00
Yangtze River at l:hmgshou 996 .01
Yalongjiang River at 996 -.01
Jalingjiang River <996 .00
Hongshuiho River at Yantan 992 -02
Mingjinag River at Zhipingpu 991 .06
Hongshui River at Longtan .993 .03
Jiangjieho River at shilin .981 <06
Penshui River at Penshui .993 .01
Yellow River at Daxia 48 997 .01
Xiqiho River Shaqikou 4“0 .993 .04
Taiziho River at Guanyingou 40 .993 .01
Yalujiang River at Lingjiang 52 994 .01
Hunho River at Jingkang 48 .995 .02
Hunho River at Gaoling “8 .995 .06
Daduho River at Pubugou 46 2995 .07
Jiangjieho River at Goupitan 4b .982 -00
Vlll‘nﬂ“lﬂg River at Shahuagmiao 40 995 .00
Jalingjiang River at Wushen 37 996 .09
Yalu River at Shuifeng 39 .987 .05
Hunjiang River at Huilong 37 .984 .05
ng River at Guanyinchang 32 993 -.03
Dongliao River at Erlongshan 38 .987 -.05
Chaihe River at Taipingzhai 30 .99 .05
Jinlongxi River at Yongan 32 2990 04
i 35 .990 .05

32 .990 -.05

31 995 -.01

30 .989 .03

Luoshui River at Changshi 30 .988 .05
Mnnjhm River at Huangjiagang 34 .210 .985 .03
31 060 991 .01

J] 35 360 .982 -00
Leishui River at Dongjiang 3 .060 .95 .00
Bache River at Hedongdian 31 -.030 990 -.02
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Table 2.3b  Continued

Qujiang River at Luoduxi 33 1.530 -.02
Qujiang River at Qilituo 32 390 .02
Yellow River at Guide 30 -.480 .01
Yellow River at Lanzhou 31 -.240 .02
Jingshajing River at Pinshan 37 1.200 37
Fujiang River at Fujianggiao 31 .570 -.02
Fujiang River at Xiaoba 30 .180 .00
Qujiang River at Mingyuetan 31 .300 .04
Chaihe River at Taipingzhai 30 .000 .05
Qujiang River at Donglin 32 .360 .01
Dadu River at Tongjiezhi 30 -.420 -.04
Yangtze River at Wanxian 30 .600 .02
Qujiang River at Goudukou 32 -.09 -

Table 2.4  Statistics of Hurst's K and r(1) for Box-Cox transformed data
observed in some Canadian and Chinese rivers

Source Size Statistics Mean Standard Skewness | Correlation
(n) error coefficient
Canadian 198 | Hurst's K 0.6728 0.0728 -0.2021 0.5097
Rivers

(1) 0.0309 0.1483 0.1480
Chinese 60 Hurst’s K 0.6522 0.0710 0.2922 0.3373
Rivers

(1) -0.0184 0.0999 0.1395

2.5.1.2 t-test of Correlation

A parametric hypothesis test, t-test, was used to test the correlation between two random
variable, Hurst’s K and r(1). An assumption is made in the hypothesis that Hurst’s K and
r(1) are random variables from a bivariate normal distribution. If population correlation
coefficient, p, is theoretically zero, and sample estimate of p given by r, then the

quantity
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t=rJn-2)/1-") @9
has a t-distribution with (n-2) degrees of freedom, where r and n are the estimate of p and
the sample size, respectively.

Two-tailed test can be used:

H:p=0

H:p=0

Test statistic: t-statistic has a Student’s t distribution with v = (n-2) degrees of

freedom

Rejection region: | t | > tap .,

Thus the test statistic, t, is calculated from Eq.2.9 and Ho: p=0 is rejected at a
given significance level o if | t | > tay ,,. The result of t-tests for correlation between
Hurst’s K and (1) calculated from the Box-Cox transformed data is shown in Table 2.5.
It indicates a correlation between Hurst’s K and lag-one autocorrelation coefficient r(1)

at the 5% and 10% levels of significance.

Table 2.5 t-tests for correlation between Hurst’s K and r(1) from transformed data

Lenins Conclusion
Source n t a=5% a=10% a=5% a=10%
Canadian Rivers 198 8.294 1.960 1.645 reject H, Reject Hy
Chinese Rivers 60 2.729 1.960 1.645 reject H, Reject H,
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2.5.1.3 Spearman’s Nonparametric Test of Correlation

The t-test of correlation is based on the assumption that the variables tested are randomly
sampled from a bivariate normal distribution. As mentioned, the lag-one autocorrelation
coefficient, (1), calculated from Eq.2.2 is approximately normally distributed if the
parent population is normally distributed, but the distribution of Hurst’s K is unknown.

Because of the uncertainty concerning the assumption about the form of the population
distributions, nonparametric methods often lead to a more efficient decision in hypotheses
testing. So Spearman’s rank correlation coefficient, r, (Olds, 1938), a nonparametric
statistics in testing correlation between two random variables, Hurst’s K and r(1), was also
used in this study.

The Spearman’s rank correlation coefficient, r,, is calculated by using the rank as

the paired measurements on the two variables, X and Y, in the formula for correlation

coefficient r. Thus r, is given by

S w2 )(v-v)

(2.10)

where u; is the rank of x; (i=1, 2, ..., n) and v; is the rank of y; (i=1, 2, ..., n).
The null hypothesis that the population value of Spearman’s rank correlation

coefficient, p, =0 implies there is no correlation between u and v. The two-tailed test is
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carried out:
Hy:p,=0
Hi:p, =0
Test statistic: r,, the sample Spearman’s rank correlation expressed by Eq. 2.10
Rejection region: r,| > f,ap
where r, o, , is the critical value for Spearman’s correlation coefficient.
The Spearman’s nonparametric test for correlation shown in Table 2.6 indicates
correlation between Hurst’s K and r(1) at the 5% and 10% levels of significance.

Both ic and ic tests identify lati the two random

variables, Hurst’s K and r(1), that is, a linear relationship links the long- and short-term
behaviour which are measured by Hurst’s K and the lag-one autocorrelation coefficient
(1), respectively. Based on this, an empirical probability approach for dealing with serial

long- and short-term behaviours will be developed in the next chapter.

Table 2.6 Spearman’s nonparametric test for correlation between Hurst’s K and r(1) from

transformed data
I ann Conclusion
Source n I, a=5% a=10% a=5% a=10%
Canadian Rivers 198 0.498 0.364 0.305 Reject H, Reject H,
Chinese Rivers 60 0.393 0.364 0.305 Reject H, Reject H,
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2.5.2 Dependence Between Hurst’s K and r(1)
The dependence or independence between Hurst’s K and lag-one correlation coefficient
r(l) can be tested by parametric and nonparametric hypothesis testing. If the null

hypothesis of i d is rej there is d berween Hurst’s K and r(1)

at significant levels.

2.5.2.1 p-tests of Dependence
A parametric hypothesis test, p-test, for dependence was made to test the two variables,
Hurst’s K and r(1). Assume that the calculated values of Hurst’s K and r(1) from Box-
Cox transformation data by PPCC method shown in Table 2.3 be n samples drawn from
a bivariate normal distribution, N(i,, W, Gy, G,, p) the independence of those two random
variables will be tested. The statistical hypothesis is

independence: p = 0.
Others are

positive correlation : p>0

negative correlation : p<0

The test is: rejection if
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[o=c’ e
where p is the estimate of p, and ¢’ =2/n'?, and z is approximately N(0,1). The results
of the p-test for independence of Hurst’s K and r(1) shown in Table 2.7 rejected
independence at the 5% and 10% levels of significance. i.e., the Hurst’s K and r(1) are

dependence at the 5% and 10% levels of significance.

Table 2. 7 p-tests for independence between Hurst’s K and r(1) from transformed data

c’ Conclusion
Source o P a=5% a=10% a=5% a=10%
Canadian Rivers 198 0.5097 0.1393 0.1173 reject H, Reject H,
Chinese Rivers 60 0.3373 0.2530 0.2130 reject H, Reject H,

2.5.2.2 x* - Nonparametric test of Dependence

Hypothesis testing for the independence of two random variables which both come from
a joint normal distribution is equivalent to the p-test for correlation. That is, if variables
X and Y are independent then p,,=0. But, the situation here is that lag-one autocorrelation

coefficient r(1) is approximately normally distributed (see Yevjevich, 1971), but the

Hurst’s K distribution is Hence, a ic test for dep:
Hurst’s K and r(1) suggests a more efficient test for independence, is required.

A classi ic test for ind is provided by the ubiquitous %* (see
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Gibbons, 1971; Lehmann, 1975). Suppose (K, r(1),), K ,, (1) 5, ..., (K ,, (1) ) be n
samples drawn from the unknown but same distribution. A quantity for the nonparametric

hypothesis test of independence is given by

it nny 2
77'"22["-,——" 7’/ nen, 2.12)
==l

has a x* distribution with (m-1)(s-1) degree of freedom if n; is large enough for all i, j,
where n; is the accounted number of occurrence and its meaning is shown in Table 2.8a.

Based on the annual peak flows observed at Canadian and Chinese rivers, the x*- test
for the independence was made. If the number of observations n is large, the test statistic
%* can be shown to possess, approximately, a chi-square distribution. The observed data
from Canadian and Chinese rivers were combined for testing. To study the data normally
distributed in Chapter 3, transformed data also were tested. The results of both observed
and transformed data are shown in Table 2.8b and 2.8c. The tables indicate that the null
hypothesis of independence between Hurst’s K and r(1) for Canadian and Chinese rivers
is rejected at the significance levels of 5% and 10%.

Both parametric and nonparametric tests indicate dependence between the two random
variables, Hurst’s K and r(1), that is, occurrence of one variable, for example, lag-one
autocorrelation r(1), affects the occurrence of Hurst’s K and vice versa. Based on the

dependence between r(l) and Hurst’s K, a theoretical assumption about conditional
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probability for long-term persistence given short-term i

the next chapter.

will be d

Table 2.8a A contingency table

i

1 2 s o,
1 o, 0, Ny oy ;.
2 0; 0Op Oy Oy o,
m Oy Oy Doy O O
n; o n. o; o, o

Table 2.8b A contingency table for testing the independence between Hurst’s K and (1)

for the observed peak flow from Canadian and Chinese rivers i
Hurst's K
r(l) K>0.658 0.580 <K<0.658 K<0.580 Total
r(1)s-0.05 26 41 22 89
-0.05<r(1)< 0.05 41 28 8 m
R(1)> 0.05 64 26 2 92
Total 131 95 32 258
Lamons =T.779  Alamsss =9.488  x2=37.44
x> amtons X > 8 amsns Reject H,
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Table 2.8c A contingency table for testing the independence between Hurst’s K and r(1)
for the transformed data observed at Canadian and Chinese rivers

Hurst's K
(1) K>0.658 0.580<K<0.658 K< 0.580 Total
r(1)<-0.05 27 34 19 80
-0.05<r(1)<0.05 31 2 10 63
R(1)> 0.05 78 34 3 115
Total 136 90 32 258

Lacioxs =7.779  Xlamszs =9.488  x* =30.66

K> % amtona X > amsns Reject H,

2.6 Variation of Hurst’s K and r(1)

To demonstrate the variation of Hurst’s K and the lag-one autocorrelation coefficient r(1),
a simple Monte Carlo simulation for a normal distribution N(0,1) was made. The steps
are as follows:

1) For a given sample size n, 25,000 realizations are sampled from a normal
independent process which has a mean of zero and standard deviation of one, and
lag-one autocorrelation of zero.

2) Lag-one autocorrelation coefficient r(1) and Hurst’s K were calculated for every

replication using Eq.2.2 and Eq.2.6, respectively.



3) Calculate the mean value, standard error, S ,, and S, ,and coefficient of skewness
of lag-one autocorrelation coefficient r(1) and Hurst’s K over the 25,000
realizations.

4) Change sample sizes and repeat Steps (1), (2) and (3).

The lengths of samples vary from 20 to 1,000, covering eight orders of sizes.
Results shown in Figs.2.4 and 2.5 and Table 2.9 provide the information about the
variability of the mean, standard error and skewness of r(1), and Hurst’s K as they vary
with sample size.

It can be seen from Figs.2.4 and 2.5 that the means of r(1) and Hurst’s K converge
to their theoretical values in a similar fashion but at different rates. That is, the rate of
convergence to its theoretical value of r(1) is much faster than that of Hurst’s K as n
increases, even though the magnitudes of standard error of r(1) is much larger than that
of Hurst’s K. It can also to be seen that in Table 2.9, for simulated data, the coefficient
of skewness, Cs, of Hurst's K tends to zero as the sample size increases. This implies that
the distribution of Hurst’s K like the distribution of r(1) and can be closely approximated

by a symmetrical distribution as n— c, even though its exact distribution is unknown.
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Table 2.9 Variation of statistics of Hurst’s K and r(1) based on 25,000 replications for
a normal independent process

Size r(l) Hurst’s K
n Mean S Cs Mean S, Cs
20 -0.0495 0.206 0.050 0.6413 0.096 -0.147
30 -0.0317 0.173 0.010 0.6366 0.083 -0.099
50 -0.0191 0.137 0.018 0.6277 0.070 -0.073
80 -0.0119 0.110 0.035 0.6186 0.061 -0.019
100 -0.0095 0.099 0.042 0.6151 0.058 -0.017
150 -0.0060 0.081 0.028 0.6091 0.053 -0.007
500 -0.0025 0.045 0.025 0.5917 0.040 0.011
1000 -0.0001 0.032 -0.001 0.5835 0.035 0.004
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Plots of sample size, n, vs. the mean value of r(1) for the
normal independent process.
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Figure 2.4b Plots of sample size, n, vs. the standard error of r(1),

S, for the normal independent process.
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Figure 2.5a Plots of sample size, n, vs. the mean of Hurst’s K for the
normal independent process.

0.1

0.09 +

0.08

0.07

Sk

0.06

0.05

0.04

0.03

0 100 200 300 400 S00 600 700 800 900 1000
n

Figure 2.5b Plots of sample size, n, vs. the standard error of Hurst’s K,
S,, for the normal independent process.
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2.7 Summary

In this chapter, Hurst’s K and the lag-one autocorrelation coefficient r(1), which measure

the long- and short-term behaviours of annual peak flow series, respectively, have been

lysed. Both ic and nonp ic hyp is tests show the correlation and
dependence between Hurst’s K and r(1) of the annual peak flows for Canadian and Chinese
rivers.

The significant correlation between these two random variables and from the scatter
plots indicated that an approximate linear relationship exists between them. In principle,
as (1) increases, Hurst’s K increases, and r(1) decreases and Hurst's K decreases. Hence
the long-term behaviour is related to the short-term behaviour of annual peak flows.

The dependence between Hurst’s K and r(1) thus provides a strong basis to
quantitatively describe the simultaneous occurrence of long- and short-term behaviours of
annual peak flows in the next chapter.
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Chapter 3
A Probabilistic Approach to Dealing With Long- and
Short-term Behaviour of Annual Peak Flow Series

3.1 General

There are few methods of characterising long-term behaviour: an empirical technique
based on Hurst’s K developed by Lye and Lin (1994), the extremal index method of
Leadbetter (1988), and the measure based on the fractional differencing parameter in an
ARIMA model (Hosking, 1984).
For the modelling of long-term persistence, many models are available, but generally
these models are not useful to use for a peak flow series because of the short sample sizes.
Most studies of the correlation structure of annual peak flow series still focus on

di ing the “ch isation of” and “testing for” long-term persistence and short-term

independence separately for a peak flow series. Only one study concerned the simultaneous
occurrence of short-term independence and long-term dependence for peak flow series
observed at Canadian rivers (Lye and Lin, 1994).

Based on the observed correlation and dependence between Hurst's K and lag-one
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autocorrelation coefficient r(1) as discussed in the previous chapter, which measures the
long- and short-term behaviour of series, respectively, this chapter focuses on
quantitatively describing the simultaneous occurrence of the long-term persistence and
short-term independence for annual peak flow series.

From a theoretical and practical point of view, it is suggested in this study that a
sampling distribution of Hurst’s K should be defined as a probability distribution for a
given lag-one autocorrelation coefficient r(1). An approximation for the sampling
distribution of Hurst’s K will be developed using Monte Carlo simulation. Hence, an
estimate of the probability for serially independent population, such as the annual peak
flow series, to exhibit long-term persistence is also provided. The following sections
discuss a probabilistic approach for dealing with long- and short-term behaviour of annual

peak flow series that could be useful in flood risk analysis.

3.2 Sampling Distribution of Hurst’s K

3.2.1 Standard Error of r(1)
It is clear that it would be rare for the sample autocorrelation coefficient r(1) to be exactly
zero, even though the parent autocorrelation function r (1) is strictly zero for a normal

process. It deviates from zero due to chance. In the analysis of annual peak

flow series from Canadian and Chinese rivers, it was found that the standard error of the

autocorrelation coefficient r(1) is much larger than that of Hurst’s K. Fig.3.1 presents
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frequency histograms for the Hurst’s K and r(1) calculated from the peak flow series
observed in Canadian rivers. The deviation of Hurst’s K is much smaller than that of lag-
one autocorrelation coefficient r(1) as shown in Fig.3.1. A similar result for generated
independent data is shown in Fig.2.2 and Table 2.9.

The t-test for correlation does not reject a linear relationship between Hurst’s K and
r(1). However, the wide range of r(1) along the horizontal axis in Fig.2.2 is related to the
distribution of Hurst’s K along the vertical axis. For instance, in Fig.2.2a, for peak flows
observed in Canadian rivers, the minimum values of Hurst's K at r(1)=-0.2 and r(1)=0.2,
are 0.465 and 0.655, respectively. The difference of Hurst's K here is 0.19. For the
maximum and mean values of Hurst's K at r(1)=-0.2 and 0.2 , there is also a wide
difference of Hurst’s K. It is obvious that the sampling distribution of r(l), which is
related to the magnitudes of Hurst's K, should be taken into account. As such, the
statistical hypothesis testing of long-term behaviour proposed by Lye and Lin (1994),
which ignore those differences, is thus not strictly valid. The concept of r(l) is

d. In order to hasise hy

straightforward and its value is easy to be P

testing for long-term behaviour, the information about the distribution of r(1) should be

taken into account when the sampling distribution of Hurst's K is considered.
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Figure 3.1a Frequency histogram for the Hurst’s K calculated from the peak
flow series observed in Canadian rivers.
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Figure 3.1b Frequency histogram for the r(1) calculated from the
peak flow series observed in Canadian rivers.

53



3.2.2 Sampling Distribution of Hurst’s K

It is clear from the previous chapter that Hurst’s K and the lag-one autocorrelation
coefficient r(1) are correlated and dependent in a probabilistic manner. This provides a
theoretical basis to deal with the sampling distribution of Hurst's K which is expressed as
the sampling distribution for a given lag-one autocorrelation coefficient r(1). It has also
been observed that the standard error of the lag-one autocorrelation coefficient r(1) is much
larger than that of Hurst’s K. In statistical hypothesis testing, such a wide range of r(1)
could increase the test error. Based on these considerations, the sampling distribution of
Hurst’s K for a given r(1) can be developed by probability theory and an extensive Monte

Carlo simulation experiment.

3.2.3 Sampling Distribution of Hurst’s K for a Given r(1)

3.2.3.1 Definition of Events of Interest

The probability of an event depends on the occurrence or non-occurrence of one or more
related events. If the occurrence of one event, A, for example, is affected by the
occurrence of another event, say B, then its probability is conditional. Otherwise, the
probability is unconditional. For instance, the probability of the event “flood at a given
time” is an unconditional probability. In contrast with this, “a flood occurred yesterday,”
what is the probability that a flood will occur today? is a conditional probability that

projects more accurately than the unconditional one in this case.
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The following events of interest dealing with the correlation structure of an annual
peak flow series are defined as follows:

Event A: Peak flows exhibiting long-term behaviour measured by Hurst’s K

Event B: Peak flows exhibiting short-term behaviour measured by (1)

In Chapter 2, parametric and nonparametric hypothesis tests show that the two
statistics, Hurst's K and lag-one autocorrelation coefficient r(1), are correlated and
dependent. The variation of Hurst’s K is linearly related to that of the r(1). Due to
dependence, the intersection of two events, ANB, exists and occurs simultaneously in a
probabilistic manner. In other words, the long-term (event A) and short-term (event B)
behaviours occur simultaneously in a physical and theoretical sense. And, the probability

of event A given B has occurred can be quantified using basic probability theory:

Prob(AnB)

Prob(A/B) = Prob (B)

G.1n

where Prob (B) is the unconditional probability of B and Prob(AnB) is the probability of
the intersection of ANB.

Now, consider events A and B to be the numerical events (K<k) and (R1<r,). These
events A and B can be expressed or measured by the magnitudes of Hurst’s K and r(1),
respectively. Assume that K and R1 are random variables. The probability of K for the
given R1 in the region R, is
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Prob(K <kRICR,) = [ fxim(VRIE R, )dt (3.2)

which is a conditional probability.

In other words, Eq.3.2 describes the conditional distribution of K given R1 in the
region R,, where K and R1 indicate the random variables Hurst’s K and lag-one
autocorrelation coefficient r(1), respectively. Thus, the sampling distribution of Hurst’s
K is defined by a conditional distribution, which is the sampling distribution of Hurst’s K
for a given r(1), or equivalently saying the distribution of Hurst’s K given R1 that is in R

When the distribution of K given R1 that is in R, is considered, the form of the
density function in Eq. 3.2 is unknown. The distribution of K given R1 in R; cannot be
found by an analytical approach, thus an extensive Monte Carlo simulation experiment was

carried out to obtain the probability distribution of K given R1 that is in R; .

3.2.3.2 Monte Carlo Simulation Producing the Sampling Distribution of
Hurst’s K for a Given r(1)
According to the customary assumption in flood risk analysis, a normal distribution n (0,1)
is chosen as a population process in the Monte Carlo simulation, and R1.is assumed to take
a few regions, R;, i=1,2,...,m. The Monte Carlo experiment is designed as follows:
1) For a given sample size n, 25,000 samples are generated from a normal
independent process with mean zero, standard deviation one, and lag-one
autocorrelation zero. The sample sizes vary from 20 to 10,000, eight orders of
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2

-

3)

4)

magnitude.

Calculate r(1) and Hurst's K for every sample using Eqs.2 .2 and 2.6.

Divide the total range of calculated r(l) into a several intervals R,,, where
i=1,2,..., m. In the present study, seven intervals are considered. There are:
r(1)<-0.25, (1) at [-0.25,-0.15),[-0.15,-0.05), [-0.05, 0.05), [0.05. 0.15).
[0.15, 0.25) and r(1) = 0.25. Calculate statistics such as mean value, standard

error of Hurst’s K, s¢_and the coefficient of variation, Cv, and coefficient of
skewness, Cs for each region.

Rank the data of Hurst's K for the corresponding interval and calculate the
frequency, then a simulated probability distribution of K given R1 in R, is

obtained. Clearly, the more data the more the ive

distribution.

The calculated r(1) and Hurst’s K from the generated data are illustrated in Fig.3.2

and the cumulative probability distributions of Hurst’s K given r(1) in R; is illustrated in

Fig.3.3.

The statistics of the cumulative probability distribution of Hurst’s K are

summarised in Table 3.1.

From Fig.3.3 and Table 3.1 it was found that

a)

b)

The mean of Hurst’s K increases with an increase of r(1).
As sample size increases, as expected, the mean of Hurst's K, as well as its

standard error, s ,and coefficient of variation, Cv, decreases.
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c) The region of the distribution of Hurst's K becomes narrower as the sample size
increases.

d) The skewness in the distribution of Hurst's K decreases as the r(1) reaches zero
in each sample size, and the distribution of Hurst’s K tends to be approximately
normal especially for larger sample sizes.

Overall, the sampling distribution of Hurst’s K for a given r(1) worked out by
Monte Carlo simulation provides a representation of the long-term behaviour based on
the short-term properties of the time series; the long- and short-term behaviour being

linked by the conditional distribution of K given that Rl is in R,.
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Figure 3.2b Plots of r(1) vs.Hurst’s K for generated independent data with n=30.
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Figure 3.2d Plots of r(1) vs.Hurst’s K for generated independent data with n=80.
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Figure 3.2¢ Plots of r(1) vs.Hurst’s K for generated independent data with n=100.
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Figure 3.2f Plots of (1) vs.Hurst's K for generated independent data with n=500.
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Figure 3.2g Plots of r(1) vs.Hurst’s K for generated independent data with n=1000.
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Figure 3.2h Plots of r(1) vs.Hurst’s K for generated independent data with n=10000.
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Figure 3.3a The cumulative probability distribution of K given that R1 is in R, with
n=30 where R;: R1<-.25,R1 at [-.25,-.15), [-.15, -.05), [-.05,.05),
[.05, .15), [.15, .25) and r(1)>.25 from the bottom to the top.
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Figure 3.3b The cumulative probability distribution of K given that R1 is in R, with
n=50 where R;: R1<-.25R1 at [-.25,-.15), [-.15, -.05), [-.05,.05),

[.05, .15), [.15, .25) and r(1)2.25 from the bottom to the top.

63



0.8s
08
0.75
Q.7

x 065
06

0.55

0.5

0.45

0.4
0 01 02 03 04 OF"5 06 07 08 09 1

Figure 3.3¢c The cumulative probability distribution of K given that R1 is in R,
with n=80 where R: [-.25,-.15), [-.15, -.05), [-.05,.05), [.05, .15),
[.15, .25) from the bottom to the top.
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Figure 3.3d The cumulative probability distribution of K given that Rl is in R,
with n=100 where R;: [-.25,-.15), [-.15, -.05), [-.05,.05), [.05, .15),
[.15, .25) from the bottom to the top.
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Table 3.1

The Statistics of the sampling distribution of K given that R1 is in R,

n Ry mean standard Cv Cs

30 <-0.25 0.5693 0.0689 0.121 -0.165
[-0.25,-0.15) 0.5890 0.0714 0.121 -0.093
[-0.15, -0.05) 0.6187 0.0702 0.113 -0.132

[-0.05, 0.05) 0.6450 0.0693 0.108 -0.182

[0.05.0.15) 0.6715 0.0696 0.104 -0.262

[0.15,0.25) 0.6988 0.0702 0.100 -0.275

20.25 0.7265 0.0700 0.096 -0.390

50 <-0.25 0.5629 0.0606 0.108 -0.145
[-0.25.-0.15) 0.5885 0.0619 0.105 -0.110

[-0.15. -0.05) 0.6101 0.0621 0.102 -0.103

[-0.05, 0.05) 0.6331 0.0629 0.099 -0.093

[0.05,0.15) 0.6535 0.0645 0.099 -0.147

[0.15,0.25) 0.6759 0.0627 0.093 -0.180

20.25 0.7004 0.0599 0.086 -0.305

80 <-0.25 0.5597 0.0538 0.096 -0.130
[-0.25, -0.15) 0.5812 0.0578 0.099 -0.133

[-0.15, -0.05) 0.6008 0.0569 0.095 -0.092

[-0.05, 0.05) 0.6220 0.0577 0.093 -0.013

[0.05,0.15) 0.6424 0.0578 0.090 -0.086

[0.15,0.25) 0.6660 0.0564 0.085 -0.202

2025 0.6763 0.0571 0.084 -0.049

100 <-0.25 0.5597 0.0486 0.087 0215
[-0.25,-0.15) 0.5748 0.0539 0.094 -0.069

[-0.15, -0.05) 0.5964 0.0537 0.090 -0.100

[-0.05, 0.05) 0.6179 0.0545 0.088 -0.039

[0.05, 0.15) 0.6381 0.0553 0.087 -0.112

[0.15,0.25) 0.6545 0.0542 0.083 -0.061

20.25 0.6746 0.0585 0.081 -0.291
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3.3 New Empirical Percentage Points for Hurst’s K

The direct use of the concept of sampling distribution of Hurst’s K for a given r(l) is a
new table of empirical percentage points to test for long-term persistence.

The t-tests shown in Tables 2.5 and 2.6 indicate a correlation between Hurst's K and
lag-one autocorrelation coefficient r(1) at the 5% and 10% levels of significance. And
also, the observations and Monte Carlo simulation results show that the deviation of r(l)
is much greater than that of Hurst’s K. It can be seen from Figs. 2.2 and 3.2 that the lag-
one autocorrelation coefficient r(1) occupies a much wider range along the horizontal axis
than that of Hurst’s K along the verLica}l axis. The information about the correlation
between Hurst’s K and lag-one autocorrelation coefficient r(1) should be taken into
account. Lye and Lin (1994) proposed an empirical percentage points for testing long-
term persistence which ignore the information about the distribution of r(1) which is
related to the distribution of Hurst’s K. It is necessary to expand the basic concept in their
proposal and take the information about r(1) into account using the concept of sampling
distribution for a given r(1).

The same Monte Carlo procedure shown in the above section to produce an
approximation of the sampling distribution of Hurst’s K for a given r(1) can be deduced.

For a given significant level o, the Hurst’s K could be selected from Figs.3.3 according
to the different sample sizes and the region of lag-one autocorrelation coefficient r(1).

Table 3.2 shows the new table of empirical percentage points at a=5% and 10% for

66



sample sizes of n=30,50, 80, and 100.

The tests for long-term persistence could be carried out based on the new empirical

percentage points for Hurst’s K. The observed data can be transformed into normal

variables by the Box-Cox transformation (Box and Cox, 1964) if the data are not normal.

For the transformed data which are approximately normally distributed, calculate Hurst’s

K and r(1), then find the critical Hurst’s K at the given level in the Table 3.2 using the

calculated r(1) and sample size, comparing the observed Hurst’s K with the critical Hurst’s

K. If the K value for the observations is greater than the K value given in the table at the

given significance level for the given size, it can be concluded that the observed series is

long-term dependent at the given significance level.

Table 3.2 Empirical percentage points for Hurst’s K for given r(1) for the normal

indﬁendeut data, where n - the sample size, o - the significant level

b <RI<a
n o | <-25 |-24.05 |-1£05 |.0£05 | .1£.05 | 2+.05 | 025
30 0.6781 | 07016 | 07328 | 0.755¢ | 0.7794 | 0.8088 | 0.8277
50 | 5% | 06626 | 0.6873 | 07084 | 0.7340 | 0.7550 | 0.7740 | 0.7980
80 0.6446 | 06754 | 0.6930 | 0.7173 | 0.7352 | 07583 | 0.7937
100 0.6431 | 0.6606 | 0.6837 | 0.7054 | 0.7290 | 0.7398 | 0.7831
30 06571 | 06794 | 07091 | 0.7345 | 07599 | 0.7890 | 0.8149
50 0.6393 | 0.6668 | 0.6911 | 0.7153 | 0.7368 | 0.7554 | 0.7789
80 | 9% | 06186 | 0.6560 | 0.6761 | 0.6964 | 0.7169 | 0.7396 | 0.7683
100 06166 | 0.6400 | 0.6652 | 0.6887 | 0.7099 | 0.7250 | 0.7464
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3.4 A Useful Index, P(K>k,)

The concept of the sampling distribution of Hurst’s K for a given r(1) also provides useful
information in dealing with the serial correlation of annual peak flows, and the results
from the Monte Carlo simulations can shed some light on long- and short-term behaviours

of peak flows. This will be described in the next section.

3.4.1 Definition of Events of Interest
The probability for an independent series such as the peak flow series to exhibit long-term
persistence can be defined using the following arguments.

Hurst's K and r(1) can serve as numerical outcomes of an experiment, let us define

the events of interest once more:

Event A,: Peak flows exhibiting the long-term persistence identified by K >k,
Event B;: Peak flows exhibiting the short-term independence identified by r(1),
i=1,2, ..., m
where k, is a special value of Hurst’s K which implies that when the observed Hurst’s K
is greater than this value, the series exhibit long-term persistence, and B,, B,, ... B, are
mutually exclusive and exhaustive.
The relationship between Hurst’s K and r(1) for the observations from Canadian

and Chinese rivers shown in Figure 2.2a-b, and for the synthetic sequences of n shown in
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Figure 3.4 Venn diagram for events A,, B;

Figure 3.2a-h can be expressed as ‘intersection’ and ‘union’ of the events in the Venn
diagram. So the relationship between defined A, and B;, i=1,2,..,m can be expressed on
the Venn diagram as shown in Figure 3.4.

Let A, be an event of sample space S such that P(A,) =0, and the events {B,, B,,
..., B,} form a partition of the sample space S, where P(B) =0, for i=1, 2, ..., m.

Events A, and B, are dependent. The event A, is seen to be the union of the mutually
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exclusive events B)nA,, B, mA, ..., B,nA,, that is,

Ar=(BiNA)U(B:N A1) I (BaD A1) 3.3)
So, the probability of the event A, is defined by the total probability theorem

P(4)=SP(B.AAI) G4)
=1

By the definition of the multiplicative law gives the probability of the intersection B/NA,
as

P(B.~A1)=P(4,/B)P(B) @3.5)

where P(B)) is the unconditional probability and P(A,/B)) is the conditional probability,

probability of A, for a given B; So, the probability of the event A, is obtained by

P(4) =SP4,/ B.) P(B.) 6.6
=1

Furthermore, the events A, and B, are considered as numerical events (K=k,) and
(R12r,), as mentioned earlier, where K and R1 are two random variables representing the
Hurst’s K and r(1), while k and r, are observations of random variables K and R1,
respectively Hence, a set of definitions can be made according to the above events and
probabilities:
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P(K>k,): be equivalent to P(A,), the probability of a peak flow series exhibiting long-
term persistence, where k, is a ‘critical value’ and can be chosen arbitrarily at the present
time;

P(b; <Rl <a;): be equivalent to P(B)), the probability of peak flow series exhibiting
short-term independence, where i=1,2, ...,n;

P(K>k, / b, <R1<a): be equivalent to P(A,/B;), the probability of a peak flow series
exhibiting long-term persistence for given R1 that is in R;;, (b; <R1<a).

Hence, Eq. 3.6 can be expressed as

PE > ko) =S PK 2ko/ b,<RI<a)P(b,<RI<a,) ck)
=l

If the critical value of k, has been determined in Eq.3.7, the probability P(b; <
RI1 <a;)can be obtained directly from Eq. 2.7 based on the distribution of R1 assuming
normality or from Monte Carlo simulation if the parent distribution is not normally
distributed. The conditional probability P(K=k, / b; < R1 <a;) can be obtained from the
designed Monte Carlo experiments, so the probability of peak flow series exhibiting long-

term persistence, P(K2k,), can be determined.
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3.4.2 Estimating P(K>k,)

Based on the sampling distribution of Hurst's K for a given r(1), the suggested procedure

to estimate the probability of a peak flow series exhibiting long: persi: P(K>k)),
is as follows:

(1) Determine the lower bound value k, .

How do we designate a lower bound value, k,, to represent the behaviour of long-

term persistence? This is one of the most important steps in dealing with long-term

P This study suspends discussion of this, and takes k, arbitrarily. Empirically,

Hurst found that Hurst coefficient has a mean of 0.73 and a standard deviation of 0.072
(Hurst, 1951, 1956), hence it is assumed that the magnitude of the lower boundary, ko,
is (0.73-0.072) =0.658, one standard deviation below the mean from Hurst's study.

(2) Determining the probability P(K>k, / b; < R1<a).

For the given R;; and sample size n, the corresponding cumulative probability
distribution curve of Hurst’s K shown in Figure 3.3 is selected. The horizontal axis, P,
of the selected cumulative probability distribution curve gives the sampling distribution of
Hurst’s K given (1) that is in R;; . Once the value of the lower boundary k, is designated,
the probability P(K2ky/ b; < R1<a;), can be obtained from the cumulative probability
distribution curves.

Table 3.3 summarises the probability P(K>ky/ b; < R1<a,) for the sample size of

n=30, 50, 80, 100 based on the Monte Carlo experiments.
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(3) Determine the probability P(b; < R1<a;).

How do we determine the magnitude of P(b; < R1<a,)? It can be directly calculated
using Eq.2.7 because the parent population is normally distributed, therefore R1 is
distributed normally, and otherwise it can be simply computed from the results of the
Monte Carlo simulation. Table 3.4 gives the probability, P (b, R1<a,), calculated from
Monte Carlo simulation.

(4) Obrain the probability P(K>ky).
Once the conditional probability P(K>k, / b; < R1<a,) and the probability P(b; <
R1<a,) are obtained from the Monte Carlo simulations, the probability, P(K>k,), that a

peak flow exhibiting long-term persistence P(K>k;), can be obtained from Eq.3.7. In

other words, the elements in Table 3.3 when iplied by the corresponding el in

Table 3.4, gives the probability P(K>k,), as required. The results from calculations of the

probability, P(K>k,) are given in Table 3.5.
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Table 3.3 Probability P(K2k, / b; <R1<a) cal from the ive probability
distribution shown in Figure 3.3, where k,=0.658

P(K=>ky/ b; <R1<a)
b, <Rl<a n =30 n= 50 n =80 n =100
< -0.25 0.0973 0.0559 0.0260 0.0400
0.20+.05 0.1819 0.1373 0.0955 0.0559
0.10£.05 0.3054 0.2326 0.1639 0.1280
0.00+.05 0.4462 0.3587 0.2745 0.2426
0.10+.05 0.6021 0.4829 0.4038 0.3694
0.20£.05 0.7270 0.6306 0.5734 0.4768
20.25 0.8312 0.7721 0.6724 0.6100

Table 3.4 Probability of P(b; < R1<a;) calculated from the Monte Carlo simulation

P(b <R1<3)

b, <Rl<a n =30 n= 50 o =80 o= 100
<-0.25 0.1050 0.0471 0.0122 0.0069
-0.20+.05 0.1437 0.1269 0.0897 0.0700
<0.10+.05 0.2131 0.2397 0.2661 0.2648
0.00+.05 0.2221 0.2769 0.3446 0.3801
0.10+.05 0.1656 0.1987 0.2177 0.2247
0.20+.05 0.0980 0.0835 0.0828 0.0432
2025 0.0524 0.0291 0.0069 0.0054
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Table 3.5 Probability of P(K>k,) calculated from Tables 3.3 and 3.4

P((K2ky) ~ (< R1<2)) = P(b;sR1<a) P(K>ky/ b, < R1<a)

b <RI<a n =30 n =50 n =80 n= 100
<025 0.0102 0.0026 0.0004 0.0003
-0.20+.05 0.0261 0.0174 0.0086 0.0004
-0.10£.05 0.0651 0.0557 0.0436 0.0339
0.00+.05 0.0991 0.099%4 0.0946 0.0922
0.10+.05 0.0997 0.0959 0.0879 0.0830
0.20+.05 0.0712 0.0527 0.0475 0.0229
20.25 0.0436 0.0225 0.0046 0.0033
P(Kk,) 0.3877 0.3462 0.2872 0.2360

3.4.3 An Estimator for the Population Value of P(K>k,)

From Tables 3.3, 3.4 and 3.5 it can be seen that

a) The magnitude of the probability P(K2k, / b; < R1<a,) in Table 3.3 decreases
with an increase in sample size, but increases with increasing values of R1.

b) The distribution of P(b; < R1<a,) in Table 3.4 shows that random variable R1
appears to be normally distributed as in the theoretical equation of Eq. 2.7.
Most observations are located between the interval [-0.1,0.1].

c) In Table 3.5, the probability P(b, < R1<a)P(K>k,/ b, < R1<a) takes the
maximum values between interval [-0.05, 0.15]. The magnitudes of probability
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P(K>k,), the probability of the peak flow series exhibiting long-term persistence,
decreases with increasing sample size.

In view of the above analyses, the probabilities P(K>k,) depends on the variation of

both the distributions of r(1) and the conditional probability of Hurst's K given r(1) in R;.

Figure 3.5 shows that the distribution of conditional probability, P(K2ky/ b, < R1<a,),

varies with r(1), but probability P(b; < R1 <a) distributed on the R1-axis indicates R1 is

normally distributed. It seems that the probability P(b; < R1<a)P(K>ky/ b; <Rl <a) is

the conditional probability, P(K=k,/ b; < R1<a,), weighted by the probability, P(b; <

R1<a). However, by an ination of the estimation p the d P(K=k,)
depends on the sample size as well as the form of the sampling distribution of Hurst’s K
for a given r(1) and sampling distribution of r(1), and it can serve as an estimator for the
population P(K>k;) which should exist and represent the proportion of the series
exhibiting long-term persistence. The expected value of P(K>k;), moreover, can be
reached if the sampled realisations for a given sample size n are large enough in the Monte
Carlo simulation.

The concept proposed here, an estimate of P(K>k,) representing the probability of
an independent series exhibiting the long-term persistence, is meaningful in dealing with

serial correlation in peak flows discussed in the next section.
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3.5 Practical implications

3.5.1 A Proposed Quantitative Descriptor for Long-term Persistence
Studies of serial correlation of annual peak flows have been ongoing for many years. Until
the recently proposed method for testing long-term dependence by Lye and Lin (1994),

investigators had discussed the existence of long-term persistence. Their study indicated

that short-term is virtually absent for most of the peak flow series.
significant long-term dependence exists for a large number of peak flow series tested.

Based on the correlation and dependence between Hurst’s K and r(1) investigated in
the previous chapter, a series of definition of events of interest based on probability theory
allows us to develop a new method of quantitatively describing long-term persistence
rooted in an independent series.

Based on the concept of the sampling distribution of Hurst’s K for a given r(1), the
estimator for population P(K>k,) and its distribution on the R1 axis, P(b; < R1 <a)P(K=ky/
b, <R1<a), shown in Table 3.5 and Figure 3.5 assure that long-term persistence and
short-term independence can be quantitatively estimated. In flood risk analysis, we have
to assume that the flood record to be analysed is a reliable set of measurements of
independent random events from a population. Because of this, the calculation results from
the data generated from an normal independent process or transformed normal should be

acceptable for the assumed peak flow population.
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3.5.2 A Common Phenomenon
“Is the simultaneous occurrence of long-term persistence and short-term independence a
common phenomenon in annual peak flows?” _ the question was asked in the beginning
of the previous Chapter. The following analysis will answer this.

The probability P(b, < R1<a;) P(K>k, /b; < R1<a) in Eq.3.7, in fact, is the
probability of intersection of events A, and B; shown in the left of Eq. 3.5, and it is also

expressed by

P((K 2ko)(b,SRI<a))=PK 2k/bsRI<a)P(b,<RI<qa) (3.8)

From probability theory, the key word for expressing this intersection is “and”
meaning “ the event (K>k;) and the event (b; < R1<a;) occurring simultaneously”, and its
probability is P( (K=k,) m (b; < R1<a;)) It is of interest to note that the event (K>k,)
represents a peak flow series exhibiting long-term persistence, and event (b, <Rl1<a)
represents a peak flow series exhibiting short-term independence in this study. Hence, the
intersection of events defines the concept of “simultaneous occurrence” for both events.

Furthermore, Table 3.5 and Figure 3.5 show that the probability P((K=k,) n (b; <
R1<a)) for each region of r(l) is greater than zero, and the maximum value for the
individual regions and the total value for the given sample size 50 are 9.94% and 34.62%,
respectively. Thus, the simultaneous occurrence of long-term persistence and short-term

independence seem not to be an uncommon phenomenon. In fact, besides the above
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quantitative description, observations and generated data also demonstrate this important
conclusion.

The width of scatter in the horizontal axis, denoting r(1), in the scatter plots shown
in Figs.2.2a-b and 3.2a-h decreases with an increase in sample size much faster than that
in the vertical axis, denoting Hurst’s K. As sample size approaches 10,000 in Fig. 3.2h,
(1) approaches zero but Hurst’s K still takes a wide range, from 0.49 to 0.67. The same
result is found in Table 2.9, that the mean value of Hurst’s K is 0.5835 for sample size
1,000, but the mean value of r(1) is at -0.0001 which shows no significant difference
from zero. Theoretically, it seems that long-term persistence is rooted in the independent

series as explored in the numerical simulation.

3.5.3 A Useful Result
As mentioned previously, the probability P (K>k, ) and its distribution on the R1 axis,
P((K2k, ) m (b, < R1<a)), i=1,2,...,m, shown in Figure 3.5 are meaningful in the study
of long- and short-term serial correlation. However, in flood risk analysis, it might play
an important role in understanding the behaviours of long-term persistence in an
independent parent probability distribution.

In chapter 2 we have analysed the annual peak flow series observed at Canadian and
Chinese rivers. Suppose the population of observations be EV1 or Pearson Type III

distributed, and the data transformed by the Box-Cox method become normally distributed.
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The sampling distribution of Hurst’s K should be changed with its parent population
changing. Consequently, the proportion of the long-term persistence, in fact, is changed
after transformation. It is expressed as a change on probability P(K2k,) and its portion
P((K=k,) n (b, < R1<a)), i=1, 2, ..., m. Table 3.6 shows the differences of statistics of
the Hurst’s K and r(1) for the non-transformed and transformed data in Canadian and
Chinese rivers.

Theoretically, sampling distribution of Hurst’s K with EV1 parent population should
be different from that of Hurst’s K with parent Pearson Type III in the sense. In Table
3.6, the changes of mean and standard error of Hurst's K seem not significant for
transformed and original one. However, according to the central limit theory that indicates
the nominal significance level is approximately the same, when the sample size becomes
quite large. This concept is used to assess suitability of the probability P (Kk, ), thus the
Kolmogorov-Smimov test(Lilliefors, 1967; Crutch, 1975) of the null hypothesis that the two
large sample distributions are the same is carried out.

Here, we used the sampling distribution of Hurst’s K as a population for the hypothesis
test. Based on a visual way of comparison, two population samples should be a graph of the
two empirical cumulative distributions. If the two empirical cumulative distributions differ
greatly, it is expected that the populations being sampled were not the same. If the two
curves were quite close each other, the conclusion that the underlying population distributions

are essentially the same could be made.
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Table 3.6

Statistics of Hurst's K and (1) for the original and Box-Cox transformed
data observed in some Canadian and Chinese rivers

Data || Source size Statistics mean standard skew- correlation
n error ness coefficient
Canadian 198 Hurst’s K 0.6728 0.0728 -0.2021 0.5097
Trans- || Rivers
forma-
o «(1) 00309 | 0.1483 | 0.1480
data | Chinese 60 Hurst's K | 0.6522 | 0.0710 0.2922 0.3373
Rivers
(1) -0.0184 | 0.0999 0.1395
Obser- || Canadian 198 Hurst's K 0.6646 0.0715 -0.0878 0.4801
ved Rivers
d:
aa «(1) 00082 | 01380 | 0.0214
Chinese 60 Hurst’'s K 0.6586 0.0708 0.0991 0.3124
Rivers
(1) -0.0128 | 0.1120 0.1607

The Kolmogorov-Smirnov statistic, D, is the maximum absolute difference between

two empirical

sample siz

ive distribution f

e.

The Kolmogorov-Smirnov test consists of: accept the hypothesis if

KS = max Jnm/(n+m)|F,(x) -G, (x)| = Jnm/(n+m)D

is less than or equal to the given values for the given significant levels

The distribution of D is only related to the

3.9)

a

0.001

0.01

0.05

0.10

KS

<195

<1.63

<1.36

<1.22
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if sample sizes are large, say, both 40 or more, where F,(x) and G, (x) are empirical
cumulative distribution functions, n and m are sample sizes.

Let F,(k) and G, (k) be empirical cumulative distribution functions for the Hurst’s K
of original and transformed data. Figures 3.6a and 3.6b show these empirical cumulative
distributions for the data of Hurst’s K observed in Canadian and Chinese rivers.

The large sample distribution of D is known. Let n be large, the Kolmogorov-
Smimov test of the null hypothesis that the two large sample distributions, distribution of
Hurst’s K transformed, G, (k), and distribution of Hurst’s K from non-transformed data,
are the same. The sample sizes of Hurst’s K are 120 and 60 for the data observed in
Canadian and Chinese rivers, respectively. The D-values are 0.1204 and 0.1726 for
Canadian and Chinese rivers, respectively. A conclusion of statistical tests summarised
in Table 3.7 accepts the null hypothesis, that is, the two distributions of Hurst’s K from

original and transformed data are the same at the given significant levels.
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Table 3.7 K -Smirnov ic test that two distributions of Hurst’s K

from _transformed and non-transformed data are the same

Critical Value Conclusion
Source n KS a=5% a=10% a=5% a=10%
Canadian Rivers 120 0.933 1.36 1.22 Accept H, | Accept H,
Chinese Rivers 60 0.945 1.36 .22 Accept H, | Accept H,

The Kolmogorov-Smirnov test employed here is not only a nonparametric test that
requires few assumptions for their validity, but also for large sample test. A statistical test is
robust for large samples, but not for small samples according to the central limit theory that

the normal signi level is approximately the same as the true significance level when

is test here are

the null hypothesis holds. The results of the Kol -Smirnov hyp
useful. The conclusion that high probabilities of existence of long-term persistence are
involved in a normal independent distributed data may be suitable for the non-normal

ind dent series. F further studies and investigation of this issue should be

continued in the future.



3.6 Summary

In this chapter, the serial correlation structure of annual peak flow series has been
analysed. Based on probability theory and investigated results in Chapter 2 the Hurst’s K
and lag-one autocorrelation coefficient r(1) are correlated and dependent, a probabilistic
approach for dealing with long- and short-term behaviour of annual peak flow series was
proposed.

In this approach, a Monte Carlo simulation was designed to provide a sampling
distribution of Hurst’s K for a given r(1). The direct use of this result is new empirical
percentage points for testing long-term persistence superseding that proposed by Lye and
Lin (1994). Also, a useful index, P(K>k,), the estimator of the population probability
value of the long-term persistence for independent series such as the peak flow series to
exhibit long-term persistence, was proposed and estimated.

The results of the proposed methods have useful practical implications:

1) The proposed estimator for population P(K>k,) and its distribution on the R1 axis,

P(b, < R1<a;) P(K>k, / b; <R1<a;), shown in Table 3.5 and Figure 3.5 assure
that long-term persistence and short-term independence can be quantitatively
estimated.

2) The probability P( (K=k, ) n (b; < R1<a))) for each region of R1 is greater than

zero, and the total value for the small sample sizes range from 23.6% to

38.77%, implying that the simultaneous occurrence of long-term persistence and

87



short-term independence appear not to be an uncommon phenomenon.
3) Initial study of the properties of the observed and normally transformed peak flow
data from Canadian and Chinese rivers indicate that the results of this study seem

robust for other distributions if a normal transformation is made.
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Chapter 4
Measurement at Scale  :

Basic Concepts of Fractal Geometry

4.1 General
From the classical statistical point of view, we have examined the behaviour of annual
peak flows at two fixed scales, that is, one at scale of one, measured by the lag-one

autocorrelation coefficient r(1) indicating high frequency behaviour and another at scale

of n, the sample length, which indi low-fr i d by Hurst’s

K. The statistical terms "correlation" and "dt for expressing the ionship

between the two random variables, lag-one autocorrelation coefficient r(1) and Hurst's K
have also been discussed and explained. Also, based on basic probability theory, an
analysis of Hurst’s K and (1) to show the simultaneous occurrence of long-term
persistence and short-term independence in annual peak flows has been performed.

However, what has been done previously is to look at the two separate scales for the
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features of peak flows. The question that arises is “ how about looking at all scales™?
Can this approach tell us more about a flood peak series? To this end, fractal geometry
can be employed.

Fractal geometry, a new science, lets us see the objects across scales. It may thus

of the natural behaviour of peak

give us a more physical and p P P

flows. Therefore, the topic is now moved to fractal geometry to investigate the temporal

structure of peak flow series in a fractal domain.

4.2 Fractals: Measurement of Coastlines

Fractal geometry originates from the measurement of the length of a coastline

o 1967). For the length of the border between Spain and Portugal

has two very different measurements: Spain claims 616 miles, while Portugal quotes 758
miles ( Mandelbrot, 1967). Again the length of the coast of Britain in various sources
varies between 4,500 and 5,000 miles. What is happening there? However, based on

Richardson's empirical data (Ri 1961), N (1967, 1982) demonstrated

for us that for all practical purposes, typical coastlines do not have a Euclidean length!
Figure 4.1 shows Richardson's empirical data graphically. On the horizontal axis
the logarithm of the divider setting, &, is indicated. The vertical axis is for the logarithms

of the coast length, L(§). The log-log plots will show how the length changes when the



togso(L(6) (km))
3

- "‘""-nu.,,..l .

logio{§ (km)}

Figure 4.1 M of lines (Mandelb

1982).

divider setting is changed. Mandelbrot (1967) paid particular attention to the two
constants, b and D, which characterized a power law: length of coast L(§) is nicely
approximated by a power law being b '°, where £ is a compass setting. The length of
the coastline shows no sign of reaching a fixed value. The length of the coastline would
increase without limit if the compass setting gets smaller and smaller. [t is obvious that
the classical measure of a coastline based on Euclidean geometry, in fact, is not
meaningful because the length of the coastline goes to infinity as the £ tends toward
zero. In other words the coast length behaves as a power law that characterizes the
complexity of the coastline of Britain for example by expressing how fast the length

increases as the scale, &, is reduced.
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The straight line in the log-log plots shows the behaviour of the coastline that is
similar in shape and structure over the range of scale. For instance, large bays contain
smaller bays, the small bays contain even smaller bays, and the smaller bays contain even
smaller and smaller bays, and their shapes are similar to the whole. Thus, self-similarity
is indicated. Therefore, a fractal is defined as a shape made of parts similar to the whole
in some way (Mandelbrot, 1977, 1982). The constant D is defined as the fractal
dimension which describes the growth law that reflects how rapidly the coastline develops
as the measure £—0 (Falconer, 1990). Furthermore, the magnitudes of the fractal
dimension, D, tell us the level of the complexity, such as the coastline of Britain is more
convoluted than that of South Africa because the fractal dimension D of the former is

greater than that of the latter.

4.3 Related Concepts of Fractal Geometry

From the view of “ atscale’, a plex object, such as a coastline, leads us

to see fractal shapes everywhere: Brownian motion curves, cluster deposited “tree” at
electrodes, river networks, the shape of mountains, swift currents in flow and even brain
waves of human and the points of earthquakes. How about the annual peak flows of
interest herein? So far only one paper has dealt with temporal peak flows in a fractal
world (Turcotte and Greene, 1993), but the technique used is flawed as will be explained
in Chapter 6.
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Before using fractal geometry to search for invariance across scales in peak flows,

a brief description of the concepts of fractal geometry is given next.

Self-similarity

A fractal that is invariant under ordinary geometric similarity is called self-similar
(Mandelbrot, 1977, 1982). Strict self-similarity over all ranges of scale is found in a
classical mathematical fractal, such as the well known Cantor set, the Koch curve, and the
Sierpinski gasket etc. Self-similarity over limited ranges of scale is common in nature.
For example a cauliflower, the branches when compared with the whole are similar, only
smaller. These clusters again can be decomposed into smaller clusters, which again are
similar to the whole as well as to the original branches. Are annual peak flows self-similar

on time axis? If they are, what does it mean, and what are the implications?

Scaling or scale-invariance

Most fractals are invariant under certain transformations of scales. They are called

scaling or scale-i iance (Mand ot, 1977). M: i , points X = (X, X, ...,
X,) are mapped to the new points X, = (AX,, AX,, ..., Ax,) by the same factor A is scaling
or scale-invariance. The scaling property of an object is shown as a straight line in the

customary log-log plot in fractal studies.
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Self-affinity

In many cases the structure of the objects is invariant with respect to the different
scaling ratio A, Thus, a fractal that reproduces itself in some sense under an affine
transformation is called self-affine (Mandelbrot, 1982). An affine transformation that
transforms from points X = (X;,X,,...,X,) into new points X,., = (A,X;, AyX;, ...\ AX ),
where the scaling ratios A,, A,, ..., A, are not all equal is an antisotropic fractal.

The Brownian random process is a typical self-affine distribution under a
transformation that changes the time scale and the length scale by different factors. Based
on the self-affine property of Brownian motion, fractional Brownian motion (fBm) was

proposed (Mandelbrot and Van Ness, 1968; Mandelbrot and Wallis, 1968, 1969a). Itis

meaningful that the correlation function of fBm, Cor(t), by 22! -1, th icall
implies that Cor(t) is independent of time when H='4! However, for H— ' it leads to

persistence or antipersistence forever in a time scale! (Mandelbrot, 1977, 1982)

The fractal dimension

The fractal dimension is an important measure in fractal geometry, and its definition
is based on the idea of "measurement at scale &" ( Falconer, 1990 ). It reflects the degree
of irregularity when examined at scale &. One of the most widely used fractal dimensions

is the box dimension (or box counting di ion or capacity ion), D,.

Let S be a subset of R®, where n=1, 2, or 3. The box-counting dimension of S is:
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Dy =lim InN(§)

4.
0 In(1/&) @D

if the limit exists, where N(€) is the smallest number of n-dimensional boxes of side length
& required in order to completely cover S (Falconer, 1990).

The box-counting dimension, D,, is usually empirically estimated by the gradient of

a In -In graph of N(§) against & plotted over a suitable range of &.

4.4 Measurement at Scale &

Returning to the concept of measurement at scale, Figure 4.2 shows the measurement at

scale for Hurst’s K, lag-one autocorrelation coefficient r(1) and fractal dimension D,

scale 1
scale 2
scale 3
scale 4

scale (n-1)
scalen

Figure 4.2 Measurement at scale.
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Hurst’s K is simply considered as the measurement at scale n, a long-term scale, lag-
one autocorrelation coefficient r(1) at scale one, a short-term scale. The fractal dimension
D, crosses over various scale related to scales 1 and n. Thus, the fractal dimension D,
plays an important role in looking at the natural behaviour of flood peaks from a non-
classical viewpoint.

Recall in Chapters 2 and 3 that we have studied the behaviour of annual peak flows
at two scales or seen the properties of annual peak flows at high and low frequencies based
on the traditional principle of “taking things apart”, even though we have used an artful
scheme to connect both, Hurst’s K and r(1). But, we viewed this only at the individual

scales. Even though a much better understanding of the natural behaviour of annual peak

flows was i by hods di d in previous chapters, more detailed features
across scales for the peak flows were not possible using the
Statistics emphasize identification, indep h ity and stati ity of

the observations, but fractal geometry has partiality for something being fragment,
irregular, and disordered , and would display an evolution at scale saying “how rapidly
the irregularities develop as £&— 0". These concepts will be developed in the next Chapter

so that a totally different description of peak flows can be achieved.
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4.5 Summary

An initial view of the basic concepts of fractal geometry for studying annual peak flows
has been taken. The “measurement at scale” provides a useful tool to study the serial

correlation structure of annual peak flows in the following Chapters.
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Chapter 5
Scaling Behaviour of Peak Flow Series

5.1 General

Many hydrological time series, such as daily and monthly flow series, which are
continuous or discrete can be described by a random function or a stochastic process that
can serve as an image of the time series and explains the structure of the observations.
Peak flows as a set of points distributed in a time axis are isolated points and completely

disordered to the point that i hods are unable to distinguish diffe among

various types of peak flow point sets distributed along the time axis.

Figure 5.1 illustrates the distributions of peak flows along time axis at two Canadian
rivers. Using conventional statistics, it is difficult to explain how different they are and
how well any mathematical paradigm could “translate™ them to an “image”, because
previously there was no suitable methodologies to describe their behaviour in the time axis.

The application of concept of scaling has achieved some success in the field of
hydrology (National Research Council, 1991), e.g. dealing with spatial and temporal
distribution of rainfall (Zawadzki,1990; Gupta and Waymire, 1990; Kedem and Chiu,

1987; Lovejoy and Mandelbrot, 1985; Lovejoy and Schertzer, 1990; Waymire, 1985;
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Figure 5.1b Peak flow distribution in the time axis observed at Hope
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Waymire and Gupta, 1987; Olsson et al., 1992; Olsson and Janusz Niemczynowicz,
1996; Venugopal and Foufoula-Georgiou, 1996; Paolo Burlando and Renzo Rosso, 1996;
Puente, 1996; Haitjema and Kelson, 1996) and in discussions about spatial and temporal
scaling distribution of river flows (Gupta and Waymire, 1990; Wu and Hou, 1991;
Jayawardena and Lai, 1994; Gupta et al., 1996). The temporal scaling behaviour of peak
flows, however, has not been fully considered up to now except that of Turcotte and
Greene (1993) who hypothesized that the annual peak flows are sufficiently scale invariant
over time scales from one to one hundred years.

Peak flow observations are considered as a point set distributed on a time axis. These

observed points are then related to the probabilities of for given th
Thus, a family of curves can be constructed to explain the feature of peak flow points. A
technique in fractal geometry called the functional box counting procedure will be used to
construct the family of curves.

A number of peak flows observed from Canadian and Chinese rivers are subsequently
analysed. It is hypothesised that this approach will provide new insights into the possible

scaling behaviour hidden in peak flow evolution for the river flows investigated.



5.2 Concept and Methodology

5.2.1 Box-Counting Dimension
The fractal dimension is an important tool of fractal geometry, and its definition is based on
the idea of “measurement at scale & (Falconer, 1990). One of the more widely used fractal
dimensions is the box-counting dimension discussed in Chapter 4.

Broadly speaking, the box-counting dimension Dy, defined in Eq.4.l says that
N(&) ~&® for small & The box-counting dimension, Dy, is usually empirically estimated
as the gradient of a In - In graph of N(&) against £ plotted over a suitable range of . Then,
using least squares, the regression equation for estimating parameters of the graph line in the

logarithmic domain is obtained, i.e.

lnN(&)=c-Dpyxin § (5.1

where N(§) is the smallest counting number of n-dimensional boxes of side length &
required to completely cover a set, ¢ is the intercept, and Dy is the box counting

dimension.

5.2.2 Functional Box Counting Algorithm
The method herein employed to investigate the temporal scaling behaviour of peak flow

points is the functional box counting algorithm (Lovejoy et al., 1987). This method
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transforms observations into a set of points whose dimension can be estimated by box

counting.

The fund: I concept of f ional box counting is to consider a function, f(x),
which is transformed to an exceedence set:

{4r |f(0>T} (5.2)

where A is defined by threshold T. If A; exhibits scaling behaviour, the number of boxes

to cover Ar , Ny(&), can be expressed as

Nr (&) =& 5.3)

Thus, the functional box ing method izes a scale invariant set.

5.2.2.1 Two Aspects of Practical Importance
From an engineering viewpoint, two aspects of practical importance will be proposed in

the functional box counting algorithm:

A probabilistic approach

From the p of fractal g Yy, the of peak flow structure is to

look at the feature of peak flows at varying time scales, £. Presupposing peak flow

points are measured by decreasing time scales, &, or peak flow points are involved varying



time intervals, &. Ignoring the difference between occurrence of peak flow points within
the same time interval, our interest is in the probability that a step of measure with time
scale, &, that includes at least one peak flow point.  Hypothetically, a fraction or
probability of a time interval including at least one occurrence of peak flows, P, is a
function of time interval length &, for a given threshold. This situation is similar to the
construction of a Cantor set (Mandelbrot, 1977, 1982), in which the probability that a step
of length £ includes a line segment that can be obtained through the construction
procedure. However, the relationship between the probability P; and time intervals, &,

will reveal the structure of peak flow on the time axis.

Thresholds available

For a corresponding data set, thresholds will be selected so that the properties of the
temporal scaling behaviour of peak flows which are the events of interest can be
investigated.

For a given threshold, such as an annual maximum flow, the peak flow points can
be transformed from the observed data, suggesting that a peak flow point-process, a kind
of "POT" series (NERC, 1975), i.e. "Peaks Over Threshold", appears in the time axis,
then the distribution of the high-level exceedences can be identified.

For example, consider the case of the daily flow observed at the Yichan gauging

station, Yantze River, China (Ministry of Water Resources, 1985), as shown in Figure
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5.2a. Let the threshold Qs be 50,000m’/s. Figure 5.2b shows the point process that is
transformed from the daily flows at the threshold of 50,000 m’/s. The flow points

transformed from the daily flows are c iently i as the i flows,

in comparison with the whole observed duration. Based on the transformed data in Figure

5.2b, a fractal analysis of peak points on the time scale will be performed.

5.2.2.2 Box-Counting Dimension in the Probabilistic Approach
The probability, P; , that an interval of length & includes at least one peak flow event, can
be obtained through the functional box counting procedure:
Assume probability, P: , is expressed as the following
P, =N(©&)/N 5.4
where N(&) and N are the number of an time interval of length £ and the total number of

time intervals, respectively, where N = L /£ and L is the total length of the studied time.

Further, let
Pi=N(E)/ (V/ &) (5.5)
where V is the total volume of measured objects, d is the Euclidean dimension of the

object, where its magnitude of a point is zero, of a line one, of a square two, and of the

cube three. Having drawn the In P; - In & curve and determined the slope of the scaling
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Figure 5.2a Daily flow observed at Yichan gauge station, Yangize River, China.

.
1 i 1 1 1 () Il
5000 10000 15000 20000 25000 30000 35000 40000
days



S/ (00005 =50 ‘PIOYSAIY) 3y 140 ¥Z°G "1y Jo swtod Moy ¥ 4TS sy

sheg

4
o

o © °
o
© @
090 o
00 0,
o
oo @
Lo

0 00 ®®o B

o ©

000SS

00009

00059

00002

000S.

(sf;w) sBieyosig



range, an empirical box-counting dimension, Dy, can be found. The regression equation
for fitting the straight line in a logarithmic domain is

Inp;=a'+ b Ing (5.6)

where b is the slope of the straight line.

Inserting Eq. 5.5 into Eq. 5.6, there is

In N(¢)=a'+~In V-(d-b) Iné& 5.7

Comparing Eqs. 5.7 and 5.1,

Dy=d-b (5.8)

the empirical box-counting dimension can be obtained by Eq. 5.8. Thus, the relationship

between P; and & is

P~ (5.9)

5.2.3 Construction of the In P; - In £ - Qs Family of Curves
In order to explore the temporal structure of peak flow points, a family of curves of InPg

- In & - Qs is proposed.
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5.2.3.1 A Symbolic Description of Exceedences
Supposing that there are observations of the peak flow points within the total observed time

length L shown in Figure 5.2a, for a given hold, flows ing this threshold can

be projected on the time axis, located in the corresponding time intervals. With the aid
of the idea of symbolic dynamics (Nicolis and Prigogine, 1989) a description of the
exceedences can be made.

We use the symbol "_", namely "yes", to denote occurrence of peak flows in time
intervals (boxes) of size &, and similarly, the symbol " ", namely "no", to indicate the
non-exceedences in the time intervals. For a given threshold, Qs, and the time interval
&;., .the peak flow points in Fig.5.2b are projected into symbols “_" or “ . So the peak

flow is ch d into a of symbols shown in Fig.5.3 with §_, =730

days as an example.

Changing the length of the time intervals, §; i= 2, 3, ..., k, the same exceedences
of peak flow points are projected in the changed time intervals, §; and the probability, Pg;
that a step of interval length & includes at least one peak flow point, can be estimated, in
which the number of "_" boxes, N(&), contains at least one "_" sign, over the total number
of boxes, N, for a given threshold. Under the different time intervals, the features of
exceedence points can be described. The procedure proposed is shown in Figure 5.3.

Changing thresholds, with the same procedure performed, the structure of peak flows

is described.
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5.2.3.2 Steps in Construction of a Family of Curves
The three steps to construct a family of curves of In P - In € - Qs are as follows:
1) For a given threshold flood, Qs, calculate P; according to the various scales
g i=1, 2, ... k, where k is an integer, N(&) is the total number of the symbols
of “ ",and Nisaratioof Lto§, .
2) Draw a curve through the scattered points In P - In & over the range of scales.
If a straight line exists, its slope, b, is estimated by the least squares method and

an estimate of box-counting dimension D, for a given threshold Qs can be

determined by Eq. 5.8, where Eucli i ion, d, of the p being
considered, is one. If there are several straight line sections, several fractional
dimensions can be determined over different ranges of scales.

3) For a given set of thresholds, the above steps are repeated, resulting in a family
of curves In P; - In € - Qs.

If the probability, In Py, linearly increases with the time scale, &, in the log-domain,

then a power law exists

pe~& (5.10)

it can be that the probabilities of occurrence of peak flows are

invariant for a given threshold within the specific scaling range.

As an example, for step one, Figure 5.3 shows the symbolic description of the peak
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flow process for a threshold of 50,000 m’/s; for step two, a constructed curve In P; -In
£ - Qs with Qs=50,000 m’/s is shown in Figure 5.4a , and Figure 5.4b shows a family

of curves of In P; - In & - Qs for the same observations with three different thresholds,

Qs, i=1,2,3.
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Figure 5.3  Symbolic dynamics describes the procedure of constructing a curve off
In P - In€ - Qs for the observations of peak flows shown in Figure 5.2 b
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Figure 5.4a Constructed curve In P; - In § - Qs with Qs=50,000 m’/s for the
observations of peak flows shown in Figure 5.2b.
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Figure 5.4b Constructed curve In P; - In § - Qs with various Qs for the
observations of peak flows shown in Figure 5.2b.
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5.3 Scaling Behaviour of Peak Flows

Family of curves In P; - In & - Qs can be used to describe features of peak flows across
scales. In order to display the scaling behaviour of peak flows, the longest daily flow
record observed at Yichan on the Yangtze River, China, and the daily flows collected from
a number of Canadian rivers were used as shown in Table 5.1. The daily data are
transformed into peak flow points along a time axis using the functional box counting
algorithm, in which the probabilities of exceeding a given threshold are related to the scale
of measurement in order to give a family of such curves at various thresholds.

The results of a constructed family of curves In P - In £ - Qs are shown in Figures
5.5 and 5.6a-g. The estimates of the box-counting dimensions, D,, of observations at
Yichan, are illustrated in Table 5.2. As expected, all the box-counting dimensions D,
equal values between 0 and 1. That is, the peak flow points are more than just one point

(dimension 0), and much less than the length of a line or curve (dimension 1).
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Table 5.1 Characteristics of daily flows collected from Canadian rivers

(Environment Canada, 1992)

WSC Prov. Gauging Station Drainage years
Number (km?)

0SAJ001  Alta. South Saskatchewan River at Medicine Hat 56,400 1913 -1990
05CC002  Alta. Red Deer River at Red Deer 11,600  1913-1990
05DF001  Alta. North Saskatchewan River at Edmonton 28,000 1912-1990
0SHGO01  Sask. South Saskatchewan River at Saskatoon 41,000 1912-1990
05KJ001  Man. Saskatchewan River at the Pas 347,000 1913-1990
08MF005 B.C. Fraser River at Hope 217,000 1913-1990
050C001 __ Man. Red River at Emerson 102,000 1913 -1990

Table 5.2 An illustration of box-counting dimension and corresponding scaling range
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of observations at Yichan, Yangtze River, China.
29800 0.506 | 60-200 days 50500 0.136 | 30 days- 1 year
38600 0.350 | 60 days-1 year 53300 0.095 | 30days- 1 year
40200 0318 | 60days-1 year 54600 0.077 | 30 days- 1 year
41600 0298 | 60days-1 year 55600 0.065 | 30 days- 1 year
41900 0.293 | 60 days-1 year 56700 0.064 | 30 days- 1 year
42100 0.292 60 days-1 year 57800 0.063 30 days- 2 year
43500 0.261 60 days-1 year 59000 0.057 30 days- 3 years
44000 0.258 60 days-1 year 61000 0.021 30 days- 6 years
45300 0.236 60 days-1 year 62300 0.020 30 days- 8 years
46300 0.223 60 days-1 year 64600 0.018 30 days- 15 years
48000 0.187 60 days-1 year 66100 0.014 30 days- 25 years
48500 0.178 | 60 days-1 year 66600 0.008 | 30 days- 50 years
49300 0.167 60 days-1 year 77800 0.003 30 days- 55
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Figure 5.5 A family of curves In P; - In & - Qs for the peak flows
observed at Yichan, Yangtze River, China.
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Figure 5.6a A family of curves In Pg - In & - Qs for the peak flows
observed at Hope, Fraser River, B.C., Canada.
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Figure 5.6b A family of curves In P-In §-Qs for the peak flows

observed at Medicine Hat, South
River, Alta., Canada.
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Figure 5.6c A family of curves In P - In & - Qs for the peak flows

observed at Red Deer, Red Deer River, Alta., Canada.
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Figure 5.6d A family of curves In Py - In & - Qs for the peak flows

observed at Saskatoon, South Saskatchewan River, Sask., Canada.
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Figure 5.6e A family of curves In P - In & - Qs for the peak flows

observed at the Pas, Saskatchewan River, Man.,Canada.
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Figure 5.6f A family of curves In P¢ - In § - Qs for the peak flows
observed at Emerson, Red River, Man.,Canada.
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Figure 5.6g A family of curves In P; - In § - Qs for the peak flows
observed at E North Saskatct River, Alta.,

Canada.
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The family of curves In Py - In € - Qs in Figures 5.5 and 5.6 contain a set of

“message” or “texts” described by:

Probability P

The family of curves represents the probability distribution of a time interval
including at least one occurrence of peak flows for a set of thresholds. The variation of
probability P in the logarithmic domain as shown in curves In P; - In & - Qs is related to
the variation of €, the greater the time interval £ , the greater the probability of exceedence
of peak flows. When time intervals & increase to a certain size, the probability that the

time interval includes at least one occurrence reaches one.

Thresholds Qs:

Threshold Qs as a parameter in the family of curves In P; - In € - Qs reveals the
peak flow structure at different levels of thresholds. The temporal structure of peak flow
points shown in the curve depends on the threshold, the higher the threshold, the sparser
the pattern, the lower the threshold the more clustered the peak flow structure. According
to a specified problem, a suitable set of thresholds is designed, the peak flows correlation

structure across scale could be clearly revealed.
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Box-counting dimension D, :

The slopes of the curves shown in Figs. 5.5 and 5.6 are steeper, with increasing

thresholds, Qs, which result in d box- ing di ions D, . Thus, the higher
the box-counting dimension, the denser the time structure, and vice versa. In the limiting
case, where the slope of the curve is unity for a special threshold, which we call the upper
threshold, Qs,, the box dimension equals zero. That is, they are a set of isolated points.
In contrast, when the slope is zero for a lower limit of threshold, Qs,, D,=1, i.e. a
horizontal line. When D, is between (0,1), some form of scaling of peak flows exists.
Thus, the box-counting dimension used here reveals the temporal scaling behaviour of the
peak flow point set and is a measure of how the peak flow points will fill the time axis

occupied.

Segments of straight lines on the curves:

Each In P - In & -Qs curve is related to the temporal distribution of the occurrence
of peak flows over a threshold. It has a segment of straight line for a certain range of &.
Thus, the power law shown in Eq. 5.10 is valid and it makes sense to show that an
occurrence of exceedences of flows involved in the time intervals, displays invariance or
self-affinity within the corresponding scaling range, while £ gets bigger or smaller outside
this range, the power law fails. The wider ranges of straight lines in the family of curves

also indicate existence of possible correlation across temporal scales due to similar
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variation.

The whole system of peak flows:

If a family of curves In P; - In € - Qs is considered as a system, this system maps
from the peak flow point set to a graphic interpretation which contains all information
about the peak flows distributed on time scale and represents inter-scale correlation
between these observations for a given watershed.

The significance of those results revealing the existence of scaling behaviour of peak

flows is discussed as follows.

5.4 Practical Implications

The proposed family of curves of In P - In & - Qs gives us a richer insight into the nature

of peak flows. Some practical implications for the family of curves are explained below.

5.4.1 Existence of Scaling Behaviour of Peak Flow

For a wide temporal scale range, a family of curves In P¢ - In € - Qs constructed from the
peak flows observed in Canadian and Chinese rivers provided a power law between the
probability of a time interval of length £ including at least one occurrence, Pz, and the time
interval of length E. It appears that there is an existence of scaling behaviour of peak flow
and the same variation of occurrence of peak flows across scale exists. This phenomenon
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resembles the Hurst's p

in Appendi

A and Chapter 2.
In classical probability theory, a point event process on the time horizon is usually

considered as a Poisson process, {A(t): t>0}, in which events occur instantaneously and
independently on a time axis, and

AL
P{M)=,)=¢(’__"‘f, i=0,12,. (5.11a)

Corresponding to {A(t)}, which also is interpreted as the number of arrival in
intervals, there are arrival epochs, 0t <, <

., and inter-arrival times, t,=t,, T,=t-t,,
i=2,3, .... The probability P{t>t} occurs is equal to the probability of no occurrences
P(A(t)=0}, such as

P{r>1}=P{A()=0}
- e
—(11)0-7

(5.11b)
=¥ -

ity P{t<t} is

where parameter A>0 is the mean rate of occurrences of events and t>0. So the
i p by

P(r<t}=1-P{z>1}
=l-g*

(5.11c)
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We use time scale & instead of t, and in logarithmic domain we have

In P{r<&=In(l1-¢*) (5.12)

In the logarithmic domain there is a non-linear relationship between probability P and time
interval of length £ in Eq. 5.12.

It is believed that the straight segments appearing in the family of curves in a wide
time range are significantly different from the Poisson process. Figure 5.7 shows those
differences between the family of curves and Poisson process for the observations at
Yichan, Yangtze River, China. The differences appear large on most thresholds except for
a few of the highest thresholds.

The proposed family of curves In P; - In € - Qs may serve as a good description of
inter-scale structure of peak flows. The difference between the observed distribution of
peak flows and the Poisson model indicates that the proposed curves are a better model of

occurrence of point events.

5.4.2 A Group of Break Points
By looking at a family of curves (Figs. 5.5 and 5.6), the group of break points on most
curves appear regular and suggest some physical meaning.

All points on the family of curves are related to a time interval or to a special

duration on the time axis. With this notation, it is not surprising that a group of break
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Figure 5.7 A family of curves In Ps - In € - Qs and Poisson process for
the observations at Yichan, Yangtze River, China.
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points indicate a special duration in which at least one peak flow occurs. One of the most
interesting group of break points is the first group which is located from the right of the
origin at 5.9 in the In & scale corresponding to about one year as shown in Figs. 5.5 and
5.6a,b.c,d, e, fand g. This indicates a period of one year even though the occurrences
of peak flows of small and medium magnitudes have various probabilities within this one
year cycle.

Apparently, the break points are inherent in the nature of the data rather than the
technique that was applied to generate the curves.

Figures 5.8a and b show the different techniques in choosing the time intervals and
thresholds when drawing curves. They are insensitive to the appearance of the first group
of break points, for example, for the observations at Hope, Fraser River, B.C., Canada.

Conversely, if synthetic data were used to perform the same procedure, their results
will be significantly different.

Here two types of data are generated:

Type 1:

The data are independently and normally distributed. The mean value and standard
deviation across time axis are estimated from those observed at Hope, Fraser River, B.C.,
Canada.

Type 2:

The data generated can adopt any hydrologic stochastic models with seasonal
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components such as ARMA( Box and Jenkins, 1970) and Cannonical Expansion model

(Spolia and Chander, 1977). The simplified stochastic processes are generated by

considering the daily istics:

Let Q; be flow discharge,

Q11 Qrz = Oy O

Q21 Qzz - Qs
0 Q0 O 619
Qi On: Oy Orn
and their mean values and standard deviations each ensemble are
9130,
(5.14)
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where the all parameters, such as sample length, n, and the number of realisations, m,

mean values Q_: and standard deviations, S; across the of series, are
from the observations at Hope, Fraser River, B.C., Canada.
We are interested in the peak flows over a given threshold, so generated flow

discharges, Y ;, are simply obtained by
Y. =0,+5,%¢, (.15

where it is assumed that ;; is a normal random variable with zero mean and one standard
deviation. Thus a simple time series of flows can be obtained.

The generated data Type 2 are closer to the observations while Type 1 is not.

The same procedure of the functional box counting performed on the generated data
Types 1 and 2 to produce a family of curves is shown in Figs. 5.9 and 5.10, respectively.

From Figs. 5.9 and 5.10, the first group of break points matches the one year cycle

in Fig. 5.10, however, nothing matches a one year cycle in Fig. 5.9.

5.4.3 Saturation Points

Most curves arrive at a horizontal line, i.e. P = 1, which implies a saturation point.
Saturation points represent a special time interval in which “yes” intervals for a given
threshold Qs occur with probability 1. It is reasonable to regard this point as a kind of

128



upper limit of empirical or observed return periods. A straight line intersects the
horizontal line at a point, in which P=1 can be considered as an upper limit of empirical

return period for the corresponding threshold, Qs.

5.5 Engineering Consideration
A family of curves In P; - In € - Qs describes the temporal structure of peak flows and is
a parametric set of curves with parameter Qs, In Ps - In § which can be transformed into

the form

Inp; ~f(ln £Q,) (5.16)

In fact, Eq.5.16 concerns two important aspects in engineering hydrology.

5.5.1 Empirical Plotting Positions

For a fixed time scale, say =365, the probability, Ps, serves as an estimate of exceedence
probability corresponding to the threshold Qs. If the annual maximum flows Qs;, i=1, 2,
..., m, are used as thresholds, a set of the empirical plotting positions can be determined.
This is a set of empirical plotting positions which is related to the scaling properties of
peak flows and incorporated in flood risk analysis. The details of dealing with this topic

will be described in Chapter 6.
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Figure 5.8a A family of curves with special time intervals for the .
observations at Hope, Fraser River, B.C., Canada.
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Figure 5.8b A family of curves In P; - In & - Qs with a special thresholds for

the observations at Hope, Fraser River, B.C., Canada.
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Figure 5.9 A family of curves In P - In & - Qs for Type 1 generated data
shown in section 5.4.3.
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Figure 5.10 A family of curves In Py - In & - Qs for Type 2 generated data
shown in section 5.4.3.
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5.5.2 Risk of Failure

What is the probability of a flood exceedence during a design life L, ? In engineering

hydrology, this question is usually by using independent p such as the
Binomial or Poisson (Linsley, 1958, 1975; Chow, 1964). However, this approach does
not match well with observations as shown in Fig.5.7.

It is understandable that if the time scale, & , in a family of curves In P; - In& - Qs
is considered as a design life Ly, the probability, Ps of a time interval including at least

one occurrence of exceedence, is, in fact, a risk of failure during the design life, denoted

as R. Thus, Eq.5.16 can be rewritten as

InR~f(InL,.0,) .17

Fur ppose the Qs is given and defined by a design flood Qy, the

corresponding design return period, Tp, can be determined. Hence, Eq.5.17 can be
expressed as
In R ~ f,(InLp, To) (5.18a)

or

To~f,(nL;, In R) (5.18b)

Hence, the family of curves In P; - In & - Qs can serve as an empirical relation of in R-
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In L, - T , which is different from the Poisson explanation. When design flood Q; is
fixed, the power law, R- L, exists, where c is a constant. Figure 5.11 shows the relation
In R- In Ly, - T, observed at Yichan, on Yangtze River, China, , where T,, T, and T; are

return periods.
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Figure 5.11 The representation of In R- In Ly, - T, observed at Yichan, on
Yangtze River, China.
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5.6 Summary

The variability of peak flow points in the time axis is completely disordered and related
to the safety of hydraulic structures. Classical methods do not adequately describe this
behaviour. From a macro scale point of view, in fact, peak flows evolution in time
certainly have their own special behaviour for a given watershed.

This chapter focuses on studies of peak flow series across scales. A method for
transforming observed point processes to a family of curves In P - In € - Qs was proposed
to present the basic characteristics of peak flows along the time axis. The family of curves
In Pg - In§ - Qs thus contains all information about flood temporal characteristics and
presents the inter-scale correlation structure for a given watershed. It describes the
relationships between various time scales and probabilities of peak flow occurrences. It

also explores scaling behaviour and shows some natural behaviour, such as the natural

cycles inherent in the peak flow series which cannot be ad ly described by classical
methods at scale n or at scale one.

The proposed family of curves In P¢ - In & - Qs is also appropriate for hydrological
practice, it meets two important aspects of flood risk analysis, which are discussed in the

next Chapter.
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Chapter 6
A Scaling Plotting Position for Flood Risk Analysis

6.1 General

Analysis based on fractal geometry in Chapter 5 indicates that peak flow points
varying with time intervals follows a power law over wide ranges of time scales, thus a
family of curves In Pg-In £-Qs, which transforms observations into a graphic explanation,
was developed.

Straight lines in the family of curves indicate observations being invariance across
scales, in other words, a correlation structure of peak flows exists. This correlation
structure, however, includes the feature of long- term persistence.

According to Hurst’s finding, Mandelbrot (1977, 1982) pointed out that an account
for the Hurst phenomenon was a symptom of scaling, so “scaling noise” had been defined
intuitively. Since the term “scaling” indicates a kind of order, scaling noise describes an
order hidden in a fluctuation and can be expressed as a scaling Gaussian random process.
Hence, fractional Brownian motion, in which the box dimension is determined by
2-H (Mandelbrot, 1982), plays an important role in describing and modelling the

natural feature of observations. The terms “scaling” or “scale-invariance” provide a
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broader meaning and a rational basis for describing and exploring the natural behaviour
of peak flows.

A family of curves well describes the scaling behaviour of peak flows over broad
ranges of time scale, thus the family of curves becomes useful if these long-term
behaviours are considered in flood risk analysis.

As we know, the main purpose of flood frequency analysis is to estimate flood
magnitudes according to specified probability and the confidence interval of the event
associated with selected probability level. Hydrologic frequency analysis statistically finds
an optimal quantile and its sampling distribution by means of observed sample. Probability
plotting positions which are widely used in flood frequency analysis, are used for the
graphical display of observed floods, and serve as estimates of the probability of
exceedence of those values (Guo, 1990). However, proposed family of curves In Ps-In &-
Qs well presents the scaling behaviour of peak flows, and are directly related to the
probabilities of exceedences of those observed data. As was mentioned in section 5.5.1,
for a fixed time interval, £=1 year, the probability, Ps, could serve as an estimate of
exceedence probability corresponding to the threshold Qs. This gives empirical plotting
positions, which are based on the measurement of peak flows across scale.

In this chapter, an empirical probability plotting position formula is proposed based
on scaling behaviour of peak flows. Extensive Monte Carlo experiments are carried out

10 assess the properties of the proposed plotting position formula and existing standard
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approaches for flood frequency analysis. Also, practical applications of the proposed
method are demonstrated using a number of peak flow observations from Canadian and

Chinese rivers.

6.2 Standard Flood Risk Analysis

Flood frequency analysis is concerned with estimating a design flood for a given return
period and estimating the probability of exceedence of a given flood within a given time
interval. There are three main uncertainties in flood risk analysis (Wood and Rodriquez-
Ituzbe, 1975): i.e., natural uncertainty, parameter uncertainty, and model uncertainty.
Because the occurrence of floods is a complex process, our limited understanding of the
process results in increased model uncertainty. Therefore, to decrease the model
uncertainties, it is important to understand the nature of floods.

Two hydrologic data series are commonly used in flood risk analysis: the peaks over
threshold series (POT) (eg. NERC, 1975) and the annual maximum series (AM). A POT
series is a series of data that takes all the peaks over a selected level, so the number of
exceedences in the series is greater that the number of years of the record. An AM series
includes the largest values occurring in each of the equally long time intervals of the
record. The time interval length is usually taken as one year. The number of exceedences
is equal to the number of years of the record (Chow, 1964; Chow et al., 1988). The words

“peak flows” in Chapter 5 and “annual peak flows” in Chapter 2 and 3 correspond to the
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POT series and AM series, respectively. It is assumed that annual peak flows in AM
series are independent of each other. However, there is a greater probability that the peak
flows in a POT series are related and less independent.

Based on the assumption that observed annual peak flows are identically and

independently distributed (iid), flood risk lysi that the annual

flows are y pled from an d parent probability distribution,

F(Q/B), where 8 is a set of parameters estimated from the sample and Q is a flood
discharge, a random variable.

Therefore, two aspects of flood risk estimation to be considered are: choice of parent
probability function F; and choice of parameter estimation method to estimate 6.

In reality, since nature's distribution is unpredictable, reasonable ‘flood-like'
distributions have been recommended. For example, the log-Person Type III distribution
was recommended by the U. S. Water Resources Council in 1967 for use by U. S. Federal
Agencies (Benson, 1968), and the GEV distribution was recommended for use in Britain
by NERC (1975).

According to the suggestion from WMO (1989), in which fourteen candidate
distributions were recommended to be used with annual maximum, the lognormal

distribution (LN) (K 1957; Stedi 1980) and the Pearson Type II

distribution (PIIT) (Matalas and Wallis, 1973, Bobee, 1973; Hua, 1985) are listed in the

first two positions by WMO, these are hence considered in this study. The probability
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density functions of Q are expressed as

A2(q-q, )" e

fla)= (5

for Pearson Type II (Foster, 1924) and

! v-u,)
iy AR A I >0
f(q)qu exp(- 25) og g 2

where y=logq

6.1)

6.2)

for lognormal distribution (Chow, 1954), where the parameters a,, 8 and a in the Pearson

Type I and parameters y and & in the lognormal distribution are estimated from observed

samples.

The quantile Q; of floods for a given return period can be expressed as (Chow, 1951)

Or=1+0Krmu

or Pearson Type I and

Or =p,+0.K;

6.3)

64

for lognormal distribution, where Kyand K.y are frequency factors for lognormal and
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Pearson Type III respectively, p and & in Eq. 6.3 and p, and o, in Eq.6.4 are population
mean and standard deviation estimated from observed samples.

Various hods for estimating the p are used in flood risk

analysis:

¢ the maximum likelihood method (ML) which gives unbiased and minimum
variance estimates;

¢ the method of moments (MOM) which is biased and performs poorly for some
models (Matalas and Wallis, 1973) but they are efficient for some distributions
(Lowery and Nash, 1970) such as Pearson Type III (Song and Ding, 1988; Wu
etal., 1991);

* the method of probability weighted moments (PWM)(Greenwood et al., 1979)
which is a linear combination of order statistics and is unbiased for small
samples; and

* L-moments method (Hosking, 1990) which is a linear combination of PWM's but
with a clearer statistical interpretation, and

¢ graphical curve fitting methods

Among the il; hods of imati phi pp
(Dalrymple, 1960; Chow, 1964; Chow et al., 1988) which consist of fitting a function
visually to the data is favoured by many hydrologists and engineers. It has been widely

used both in hydraulic engineering and hydrologic practice.
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Graphi imation yields quantile estimation directly rather than estimates of the

individual parameters. The steps are:
(1) Plot data on a probability graph paper;

Rank observed data from the largest to the smallest value

42q:..29,..24q, (6.5)
where n and m are the total number of values to be plotted and the rank of a value,

respectively. Calculate the plotting positions from a selected plotting position formula

PiS PrwS oS P, (6.6)

and then a pair of data is plotted on a specially designed probability paper;

(2) Curve fitting;

Once the data have been plotted on probability paper, an eye-guided line or a curve
is drawn through the plotted points;

(3) Estimate quantiles.

Estimated quantiles for various return periods are selected from the ‘best-fit’ line.

The key step is to determine a plotting position that estimates the probability of future
floods. The choice of plotting position formula for use on probability graph paper has
been discussed by many authors (Hazen, 1914; Weibull, 1939; Gumbel, 1943, 1947;
Blom, 1958; Tukey, 1962; Gringorten, 1963; Cunnane, 1978; Guo, 1990).
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6.3 Plotting Position Formulas

A probability plot is a plot of a magnitude of flood versus a probability. Most plotting

position formulas expressed as probabilities, are special cases of the general form:

(m-a)
- 2] 6.
P -1-26) 6N

where P, is the plotting probability of the m™ largest value, n is the sample size and o is
a constant. For the Weibull (1939) formula a=0, for the Cunnane (1978) formula
a=0.4, for the Gringorten (1963) formula a.=0.44, and for the Chegodayev (1955)
formula a=0.3.

Plotting position formulas are usually associated with theoretical order statistics (see

A dix B). For les of inter iate size, the d value of order statistics is

P on a corresponding quantile with a linear relationship (Harter, 1971). Using this
linear relationship, the order statistics of a sample can be used to estimate the sample
quantiles.

LetQ,, Q, ..., Q, be a simple random sample from a population with probability

density function (pdf), f(q), and lative distribution function (cdf), F(9). Q;, Q, ...,

Q, are to be statistically ind. dent and identically distributed. When this

P

random sample is ranked as Qy, = Qq, 2...2 Qg 2...2 Q, the m® - order statistic Q(,
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which is a random variable, has a pdf, g,(q), given by

g lg)=m (; ) fiQ)[1-F@) | [Flg) "™ (6.82)
and the cdf, G,(q),
G,<q)=m(f,'l)jn—F(q)]'*‘[F(q)r'"f(q)dq (6.8b)

Let Yim=1-F(Qm), where 0 < Yim < 1, because 0 < F(Qum) < 1. The probability density

function of the function Y(m) of the random variable F(Qm)), be ha(y)

() =m(" )y A= y)" (6.92)
m
or
h )=l A= )" V[B(m,n~—m+1)] (6.9b)

where B is a beta function with two parameters m and (o-m+1).

Plotting position formulas based on distribution of Q, in Eq. 6.8 should take

probability density function of parent population into ideration. Formulas iated
with the distribution of Y, should use Eq. 6.9 with free-distribution of parent Q. Most

of the well-known plotting position formulas are measures of central tendency of the



distributions of either Y, or Q,, thus Egs. 6.8 and 6.9 are the bases of theoretical
plotting position formulas.

However, plotting position formulas are classified into three groups (Ji et al., 1984):
Group I, including Weibul (1939), Chegodayev (1955) and Cunnane formulas (1978), is
associated with distribution of Y, which is distribution free in using Eq. 6.9. Group II,
including Gringorten(1963), Weibul (1939), Chegodayev (1955) and Gumbel (1943)
formulas, is related to the distribution of Q, in Eq. 6.8. Group III is based on the
empirical distribution function, it contains the formulas such as Hazen (1914) and
California (C.S.D.P.W., 1923). Weibul and Chegodayev formulas can be derived from
both Egs. 6.8 and 6.9 (see Appendix B), so they could be belonged to Groups I and II.

Overall, Egs. 6.8 and 6.9 as bases of theoretical plotting position formulas, are
derived under the condition that Q,, Q,. ..., Q, are n independent variables with the same
pdf f(q). In other words, the term “short-term independence” discussed in previous
Chapters is one of the prerequisite conditions for the theoretical plotting position formulas
(see Appendix B).

According to order statistical theory, even through some suggestions of relaxing

ptions and idering identically distributed Q,, Q,, ..., Q, as well as various

patterns of dependence have been made (David, 1981), statistical long-term properties

have not been discussed yet in studies of order statistics.
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6.4 Scaling Plotting Positions

6.4.1 Basic Concepts

The basis of the plotting position formulas discussed above suggests that the statistical
average of order statistics, such as mean (Weibull formula), median (Gringorten formula)
or mode (Chegodayev formula), is linearly varying with corresponding quantiles. Using
this linear relationship estimated quantiles are available. However, plotting position
formulas involved in Groups I and II are theoretically derived from the probability
function of Y,,, or order statistics Q,,,. Parent random variable Q, being independent is
the basic assumption for these derivations.

Recall Chapters 2 and 3 dealing with long- and short-term behavior of peak flow
series. Studies indicate that long-term dependence is not uncommon phenomena in peak
flow series as well as in other independent data. Because of long-term persistence, the
variation of parameters and quantiles increases in flood risk analysis, hence, the impacts
of this property on design flood estimation cannot be ignored.

Recall Chapters 4 and 5, proposed family of curves well present correlation structure
of peak flows based on the measurement at scale. Straight lines over broad ranges in the
family of curves indicate existence of scaling feature of peak flows. This scaling behavior
is related to the long-term persistence of peak flow series.

The thresholds, Qs, in the family of curves, in fact, are ranked as Qs;, = Qs >...

2 QS 2 ... 2 Qsy, from the right to the left in the family of curves. Furthermore, for
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a given time scale, £, say &=1 year or 365 days, probabilities of exceedences, Pz, are
ranked as Py, ) < Py, < ...< P, <...< Pg,,, from the bottom to the top at this fixed time
scale. Thus, the ranked Qs and Pg,,, could serve as order statistics and corresponding
empirical exceedence probability, respectively.

Consider the concepts described previousily, plotting position formulas are related
to the order statistics and corresponding exceedence probabilities (Hirsch, 1987; Hirsch
and Stedinger, 1987), and serve as an estimate of the probability of exceedence for
observations (Guo, 1990). Theoretical plotting positions in Group I are the expectation
of exceedence probability function, E(Y,,) in Eqs.B.9 and B.10 of Appendix B.

If AM series are considered as a set of thresholds ranked in the family of curves, Pg
are exccedence probabilities for the corresponding thresholds. A statistical model to infer
expected value of exceedences is realisable.

AM series are independent and identical distributed within short-term scale. On the
other hand, they are possibly correlated over wider scales according to the calculated
results of P(K>k,) in Chapter 3, where P(K>k,) is the probability of a peak flow series
exhibiting long-term persistence. A family of curves well demonstrates peak flow statistical

characteristics i long- term persi it should be a basis dealing with plotting

position formula which takes long- and short-term behaviors into account.
Thus, an empirical plotting position formula is developed, which serve as an estimate

of expectation of exccedence probability, and takes scaling behaviour of peak flows into
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account.

Since this plotting position formula is based on the family of curves and related to the
scaling behavior of peak flows, it is called from now on a scaling plotting position formula
or SPP. The following are the ideas behind the scaling plotting position formula:

1) Let empirical probability of exceedences of flood discharges, Pz, be a random
variable. Its magnitude is related to other variables, such as the level of exceedence
expressed as a threshold Qs ranked in the family of curves, and the time interval
of occurrence of exceedence, &.

2

=

The expectation of random variable, P, can be estimated by a statistical model,

thus the problem associated with a statistical model can be expressed as a

relationship between the random variable, P, and the variables, the level of

exceedence, Qs, and time interval, &.

3) A linear regression model in log domain is assumed to connect the relationship
between In P , In & and Qs. ;

4) The observations of variables, Pg , In € and Qs, are selected from a family of
curves which presents scaling behaviour of peak flows.

5) Once the expectation of Pg is estimated, a scaling plotting position formula can
be determined.

Principally, the family of curves is the basis for the statistical estimation of the

proposed plotting positions. Since a family of curves well describes scaling behaviour
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including long-term behaviour of peak flows, the plotting position formula based on the
family of curves should be more accurate than that of classic plotting position formulas.
Based on the above considerations, the scaling plotting position formula is now

developed.

6.4.2 Scaling Plotting Position Formula
The key of the proposed scaling approach plotting position formula is to construct a

probabilistic model to infer expectation of probability of exceedences.

6.4.2.1 A Linear Statistical Model

Let a family of curves In Ps-In £ be transformed into a mathematical relationship. Assume

that the probability of occurrence that can be equivalently as the ordi ina
family of curves, P, is related to the d level as a thresh Qs, and
the time interval, &, in a logarithm domain by:

In P= B+ £,0,+ Byl &+t f,Q,InE+n (6.10)

where Py is a random variable having a mean that is a function of non-random variables,
Qs and &, and By, By, B, --- By are (k-+1) unknown parameters, 7 is a random variable

which is normally distributed, n~ N(0, o).
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Let Z=InP,, X1=In§,X2=0,, ..., Zk=0Q,In&, thus a general linear model of

the form is
Z= B,-B X1, X2 ...~ B Xk -n
E@m=0
()] . ©.11)
Var(n) =o*
Cov(n,,n,)=0,i = j
where Z is a dependent variable, X1,X2, ... Xk are independent variables in the
ical sense. The exp ion of random variable Z is

E(2)=B,+ B, X1+, X2+...+ B, Xk 6.12)

Thus E(Z) is a linear function of By, B, ... B, and represents a plane in the Z, X1,
X2, ... Xk space. The unknown parameters By, By, ... B, can be estimated by the least
squares method. However, there are n-straight lines in a wide range of the family of
curves In Pe-In £-Qs, hence n- z;, 2, ... z, on Z and nxk independent observations are
available from the family of curves, and the estimate of the expectation of Z from the

linear regression equation

Z=bo+ by XI+ by X2+ ... b Xk 6.13)
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or

Pe=exp(bo=bIn&+5:0, .= 5:0,In&) (6.14)

is conveniently estimated by the least squares method, where by, b,, b, ...b, are the
estimates of By, By, B, ... Be.

The individual terms in Eq.6.10 might be numerous, and in fact, a stepwise
regression analysis (Klecka, 1980) and corresponding hypotheses testing are carried out.
At the end, in a stepwise procedure, the significant terms will be selected for a given
selection criteria.

Once parameters by, by, b, ... b, are estimated, the Egs. 6.13 or 6.14 can be
obtained. Let & be 365 days, an empirical plotting position formula can be determined for

given Qs.

6.4.2.2 About Logarithmic Transformation

The estimal; of expectation of Z in In-space we deal with is unbiased. This unbiased
estimate is useful for investigation of the statistical properties of scaling behaviour of
flows. However, P; in Eq. 6.14 can be considered as a biased estimate and does not have
the minimum expected error variance, thus correction of bias (Miller, 1984; McCuen and

Snyder, 1986; Koch and Smillie, 1986; McCuen et ai., 1990) for plotting position or

empirical reduction of error needs to be achieved. The method for correcting the bias

153



suggested by Miller(1984) could used to reduce the bias due to the logarithmic

transformation.

6.4.2.3 Steps in SPP Method

Based on the above consideration, the steps of the proposed method to estimate flood

quantiles are as follows:

Y]

2)

3)

4)

Assume peak flow series Q;, j=1, 2, ..., s, is a n-year POT series and Qs,, i=1,

2, ..., n, denotes n-year AM flood series where s>n.

The i box ing p is carried out to construct a family of
curves In Pg-In £-Qs, where annual maximum floods, Qs;, i=1,2, ....n, are the
thresholds.

Based on the family of In Ps-In €-Qs curves, necessary information is obtained
and parameters in Eq. 6.13 or 6.14 are estimated by a stepwise regression
analysis.

Let time scale be equal to 365 days in the estimated Eq. 6.13 or 6.14, empirical

lcul and cl curve fitting procedure

plotting positions Py are p

is used to fit a curve to the points, and flood quantiles will be estimated from the

fitted curve.
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6.5 Applications of SPP Method

In this study, the scaling approach plotting position formula has been used to estimate the
flood quantiles in Canadian rivers (Environment Canada, 1992) and at Yichan guage,
Yangtze River, China (Ministry of Water Resources, 1985) . The daily flow records of

Canadian Rivers used are shown in Table 6.1.

Table 6.1 Characteristics of daily flows collected from Canadian rivers (Environment

Canada, 1992)
wsc Prov. Gauging Station A(km®) Years
Number
05AJ001 Alta. South Saskatchewan River at Medicine Hat 56.400 1913-1987
0SDF001  Alta. North Saskatchewan River at Edmonton 28,000 1912-1986
05HGO01  Sask. South Saskatchewan River at Saskatoon 41.000 1912-1986
05KJ001 Man. Saskatchewan River at the Pas 347,000 1913-1987
08MF00s B.C. Fraser River at Hope 217,000 1913-1987
6.5.1 Calculation of SPP
As an a stepwise ion procedure and cor ding statistical hyp

tests for the gauge 08MF005 of Fraser River at Hope are illustrated in Table 6.2, in which
an empirical linear regression equation taking the form Eq. 6.13, where the variables X;,

could be chosen subjectively, e.g. for X;, i=1,2,3, ...5 are given by
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Table 6.8 Comparison of SPP with other estimators for the lognormal distribution, where
the units of BQ, and SQ, are m® /s but RQ, is in dimensionless

P,=001 P,=.005 Estimation Methods of Quantiles
n | Variable | MOM | PWM | 00 03 0.4 0.5 SPP
BQ, | 72768 | 74463 | 79015 | 75482 | 75093 | 74828 | 105872
BQ, | 67426 | 68507 | 71595 | 69134 | 68859 | 68330 | 87216
30 SQ, | 7868 | 8872 | 11514 | 9799 | 9260 | 8754 | 12023
SQ, | 5609 | 6146 | 7463 | 6550 | 6255 | 5976 | 7877
RQ, | 1081 [ 1192 | 1457 | 1282 [ 1227 | 1176 | 11.36
RQ, 8.32 897 | 1042 | 939 905 | 76405 | 9.03
BQ, | 71753 | 72932 | 75979 | 74164 | 73581 | 72827 | 102401
BQ, | 66676 | 67473 | 69616 | 68326 | 67901 | 67365 | 85044
40 SQ, 6964 | 7542 | 9355 | 8105 | 7686 | 7200 | 9084
SQ. | 5050 | 5257 | 6235 | 5564 | 5335 | 5062 | 6011
RQ, 9.71 1034 | 1231 | 1093 | 1045 | 989 8.87
RQ, 7.57 7.79 8.96 8.14 7.86 7.51 7.07
BQ, | 72410 | 73952 | 75933 | 74430 | 73794 | 73259 | 102194
BQ, | 67239 | 67857 | 69665 | 68581 | 68136 | 67741 | 84870
50 SQ, 6217 | 6521 | 7894 | 6990 | 6564 | 6252 | 8097
SQ, | 4474 | 4630 | 5353 | 4836 | 4600 | 4427 | 5291
RQ, 8.59 889 | 1040 | 939 8.90 8.53 7.92
RQ 6.65 6.82 7.68 7.05 6.75 6.54 6.23
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XI=1In&
X2 =0, X3=Qmn¢
X4=(n&)f? X5= 07

The criteria for selecting variables to enter into the model and for remaining are:

¢ Maximum R?-statistic, where R? is sample multiple coefficient of determination;

* C,-statistic (Mallows, 1973) which is a measure of total squared error where L
is the numbers of parameters in regression equation.

If C_ first approaches the number of parameters, L, the model is chosen and the

are i (Mallows, 1973; Daniel and Wood, 1980).
A similar procedure was carried out for other Canadian rivers as well as in Yichan,
Yangtze River, China. The results of the stepwise regression are shown in Table 6.3.
Figure 6.1a-e displays the scaling plotting position formula in which the values of P¢ have
been empirically corrected. In order to limit variation ranges of estimated plotting
positions, the upper and lower limits are corrected to be 0.999 and 0.001, if estimated

values are greater than 0.999 and less than 0.001, respectively.
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Table 6.2 Stepwise procedure of selecting variables for dependent variable Z for the
gauge 08MFO05 of Fraser River at Hope, B.C., Canada

Step 1 Variable X4 Entered

R-square = 0.5889347 C, =21632.544711 F=1931.28
Variable Parameter Estimate Standard Error

INTERCEP -6.75415176 0.13602869

X4 2.26629944 0.05156964

Step 2 Variable X2 Entered

R-square = 0.8021814 C, =9714.0542746 F=2731.14
Variable Parameter Estimate Standard Error
INTERCEPT -3.99331376 0.11899806
X2 -0.00031371 0.0000082
X4 2.26629944 0.03578767

Step 3 Variable X1 Entered

R-square = 0.8582471 C,_ =6581.9815232 F=2716.47
Variable Parameter Estimate Standard Error

INTERCEP -16.95549607 0.57075470

X1 -2.00241690 0.08678590

X2 -0.00031371 0.00000697

X4 12.57402310 0.44776942

Step4 Variable X3 Entered

R-square = 0.9655799 C, =584.08201348 F=9432.76
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Variable Parameter Estimate Standard Error

INTERCEP -10.13613237 0.30041152

X1 -2.98252622 0.04537894

X2 -0.00108860 0.00001245

X3 0.00011137 0.00000172

X4 12.57404449 0.22072721

Step 5 Variable X5 Entered
R-square = 0.9759570 C_= 6.00000000 F=10911.2

Variable
INTERCEP
X1
X2
X3
X4

X5

Parameter Estimate
-17.56273566
-2.98252608
-0.00191028
0.00011137
12.57404449
0.15700390

Standard Error
0.39770121
0.03794056
0.00003567
0.00000144
0.18454625
0.00651877

Summary of Stepwise Procedure for Dependent Variable Z (significant level « =.15)

Step  Enter Move | Partial R* Model R? Cy F
1 X4 0.5889 0.5889 21632.545 1931.2847
2 X2 0.2132 0.8022 9714.0543 1452.0548
3 X1 0.0561 0.8582 6581.9815 532.3665
4 X3 0.1073 0.9656 584.0820 4194.1377
5 X5 0.0104 0.9760 6.0000 580.0820
Suppose Z= By+PBXI+B,X2+ ..+ BXk+n
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Table 6.3 Scaling plotting position formulas

where & = 365, and error = standard error.

Nzlmsger & B % e o -
05AJ001
Parameter |-15.8514 -2.2114 -0.0024 0.00024  11.9848
Error 0.21826  0.03334 0.00002  0.000002 0.17113
05DF001
Parameter |-16.4195 -2.1825 -0.0025 0.0002 12.0223  0.0223
Error 0.29536  0.04409 0.00005  0.000003 0.22613  0.00325
05SHGO001
Parameter |[-16.9645  -2.4215 -0.0031 0.00027 12.7852 0.03348
Error 0.29707 0.04145 0.00003 0.000002 0.22151 0.00211
05KJ001
Parameter |-12.9662  -2.1965 -0.0072 0.0004 9.3989 0.2484
Error 0.31228 0.31228 0.00011 0.00011 0.19171 0.00893
08MF005
Parameter |-17.5627  -2.9825 -0.0019 0.00011 12.574 0.1570
Error 0.39770 0.03794 0.00003 0.000001  0.18454 0.00651
Yichan, Yangwze River, China
Parameter |-34.6590  -3.2655 -0.0007 0.00002 13.6283 0.2172
Error 0.62528  0.03967 0.00001 0.00000 0.19146 0.00509
Scaling plotting position formula:

Presss= exp(bot b0 &+ 5,0, +5;,0,In & +5,(In &)+ 5;0.7)
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Fi 6.1a Plotting positions using SPP and Cunnane formula for
gure AM series of Fraser River at Hope, B.C., Canada.
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Figure 6.1b Plotting positions using SPP for AM series of South
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Figure 6.1c Plotting positions using SPP for AM series of North
Saskatch River at Alta.,

Canada.
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Figure 6.1d Plotting positions using SPP for AM series of South
Saskatch Riverat S Sask., Canada.
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Figure 6.1e Plotting positions using SPP for AM series of Yangtze

River at Yichan,
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6.5.2 Calculation of Flood Quantiles

The Pearson Type II distribution is now assumed as a parent distribution, and the

following estimati are

1) The conventional moment method (MOM)
2) The PWM method (PWM) (Hosking, 1986, 1990; Song and Ding, 1988)
3) The maximum likelihood method (ML) (Matalas and Wallis, 1973; Cong &
Tan, 1979)
4) The graphical curve fitting method (Dalrymple, 1960) where plotting position
formulas come from Groups I, II and III.
a) Weibull plotting position formula (0.0) (Weibull, 1939)
b) Cunnane plotting position formula (0.4) (Cunnane, 1978)
c) Hazen plotting position formula (0.5) (Hazen, 1914)
d) Chegodayev plotting position formula (0.3) (Chegodayev, 1955)
5) Scaling plotting position formula (SPP)

The results of quantil i d are ill in Table 6.4a-b and Figure 6.2a-b.
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Table 6.4a Flood quantiles (units: m’/s) estimated from various Canadian Rivers

Probabili
Method | 4 401 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 | 0.100 | 0.200 | 0.500
'WSC Number: 05A1001
MoM | 5675 | siss | as32 | 4033 | 3409 | 2854 | 2332 | 1792 | 1028
pwWM | 6132 | ss61 | 4806 | 4234 | 3662 | 2904 | 2330 | 1753 | 986
ML | sss6 | 5077 | aas2 | 3973 | 3538 | 2836 | 2327 | 1800 | 1040
0.0 | 6968 | 6211 | s3sa | 4664 | 3980 | 3085 | 2419 | 1769 | 958
0.4 | 6600 | 5958 | soss | 438 | 3795 | 2055 | 2330 | 1720 | 958
spp | 7883 | 7080 | 6024 | 5228 | 4438 | 3407 | 2640 | 1890 | 955
WSC Number: 05Hg001
MoM | si68 | 4772 | 4237 | 3824 | 3402 | 2824 | 2365 | 1875 | 1128
pwM | ssi6 | sosz | a4ss | 3989 | 3517 | 2878 | 2378 | 1856 | 1094
ML | 5520 | 5058 | asar | 3969 | 3493 | 2850 | 2350 | 1833 | 1088
00 | 58711 | 5372 | 4707 | 4198 | 3684 | 3684 | 2452 | 2452 | 1092
04 | 5650 | 5175 | asa0 | 4054 | 3563 | 2002 | 2387 | 1854 | 1089
PP | 603z | ssi1 | 4816 | 4285 | 4285 | 3024 | 2461 | 1878 | 1040
WSC Number: 0SDE00L
MoM | 6133 | ss84 | 4856 | 4304 | 3750 | 3012 | 2450 | 1880 | 1106
pwM | 6290 | s7i2 | 4947 | 4368 | 3789 | 3023 | 2443 | 1862 | 1091
ML | s9s0 | s433 | 4746 | 4223 | 3697 | 2992 | 2450 | 1896 | 1122
0.0 | 7304 | 6512 | s612 | 4890 | 4174 | 4174 | 2549 | 1878 | 1053
0.4 | 6927 | 6240 | 5337 | 4658 | 3986 | 3109 | 2459 | 1829 | 1053
spp | 7582 | 6817 | ssiz | sos7 | 4308 | 3332 | 2609 | 1907 | 1044
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Table 6.4b Flood quantiles estimated from real data observed at Yichan, Yangtze

River, China
Units of quantiles: m’/s
Return Period (years)
Method 1000 500 200 100 50 20
MOM 76700 75100 72800 70900 68800 65500
PWM 76500 75000 72800 70900 68800 65700
WL 83700 81200 77600 74700 71600 67200
0.0 80000 78000 75200 72900 70300 66500
03 79500 77600 74800 72500 70000 66300
04 79300 77400 74600 72300 69800 66200
0.5 79100 77200 77200 74400 72200 66000
SPP 100900 95900 89000 83800 78400 71000

Figure 6.2c shows the magnitudes of quantiles estimated by SPP are steeper than the

il i d by other methods. The reasons will be explained in the next section.
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Figure 6.2a Frequency curves of annual flows for South Saskatchewan River
at Medicine Hat, Alta., Canada.
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Figure 6.2b Frequency curves of annual flows for North Saskatchewan River
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6.6 Comparison Between SPP and Existing Estimators

Statistical experiments will be carried out in order to assess the statistical properties of the

SPP estimator and a comparison will be made with existing estimators.

6.6.1 Criterion for A of an Esti

The choice and appraisal of plotting position formulas have been discussed and the
criterion of the optimum of plotting position of unbiasness and efficiency has been widely
accepted (Cunnane, 1978). The AM series are sampled from a generated daily flow
process and population parameters in this study are not available, so the subject of bias is
not discussed. The criterion for the comparison of the desired statistic is to minimise the
sum of squares of deviations for the estimated quantiles in this study. Since estimated
quantiles are final results of estimation, this criterion is acceptable. Thus, relative root
mean square error (RRMSE) of quantiles is used as indices of efficiency for the various
quantile estimators.

Let Q, denote the estimated quantile, the relative root mean square error (RRMSE)

is defined by

RQ, = %x 100% (6.152)

»
where
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BQ, = —;Q, (6.15b)

SQ, = ,}%E(Q, -BQ, ) (6.15¢)

and K is the number of replications of Monte Carlo experiments. For a flood frequency

lysis procedure to be it should have low RRMSE.

6.6.2 Generation of Flow Time Series

The SPP estimator is related to the temporal structure of observations, daily flow time
series are generated and annual maximum series will be obtained from the simulated daily
flow series. In order to model long- and short- term dependence the model used here is

the mixed-noise model (L ier and Burges, 1977; Booy and Lye, 1989) to model the

daily flow series observed at Yichan, Yangtze River, China.

The mixed noise model is given by:

M
X =3IW. X" (6.16a)

169



XO=oxt-Ji-0l)al  i=12..M {6:16)

where X, denotes the standard normal series, X, indicates the standard normal AR(1)
series with the first-order correlation coefficient ®,, W, is the weighted coefficient meeting

W, 20and ¥W? = 1, M is the number of terms, and o, p the normal i

random variable with mean O and variance 1.

‘The simulated processes of this model are modelling M-a, series , that is, o o,
..., ™, obtaining M-X, series, that is, X", X®,... X*, by Eq.6.16b; then substituting
them into Eq.6.16a to obtain X,; finally obtaining the modelled series of the original flood
by inverse standardisation, i.e. Q, Q = SQX,+§ . where Sy , Jare the standard
deviation and the mean, respectively.

The estimated parameters of the mixed noise models, W and ®, are shown in Table
6.5 and the corresponding statistics, such as autocorrelation coefficient r,, i=1,2,3,4,
Hurst’s K, mean value 0 , and coefficient of variation Cv and coefficient skewness Cs,
of simulated model and observations estimates are shown in Table 6.6.

Table 6.5 The estimated parameters of the mixed noise model of daily flows

w2 0.6232 | 0.2812 | 0.0562 | 0.0067 | 0.0207 | 0.0037 | 0.0049 | 0.0036

O, 0.9200 | 0.9300 | 0.9500 | 0.9915 | 0.9955 | 0.9991 | 0.9996 | 0.9999
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Table 6.6 Comparison of the statistics b the si model and observations

Parameter n n r T Hurst'sK | 0 (m¥s)| Cv Cs

Model

Observed | 0.92 0.66 0.44 0.00 0.742 51600 | 0.171 0.29

0.94 0.54 0.34 0.015 0.735 51500 0.170 -0.15

6.6.3 Population Distributions and Comparison Methods

The two population models, Pearson Type III (PIII), and lognormal distribution(LN)

expressed by Egs.6.1 and 6.2, respectively, are used, and five estimation methods are

considered in this study. That is:

1

2)

)

3)

4

<z

the conventional moment method, PII/MOM and LN/MOM

the PWM methods, PII/PWM and LN/PWM (Ding et al., 1989)

the maximum likelihood method, PII/WL (Matalas and Wallis, 1973; Cong and
Tan, 1979)

the graphical curve fitting methods, PII/FIT and LN/FIT (Dalrymple, 1960)
in which probability plotting position formulas include formulas come from
Groups I, IT and III.

a) Weibull plotting position formula, PIII/0.0 and LN/0.0 (Weibull, 1939)
b) Cunnane plotting position formula, PIII/0.4 and LN/0.4 (Cunnane, 1978)
c) Hazen plotting position formula, PIII/0.5 and LN/0.5 (Hazen, 1914)

d) Chegodayev plotting position formula, PIII/0.3 and LN/0.3 (Chegodayev,
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1955)
5) scaling approach plotting position formula, PIII/SPP and LN/SPP
The quantiles of floods are estimated using Egs. 6.3 and 6.4 for Pearson Type III and

lognormal distributions, respectively.

6.6.4 Monte Carlo Simulation

Monte Carlo experiments consist of the following steps:

1) AM and POT series are pled from the mixed-noise model with p
shown in Table 6.5 and Table 6.6. The AM and POT series sampled from this
model is used for obtaining the SPP estimator, where AM series only are used in
MOM, PWM, ML and graphical curve fitting procedures, AM and POT series
are used in SPP procedure.

2) For a given distribution, such as Pearson Type III and lognormal distributions,

=

each selected estimation procedure is performed, and corresponding quantiles are
obtained using Eq.6.3 or Eq.6.4.

3) Steps 1-2 are repeated K times and K- quantiles for each procedure are obtained,
then the relative root mean square error (RRMSE) of estimators are calculated
using Eq.6.15.

4) Compare RRMSE for each estimation procedure.
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6.6.5. Results of Monte Carlo Experi

The results of Monte Carlo simulation are illustrated in Tables 6.7 and 6.8 and Figures
6.3-6.4. Overall the results show:
1) For the PIII and lognormal models, the lines of SPP quantiles varying with return
periods are steeper than those of the others.
2) The relative root square errors of the quantiles, RQ,, are much smaller than those

whether p ic or

by the alternative estimation p
nonparametric sampling was used. In other words, SPP quantile estimator is the
most efficient among the compared estimators.

In summary, the SPP estimator may be accepted as the most efficient estimator
among those estimation procedures studied. According to the good statistical properties of
SPP estimator, the author agrees with the remark that “Statistical science can play a role
in the future developments of nonlinear science and its possible impact on the future
development of statistical science itself.” (Chatterjee & Yimaz, 1992), a prediction of the

relationship between fractals and statistics.
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Table 6.7 Comparison of SPP with other estimators for the Pearson Type [I distribution,
where the units of BQ, and SQ, are m’ /s but RQ, is in dimensionless

P=.01 | P,=.001 Estimation Methods of Quantiles
n Variable | MOM | PWM 0.0 03 04 0.5 SPP
BQ, 71374 | 73256 | 75727 | 73941 | 73258 | 72579 | 91742
BQ, 77564 | 78680 | 83615 | 81247 | 80336 | 79441 | 107601
30 SQ, 6650 7291 8278 7461 7095 6751 8655
SQ, 9151 | 10132 | 11766 | 10353 | 9789 9267 | 11927
RQ, 9.32 10.11 1106 | 1009 | 9.68 9.30 9.44
RQ, 1180 | 1288 | 1407 | 1474 | 12.19 | 1166 | 11.08
BQ, 71681 | 72265 | 74743 | 72328 | 72804 | 72287 | 90460
BQ, 78023 | 78866 | 82208 | 80337 | 79641 | 78960 | 105910
40 SQ, 6198 6576 7180 | 6592 | 6402 6197 7255
SQ, 8562 9150 9991 | 9102 | 8816 8516 | 10016
RQ, 8.65 9.10 9.61 8.99 8.78 8.57 8.02
RQ,, 1097 | 1160 | 1215 | 1133 | 1107 | 10.79 9.46
BQ, 71897 | 72279 | 74667 | 73523 | 73054 | 72539 | 90004
BQ, 78325 | 78877 | 82158 | 80654 | 80028 | 79340 | 105327
50 SQu 5323 5601 6173 | 3376 | 5453 5265 6035
SQ, 7397 7824 8699 | 7790 | 7600 | 7308 8366
RQ, 7.40 775 8.27 7.58 7.46 7.26 6.71
RQ, 9.44 9.92 1059 | 9.66 9.50 9.21 7.94
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Fig.6.3 SMSE of quantile estimates, RQ,, varying with the sample size, n, for
the Pearson Type III distribution.
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6.7 Analysis and Discussion

6.7.1 Background of Development of SPP Formula

Recalling Chapters 2 and 3, high probabilities of long-term persistence exist in the peak flow
series observed in Canada and China. And straight lines appeared in the family of curves in
Chapter 5 indicate an existence of scale-invariance structure. These statistical features should
be incorporated into flood risk analysis.

Classical probability plotting position formulas are derived from independent random
variables Q,, Q;, ..., Q, with identical pdf, f(q). The two procedures for theoretically
developing plotting position formulas are based on this iid assumption. The first is based
on the distribution of the probability of order statistics Yy, shown in Eq. 6.9 because of
iid assumption. The second procedure is based on the distribution of Q,, using Eq.6.8,
it also involves the same assumption. Even through order statistics Q,,, are necessarily

bl of the i lity relation among them (David, 1984), but the variables

Q,, Q,, ..., Q, must be statistically independent and identically distributed in the basic
assumptions, otherwise, plotting position formulas cannot be derived from these two
procedures.

However, acccrding to classical iid assumption, some mathematical statisticians
consider to take short-term dependence of random variables into account (David, 1984),
but long-term correlation structure involved in random variables Q,, Q,, ..., Q,, has not

been considered yet in the plotting position development. Thus, an empirical plotting

178



position formula that takes scaling behavior into account is needed to be developed.

6.7.2 Basis of SPP Formula
As Wila et al. (1962) indicated,

“if the sample is large enough, the sample order statistics when plotted against

the corresponding iles of the ical distribution will tend to yield a
set of approximately collinear points, clustering about a line of slope 1
passing through the origin.”

For les of inter iate size, the ion of order statistics has the same

linear relationship with cor ding quantiles. These are the sources most theoretical

plotting position formulas are derived from.

Scaling plotting position formula is, in fact, related to this concept. P; is a random
variable, a probability of exceedences according to corresponding the ranked threshold,
QSm) » in a family of curves. These ranked threshold, Qs and ranked P could serve as
order statistics and corresponding empirical exceedence probability. If iid assumption is
made, the same procedure to derived theoretical plotting position formulas could be
processed.

However, SPP is not only agreeing with iid assumption, but, additionally, takes
scaling behavior into account.

A family of curves well exhibits peak flow correlation structure across scales. SPP
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formula is based on this, the information about scale-invariance including long-term
persistence of peak flows could be taken into account.

Suppose the probability of exccedence of peak flows, Ps ,is a random variable, it is
related to the variable Qs and & , where Qs and £ are the exceedence level expressed as a

threshold and time scale, ively. The exp ion of d of peak flows, E(Ps)

can be estimated using a statistical model.

For a given time scale &=1 year, expected probability of exceedence P; should be
an empirical plotting position, and corresponding formula is a formula of probability
plotting position. Thus, SPP is an approximation of E(Y ;) shown in Egs. B.9 and B.10
of Appendix B, where E(Y,y,) is the expectation of Y g,.

However, scaling behaviour here is already taken into account in the SPP procedure.

and a more

Itis, pected that SPP provided an improved capacity of

rational and comprehensive way of estimating extreme flood events from the underlying

systems. The development of SPP formula is thus reasonable and reliable.

6.7.3 Comparison of Classical Formulas

The SPP has been demonstrated to be a good estimator in terms of efficiency and
robustness using Monte Carlo experiments. Additionaily, the SPP has the property that it
is distribution free even though an assumption that Pgpp is normally distributed which has

been made for a linear model.
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6.7.4 Role of SPP Formula in Flood Risk Analysis

In recent years, scale-invariant (fractal) statistics are being utilised in statistics as a new
term. Turcotte and Greene (1993) (hereinafter referred to as T & G) have proposed a
scale-invariant approach to flood risk analysis. T & G hypothesised a power law scaling
of peak annual discharge and recurrence interval, i.e. the underlying physical processes
are sufficiently scale invariant over time scales from one to one hundred years. T & G
argued that this hypothesis provided a basis for the application of scale-invariant statistics.
The results of their proposal showed that the fractal prediction parallels that of the log
Gumbel distribution. T & G also stated that the Hurst exponent cannot be used for flood
frequency prediction.

T & G's proposal at first glance seems to provide a rational fractal analysis in flood
risk estimation. In fact, the basis of the proposed approach appears weak, and is
conceptually flawed, because:

a) Any prediction of floods must be based on an understanding of the behaviour of
observations. T & G did not investigate the character of the temporal scaling
behaviour of floods. They merely hypothesised to “avoid difficulties with annual
variability ™!

b) Mandelbrot (1982) has pointed out that the motivation for assuming scaling must

2

not be misinterpreted, nature is not strictly homogeneous or scaling. It is

incorrect for T & G to assume that the ratio of ten-year peak discharge to the one-
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©)

d)

€)

year peak discharge equals the ratio of the 100-year peak discharge to that of the
10-year peak, since scaling fractals should be limited to an investigated scaling
range. The temporal scaling range of floods must be identified before making
such an assumption.

The equation. N=C,Q™, given by T & G showing the relationship between the

number of N, and correspondi , Q, is a basis of the
proposal, in which the parameters a and C, are estimated from observed data.
Those curves are not a sufficient proof of an existence of slope c alone. If there
should exist more than one slope, the basis of the proposal collapses. Also, most
experiences with flood peaks show that there is no single straight line in a log N
- log Q plotted curve.

T & G’s results showed that the Hurst exponent for all ten stations is virtally
constant within a range of 0.66 to 0.73. This indicates that there is some
persistence inherent in the observed floods. Fractional Brownian noise is a model
which reflects long-term character of time series. T & G's assumption of
fractional Brownian noise should reflect the persistence inherent in the observed

data. T & G claimed that the value of H, obtained from the R/S analysis does not

correlate with the values of H ined from the scale-invariant This

is evil that the scale-invariant dure is both flawed and incomplete.

The proposed method by T & G remains as a conventional statistical rubric based

182



on the assumption that the estimated quantiles by T & G's proposal correlate best
with the log Gumbel. The proposed usage is only 2 method that assumes a linear
relationship between log Q; and log T. The temporal characteristics of the floods

are not taken into account.
Hence, fractal statistics that may be used for risk estimation have not yet been
developed. SPP estimator may yet play an important role in 2 new review of flood risk

analysis.

6.8 Summary
In this chapter, a scaling plotting position formula has been established. It was shown that
the proposed SPP estimator is pertinent both in efficiency or robustness among existing
estimation methods by Monte Carlo experiments. Additionally, a number of discussions
of the properties of SPP formula have been offered. The proposed SPP procedure extracts
more information from underlying systems and takes scaling behaviour into account in
flood frequency analysis and, has an enhanced capacity of prediction over those currently
available.

Additionally, a few interesting points can be made here:

1) Scaling plotting position formula as an empirical plotting position formula has

been developed. It agrees with iid assumption for parent variables and also takes

taking scaling behaviour into account.
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2) A family of curves best describes peak flow correlation structure across scales.
SPP formula is based on this, information about scaling behavior including long-
term persistence of peak flows could be taken into account.

3) Monte Carlo experiments show that SPP quantile estimator is the most efficient

and robust among the compared estimators.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The primary conclusions from this thesis are:

1) A pluralistic view of the correlation structure of peak flows through multiple

2

)

measurement scales was made and a physical ion of the natural by

of peak flow structure provided a stronger basis for a deeper understanding of the

ity of hydrologic ph in nature.
The Hurst’s K and the lag-one autocorrelation coefficient r(1), which measure the
long- and short-term behaviours of annual peak flow series respectively, are
significantly correlated and dependent based on parametric and non-parametric
hypothesis tests. It indicates that the long-term behaviour of annual peak flows

is related to the short-term behaviour statistically.

3) The dependence between Hurst’s K and r(1) provides a strong basis to further
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investigate the statistical i i the long-term i and short-

term independence. From this, the sampling distribution of Hurst's K was

to be as the sampling distribution of Hurst’s K for a given

r(1).

4) Based on probability theory and empirical statistical results, a probabilistic
approach for quantitatively dealing with long-term and short-term behaviour of
annual peak flow series was developed. In this approach,

a) an approximation for the sampling distribution of Hurst’s K for a given r(1)
was designed and estimated using Monte Carlo experiments;

b) an estimate of the probability for serially independent population, such as
the annual peak flow series, to exhibit long-term persistence was provided
and estimated;

c) empirical percentage points proposed by Lye and Lin (1994) for testing
long-term persistence was revised to take short-term behaviour into account.

The results of the proposed approach demonstrate that:

a) thep d esti for population P(K=k,) and its-distribution on the

R1 axis assure that long-term persistence and short-term independence can
be quantitatively estimated;

b) the magnitudes of the probability P((K=kg) N (b< R1<a)) for each region
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of R1 imply that the simultaneous occurrence of long-term persistence and

short-term independence may not be an uncommon phenomenon.

5) Since Hurst’s K and lag-one autocorrelation coefficient r(1) are considered as

6

7

8

<

fo)

measurements at individual scales, i.e. scale at n and one respectively, fractal
geometry, which makes measurement at scale, is necessary to be used to

investigate the feature of peak flow structure.

The proposed family of probability-scale-threshold curves, which transforms
observed peak flows to a family of curves, well describe the scaling behaviour
of peak flows and represent corresponding inter-scale correlation structure of

peak flows for a given watershed.

A straight line for a certain range £ of a family of In P; - In & - Qs curves
implies that the occurrence of exceedances of flows displays invariance within
the corresponding scaling range. In other words, a correlation across scales

exists for the peak flow points on the time axis.

A scaling plotting position formula in which scaling feature of peak flows is

taken into account was developed and its quantile estimator is more efficient
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and robust to current esti of flood

7.2 Recommendations for Further Studies

A number of suggestions are offered for further studies:

1) While the proposed probabilistic approach is a method for quantitatively dealing

2

=

with long- and short-term behaviour of annual peak flow series, the population
distribution this study investigated is limited to the normal distribution. Even

though the Kolmogorov-Smirnov hypothesis test shows that high probabilities of

existence of long-term persi: are involved in normal independent distributed
data may be suitable for the non-normal independent series, further studies and
investigation of this issue would enhance the attractiveness of probabilistic

approach.

According to Hurst’s findings (1951, 1954), long-term persistence is related to
the order of occurrence. We cannot simply resample from the individual
observations, because this would destroy the correlation that we are trying to
capture. Design of resampling methods such as block bootstrap or suitable

jackknife which can preserve long-term correlation and short-term
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3

4

<

=

independence is desirable in order to i the of si ion:

Hurst has shown that for many of the natural series he investigated, the Hurst
coefficient, h, remains larger than theoretical value of 0.5 even for large
sample size n. The failure of natural series to accord with theory is termed the
“Hurst phenomenon. ™ The proposed probabilistic approach has quantitatively
estimated the probability P(K>k,) for a theoretical independent series. How
about the value of P(K>k,) for a natural series? What is the difference between
the theoretical and observed series? Further explanation of the Hurst

phenomenon would be desirable.

We have looked closely at peak flow serial structure at individual scales one
and n, and also measured the complexity of peak flows across scales. The

correlation among these might be i ing and worth further

studying for peak flow point processes.
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Chapter 8

Statements of Originality

To the best of the author’s knowledge, the following original contributions were made as
a result of this study.

1) A set of new approaches, descriptions, and modelling techniques are developed
in dealing with long- and short-term behaviour of annual peak flow series based
on classical probability and statistical theories. In particular,

a) sampling distribution of Hurst’s K expressed as a sampling distribution of
Hurst’s K for a given r(1) was proposed for a short-term independent
series;

b) Monte Carlo simulations to produce the sampling distribution of Hurst’s K
for a given r(1) were designed;

¢) more accurate empirical percentage points for testing long-term persistence
were produced;

d) an approach of quantitatively describing long-term correlation rooted in
an independent series was provided;

€) a quantitative descriptor for long-term persistence, P(K>k,), was defined
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and proposed. The calculated results provided a means of determining

whether long-term dep exists in an indep time series; and
f) the conclusion that the simull occurrence of long-term persistence
and short-term indep is not an l in annual

peak flows as well as in normally independent series.

2) A look at the serial correlation structure of peak flows from a fractal view
provided a family of curves In Ps - In§ - Qs which provided a fresh way of
understanding and describing the serial structure of natural peak flows. It was
shown that:

a) observed peak flow points can be transformed to a family of curves
describing the distributions of peak flow points along time axis that
classical methods are unable to identify;

b) the family of curves is expressed as the relationship between various
time scales and probabilities of peak flow occurrences. It explores
scaling behaviour of peak flows showing natural behaviour, such as the
natural cycles inherent in the peak flow series in which it resides;

c) the occurrence of peak flows in the time axis has a distribution
which differs from an independent Poisson distribution for most time

intervals.
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3) Based on an increased understanding of the natural behaviour of peak flows,
a scaling plotting position formula for flood quantile estimation was proposed
in which the corresponding quantile estimator has important statistic
characteristics:

a) it takes the correlation structure of peak flows into account in flood risk
analysis;

b) it is efficient among existing quantile estimators;

c) because it follows iid assumption in flood frequency analysis and
considers the long-term correlation structure of peak flows, it has an

enhanced capacity of estimation over those currently available.
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Appendix A

The Hurst Phenomenon

The concept of Hurst coefficient as a measure of long-term persistence is introduced as
follows.

Based on studying the design capacity of reservoirs, H.E. Hurst (1951) observed
an unexpected behaviour of natural time series, which has become known as the Hurst
phenomenon.

Let x,,X;_ ..., X, be a sequence of annual inflows into a reservoir over n years. Let

the mean flow in the n year period be denoted by

The accumulated departure of the flows from the mean flow after y years is
y -_—
Sy=X(xi-xa)

=l

In the last period, S,=0. The range of the cumulative departures from the mean is
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R,=max (§,) - min (§,) =Syu-Sn

where Sy and S, are the largest and smallest values in the set (S,).
Hurst studied how the average value of R, changes as a function of n and found
that the expected value of R, divided by the standard deviation S, of the n annual

inflows is proportional to n raised to some power h.

E(%) - @Aa.n

The exponent h which varies between O and 1 is called the Hurst statistic. The
ratio R, / S, is called the rescaled range.

In addition to river discharges, Hurst investigated a host of other natural
geophysical time series ranging from tree rings to clay varves. All in all, 75 different
phenomenon were used. The total number of series was close to 900 and they vary in
length from 40 to 2000 years.

Eq.A.1 implies that the relationship between log E(R/S) and log n is linear with

slope h. To determine h, Hurst defined

alz

—_/hx
(€ z)
where K represents an estimate of h for each of the 900 time series he investigated.
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Over all phenomena Hurst’s K was found to have an average value of 0.73 with a
standard deviation of 0.08. Asymptotically, for independent normal random variables,

Hurst (1956) and Feller (1951) showed that

E(R.) = (3Jicni

In other words, h —0.5 as n becomes large. But Hurst also made the far reaching
discovery that for many of the natural series he investigated, the slope h remains much
steeper than 0.5 even for large values of n. The failure of natural series to accord with
theory is termed the “Hurst phenomenon”. This so called phenomenon generated
considerable interest among hydrologists and mathematicians alike since it indicates a
puzzling long term “memory” or “persistence” in the random process that generated
the series.

Conversely, anti-persistent processes, that is h<0.5, on the other hand, tend to
show a decrease in values following previous increases, and show increases following
previous decreases. The record of an anti-persistent process, such as the h=0.1 curve,
appears very “noisy”. They have local noise of the same order of magnitude as the
total excursions of the record.

In the literature, there are three main lines of thought explaining the Hurst

phenomenon:
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D

2)

3)

The Hurst ph isa itory iour. The argument is that our

series are simply not long enough to test the steady-state behaviour of R,

which ing to the is the sq t law. This period of

transition can be by Mark ive models. On the basis

of a very long time series, Mandelbrot and Wallis (1968) effectively argue

against this explanation.

The Hurst pt is due to i ities in the underlying mean of
the process. This argument claims that a low-frequency, slowly time-varying

mean explains the Hurst behaviour (Klemes, 1974; Boes and Salas, 1978).

The Hurst p is due to stationary with very large memory.

That is, stationary processes that have correlation functions that decay very

slowly in time, much slower that Markov-G: i ive p

In the limit, this argument claims infinite memory for natural processes.
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Appendix B
Derivation of Plotting Position of Formulas

As an example to show the basic concepts of plotting position formulas of Group I,
Weibull (1939) formula is derived as following:

If the random variables X,,X,, ..., X, are arranged in the order of magnitude as

X2 X 22X,

m)

Xm are called the m® order statistic (i=1,2, ...,n). X; are assumed to be
statistically independent and identically distributed with probability density function,
f(x), and cumulative distribution function, F(x). Then the probability density function of

the m™ order statistic X, is given by

g.(x)=m( :l)f (0= FI™ F ("™ ®B.1)

Let Y(m) be a function of Xy, in the form,

¥y =1-F(Xny) ®.2)
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where F has the same meaning as above, 0 <Y(m) <1 due to the fact that 0 < F(x) <I.

Hence the probability density function of the random variable Y, h,(y), should be

B, () = 8. () /|dy I ®3)
where
2 La-ren=-LA- s ®9
ie
h)=m(" ) f - FOI F @™ —— =m(")y™ - B3
m 7@ Mm

where 0 <y < |, m= I~n. In terms of the beta function, because

B(m,n—m+1) =[[(m)[ (n—m+1)]/[[(n+1)] (B.6)
and
B(mn—-m+1)= _I[z"" (1-2)""dz B.7)
o
then, Eq.B.5 is reduced as
h ) =D A=) 1[B(m,n—m+1)] ’ B.8)

The expectation of Y(m) is

EY,]= [ yh(y)dy ®.9)
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El¥)]1= 1/ B(m,n—m+1)[ y" (- y)""dy (B.10)
s

Because of Egs. B.6 and B.7, E(Y(m) should be
EY, 1=B(m+Ln-m+1)/Bmn-m+1)=m/(n+1) (B.11)

Thus, we obtain the Weibull formula which is distribution-free that is widely used in
engineering hydrology.

Based on the concept of expectation E(X(m)) of the order statistic, Weibull formula
can be also derived using Eq.B.1. In this case, probability density function of parent
population, the uniform distribution, should be taken into consideration.

Hence Weibull formula can be derived from two proced The first p dure is

based on the Y(m), the distribution of the probability of order statistics, and is to be
distribution free of X. The second is based on the distribution of X(m) and related to the

uniform distribution.
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