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Abstract

Within the multidisciplinary field of geophysics, seismology is a branch that

accounts for the generation and propagation of vibrations within the Earth,

otherwise referred to as seismic waves. To study the mechanical properties of these

waves, seismologists model the Earth’s subsurface as a continuous elastic medium.

Such an approximation facilitates the interpretation of physical observations within

a mathematical framework, which can be approached either as forward or inverse

problem. To that end, this dissertation is comprised of two forward problems and

one inverse problem.

From a forward perspective, theoretical models are proposed based on a priori

assumptions of mechanical properties of the subsurface, which can be quantified as

changes in velocity with location (inhomogeneity) or direction (anisotropy). Two

chapters of this dissertation reside within this context and are applied to

homogeneous anisotropic media. In the first of these chapter, we determine the

conditions for elliptical roots of the Christo!el equation in media that are the result

of the Backus average. Within these conditions, we demonstrate that the slowness

surfaces are nondetached. In the second chapter, we present a novel formulation for

the purpose of forward modelling traveltimes. Through the Taylor expansion along

vertical rays in a horizontally stratified Earth model, we obtain a homogeneous

transversely isotropic medium within which the traveltimes are similar to the

Fermat traveltimes of its constituent layers.

From an inverse perspective, the parameters of the theoretical models are estimated

so as to provide an agreement with physical observations. In this dissertation, one

chapter resides within this context, where we perform an inversion on traveltime

measurements acquired from a vertical seismic profile, otherwise referred to as field

data. We implement a derivative-free approach to minimize the residual sum of
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squares between the measurements and the model. Since field data are not

necessarily complete and can be subject to measurement errors, we conduct a

simulation study on synthetically generated traveltimes to assess the accuracy of our

estimates. Then, we apply our approach to the field data to estimate the

inhomogeneity and anisotropy of the subsurface.
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Preface

We’ve all heard it before: “So, when do you finish your Ph.D.?” It’s a benign question

that well-intentioned friends and family members pathologically pose to their resident

doctoral candidates. If by some circumstance you’ve managed to set eyes on this

preface, it’s quite likely that you have already been through these trials, obtained your

doctorate, and are now reminiscing on those days when you were on the receiving end

of this question.1 You might recall that your response varied from week to week, often

depending on: how many times you’ve been recently asked, how much sleep you’ve

been getting, whether or not you’ve had any exposure to sunlight as of late (the list

goes ever on). . . In all seriousness, however, your response ultimately depended on

how close you felt you were to finishing that dissertation.

Admittedly, anyone that has embarked down this path and completed the task would

know that you never actually finish. We—curious, perfectionist, academic types—

are a”icted by an internal conviction (or, at times, compulsion) to continually improve

upon our work and, in so doing, we believe that we can promote self-growth. This

a”iction forces us to grapple with our inner dialogue: “Maybe you should clear up that

one i!y explanation with a bit more elaboration. . . Do you really think the examiners

won’t ask you that on defence day?”; “How about touching up just a little bit more

that last figure you finished. . .What’s another hour at this point?”; “Oh, and do you

remember that one assumption we made a year ago? Yeah, maybe you should redo

all of your calculations for the tenth time, just in case there’s a glitch. . . ”

Thankfully, our doctoral supervisor is often there to remind us that it’s not only okay

to quiet that voice, but it’s entirely necessary. In the words of my supervisor, Dr.

1If you’re that friend or family member who decided to follow up and want to give reading this
document the ol’ college try, well, kudos to you—I hope you have a sweet spot for mathematical
modelling (or me)!
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Michael A. Slawinski, “at some point, you have to let it go” (and hope it’ll be enough).

Well, for those of you that have been with me as I’ve walked along this path, rest

assured: I’ve finally decided to let it go—truly, I hope it will be enough.

Theodore Stanoev

St. John’s, NL, Canada

October 2024
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General summary

The focus of this dissertation is on mathematical modelling and parameter

estimation, using numerical optimization, applied to a geophysical setting within the

domain of seismology. In particular, we assume that the Earth’s subsurface can be

modelled as a series of thin horizontally stratified layers. The properties of each

layer a!ect the macroscopic behaviour of a seismic wave travelling therein. With the

aid of a mathematical model, we replace large portions of the subsurface that have

similar properties with homogenized sections, whose averaged macroscopic

properties are determined by their constituent layers. Within this context, we study

the mathematical properties of the homogenized media, the traveltimes along the

rays of the seismic waves therein, and the estimation of parameter values to ensure

an agreement between a model and data measurements.

The main chapters of the dissertation are based on three research projects. In the

first, we conduct a theoretical investigation to determine the necessary conditions for

a specific type of wavefront to arise in a homogenized medium that is the result of a

well-known seismological average. In the second, we formulate a novel mathematical

model for which the traveltimes in the homogenized medium are similar to those

of its constituents. In the third, we estimate the parameter values using numerical

optimization to account for measured traveltimes acquired from a vertical seismic

profile.
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Chapter 1

Introduction

Throughout this dissertation, we focus on the mathematical modelling and

parameter estimation of seismic media. In Section 1.1, we provide a general

overview of the dissertation, with a description of the modelling set up and

techniques used for homogenization and parameter estimation. In Section 1.2, we

provide a chapter-by-chapter outline of the dissertation; we include a separate

literature review for each chapter.

1.1 General overview

This dissertation is built upon physical concepts, expressed in a mathematical

language, and is applied, through computational techniques, to seismology. A key

motivation for the advancement of theoretical seismology is to bridge the gap

between mathematical analogies that allow us to study physical phenomena and

their material properties. In other words, we use mathematical analogies to model

responses of the Earth expressed by seismic data.

To that e!ect, we use mathematical models to study the homogenization of

inhomogeneous media and use numerical optimization to estimate the parameter

values of these models to account for measured traveltimes along seismic rays

therein. The advantages of homogenization are—at least— two-fold. On the one

hand, with regard to forward modelling, homogenization can provide closed-form

expressions that permit simplified raytracing and traveltime expressions related to

the seismic phenomena. On the other, with regard to inverse modelling, the reduced
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number of model parameters required to adequately model the physical phenomena

lends itself to investigations regarding parameter estimation.

The process of replacing portions of heterogenous media with homogeneous sections

is known as homogenization or seismic upscaling (e.g., Gold et al.,

2000)— throughout this dissertation, we refer to the process by the former term. To

facilitate homogenization, we model inhomogeneous media by a series of thin

horizontally stratified Earth layers. The elastic properties of each thin layer,

denoted by homogeneous Hookean solids of varying symmetry classes, determine the

behaviour of seismic wave propagation within the model. We restrict our attention

to down-going long-wavelength seismic waves and assume that the layer properties

vary in a gradual manner. As a consequence, many thin layers are encompassed

within the seismic wave and their microscopic properties a!ect wave propagation at

a macroscopic level. In other words, within the context of long wavelengths, we may

average a section of stratified Earth layers by a single equivalent medium.

In general, not all homogenizations are the same and depend greatly upon the

underlying assumptions of the formulation. Herein, we consider three mathematical

formulations of homogenizations. The first is the so-called Backus average (Backus,

1962), which replaces a series of layers by a single (approximately) equivalent

medium that is said to be “long-wave equivalent” to the original. The second is a

novel Taylor series approximation of traveltimes about the vertical axis that replaces

a series of layers by a single approximate medium, wherein the traveltimes are

similar to the Fermat traveltimes within its constituent layers. The third is the

traveltime model by Slawinski et al. (2004) that accounts for a linear increase in

velocity with depth and anisotropy that is the result of an elliptical velocity

dependence. We refer to the media obtained from these homogenizations as Backus,

approximate, and abω media, respectively. They are the background models used in

this dissertation. Within the context of these media, we use the homogenizations as

background models through which we investigate aspects of the subsurface. We do

so from a forward and inverse perspective, with each perspective constituting one of

the two parts that comprise this dissertation.

Residing within the framework of a mathematical model, on the one hand, we derive

the conditions to observe a specific phenomenon to occur within a given model and,

on the other, design a new model subject to specific constraints. In both cases, we
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analyze the outputs of a model based on specified inputs, hence, a forward

perspective. For instance, in Chapter 3, we investigate slowness surfaces in

transversely isotropic (TI) media. The motivation of this chapter is to assess the

claim that in TI media that are the result of the Backus average applied to isotropic

layers, which is the first homogenization that we consider, the qP wavefront is never

ellipsoidal (Helbig, 1983). While this statement likely holds in most practical

settings that pertain to seismology, we revisit the so-called Christo!el equations,

which govern the existence of seismic waves within elastic media, to not only derive

the necessary conditions for a counterexample, but also to provide a numerical

example as a demonstration. In Chapter 4, we formulate the novel approximate

medium, which is the second homogenization that we consider, for the purpose of

forward modelling Fermat traveltimes. The motivation of this chapter is to devise a

model that is consistent with a larger mathematical framework while subjected to a

constraint. As it pertains to seismology, the homogenization is a tool through which

the traveltimes of Backus media can be cross examined. Likewise, it can replace

sections of the subsurface within a larger multilayer structure.

Residing within a given set of data, on the one hand, we estimate the parameters of

a given model that improve the agreement between data and model and, on the

other, choose the most appropriate to represent the data given a set of model

candidates. In both cases, we analyze a model and its agreement with the data,

hence, an inverse perspective. In Chapter 5, we extend the formulation of Slawinski

et al. (2004) to account for a multilayer application of the abω traveltime model to a

set of vertical seismic profile (VSP) traveltime measurements. The motivation of

this chapter is to estimate the model-parameter values in order to make inferences of

the properties of the subsurface. To that e!ect, we restrict our attention to the

Nelder-Mead algorithm, which is an unconstrained, derivative-free method that only

uses function evaluations (Nelder and Mead, 1965). We perform the optimization

through the reduction of the residual sum of squares (RSS), which ensures an

agreement between the measured and modelled traveltimes. First, we devise a

simulation study to assess the extent to which measurement error a!ects the

reliability of the estimation. For that purpose, we use simulated traveltimes,

generated with known parameter values, and several noise profiles. Then, with an

understanding of the accuracy of the approach, we apply the optimization to the

actual VSP measurements.
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In summary, this dissertation is focused on using mathematical modelling and

parameter estimation, using numerical optimization, to study homogenizations of

seismic media and the traveltimes therein. We rely on the framework of

mathematics to answer questions of: i) forward modelling, concerning slowness

surfaces and approximate-traveltime homogenizations, and ii) inverse modelling,

concerning parameter estimation and model selection as it pertains to a given data

set. Together the two modelling perspectives permit investigations that may be

conducted in seismic media.

1.2 Dissertation outline

This dissertation is written in a traditional format and is based on the results of four

research projects. In accordance with Memorial University of Newfoundland

regulations, the presentation of the research resembles that of a “proto-book” that

includes this introduction, four chapters, and a conclusion; the remaining pages

constitute the front and back matter, the latter of which contains two appendices.

Each portion of this dissertation is written in a consistent writing style and is

focused on the common theme of mathematical modelling and parameter

estimation, using numerical optimization, in the context of seismic media. Now, let

us outline the four chapters of the main text.

In Chapter 2, we provide the essential background for the mathematical theories

that we use within this dissertation. We introduce balance equations that are based

on the first principles of continuum mechanics. Then, we demonstrate aspects of

the derivation of seismic ray theory, with a particular focus on the assumptions of

the linearized stress-strain relationship, plane-wave propagation, and high-frequency

approximation.

In Chapter 3, we consider roots of the Christo!el equation for seismic waves in TI

media. We determine the conditions for elliptical roots within Backus media and

demonstrate our findings with a numerical example. Also, as a result of our

investigation, we provide a qualifier for the ellipticity condition of Thomsen (1986)

and provide illustrative examples to that e!ect.

In Chapter 4, we formulate a novel approximate medium within which the

traveltimes are similar to the Fermat traveltimes of its constituent layers. We
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perform a Taylor series expansion of the Fermat traveltimes about the vertical axis

and derive formulæ for the elasticity parameters to ensure their similarity with their

counterparts in the homogenized medium. We present numerical examples within

isotropic and TI approximate media along with a comparison of the traveltimes

therein to other homogenized media, including the Backus medium.

In Chapter 5, we apply the traveltime model of Slawinski et al. (2004) to

accommodate VSP traveltime measurements in a multilayer setting. To ensure an

agreement between measured and modelled traveltimes, we reduce the RSS with

numerical optimization. We conduct a simulation study to assess the reliability of

the parameter estimation for simulated traveltimes, generated with known

model-parameter values. We apply the optimization, using a multistart approach, to

various velocity models under the presence of simulated noise profiles. With an

understanding of the accuracy of the approach, we proceed with the estimation for

the measured VSP traveltimes and interpret our results.

Additionally, we include an appendix that contains supplementary material to the

main text.
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Chapter 2

Theoretical background

In this dissertation, our purpose is to gain insight into the structure of the Earth’s

subsurface through the propagation of seismic waves. To facilitate this purpose, we

require a mathematical framework to characterize the subsurface and quantify waves

propagating therein. This framework is based on several foundational principles and

simplifying approximations, which we overview as follows.

From the onset, we require continuum mechanics for the fundamental balance

principles that apply to any material and must be satisfied at all times. To apply

these principles to a seismological context, we apply constitutive equations, based on

Hooke’s Law, that govern the material properties of a linearized elastic medium.

Using this medium as the background model for the subsurface, we derive the

elastodynamic equation, which quantifies the propagation of a seismic disturbance in

such a medium. We proceed with a ray theory approach that is based on a

high-frequency approximation of the elastodynamic equation. Finally, the resulting

mathematical equations permit the computation of geometric raypaths and the

associated traveltime along them.

In this chapter, we begin with a high-level seismological overview as well as provide

commentary on the mathematical notation used in this dissertation. Then, we proceed

to discuss the details of the aforementioned concepts. We provide references to the

literature where applicable.
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2.1 Seismological setting

Throughout this dissertation, we use a common background model that consists of

series of horizontally stratified Earth layers. The elastic properties of each layer are

determined by homogeneous Hookean solids. These solids are mathematical analogies

for physical materials that obey Hooke’s law, which amounts to a linearized stress-

strain relationship. The elasticity constants of these solids can belong to a variety

of symmetry classes and they influence the propagation of seismic waves, which is

determined by the elastic wave equation, otherwise referred to as the elastodynamic

equation.

An important aspect of seismic wave propagation is the velocity of the wave, which

can vary depending on the direction of its travel. This variation is referred to as

seismic anisotropy and it can be produced by several factors within the subsurface:

in particular, oriented cracks or pores, layering, or preferential alignment of

constituent materials. In many cases, all three sources simultaneously contribute to

the development of anisotropy (Cholach and Schmitt, 2003).

In Chapters 3 and 4, we consider homogenizations that belong to the symmetry class

of transverse isotropy (TI), which involves elastic properties that are the same in any

direction perpendicular to a symmetry axis (Sheri!, 2002, p. 365). The purpose of

these homogenizations is to replace a series of layers within the background model,

wherein the anisotropy is induced by layering. The constituent layers belong to the

symmetry class of isotropy, which involves elastic properties that are the same in all

directions.

In Chapter 5, we do not specify the symmetry classes of constituent layers but,

rather, consider the macroscopic behaviour as a result of their compounding

anisotropic e!ects. We focus on media that are vertically inhomogeneous and

elliptically anisotropic. The former specifies that the seismic velocity depends only

on the depth coordinate, which is an apposite modelling assumption as velocity can

increase with depth due to overburden compaction. The latter specifies that the

horizontal velocity is a scalar multiple of the vertical, which is a suitable manner in

which to model the preferential alignment of materials. Since the velocity in this

type of media depends only on one coordinate, it is sometimes referred to as

one-dimensional (1D).
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Figure 2.1: Rays connecting point sources, S, and receivers, R, at specified depths,
denoted by stars and squares, respectively. Within the cross section, the rays travel
a horizontal distance, x, and a vertical distance, z. On the left, the ray in the
homogeneous layer is a straight line. On the right, the ray bends as a result of
increasing velocities through the series of homogeneous layers (1D velocity model),
whose interfaces are denoted by dotted lines.

In each of these chapters, we approximate the propagation of the wave using seismic

ray theory, which is a well-established procedure based on an asymptotic solution of

the elastodynamic equation (e.g., Červený, 2001, p. 1). This approximation leads to

useful expressions related to plane waves that permit the computation of seismic rays

and the traveltimes associated with them. In particular, these expressions apply to a

plane wave that is generated from a point source, S, from which is possible to trace a

path—known as the raypath—that connects to the location of a known receiver, R.

The ray at an interface obeys Snell’s Law, which governs the angles of reflection and

refraction of with respect to an incident wave. The raypath between any two points

follows Fermat’s principle, which refers to a stationary traveltime between the points.

We present an example of such properties in Figure 2.1.

2.2 Mathematical notation

At times in this dissertation, we adopt the so-called Einstein summation

convention (e.g., Holzapfel, 2000, Section 1), which is useful for representing dot,

cross, and tensor products. For example, any vector u in the three-dimensional

Cartesian coordinate system is represented as

u =
3∑

i=1

ui ei = u1 e1 + u2 e2 + u3 e3, (2.1)
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where each term is the product of a component of vector u along the given direction of

the basis vectors e1, e2, e3. By the summation convention, the notation of vector (2.1)

is shortened as

u = ui ei, (2.2)

where the repeated indices i indicate a summation. The dot product of basis vectors

is expressed by the Kronecker delta, where

ei · ej = εij :=

{
1, if i = j

0, if i ↑= j
. (2.3)

Thus, using notation (2.3), the dot product of two arbitrary vectors is

u · v = (ui ei) · (vj ej) = uivj(ei · ej) = uivjεij = uivi. (2.4)

For the cross product of basis vectors,

ei ↓ ej = ϑijk ek, (2.5)

we require the so-called permutation symbol

ϑijk :=






1, for even permutations of indices, i.e., (123, 231, 312)

→1, for odd permutations, i.e., (132, 321, 213)

0, for repeated indices

. (2.6)

Using notations (2.5) and (2.6), the cross product of two arbitrary vectors is

u↓ v = (ui ei)↓ (vj ej) = uivj(ei ↓ ej) = ϑijkuivj ek. (2.7)

For the tensor product of vectors u and v, it is defined as a second order tensor that

transforms a third vector w into a vector in the direction of u, whereby

(u↔ v)w := (v ·w)u = u (v ·w) . (2.8)

Another purpose of the tensor product is to represent a tensor A, where, for example,

a second-order tensor is

A = Aij ei ↔ ej (2.9)
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and the components are represented as

Aij =




A11 A12 A13

A21 A22 A23

A31 A32 A33



 .

Along with the Einstein summation convention, we require several

identities (e.g., Holzapfel (2000, p. 51) or Gurtin et al. (2010, p. 46)). Specifically,

we consider relationships among the gradient and divergence operators, an arbitrary

scalar quantity, ϖ, and arbitrary vector quantities, u, v:

grad (ϖu) = u↔ gradϖ+ ϖ gradu, (2.10)

div (ϖu) = ϖ divu+ u · gradϖ, (2.11)

div (u↔ v) = (gradu)v + u divv. (2.12)

In identities (2.10)–(2.12), the scalar and vector functions assign a scalar and vector,

respectively, for each point x ↗ R3 within some region of the coordinate system. As

such, it is useful to refer to these functions as scalar, ϖ(x), and vector, u(x), fields;

this applies to tensor fields, A(x), as in expression (2.9).

To express the gradient and divergence of the scalar, vector, and tensor fields, we use

the Nabla operator, ↘, and follow the conventions of e.g. Holzapfel (2000, Section 1.8).

For a scalar field, ϖ(x), the components of the gradient are

gradϖ := ↘ϖ =
ϱ ϖ

ϱxj

ej.

However, for an arbitrary vector or tensor field, the gradient and divergence rely on

the dot and tensor products of ↘ with the given field. Using the tensor product, the

gradient of a vector field, u(x), is

gradu := ↘↔ u =
ϱ ui

ϱxj

ei ↔ ej (2.13)

and the gradient of a tensor field, A(x), is

gradA := ↘↔A =
ϱ Aij

ϱxk

ei ↔ ej ↔ ek.
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Using the dot product, the divergence of a vector field is

divu := ↘ · u =
ϱ ui

ϱxj

ei · ej =
ϱ ui

ϱxi

and the divergence of a tensor field is

divA := ↘ ·A =
ϱ Aij

ϱxk

(ei ↔ ej) · ek =
ϱ Aij

ϱxk

εjk ei =
ϱ Aij

ϱxj

ei.

Also, for the sake of brevity, at times we use a comma notation for partial derivatives,

akin to Misner et al. (1973, Section 2.7),

(≃),i :=
ϱ (≃)
ϱxi

and (≃),ji :=
ϱ2(≃)
ϱxjϱxi

. (2.14)

2.3 Continuum mechanics

To quantify the propagation of seismic waves in the Earth, we rely on the framework of

continuum mechanics as an analogy for the subsurface. By virtue of its nomenclature,

continuum mechanics incorporates the language of mathematics and the notion of a

continuous medium to study physical phenomena. The former depends upon the

mathematical machinery of calculus, linear algebra, and tensors. The latter assumes

a smooth material, whose disregard of discrete, microscopic particles evaluates the

macroscopic response of a given input.

The crux of a continuous medium is that properties averaged over a small element

within the medium are assumed to vary continuously with position. This

idealization is permissible because the lengths characterizing the microscopic

structure are generally much smaller than any lengths arising in the deformation of

the medium (Achenbach, 1973, p. 3). Under such an assumption, continuum

mechanics establishes the governing laws of balance of mass, linear and angular

momentum, which hold for any material. The mechanical behaviour of particular

materials depends on constitutive relations, which complement the conservation laws

and describe the mechanical response to an applied load.

Within continuum mechanics, the configuration of a continuum body refers to an

infinite set of points that are assigned to unique positions embedded in a
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three-dimensional coordinate system. There are two configurations: reference and

current; the former corresponds to an initial time t = 0; the latter corresponds to

the configuration of the body under the action of a motion, otherwise known as a

change in shape, position, or orientation, at a subsequent time t > 0. During the

motion, each point in the reference configuration has a one-to-one correspondence in

the current configuration. The associated coordinate systems for the two

configurations are known as material and spatial, respectively.

2.3.1 Master balance principle

At any given instant in time t, the status of the configuration of a continuum body,

occupying an arbitrary fixed region $ with a surface boundary ϱ$, is summarized by

the so-called master balance principle (Holzapfel, 2000, Section 4.9)

D

Dt

∫

!

f(x, t) dv =

∫

ω!

ω(x, t,n) ds+

∫

!

”(x, t) dv, (2.15)

where x is a position within the region, t is an instant in time, and ds and dv refer to

an infinitesimal element on the surface boundary or within the volume of the region,

respectively. In the following paragraphs, wherein we define quantities1 f , ω, and ”,

we use expression (2.15) to provide the fundamental statements of the balance of mass,

balance of linear momentum, and balance of angular momentum, which apply to any

continuous medium. With these balances, we obtain the so-called Cauchy equations

of motion, which are crucial for the quantification of our seismological studies.

To understand expression (2.15), let us address each term therein. The left-hand side

represents the rate of change per unit volume, dv, of a physical quantity, f , which is

a function of both position, x, and time, t, and could characterize density, linear and

angular momentum, as well as thermodynamical quantities. The di!erential operator

is the material-time derivative, whose expression, by way of the chain rule, is

D f(x, t)

Dt
=

ϱ f(x, t)

ϱt
+

ϱ f(x, t)

ϱx
· ϱ x
ϱt

=
ϱ f(x, t)

ϱt
+ grad f(x, t) · v(x, t), (2.16)

where the dot-product term refers to the change of quantity f associated with a change

1As it pertains to the fundamental statements, quantity f will be defined as a scalar in the case
of the balance of mass, but, in the case of the balances of momentum, it will be defined as a vector
quantity; quantities ω and ! are vector quantities in all three cases.
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of position v(x, t) = ϱx/ϱt of the surrounding points, i.e., a spatial velocity. Also, let

us remark that if f is a vector quantity, Holzapfel (2000, p. 67) indicates that the dot

product should be removed, i.e., the last term in equation (2.16) should be replaced

with gradf(x, t)v(x, t).

It is possible to commute the di!erential and integral operators using Reynolds’

transport theorem,

D

Dt

∫

!

f(x, t) dv =

∫

!

ϱ f(x, t)

ϱt
dv +

∫

ω!

f(x, t)v(x, t) · n ds, (2.17)

where the first term is the rate of change of f within $ and the second term is the flux

of f(x, t)v(x, t) per unit area, ds, along the direction of the outward normal, n, to the

surface at x; a proof of relation (2.17) may be found in Holzapfel (2000, Section 4.2).

Turning to the right-hand side of expression (2.15), the terms describe the action of

the environment upon the region $. In particular, the first term represents the surface

density, ω, per unit area, ds, which is a function of position, time, and the outward

normal to the surface, whereas the second term represents the volume density, ”,

consisting of forces, either external or internal, that apply to the entirety of the body.

An important requirement in the development of the balance laws is the relation

between the surface and volume integrals, which is facilitated by the divergence

theorem. Consulting Gurtin et al. (2010, Section 4.1), for a bounded region $ with

boundary ϱ$, the divergence theorem states

∫

ω!

ϖn ds =

∫

!

gradϖ dv
∫

ω!

v · n ds =

∫

!

divv dv
∫

ω!

Tn ds =

∫

!

divT dv






, (2.18)

where ϖ is a scalar field, v is a vector field, T is a tensor field, and n is the outward

normal to the boundary ϱ$ of region $. Note that expression Tn indicates a matrix

multiplication. Also, we recall from Section 2.2 that the gradient of a scalar field is

gradς and the divergence of a vector, or tensor, field is divv or divT, respectively.
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Now, using the divergence theorem, the second term in relation (2.17) becomes2

∫

ω!

f(x, t)v(x, t) · n ds =

∫

!

div (f(x, t)v(x, t)) dv. (2.19)

However, to apply the divergence theorem to the surface integral in balance (2.15),

we require the so-called Cauchy stress theorem. According to Gurtin et al. (2010,

Section 19.5), a deep result central to all of continuummechanics is Cauchy’s Theorem:

a consequence of balance (2.15) is that there exists a spatial tensor field, #, called

the Cauchy stress tensor, such that

ω(x , t ,n) = #(x , t)n, (2.20)

where we evaluate #(x , t)n by matrix multiplication. As such, using the divergence

theorem, expression (2.18) for tensors, along with expression (2.20), the surface

integral in balance (2.15) becomes

∫

ω!

ω(x , t ,n) ds =

∫

ω!

#(x , t)n ds =

∫

!

div#(x , t) dv. (2.21)

Thus, in view of Reynolds’ transport theorem and volume integrals (2.19) and (2.21)—

as a result of the divergence theorem—the master balance principle (2.15) becomes

∫

!

ϱ f(x, t)

ϱt
dv +

∫

!

div (f(x, t)v(x, t)) dv =

∫

!

div#(x , t) dv +

∫

!

”(x, t) dv,

which can be written as

∫

!


ϱ f(x, t)

ϱt
+ div (f(x, t)v(x, t))→ div#(x , t)→”(x, t)


dv = 0. (2.22)

For equation (2.22) to hold for an arbitrary fixed volume, the integrand must equal

zero. As such, the master balance principle becomes

ϱ f(x, t)

ϱt
+ div (f(x, t)v(x, t)) = div#(x , t) +”(x, t). (2.23)

For the remainder of the section, we shall demonstrate the procedures by which we

2Let us remark that if f is a scalar quantity, f v is a scalar product. However, should f represent
a vector quantity, the product becomes a tensor product f ↔ v (Holzapfel, 2000, p. 176).
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adjust expression (2.23) to obtain the balances of mass, linear and angular momentum.

2.3.2 Balance of mass

To obtain the balance of mass, we set f = φ = φ(x, t), ω = 0, and ” = 0. By

Cauchy’s theorem, in the absence of a surface density, we require # = 0 to satisfy

expression (2.20). As such, balance (2.23) reduces to the so-called balance of mass

ϱ φ

ϱt
+ div (φv) = 0, (2.24)

where, for the sake of brevity, we omit function arguments from numbered expressions

for the remainder of the section. Balance (2.24) states that the change in the amount

of mass in a volume at any instant is balanced by the mass flowing through the surface

that encloses this volume (Slawinski, 2020a, p. 48). Using identity (2.11), we expand

balance (2.24) so that

ϱ φ

ϱt
+ φ(divv) + v · (grad φ) = 0.

Then, by the material-time derivative (2.16), we obtain an alternative expression for

the balance of mass,
D φ

Dt
+ φ(divv) = 0. (2.25)

2.3.3 Balance of linear momentum

Let us recall that the momentum of an object is the product of its mass, m, and

its velocity, v. Likewise, we recall from Newton’s Laws that (Feynman et al., 2011a,

Section 9-1) the time-rate-of-change of the momentum is equal to the force

F =
d

dt
(mv). (2.26)

In continuum mechanics, the force in question is comprised of traction, t = t(x, t,n),

which is a force applied to an oriented surface element, ds, and a (density-scaled)

body force, b = b(x, t), which applies to the entirety of the fixed volume. For the

balance of linear momentum, we set f = φv, ω = t, and ” = φb. By Cauchy’s

theorem, under the e!ect of traction, it is common to set # = ε = ε(x, t), which is

known as Cauchy’s stress tensor, in order to satisfy expression (2.20). As such, we
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write balance (2.23) as

ϱ (φv)

ϱt
+ div ((φv)↔ v)→ divε → φb = 0, (2.27)

where, in accordance with footnote 2 on page 14, we use the tensor product. Using

identities (2.12), (2.10), and then (2.8), the second term in balance (2.27) becomes

div ((φv)↔ v) = (v · (grad φ))v + (φ (gradv))v + (φ (divv))v. (2.28)

With expression (2.28) along with the product rule on the first term of balance (2.27),

we obtain

ϱ φ

ϱt
v + φ

ϱ v

ϱt
+ (v · (grad φ))v + (φ (gradv))v + (φ (divv))v → divε → φb = 0.

Collecting like terms of φ and v,


ϱ φ

ϱt
+ (grad φ) · v + φ (divv)


v + φ


ϱ v

ϱt
+ (gradv)v


→ divε → φb = 0. (2.29)

Then, by the material-time derivative (2.16) of φ, as well as of v, we write

balance (2.29) as


D φ

Dt
+ φ(divv)


v + φ

Dv

Dt
→ divε → φb = 0. (2.30)

However, by the balance of mass (2.25), the first term in expression (2.30) is zero.

Thus, expression (2.30) reduces to

φ
Dv

Dt
= divε + φb, (2.31)

which is also known as Cauchy’s first equation of motion or, in seismological contexts,

the elastodynamic equation; henceforth, we adopt the latter nomenclature. These

equations state that the acceleration of an element within a continuum results from

the application of surface and body forces (Slawinski, 2020a, p. 65).
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2.3.4 Balance of angular momentum

The counterpart to the linear momentum in expression (2.26) is angular momentum

ϑ := r ↓ F =
d

dt
(r ↓ (mv)) , (2.32)

where ϑ is torque and r = r(x) = x→ x0 is a position vector relative to a reference

coordinate x0. In continuum mechanics, for the balance of angular momentum, we

include the cross product within f = r ↓ (φv), ω = r ↓ t, and ” = r ↓ (φb).

Now, in the presence of a cross product, the conversion of the surface integral in

balance (2.15), by means of the divergence theorem, to a volume integral is not given

by conversion (2.21). By contrast, Holzapfel (2000, p. 54) indicates that the divergence

theorem for the cross product u↓An is

∫

ω!

u↓ (An) ds =

∫

!


u↓ (divA) + E : AT


dv , (2.33)

where u and A are a vector and tensor defined in region $ and on its surface ϱ$, with

n as the outward normal to the surface, and An is evaluated by matrix multiplication.

The second term in the volume integrand of expression (2.33) includes the permutation

tensor,

E := ϑijk ei ↔ ej ↔ ek, (2.34)

where ϑijk is the permutation symbol (2.6). The colon represents a double contraction,

akin to the dot product, which indicates a summation over two sets of indices. Thus,

using conversion (2.33) in place of (2.21), the master balance principle (2.23) is

ϱ (r ↓ (φv))

ϱt
+ div ((r ↓ (φv))↔ v) = r ↓ (divε) + E : εT + r ↓ (φb), (2.35)

where, by Cauchy’s theorem t = εn, cross product ω = r ↓ t = r ↓ εn replaces

u↓An in conversion (2.33).

In contrast to the derivation of Cauchy’s first equation of motion, the introduction

of the cross product leads to a more drawn out derivation of the second equation of

motion. For that reason, we relegate the majority of the derivation to Appendix A.1.

As is shown therein, it is possible to reduce master balance principle (2.35) to

0 = E : εT . (2.36)
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Recalling the permutation tensor (2.34) along with ε = ↼mn em ↔ en, the double

contraction of expression (2.34) results in

0 = (ϑijkei ↔ ej ↔ ek) : (↼nm em ↔ en)

= ϑijk↼nm(ei ↔ ej ↔ ek) : (em ↔ en)

= ϑijk↼nmεjmεkn ei

= ϑijk↼kj ei (2.37)

To satisfy (2.37), we require ϑijk↼kj = 0 for i = 1, 2, 3, which, by permutation

symbol (2.6), yields

↼32 → ↼23 = 0, ↼31 → ↼13 = 0, ↼21 → ↼12 = 0. (2.38)

Requirements (2.38) are tantamount to the symmetry of the Cauchy stress tensor,

ε = εT , (2.39)

which is otherwise known as Cauchy’s second equation of motion.

2.4 Linearization

In Section 2.3, we presented the master balance principle of continuum mechanics,

which can be adjusted for the statements of the balances of mass, linear momentum,

and angular momentum. These fundamental balances are used to derive Cauchy’s

equations of motion: the first is the elastodynamic equation, expression (2.31),

which is nonlinear partial di!erential equation that relates an element’s acceleration

within a continuum to the application of surface and body forces to the region it

occupies; the second, expression (2.39), is the symmetry condition of the Cauchy

stress tensor. Thus far, the balances and equations of motion can apply to any

continuous material. However, to apply these principles to seismology, we require

so-called constitutive equations, which are mathematical relations for the

macroscopic stress-strain responses to the application of a load.

For seismology, under the assumptions of a continuous material, it is common to

consider a linear stress-strain relationship. This linearization pertains to the

deformation of the material, which is quantified by the displacement of a collection
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of points between the aforementioned reference and current configurations. In other

words, the constitutive equation for seismology is based on Hooke’s law, which

states that the force in a body that tries to restore the body to its original condition

when it is deformed is proportional to the deformation (Feynman et al., 2011a,

Section 12-2). Hooke’s law is valid for such forces that do not exceed a so-called

proportional limit, beyond which stress is no longer linearly related to strain (e.g.,

Beer et al., 2011, Section 9.4). In this dissertation, we restrict our attention to

materials that adhere to Hooke’s law and we refer to them as Hookean.

In this section, we detail the e!ect of linearization on the stress-strain relation and

the elastodynamic equation.

2.4.1 Infinitesimal strain tensor

Broadly speaking, the linearization of a di!erentiable single-variable scalar function,

f = f(x), refers to the tangent line approximation of f when x is near some x0.

More precisely, we obtain this approximation using the nth-degree Taylor series of f

centered at x0 (e.g., Stewart et al., 2021, Section 11.10),

f(x) ⇐
n∑

i=0

f (i)(x0)

i!
(x→ x0)

i, (2.40)

where f (i)(x0) refers to the ith derivative of f evaluated at x = x0. Hence, for a

linearization, we use Taylor series (2.40) with n = 1 to obtain

f(x) ⇐ f(x0) + f →(x0) (x→ x0). (2.41)

Now, let us consider the linearization for the displacement of two points within a region

of the continuum, x and y = x + dx. The points are separated by an infinitesimal

vector, dx = dxi ei, and the squared distance between them is

ds2 = dx · dx = dx2

1
+ dx2

2
+ dx2

3
. (2.42)

Next, suppose a deformation is applied to the continuum, resulting in a displacement,

u = u(x), of the two points such that the new positions are

x = x+ u(x) and y = y + u(y). (2.43)
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Using approximation (2.41), we apply the linearization to u at y, for the kth

component, which yields

u(y) = u(x+ dx) ⇐

uk +

3∑

ε=k

uk,ε dxε


ek = u(x) + (gradu(x))dx. (2.44)

With linearization (2.44), the vector from x to y is

y → x = y + u(y)→ x→ u(x)

= x+ dx+ u(x+ dx)→ x→ u(x)

⇐ dx+ u(x) + (gradu(x))dx→ u(x)

⇐ dx+ (gradu(x))dx, (2.45)

whose squared length is

ds
2

⇐ (dx+ (gradu(x))dx) · (dx+ (gradu(x))dx) =
3∑

k=1


dxk +

3∑

ε=k

uk,ε dxε

2

.

(2.46)

Expanding summation (2.46) and neglecting terms with the product of two

infinitesimal derivatives of displacement, expression (2.46) reduces to

ds
2

⇐ dx2

1
+ dx2

2
+ dx2

3
+ 2


u1,1dx

2

1
+ u2,2dx

2

2
+ u3,3dx

2

3

+ (u1,2 + u2,1)dx1dx2 + (u1,3 + u3,1)dx1dx3 + (u2,3 + u3,2)dx2dx3


.

(2.47)

Substituting distance (2.42) in place of the first three terms of the right-hand side,

rearranging, and expressing the remaining terms in summation form, we obtain

ds
2

→ ds2 ⇐
3∑

k=1

3∑

ε=1

(uk,ε + uε,k) dxkdxε. (2.48)

The parenthetical term in distance (2.48) is the definition of the strain

tensor, ϖ = ϑkε ek ↔ eε, for infinitesimal displacements (e.g., Slawinski, 2020a,

Section 1.4), where components

ϑkε =
1

2


ϱ uk

ϱxε

+
ϱ uε

ϱxk


(2.49)
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indicate that the strain tensor is symmetric.

2.4.2 Modified elastodynamic equation

For the purposes of seismic wave propagation, we can modify the elastodynamic

equation (2.31) by reducing the material-time derivative and neglecting body forces.

To demonstrate, let us recall that the left-hand side of expression (2.31) is the

product of mass density and the material-time derivative (2.16) of the velocity

associated with a displacement. We expand the latter as

Dv(x, t)

Dt
=

ϱv(x, t)

ϱt
+ (gradv(x, t))v(x, t). (2.50)

For infinitesimal strain, we assume that both the spatial velocity, v(x, t) = ϱx/ϱt,

and its gradient are infinitesimal and, as such, the second term in expression (2.50),

which is their matrix product, can be neglected. In view of expression (2.43), the

temporal derivative of the spatial velocity is equivalent to the second temporal

derivative of displacement. Thus, in the context of infinitesimal strain, material-time

derivative (2.50) reduces to

Dv(x, t)

Dt
⇐ ϱv(x, t)

ϱt
=

ϱ2u(x, t)

ϱt2
. (2.51)

Likewise, as a consequence of infinitesimal strain, the deformations considered are

small and there is no distinction between the aforementioned reference and current

configurations. Hence, the mass density of the continuum no longer depends on time

and becomes solely a function of position, φ = φ(x).

Let us recall that the right-hand side of the elastodynamic equation (2.31) refers

to the application of surface and body forces to the boundary of a region within

the continuum. Under the e!ect of large displacements, the body force can refer to

an earthquake source. In this dissertation, we restrict our attention to infinitesimal

strains and, as such, we do not model wave propagation in the vicinity of a source.

Beyond this vicinity, the only body force that applies to the seismic wave is that of

gravitation, which depends on the period of the wave. It has been shown (e.g., Ud́ıas,

1999, Section 3.5) that the e!ect of gravity on wave propagation is only applicable for

waves with very long periods. As we discuss in Section 2.5, we model wave propagation

under the assumption of the so-called high-frequency approximation. Therefore, we
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omit body forces from further consideration.

In view of these simplifications, the elastodynamic equation (2.31) reduces to

φ(x)
ϱ2u(x, t)

ϱt2
= divε(x, t). (2.52)

2.4.3 Stress-strain relationship

Within the context of the aforementioned linearization, the second-order Cauchy stress

tensor, ε, is related to the second-order strain tensor, ϖ, by the so-called elasticity

tensor

c = cijkε ei ↔ ej ↔ ek ↔ eε, (2.53)

which is of order four. Since each vector has three components, the elasticity tensor

has 34 = 81 components. The linear relastionship, which is valid at every point within

the continuum, is given by the double contraction

ε(x, t) = c(x) : ϖ(x, t). (2.54)

In a similar manner to mass density, the elasticity tensor, within the context of

infinitesimal strains, is solely a function of position, c = c(x). The components of

expression (2.54) are (e.g., Slawinski, 2020a, Section 3.2.2)

↼ij =
3∑

k=1

3∑

ε=1

cijkε ϑkε , i, j = 1, 2, 3 . (2.55)

The elasticity tensor has what are said to be minor and major index symmetries. The

minor symmetries refer to the invariance of order within pairs of indices i, j and k, ↽

whereas the major symmetries refer to the invariance of order of the pairs themselves.

In other words, the index symmetries of the elasticity tensor are

cijkε = cjikε = cijεk = ckεij. (2.56)

The minor index symmetries, relating to the first and second pairs of indices, are

justified by the symmetries of the stress and strain tensors, respectively, which are

given by expressions (2.39) and (2.49).
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The major index symmetry is justified by the existence of the so-called strain-energy

function, W . This function is related to the balance of energy, which is not explicitly

discussed in this dissertation, but can be derived from the master balance

principle (2.15) (Holzapfel, 2000, Table 4.1). Within this context, Feynman et al.

(2011b, Section 39-2) indicates that this function is the work that goes into each

unit volume of distorted material,

W =
1

2

3∑

i=1

3∑

j=1

3∑

k=1

3∑

ε=1

cijkεϑijϑkε. (2.57)

Scalar function (2.57) can be di!erentiated with respect to strain. Akin to the

manner in which a conservative force is obtained by di!erentiating a scalar

potential, di!erentiating (2.57) yields

ϱW

ϱϑij
=

3∑

k=1

3∑

ε=1

cijkεϑkε = ↼ij, i, j = 1, 2, 3, (2.58)

which is stress-strain relationship (2.55). Taking the second derivative, we obtain

ϱ2W

ϱϑkεϱϑij
= cijkε, i, j, k, ↽ = 1, 2, 3. (2.59)

However, by the equality of mixed second-order partial derivatives (e.g., Colley, 2012,

Theorem 4.3), the order of di!erentiation is interchangeable, which justifies the major

symmetry. With regard to the number of independent elasticity tensor components,

the minor symmetries reduce the number from 81 to 36 whereas the major symmetry

further reduces the number to 21.

As a consequence of index symmetries (2.56), stress-strain relationship (2.55) may be

rewritten in matrix form

ε = Cϖ, (2.60)
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with components





ω11

ω22

ω33⇒
2ω23⇒
2ω13⇒
2ω12





=





c1111 c1122 c1133
⇒
2 c1123

⇒
2 c1113

⇒
2 c1112

c1122 c2222 c2233
⇒
2 c2223

⇒
2 c2213

⇒
2 c2212

c1133 c2233 c3333
⇒
2 c3323

⇒
2 c3313

⇒
2 c3312⇒

2 c1123
⇒
2 c2223

⇒
2 c3323 2 c2323 2 c2313 2 c2312⇒

2 c1113
⇒
2 c2213

⇒
2 c3313 2 c2313 2 c1313 2 c1312⇒

2 c1112
⇒
2 c2212

⇒
2 c3312 2 c2312 2 c1312 2 c1212









ε11

ε22

ε33⇒
2 ε23⇒
2 ε13⇒
2 ε12





,

(2.61)

where the
⇒
2 and 2 ensure that the basis of the stress and strain components

remain the same by requiring the Frobenius norm of each basis element to be equal

to unity (Slawinski, 2020b, Section 3.2.4.4).

The existence of strain-energy function (2.57) imposes a physical constraint on the

continuum. Specifically, an element of the continuum can only be deformed if energy

is expended. In the absence of deformation, the continuum remains in its undeformed

state. However, since energy is a positive quantity, the strain energy of an undeformed

continuum is zero. Thus, the strain-energy function must be a positive quantity that

vanishes only in the undeformed state (Slawinski, 2020a, Section 4.3.1). Using matrix

form (2.60), this constraint is

W =
1

2
(Cϖ) · ϖ > 0, for ϖ ↑= 0, (2.62)

which is the statement of the positive definite property of matrix C (e.g., Kolman

and Hill, 2008, p. 311).

2.5 Ray theory

Broadly speaking, the elastodynamic equation (2.52) relates the acceleration of an

element due to nonlinear displacements within a material to the application of forces

to the boundary of the region it occupies. This is a complicated equation to solve as

the material properties can be anisotropic and/or inhomogeneous. The former refers

to material properties that vary with respect to direction at a given position within

the material whereas the latter refers to material properties varying with position.

According to Červený (2001, p. 1), the most common approaches to the

investigation of seismic wavefields in such complex structures are methods based on
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direct numerical solutions of the elastodynamic equation or methods based on its

high-frequency approximation. In this dissertation, we use the latter method, which

gives rise to the so-called seismic ray theory.

Seismic ray theory is an idealized approximation to modelling wave propagation

within media whose material properties vary smoothly and slowly in comparison to

its wavelength. The theory is based on high-frequency approximation to

elastodynamic equation (2.52) within the context of plane waves. We use this

approximation to obtain the so-called eikonal equation, which we use to quantify the

kinematic features of seismic rays such as their trajectories and traveltimes.

2.5.1 Plane waves

A displacement modelled by a plane wave is

u(x, t) = A(x)e↑iϑ(t↑ϖ(x)), (2.63)

where A(x) is the amplitude of the displacement that varies with respect to

position, i is an imaginary number, whose square is →1, ⇀ is the angular frequency

of the wave, t is the temporal variable, and ⇁(x) is the so-called eikonal function,

and t → ⇁(x) is the phase of the wave. We refer to expression (2.63) as plane wave

because its phase satisfies the equation of a plane,

n · (x→ x0) = 0, (2.64)

where x and x0 are two points on a plane with unit normal n. Within this structure,

it is common to parameterize phase expression (2.64) as

n · x = v t, (2.65)

where v is the phase velocity, which corresponds to the velocity of the plane. We

can obtain an alternative parameterization of expression (2.65) using the so-called

slowness vector,

p =
n

v
, (2.66)
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which is oriented in the direction of the unit normal and is scaled by the phase velocity.

The squared magnitude of expression (2.66) is

p2 = p · p =
n
v


·
n
v


=

n · n
v2

=
1

v2
, (2.67)

which states that the squared slowness is the reciprocal of the squared phase velocity.

In view of slowness (2.66), expression (2.65) becomes

p · x = t, (2.68)

Setting the left-hand side of expression (2.68) to be the eikonal function, we have

⇁(x) = p · x (2.69)

and the argument of plane wave (2.63) describes a moving planar wavefront for some t.

Let us acknowledge that for a wave’s wavefront to be planar, it is understood that

the wave’s source is at an infinite distance and—as a result— is not included in the

elastodynamic equation. Strictly speaking, this is a nonphysical situation. However,

if we are interested only in wave propagation and can assume the source is at a large

distance, plane waves are a good simplifying approximation (Ud́ıas, 1999, Section 3.6).

In view of expression (2.69), the gradient of the eikonal function yields a useful

relationship for the slowness vector. Using components, we have

grad⇁(x) =
ϱ

ϱxk

(pi ei · xj ej) ek =
ϱ

ϱxk

(pixjεij) ek = pi
ϱ xi

ϱxk

ek = piεikek = piei = p.

(2.70)

In other words, expression (2.70) states that the gradient of the eikonal function is

the slowness vector, which is expected due to the orthogonality of in-plane vectors

and the planar normal.

2.5.2 High-frequency approximation

Let us recall the elastodynamic equation (2.52), whose components are

φ(x)
ϱ2ui(x, t)

ϱt2
=

3∑

j=1

ϱ ↼ij(x, t)

ϱxj

, i = 1, 2, 3; (2.71)
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Substituting in the linearized stress-strain (2.55) relation, with strain

components (2.49), expression (2.71) becomes

φ
ϱ2ui

ϱt2
=

3∑

j=1

ϱ

ϱxj


3∑

k=1

3∑

ε=1

cijkε
2


ϱ uk

ϱxε

+
ϱ uε

ϱxk


, i = 1, 2, 3,

where, for brevity, we have dropped the function arguments. Distributing the

derivative, we obtain

φ
ϱ2ui

ϱt2
=

1

2

3∑

j=1

3∑

k=1

3∑

ε=1


ϱ cijkε
ϱxj


ϱ uk

ϱxε

+
ϱ uε

ϱxk


+ cijkε


ϱ2uk

ϱxjϱxε

+
ϱ2uε

ϱxjϱxk


,

i = 1, 2, 3.
(2.72)

To evaluate the derivatives in expression (2.72), we use a plane wave (2.63) to model

the displacements. For the temporal derivatives, it is immediate that

ϱu

ϱt
= →i⇀u and

ϱ2u

ϱt2
= →⇀2u. (2.73)

By contrast, the spatial derivatives are more complicated. For the sake of brevity, we

take up again the comma notation for partial derivatives (2.14) for expressions with

many partial derivatives as well as omit function arguments where applicable. Also,

we combine the multiple summations in expression (2.72) as a single summation with

multiple indices, where the index order is preserved.

Using components for arbitrary indices k and ↽, the first derivative is

ϱ uk

ϱxε

= Ak,ε e
↑iϑ(t↑ϖ) + i⇀Ake

↑iϑ(t↑ϖ)⇁,ε = e↑iϑ(t↑ϖ) (Ak,ε + i⇀Ak⇁,ε) (2.74)

and the second derivative, denoted by index j, is

ϱ

ϱxj


ϱ uk

ϱxε


= i⇀e↑iϑ(t↑ϖ)⇁,j (Ak,ε + i⇀Ak⇁,ε) + e↑iϑ(t↑ϖ) (Ak,jε + i⇀Ak,j⇁,ε + i⇀⇁,jε)

= e↑iϑ(t↑ϖ)

Ak,jε + i⇀ (Ak,j⇁,ε + Ak,ε⇁,j + Ak⇁,jε)→ ⇀2Ak⇁,j⇁,ε


.

(2.75)

Analogous expressions for uε,k and uε,jk can be obtained by swapping indices k and ↽
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in expressions (2.74) and (2.75), respectively.

Substituting temporal derivative (2.73) and spatial derivatives (2.74) and (2.75) in

expression (2.72), then cancelling the exponential term from both sides, we obtain

→⇀2φAi =
1

2

∑

j,k,ε


cijkε,j (Ak,ε + i⇀Ak⇁,ε + Aε,k + i⇀Aε⇁,k)

+ cijkε


Ak,jε + i⇀ (Ak,j⇁,ε + Ak,ε⇁,j + Ak⇁,jε)→ ⇀2Ak⇁,j⇁,ε

+ Aε,jk + i⇀ (Aε,j⇁,k + Aε,k⇁,j + Aε⇁,jk)→ ⇀2Aε⇁,j⇁,k


,

i = 1, 2, 3.
(2.76)

Expression (2.76) can be separated into real- and imaginary-valued terms. We use

the real terms to derive the eikonal equation, which we use to derive equations for the

raypaths and traveltimes of individual seismic waves. The imaginary terms are used

to derive the transport equation, which governs the amplitude along a given ray.

In this dissertation, we restrict our attention to eikonal equation only. As such,

considering the real part of expression (2.76), we divide both sides by ⇀2 to obtain

→φAi =
1

2

∑

j,k,ε

cijkε,j
⇀2

(Ak,ε + Aε,k)

+ cijkε


1

⇀2
(Ak,jε + Aε,jk)→ (⇁,j⇁,εAk + ⇁,j⇁,kAε)


, i = 1, 2, 3.

(2.77)

Then, in the limit of frequency, ⇀ ⇑ ⇓, the terms divided by ⇀ tend to zero.

Rearranging the remaining terms in expression (2.77) and undoing the multiple

summation combination, we have

1

2

3∑

j=1

3∑

k=1

3∑

ε=1

(cijkε (⇁,j⇁,εAk + ⇁,j⇁,kAε))→ φAi = 0, i = 1, 2, 3. (2.78)

To simplify expression (2.78), we recall the elasticity-tensor index symmetries (2.56),
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in particular cijkε = cijεk, which yields

3∑

j=1

3∑

k=1

3∑

ε=1

(cijkε⇁,j⇁,εAk)→ φAi = 0, i = 1, 2, 3. (2.79)

Expanding the kth summation for each i, then contracting by the Kronecker delta,

εik, we are able to reduce expression (2.79) to


3∑

j=1

3∑

ε=1

cijkε(x)
ϱ ⇁(x)

ϱxj

ϱ ⇁(x)

ϱxε

→ φ(x)εik


Ai(x) = 0, i, k = 1, 2, 3, (2.80)

where we have undone the comma notation for partial derivatives and reinstated

the function arguments. Expression (2.80) is known as the Christo!el equation and it

constitutes a system of three equations for plane-wave displacement amplitudes A(x).

Let us present the Christo!el equations in matrix form. By gradient (2.70), we can

replace the derivatives of the eikonal function by the slowness vector. Then, we

normalize the components of the matrix using the slownesses, p2 = p · p. With these

adjustments, Christo!el equations (2.80) are


$(x)→ p↑2I


A(x) = 0, (2.81)

where $(x) = %ik ei ↔ ek is the so-called Christo!el matrix, with components

%ik =
3∑

j=1

3∑

ε=1

cijkε(x)

φ(x)

pjpε
p2

, (2.82)

and I = εik ei↔ek is an identity matrix. The Christo!el matrix has several important

properties. First, components (2.82) are symmetric, %ik = %ki, as a consequence of the

elasticity tensor index symmetries (2.56). Second, the Christo!el matrix is positive

definite as a consequence of the positive definiteness of the elasticity tensor (e.g.,

Červený, 2001, p. 23). Third, the Christo!el equations (2.81) are in the form of an

eigenvalue problem, whose nontrivial solution exists if and only if

det

$(x)→ v(x,p)2I


= 0,

where we recall p↑2 = v2 from expression (2.67). Since the Christo!el matrix is
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symmetric, the characteristic equation has only real roots (Anton, 1984, p. 289) and,

since it is positive definite, its eigenvalues are positive, which is verified directly by

taking the dot product with the eigenvalue problem statement. Thus, the factored

form of this polynomial is


p2 → 1

v1(x,p)2


p2 → 1

v2(x,p)2


p2 → 1

v3(x,p)2


= 0, (2.83)

where 1/vi(x,p)2 are the roots of the characteristic polynomial (Slawinski, 2020a,

p. 328) and, in view of Christo!el matrix (2.82), are necessarily a function of position

and the slowness vectors.

Since polynomial (2.83) has three roots, there are three distinct phase velocities that

propagate in an anisotropic medium. The greatest of these corresponds to the so-

called quasi-compressional (quasi-P or qP ) wave. The other two roots correspond to

the quasi-shear (quasi-S1 and quasi-S2 or qS1 and qS2) waves; alternatively, quasi-

shear can be written as qSV and SH, where V corresponds to a vertical shear and

H to a horizontal shear.

Regarding the use of P and S, in isotropic media, characteristic polynomial (2.83)

only has two roots, which gives rise to the P and S waves. The displacement of the

P wave is in the direction of propagation whereas it is perpendicular to them for

S waves (Červený, 2001, Section 2.2.9). This leads to the adjectival distinctions of

compressional and shear, which refers to the displacements of the respective waves.

Since these displacements are not entirely aligned in anisotropic media, it is common

to refer to these three waves with the adjective “quasi”. In Chapter 3, we discuss the

phase velocity of the qP , qSV , and SH waves within the symmetry class of transverse

isotropy.

2.5.3 Eikonal equation

In expression (2.70), we demonstrated that the slowness vector is the gradient of the

so-called eikonal function, namely, p = grad⇁(x). Thus, with respect to ⇁(x), each

root of characteristic polynomial (2.83) is a nonlinear first-order partial di!erential
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equation. In view of expression (2.67), the roots can be written as

3∑

k=1

p2
k
=

1

vi(x,p)2
, i = 1, 2, 3, (2.84)

where pk are the components of the slowness vector. Expression (2.84) is known as

the eikonal equation and it applies to each of the three aforementioned waves.

To solve the eikonal equation, we use the method of characteristics. The purpose of

this method is to recast the partial di!erential equation into a set of ordinary

di!erential equation (ODE) through a change of variables (e.g., Farlow, 1982,

Lesson 27). To demonstrate, we can abbreviate the eikonal equation with the

so-called Hamiltonian function,

H = H(x,p) = constant, (2.85)

whose total di!erential is

dH =
3∑

j=1


ϱH
ϱpj

dpj +
ϱH
ϱxj

dxj


= 0. (2.86)

Notice that expression (2.86) can only be satisfied if

→ dpj
ϱH
ϱxj

 =
dxj
ϱH
ϱpj

 = du, (2.87)

where du is an arbitrary di!erential parameter. Expression (2.87) can be separated

into two derivatives,
dpj
du

= →ϱH
ϱxj

and
dxj

du
=

ϱH
ϱpj

. (2.88)

The utility of du is clear in the context of the derivative of the eikonal function, ⇁(x),

where, by the chain rule and expressions (2.70) and (2.87), we have

d⇁

du
=

3∑

j=1

ϱ ⇁

ϱxj

dxj

du
=

3∑

j=1

pj
ϱH
ϱpj

. (2.89)

Together, derivatives (2.88) and (2.89) comprise the so-called system of characteristic
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equations to partial di!erential equation (2.85). Since these derivatives depend on H,

we can only specify the physical meaning of u—as, for example, a parameter of time

or arclength—upon choosing a parameterization.

In this dissertation, we focus on two parameterizations, H = 0 and H = 1/2, both

of which can be used to obtain raytracing equations in media with di!erent velocity

profiles. For the former, we consider a general parameterization suggested by Červený

(2001, expression (3.1.6)),

H =
1

n






3∑

k=1

p2
k

n

2

→ 1

v(x)n



 = 0, (2.90)

which is valid for n ↑= 0, applies to inhomogeneous isotropic media, and v(x) applies

to any of the three waves. It can be demonstrated that the associated characteristic

system is

dxj

du
= →


3∑

k=1

p2
k

n

2
↑1

pj,
dpj
du

=
1

n

ϱ

ϱxj


1

v(x)n


,

d⇁

du
=

1

v(x)n
. (2.91)

In Chapter 4, we develop an approximate traveltime model based on raytracing

expressions (2.93) within homogeneous media, for which we use n = 1 and set

remove the positional dependence of velocity, i.e., v(x) = v0. Characteristic

system (2.91) becomes

dxj

du
= →v0pj,

dpj
du

= 0,
d⇁

du
=

1

v0
. (2.92)

Since the eikonal function is related to time and d⇁/du results in a reciprocal

measure of velocity, it stands to reason that u is a unit of arclength, s. We can solve

ODEs (2.92) directly through integration, where, using the third as an example, we

obtain ∫
s

s0

d⇁

d↼
d↼ = →

∫
s

s0

1

v0
d↼ =⇔ ⇁(s)→ ⇁(s0) =

s→ s0
v0

,

which yields traveltime, ⇁, as a function of position, s, with a linear dependence on

velocity, v0. In this manner, we obtain solutions for the characteristic system,

xj(s) = x0 + vipj(s→ s0), pj(s) = (pi)0, ⇁(s) = ⇁0 +
s→ s0

v
, (2.93)
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where xj(s0) = x0, pj(s0) = (pi)0, and ⇁(s0) = ⇁0 are initial values. Thus,

solutions (2.93) indicate that, in homogeneous isotropic media, raypaths are straight

lines and the slowness vector, otherwise referred to as a ray parameter, is constant.

For the latter parameterization, we adjust the eikonal equation (2.84) such that the

right-hand side is equal to unity and then set

H =
1

2
=


3

k=1

p2
k


vi(x,p)2

2
. (2.94)

Obtaining the characteristic system for Hamiltonian (2.94) is a more complicated

procedure than for Hamiltonian (2.90) due to the phase velocity dependence on both

position and the slowness vector. This case applies to wave propagation in an

inhomogeneous anisotropic medium, which requires taking into account the elasticity

symmetry class of the medium and obtaining raytracing equations within the

context the Christo!el matrix (e.g., Červený, 2001, Section 3.6). By contrast, we use

the approach of Rogister and Slawinski (2005), which, through several simplifying

approximations, yields closed-form raytracing equations for a velocity profile that

increases linearly with depth and depends elliptically on direction. In Chapter 5, we

develop a model for traveltime inversion based on these raytracing equations.
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Chapter 3

On Christo!el roots for

nondetached slowness surfaces

Author note

The majority of this chapter appears elsewhere in the scientific literature as Bos

et al. (2019a), “On Christo!el roots for nondetached slowness surfaces”, which is a

peer-reviewed article published in Geophysical Prospecting by Len Bos, Michael A.

Slawinski, and Theodore Stanoev. Additionally, the preprint of the accepted article

is Bos et al. (2019b). For further details regarding co-authorship, we refer the reader

to the statement provided on page xi.

3.1 Introductory remarks

Since the studies of Rudzki (1911)1, characterizing the shapes of wavefronts in

anisotropic media has been of interest to seismologists. A wavefront represents

two-dimensional curve (or surface in three-dimensions) connecting points of equal

phase (e.g., Serway and Jewett, 2013, Section 24.3). In equation (2.63), we consider

wavefronts that correspond to a plane wave, whose phase is a function of traveltime.

As such, we consider a wavefront to represent a locus of equal traveltime (Sheri!,

2002, p. 388). From a geometric perspective, a wavefront propagating through such

1Rudzki (1911) was presented to the Academy of Sciences at Cracow in 1911. His work has been
translated with comments by Klaus Helbig and Michael A. Slawinski; it appears as Rudzki (2003).
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a medium will change shape as a result of changes in velocity in di!erent directions

within the medium. The practical aspect of understanding the shapes of wavefront

is that if we select a point on a wavefront and, as it propagates, follow the changes

in the direction of its normal, we have the trajectory of the raypath corresponding

to that point of the wavefront (Ud́ıas, 1999, Section 6.2).

As we discuss in Section 2.5.2, the existence of waves in such media are governed by

the Christo!el equation (2.80), which can be used to obtain the phase velocities of such

waves. To facilitate the characterization of the wavefront shapes, seismologists often

consider the wave’s slowness surface, which is a constant-velocity surface specified by

the reciprocals of the phase velocity (Sheri!, 2002, p. 323). Seismologists consider the

slowness surface because it is related the wavefront by polar reciprocity. In particular,

two curves are polar reciprocals if for each point on the first curve the radius vector

is parallel to the normal of the second, and vice versa (Helbig, 1994, Section 2A.4).

In anisotropic media, a slowness surface is comprised of three sheets, one for each of the

roots of characteristic polynomial (2.83), which is the factorized form of the solubility

condition of the Christo!el equation. Each sheet traces out a closed continuous surface

that is symmetric about the origin. The innermost sheet corresponds to qP waves

as its phase velocity is the greatest and it is always convex whereas the other two

sheets that correspond to the qSV and SH waves can have regions of concavity in

media with strong anisotropy (Červený, 2001, Section 2.2). Typically, the innermost

sheet is completely separated from the outer two; we refer to this scenario as detached

whereas we use nondetached if there is no separation.

From a historical perspective within the foundations of seismology, it has been

assumed that the innermost sheet is never ellipsoidal. Let us provide some context

to this statement. Postma (1955) derived a condition for elliptical velocity

dependence in homogeneous transversely isotropic media that is equivalent to

alternating isotropic layers. This condition was generalized by Berryman (1979) for

“any horizontally stratified, homogeneous material whose constituent layers are

isotropic.” The proof for nonexistence of ellipticity of qP wavefronts in media

resulting from lamellation came from Helbig (1979), in response to Levin (1978).

Shortly thereafter, Helbig (1983, p. 826) stated the following:

(1) the wavefront of qP waves is never an ellipsoid;

(2) the wavefront of qSV waves is never an ellipsoid;
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(3) the wavefront of SH waves is always an oblate ellipsoid.

Lamellation, which is described by Helbig (1979, 1983) as fine layering on a scale small

compared with the wavelength, is tantamount to using the Backus (1962) average;

throughout this chapter, we use the methodology of the latter.

The purpose of this chapter is to demonstrate that the commonly accepted

propositions of Helbig (1983) are incomplete and have restrictions that bear on their

validity. By specifying the conditions under which the propositions do not hold, we

contribute to the foundational understanding of seismology. We present several

examples to demonstrate our findings and, in so doing, confirm the importance of

questioning theoretical issues.

To proceed with our demonstration, we consider the three roots of the solubility

condition of the Christo!el equation, which we refer to as Christo!el roots. These

roots correspond to the wavefront-slowness surfaces of the three waves that propagate

in an anisotropic Hookean solid. Herein, we examine transversely isotropic media

resulting from the Backus average of isotropic layers to which we refer as Backus

media. We derive the conditions under which the spherical-coordinate plots of the

three roots are ellipsoidal; we refer to such roots as elliptical. In accordance with

polar reciprocity, the ellipticity of slownesses is equivalent to ellipticity of wavefronts;

for a verification of this statement, we refer the reader to Appendix A.2.

As it turns out, a necessary condition for the ellipticity of roots in Backus media is

the nondetachment of the qP slowness surface. Although the Hookean solids that

represent most materials encountered in seismology exhibit a detached qP slowness

surface, the existence of both detached and nondetached slowness surfaces is, indeed,

permissible within the stability condition of the elasticity tensor (Bucataru and

Slawinski, 2009). Mathematically, this condition is the positive definiteness of the

elasticity tensor.
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3.2 Christo!el equation in Backus media

The existence of waves in anisotropic media is governed by the Christo!el

equation (2.80); its solubility condition is (e.g., Slawinski, 2015, Section 7.3)

det


3∑

j=1

3∑

ε=1

cijkε pjpε → εik


= 0 , i, k = 1 , 2 , 3 , (3.1)

where cijkε is a density-scaled elasticity tensor and p is the wavefront-slowness

vector. The three roots of this cubic equation in p2 can be stated as the expressions

for the wavefront speeds of the qP , qSV and SH waves, which we demonstrate in

expression (2.83); herein, p2 = p · p is the squared magnitude of the slowness vector.

3.2.1 Backus average

Within the context of the Backus average (Backus, 1962), a homogeneous

transversely isotropic medium is long-wave-equivalent to a stack of thin isotropic or

transversely isotropic layers. This low-frequency wave propagates with normal (or

quasi-normal) incidence to the stack of thin layers, whose layering is consistently

parallel but the thicknesses of layers need not be uniform. The averaging process

uses the function f(x3) of “width” ↽→ is the moving average given by

f(x3) :=

↓∫

↑↓

w(ζ → x3)f(ζ) dζ ,

where the weight function, w(x3) , has the following properties:

w(x3) ↭ 0, w(±⇓) = 0,

↓∫

↑↓

w(x3) dx3 = 1 ,

↓∫

↑↓

x3w(x3) dx3 = 0 ,

↓∫

↑↓

x2

3
w(x3) dx3 = (↽→)2 .

These properties define w(x3) as a probability-density function with mean 0 and

standard deviation ↽→ , explaining the use of the term “width” for ↽→ . The average

itself is a moving average with a specifically set size of window. The size of the

window might be determined by the wavelength of the propagating wave.
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The medium through which the Backus average propagates is considered to be in

static equilibrium, i.e. disturbances created by the Backus average are infinitesimal.

The stress and strain of the medium, along the x3-axis are constant along the

interfaces of layers. Components in the x1 x2-plane can vary significantly along the

x3-axis due to distinct properties of di!erent layers. Furthermore, the components of

the displacement vector, u1 , u2 , u3 , are continuous. In view of the lateral

homogeneity of the medium, ϱui/ϱx1 and ϱui/ϱx2 are smoothly varying functions

of x3 , but ϱui/ϱx3 might not be, due to the vertical inhomogeneity of layers. Hence,

the medium satisfies the dynamic and kinematic boundary conditions, wherein the

former refers to equality of forces along an interface and the latter refers to a welded

contact between layers (Slawinski, 2015, Section 10.2.1).

For the case of isotropic layers, elasticity parameters of each layer are c1111 and c2323 ,

and the corresponding parameters of the transversely isotropic medium are

cTI

1111
=


c1111 → 2 c2323

c1111

 2 
1

c1111

↑1

+


4(c1111 → c2323)c2323

c1111


, (3.2a)

cTI

1122
=


c1111 → 2 c2323

c1111

 2 
1

c1111

↑1

+


2(c1111 → 2 c2323)c2323

c1111


, (3.2b)

cTI

1133
=


c1111 → 2 c2323

c1111

 
1

c1111

↑1

, (3.2c)

cTI

1212
= c2323 , (3.2d)

cTI

2323
=


1

c2323

↑1

, (3.2e)

cTI

3333
=


1

c1111

↑1

. (3.2f)

Herein, superscript TI indicates transverse isotropy resulting from the Backus average.

The Backus average of a stack of di!erent isotropic layers results in a transversely

isotropic medium; a stack of layers exhibiting another symmetry results in the medium

of that symmetry; a stack of layers of various symmetries results in a medium of the

lowest among these symmetries, as is exemplified by Bos et al. (2017) (details of

derivations to other symmetry classes are also discussed therein).

Now, regarding the possible invertibility of the Backus average, let us remark that
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the precise information concerning the individual layer properties is lost during the

averaging process. As such, inferences of such properties from their averages lack

uniqueness (Danek and Slawinski, 2016, Section 4.3). With that being said, it is known

that the properties of the constituent layers a!ect the anisotropy of the equivalent

medium, where, for example, should the rigidity (c2323) be constant throughout the

layers, the Backus average results in an isotropic equivalent medium (Backus, 1962,

Section 6). Adamus et al. (2020) investigate further the e!ects of inhomogeneity

on anisotropy to find that the strength of anisotropy in the transversely isotropic

equivalent medium is solely a measure of inhomogeneity among the isotropic layers.

Therein, they show that the anisotropy of the Backus average is a consequence of

the di!erence in rigidity among layers, not in compressibility (c1111). Such a scenario

would correspond to that of a porous rock of constant rigidity, whose compressibility

varies depending on the amount of liquid within its pores. Therefore, while inverting

the Backus average for its unique constituent layers might not be possible, it is possible

to obtain a qualitative measure of the stack’s inhomogeneity through the strength of

anisotropy of the equivalent medium.

3.2.2 Backus media

Let us consider a homogeneous transversely isotropic medium, whose elasticity

parameters are

cTI =





cTI

1111
cTI

1122
cTI

1133
0 0 0

cTI

1122
cTI

1111
cTI

1133
0 0 0

cTI

1133
cTI

1133
cTI

3333
0 0 0

0 0 0 2 cTI

2323
0 0

0 0 0 0 2 cTI

2323
0

0 0 0 0 0 cTI

1111
→ cTI

1122





. (3.3)

If we consider a stack of n isotropic layers, whose elasticity parameters are

c1111 = {(c1111)1 , . . . , (c1111)n} and c2323 = {(c2323)1 , . . . , (c2323)n} , (3.4)

the stability condition for each layer is (e.g., Slawinski, 2018, Exercise 5.3)

(c1111)i >
4

3
(c2323)i > 0 , i = 1 , . . . , n . (3.5)
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For notational convenience, we write the Backus-average elasticity parameters of

expressions (3.2) as

cTI

1111
=


1→ 2

n
Y

2 
nW↑1


+

4

n
(U → Z) , (3.6a)

cTI

1122
=


1→ 2

n
Y

2 
nW↑1


+

2

n
(U → 2Z) , (3.6b)

cTI

3333
= nW↑1 , (3.6c)

cTI

1133
=


1→ 2

n
Y


nW↑1


, (3.6d)

cTI

2323
= nV ↑1 , (3.6e)

cTI

1212
= n↑1 U , (3.6f)

where

U :=
n∑

i=1

(c2323)i , V :=
n∑

i=1

1

(c2323)i
, W :=

n∑

i=1

1

(c1111)i
,

Y :=
n∑

i=1

(c2323)i
(c1111)i

, Z :=
n∑

i=1

[(c2323)i]
2

(c1111)i
.

(3.7)

A standard form of these parameters is given by, for example, Slawinski (2018,

Section 4.2.2); the expressions, therein, and those of parameterizations (3.6), are

equivalent to A , B , C , F , L , M of Backus (1962, equations (13)), respectively;

these expressions are analogous to expressions (3.2). The stability of the Backus

average is inherited from the stability of the layers (Slawinski, 2018,

Proposition 4.1); in other words, if the layers are stable, so is the average.

3.3 Christo!el roots

Returning to Christo!el equations (3.1), the three roots within transversely isotropic

media are (e.g., Slawinski, 2015, equation (9.2.19), (9.2.20))

vqP,qSV (ϑ) =

√

cTI

3333
→ cTI

1111


(1→ n3) + cTI

1111
+ cTI

2323
±

√
&(ϑ)

2 φ
(3.8)
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and

vSH(ϑ) =

√
cTI

1212
n3 + cTI

2323
(1→ n3)

φ
. (3.9)

Herein, we use n3 = sin2 ϑ to express the wavefront orientation and we parameterize

&(ϑ) = a (n3)
2 + b n3 + c,

where

a =

cTI

1111
+ 2 cTI

1133
+ cTI

3333


cTI

1111
→ 2 cTI

1133
→ 4 cTI

2323
+ cTI

3333


, (3.10a)

b = 2 cTI

1111
cTI

2323
→ 2 cTI

1111
cTI

3333
+ 4


cTI

1133

2

+ 8 cTI

1133
cTI

2323
+ 6 cTI

2323
cTI

3333
→ 2


cTI

3333

2

,

(3.10b)

c =

cTI

2323
→ cTI

3333

2

. (3.10c)

Next, for elliptical roots, we require the reciprocals of the roots in the form of√
d+ f sin2 ϑ , where d and f are nonzero real constants. To demonstrate, we begin

with the standard form of an ellipse,

x
a

2

+
y
b

2

= 1,

where x and y are Cartesian coordinates and a and b are positive real constants. Using

the relationship between Cartesian and polar coordinates,

x = r cosϑ and y = r sinϑ,

for a positive radius, r, and central angle, ϑ, the standard form is


r cosϑ

a

2

+


r sinϑ

b

2

= 1.

Solving for the squared radius, and availing of the Pythagorean trigonometric identity,

we have

r2 =
a2b2

b2(1→ sin2 ϑ) + a2 sin2 ϑ
.
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Taking the square root of both sides and simplifying yields

r =
ab√

b2 + (a2 → b2) sin2 ϑ
,

where we omit the negative solution since r > 0. Thus, setting f := a2 → b2,

substituting b = 1/a, and setting d := 1/a2, we obtain

r =
1√

d+ f sin2 ϑ
,

as required.

Returning to expression (3.9), we observe that the reciprocal of vSH is already in the

form of an ellipse. However, for reciprocals of roots (3.8) are elliptical if and only if &

is a perfect square. To demonstrate, we complete the square to obtain

& = a


n3 +

b

2a

2

+


c→ b2

4a


.

For a perfect square, we require the latter term to equal zero, which imposes the

condition

Disc(&) := b2 → 4ac = 0,

or, in other words, if and only if the discriminant of & , which we denote by Disc (&) ,

is zero. If the condition is satisfied, expression (3.8) is in the form of
√
d+ f sin2 ϑ ,

where d and f are nonzero real constants. In view of expressions (3.10a)–(3.10c),

Disc (&) :=

16

cTI

1133
+ cTI

2323

2
[
cTI

1111


cTI

2323
→ cTI

3333


+

cTI

1133

2

+ 2 cTI

1133
cTI

2323
+ cTI

2323
cTI

3333

]
= 0 ,

(3.11)

for which the solutions are

cTI

2323
= →cTI

1133
, (3.12a)

cTI

2323
= →cTI

1133
and cTI

1111
= cTI

2323
, (3.12b)

cTI

3333
=


cTI

1133

2

+ cTI

1111
cTI

2323
+ 2 cTI

1133
cTI

2323

cTI

1111
→ cTI

2323

. (3.12c)
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Discriminant (3.11), and its solutions (3.12), can be written in terms of

parameterizations (3.6) as

64 (n (V +W )→ 2V Y )2 ((n→ Y )2 + (V →W ) (Z → U))

V 3 W 3
= 0 , (3.13)

whose solutions are

Y =
n

2


1 +W V ↑1


, (3.14a)

W = V and Y = n , (3.14b)

Z = U → (n→ Y )2

V →W
. (3.14c)

Let us discuss solutions (3.14). With regard to solution (3.14b), we recognize that

it is a special case of solution (3.14a), but we keep both for convenient referencing,

below. Within the context of the Backus average, solution (3.14b) cannot be satisfied

by the stability condition as it would require

W = V =⇔
n∑

i=1

1

(c1111)i
=

n∑

i=1

1

(c2323)i
,

which is not allowed.

For solution (3.12c), the equality can be satisfied if and only if c2323 is the same for

all layers. To demonstrate, we set (c2323)i = c2323 in parameterizations (3.7), which,

by summation arithmetic, results in

Z = (c2323)
2W, Y = c2323W, V =

n

c2323
, and U = n c2323.

Substituting these terms in solution (3.14c) and simplifying, we obtain

(c2323)
2W = n c2323 →

(n→ c2323W )2

n

c2323
→W

= n c2323 → c2323
(n→ c2323W )2

n→ c2323W

= n c2323 → c2323(n→ c2323W )

= (c2323)
2W,

43



as required. However, as indicated by Backus (1962, Section 6), if a layered isotropic

medium has constant c2323 in all layers, the resulting average is isotropic. Since our

focus is a transversely isotropic average, we omit solution (3.12c) from our

consideration.

As such, the only viable condition that remains is solution (3.14a). In Section 3.3.1,

we proceed to prove the existence of solution (3.14a) for n ↭ 4 layers, followed by a

numerical example to illustrate the result.

3.3.1 Nondetachment

Within the constraints of the stability, both detachment and nondetachment are

permitted. The nondetachment of the qP slowness surface occurs if and only if

cTI

2323
= →cTI

1133
. In Figure 3.2, we present an illustration of detached slowness

surfaces becoming nondetached as cTI

2323
⇑ →cTI

1133
. From solution (3.12a), and its

parameterization (3.14a), it follows that roots (3.8) are elliptical. Hence, we have

the following lemma.

Lemma 1. There exists a Backus average of at least four isotropic layers for which

the Christo!el roots are elliptical.

Proof. We fix a > 4

3
and let x ↗ (0 , 1] so that

c1111 =
 a

x
,
a

x
,
a

x
,
a

x


and c2323 =


x ,

1

x
,
1

x
,
1

x


. (3.15)

Following definitions (3.7), variables Y , V , and W of solution (3.14a) become

Y (x) =
x2

a
+

n∑

i=2

(c2323)i
(c1111)i

=
x2

a
+

n∑

i=2

1/x

a/x
=

x2

a
+

n→ 1

a
, (3.16a)

V (x) =
1

x
+

n∑

i=2

1

(c2323)i
=

1

x
+

n∑

i=2

1

1/x
=

1 + (n→ 1) x2

x
, (3.16b)

W (x) =
n∑

i=1

1

(c1111)i
=

n∑

i=1

1

a/x
=

nx

a
. (3.16c)
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We define X(x) := n

2
(1 +W (x)V (x)↑1) , which results in

X(x) =
n

2

{
1 +

 nx

a

[
1 + (n→ 1) x2

x

]↑1
}

=
n

2

{
1 +

1

a

[
nx2

1 + (n→ 1) x2

]}
.

(3.17)

As x ⇑ 0+ , we have

Y (0+) ⇑ n→ 1

a
⇐ 3

4
(n→ 1) , X(0+) ⇑ n

2
, (3.18)

and, hence, Y (0+) > X(0+) for a close to 4

3
. Furthermore, as x ⇑ 1↑ ,

Y (1↑) ⇑ 1

a
+

n→ 1

a
and X(1↑) ⇑ n

2


1 +

1

a


. (3.19)

Thus, for n ↭ 4 , and a close to, but greater than, 4

3
, Y (1↑) < X(1↑) .

It follows form the Intermediate Value Theorem that there exists an x ↗ (0, 1) for

which Y (x) = X(x), which completes the proof.

3.3.2 Numerical example

Let us consider a numerical example, where

x = 0.2299, a = 1.3440, and Y = X = 2.2714; (3.20)

indeed, there exists a Backus average of at least four isotropic layers, whose Christo!el

roots are elliptical.

Using results (3.20) with parameters (3.15), we obtain

c1111 = {5.8472 , 5.8472 , 5.8472 , 5.8472} and

c2323 = {0.2299 , 4.3506 , 4.3506 , 4.3506} ;

the Backus-average parameters, following expressions (3.6), are

cTI

1111
= 3.6692 , cTI

1122
= →2.9717 , cTI

3333
= 5.8472 ,

cTI

1133
= →0.7936 , cTI

2323
= 0.7936 , cTI

1212
= 3.3204 .

(3.21)
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The eigenvalues of tensor (3.3) with values (3.21) are ▷1 = ▷2 = 6.6409 ,

▷3 = 6.0812 , ▷4 = ▷5 = 1.5873 , ▷6 = 0.4635 , which belong to a transversely

isotropic tensor (Bóna et al., 2007a); since they are positive, the stability condition

of the average are satisfied. Also, Disc (&) = 1.9883 ↓ 10↑12 , which can be

considered zero, as required. Consequently, equation (3.8) becomes

vqP,qSV (ϑ) =

√4.4628 + 2.1781 (1→ n3)±
√
62.8718 (0.6373→ n3)

2

2 φ
. (3.22)

Recalling that n3 = sin2 ϑ , and since φ must be a positive scalar quantity, we see that

equation (3.22) is
√

d+ f sin2 ϑ , as required. Letting φ = 1 , the three roots are

vqP (ϑ) =

√

cTI

3333
→ cTI

1111


(1→ n3) + cTI

1111
+ cTI

2323
+
⇒
&

2 φ
=

√
5.8472 + 5.0536 sin2 ϑ

(3.23a)

vqSV (ϑ) =

√

cTI

3333
→ cTI

1111


(1→ n3) + cTI

1111
+ cTI

2323
→

⇒
&

2 φ
=

√
0.7936→ 2.8756 sin2 ϑ ,

(3.23b)

vSH(ϑ) =

√
cTI

1212
n3 + cTI

2323
(1→ n3)

φ
=

√
0.7936 + 2.5268 sin2 ϑ . (3.23c)

The reciprocals of expressions (3.23) are ellipses, illustrated in Figure 3.1. Therein,

the green curve represents 1/vSH(ϑ) ; the blue curve represents 1/vqSV (ϑ) ; and the

red curve represents 1/vqP (ϑ) .

3.3.3 Interpretation

Values (3.21) do not represent typical Hookean solids used in seismology. To quantify

this statement, let us invoke Poisson’s ratio,

◁ji := → 0ii
0jj

, (3.24)

which is defined as the negative ratio of the lateral strain to the axial strain, in a

uniaxial strain state, i.e., ↼jj ↑= 0 and ↼ik = 0 for i ↑= j and k = 1, 2, 3 (e.g., Mavko
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Figure 3.1: Three Christo!el roots resulting in three slowness curves

(a) (b) (c)

Figure 3.2: Slowness curves, 1/vqP (ϑ) , 1/vqSV (ϑ) , 1/vSH(ϑ) , for modified values of
elasticity parameters for Green-River shale. As cTI

1133
⇑ →cTI

2323
, the innermost curve

ceases to be detached and smooth.
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et al., 2009, p. 22). For transverse isotropy (e.g., Mavko et al., 2009, pp. 33–35), along

with values (3.21),

◁31 = →011
033

=
cTI

1133

cTI

1111
+ cTI

1122

= →1.1378. (3.25)

In contrast to value (3.25), Poisson’s ratio for sedimentary rocks, such as limestone

and sandstone, is typically positive—Ji et al. (2018, Table 3) present such values

in a statistical analysis of typical rock and ore samples at various pressures. For

shale, Gereck (2007, Figure 4) presents typical ranges for shale of ◁ ↗ (0.05, 0.32).

However, Lakes (2017, Section 3.7) indicates that it is reasonable to obtain large

negative Poisson’s ratios in highly anisotropic materials: in arsenic crystals, the ratio

can exceed 1

2
or can be less than →1, which are the isotropic bounds for ◁ (e.g.,

Slawinski, 2020a, Exercise 5.18). With that being said, let us emphasize that the only

restriction on the elasticity parameters is the positive definiteness of tensor (3.3).

Since parameter values (3.21) satisfy this condition, they are acceptable and, hence,

su#ce as a counterexample to the propositions of Helbig (1983). Further justification

of these values—concerning the likelihood of their observation in typical seismological

settings— is beyond the scope of this analysis.

To gain an insight into the appearance of slowness curves in Figure 3.1, let us

examine an example using the density-scaled elasticity parameters for Green-River

shale (e.g., Slawinski (2015, Exercise 9.3), Thomsen (1986, Table 1)),

cTI

1111
= 13.55 , cTI

1133
= 1.47 , cTI

3333
= 9.74 , cTI

2323
= 2.81 , cTI

1212
= 3.81 , (3.26)

where each parameter is scaled by 106 ; herein, superscript TI refers to an intrinsically

transversely isotropic medium, as opposed to TI , which is the Backus medium.

The curves of 1/vqP (ϑ) , 1/vqSV (ϑ) and 1/vSH(ϑ) with values (3.26) are illustrated in

Figure 3.2(a); such curves are typical in seismology. For the wavefronts of these

slowness curves, which are obtained using polar reciprocity, we refer the reader to

Appendix A.2.3. The progression of Figures 3.2(a)–(c), however, illustrates an

important property. For detached qP slowness surfaces, the expressions for the qP ,

qSV and SH wavefront speeds, indeed, correspond to distinct smooth wavefronts.

However, if cTI

1133
= →cTI

2323
, the qP and qSV slowness surfaces lose their smoothness.

Also, their expressions—not only their curves—become connected with one

another; neither root corresponds to a distinct slowness curve nor does a given curve
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result from a single root.

For each slowness surface, the criterion of belonging to a particular wave on either

side of an intersection is not its belonging to a single root but the orientation of the

corresponding eigenvectors, which are the displacement vectors of a given wave (Bóna

et al., 2007b). In Figure 3.2, the qSV and SH slownesses are equal along the rotation-

symmetry axis. As such, the innermost surface corresponds to the qP wave.

3.4 Ellipticity condition

According to Thomsen (1986), the ellipticity condition is ϑ = ε , where

ϑ =
cTI

1111
→ cTI

3333

2 cTI

3333

and ε =


cTI

1133
+ cTI

2323

2 →

cTI

3333
→ cTI

2323

2

2 cTI

3333
(cTI

3333
→ cTI

2323
)

, (3.27)

for either TI or TI . However, equations (3.23a)–(3.23c) lead to ellipsoidal forms, even

though, therein, ϑ = →0.2363 ↑= →0.4445 = ε . To avoid this discrepancy, we state the

following proposition with a qualifier.

Proposition 2. The detached qP slowness surface is ellipsoidal if and only if ϑ = ε .

Proof. Following expressions (3.27), ϑ = ε if and only if

cTI

2323
= →cTI

1133
and cTI

1111
= cTI

2323
or

cTI

3333
=


cTI

1133

2
+ cTI

1111
cTI

2323
+ 2 cTI

1133
cTI

2323

cTI

1111
→ cTI

2323

,

which are solutions (3.12b) and (3.12c) , respectively. Solution (3.12a), cTI

2323
= →cTI

1133
,

is— in general— the condition for nondetachment, and— for the Backus average—

is the condition for elliptical roots. For the Backus average, solution (3.12b) is not

allowed within the stability condition and solution (3.12c) results in an isotropic

average, hence, circular roots. Thus, the ellipticity condition, ϑ = ε , is valid for

detached qP slowness surfaces only.

To gain an insight into Proposition 2, we modify parameters for Green-River shale—

illustrated in plot 3.3(a)—by applying expression (3.12c) to obtain an ellipsoidal qP

slowness surface illustrated in plot 3.3(b). Applying subsequently expression (3.12a),
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(a) (b) (c)

Figure 3.3: Slowness curves, 1/vqP (ϑ) , 1/vqSV (ϑ) , 1/vSH(ϑ) , for modified
values of elasticity parameters for Green-River shale. Plot (b) corresponds
to expression (3.12c); plot (c) corresponds to expression (3.12c) followed by
expression (3.12a).

(a) (b) (c)

Figure 3.4: Slowness curves, 1/vqP (ϑ) , 1/vqSV (ϑ) , 1/vSH(ϑ) , for modified values of
elasticity parameters for Green-River shale. Plot (b) corresponds to modifications
by expression (3.12a); plot (c) is modified by expression (3.12a) followed by
expression (3.12c).
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we obtain three elliptical Christo!el roots, where ϑ ↑= ε , as expected in view of

expressions (3.23a) and (3.23b). The innermost slowness surface is neither detached

nor elliptical, as illustrated in plot 3.3(c).

Let us apply these expressions in the opposite order. Using expression (3.12a), we

obtain the result illustrated in plot 3.4(b). Applying subsequently expression (3.12c),

we obtain three elliptical slowness surfaces, illustrated in plot 3.4(c). The stability

conditions are satisfied but ε is indeterminate. However, if we let cTI

2323
⇐ →cTI

1133
, as

opposed to cTI

2323
= →cTI

1133
, we obtain ε = ϑ , as a consequence of detachment.

In contrast to these results, the Backus average can only satisfy the stability condition

with expression (3.12a), which results in nondetachment.

3.5 Concluding remarks

The only restriction on the values of the elasticity parameters is the stability

condition, which—mathematically— is tantamount to positive definiteness of the

elasticity tensor. Within this condition, we examine properties of the Christo!el

roots for nondetached slowness surfaces in transversely isotropic media.

Our analysis focuses on the propositions of Helbig (1983, p. 826), among which it is

stated that the wavefront of qP waves is never an ellipsoid. The condition for this

statement is a detached innermost slowness surface and, according to Musgrave

(1970, p. 92), any inner detached sheet must be wholly convex. However, Bucataru

and Slawinski (2009) extend the theorem of Musgrave by showing that the condition

of detachment is unnecessary. Thus, within that context, our analysis yields a

counterexample to Helbig that demonstrates elliptical nondetached slowness curves

in Backus media.

To summarize, the qP slowness surface is detached if and only if cTI

2323
↑= →cTI

1133
.

Under such a condition, each root corresponds to a distinct smooth wavefront. The qP

slowness surface is nondetached if and only if cTI

2323
= →cTI

1133
. Under such conditions,

the roots are elliptical but do not correspond to distinct wavefronts; also, the qP and

qSV slowness surfaces are not smooth. For transversely isotropic media generated

by the Backus average, the qP roots are elliptical only if the slowness surface is

nondetached.
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Chapter 4

On forward modelling of

traveltimes in approximate media

Author note

This chapter is based on a collaborative research project with Dr. Len Bos and Dr.

Michael A. Slawinski. For further details regarding co-authorship, we refer the reader

to the statement provided on pages xi–xii.

4.1 Introductory remarks

One of the most important techniques for extracting information on the Earth’s

properties is traveltime inversion (e.g., Aki and Richards, 2002, Section 9.4).

However, even a stack of horizontal layers is computationally complicated in both

modelling and data processing, and, hence, it might be replaced by a single medium

with similar traveltimes. In this chapter, we formulate an approach to reproduce

traveltimes for near-vertical wave propagation, based on a Taylor series matching of

the traveltimes in the stack of layers within a single medium.

For this purpose, we consider a number of parallel isotropic layers and construct two

homogeneous media, the first single isotropic (iso) and the second single transversely

isotropic (TI), for which the Fermat traveltimes are nearly equal to the Fermat

traveltime within the layers, at least for propagation angles near the vertical.
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Indeed, the isotropic medium will be constructed so that its Fermat traveltime

agrees with the Fermat traveltime in the layered medium to the first order as a

function of the propagation angle, while the transversely isotropic medium so that

its Fermat traveltime will agree with the Fermat traveltime in the layered medium

to the second order as a function of the propagation angle.

To achieve this formulation, noting that isotropy is a subclass of transverse isotropy,

we require an expression of a TI tensor whose components are parameterized by

properties of its constituent layers. Furthermore, we require two types of analytic

expressions for traveltime. The first is the traveltime for rays of P and S waves in

layered media as a function of their takeo! angle, ς . The second is the traveltime

for rays of qP , qSV , and SH waves in the TI medium as a function of their takeo!

angle, 1 .

We require that waves propagate, in both media, from the same source and arrive at

the same receiver, even though, except for vertical raypaths, ς ↑= 1 . Thus, we express

the traveltimes of the waves propagating along the vertical axis as a second-order

Taylor series approximation. To obtain the elasticity parameters of an approximate

medium, we solve the system of equations that arise by equating coe#cients of the

Taylor approximations in both media; to the first order for an isotropic medium and

to the second order for a transversely isotropic medium.

Upon completing the formulation, we obtain a homogeneous isotropic medium, which

we refer to as the approximate isotropic medium, and a homogeneous transversely

isotropic medium, which we refer to as the approximate transversely isotropic medium,

for which the Fermat traveltimes have the approximation properties stated above.

We use a numerical example to demonstrate the validity of the traveltime

approximations in the approximate media. In particular, we use a stack of ten

isotropic layers and validate the traveltimes of rays through the layers for increasing

receiver o!sets. Then, we evaluate the traveltimes through the approximate media

for the same source-receiver combinations. We find that the approximation leads to

empirically adequate results for not only near-vertical rays, but even for rays whose

takeo! angles approach 30↔ in the case of the TI medium.

Now, let us remark that our motivation is not only to approximate Fermat traveltimes,

but also to develop a homogenized medium determined by its elasticity parameters.

As such, our approach di!ers from other traveltime approximations, which rely on the
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longstanding method of performing a Taylor approximation of a traveltime squared

expression as a function of o!set (e.g., Taner and Koehler, 1969). In recent years,

this method has been used to approximate traveltimes by, for example, Sripanich and

Fomel (2015) in TI and orthotropic media, Ravve and Koren (2017) as well as Abedi

et al. (2021) in layered TI media, and Farra and Pšenč́ık (2020) in weakly anisotropic

layered media of arbitrary symmetry classes.

By contrast, our alternative approach, which is based on Taylor approximations as

well, yields closed-form expressions of elasticity parameters for the novel approximate

medium. Using these expressions, we compare traveltimes directly with those in a TI

medium that is the result of the Backus average of the same constituent layers, i.e.,

the Backus medium.

We begin this chapter by formulating traveltime expressions for both the layered and

approximate media. Subsequently, we examine the Taylor expansions—developed

about the vertical direction—of the traveltime expressions. We proceed to obtain

the parameters of the approximate medium and make a comparison with traveltimes,

for the same source-receiver combinations, in the Backus medium.

4.2 Traveltime expressions

4.2.1 Hooke’s law

For both media, the stress-strain relationship is expressed by Hooke’s law,

↼ij =
3∑

k=1

3∑

ε=1

cijkε ϑkε , i, j = 1, 2, 3 .

Herein, the stress tensor, ↼ij , is linearly related to the strain tensor,

ϑkε :=
1

2


ϱ uk

ϱxε

+
ϱ uε

ϱxk


, k, ↽ = 1, 2, 3 ,

where u and x are displacement and position vectors, respectively. The elasticity

tensor, cijkε , whose components can be expressed as a 6↓ 6 matrix (e.g., Chapman,

2004, p. 92), is positive-definite. In general, there are three types of waves in

anisotropic media but only two types in isotropic ones. The velocity expressions for

waves in such media arise from the solubility conditions of the Christo!el
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equation (e.g., Slawinski, 2015, Section 9.2.3). However, examining this equation is

beyond the scope of this chapter and, as such, we only state, and use, the

expressions for isotropic and TI media. To examine either medium, we use

the x1x3-plane, where x1 and x3 are positive rightward and downward, respectively.

For more details on the stress-strain relationship, Hooke’s law, and the application

toward ray theory, we refer the reader to Sections 2.4 and 2.5.

4.2.2 Layered medium

The layered medium is comprised of n parallel layers that are homogeneous and

isotropic. For any given layer, its elastic properties are given by

ciso =





ciso
1111

ciso
1111

→ 2 ciso
2323

ciso
1111

→ 2 ciso
2323

0 0 0

ciso
1111

→ 2 ciso
2323

ciso
1111

ciso
1111

→ 2 ciso
2323

0 0 0

ciso
1111

→ 2 ciso
2323

ciso
1111

→ 2 ciso
2323

ciso
1111

0 0 0

0 0 0 2 ciso
2323

0 0

0 0 0 0 2 ciso
2323

0

0 0 0 0 0 2 ciso
2323





.

The thickness of the medium is

h =
n∑

i=1

(Ii+1 → Ii) = In+1 → I1 , (4.1)

where Ii is the interface depth of the ith layer. The receiver coordinates of a ray that

connects a source at the origin to the bottom of the medium are (x(ς), h) , where x(ς)

is the horizontal position as a function of the takeo! angle ς . Thus, for transmitting P

and S waves with the same takeo! angle,

x(ς) =
n∑

i=1

(Ii+1 → Ii) tanςi or x(ς) =
n∑

i=1

(Ii+1 → Ii) tan εi , (4.2)

where ςi and εi are, respectively, the propagation angles of P and S waves in the ith

layer and the takeo! in the first layer is ς1 = ε1 . The angle at which the ray is

refracted is governed by the ray parameter

p =
sinς1

21

=
sin ε1
31

=
sinς2

22

=
sin ε2
32

= · · · = sinςn

2n

=
sin εn
3n

.
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Herein, 2 and 3 correspond to the P and S layer speeds. For the angle in the second

layer,

ς2 = arcsin


22

21

sinς1


and ε2 = arcsin


32

31

sinς1


.

For the third layer,

ς3 = arcsin


23

22

sinς2


= arcsin


23

22

sin


arcsin


22

21

sinς1


= arcsin


23

21

sinς1


,

ε3 = arcsin


33

32

sin ε2


= arcsin


33

32

sin


arcsin


32

31

sinς1


= arcsin


33

31

sinς1


.

Thus, for the ith layer, where ς = ς1 , we have

ςi = arcsin


2i

21

sinς


and εi = arcsin


3i

31

sinς


.

To avoid duplication, we substitute ◁ for both 2 and 3 as a notational convenience

to denote a generic wavespeed in a layer. As such, equation (4.2) becomes

x(ς) =
n∑

i=1

(Ii+1 → Ii) tan


arcsin


◁i
◁1

sinς



=
n∑

i=1

(Ii+1 → Ii)
◁i
◁1

sinς
√

1→

◁i
◁1

sinς

2

=
n∑

i=1

(Ii+1 → Ii) ◁i sinς√
◁12 → ◁i2 sin2 ς

, (4.3)

where ◁i is the speed of a wave in the ith layer, to be replaced, respectively, by 2i

or 3i for a P or S wave. The values for the wavespeeds in the ith layer are given by

2i =

√
ciso
1111,i

φi
and 3i =

√
ciso
2323,i

φi
, i = 1 , . . . , n , (4.4a,b)
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where φi is the mass density of the ith layer. The corresponding traveltime for the

ray of either the P or S wave is

t(ς) =
n∑

i=1

1

◁i

√(Ii+1 → Ii)
2 +


(Ii+1 → Ii) ◁i sinς√

◁12 → ◁i2 sin2 ς

2

=
n∑

i=1

(Ii+1 → Ii) ◁1

◁i
√
◁12 → ◁i2 sin2 ς

.

(4.5)

4.2.3 Approximate medium

Noting again that isotropy is a subclass of transverse isotropy, we assume the

symmetry class of the approximate medium to be TI. Although it is possible to

consider other symmetry classes, the well-known and frequently employed Backus

average of a layered medium (Backus, 1962) also results in a composite TI medium,

chosen, however, to provide a more general physical approximation than just for

traveltimes. In Section 4.6.3, we provide numerical comparisons between our

approximate media and the Backus average. Hence, the elasticity tensor of the

approximate medium is

cTI =





cTI

1111
cTI

1122
cTI

1133
0 0 0

cTI

1122
cTI

1111
cTI

1133
0 0 0

cTI

1133
cTI

1133
cTI

3333
0 0 0

0 0 0 2 cTI

2323
0 0

0 0 0 0 2 cTI

2323
0

0 0 0 0 0 cTI

1111
→ cTI

1122





. (4.6)

In an anisotropic medium, the relationship between the ray and wavefront angles

is (e.g., Slawinski, 2015, equation (8.4.12))

tan 1 =
tanϑ+

1

v(ϑ)

d v(ϑ)

dϑ

1→ tanϑ

v(ϑ)

d v(ϑ)

dϑ

, (4.7)

where v(ϑ) stands for any of the three wavefront velocities, vqP (ϑ) , vqSV (ϑ) , vSH(ϑ) ,

which are given in Section 4.4.4. In a homogeneous TI medium, the ray angle for a
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raypath from the origin to coordinates (x(ς), h) is

1(ς) = arctan


x(ς)

h


, (4.8)

where x(ς) is given by equation (4.3). Since the medium is homogeneous, rays are

straight lines. Using trigonometry, the distance travelled for a takeo! angle 1(ς) is

L(ς) =
√

x(ς)2 + h2 . (4.9)

The ray velocity of waves propagating through the anisotropic medium is given in

terms of the wavefront velocity (e.g., Slawinski, 2015, equation (8.4.9)), where

V (ϑ) =

√

v(ϑ)2 +


d v(ϑ)

dϑ

2

. (4.10)

To evaluate equation (4.10), we must supply a value for 1 in relation (4.7) and solve

for its corresponding ϑ . However, relation (4.7) can only be solved analytically if and

only if v is quadratic in the components of a vector that specifies the orientation of

the wavefront, which corresponds to an elliptical wavefront (Slawinski, 2015, p. 355).

Otherwise, we solve relation (4.7) numerically. Since the final horizontal position of

a ray in the layered medium is dependent on the medium itself, we cannot obtain a

particular value for 1 to use in relation (4.7). Nevertheless, in general, the traveltime

along a ray in the approximate medium, for the same source-receiver combination as

the layered medium, whose receiver coordinates are (x(ς), h) , is

T (1(ς)) =
L(ς)

V (ϑ(1(ς)))
. (4.11)

The receiver coordinates may be expressed as a function of the takeo! angle in the

layered medium, ς. Since the formulation uses the same source-receiver combinations,

we express the ray angle in the approximate medium as a function of ς . Since the

wavefront angle, ϑ , is a function of 1 , which, in turn, is a function of ς , with an

abuse of notation, we write

T (ς) := T (1(ς)) , L := L(ς) , V := V (ς) := V (ϑ(1(ς))) . (4.12)

Using notation (4.12), we write equation (4.11) as T (ς) = L/V .
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4.2.4 Vertical rays

A trivial solution of equation (4.7) is 1 = ϑ = 0 , which corresponds to vertical rays.

To demonstrate this, we substitute 1 = ϑ = 0 in relation (4.7) to obtain

tan(0) =

tan(0) +
1

v(0)

d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

1→ tan(0)

v(0)

d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

. (4.13)

Since v(0) > 0 , a solution can exists only if

d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

= 0 . (4.14)

Thus, for vertical rays, equation (4.10) becomes

V (0) = v(0) ; (4.15)

in other words, the ray and wavefront velocities are equal to one another. Also, using

equation (4.8),

0 = arctan


x(ς)

h


=⇔ x(ς) = 0 , for 1 = ϑ = 0 .

Recalling equation (4.3), x(ς) = 0 =⇔ ς = 0 . Hence, for vertical rays,

ς = 0 ↖⇔ 1 = ϑ = 0 . (4.16)

In other words, the ray and wavefront angles are equal to one another. Using

property (4.16), we may evaluate the traveltimes along vertical rays in the layered

and approximate media, t(ς) and T (ς), respectively. Setting them to be equal to

one another, so that the traveltimes along vertical rays are the same in both media,

imposes certain conditions on the elasticity parameters of the approximate medium,

but does not completely determine them. To determine them completely, we need to

consider their Taylor series up to the second order,

f(ζ) ⇐
2∑

m=0

f (m)(ζ)
∣∣
ς=ς0

m!
(ζ → ζ0)

m ,
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where ζ is the argument of the function, ζ0 is the base point of the expansion, and m

is the order of the derivative.

Thus, for the layered medium,

t(ς) = t(0) +
d t(ς)

dς

∣∣∣∣
φ=0

ς+
1

2

d2t(ς)

dς2

∣∣∣∣
φ=0

ς+O

ς3

, (4.17)

and, for the approximate medium,

T (ς) = T (0) +
dT (ς)

dς

∣∣∣∣
φ=0

ς+
1

2

d2T (ς)

dς2

∣∣∣∣
φ=0

ς2 +O

ς3

, (4.18)

where O is the big O Landau symbol. These series expansions result in an

approximation of traveltime in the neighbourhood of ς = 0 .

4.3 Zeroth-order approximations

To complete the traveltime approximation, we must equate the zeroth, first, and

second-order coe#cients of approximations (4.17) and (4.18). Let us consider the

ray of a wave traveling downward along the vertical symmetry axis. For the layered

medium, we substitute ς = 0 in equations (4.3) and (4.5) to obtain

x(0) = 0 , t(0) =
n∑

i=1

(Ii+1 → Ii)

◁i
. (4.19a,b)

Substituting equations (4.4a) and (4.4b) for ◁ , we obtain two forms of equation (4.19a)

xP (0) = 0 , xS(0) = 0 , (4.20a,b)

whereas, for equation (4.19b),

tP (0) =
n∑

i=1

(Ii+1 → Ii)√
ciso
1111,i

φi

, tS(0) =
n∑

i=1

(Ii+1 → Ii)√
ciso
2323,i

φi

.
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For the approximate medium, the vertical direction corresponds to the rotation

symmetry axis. As a result of equation (4.14), the magnitude of its ray velocity is

equal to the wavefront velocity, which is shown in equation (4.15). Thus, evaluating

equations (4.39) for 1 = ϑ = 0 , we obtain

VqP (0) =

√
cTI

3333

φTI
, VqSV (0) =

√
cTI

2323

φTI
, VSH(0) =

√
cTI

2323

φTI
. (4.22a,b,c)

Recalling equation (4.9), we calculate the distance travelled in the approximate

medium for vertical rays. Using equations (4.1) and (4.19a),

L(0) =
⇒
0 + h2 = h =

n∑

i=1

Ii+1 → Ii = In+1 → I1 . (4.23)

The corresponding traveltimes are

TqP (0) =
L(0)

VqP (0)
, TqSV (0) =

L(0)

VqSV (0)
, TSH(0) =

L(0)

VSH(0)
. (4.24a,b,c)

Substituting expressions (4.22) in equations (4.24), and recognizing that the

latter TqSV (0) = TSH(0) , we obtain

cTI

3333
=


L(0)

TqP (0)

2

φTI , cTI

2323
=


L(0)

TqSV (0)

2

φTI . (4.25a,b)

Thus, for tP (0) = TqP (0) and tS(0) = TqSV (0) , we substitute equations (4.20a,b) in

equations (4.25a,b), respectively, to obtain

cTI

3333
=





n
i=1

(Ii+1 → Ii)

n
i=1

Ii+1 → Ii√
ciso
1111,i

/φi





2

φTI =: H2




√

ciso
1111,i

φi



 φTI (4.26a)

61



and

cTI

2323
=





n
i=1

(Ii+1 → Ii)

n
i=1

Ii+1 → Ii√
ciso
2323,i

/φi





2

φTI =: H2




√

ciso
2323,i

φi



 φTI . (4.26b)

Here,

H(ai) :=

n
i=1

wi

n
i=1

wi

ai

, wi := Ii+1 → Ii

is the weighted harmonic mean of the ai with weights wi , where Ii+1 → Ii, the layer

thicknesses. In other words, equations (4.26) are the products of the squared harmonic

mean of their corresponding wavespeeds, weighted by layer thickness, and the mass

density of the transversely isotropic medium, which is given by the arithmetic mean

of the mass densities of the constituent layers, weighted by layer thickness,

φTI =

n
i=1

(Ii+1 → Ii) φi

n
i=1

(Ii+1 → Ii)
.

The results of the zeroth-order approximation are tantamount to the elasticity

parameters of pure-mode P and S waves, which propagate along the rotation

symmetry axis of the approximate medium. Hence, in agreement with

expressions (4.22b,c), VqSV (0) = VSH(0) .

Thus, elasticity parameters (4.26) comprise the approximate isotropic medium, whose

elasticity tensor is

cISO :=





cISO
1111

cISO
1111

→ 2 cISO
2323

cISO
1111

→ 2 cISO
2323

0 0 0

cISO
1111

→ 2 cISO
2323

cISO
1111

cISO
1111

→ 2 cISO
2323

0 0 0

cISO
1111

→ 2 cISO
2323

cISO
1111

→ 2 cISO
2323

cISO
1111

0 0 0

0 0 0 2 cISO
2323

0 0

0 0 0 0 2 cISO
2323

0

0 0 0 0 0 2 cISO
2323





,

(4.27)

where cISO
1111

:= cTI

3333
and cISO

2323
:= cTI

2323
.
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Even though derived for vertical rays in TI media, while examining the approximate

isotropic medium, we consider the wavefront velocity to be constant for all wavefront

angles. Consequently, both the ray and wavefront angles and velocities are equivalent

to one another. Thus, the magnitudes of the ray velocities of the P and S waves are

tantamount to equations (4.22), where

VP :=

√
cISO
1111

φTI
= VqP (0) , VS :=

√
cISO
2323

φTI
= VqSV (0) = VSH(0) . (4.28a,b)

Using ray velocities (4.28), the traveltimes, for any receiver o!set, x(ς) , are

TP (ς) :=
L(x(ς))

VP

, TS(ς) :=
L(x(ς))

VS

. (4.29a,b)

Note that by (4.26a) and (4.26b), it follows easily that the velocities in the

approximate ISO medium are given by

V↼ = H(◁i) (4.30)

where ◁i is the wave speed in the ith layer and H is the weighted harmonic mean.

The isotropic elasticity parameters determined by matching the traveltimes for a

vertical ray (propagation angle 0; zeroth order approximation) results in an (isotropic)

medium for which the traveltimes also agree with the layered medium traveltimes to

first order. Relaxing the symmetry class to TI requires solving for the remaining

TI elasticity parameters, cTI

1111
, cTI

1122
, cTI

1133
, which are determined by matching the

second-order coe#cients of the Taylor approximations (4.17) and (4.18).

4.4 First- and second-order derivatives

4.4.1 Layered medium

Let us perform the first and second derivatives of equations (4.3) and (4.5) with

respect to takeo! angle ς . They are

d x(ς)

dς
=

d

dς


n∑

i=1

(Ii+1 → Ii) ◁i sinς√
◁12 → ◁i2 sin2 ς


=

n∑

i=1

(Ii+1 → Ii) ◁12 ◁i cosς

◁12 → ◁i2 sin2 ς

3/2 , (4.31)
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d t(ς)

dς
=

d

dς


n∑

i=1

(Ii+1 → Ii) ◁1

◁i
√

◁12 → ◁i2 sin2 ς


=

n∑

i=1

(Ii+1 → Ii) ◁1 ◁i cosς sinς

◁12 → ◁i2 sin2 ς

3/2 , (4.32)

d2x(ς)

dς2
=

n∑

i=1

(Ii+1 → Ii) ◁12 ◁i sinς ((2 + cos (2ς)) ◁i2 → ◁12)

◁12 → ◁i2 sin2 ς

5/2 , (4.33)

d2t(ς)

dς2
=

n∑

i=1

(Ii+1 → Ii) ◁1 ◁i

2 cos (2ς) ◁12 + (3 + cos (2ς)) ◁i2 sin2 ς



2

◁12 → ◁i2 sin2 ς

5/2 . (4.34)

4.4.2 Ray angle

Recalling expression (4.8), the ray angle for a raypath in a homogeneous TI medium

from the origin to coordinates (x(ς), h) is

1(ς) = arctan


x(ς)

h


.

The first derivative of expression (4.8) is

d 1(ς)

dς
=

d

dς


arctan


x(ς)

h


=

h

x(ς)2 + h2

d x(ς)

dς
. (4.35)

The second derivative of expression (4.8) is

d21(ς)

dς2
=

d

dς


h

x(ς)2 + h2

d x(ς)

dς



=
h


x(ς)2 + h2

2



x(ς)2 + h2

 d2x(ς)

dς2
→ 2 x(ς)


d x(ς)

dς

2


. (4.36)

4.4.3 Distance travelled

Recalling expression (4.9), the distance travelled, for a takeo! angle (4.8) to

coordinates (x(ς), h) , is

L(ς) =
√

x(ς)2 + h2 .

The first derivative of expression (4.9) is

dL(ς)

dς
=

d

dς

√
x(ς)2 + h2


=

x(ς)√
x(ς)2 + h2

d x(ς)

dς
. (4.37)
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The second derivative of expression (4.9) is

d2L(ς)

dς2
=

d

dς



 x(ς)√
x(ς)2 + h2

d x(ς)

dς





=
1


x(ς)2 + h2

3/2


x(ς)


x(ς)2 + h2

 d2x(ς)

dς2
+ h2


d x(ς)

dς

2


. (4.38)

4.4.4 Ray velocity

Recalling expression (4.10), the magnitude of the ray velocity is

V (ϑ) =

√

v(ϑ)2 +


d v(ϑ)

dϑ

2

,

where v(ϑ) is tantamount to any of vqP (ϑ) , vqSV (ϑ) , vSH(ϑ) , which are the three

wavefront velocities in a TI medium, and ϑ is the wavefront angle. The existence and

properties of the three waves that propagate in a Hookean solid are a consequence of

the Christo!el equation (e.g., Slawinski, 2015, Chapter 9). In Chapter 3, we discuss

the roots of the Christo!el equation within the context of a transversely isotropic

medium that is the result of Backus average. However, for this chapter, we consider

the roots within a generic transversely isotropic medium, whose expressions are

vqP (ϑ) =

√
(cTI

3333
→ cTI

1111
)n3

2 + cTI

1111
+ cTI

2323
+
⇒
&

2 φTI
, (4.39a)

vqSV (ϑ) =

√
(cTI

3333
→ cTI

1111
)n3

2 + cTI

1111
+ cTI

2323
→

⇒
&

2 φTI
, (4.39b)

vSH(ϑ) =

√
1

2
(cTI

1111
→ cTI

1122
) (1→ n3

2) + cTI

2323
n3

2

φTI
. (4.39c)

where

& =

cTI

1111
→ cTI

3333


n3

2 → cTI

1111
→ cTI

2323

2 → 4

cTI

3333
cTI

2323
n3

4 →

2 cTI

1133
cTI

2323
→ cTI

1111
cTI

3333
+ cTI

1133

2

n3

2

1→ n3

2

+ cTI

1111
cTI

2323


1→ n3

2
2

,

n3 = cosϑ ,
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and TI denotes a quantity of a transversely isotropic medium. As the displacement

vectors of these waves are neither parallel nor perpendicular to the direction of

propagation, the notation q refers to “quasi” and represents quasi-P and quasi-S

waves. As a consequence of the addition and subtraction of the radical term in the

numerators of equations (4.39a) and (4.39b), respectively, the qP wave is, in general,

faster than the qSV wave, except in singular cases (Bucataru and Slawinski, 2009;

Bos et al., 2019a). The generality of the previous sentence is linked to the convexity

of the innermost sheet of the wavefront-slowness surface, which is described

by Musgrave (1970, p. 91–92) and Slawinski (2015, Theorem 9.3.1). Notably, P

stands for primary and S for secondary. For a discussion on wavefront velocities and

their displacement directions in TI media, we refer the reader to Slawinski (2015,

Chapter 9.2.3). As they are required in the following sections, the first derivatives of

equations (4.39) are

d vqP
dϑ

=
2 sin(2ϑ)


cTI

1111
→ cTI

3333

 ⇒
2 cTI

1111
→ 2

⇒
2 cTI

2323
+
⇒
2 cTI

3333
+
⇒
41

→

⇒
2 42

16
√

φTI &
√

(cTI

3333
→ cTI

1111
) cos2 ϑ+ cTI

1111
+ cTI

2323
+
⇒
&

,

(4.40)

d vqSV
dϑ

=
→2 sin(2ϑ)


cTI

1111
→ cTI

3333

 ⇒
2 cTI

1111
→ 2

⇒
2 cTI

2323
+
⇒
2 cTI

3333
→

⇒
41

+
⇒
2 42

16
√

φTI &
√

(cTI

3333
→ cTI

1111
) cos2 ϑ+ cTI

1111
+ cTI

2323
→

⇒
&

,

(4.41)

d vSH
dϑ

=
sinϑ cosϑ


cTI

1111
→ cTI

1122
→ 2 cTI

2323


√

φTI (cos(2ϑ) (→cTI

1111
+ cTI

1122
+ 2 cTI

2323
) + cTI

1111
→ cTI

1122
+ 2 cTI

2323
)
, (4.42)

where

41 := 8& = 3 cTI

1111

2

+ cos(4ϑ)

cTI

1111
+ 2 cTI

1133
+ cTI

3333

 
cTI

1111
→ 2 cTI

1133
→ 4 cTI

2323
+ cTI

3333



→ 4

cTI

1111
→ cTI

3333


cos(2ϑ)


cTI

1111
→ 2 cTI

2323
+ cTI

3333


→ 2 cTI

1111


2 cTI

2323
+ cTI

3333



+ 4 cTI

1133

2

+ 8 cTI

2323


cTI

1133
+ cTI

2323


→ 4 cTI

2323
cTI

3333
+ 3 cTI

3333

2

,

42 := sin(4ϑ)

cTI

1111
+ 2 cTI

1133
+ cTI

3333

 
cTI

1111
→ 2 cTI

1133
→ 4 cTI

2323
+ cTI

3333


.

The second derivatives of equation (4.39a) and (4.39b) extend further than a page

and, as such, we do not present them here. However, they may be derived using a

symbolic mathematical software; their expressions for vertical rays, i.e., 1 = ϑ = 0 ,
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are given in Section 4.5.2. As for the second derivative of equation (4.39c), it is

d2vSH
dϑ2

= →
43

43 cos4 ϑ+


cTI

1111
→ cTI

1122


sin2 ϑ+


cTI

1122
→ cTI

1111


cos2 ϑ


√

2 φTI (cos2 ϑ (→cTI

1111
+ cTI

1122
+ 2 cTI

2323
) + cTI

1111
→ cTI

1122
)
3/2

, (4.43)

where

43 := cTI

1111
→ cTI

1122
→ 2 cTI

2323
.

First derivative

For the remainder of this section, we do not explicitly state the first and second

derivatives of wavefront velocities (4.39). Instead, we retain the unspecified forms,

v(ϑ) and d v(ϑ)/dϑ .

Let us proceed to the first derivative of equation (4.10). We recognize that ϑ = ϑ(1(ς))

and, as such,
dV (ϑ(1(ς)))

dς
=:

dV (ς)

dς
=

dV (ϑ)

dϑ

dϑ(1)

d1

d 1(ς)

dς
, (4.44)

where

dV (ϑ)

dϑ
=

d

dϑ




√

v(ϑ)2 +


d v(ϑ)

dϑ

2



 =

d v(ϑ)

dϑ


v(ϑ) +

d2v(ϑ)

dϑ2



√

v(ϑ)2 +


d v(ϑ)

dϑ

2

. (4.45)

Di!erentiating the ray and wavefront angle relationship (4.7), with respect to 1 , where

we use the chain rule on the right-hand side, we obtain

d

d1
(tan 1) =

dϑ(1)

d1

d

dϑ





tanϑ+
1

v(ϑ)

d v(ϑ)

dϑ

1→ tanϑ

v(ϑ)

d v(ϑ)

dϑ





which results in

sec2 1 =
dϑ(1)

d1





v(ϑ)


v(ϑ) +

d2v(ϑ)

dϑ2




v(ϑ) cosϑ→ d v(ϑ)

dϑ
sinϑ

2




.
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Solving for dϑ(1)/d1 ,

dϑ(1)

d1
=

sec2 1


cosϑ v(ϑ)→ sinϑ

d v(ϑ)

dϑ

2

v(ϑ)


v(ϑ) +

d2v(ϑ)

dϑ2

 . (4.46)

Using equations (4.35), (4.45), and (4.46), equation (4.44) becomes

dV (ϑ(1(ς)))

dς
=:

dV (ς)

dς
=

h (sec2 1)
d v(ϑ)

dϑ


(cosϑ) v(ϑ)→ sinϑ


d v(ϑ)

dϑ

2 d x(ς)

dς

v(ϑ)

x(ς)2 + h2


√

v(ϑ)2 +


d v(ϑ)

dϑ

2

.

(4.47)

Second derivative

Recalling that ϑ = ϑ(1(ς)) , the second derivative of equation (4.10) is

d2V (ς)

dς2
:=

d2V (ϑ(1(ς)))

dς2

=
d

dς


dV (ϑ)

dϑ

dϑ(1)

d1

d 1(ς)

dς



=
d2V (ϑ)

dϑ2


dϑ(1)

d1

2 d 1(ς)

dς

2

+
dV (ϑ)

dϑ

d2ϑ(1)

d12


d 1(ς)

dς

2

+
dV (ϑ)

dϑ

dϑ(1)

d1

d21(ς)

dς2

=


d 1(ς)

dς

2

d2V (ϑ)

dϑ2


dϑ(1)

d1

2

+
dV (ϑ)

dϑ

d2ϑ(1)

d12


+

dV (ϑ)

dϑ

dϑ(1)

d1

d21(ς)

dς2
.

(4.48)

To complete equation (4.48), we require d2V (ϑ)/dϑ2 and d2ϑ(1)/d12 . For the former,

using equation (4.45), we obtain

d2V (ϑ)

dϑ2
=

d

dϑ





d v(ϑ)

dϑ


v(ϑ) +

d2v(ϑ)

dϑ2



√

v(ϑ)2 +


d v(ϑ)

dϑ

2




.
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Writing v = v(ϑ) , ϑ = ϑ(1) , the above equation simplifies to

d2V (ϑ)

dϑ2
=


d v

dϑ

4

→ v


d v

dϑ

2 d2v

dϑ2
+ v2

d2v

dϑ2


v +

d2v

dϑ2


+ v2

d v

dϑ


d3v

dϑ3


+


d v

dϑ

3 d3v

dϑ3


v2 +


d v

dϑ

2
3/2

.

(4.49)

For d2ϑ/d12, we make use of the second derivative of relationship (4.7). For the

right-hand side, we use the chain and product rules, where

d2

d12
(≃) = d

d1


dϑ

d1
· d

dϑ
(≃)



=
d2ϑ

d12
· d

dϑ
(≃) + dϑ

d1
· d

d1


d

dϑ
(≃)



=
d2ϑ

d12
· d

dϑ
(≃) +


dϑ

d1

2

· d2

dϑ2
(≃) .

Substituting the right-hand side of relationship (4.7) for (≃) and solving for d2ϑ/d12 ,

we obtain

d2ϑ(1)

d12
=

d2 tan 1

d12
→


dϑ

d1

2

· d2

dϑ2




tanϑ+

1

v

d v

dϑ

1→ tanϑ

v

d v

dϑ





d

dϑ




tanϑ+

1

v

d v

dϑ

1→ tanϑ

v

d v

dϑ





, (4.50)

where dϑ/d1 is given by equation (4.46) and the remaining derivatives are obtained

below. Recalling 1(ς) from equation (4.8), we obtain

d2 tan 1

d12
= 2 sec2 1 tan 1 . (4.51a)

Next,

d

dϑ




tanϑ+

1

v

d v

dϑ

1→ tanϑ

v

d v

dϑ



 =

v


v +

d2v

dϑ2




v cosϑ→ sinϑ


d v

dϑ

2
(4.51b)
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and

d2

dϑ2




tanϑ+

1

v

d v

dϑ

1→ tanϑ

v

d v

dϑ



 =

→ sinϑ


d v

dϑ

2 d2v

dϑ2
+ 44 + 45 + 2 v3 sinϑ


v cosϑ→ sinϑ


d v

dϑ

3
, (4.51c)

where

44 := v2

d3v

dϑ3
cosϑ+ 4 sinϑ

d2v

dϑ2
+ 2 cosϑ

d v

dϑ


,

45 := v


2 sinϑ


d2v

dϑ2

2

→ 2 sinϑ


d v

dϑ

2

+
d v

dϑ


cosϑ

d2v

dϑ2
→ d3v

dϑ3
sinϑ


.

Using equations (4.46) and (4.51), equation (4.50) becomes

d2ϑ(1)

d12
=

46 sec4 1


v cosϑ→ sinϑ

d v

dϑ

2

2 v3

v +

d2v

dϑ2

3
, (4.52)

where

ϖ6 := 2 v4 ϖ7

→ 2 sin2 ϑ


d v

dϑ

3 d2v

dϑ2



→ 2 v3

2 cos (2ϑ)

d v

dϑ
→ 2 ϖ7


d2v

dϑ2


+ cos2 ϑ


d3v

dϑ3



→ 2 (sinϑ) v
d v

dϑ


2 sinϑ


d v

dϑ

2

→

d2v

dϑ2

2


+
d v

dϑ


→2 cosϑ


d2v

dϑ2


+ sinϑ


d3v

dϑ3



+ v2

4 sin (2ϑ)


d v

dϑ

2

+ 2 ϖ7


d2v

dϑ2

2

+
d v

dϑ


(3→ 5 cos (2ϑ))


d2v

dϑ2


+ 2 sin (2ϑ)


d3v

dϑ3


,

ϖ7 := sin (2 ϱ)→ sin (2ϑ) .

Returning to equation (4.48), and using equations (4.35) for d 1(ς)/dς , (4.36)

for d21(ς)/dς2 , (4.45) for dV (ϑ)/dϑ , (4.49) for d2V (ϑ)/dϑ2 , (4.46) for dϑ(1)/d1 ,
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and (4.52) for d2ϑ(1)/d12 , we obtain

d2V

dς2
=

h sec4 1


(cosϑ) v → sinϑ


d v

dϑ

2

(48 + 49 + 410 + 411 + 414)

v3

h2 + x(ς)2

2

v2 +


d v

dϑ

2
3/2 

v +
d2v

dϑ2

 , (4.53)

where

↽8 := v
3
(
d v

dϱ

)2
(
d v

dϱ

(
↽12 +

(
dx(φ)

dφ

)2

(h (sin(2ϱ) + sin(2 ⇀))↑ ↽13)

)
+ 3h

(
sin

2
ϱ
) d

2
v

dϱ2

(
dx(φ)

dφ

)2
)

,

↽9 := v
2
(
d v

dϱ

)3
(

d
2
v

dϱ2

(
↽12 +

(
dx(φ)

dφ

)2

(h (sin(2 ⇀)↑ sin(2ϱ))↑ ↽13)

)
↑ h

(
cos

2
ϱ
) d v

dϱ

(
dx(φ)

dφ

)2
)

,

↽10 := v
4 d v

dϱ

(
d
2
v

dϱ2

(
↽12 +

(
dx(φ)

dφ

)2

(h (sin(2 ⇀)↑ 2 sin(2ϱ))↑ ↽13)

)
↑ 2h (cos(2ϱ))

d v

dϱ

(
dx(φ)

dφ

)2
)

,

↽11 := v
5

((
d v

dϱ

)(
↽12 +

(
dx(φ)

dφ

)2

(h (sin(2 ⇀)↑ sin(2ϱ))↑ ↽13)

)
+ h

(
cos

2
ϱ
) d

2
v

dϱ2

(
dx(φ)

dφ

)2
)

,

↽12 := cos
2
⇀

(
x(φ)

2
+ h

2
)(

d
2
x(φ)

dφ2

)
,

↽13 := 2x(φ) cos
2
⇀ ,

↽14 := ↑h sin
2
ϱ

(
d v

dϱ

)6 (
dx(φ)

dφ

)2

+ 2h v sinϱ

(
d v

dϱ

)4 (
dx(φ)

dφ

)2 (
sinϱ

(
d
2
v

dϱ2

)
+ cosϱ

(
d v

dϱ

))
.

4.4.5 Traveltime

Recalling expression (4.11), the traveltime along a ray in the approximate medium,

for the same source-receiver combination as the layered medium, whose receiver

coordinates are (x(ς), h) , is

T (1(ς)) =
L(ς)

V (ϑ(1(ς)))
.

As stated in Section 4.2.3, the receiver coordinates may be expressed as a function

of the takeo! angle in the layered medium, ς . Since the formulation uses the same

source-receiver combinations, we express the ray angle in the approximate medium as

a function of ς . Since the wavefront angle ϑ is a function of 1 , which, in turn, is a

function of ς , we recall notation (4.12) to write

T (ς) := T (1(ς)) , L := L(ς) , V := V (ς) = V (ϑ(1(ς))) .
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Using notation (4.12), we write equation (4.11) as T (ς) = L/V . From the chain rule,

d

dς
=

d 1(ς)

dς

d

d1
=

d 1(ς)

dς

dϑ(1)

d1

d

dϑ
,

the first derivative of equation (4.11) is

dT (ς)

dς
=

d

dς


L

V


=

1

V 2


V

dL

dς
→ L

dV

dς


. (4.54)

Using equation (4.9) for L , (4.37) for dL/dς , (4.10) for V , and (4.47) for dV/dς ,
equation (4.54) becomes

dT (φ)

dφ
=

dx(φ)

dφ

(
v

(
d v

dϱ

)2 (
h sin(2ϱ) sec

2
⇀ + x(φ)

)
↑ h sec

2
⇀

(
d v

dϱ

)(
v
2
cos

2
ϱ+ sin

2
ϱ

(
d v

dϱ

)2
)

+ v
3
x(φ)

)

v

√
x(φ)

2
+ h2

(
v2 +

(
d v

dϱ

)2
)3/2

.

(4.55)

The second derivative of equation (4.11) is

d2T (ς)

dς2
=

d

dς


V ↑1

dL

dς
→ LV ↑2

dV

dς



=


→ 1

V 2

dV

dς

dL

dς
+

1

V

d2L

dς2


→

dL

dς
V ↑2

dV

dς
→ 2

L

V 3

dV

dς

dV

dς
+ LV ↑2

d2V

dς2



=
1

V 3


→2V

dV

dς

dL

dς
+ V 2

d2L

dς2
+ 2L


dV

dς

2

→ LV
d2V

dς2


. (4.56)

Since the expression for equation (4.56) exceeds a full page when fully simplified, we

suppress the details.

4.5 First- and second-order approximations

4.5.1 First order

Let us examine the first-order coe#cients of Taylor approximations (4.17) and (4.18).

For the layered medium, we evaluate the first derivatives of equations (4.3) and (4.5),
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which are given in (4.31) and (4.32), for ς = 0 to obtain

d x(ς)

dς

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii) ◁i
◁1

,
d t(ς)

dς

∣∣∣∣
φ=0

= 0 .

Recalling equations (4.4a) and (4.4b) for ◁ , we obtain

d xP (ς)

dς

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii)2i

21

,
d xS(ς)

dς

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii) 3i

31

, (4.57a,b)

and

d tP (ς)

dς

∣∣∣∣
φ=0

= 0 ,
d tS(ς)

dς

∣∣∣∣
φ=0

= 0 . (4.58a,b)

For the approximate medium, we evaluate the first derivative of equation (4.11), which

is equation (4.55), to obtain

dT (ς)

dς

∣∣∣∣
φ,⇀,ϱ=0

=

d x(ς)

dς

∣∣∣∣
φ=0


v(0) x(0)


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

2

→ h


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0


v(0)2 + v(0)3 x(0)



v(0)
√

x(0)2 + h2


v(0)2 +


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

2
3/2

.

(4.59)

Recalling equations (4.14) and (4.19a), the right-hand side of equation (4.59) reduces

to 0 . Consequently, for any of TqP (ς) , TqSV (ς) , TSH(ς) , we have

dTqP (ς)

dς

∣∣∣∣
φ,⇀,ϱ=0

= 0 ,
dTqSV (ς)

dς

∣∣∣∣
φ,⇀,ϱ=0

= 0 ,
dTSH(ς)

dς

∣∣∣∣
φ,⇀,ϱ=0

= 0 .

(4.60a,b,c)

Thus, in view of layer values (4.58) and approximate-medium values (4.60), the first-

order coe#cients of Taylor approximations (4.17) and (4.18) are in agreement for

rays of P and S waves in the layered medium and rays of qP , qSV , SH waves in

the approximate medium. We remark that this is a consequence of the fact that

traveltimes along vertical rays are a minimum in both media. Hence, to consider
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expressions for the remaining TI elasticity parameters, cTI

1111
, cTI

1122
, cTI

1133
, we proceed

to the second-order coe#cients.

4.5.2 Second order

Let us examine the second-order coe#cients of Taylor approximations (4.17)

and (4.18). For the layered medium, we evaluate the second derivatives of

equations (4.3) and (4.5), which are equations (4.33) and (4.34), for ς = 0 to obtain

d2x(ς)

dς2

∣∣∣∣
φ=0

= 0 ,
d2t(ς)

dς2

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii) ◁i
◁12

.

Recalling equations (4.4a) and (4.4b) for ◁ , we obtain

d2xP (ς)

dς2

∣∣∣∣
φ=0

= 0 ,
d2xS(ς)

dς2

∣∣∣∣
φ=0

= 0 ,

and

d2tP (ς)

dς2

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii)2i

21
2

,
d2tS(ς)

dς2

∣∣∣∣
φ=0

=
n∑

i=1

(Ii+1 → Ii) 3i

31
2

. (4.61a,b)

For the approximate medium, we refer to the second derivative of equation (4.11),

which is equation (4.56) and we restate as

d2T (ς)

dς2
=

1

V 3


→2V

dV

dς

dL

dς
+ V 2

d2L

dς2
+ 2L


dV

dς

2

→ LV
d2V

dς2


. (4.62)

In order to evaluate equation (4.62) for vertical rays, let us address the zeroth-, first-,

and second-order derivatives of L and V . First, we recall equations (4.15) and (4.23),

respectively, and find that the zeroth-order derivatives have been evaluated. Second,

we address the first derivatives. For the former, we recall equation (4.19a) and evaluate

equation (4.37) to obtain

dL

dς

∣∣∣∣
φ=0

=
x(0)√

x(0)2 + (In+1 → I1)
2

d x(ς)

dς

∣∣∣∣
φ=0

= 0 . (4.63)
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For the latter, we recall equation (4.14) and evaluate (4.47) to find that

dV

dς

∣∣∣∣
φ,⇀,ϱ=0

=

(In+1 → I1)


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0


v(0)2


d x(ς)

dς

∣∣∣∣
φ=0



v(0)

x(0)2 + (In+1 → I1)

2

√

v(0)2 +


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

2

= 0 . (4.64)

Finally, we address second derivatives. For the former, we recall equation (4.19a) and

evaluate equation (4.38) to obtain

d2L

dς2

∣∣∣∣
φ=0

=

(In+1 → I1)
2


d x(ς)

dς

∣∣∣∣
φ=0

2

+ x(0)

(In+1 → I1)

2 + x(0)2
 d2x(ς)

dς2

∣∣∣∣
φ=0


x(0)2 + (In+1 → I1)

2
3/2

=


d x(ς)

dς

∣∣∣∣
φ=0

2

(In+1 → I1)
. (4.65)

For the latter, we evaluate (4.53) to obtain

d2V

dς2

∣∣∣∣
φ,⇀,ϱ=0

=

(In+1 → I1)
2 v(0)4


d2v(ϑ)

dϑ2

∣∣∣∣
ϱ=0


d x(ς)

dς

∣∣∣∣
φ=0

2


x(0)2 + (In+1 → I1)

2
2


v(0)2 +


d v(ϑ)

dϑ

∣∣∣∣
ϱ=0

2
3/2 

v(0) +
d2v(ϑ)

dϑ2

∣∣∣∣
ϱ=0

 .

Recalling equations (4.14) and (4.19a),

d2V

dς2

∣∣∣∣
φ,⇀,ϱ=0

=

v(0)


d2v(ϑ)

dϑ2

∣∣∣∣
ϱ=0


d x(ς)

dς

∣∣∣∣
φ=0

2

(In+1 → I1)
2


v(0) +

d2v(ϑ)

dϑ2

∣∣∣∣
ϱ=0

 . (4.66)

Thus, in view of equation (4.23) for L(0) , (4.15) for V (0) , (4.63) for dL/dς|
φ=0

,

(4.64) for dV/dς|
φ,⇀,ϱ=0

, (4.65) for d2L/dς2|
φ=0

, and (4.66) for d2V/dς2|
φ,⇀,ϱ=0

,
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equation (4.62) becomes

d2T (ς)

dς2

∣∣∣∣
φ,⇀,ϱ=0

=


d x(ς)

dς

∣∣∣∣
φ=0

2

(In+1 → I1)


v(0) +

d2v(ϑ)

dϑ2

∣∣∣∣
ϱ=0

 . (4.67)

For the rays of qP, qSV, SH waves, let us recall equations (4.39) for v(0)

and (4.57a,b) for d x(ς)/dς|
φ=0

. For d2v(ϑ)/dϑ2|
ϱ=0

, we recall equation (4.43)

for SH waves but rely on a symbolic software to perform, and evaluate, the second

derivative of wavefront velocities of qP and qSV waves. Thus, for T (ς) = TqP (ς) ,

d2TqP (ς)

dς2

∣∣∣∣
φ=⇀=ϱ=0

=


n

i=1

(Ii+1 → Ii)2i

21

2

(In+1 → I1)

√
cTI

3333

φTI
+


cTI

1133
+ cTI

3333

 
cTI

1133
+ 2 cTI

2323
→ cTI

3333


√

φTI

√
cTI

3333
(cTI

3333
→ cTI

2323
)

 ;

(4.68a)

for T (ς) = TqSV (ς) ,

d2TqSV (ς)

dς2

∣∣∣∣
φ=⇀=ϱ=0

=


n

i=1

(Ii+1 → Ii) 3i

31

2

(In+1 → I1)

√
cTI

2323

φTI
+

cTI

1111


cTI

2323
→ cTI

3333


+ cTI

1133

2
+ 2 cTI

1133
cTI

2323
+ cTI

2323
cTI

3333√
φTI

√
cTI

2323
(cTI

2323
→ cTI

3333
)

 ;

(4.68b)

and for T (ς) = TSH(ς) ,

d2TSH(ς)

dς2

∣∣∣∣
φ=⇀=ϱ=0

=


n

i=1

(Ii+1 → Ii) 3i

31

2

(In+1 → I1)

√
cTI

2323

φTI
+

cTI

1111
→ cTI

1122
→ 2 cTI

2323

2
√
φTI

√
cTI

2323

 . (4.68c)

76



4.5.3 Elasticity parameters

To obtain expressions for the remaining elasticity parameters, cTI

1111
, cTI

1122
, cTI

1133
, we

use equations (4.61) and (4.68) to solve a system of three equations, which is






d2tP (ς)

dς2

∣∣∣∣
φ=0

=
d2TqP (ς)

dς2

∣∣∣∣
φ,⇀,ϱ=0

d2tS(ς)

dς2

∣∣∣∣
φ=0

=
d2TqSV (ς)

dς2

∣∣∣∣
φ,⇀,ϱ=0

d2tS(ς)

dς2

∣∣∣∣
φ=0

=
d2TSH(ς)

dς2

∣∣∣∣
φ,⇀,ϱ=0

. (4.69)

In solving system (4.69), we do not specify d2tP (ς)/dς2|
φ=0

, d2tS(ς)/dς2|
φ=0

or d xP (ς)/dς|φ=0
, d xS(ς)/dς|φ=0

, as they are not functions of the
approximate-medium elasticity parameters. Thus, using modified forms of
equations (4.68a), (4.68b), (4.68c), system (4.69) becomes






d2tP (ς)

dς2

∣∣∣∣
ω=0

=


dxP (ς)

dς

∣∣∣∣
ω=0

2

(In+1 → I1)

√
cTI
3333

φTI
+


cTI
1133 + cTI

3333

 
cTI
1133 + 2 cTI

2323 → cTI
3333


√
φTI

√
cTI
3333


cTI
3333 → cTI

2323





d2tS(ς)

dς2

∣∣∣∣
ω=0

=


dxS(ς)

dς

∣∣∣∣
ω=0

2

(In+1 → I1)

√
cTI
2323

φTI
+

cTI
1111


cTI
2323 → cTI

3333


+ cTI

1133
2
+ 2 cTI

1133 c
TI
2323 + cTI

2323 c
TI
3333√

φTI
√
cTI
2323


cTI
2323 → cTI

3333





d2tS(ς)

dς2

∣∣∣∣
ω=0

=


dxS(ς)

dς

∣∣∣∣
ω=0

2

(In+1 → I1)

√
cTI
2323

φTI
+

cTI
1111 → cTI

1122 → 2 cTI
2323

2
√
φTI

√
cTI
2323



.

Solving for cTI

1111
, cTI

1122
, cTI

1133
, we obtain

cTI
1111 = →cTI

2323 +
1

(In+1 → I1)





√
cTI
3333 φ

TI


dxP (ς)

dς

∣∣∣∣
ω=0

2

d2tP (ς)

dς2

∣∣∣∣
ω=0

+

√
cTI
2323 φ

TI


dxS(ς)

dς

∣∣∣∣
ω=0

2

d2tS(ς)

dς2

∣∣∣∣
ω=0




,

(4.70a)
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cTI
1122 = →cTI

2323 +
1

(In+1 → I1)





√
cTI
3333 φ

TI


dxP (ς)

dς

∣∣∣∣
ω=0

2

d2tP (ς)

dς2

∣∣∣∣
ω=0

→

√
cTI
2323 φ

TI


dxS(ς)

dς

∣∣∣∣
ω=0

2

d2tS(ς)

dς2

∣∣∣∣
ω=0




,

(4.70b)

cTI
1133 = →cTI

2323 (4.70c)

+

√


cTI
2323 → cTI

3333

 d2tP (ς)

dς2

∣∣∣∣
ω=0



(In+1 → I1) cTI
2323

d2tP (ς)

dς2

∣∣∣∣
ω=0

→
√
cTI
3333 φ

TI


d2xP (ς)

dς2

∣∣∣∣
ω=0

2




(In+1 → I1)

d2tP (ς)

dς2

∣∣∣∣
ω=0

.

(4.70d)

There exists another set of solutions where the second term in equation (4.70c) is

subtracted. However, we reject this solution since, upon further numerical inspection,

the corresponding elasticity tensor is not positive definite.

4.5.4 Formulae

Let us substitute the expressions for cTI

3333
and cTI

2323
, given in equations (4.26a) and

(4.26b), along with equations (4.57a,b) and (4.61a,b), namely,

d xP (ς)

dς

∣∣∣∣
φ=0

,
d xS(ς)

dς

∣∣∣∣
φ=0

and
d2tP (ς)

dς2

∣∣∣∣
φ=0

,
d2tS(ς)

dς2

∣∣∣∣
φ=0

,

in to equations (4.70a), (4.70b), (4.70c) to obtain the approximate-medium elasticity

parameters in terms of its constituent layer parameters. For conciseness, we adopt

the following notation

51 :=
n∑

i=1

Ii+1 → Ii√
ciso
1111,i

φi

, 52 :=
n∑

i=1

Ii+1 → Ii√
ciso
2323,i

φi

, (4.71a,b)

53 :=
n∑

i=1

φ1 (Ii+1 → Ii)

ciso
1111,1

√
ciso
1111,i

φi
, 54 :=

n∑

i=1

φ1 (Ii+1 → Ii)

ciso
2323,1

√
ciso
2323,i

φi
, (4.71c,d)

55 :=
n∑

i=1

(Ii+1 → Ii)

√
φ1 ciso1111,i
φi ciso1111,1

, 56 :=
n∑

i=1

(Ii+1 → Ii)

√
φ1 ciso2323,i
φi ciso2323,1

. (4.71e,f)

78



Using notation (4.71), the approximate-medium elasticity parameters are

cTI

1111
= φTI




552

51 53
+

52 562

54
→ (In+1 → I1)

2

522



 , (4.72a)

cTI

1122
= φTI




552

51 53
→

52 562

54
+ (In+1 → I1)

2

5 2
2



 , (4.72b)

cTI

1133
=

φTI (In+1 → I1)

522 53





√
(512 → 522) 53


(In+1 → I1)

2 51 53 → 522 552


513/2
→ (In+1 → I1) 53



 ,

(4.72c)

cTI

3333
=

φTI (In+1 → I1)
2

5 2
1

, (4.72d)

cTI

2323
=

φTI (In+1 → I1)
2

5 2
2

. (4.72e)

4.6 Numerical examples

4.6.1 Approximate medium

Let us consider a stack of ten layers, whose density-normalized elasticity properties

are given in Table 4.1a, whereas traveltimes through the stack at increasing o!sets

are given in Table 4.1b.

We begin by calculating the values for equations (4.71), where

51 = 0.2295 , 52 = 0.5340 , 53 = 0.4257 , 54 = 0.9667 ,

55 = 1383.2206 , 56 = 1374.0038 , φTI = 1 .

Using these values, we evaluate parameters (4.72) to obtain

cTI

1111
= 19738951.6410 , cTI

1122
= 12425456.1922 , cTI

1133
= 12274442.1940 ,

cTI

3333
= 18991558.3336 , cTI

2323
= 3506410.3613 ,

(4.73)

whose units are m2/s2 . Using elasticity parameters (4.73) in (4.6), the elasticity tensor
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Layer ciso
1111

ciso
2323

2 3

1 10.56 2.02 3.25 1.42
2 20.52 4.45 4.53 2.11
3 31.14 2.89 5.58 1.70
4 14.82 2.62 3.85 1.62
5 32.15 2.92 5.67 1.71
6 16.00 2.56 4.00 1.60
7 16.40 6.35 4.05 2.52
8 18.06 4.33 4.25 2.08
9 31.47 8.01 5.61 2.83
10 17.31 3.76 4.16 1.94

(a)

Receiver O!set P S

1 0 229.5 534.0
2 100 230.6 536.6
3 200 233.9 544.2
4 300 239.2 556.5
5 400 246.5 573.2
6 500 255.6 593.9
7 600 266.1 618.0
8 700 278.0 644.9
9 800 291.0 674.2
10 900 304.9 705.3
11 1000 319.5 737.7

(b)

Table 4.1: Density-scaled elasticity parameters and corresponding traveltimes
(adapted from Tables 4.1 and 4.2 (p. 175 and p. 185) of Slawinski (2018)). Table
on the left tabulates density-scaled elasticity parameters, whose units are 106 m2s↑2 ,
for a stack of isotropic layers, and the corresponding P - and S-wave velocities in
km s↑1 . Table on the right tabulates traveltimes, in milliseconds, through a stack of
isotropic layers, whose properties are given in the left table and whose thicknesses
are one hundred metres. The source is directly opposite the first receiver, and other
receivers are spaced in hundred-metre intervals. The P -wave and S-wave traveltimes
correspond to the layered medium and are obtained by invoking Fermat’s principle.
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for the approximate TI medium is

cTI

=





19738951.6410 12425456.1922 12274442.1940 0 0 0

12425456.1922 19738951.6410 12274442.1940 0 0 0

12274442.1940 12274442.1940 18991558.3336 0 0 0

0 0 0 2 (3506410.3613) 0 0

0 0 0 0 2 (3506410.3613) 0

0 0 0 0 0 7313495.4488




,

(4.74)

whose eigenvalues are

▷1 = 44144211.9233 , ▷2 = ▷3 = 7313495.4488 ,

▷4 = ▷5 = 7012820.7225 , ▷6 = 7011754.2436 ,

which belong to a transversely isotropic tensor (Bóna et al., 2007a), as expected.

Remark 3. Let us exemplify the solution to system (4.69) that breaks positive

definiteness. Specifically, in solution (4.70c), the second term may be negative, which

results in cTI

1133
= →19287262.9165 . Replacing this value in tensor (4.74) leads to

eigenvalues that are

▷1 = 53638239.8999 , ▷2 = ▷3 = 7313495.4488 ,

▷4 = ▷5 = 7012820.7225 , ▷6 = →2482273.7330 .

Since ▷6 < 0 the matrix is not positive definite.

Using cTI

3333
and cTI

2323
of values (4.73) in (4.27), the elasticity tensor of the approximate

isotropic medium is

cISO

=





18991558.3336 11978737.6111 11978737.6111 0 0 0

11978737.6111 18991558.3336 11978737.6111 0 0 0

11978737.6111 11978737.6111 18991558.3336 0 0 0

0 0 0 2 (3506410.3613) 0 0

0 0 0 0 2 (3506410.3613) 0

0 0 0 0 0 2 (3506410.3613)




,

(4.75)
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whose eigenvalues are

▷1 = 42949033.5559 , ▷2 = ▷3 = ▷4 = ▷5 = ▷6 = 7012820.7225 ,

which belong to an isotropic tensor (Bóna et al., 2007a), as expected.

Now, let us compare traveltimes through the layered and approximate media. For

the layered medium, using equation (4.3), we calculate ςP and ςS for rays of P

and S waves for receiver locations spaced in hundred-metre intervals. Then, for each

receiver location, we substitute ςP and ςS in equation (4.5) to calculate tP and tS ,

respectively ; these results are tabulated in the columns three and five of Table 4.2.

For the approximate isotropic medium, we calculate the distances traveled along the

rays, LP and LS , for each receiver location using equation (4.9). Using

equations (4.29), we calculate the traveltimes along the two rays, TP and TS ; these

results are tabulated in the last two columns of Table 4.2. In Figures 4.2 and 4.3 of

Section 4.6.2, we plot the approximate isotropic P and S traveltimes and compare

with traveltimes of the root-mean-square medium.

For the approximate TI medium, we calculate the distances traveled along the rays,

LqP , LqSV and LSH , for each receiver location using equation (4.9), and, using

equation (4.8), we calculate the ray angles, 1qP , 1qSV and 1SH . Using the ray angles,

we solve relation (4.7) for the associated wavefront angles, ϑqP , ϑqSV and ϑSH ,

which are, in turn, used in equation (4.10) to calculate the ray velocities, VqP , VqSV

and VSH . Substituting the respective distances traveled and ray velocities in

equation (4.11), we calculate the traveltimes along the three rays, TqP , TqSV

and TSH ; these results are tabulated in Table 4.3. In Figures 4.4 and 4.5 of

Section 4.6.3, we plot the approximate TI qP , qSV and SH traveltimes and

compare with traveltimes of the Backus medium.

Let us elaborate on the raytracing for the layered and approximate media. On the

left-hand side of Figure 4.1, we have the layered medium, which is comprised of ten,

one-hundred-meter thick, horizontally stratified, homogeneous and isotropic layers,

with the layer interfaces indicated by dotted lines and layer properties specified in

Table 4.1(a). Therein, the source is located at the origin, the first receiver (square)

are located at a depth of 1000m directly opposite to the source, and the remaining

receivers are spaced in one-hundred-metre intervals to the right. For each
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Figure 4.1: Selected raytracing for P waves in the layered medium (left) and for qP
waves in the approximate medium (right). In both media, the source is located at the
origin directly opposite the first receiver, which is located at a depth of 1000m, and
other receivers are spaced by one-hundred-metre intervals.

source-receiver combination, we use MATLAB’s fzero function to calculate the

takeo! angle in equation (4.3) that results in the required horizontal distance

travelled. In Table 4.2, we present the takeo! angles for selected source-receiver

combinations, for both P and S waves.

On the right-hand side of Figure 4.1, we have the approximate medium, which is

homogeneous and either isotropic or transversely isotropic. For the former, the

medium can represent either approximate ISO and root-mean-square medium, which

is discussed in Section 4.6.2. For the latter, the medium can represent the

approximate TI or the Backus medium, which we discuss in Section 4.6.3. For each

source-receiver combination in the transversely isotropic media, we use MATLAB’s

fzero function with equation (4.7) to calculate the wavefront angle for the given ray

angle, then calculate the ray velocity along the ray using equation (4.10). In

Tables 4.3 and 4.4, we present the wavefront angles for selected source-receiver

combinations, for qP , qSV , and SH waves.

Turning our attention to traveltimes, we observe in Figures 4.2 – 4.5 that the

approximate TI traveltimes (second order) are always closer to the layered

traveltimes than the isotropic (first order) traveltimes, as expected. The traveltime
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x φP tP φS tS ⇀ TP,rms TS,rms TP TS

0 0.0000 229.4667 0.0000 534.0337 0.0000 225.9426 522.9408 229.4667 534.0337

200 8.1351 233.8683 8.1814 544.1598 11.3099 230.4172 533.2970 234.0111 544.6096

400 15.4507 246.5387 15.4857 573.2453 21.8014 243.3476 563.2244 247.1432 575.1719

600 21.4338 266.1239 21.3286 617.9779 30.9638 263.4921 609.8485 267.6019 622.7849

800 25.9486 290.9649 25.4767 674.1813 38.6598 289.3477 669.6909 293.8608 683.8968

1000 29.1251 319.5119 27.9682 737.7364 45.0000 319.5311 739.5499 324.5149 755.2376

1200 31.2288 350.5187 29.1599 805.1996 50.1944 352.9336 816.8596 358.4385 834.1872

1400 32.5634 383.0849 29.6504 874.3673 54.4623 388.7264 899.7013 394.7895 918.7862

1600 33.3957 416.6158 29.8608 944.2354 57.9946 426.3077 986.6827 432.9569 1007.6130

1800 33.9183 450.7433 29.9633 1014.4200 60.9454 465.2443 1076.8010 472.5009 1099.6430

2000 34.2527 485.2460 30.0195 1084.7670 63.4350 505.2230 1169.3310 513.1032 1194.1360

2200 34.4714 519.9904 30.0533 1155.2070 65.5561 546.0150 1263.7430 554.5314 1290.5510

2400 34.6170 554.8937 30.0751 1225.7040 67.3801 587.4508 1359.6460 596.6135 1388.4880

Table 4.2: Traveltimes along rays, for increasing horizontal o!set, of P and S waves
through layered medium, tP and tS , through the rms medium, TP,rms and TS,rms ,
through approximate isotropic medium, TP and TS ; layer properties are given in
Table 4.1, whereas elastic properties of approximate isotropic medium are given
by cISO

1111
:= cTI

3333
and cISO

2323
:= cTI

2323
of parameters (4.73). The receiver o!sets x are in

metres while the traveltimes in milliseconds. The ray angles in the layered medium,
ςP and ςS , as well as in the rms and approximate isotropic media, 1 , are in degrees.

curves of the approximate TI medium remain within 1% error of those in the layered

medium up to 1,100 metres of o!set, and, for the approximate isotropic medium, up

to 800 metres.

4.6.2 Root-mean-square medium

As noted in (4.30) the wave velocity in the approximate ISO medium is the weighted

harmonic mean of the velocities in the individual layers. However, other averaging

procedures have been proposed in the literature. In particular, Dix (1955,

expression (10)) proposes the root-mean-square (rms) velocity,

V↼,rms =

√

n
i=1

◁i2 ti

n
i=1

ti

, (4.76)

where ◁i is the speed of a wave in the ith layer, to be replaced for a P or S wave by

either equation (4.4a) or (4.4b), respectively, and ti is the traveltime along a vertical

ray of that wave in the ith layer. We refer to this medium as the rms medium. For

a detailed derivation of expression (4.76), we refer the reader to Taner and Koehler

(1969). Therein, the rms velocity is a coe#cient of a power series expansion within the
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Figure 4.2: Illustration of P -wave traveltimes and error for increasing horizontal o!set.
The traveltimes in the approximate isotropic medium remain within 1% of the layered
traveltimes for up to 800 metres; traveltimes in the root-mean-square medium has no
such properties.

context of the so-called X2-T 2 method, which is beyond the scope of this dissertation.

Now, we may calculate, using the fact that ti = (Ii+1 → Ii)/◁i,

V 2

↼,rms
=

n
i=1

◁i2 ti

n
i=1

ti

=

n
i=1

◁i(Ii+1 → Ii)

n
i=1

Ii+1↑Ii

↼i

= A(◁i)H(◁i)

where

A(◁i) :=

n
i=1

◁i(Ii+1 → Ii)

n
i=1

(Ii+1 → Ii)

is the weighted arithmetic mean of the velocities, and H is the weighted harmonic

mean. In other words, the rms mean of the velocities is the geometric mean of A(◁i)

and H(◁i).

In case the layer velocities are all very similar then it is to be expected that the rms
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Figure 4.3: Illustration of S-wave traveltimes and error for increasing horizontal o!set.
The traveltimes in the approximate isotropic medium remain within 1% of the layered
traveltimes for up to 600 metres; traveltimes in the root-mean-square medium has no
such properties.
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x ϱ ϑqP TqP ϑqSV TqSV ϑSH TSH

0 0.0000 0.0000 229.4667 0.0000 534.0337 0.0000 534.0337
200 11.3099 10.9675 233.8726 10.8886 544.1942 10.8562 544.1789
400 21.8014 21.1568 246.6060 21.1998 573.7510 20.9846 573.5387
600 30.9638 30.0884 266.4517 30.4604 620.2535 29.9132 619.3869
800 38.6598 37.6353 291.9438 38.4066 680.4970 37.4922 678.3884
1000 45.0000 43.8982 321.7342 45.0147 751.3071 43.7977 747.4349
1200 50.1944 49.0681 354.7393 50.4273 830.0106 49.0073 824.0052
1400 54.4623 53.3458 390.1446 54.8496 914.5577 53.3172 906.1939
1600 57.9946 56.9083 427.3554 58.4817 1003.4500 56.9038 992.6065
1800 60.9454 59.9001 465.9406 61.4920 1095.6100 59.9131 1082.2320
2000 63.4350 62.4355 505.5866 64.0132 1190.2660 62.4608 1174.3340
2200 65.5561 64.6037 546.0633 66.1474 1286.8550 64.6375 1268.3740
2400 67.3801 66.4741 587.1993 67.9724 1384.9680 66.5136 1363.9510

Table 4.3: Traveltimes along rays, for increasing horizontal o!set, of qP , qSV and SH
waves through the approximate TI medium, TqP , TqSV , TSH ; elastic properties of
medium are given by parameters (4.73). The receiver o!sets x are in metres while the
traveltimes in milliseconds. The ray angle, 1 , along with wavefront angles for the qP ,
qSV and SH waves, ϑqP , ϑqSV , ϑSH , are in degrees.

(and indeed any average procedure) will produce a velocity nearly equal to the

harmonic mean. Consider the following numerical example as a demonstration. We

calculate the rms velocities for P and S waves, which are VP,rms = 4425.9027m/s

and VS,rms = 1912.2625m/s . Then, we calculate the traveltimes along the rays of

the P and S waves propagating through the rms medium for source-receiver

combinations that are consistent with Section 4.6.1; we tabulate the results in

columns seven and eight of Table 4.2. Also, we illustrate the rms-velocity traveltime

curves of the P and S waves in Figures 4.2 and 4.3, respectively.

More generally, if the layer velocities di!er significantly, then it can be expected that

the rms mean and the harmonic mean di!er substantially. However, the harmonic

mean for our proposed ISO medium is exact for vertical rays, agrees with the layered

velocity to order 1 (in the propagation angle), and hence is guaranteed to be a good

approximation for small propagation angles— the rms medium has no such properties.

At the cost of a slightly more complicated formulation, the approximate TI medium

will provide an even better approximation (for small propagation angles).
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4.6.3 Backus medium

To gain insight on the traveltimes in the approximate TI medium, let us compare

them with traveltime along the same raypaths within a TI medium that is the result

of the Backus average1. The criterion of our homogenization is an approximate

equality of traveltimes between a stack of layers and a single medium. In contrast,

the criterion of Backus’s homogenization is derived based on mechanical

considerations by assuming a load applied to a horizontal plane of a stack of layers

in a static equilibrium (e.g., Slawinski, 2018, Section 4.2.2.2). Hence, the

stress-tensor components of the applied load are ↼13 , ↼23 and ↼33 . In view of the

static equilibrium, these stress-tensor components are constant throughout.

To compare, we perform the Backus average on the layers in Table 4.1(a) to obtain

an equivalent homogenous TI medium, which we refer to as the Backus medium. Its

elasticity tensor is

cTI =





18835691.9900 10853691.9900 10959063.4413 0 0 0

10853691.9900 18835691.9900 10959063.4413 0 0 0

10959063.4413 10959063.4413 18432619.1430 0 0 0

0 0 0 2 (3378620.2475) 0 0

0 0 0 0 2 (3378620.2475) 0

0 0 0 0 0 7982000.0000





(4.77)

and its eigenvalues are

▷1 = 40549810.8475 , ▷2 = ▷3 = 7982000.0000 ,

▷4 = 7572192.2754 , ▷5 = ▷6 = 6757240.4950 ;

herein, TI denotes a quantity of the Backus medium. We calculate the traveltimes

along the rays of qP, qSV, SH waves propagating through the Backus medium for

source-receiver combinations that are consistent with Section 4.6.1; the results are

tabulated in Table 4.4.

We recall that the Backus medium is said to be “long-wave equivalent” to the

original, layered medium. Thus, the limitation to long waves removes high-frequency

wavelengths and, as such, the first arrivals of nearly vertical waves in the layered

medium arrive earlier than in the Backus medium (Backus, 1962, p. 4432). As well,

1Readers interested in the details of the Backus average may refer to the original article by Backus
(1962) as well as investigations by Bos et al. (2017, 2018, 2019c).
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Figure 4.4: Illustration of P -wave traveltimes and error for increasing horizontal o!set.
The traveltimes in the approximate TI medium remain within 1% of the layered
traveltimes for up to 1,100 metres; traveltimes in the Backus medium have no such
properties.

as a consequence of the above formulation, this statement holds for the approximate

TI medium.

Let us compare the traveltimes within the layered medium, which are tabulated in

columns three and five of Table 4.2, against the approximate TI and Backus media,

which are tabulated in Tables 4.3 and 4.4. Therein, nearly vertical traveltimes in the

layered medium, and the approximate TI medium, are faster than those in the Backus

medium; the traveltimes of the layered and Backus media are illustrated in Figures 4.4

and 4.5. However, this is not the case for qSV and SH waves. Comparing traveltimes,

we observe that, for this example,

TqSV < TqSV,BA for 1 ↙ 20.4135↔ , TqSV < TSH,BA for 1 ↙ 32.6853↔ ,

TSH < TqSV,BA for 1 ↙ 20.5859↔ , TSH < TSH,BA for 1 ↙ 34.4625↔ .

Traveltimes in Figures 4.4 and 4.5 demonstrate that the Backus medium does not

provide an accurate approximation of traveltime within its constituent layers,

which—we must emphasize— is not the criterion of the Backus average. However,
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Figure 4.5: Illustration of S-wave traveltimes and error for increasing horizontal o!set.
The traveltimes in the approximate isotropic medium remain within 1% of the layered
traveltimes for up to 800 metres; traveltimes in the Backus medium have no such
properties.

in contrast to Dalton and Slawinski (2016), who “[ . . . ] postulate that [the] validity

of the Backus (1962) average, whose weights are layer thicknesses, is limited to

waves whose incidence is nearly vertical. The accuracy of this average decreases

with the increase of the source-receiver o!set,” the Backus medium cannot be

validated by a comparison with Fermat traveltimes through its constituent layers.

The Backus average simulates the behaviour of actual physical phenomena; it

produces an estimate of physical behaviour as opposed to an approximation of

traveltimes. The traveltime is a result of this simulation.
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x ϱ ϑqP,BA TqP,BA ϑqSV,BA TqSV,BA ϑSH,BA TSH,BA

0 0.0000 0.0000 232.9198 0.0000 544.0393 0.0000 544.0393

200 11.3099 12.1112 237.8863 7.5128 551.1282 9.6097 553.1739

400 21.8014 22.7944 252.0031 15.2873 572.3210 18.7073 579.7146

600 30.9638 31.5758 273.5057 23.7440 607.5431 26.9277 621.4352

800 38.6598 38.6596 300.5706 33.6522 657.1353 34.1077 675.5291

1000 45.0000 44.4062 331.7358 45.1896 721.9872 40.2499 739.2852

1200 50.1944 49.1266 365.9307 54.6983 800.6333 45.4511 810.4262

1400 54.4623 53.0544 402.3906 60.8739 888.2660 49.8440 887.1774

1600 57.9946 56.3611 440.5689 65.0791 981.3334 53.5622 968.2056

1800 60.9454 59.1741 480.0709 68.1541 1077.9280 56.7251 1052.5230

2000 63.4350 61.5893 520.6076 70.5189 1176.9640 59.4328 1139.4010

2200 65.5561 63.6806 561.9645 72.4032 1277.7660 61.7672 1228.2950

2400 67.3801 65.5051 603.9801 73.9447 1379.8920 63.7941 1318.7970

Table 4.4: Traveltimes along rays, for increasing horizontal o!set, of qP , qSV and SH
waves through the Backus medium, TqP,BA , TqSV,BA , TSH,BA ; elastic properties of
medium are given in tensor (4.77). The receiver o!sets x are in metres while the
traveltimes in milliseconds. The ray angle, 1 , along with wavefront angles for the qP ,
qSV and SH waves, ϑqP,BA , ϑqSV,BA , ϑSH,BA , are in degrees.

4.7 Concluding remarks

The Taylor series expansion of traveltime expressions, about the vertical axis, lead

to an approximate homogeneous medium, wherein traveltimes are similar to Fermat

traveltimes within its constituent layers. A numerical example suggests that the

approximation leads to empirically adequate results for not only near-vertical rays,

but even for rays whose takeo! angles approach 30↔ . Even though a source-receiver

o!set of a homogenized medium is not restricted by a critical angle, a Fermat ray in

a stack of layers might be restricted. Since these angles can result in su#ciently large

o!sets, our ability to examine greater o!sets are limited.

In summary, we have developed a formulation for approximate TI media that has

similarities to the commonly used root-mean-square velocity. For a stack of isotropic

layers, there is an approximate equality between a layered and single medium (e.g.,

Sheri!, 2002, p. 377, NMO velocity). The approximate medium can be used to

examine the accuracy of using the hyperbolic curve for a horizontally stratified

medium as well as of using the root-mean-square velocity in TI media.
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Finally, the resulting approximation could be considered if modelling traveltimes for

transversely isotropic media, where the anisotropy results from a stack of layers. In

particular, the approximate medium could serve as an alternative to the equivalent

medium that is the result of the Backus average applied to the same constituent layers.
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Chapter 5

On inverse modelling of traveltimes

Author note

The content of this chapter has partial overlap with Kaderali and Stanoev (2020),

which is a collaborative research project with Mr. Ayiaz Kaderali. For further details

regarding co-authorship, we refer the reader to the statement provided on page xii.

5.1 Introductory remarks

In this chapter, we deviate from the homogeneous anisotropic representations of a

horizontally stratified subsurface, which has been the focus of Chapters 3 and 4. As

opposed to considering homogenizations of seismic media for forward modelling based

on elasticity theory, we turn our attention to the practical application of estimation of

anisotropy and inhomogeneity properties within the layers of the subsurface. In other

words, this chapter focuses on traveltime tomography, otherwise known as inversion,

which is a procedure that allows us to invert observed seismic traveltimes to estimate

the subsurface velocity structure (e.g., Lines and Newrick, 2004, Chapter 17).

The chapter proceeds as follows. We begin the chapter with a brief review of

traveltime inversion in Section 5.2 and how it applies to our problem. Next, in

Section 5.3, we discuss the modelling considerations for the inversion. Specifically,

we provide an overview of the vertical seismic profile (VSP), establish the

background model, and specify raytracing and traveltime expressions for multilayer
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model, wherein the inhomogeneity and anisotropy of each layer can vary. Then, in

Section 5.4, we detail the numerical optimization procedure that we use to estimate

the parameter values through the process of minimizing the residual sum of squares

with an arbitrary set of traveltimes. We adapt the derivative-free algorithm to

account for constraints on model parameters and ensure model feasibility. After, in

Section 5.5, to establish a sense of the multilayer model’s accuracy in parameter

estimation using the optimization procedure, we devise a simulation study. In

particular, we use identical source-receiver combinations as the VSP and, using a set

of predetermined model-parameter values, we generate simulated traveltimes that

resemble those that are measured. We apply the optimization procedure to assess its

reliability in retrieving the predetermined, otherwise referred to as known, parameter

values. Finally, in Section 5.6, we apply the procedure to the measured traveltimes

and, within an understanding of the procedure’s limitations, we discuss the results.

5.2 Traveltime inversion

Traveltime inversion relies on mathematical formulations to locate a path between a

source and receiver within an anisotropic and/or inhomogeneous medium. In a recent

review, Rawlinson et al. (2008) discuss two approaches that are used to locate such

paths: raytracing and grid-based schemes. The former corresponds to trajectories of

paths between points in a medium that are normal to the wavefront and has been

covered in a comprehensive manner (e.g. Červený, 2001; Chapman, 2004; Slawinski,

2020a).

The latter corresponds to the finite-di!erence solution of the eikonal equation within

a discretized velocity grid that is useful in modelling complicated subsurface

structures. This approach has become popular in recent studies. For example, Bóna

et al. (2009) propose a raytracing method that determines minimal-time rays within

a discretized grid based on the concept of simulated annealing. Zhang et al. (2017)

present an elliptically anisotropic raytracing method that models with irregular

subsurface structures by applying flexible triangular grids. Within the context of

traveltime inversion, Lelièvre et al. (2011) develop a method to invert traveltimes

without ray tracing using a finite-di!erence forward solution of the eikonal equation,

which is implemented on unstructured grids that discretize the subsurface velocity.

Giroux and Gloaguen (2012) invert cross-hole traveltime data using ray tracing in a
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discretized elliptically anisotropic model, which is based on an assumption that the

horizontal velocity is a scalar multiple of the vertical velocity (e.g., Helbig, 1983).

Meléndez et al. (2019) perform a traveltime inversion to compute the velocities

observed by rays under the weak VTI anisotropy formulation of Thomsen (1986).

By contrast, the subsurface in question is reported to have a horizontally stratified

structure comprised of shale formations, as discussed in Section 5.3.1. Thus, it is

reasonable to model the subsurface as a series of horizontal layers. Likewise, to account

for these properties in each layer, we assume that the vertical velocity increases linearly

with depth, phase velocity exhibits an elliptical velocity dependence, and each layer

is laterally homogeneous. Since the traveltime accuracy within grid-based schemes is

generally not as high as raytracing (Rawlinson et al., 2008, p. 3), we proceed with the

latter.

Under the assumptions of the previous paragraph, the eikonal equation may be solved

explicitly by the method of characteristics, which yields closed-form raytracing and

traveltime expressions (Rogister and Slawinski, 2005). As such, the velocity in any

given layer depends on only three model parameters and the raypaths and traveltimes

are calculated using closed-form expressions. Using numerical optimization, we adjust

the model parameters so as to minimize the residual sum of squares (RSS) between

the traveltimes.

The traveltime tomography that we perform in this chapter depends heavily on ray

theory, which we discuss in greater detail in Section 2.5. In particular, we calculate

the traveltimes along a specified ray path that is obtained from the eikonal equation.

However, it is possible to perform traveltime tomography based on the wave equation,

which is elastodynamic equation (2.52).

In contrast to the ray-based approach, wave-equation-based tomography can account

for not only traveltime information but also amplitude, attenuation, and even full

waveform content to image subsurface structures (Tong, 2021). One advantage of

wave-equation methods is that they do not require the high-frequency assumption,

within the context of the eikonal equation, and can account for di!erent types of waves

simultaneously as well as their reflections and resulting multiples. A popular inversion

approach that uses the wave equation is the so-called full-waveform inversion (FWI),

wherein many types of waves are involved for the least-squares optimization scheme

to iteratively improve the model of the subsurface (Virieux and Operto, 2009).
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The FWI approach, originally developed by Tarantola (1984), has been used to create

heterogeneous velocity models in a variety of settings. For example, in recent years,

Yang et al. (2016) perform a time-lapse inversion on the Valhall field in the North

Sea using ocean-bottom-cable data, Beller et al. (2018) use a multiparameter 3-D

inversion to determine the lithospheric structure of the South-Western Alps, Li et al.

(2022) recover the P -wave velocity with first-arrival signals of land data in western

Canada, and Dhabaria and Singh (2024) estimate elasticity parameters with Monte

Carlo methods using ocean-bottom-seismometer data from the Atlantic Ocean. Even

beyond geophysical applications, Guasch et al. (2020) have applied FWI to generate

accurate three-dimensional images of the brain with sub-millimetre resolution.

While FWI can be more accurate at reconstructing a velocity model of the Earth than

those methods based on raytracing, it is said to be at least an order of magnitude more

costly because the wave equation must be numerically solved for each source (Fu and

Hanafy, 2017). Likewise, given the increased dimensionality of this type of inversion,

matching the whole waveform can lead to many local minima. As such, one of the key

issues of FWI is obtaining an accurate initial model from which the local optimization

can start. In many of the above examples, the initial model is provided by raytracing

methods. Therefore, one of the applications of our results is in its use as an initial

model for more-sophisticated imaging techniques like FWI.

5.3 Modelling considerations

5.3.1 VSP overview

We base the experimental setup on the VSP acquisition described by Kaderali (2009),

which corresponds to a deviated survey well in o!shore Newfoundland. These data

consist of VSPs (primary arrivals, P -wave traveltimes) with zero-o!set and walkaway

source-receiver combinations—a walkaround acquisition is provided as well, but falls

beyond the scope of this dissertation. In an earlier work by Zhou and Kaderali (2006,

p. 2), the subsurface is confirmed to have a horizontally stratified structure comprised

of shale formations up to a depth boundary of approximately 2300 metres. In Figure 1

therein, the subsurface is partitioned into five macro layers based on the zero-o!set

VSP, with interfaces at approximately 450m, 1300m, 1700m, 2100m, and 2300m.

The well in question is deviated from the vertical, as detailed by its well
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trajectory (Kaderali, 2009, Figure 2.2). The zero-o!set VSP (ZVSP) consists of 93

measurements—provided by Kaderali (2009, Table A.1)—between depths of 418.60

metres, which corresponds to the sea floor, and approximately 2950 metres. The

walkaway VSP (WVSP) consists of 200 source locations centred over the receiver

array and are spaced at approximately 25-metre intervals, with a maximum o!set of

approximately 4000 metres in one direction and 1000 metres in the other.

Respectively, the measurements in either direction are denoted as long- or short-side

traveltimes. The source is placed at six metres below sea level and the signal is

recorded by a five-receiver array placed above the 2300-metre boundary. The

receiver depths, referenced from mean sea level (MSL), are reported as

Z = [1979.923, 1989.809, 1999.669, 2009.758, 2019.927]T . (5.1)

Depths (5.1), which can be found in Zhou and Kaderali (2006, Table 2), refer to the

first of three so-called shot lines, with the remaining lines pertaining to deeper receiver

placements. Note that the indicated receiver depths in the tables therein indicate the

vertical depth without the MSL correction. Further details of the acquisition may be

found in Kaderali (2009, Chapters 2 and 3).

For the ZVSP traveltimes, we only consider measurements up to 2100 metres as

the WVSP receivers are placed above the indicated macro-layer interface. However,

between the depths of 418.60 and 1343.40 metres, the 13 traveltimes are recorded at

non-regular depth intervals, whereas the remaining 39 are recorded at approximately

20-metre intervals. Consequently, there is a scarcity of ZVSP data for nearly 65% of

the subsurface: an unavailability of measurements for approximately the shallowest

20% and non-regular measurements for the next 45%. For the WVSP traveltimes, we

focus on the first shot line as the measurements are provided explicitly in Kaderali

(2009, Appendix C). Of the WVSP traveltimes, we omit from consideration the final

21 measurements that correspond to receivers 1 and 2 due to measurement error that

has resulted in observable scatter. Thus, of this dataset, we use 52 of the ZVSP

traveltimes, which correspond to a depth of up to 2100 metres, and 958 of the WVSP

traveltimes; in total, we consider M = 1010 data points.
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5.3.2 Background model

To perform the traveltime inversion on the VSP data, we consider a background model

comprised of N horizontal layers. The background model is embedded in a left-handed

three-dimensional coordinate system, where the z-axis increases downward.

We make several simplifying assumptions about the layers. First, we assume that they

are bounded by planar interfaces in welded contact. The thicknesses of the layers are

calculated by taking the di!erences of successive interface depths, ϱ = [40, . . . , 4N↑1]T ,

where, for example, the thickness of the ith layer is 4i → 4i↑1; consequently, the Nth

layer is a halfspace. Second, we assume that the layers are laterally homogenous,

which means that the properties vary only with respect to depth. Third, we assume

that the first layer, which represents the water column, is homogeneous and isotropic.

Therein, the velocity of the P wave is constant in all directions. Finally, we assume

that the subsequent N → 1 layers are subject to a linear increase in velocity with

respect to depth, z, and exhibit an elliptical velocity dependence with respect to the

wavefront angle, ϑ.

We model the propagation of the P wave using seismic ray theory, which we discuss

in Section 2.5. Since the VSP data contain traveltimes that correspond to vertical

and o!set source-receiver combinations, we require a framework for rays that are

entirely vertical as well as those that are o!set by a horizontal distance. We use ray

theory to specify the raypath—and quantify the traveltime along it— that connects

a given source, S ↗ R3, and receiver, R ↗ R3. Within the model, we consider M

source-receiver combinations. As such, the jth ray is traced from

Sj :=
[
X(j)

S
, Y (j)

S
, Z(j)

S

]T
to Rj :=

[
X(j)

R
, Y (j)

R
, Z(j)

R

]T
, where j = 1, . . . ,M.

Now, let us consider Figure 5.1, which illustrates the background model and the jth

source-receiver combination. Since the model consists of horizontal and parallel layer

interfaces, the jth ray is traced within a unique plane—we refer to this plane as the

rayplane—that contains the unit source-receiver vector, dj = (Rj→Sj)/∝(Rj→Sj)∝,
and the z-direction basis vector, ez = [0, 0, 1]T . For o!set rays, we identify the jth

rayplane by its unit normal vector, nj = (dj↓ez)/∝(dj↓ez)∝. For vertical rays, we do
not use the rayplane terminology because the normal is indeterminate, as dj · ez = 1;

as such, rayplane refers only to o!set source-receiver combinations. Within the jth
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Figure 5.1: Rayplane within background model comprised of N = 3 layers. The
left-handed coordinate system is specified by the coordinate axes, which are centred
on the origin O. The planar layer interfaces (gray) are horizontal and parallel, with
depths ϱ = [40, 41, 42]T . For the jth source-receiver combination, the ray travels
within the unique rayplane (red) with unit normal nj; herein, the receiver is in layer
↽j = 3. The horizontal and vertical distances travelled by the ray are specified by
right triangle ′SjP jRj.
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rayplane, we specify a right triangle ′SjP jRj, where

P j := Rj → (Rj → Sj) · ez.

The vertical distance of the triangle is (Rj → Sj) · ez = Z(j)

R
→ Z(j)

S
and the signed

horizontal distance is sgn(dj · ex)∝P j → Sj∝, where ex = [1, 0, 0]T is the x-direction

basis vector. We identify the layer within which the jth receiver resides by

↽j :=
N↑1∑

i=1


Z(j)

R
→ 4i


.

5.3.3 Raytracing and traveltime expressions

In this section, we provide the raytracing and traveltime expressions in media with

either a constant velocity or those that exhibit a linear increase velocity with depth

and an elliptical velocity dependence. Since the source and receiver coordinates are

known, we parameterize the expressions with respect to depth. For this section, we

omit layer, i, and ray, j, subscripts, which means that the expressions, herein, apply

to a single ray within either type of medium.

Constant velocity

In a homogeneous medium with constant velocity, the characteristic system of the

eikonal equation results in a constant ray-parameter value and straight-line solutions

for the raypaths, as is demonstrated Section 2.5.3. Within a given rayplane, we can

adapt raytracing expressions (2.93) to quantify the horizontal, x, distance covered by

the ray with respect to depth, z, by

x(z) = x0 +
pv(z → z0)√
1→ p2v2

, (5.2)

where p is the ray parameter, v is the constant velocity, and x0 and z0 are initial

conditions for horizontal and vertical distances, respectively. In such a medium, the

traveltime along the ray is

t(z) = t0 +
z → z0

v
√

1→ p2v2
, (5.3)
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where t0 is an initial time condition.

We convert raytracing expressions (2.93) from an arclength to a depth

parameterization using the Pythagorean Theorem, where

(s→ s0)2 = (x→ x0)2 + (z → z0)2 and s0 is an initial arclength condition. In terms of

the ray parameter, p = sin 1/v, the relationships are

s→ s0 = 1, x→ x0 = pv, z → z0 =
√

1→ p2v2.

For the traveltime inversion, we use expression (5.2) to trace the ray through the

water column and expression (5.3) to quantify the traveltime. Therein, we fix v =

vw := 1500m/s.

Linear inhomogeneity and elliptical anisotropy

Let us consider a medium with a linear increase in velocity with depth and an elliptical

velocity dependence. We refer to the former as linear inhomogeneity and the latter

as elliptical anisotropy. In such a medium, the phase velocity is

v(ϑ) :=
√
vx2 sin

2 ϑ+ vz2 cos2 ϑ , (5.4)

where vx and vz are the magnitudes of the wavefront velocity along the x-axis and

z-axis, respectively, and ϑ is measured from the z-axis. The following anisotropy

parameter,

ω =
vx2 → vz2

2 vz2
,

quantifies the di!erence between horizontal and vertical velocities; if the velocities

are equal, ω = 0, which is tantamount to an isotropic medium. Then, the wavefront

velocity (5.4) becomes

v(ϑ) = vz

√
(1 + 2ω) sin2 ϑ+ cos2 ϑ . (5.5)

Subjecting the wave to a linear increase of velocity along the z-axis, wavefront

velocity (5.5) becomes

v(ϑ, z) = (a+ b (z → z0))
√

(1 + 2ω) sin2 ϑ+ cos2 ϑ , (5.6)
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where a and b are constants with units of velocity and reciprocal of time, respectively,

and z0 is an initial depth. For brevity, henceforth, we refer to linearly inhomogeneous

and elliptically anisotropic media as abω media.

To obtain the characteristic raytracing system for the abω medium, Rogister and

Slawinski (2005) substitute phase velocity (5.6) in Hamiltonian (2.94). Let us

summarize their result. The corresponding raytracing system is






d x

dt
=

ϱH
ϱpx

= (a+ b (z → z0))
2 (1 + 2ω) px ,

d z

dt
=

ϱH
ϱpz

= (a+ b (z → z0))
2 pz ,

d px
dt

= →ϱH
ϱx

= 0 ,

d pz
dt

= →ϱH
ϱz

= →b (a+ b (z → z0))

(1 + 2ω) px

2 + pz
2

.

(5.7)

The solution to system (5.7), which is detailed further by Slawinski (2020a,

Section 8.5), is






x(t) = x0

+
1

b p


tanh


b t→ arctanh

√
1→ p2a2 (1 + 2ω)


+
√
1→ p2a2 (1 + 2ω)


,

z(t) = z0 +
a

b



 1

p a
⇒
1 + 2ω cosh


arctanh

√
1→ p2a2 (1 + 2ω)


→ b t

 → 1



 ,

px(t) = p ,

pz(t) = p
√

1 + 2ω sinh

arctanh

√
1→ p2a2 (1 + 2ω)


→ b t


.

(5.8)

The first two expressions within solution (5.8) can be used to provide a geometrical

interpretation of the shape of the rays. Specifically, these expressions can be

manipulated to obtain


(x→ x0)→

√
1→ p2a2 (1 + 2ω)

p b

2


1

pb

2
+


(z → z0) +

a

b

2


1

p b
⇒
1 + 2ω

2
= 1, (5.9)
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which is the equation of an ellipse. Solving ellipse (5.9) for the horizontal distance

travelled with respect to depth (e.g., Slawinski, 2020a, expression (14.3.9)) yields

x→ x0 =

⇒
1→ A →

⇒
1→ B

pb
, (5.10)

where we define

A := p2a2(1 + 2ω) and B := p2(a+ b(z → z0))
2(1 + 2ω).

For the traveltime along the ray, solving the first equation of solution (5.8) yields

t =
arctanh


p b (x→ x0)→

⇒
1→ A


+ arctanh

⇒
1→ A



b
. (5.11)

We can obtain an alternative expression to traveltime (5.11) by substituting

expression (5.10) for the horizontal distance travelled. Since inverse hyperbolic

tangent is odd, arctanh(→x) = y =⇔ arctanh(x) = →y, for x ↗ (→1, 1) and y ↗ R,
traveltime (5.11) is tantamount to

t =
arctanh

⇒
1→ A → arctanh

⇒
1→ B

b
. (5.12)

Vertical rays

To compare the model traveltimes along vertical rays with the ZVSP data, we require

traveltime expressions in both constant-velocity and abω media. Since vertical rays

correspond to p = 0, expressions (5.2) and (5.3) for the constant-velocity medium

simplify trivially to

x(z) = x0 and t(z) = t0 +
z → z0
vw

. (5.13)

However, for p = 0 in the abω medium, the raytracing expression (5.10) leads to

an indeterminate form, 0

0
and the numerator traveltime expression (5.12) becomes

undefined, ⇓→⇓. Therefore, to evaluate these expressions, we use l’Hôpital’s rule

to evaluate their limits as p ⇑ 0.

Now, let us address raytracing expression (5.10). To evaluate its limit, we require the
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derivative of the numerator, which simplifies to

ϱ

ϱp

⇒
1→ A→

⇒
1→ B


= →p


a2(1 + 2ω)⇒

1→ A
→ (a+ b(z → z0))2(1 + 2ω)⇒

1→ B


.

Then, by l’Hôpital’s rule,

lim
p↗0

(x→ x0) = lim
p↗0

→p

b


a2(1 + 2ω)⇒

1→ A
→ (a+ b(z → z0))2(1 + 2ω)⇒

1→ B


= 0. (5.14)

As expected, x = x0 for vertical rays in the abω medium.

For traveltime expression (5.12), we require the logarithmic form of the inverse

hyperbolic tangent,

arctanh x =
1

2
ln

1 + x

1→ x
. (5.15)

Using expression (5.15), and by the properties of logarithms, traveltime (5.12) can be

written as

t =
1

2b


ln

1 +
⇒
1→ A

1 +
⇒
1→ B

+ ln
1→

⇒
1→ B

1→
⇒
1→ A


. (5.16)

Since ln 1 = 0, the limit of the first term is zero. Then, by properties of the limit, we

obtain

lim
p↗0

t = lim
p↗0

1

2b


ln

1 +
⇒
1→ A

1 +
⇒
1→ B

+ ln
1→

⇒
1→ B

1→
⇒
1→ A


=

1

2b
ln


lim
p↗0

1→
⇒
1→ B

1→
⇒
1→ A


.

Applying l’Hôpital’s rule again,

lim
p↗0

1→
⇒
1→ B

1→
⇒
1→ A

= lim
p↗0

→1

2
(1→ B)↑1/2(→2p(a+ b(z → z0))2(1 + 2ω))

→1

2
(1→ A)↑1/2(→2pa2(1 + 2ω))

=
(a+ b(z → z0))2

a2
.

Finally, by properties of the logarithm,

t =
1

b
ln


a+ b(z → z0)

a


(5.17)

for vertical rays in the abω medium.
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5.3.4 Multilayer raytracing

As discussed in Section 5.3.1, the VSP dataset is comprised of traveltimes that

correspond to j = 1, . . . ,M source-receiver combinations. To model these

traveltimes, we consider the multilayer background model comprised of i = 1, . . . , N

layers, which we established in Section 5.3.2.

In this section, we adapt the expressions of Section 5.3.3 to obtain the raytracing

constraint for o!set source-receiver combinations in a multilayer setting. Since the

horizontal distance travelled by vertical rays is zero—as demonstrated in

expressions (5.13) and (5.14)— the raytracing is satisfied trivially. However, for

o!set rays, we rely on numerical techniques, such as the Newton-Raphson method,

to obtain an approximate solution for the raytracing constraint. In particular, we

discuss the method’s the convergence conditions as well as provide a strategy to

improve its initial guess.

Raytracing constraint

Within the jth rayplane, we parameterize the horizontal distance travelled along the

ray for a given depth. In view of the lateral homogeneity of the layer structure, the

ray parameter, pj, is constant along the jth ray. Therefore, for the ray to be traced

from the jth source to receiver, we require the following constraint to be satisfied,

Xj(pj) :=
pjvwzj1√
1→ p2

j
v2
w

+
1

pj

εj∑

i=2

√
1→ Aji →

√
1→ Bji

bi
→ sgn(dj · ex)∝P j → Sj∝ = 0,

(5.18)

where

Aji := Aji(pj) = p2
j
a2
i
(1+2ωi) and Bji := Bji(pj) = p2

j
(ai+ bizji)

2(1+2ωi) (5.19)

are the variables that contain the anisotropy and inhomogeneity velocity parameters,

zji := 4i → 4i↑1 + εi(εj)

Z(j)

R
→ 4i


→ εi1


Z(j)

S
→ 40


(5.20)

is the vertical distance travelled in each layer, and εi(εj) and εi1 are Kronecker deltas.

With regard to constraint (5.18): the first term corresponds to the straight-line ray

within the first layer; the second term corresponds to the summation of the elliptical
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raypaths within the remaining ↽j→1 layers; and, the third term is the signed horizontal

distance travelled within the rayplane.

To demonstrate the functionality of expression (5.20), let us return to Figure 5.1.

Suppose that the jth receiver is in layer ↽j = 3. Then, the respective vertical distances

travelled by the ray in layers i = 1, 2, 3 are

zj1 = 41 → Z(j)

S
, zj2 = 42 → 41, zj3 = Z(j)

R
→ 42.

For our consideration, the vertical P -wave velocity and its linear increase are strictly

positive, and the anisotropy parameter is nonnegative, i.e.,

ai > 0, bi > 0, and ωi ∞ 0, for i = 1, . . . , N. (5.21)

We discuss the physical meaning of restrictions (5.21) in Section 5.4.3. The depths of

the consecutive interfaces are strictly increasing, i.e., 4i > 4i↑1. As such, zji > 0 and,

consequently,

Bji > Aji > 0. (5.22)

To obtain the ray parameter that satisfies raytracing constraint (5.18), we rely on

the Newton-Raphson method for approximating the roots of the nonlinear equation.

This iterative method produces a sequence of approximations, p(k)
j
, based on the

linearization of Xj(p
(k)

j
), where k is the iteration parameter. The method converges

to a solution provided that Xj(pj) and X →
j
(pj) are continuous, X →

j
(pj) ↑= 0, and p(0)

j
is

su#ciently close to the solution. The formula for the (k + 1)th approximation is

p(k+1)

j
= p(k)

j
→

Xj(p
(k)

j
)

X →
j
(p(k)

j
)
.

Newton-Raphson method: continuity conditions

Let us analyze the continuity of constraint (5.18), as well as its derivative, in regard to

the convergence properties of the Newton-Raphson method. To analyze the continuity,

we consider the domain for which Xj(pj) : RM ⇑ RM . For the function to return real
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values, we have the following restrictions,

pj ↑= 0, 1→ p2
j
v2
w
> 0, 1→ Aji ∞ 0, 1→ Bji ∞ 0.

The first restriction means that we do not consider vertical rays with raytracing

constraint (5.18). The remaining restrictions impose bounds on pj, which, by

expressions (5.19), are

p2
j
<

1

v2
w

, p2
j
↙ 1

a2
i
(1 + 2ωi)

, p2
j
↙ 1

(ai + bizji)2(1 + 2ωi)
.

In view of these inequalities, the maximum value of the jth ray parameter is

pmax

j
:=

√min


1

v2
w

,

{
1

a2
i
(1 + 2ωi)

}N

i=1

,

{
1

(ai + bizji)2(1 + 2ωi)

}N

i=1


,

the minimum is pmin

j
:= →pmax

j
, and the domain within which the constraint is

continuous is

pj ↗

pmin

j
, pmax

j


\ {0} . (5.23)

Within this domain, the requirement that a solution exists is

pmax

j
vwzj1√

1→ (pmax

j
)2v2

w

+
1

pmax

j

εj∑

i=2

√
1→ Aji(pmax

j
)→

√
1→ Bji(pmax

j
)

bi
∞ ∝P j →Sj∝. (5.24)

If this condition is not met, the Newton-Raphson method will continue to produce

approximations p(k)
j

without approaching a solution. For that reason, we include a

stopping criterion that terminates the method after a specified number of iterations.

Now, let us consider the continuity of X →
j
(pj). The first derivative of the first term in

constraint (5.18) is

ϱ

ϱpj



 pjvwzj1√
1→ p2

j
v2
w



 = vwzj1



 1√
1→ p2

j
v2
w

→ pj(→2pjv2w)

2

1→ p2

j
v2
w

3/2



 =
vwzj1


1→ p2

j
v2
w

3/2 .

(5.25)

Prior to addressing the first derivative of the ith summand of the second term, let us
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consider

ϱ

ϱpj

√
1→ Aji →

√
1→ Bji


=

→2pja2i (1 + 2ωi)

2
√

1→ Aji

+
2pj(ai + bizji)2(1 + 2ωi)

2
√
1→ Bji

=
1

pj


Aji√
1→ Aji

→ Aji√
1→ Bji


.

Then, it can be shown that

ϱ

ϱpj

√
1→ Aji →

√
1→ Bji

pjbi


= → 1

p2
j
bi


1√

1→ Aji

→ 1√
1→ Bji


. (5.26)

As such, the first derivative of constraint (5.18) is

X →
j
(pj) =

vwzj1

1→ p2

j
v2
w

3/2 → 1

p2
j

εj∑

i=2

1

bi


1√

1→ Aji

→ 1√
1→ Bji


.

In view of inequalities (5.22) and ray parameter domain (5.23), the layer to which

pmax

j
pertains results in 1→ Bji ⇑ 0 as pj ⇑ ±pmax

j
. As such,

lim
pj↗p

max
j

X →
j
(pj) = ⇓ and lim

pj↗p
min
j

X →
j
(pj) = ⇓. (5.27)

For the limit of X →
j
(pj) as pj ⇑ 0, while the first term yields vwzj1 trivially, the

summation leads to an indeterminate form, 0

0
. To proceed with the limit, we must

apply l’Hôpital’s rule to the summation, for which we consider

ϱ

ϱpj


1√

1→ Aji

→ 1√
1→ Bji


= pj


a2
i
(1 + 2ωi)

(1→ Aji)3/2
→ (ai + bizji)2(1 + 2ωi)

(1→ Bji)3/2


.

Then, by l’Hôpital’s rule,

lim
pj↗0

X →
j
(pj) = vwzj1 → lim

pj↗0

εj
i=2

pj(1+2⇁i)

bi


a
2
i

(1↑Aji)
3/2 → (ai+bizji)

2

(1↑Bji)
3/2



2pj
.
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However, by expressions (5.19), limpj↗0 Aji = limpj↗0 Bji = 0 and, hence,

lim
pj↗0

X →
j
(pj) = vwzj1 +

1

2

εj∑

i=2

(1 + 2ωi)

bi


(ai + bizji)

2 → a2
i


.

Since the inhomogeneity parameters are strictly positive and the anisotropy parameter

is nonnegative, as detailed by inequalities (5.21), we find that

lim
pj↗0

X →
j
(pj) > 0. (5.28)

Therefore, in view of inequalities (5.27) and (5.28), Xj(pj) does not have extrema as

it is increasing throughout the domain. Through this analysis, we find that, indeed,

Xj(pj) and X →
j
(pj) are continuous on the ray parameter domain as well as X →

j
(pj) ↑= 0.

Finally, let us also consider the concavity of Xj(pj), for which we require its second

derivative. Using expression (5.25), the second derivative of the first term in

constraint (5.18) is

ϱ2

ϱp2
j



 pjvwzj1√
1→ p2

j
v2
w



 =
pjv3wzj1

1→ p2
j
v2
w

5/2 . (5.29)

Using expression (5.26), it can be shown that the second derivative of the summand

in constraint (5.18) is

ϱ2

ϱp2
j

√
1→ Aji →

√
1→ Bji

pjbi


= → 1

p3
j
bi


2→ 3Aji

(1→ Aji)
3/2

→ 2→ 3Bji

(1→ Bji)
3/2


. (5.30)

Hence, using derivatives (5.29) and (5.30), the second derivative of constraint (5.18)

is

X →→
j
(pj) =

pjv3wzj1
1→ p2

j
v2
w

5/2 +
1

p3
j

εj∑

i=2

1

bi


2→ 3Aji

(1→ Aji)
3/2

→ 2→ 3Bji

(1→ Bji)
3/2


. (5.31)

Since vw and zj1 are strictly positive, the sign of the first term in expression (5.31) is

sgn(pj). For the second term, since Bji > Aji > 0 as a consequence of

inequalities (5.21), let us suppose that Aji = u and Bji = 2u, where u > 0 and
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2 > 0. Then, the di!erence of terms in the ith summand can be simplified to

2→ 3u

(1→ u)3/2
→ 2→ 32u

(1→ 2u)3/2
=

(2→ 3u)(1→ 2u)3/2 → (2→ 32u)(1→ u)3/2

(1→ u)3/2(1→ 2u)3/2
,

which has restrictions 0 < u < 1 and 0 < 2u < 1. However, since 2 > 1, 2u > u and,

so, 0 < 2u < 1 is the dominating restriction. Let us consider the limits at either end

of this restriction. On the left, as 2u ⇑ 0 so does x ⇑ 0, and so we have

lim
αu↗0

(2→ 3u)(1→ 2u)3/2 → (2→ 32u)(1→ u)3/2

(1→ u)3/2(1→ 2u)3/2
= 0.

On the right,

lim
αu↗1

(2→ 3u)(1→ 2u)3/2 → (2→ 32u)(1→ u)3/2

(1→ u)3/2(1→ 2u)3/2
= ⇓.

By these limits, we find that the di!erence in the ith summand is nonnegative,

which means the entire summation is nonnegative. Hence, the reciprocal of the ray

parameter that scales the summation determines the sign, i.e., sgn(p3
j
). As such, we

find that Xj(pj) is concave up for 0 < pj < pmax

j
and concave down for pmin

j
< pj < 0,

with the inflection point at pj ⇑ 0.

Newton-Raphson method: initial guess

The Newton-Raphson method requires that the initial ray parameter value, p(0)
j
, is

su#ciently close to the solution. Since raytracing constraint (5.18) does not have

extrema, choosing any p(0)
j

that is in the domain will lead to convergence. Be that as

it may, the features of Xj(pj) resemble that of the inverse hyperbolic tangent function.

To demonstrate, let f(x) = arctanh(x). Rearranging and implicitly di!erentiating,

we obtain

tanh(f(x)) = x =⇔ sech2(f(x))f →(x) = 1.

Solving for f →(x), and simplifying using standard trigonometric identities, we obtain

f →(x) =
1

1→ sech2(f(x))
=

1

1→ tanh2(arctanh(x))
=

1

1→ x2
.

110



In an analogous manner to X →
j
(pj) > 0 for all pj ↗ (pmin

j
, pmax

j
)\ {0}, we find that

f →(x) > 0 for all x ↗ (→1, 1). Regarding concavity, we find

f →→(x) =
2x

(1→ x2)2
,

which is implies that f(x) is concave up for x ↗ (0, 1) and concave down for x ↗
(→1, 0); this is analogous to the concavity of Xj(pj) within the two branches of its

domain. As such, we can use f(x) to approximate Xj(pj), which improves the quality

of the initial guess for the Newton-Raphson method.

The approximating procedure is as follows. Recalling expression (5.15), the

logarithmic form of the inverse hyperbolic tangent is

f(x) = arctanh(x) =
1

2
ln

1 + x

1→ x
.

Now, consider its algebraic extension

f(x) =
1

2
log

p

t+ x

t→ x
+ h, (5.32)

where p corresponds to an arbitrary base, x = ±t are the vertical asymptotes, and

h is a vertical translation. To apply f(x) to Xj(pj), we center the former upon the

latter by setting h = →sgn(dj · ex)∝P j →Sj∝, which is the signed horizontal distance

between the source and receiver within the jth rayplane. We match the domains of

the two functions by setting t = pmax

j
. For the base, we require that f(x) passes

through coordinates (q,Q), where Q = Xj(q). Substituting these coordinates in

expression (5.32) and rearranging, we obtain

2(Q→ h) = log
p

t+ q

t→ q
.

Converting to exponential form and then exponentiating both sides with respect to
1

2(Q↑h)
, we obtain

p =


t+ q

t→ q

 1

2(Q↑h)

. (5.33)

Using base (5.33), we can calculate the solution to f(x↘) = 0. Through algebraic
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manipulation, the solution is

x↘ = t


p↑2h → 1

p↑2h + 1


. (5.34)

Since f(x) is constructed to approximate Xj(pj), we use solution (5.34) as an initial

guess to solve Xj(pj) = 0 with the Newton-Raphson method.

5.3.5 Multilayer traveltimes

Let us adapt the expressions of Section 5.3.3 to calculate the traveltime along a ray in a

multilayer setting. The traveltime expressions depend on whether the source-receiver

combination is vertical or o!set. In both cases, we assume that the jth receiver is

within in the abω layers, not the water column, i.e., ↽j ∞ 2.

If the jth source-receiver combination is vertical, the raytracing is satisfied trivially.

As such, the traveltime along the vertical ray is the sum of traveltimes in the

constant velocity layer and the remaining (↽j → 1) abω layers, which are given by

expressions (5.13) and (5.17), respectively. Hence, the jth traveltime along a vertical

ray is

tv
j
=

zj1
vw

+

εj∑

i=2

1

bi
ln


ai + bizji

ai


. (5.35)

If the jth source-receiver combination is o!set, we require that raytracing

constraint (5.18) is satisfied. We use the Newton-Raphson method to approximate

the ray parameter, pj, that satisfies Xj(pj) = 0. Then, the traveltime along the

o!set ray is the sum of traveltimes in the constant velocity layer and the remaining

(↽j → 1) abω layers, which are given by expressions (5.3) and (5.12), respectively.

Hence, the jth traveltime along an o!set ray is

to
j
=

zj1

vw
√

1→ p2
j
v2
w

+

εj∑

i=2

arctanh
√

1→ Aji → arctanh
√
1→ Bji

bi
. (5.36)

5.4 Optimization procedure

In this section, we outline the optimization procedure for the inversion of VSP

traveltimes. To achieve the inversion, we use numerical techniques to estimate the
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model-parameter values such that the di!erence between measured and modelled

traveltimes is at a minimum.

5.4.1 Residual sum of squares

Within an N -layer background model, comprised of a constant-velocity layer followed

by N→1 abω layers, there are 2(2N→1) model parameters: one constant velocity, vw;

3(N→1) linear inhomogeneity and elliptical anisotropy parameters, {ai}N↑1

i=1
, {bi}N↑1

i=1
,

{ωi}N↑1

i=1
; and N interface depths, {4i}N↑1

i=0
. Of these parameters, we fix the constant

velocity as vw = 1500m/s, which corresponds to the speed of sound in water, as well

as interface depths 40 = 0m and 41 = 130.8m, the latter of which corresponds to the

depth of the sea floor. Thus, we consider the remaining 4N → 5 model parameters,

ς := [{ai}N↑1

i=1
, {bi}N↑1

i=1
, {ωi}N↑1

i=1
, {4}N↑1

i=2
]T , (5.37)

as variables to be estimated within the optimization.

For the purpose of obtaining an agreement between the measured and modelled

traveltimes, we seek a set of optimal model-parameter values, ς↘, that yield a

minimum residual sum of squares, which we define as

RSS(ς) :=
M∑

j=1

rj(ς)
2, (5.38)

which is a scalar RSS : R4N↑5 ⇑ R1. Herein, for the jth source-receiver combination,

we use the measured VSP traveltime, Tj, and modelled traveltime, tj, to the determine

the jth residual,

rj(ς) = Tj → tj(ς), (5.39)

where tj(ς) corresponds to tv
j
for vertical rays or to

j
for o!set rays. From the point of

view of optimization theory (Nocedal and Wright, 2006, p. 12), the optimal solution

is said to be a global minimizer if

RSS(ς↘) ↙ RSS(ς), for all ς ↗ R4N↑5.

In general, due to the nonlinearity of RSS and the possible restrictions to which it

might be subjected, obtaining ς↘ is a di#cult task. However, within a smaller region
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of the domain, ς↘ is said to be a local minimizer if

RSS(ς↘) ↙ RSS(ς), for ς ↗ N , (5.40)

where N is an open set that we denote as a neighbourhood and for

which ς↘ ↗ N ∈ R4N↑5. The point is classified as a strict local minimizer if the

inequality is strictly RSS(ς↘) < RSS(ς) within the neighbourhood.

5.4.2 Nelder-Mead algorithm

To obtain ς↘, we proceed with a derivative-free optimization approach, which is useful

in scenarios where obtaining derivative information could be prohibitive. In our case,

obtaining derivative information is prohibitive due to the complicated terms in the

raytracing constraint for o!set source-receiver combinations. In particular, taking

first- and second-order derivatives of the inverse hyperbolic tangent function with

radical arguments leads to increasingly complicated expressions. Likewise, in view

of the multilayer setting, these expressions are repeated for each layer with di!erent

ai, bi, and ωi values, which results in cumbersome simplifications. Moreover, even to

evaluate the traveltime expression, we require to solve a subproblem to obtain the ray

parameter value, pj, that specifies the raypath for each source-receiver combination.

In view of these considerations, we choose to proceed with derivative-free optimization.

The method of our choice is the Nelder-Mead algorithm (Nelder and Mead, 1965),

which is a simplex approach that minimizes the residual sum of squares using only

function evaluations. In particular, this algorithm is said to minimize a function of n

variables by comparing the function values at the n + 1 vertices of a simplex. Then,

within an iterative structure, the vertex with the highest function value is replaced

using one of four mechanisms: reflect, expand, contract (inside or outside), and shrink.

In Figure 5.2, we illustrate these mechanisms for a function of n = 2 variables.

The Nelder-Mead algorithm provides local convergence only. To ensure adequate

coverage, we use a multistart strategy, which means that we repeat the optimization

with di!erent initial simplexes whose values are randomly sampled within the domain

of the model parameters. Following the formalism of expression (5.40), we denote the

final solution as the ς↘ that has the lowest residual sum of squares out of the set of

initial simplexes considered.
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reflect (r), expand (e)
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Figure 5.2: Mechanisms of the Nelder-Mead algorithm for a function of n = 2
variables (adapted from Conn et al., 2009, Figures 8.1 and 8.2).

To reduce the residual sum of squares using the abω traveltime model, we follow the

algorithm specifications set by Conn et al. (2009) and Gao and Han (2012). For

convenience of the readership, we provide these specifications as Algorithm 1, which

is presented in Appendix A.3.

5.4.3 Implementation considerations

Let us discuss several aspects of the algorithm and its implementation. In particular,

we consider the choice of scaling parameters, termination conditions, and penalization

constraints.

Adaptive scaling parameters

As indicated by Conn et al. (2009, p. 142), Algorithm 1 is the standard

implementation of the Nelder-Mead algorithm for modern applications. However,

there are modifications that could be made to improve upon its results. In

particular, Wright (1996, p. 6) indicates that, in higher dimensional settings, the

Nelder-Mead method can take endless iterations while making negligible progress,

despite being nowhere close to a minimizer. Gao and Han (2012) refer to this as the

e!ect of dimensionality and propose the so-called adaptive approach wherein, as

opposed to the standard scaling constants (A.22), the parameters

2 = 1, 3 = 1 +
2

n
, 6 =

3

4
→ 1

2n
, ε = 1→ 1

n
, (5.41)
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are a function of the number of variables (Gao and Han, 2012, expression (4.1)) in

the optimization problem. This adjustment keeps the simplex open for longer as it

diminishes the e!ect of the contraction and shrink scaling constants for increasing

n, thus resulting in more iterations before termination. Note that these parameters

reduce to the standard scaling constants for n = 2.

Termination conditions

The termination conditions of this algorithm are threefold. The first condition is that

we terminate if the absolute di!erence between the highest and lowest function value of

the simplex is less than a user-specified tolerance. Since we perform our computations

in MATLAB, we set the tolerance to the system floating-point accuracy

eps = 2↑52 ⇐ 2.2204↓ 10↑16.

In this case, the vertices of any simplex that satisfy this termination condition have

e!ectively the same function value, which justifies termination. The second condition

compares the value of the first condition for successive iterations. We terminate if the

absolute di!erence of the value between the current and previous iteration is less than

the system floating-point accuracy. In this case, the simplex is e!ectively unchanged

on successive iterations and, as such, the reduction of the function value has stalled,

which justifies termination. The third condition is that we terminate if the iteration

count of the optimization exceeds a user-specified number.

Note that, in most settings, the tolerances of the first two conditions could be relaxed.

However, we impose strict tolerances for two reasons. From the perspective of the

abω model, minute changes in the inhomogeneity, b, and anisotropy, ω, parameters

can result in significant changes in the function values. The e!ect is compounded at

greater o!sets as each ray traces out a longer path in each layer. Since our model

parameters correspond to the anisotropy and inhomogeneity of an entire layer, minute

changes can have a greater e!ect on the ray than in grid-based schemes, which would

amount to perturbing a single cell only.

Parameter constraints

To ensure physically meaningful optimization results, we have several

model-parameter constraints. Specifically, following inequalities (5.21), we require
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that the inhomogeneity parameters, ai and bi, are strictly positive and the

anisotropy parameter, ωi is nonnegative. Note that strict positivity pertains to a

vertical increase in seismic velocity as a result of compaction due to overburden

whereas the nonnegativity pertains to the anisotropic properties of shale. Also,

bi ↑= 0 as it is a non-permissible value of traveltime expressions (5.35) and (5.36).

Along with the velocity-parameter constraints, we consider several restrictions that

are a consequence of the ray theory validity conditions, which are usually are only of

a qualitative, not quantitative character (Červený, 2001, Section 5.9). Among these

conditions, it is said that the wavelength of the wave under consideration must be

considerably smaller than any characteristic quantity. These characteristic

quantities correspond to the radii of curvature of the interfaces, the scale lengths of

the inhomogeneity of the medium, and thicknesses of layers. For the curvature, since

our interfaces are planar, the radii of curvature are infinite, which do not impose a

restriction. For the inhomogeneity, while we do not attempt to quantify the limiting

scale length, we impose maximum values on the ith layer velocity gradient, bi, and

anisotropy, ωi—we specify these maximum values in Sections 5.5.2. For the

thicknesses, we impose a minimum layer thickness of 300m, which corresponds to

approximately 15% of the total depth of the VSP.

Now, let us acknowledge that the Nelder-Mead algorithm is unconstrained and, as it

only considers function values, it does not have the requisite mechanisms to impose

parameter constraints or ensure model feasibility. As such, we have devised the

following penalization strategies.

For parameter constraints, we consider penalties that are defined in a piecewise form

p(x) =






→(x→ pε), x < pε

0, pε ↙ x ↙ pu

x→ pu, x > pu

, (5.42)

where, for a given model parameter, x, the penalty is zero within the user-specified

domain x ↗ [pε, pu], but returns linearly increasing values beyond that domain. Herein,

pε is the lower bound on x and pu is the upper bound, as illustrated in Figure 5.3.

In practice, within a MATLAB environment, we express the piecewise penalties as

p(x) = (pε → x) · (x < pε) + (x→ pu) · (pu < x), (5.43)
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x

p(x)

pε pu

Figure 5.3: Visualization of piecewise penalty function (5.42) for arbitrary lower, pε,
and upper, pu, bounds on model parameter x

We apply the penalties to every inhomogeneity and anisotropy parameter, and we

add the sum of the parameter penalties to the residual sum of squares.

For model feasibility, our model is feasible if there exists a ray-parameter value, pj,

for every source-receiver combination that satisfies raytracing expression (5.18). In

other words, we consider any such combination that satisfies inequality (5.24) as a

traceable combination and, otherwise, it is considered untraceable. At every iteration

of the optimization, we identify the number of untraceable combinations and add the

sum of the inequality errors to the residual sum of squares. We provide further details

in Section 5.5.2.

5.5 Simulation study

The motivation of the simulation study to assess the abω model’s accuracy of

parameter estimation using the Nelder-Mead optimization procedure discussed in

Section 5.4. We outline the procedure in the following three steps.

First, we consider three velocity profiles of the subsurface, whose parameter values

are known. We generate simulated traveltimes based on these profiles as well as three

sets of simulated measurement errors, otherwise referred to as additive noise. The

nine datasets serve as the input data for the simulation study. We provide details of

the velocity profiles, their traveltimes, and noise in Section 5.5.1.

Second, we apply the optimization procedure to each of the datasets. Given the

increased dimensionality of the of the traveltime model, there are many combinations

of model-parameter values that yield similar traveltime residuals. We counter this

nonuniqueness by performing two passes of optimization. On the first pass, we use

randomly generated initial simplexes that are sampled from a large domain for each
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parameter, which serves to identify the regions of the parameter space that minimize

the traveltime residual. On the second pass, we generate new initial simplexes based

on the identified regions of the first pass and repeat the optimization, hence, improving

upon the quality of our parameter estimate of the first pass. For each pass, we use

a multistart strategy to improve the reliability of our optimization results through

redundancy. We discuss details of this implementation strategy in Section 5.5.2.

Third, we compare the optimization results to the known parameter values. By

taking into account the optimization outputs from both passes, we obtain an

improved estimate of the optimal model-parameter values for each dataset. Also, we

acquire insight into the extent to which the model parameters may vary for those

combinations that are near the minimum traveltime residual. We illustrate these

results in Section 5.5.3.

5.5.1 Simulated data

Let us discuss the considerations that have been made for the generation of

simulated traveltime data. Following the VSP acquisition specifications of

Section 5.3.1, we require traveltimes that resemble those in the walkaway VSP, with

respect to source-receiver combinations. For this purpose, we use the multilayer abω

model of Section 5.3.5 to generate the simulated traveltimes with known

model-parameter values. Likewise, we generate simulated noise profiles that are

added to the simulated traveltimes in order to simulate measurement errors

obtained in the VSP acquisition.

Simulated model-parameter values

In view of the macro layers of Zhou and Kaderali (2006, Figure 1(b)), we choose a

(N = 4)-layer background model, which, by expression (5.37), yields 4N → 5 = 11

model parameters to be estimated. To assess the optimization in various scenarios,

we consider three sets of simulated model parameters, which we present in Table 5.1.

Therein, model A constitutes a continuous vertical velocity profile, with increasing

homogeneity with depth and low, constant anisotropy throughout. Model B

constitutes a discontinuous vertical velocity profile, with varying inhomogeneity and

increasing anisotropy with depth. Model C has a discontinuous vertical velocity

profile, but with constant inhomogeneity and a buried anisotropic layer.
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Simulated model-parameter values

ς A B C




a1
a2
a3
b1
b2
b3
ω1

ω2

ω3

42
43





1800
2478
2728
0.7
0.5
0.3
0.01
0.01
0.01
1100
1600

1900
2300
2500
0.5
1.25
0.75
0.05
0.1
0.15
1000
1500

2000
2300
2600
0.3
0.3
0.3
0.01
0.1
0.01
800
1400

Table 5.1: Simulated model-parameter values for a (N = 4)-layer model. Each column
represents a set of parameters that are substituted in expression (5.37), to which we
refer as model A, B, or C. Along with each set, we fix vw = 1500m/s, 40 = 0m, and
41 = 130.8m. Note: parameter (units): a (m/s); b (s↑1); ω (dimensionless); 4 (m).

Noise

To generate simulated noise, we consider a noise range up to a fixed percentage of

the measured traveltimes. In particular, since the traveltimes are approximately two

seconds at the maximum acquisition o!set, we consider noise up to 0.1%, which results

in a traveltime error on the order of milliseconds (e.g., Slawinski et al., 2003). Likewise,

as source o!set grows, the error in traveltime increases (e.g., Brown et al., 2000). In

view of these considerations, we calculate ±0.1% of the simulated traveltimes at each

source-receiver combination to set the boundary of the noise values. Then, within

these boundaries, we draw samples from the uniform distribution using MATLAB’s

rand function. Applying this procedure yields WVSP traveltime errors for all five

receivers. We apply the same procedure to the ZVSP traveltimes.

For the simulation study, we repeat the process three times, resulting in the three

noise profiles presented in Figures A.4–A.7 in Appendix A.4.1.

5.5.2 Implementation

Within a (N = 4)-layer model, there are eleven model parameters to estimate, which

results in many combinations of parameter values that produce similar traveltimes.
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We contend with the issue of nonuniqueness by performing two passes of

optimization. For each pass, we use a multistart strategy to improve the reliability

of our optimization results through redundancy.

First pass

On the first pass, we generate random initial simplexes that are sampled from a

large domain of each parameter using the uniform distribution. As indicated by Gao

and Han (2012, Section 3), starting with larger initial simplexes can help improve the

performance of the Nelder-Mead method in high dimensions. To that end, we consider

250 random initial simplexes with the following specifications. For the vertical velocity

at the top of the ith layer, we choose

ai ∋ U(1800m/s, 3000m/s) such that ai↑1 < ai,

which means that the velocities increase with depth. To ensure a wide range of

inhomogeneity and anisotropy values, we choose

bi ∋ U(0.1 s↑1, 1.5 s↑1) and ωi ∋ U(0.01, 0.3).

Also, we consider interface depths that are strictly increasing with depth,

4i ∋ U(500m, 1900m) such that 4i↑1 < 4i.

This method of initial simplex generation promotes random combinations of model

parameters, which serves to sample the parameter space adequately. As such, the

initial residual sums of squares are guaranteed to vary and, hence, promote large

initial simplexes.

During the first pass, we use parameter constraints to keep the model-parameter

values within specified domains using penalty functions. In practice, we add a

penalty term for each model parameter to the residual sum of squares, such as

penalty function (5.43). The bounds for the velocity parameters, (pε, pu), are

ai ↗ (1600m/s, 4000m/s), bi ↗ (10↑3 s↑1, 2 s↑1), ωi ↗ (10↑3, 0.5). (5.44)
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However, for the interface depths, we adjust the penalty function such that

p↽({42, . . . , 4N↑1}) = (500→ 42) · (42 < 500) + (4N↑1 → 1900) · (4N↑1 > 1900)

+
N↑1∑

i=3

(4i↑1 + 300→ 4i) · (4i < 4i↑1 + 300),
(5.45)

which means that a penalty is applied if 42 is less than 500m, 4N↑1 is greater than

1900m, or if subsequent interface depths are less than 300m from one another.

Through the mechanisms of the Nelder-Mead algorithm, any adjusted vertex that

takes on parameter values beyond the bounds receives a linearly increasing penalty.

A visualization of this penalization for arbitrary bounds is presented in Figure 5.3.

Along with the model-parameter constraints, we require that each vertex results in a

traceable raypath for every source-receiver combination. However, given its

unconstrained nature, it is possible for the Nelder-Mead algorithm to produce

combinations of abω values that do not satisfy inequality (5.24). To ensure model

feasibility, we flag any unfeasible combination and set its ray parameter value to

pmax

j
. Then, we add the amount by which inequality (5.24) is not satisfied to the

RSS for each untraceable combination, which adversely a!ects the overall RSS.

Let us emphasize that these optimization strategies have been devised to take e!ect

only if the parameter constraints are broken and/or model feasibility is not ensured.

Thus, the total quantity that the Nelder-Mead algorithm seeks to minimize is

(residual sum of squares)+
∑

(parameter penalties)+
∑

(untraceable combinations).

(5.46)

In this manner, we maintain the use of the unconstrained Nelder-Mead algorithm

while accounting for model-parameter restrictions and ray-tracing feasibility through

the use of penalization strategies.

Second pass

At the end of the first pass of optimization, we sort the output parameters in terms

of RSS, identify those outputs that are within 1% of the minimum, and compute the

lower and upper bounds of the parameter values. For the second pass of optimization,

we generate another 250 random initial simplexes, but within these bounds. Likewise,

we adjust the velocity bounds (5.44) and interface bounds (5.45) to correspond to
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these minimum and maximum parameter values. Then, we redeploy the Nelder-Mead

algorithm to minimize expression (5.46) within this narrower parameter domain.

5.5.3 Results

Let us apply the optimization procedure to the noisy traveltimes. We repeat the

process for the three sets of model parameters and the three noise profiles. For

consistency of comparison, we use the same 250 initial simplexes for the multistart

strategy within the first pass of optimization. However, we use the bounds obtained

from the first pass determine the 250 initial simplexes for the second pass. Due to the

similarity of results, we discuss only those results that correspond to noise profile #1.

However, we include the results for noise profiles #2 and #3 in Appendix A.4.2.

Regarding the number of iterations, we find that the Nelder-Mead algorithm

terminates typically within 6 000 iterations on the first pass and 4 000 iterations on

the second pass. The specific number of iterations varies among the nine datasets

and can be reduced by relaxing the strict termination conditions, which we discuss

in Section 5.4.3. To reduce overall computation time, we perform the optimizations

using MATLAB’s Parallel Computing Toolbox.

Broadly speaking, the optimization procedure yields accurate estimates of the true

model-parameter values. To quantify this statement, we turn our attention to the

optimization results presented in Table 5.2.

For the three velocity models, we find that the bounds of the first-pass-optimization

outputs— that have RSS values within 1% of the minimum RSS—can vary. This

is an expected result as the initial simplexes for the first pass are generated for the

purpose of sampling the parameter space. We find that the first pass is successful in

identifying suitable parameter intervals that correspond to the true parameters.

On the second pass of optimization, using initial simplexes generated from the first-

pass bounds, we find that the estimates are accurate. While the optimal model

parameters, ς↘, vary with respect to noise profile, the sample mean, µ, of the second-

pass outputs is stable for each of the velocity models. Furthermore, the optimal and

true model parameters are within one (or nearly one) sample standard deviation, ↼,

from their respective means. The stability of results, with respect to di!erent velocity

models, suggest that the optimization procedure yields reliable and precise model-
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parameter estimates. This conclusion is also borne out for noise profiles #2 and #3

in Tables A.1 and A.2, respectively, wherein the same observations can be made.

Let us acknowledge that some parameters are estimated better than others. We

observe that the most-variable estimates pertain to velocity models with low

inhomogeneity and/or anisotropy. This is an expected result as smaller-valued b and

ω parameters have less of an e!ect on the traveltime within a given layer and, as

such, such parameters would be di#cult to estimate within a traveltime

optimization. However, for those layers with larger inhomogeneities and

anisotropies, their e!ect on traveltime is more significant and, consequently, these

parameters are estimated with less variance.

We quantify the variation using the coe#cient of variation, ↼/µ, which is said to be

the most widely used measure of the extent of trait variation (Botta-Dukát, 2023). We

use this relative statistic to assess the estimate of a given parameter across di!erent

noise profiles for a specified velocity model, or vice versa. Across the three models,

the vertical speeds, ai, have the lowest coe#cients of variance, which suggests that the

estimates are suitable. Also, we find that the coe#cients—across all parameters—

are lowest for velocity model B, which has the greatest inhomogeneity and anisotropy

parameters, as expected.

However, we find that the model parameters that pertain to the middle layer for all

three velocity models have some of the highest variance in comparison to the other

layers. We suspect this variance is due to the scarcity of ZVSP data up to the depth

of 1343.40m, as is discussed in Section 5.3.1. Likewise, we suspect that the scarcity

of data contributes to the higher variance for 42 as opposed to 43—across all velocity

models—because the former has been set to depths that are shallower than 1343.40m,

whereas the latter is below that depth. Also, we find that the variance is high for

layers with low inhomogeneity and anisotropy values, as expected.

Finally, we can assess the quality of the parameter estimates by the plot of traveltime

residuals. In a residual plot, we should observe a random scatter of residuals around

zero, without an observable trend in the scatter of the residuals. Such a trend usually

indicates that something is missing in the model structure (Wood, 2006, Section 1.1.2).

Turning our attention to Figure 5.4, we present such a plot for the simulated

traveltimes corresponding to model A with noise profile #1. We calculate the

residuals for the specified source-receiver combinations using the optimal parameters
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Model A First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1800
2478
2728
0.7
0.5
0.3
0.01
0.01
0.01
1100
1600

lower

1750
2073
2468
0.0496
0.0184
0.0014
0.0010
0.0015
0.0010
500
996

upper

1911
2642
2870
1.0072
1.3232
0.9486
0.0298
0.0547
0.0104
1393
1900

ς↑

1804
2543
2703
0.6908
0.8599
0.4302
0.0091
0.0228
0.0030
1315
1615

µ

1808
2346
2663
0.6664
0.5818
0.3898
0.0082
0.0181
0.0063
910
1471

ω

19
143
64

0.1118
0.2178
0.0974
0.0053
0.0091
0.0024
224
183

ω/µ

0.0103
0.0608
0.0240
0.1677
0.3743
0.2498
0.6583
0.5050
0.3704
0.2465
0.1242

Model B First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1900
2300
2500
0.5
1.25
0.75
0.05
0.1
0.15
1000
1500

lower

1872
2103
2457
0.4550
0.0010
0.6707
0.0235
0.0867
0.1280
752
1472

upper

1914
2746
2532
0.6338
1.7811
0.9932
0.0631
0.1315
0.1557
1226
1535

ς↑

1902
2551
2489
0.4969
0.9608
0.8181
0.0573
0.1162
0.1422
1161
1510

µ

1901
2387
2489
0.5016
1.0735
0.8106
0.0504
0.1119
0.1429
1043
1508

ω

4
158
9

0.0151
0.2285
0.0347
0.0072
0.0060
0.0033
112
7

ω/µ

0.0020
0.0664
0.0038
0.0300
0.2128
0.0428
0.1437
0.0539
0.0231
0.1070
0.0044

Model C First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

2000
2300
2600
0.3
0.3
0.3
0.01
0.1
0.01
800
1400

lower

1916
2090
2452
0.1297
0.0010
0.3030
0.0010
0.0671
0.0010
513
1172

upper

2033
2434
2648
0.8021
0.5605
0.4309
0.0373
0.1709
0.0142
1082
1571

ς↑

1999
2296
2579
0.3142
0.3161
0.3470
0.0107
0.1085
0.0058
811
1388

µ

1995
2300
2572
0.3285
0.2957
0.3547
0.0123
0.1124
0.0055
820
1377

ω

8
48
20

0.0427
0.0946
0.0197
0.0064
0.0124
0.0024
70
39

ω/µ

0.0042
0.0208
0.0076
0.1299
0.3198
0.0554
0.5173
0.1104
0.4374
0.0849
0.0282

Table 5.2: Optimization outputs for simulated traveltimes corresponding to models A,
B, C with noise profile #1. Model corresponds to the true model-parameter values
that are used to generate traveltimes. First-pass information contains the bounds
of the optimization outputs that have RSS values within 1% of the minimum RSS.
Second-pass information contains the optimal parameters, ς↘, the sample mean, µ,
and standard deviation, ↼, of outputs with RSS within 1% of the minimum, as well
as the coe#cient of variation, ↼/µ.
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First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





lower

1621
2066
2617
0.4275
0.3618
0.0010
0.0010
0.0010
0.2377
586
1524

upper

1664
2249
2620
0.7136
0.6118
0.0041
0.0017
0.0042
0.2402
1229
1529

ς↑

1609
2227
2620
0.7622
0.2659
0.0015
0.0010
0.0010
0.2377
940
1522

µ

1622
2160
2618
0.6836
0.3528
0.0074
0.0013
0.0010
0.2385
830
1524

ω

17
64
3

0.0937
0.1111
0.0065
0.0003
0.0001
0.0018
208
3

ω/µ

0.0105
0.0297
0.0010
0.1371
0.3150
0.8771
0.2584
0.0907
0.0076
0.2512
0.0020

Table 5.3: Optimization outputs for field data traveltimes. First-pass information
contains the bounds of the optimization outputs that have RSS values within 1% of
the minimum RSS. Second-pass information contains the optimal parameters, ς↘, the
sample mean, µ, and standard deviation, ↼, of outputs with RSS within 1% of the
minimum, as well as the coe#cient of variation, ↼/µ.

presented in Table 5.2, along with the traveltime expressions in Section 5.3.5. As

expected, the residuals are centred around zero without an observable trend.

Moreover, the residuals agree with the input noise profile, whose values are plotted

in Figures A.4 and A.5, which is indicative of an accurate fit. Similar residual plots

can be produced in this manner for the remaining velocity models and noise profiles.

In view of these explanations, we have demonstrated that the optimization procedure

yields consistent and reliable results. Within the scope of the simulation study, we

can successfully estimate model parameters for three di!erent velocity models under

the e!ect of three di!erent noise profiles. Thus, we deem the optimization procedure

viable for parameter estimation using the field data.

5.6 Field-data application

Let us apply the optimization procedure to the field data obtained from the VSP

acquisition, which are discussed in Section 5.3.1. In Table 5.3 of this section, we

tabulate the optimization outputs for the first- and second-passes of optimization.

Also, we present the traveltime residuals in Figure 5.5. Now, let us proceed with a

discussion of the results.
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(a) ZVSP

(b) WVSP

Figure 5.4: Traveltime residuals with optimal parameters for simulated traveltimes
corresponding to model A with noise profile #1. Subfigure (a) corresponds to the
ZVSP traveltimes whereas subfigure (b) to the WVSP.
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As a first observation, we find that the bounds of the first-pass-optimization outputs—

that have RSS values within 1% of the minimum RSS—do not vary greatly for most

parameters. The bounds in Table 5.3 suggest that the variability of model-parameter

values near the minimizer is low. The lower variability would imply that the field data

have less noise than our simulated traveltimes. Qualitative support of this implication

is readily obtained through direct comparison of the simulated and field-data residuals

of Figures 5.4 and 5.5, respectively. The relative scatter of the former is much larger

than the latter, especially for the near o!set traveltimes.

Turning our attention to the second-pass-optimization outputs, we find that the

optimal values are within one standard deviation of the mean. This is a similar

result to that of the simulation study, wherein we found that an agreement between

the mean and optimal parameter values corresponded to an agreement with the true

model parameters. As such, we consider the optimal values to be adequate estimates

of the subsurface.

Let us assess each of the optimal velocity model, ς↘. In Table 5.3, we find that the

vertical velocities, ai, increase with depth, which is an expected outcome in view of

compaction due to overburden. For the inhomogeneities, we find that bi decreases with

depth, which implies that the Earth material—within the region to which the VSP

pertains— is of a similar composition at depth. We suspect that the shallowest layer

has the greatest vertical-velocity gradient due to these di!ering material compositions.

For the anisotropies, we find that the deepest layer is the only anisotropic layer. We

consider this to be reasonable in view of the increasing anisotropic behaviour of shale

with increasing compaction due to overburden. Likewise, the most anisotropic layer

is also the least inhomogeneous, which would suggest that it is comprised of a similar

material composition.

Regarding the variability of the estimates, we observe that the greatest variability, as

measured by the coe#cient of variation, occurs for parameters with low values. This

is a consequence of low values of inhomogeneity and/or anisotropy being more di#cult

to estimate within a traveltime optimization. However, of the estimates with larger

values, we find that b2 and 42 have the most variability, which is an expected result

due to the scarcity of ZVSP traveltimes shallower than approximately 1300m. These

conclusions are supported by having already encountered similar scenarios during the

simulation study, as discussed in Section 5.5.3.
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(a) ZVSP

(b) WVSP

Figure 5.5: Traveltime residuals with optimal parameters for field data traveltimes.
Subfigure (a) corresponds to the ZVSP traveltimes whereas subfigure (b) to the
WVSP.
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Finally, let us examine the residual plots in Figure 5.5. We find that the residuals

obtained using the optimal velocity model are within two milliseconds for the majority

of the ZVSP and WVSP traveltimes. Such an agreement indicates that the velocity

model models the traveltime data adequately.

With that being said, we observe that the residual plots are not randomly scattered

about the mean of zero, which is the case for the residuals in the simulation study.

Specifically, the residuals in Figure 5.5 exhibit an undulating pattern, which is

indicative of a form of model inadequacy. For example, such an inadequacy would

arise if one were to perform a polynomial regression using a polynomial of lesser

degree than that which was used to generate the data. In other words, the residual

plot for a simple linear regression upon data generated from a quadratic model

would undulate in a similar manner to the plots in Figure 5.5.

The undulating residual pattern suggests that our traveltime model is not able to

not capture the properties of the subsurface entirely. In particular, we suspect that

the model inadequacy stems from our assumption of lateral homogeneity. In a field-

data setting, this assumption can be broken either by the presence of a lateral velocity

gradient or non-planar intermediate interfaces, both of which are reasonable to assume

in the Earth’s subsurface. However, accommodating such a model inadequacy is

beyond the scope of this work.

5.7 Alternative modelling considerations

In view of the results of Section 5.6, let us discuss several alternative modelling

considerations that could prove fruitful for future researchers.

Homogeneous layers

Within the optimizations of field-data traveltimes, we observe that some outputs

resulted in nearly homogeneous layers. To gain a better understanding, it would be

beneficial to repeat the simulation study with a homogeneous layer as a part of the

true simulated parameters. However, since setting b to zero is nonpermissible, as it

would lead to indeterminate raytracing and traveltime expressions (5.10) and (5.12),

respectively, we require an adjustment to the model.

To that end, setting b = 0 in velocity expression (5.6) would form the foundations of
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a so-called aω-model. In such a case, eikonal equation is

a2

(1 + 2ω)p2

x
+ p2

z


= 1.

Establishing and solving the Hamiltonian system of equations yields






x(t) = a2t(1 + 2ω)p+ x(0)

z(t) = at
√
1→ p2a2(1 + 2ω) + z(0)

px(t) = p

pz(t) =
1

a

√
1→ p2a2(1 + 2ω)

. (5.47)

In contrast to expression (5.9), it can be shown that

(x(t)→ x(0))2

p2a2(1 + 2ω)2
→ (z(t)→ z(0))2 = 1, (5.48)

which indicates that the shape of a ray in a homogeneous and elliptically anisotropic

layer is a hyperbola, not an ellipse. We obtain the raytracing expression by

solving (5.48) for

x(t) = x(0) + pa (z(t)→ z(0))(1 + 2ω)

√
1

1→ p2a2(1 + 2ω)
. (5.49)

We obtain the traveltime expression by solving the second equation in system (5.47)

for

t =
z(t)→ z(0)

a
√
1→ p2a2(1 + 2ω)

. (5.50)

Using expressions (5.49) and (5.50) for homogeneous layers reduces the number of

parameters in the multilayer model, which might be useful in further simulation

studies.

Generalized elliptical anisotropy

Another manipulation to the model could be to consider a so-called generalized

elliptical anisotropy. Throughout this dissertation, we consider the standard

elliptical anisotropy established by Slawinski et al. (2004), wherein

v2
x
= (1 + 2ω)v2

z
and vz = a+ bz
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are used in velocity model (5.6). As opposed to restricting vx to be a scalar multiple

of vz, it is possible to relax this assumption and establish a velocity model using

vx = c+ dz and vz = a+ bz,

where both velocities increase with depth. This model is the topic of a forthcoming

article by Diner and Beyaz (Diner, personal communication, May 2023). The

generalized model allows for the ellipticity to vary at each point of the medium. In

particular, the analytical solution for raytracing presented therein, along with the

traveltime expressions, could prove useful toward quantifying the anisotropy within

the VSP.

Lateral heterogeneity

Recently, two research groups have put forth studies toward accounting for the

e!ects of lateral heterogeneity. In particular, Sripanich et al. (2019) propose a

general framework for evaluating the one-way traveltime derivatives in layered

anisotropic media in the presence of weak lateral heterogeneity from curved

reflectors and lateral velocity variations. Most recently, Grechka et al. (2024)

present a method to identify the presence of weak lateral heterogeneity from VSP

data and then developed the procedure to remove its influence on estimated model

parameters. These promising research results indicate that future work could be

done to re-estimate the model parameters within our VSP data set, while

accounting for the e!ect of lateral heterogeneity.

5.8 Concluding remarks

The linearly inhomogeneous and elliptically anisotropic traveltime model of Slawinski

et al. (2004) is applied to a multilayer setting for the purpose of traveltime inversion

obtained from VSP field data. Relying on a numerical optimization procedure, we

conduct a simulation study to assess the model’s accuracy for the estimation of model

parameters, using synthetic traveltime data, generated from known model parameters,

under the e!ect of simulated measurement error as noise. We demonstrate that the

procedure yields accurate estimates of model parameters for three di!erent velocity

models and noise profiles, which supports its application on the VSP traveltimes.
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In the field-data case, we obtain parameter estimates that model the VSP traveltimes

to within ±2 milliseconds. However, we observe a non-random pattern within the

residual plots, which suggests that some features within the subsurface, namely lateral

heterogeneity, are not adequately modelled. To that end, we conclude by providing

alternative modelling considerations for future researchers that might work with these

VSP field data.
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Chapter 6

Conclusion

This dissertation focuses on mathematical modelling and parameter estimation,

using numerical optimization, in the context of seismic media. As a point of

consistency, the projects described in Chapters 3–5 use a horizontally stratified

background model of the Earth’s subsurface. We conduct our investigations at the

macroscopic level within homogenized media whose properties are determined by the

constituent layers of the background model. In these chapters, we use mathematical

models to i) determine the conditions for elliptical roots of the Christo!el equation

in transversely isotropic media, ii) perform Taylor expansions of traveltimes along

the vertical axis of the background model to design a novel approximate-traveltime

homogenization, and iii) estimate the parameter values of a traveltime model by

applying numerical optimization to VSP traveltime measurements.

Now, for the purpose of a unified conclusion for this traditional-format dissertation,

what follows is a discussion regarding the achievements, limitations, and

recommendations (for future researchers) regarding the original developments of

Chapters 3–5.

On Christo!el roots for nondetached slowness surfaces

Achievement In Chapter 3, we demonstrate that elliptical roots of the Christo!el

equation require nondetached slowness surfaces. In particular, we determine this

condition within the framework of mathematical proof as well as a numerical example.

Our result can be used to gain insight on what is permissible within a mathematical
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model, despite the outcome being contrary to one’s expectations.

Limitation Since our motivation is simply to demonstrate the existence of elliptical

roots, our result is a theoretical finding and an arbitrary numerical example. Likewise,

our result is limited to transversely isotropic media that is the result of the Backus

average on isotropic layers. Since the Backus average can be applied to layers of any

symmetry class, our result lacks generality.

Recommendation Much like the work of Bos et al. (2017), which focuses on the

Backus average for generally anisotropic layers, determining the conditions for

elliptical Christo!el roots in Backus media of di!erent symmetry classes could prove

an interesting research direction. In that vein, perhaps the numerical examples in

such media could correspond better to the layer properties of seismic media.

On forward modelling of traveltimes in approximate media

Achievement In Chapter 4, we develop a novel model of a homogenized

approximate-traveltime medium. In particular, we use a Taylor expansion of

traveltimes about the vertical axis to obtain the elasticity parameters that result in

equal vertical traveltimes in the approximate medium. Our model can be used to

compare VSP traveltimes with those that are a result of well log interval velocities.

Limitation Our forward model has two limitations. First, as in Chapter 3, our

result applies only to isotropic constituent layers. Consequently, it is likely to have

limited applicability toward modelling subsurface regions that are anisotropic.

Second, our formulation is not restricted to a critical angle, which is the case for the

Fermat traveltimes. Hence, our modelling approach has limited applicability in

examining greater o!sets.

Recommendation The formulation could benefit from the inclusion of anisotropy

in the input layers. While considering TI constituents would lead to complicated

raytracing, introducing a scalar di!erence between the horizontal and vertical

velocities, e.g., Slawinski et al. (2004), leads to closed-form raytracing expressions.

The resulting approximate medium could increase the accuracy of traveltimes at

even further o!sets than the current limitation of 30↔.
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On inverse modelling of traveltimes

Achievement In Chapter 5, we estimate the inhomogeneity and anisotropy

parameters of a multilayer Earth model using VSP traveltime measurements. In

particular, we conduct a simulation study to assess the reliability of our results and

introduce penalization strategies to impose parameter constraints within an

unconstrained, derivative-free optimization algorithm. We demonstrate that our

approach obtains accurate estimates for various velocity models and noise profiles.

Limitation Our study is limited by the availability of first-break traveltime

information only from the VSP and the a priori assumption of lateral homogeneity.

The first limits our inversion to P -wave traveltime tomography, which precludes the

use of more-sophisticated techniques such as FWI. The second is an assumption that

can be broken if the subsurface has non-planar layer interfaces and/or lateral

heterogeneity within its layers, which limits our model to less geologically complex

subsurface structures. While our ray-based approach leads to e#cient computation

of seismic ray trajectories and satisfactory inversion if the subsurface velocity model

is known, the approach is limited to simpler geological structures. As such, the

utility of our field-data estimates is limited to an initial velocity model that can be

used for other inversion techniques.

Recommendation To account for the stated limitations, we would revisit the

traveltime modelling using a wave-equation-based techniques, without the a priori

assumptions of horizontally stratified and laterally homogeneous layers. While

relaxing such assumptions would forgo our use of closed-form raytracing and

traveltime expressions, we expect that the improved imaging resolution of the

subsurface velocity justifies the increased computational costs. Recent studies

demonstrate the viability of this approach through the use of full-traveltime

inversion, which is used to invert for a kinematically accurate velocity model from

traveltime information only (Luo et al., 2016).

Closing remarks

In closing, this dissertation represents our e!orts to study seismic media through the

analogies put forth by mathematical models as well as their agreement with data

measurements through the practice of parameter estimation. We acknowledge that

136



the approaches used herein, along with those that have been developed, are not

exhaustive— likely, they constitute mere drops in the proverbial bucket of

seismology.
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Appendix A

Supplementary material

A.1 Cauchy’s second equation of motion

In Section 2.3.4, we discuss the derivation of Cauchy’s second equation of motion.

However, for the sake of readability, we have relegated the majority of the derivation

to this appendix. We pick up that derivation with master balance principle (2.35),

which is

ϱ (r ↓ (φv))

ϱt
+ div ((r ↓ (φv))↔ v) = r ↓ (divε) + E : εT + r ↓ (φb).

By Cauchy’s theorem t = εn, cross product ω = r ↓ t = r ↓ εn replaces u ↓ An

in conversion (2.33). To simplify the first term in balance (A.1), we recognize that

the partial derivative of r(x) = x→ x0 with respect to time is v. However, since the

cross product of a vector with itself is zero, it follows that v ↓ (φv) = 0. Therefore,

we have

ϱ (r ↓ (φv))

ϱt
=

ϱ r

ϱt
↓ (φv) + r ↓


ϱ (φv)

ϱt



= v ↓ (φv) + r ↓

ϱ φ

ϱt
v + φ

ϱ v

ϱt



= r ↓

ϱ φ

ϱt
v + φ

ϱ v

ϱt


. (A.1)

For the second term in balance (2.35), since the cross product of two vectors is a

vector, we factor out the φ and simplify the divergence of the tensor product by
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identity (2.12),

div ((r ↓ (φv))↔ v) = div ((φ(r ↓ v))↔ v)

= (grad (φ(r ↓ v)))v + φ(r ↓ v)(divv). (A.2)

The first term in expression (A.2) contains the gradient of the product of a scalar and

a vector, which, by identity (2.10), we simplify as

(grad(φ(r ↓ v)))v = ((r ↓ v)↔ (grad φ))v + (φ(grad (r ↓ v)))v. (A.3)

We rearrange the first term in expression (A.3) using the definition of the tensor

product (2.8) and, for the second term, we distribute the gradient to obtain

(grad (φ(r ↓ v)))v = (v · (grad φ)) (r ↓ v) + φ ((grad r)↓ v)v + φ (r ↓ gradv)v.

(A.4)

To evaluate the second and third terms in expression (A.4), let us consider an

alternative representation of the cross product. For arbitrary vectors a,b ↗ R3,

there is a skew-symmetric matrix representation of the cross product such that

a↓ b =: [a]≃b, where [a]≃ =




0 →a3 a2

a3 0 →a1

→a2 a1 0



 . (A.5)

According to Lewintan et al. (2021, Section 2.1), this representation is useful as it

allows for the generalization of a cross product in R3 to a cross product of a vector

a ↗ R3 and a matrix M ↗ R3≃3 from the left and from the right,

a↓M := [a]≃M and M↓ a := M[a]≃, (A.6)

which is given by column- and row-wise cross products, respectively. To demonstrate

the use of representation (A.5), let us consider the cross product in the third term

of (A.4), which is

[r]≃(gradv) =




0 →r3 r2

r3 0 →r1

→r2 r1 0








v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3




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=




→r3v2,1 + r2v3,1 →r3v2,2 + r2v3,2 →r3v2,3 + r2v3,3

r3v1,1 → r1v3,1 r3v1,2 → r1v3,2 r3v1,3 → r1v3,3

→r2v1,1 + r1v2,1 →r2v1,2 + r1v2,2 →r2v1,3 + r1v2,3



 ,

where the components of the gradient of the vector are given by expression (2.13),

which is

gradv = ↘↔ v =
ϱvi
ϱxj

ei ↔ ej.

Then, by matrix multiplication with v, using comma notation (2.14), we can rearrange

the resulting vector components such that

([r]≃(gradv))v =




→r3 (v2,1v1 + v2,2v2 + v2,3v3) + r2 (v3,1v1 + v3,2v2 + v3,3v3)

r3 (v1,1v1 + v1,2v2 + v1,3v3)→ r1 (v3,1v1 + v3,2v2 + v3,3v3)

→r2 (v1,1v1 + v1,2v2 + v1,3v3) + r1 (v2,1v1 + v2,2v2 + v2,3v3)



 .

(A.7)

By comparison, using matrix multiplication

(gradv)v =




v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3








v1

v2

v3



 =




v1,1v1 + v1,2v2 + v1,3v3

v2,1v1 + v2,2v2 + v2,3v3

v3,1v1 + v3,2v2 + v3,3v3



 ,

we find that

[r]≃ ((gradv)v) =




0 →r3 r2

r3 0 →r1

→r2 r1 0








v1,1v1 + v1,2v2 + v1,3v3

v2,1v1 + v2,2v2 + v2,3v3

v3,1v1 + v3,2v2 + v3,3v3





=




→r3 (v2,1v1 + v2,2v2 + v2,3v3) + r2 (v3,1v1 + v3,2v2 + v3,3v3)

r3 (v1,1v1 + v1,2v2 + v1,3v3)→ r1 (v3,1v1 + v3,2v2 + v3,3v3)

→r2 (v1,1v1 + v1,2v2 + v1,3v3) + r1 (v2,1v1 + v2,2v2 + v2,3v3)



 .

(A.8)

Hence, by the equality of matrices (A.7) and (A.8), we have the identity

(r ↓ (gradv))v = ([r]≃(gradv))v = [r]≃ ((gradv)v) = r ↓ ((gradv)v) . (A.9)

For the cross product in the second term of (A.4), we recognize that the gradient of

the position vector, grad r, is an identity matrix, I. Then, using representations (A.6),
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it follows that

(grad r ↓ v)v = (I ↓ v)v = (I[v]≃)v = [v]≃v = v ↓ v = 0. (A.10)

In view of identity (A.9) and result (A.10), expression (A.4) simplifies to

(grad (φ(r ↓ v)))v = (v · (grad φ)) (r ↓ v) + φ ((grad r)↓ v)v + r ↓ ((gradv)v)

= (v · (grad φ)) (r ↓ v) + 0+ φ (r ↓ ((gradv)v))

= (v · (grad φ)) (r ↓ v) + r ↓ (φ(gradv)v) . (A.11)

Returning to the divergence of the tensor product of expression (A.2), along with

expression (A.11), the second term in balance (2.35) becomes

div ((r ↓ (φv))↔ v) = (v · (grad φ)) (r ↓ v) + r ↓ (φ (gradv)v) + (r ↓ v)(φ(divv)).

(A.12)

Therefore, using derivative (A.1) and relation (A.12), along with algebraic

manipulation, the master balance principle (2.35) takes on the form

r ↓

ϱ φ

ϱt
v + φ

ϱ v

ϱt
+ φ(gradv)v → divε → φb



+ (r ↓ v) (φ(divv) + v · (grad φ)) = E : εT .
(A.13)

We can simplify the first cross product in balance (A.13) by recognizing that the

second and third terms combine to form the material-time derivative (2.16) of vector v,

whereby

r↓

ϱ φ

ϱt
v + φ

Dv

Dt
→ divε → φb


+(r ↓ v) (φ(divv) + v · (grad φ)) = E : εT . (A.14)

Then, we recognize that the latter terms in the first cross product of balance (A.14)

sum to zero by virtue of the elastodynamic equation (2.31). Commuting the time

derivative of φ with the cross product, we collect like terms and rearrange

balance (A.14) such that

(r ↓ v)


ϱ φ

ϱt
+ (grad φ) · v + φ(divv)


= E : εT . (A.15)
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We simplify balance (A.15) further by the material-time derivative (2.16) of φ to

obtain

(r ↓ v)


Dφ

Dt
+ φ(divv)


= E : εT . (A.16)

However, by the balance of mass (2.25), the left-hand side of balance (A.16) is zero

and, as such,

0 = E : εT . (A.17)

We continue the derivation of Cauchy’s second equation of motion in expression (2.36)

of Section 2.3.4.
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A.2 Polar reciprocity

In Section 3.1, we state that, in accordance with polar reciprocity, the ellipticity

of slownesses is equivalent to ellipticity of wavefronts. To verify this statement in

a seismological context, we present the principle of polar reciprocity, as discussed

by Helbig (1994), derive the mathematical formulæ that quantify the principle, and

conclude with an illustration of the principle. Also, we provide an illustration of polar

reciprocity in the context of slownesses and wavefronts in transversely isotropic media.

A.2.1 Plane curve formulation

We begin with Helbig (1994, Section 2A.4), who states that two curves are polar

reciprocals if for each point of the first curve there is one point on the second curve

such that the position vector of the first curve is parallel to the normal of the second

and the position vector of the second is parallel to the normal of the first. Also, he

states that polar reciprocity of two curves is tantamount to the dot product of all

corresponding position vectors being constant.

To assess these statements, we consider a simple and closed plane curve that is centred

on the origin. We define the curve in parametric form as the locus of all points (x, y)

that are determined by position vector, relative to the origin,

r(ϑ) :=


f(ϑ)

g(ϑ)


, (A.18)

where f(ϑ) and g(ϑ) are continuous (and at least once di!erentiable) functions and ϑ is

the parameter. In this context, simple means that the curve never intersects itself and

closed implies that the initial and final coordinates of the curve are equal. Associated

with the position vector are the unit tangent and unit normal vectors (e.g., Lipschutz,

1969, Chapter 4),

T (ϑ) :=
r→(ϑ)

∝r→(ϑ)∝ and N (ϑ) :=
T →(ϑ)

∝T →(ϑ)∝ ,

respectively, where (≃)→ := d(≃)/dϑ and ∝(≃)∝ :=
√
(≃) · (≃) is the Euclidean norm. As

such, taking the derivative of the position vector and normalizing, the unit tangent
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vector is

T (ϑ) =
r→(ϑ)

∝r→(ϑ)∝ =
1√

f →(ϑ)2 + g→(ϑ)2


f →(ϑ)

g→(ϑ)


.

For the unit normal vector, we di!erentiate T (ϑ), using the chain rule, to obtain

T →(ϑ) =
1

(f →(ϑ)2 + g→(ϑ)2)3/2


g→(ϑ) (g→(ϑ)f →→(ϑ)→ f →(ϑ)g→→(ϑ))

f →(ϑ) (f →(ϑ)g→→(ϑ)→ g→(ϑ)f →→(ϑ))


,

from which we manipulate algebraically to obtain its squared norm

∝T →(ϑ)∝2 = (g→(ϑ)f →→(ϑ)→ f →(ϑ)g→→(ϑ))2

(f →(ϑ)2 + g→(ϑ)2)2
.

Therefore, the unit normal vector simplifies to

N (ϑ) =
T →(ϑ)

∝T →(ϑ)∝ =
1√

f →(ϑ)2 + g→(ϑ)2


g→(ϑ)

→f →(ϑ)


.

Now, consider a second curve whose position vector is parallel to normal of the first,

R(ϑ) := φ(ϑ) [g→(ϑ),→f →(ϑ)]T , where φ(ϑ) > 0. Given these two curves, the polar

reciprocity condition requires that the dot product of their position vectors remains

constant for all ϑ, i.e., r(ϑ) ·R(ϑ) = 22, where 2 is a constant nonzero scalar value.

We satisfy this condition with φ(ϑ) = 22/ (f(ϑ)g→(ϑ)→ g(ϑ)f →(ϑ)). As such, the polar

reciprocal curve to r(ϑ) is

R(ϑ) =
22

f(ϑ)g→(ϑ)→ g(ϑ)f →(ϑ)


g→(ϑ)

→f →(ϑ)


. (A.19)

A.2.2 Ellipse

Suppose that the first curve is an ellipse centred on the origin. To define such an

ellipse, we consider its semi-major, a, and semi-minor, b, axes such that a ∞ b > 0.

The coordinates of the ellipse are (x, y) = (f(ϑ), g(ϑ)) with f(ϑ) = a cosϑ, g(ϑ) =

b sinϑ, and ϑ ↗ [0, 27). Consequently, position vector (A.18) becomes

r(ϑ) =


a cosϑ

b sinϑ


. (A.20)
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To specify the second curve, we substitute f(ϑ) and g(ϑ)—along with their

derivatives f →(ϑ) = →a sinϑ and g→(ϑ) = b cosϑ—in position vector (A.19) to obtain

R(ϑ) =
22

(a cosϑ)(b cosϑ)→ (b sinϑ)(→a sinϑ)


b cosϑ

a sinϑ


=

22

ab


b cosϑ

a sinϑ


. (A.21)

As such, it is clear that the second curve is an ellipse as well, albeit with di!erent semi-

major, 22/a, and semi-minor, 22/b, axes. We can confirm the polar reciprocity of the

two curves by substituting position vectors (A.20) and (A.21) in the polar reciprocity

condition to obtain r(ϑ) ·R(ϑ) = (22/ab) ((a cosϑ)(b cosϑ) + (b sinϑ)(a sinϑ)) = 22,

which is a constant, as expected.

With this result, we confirm that the polar reciprocal of an ellipse centred on the

origin is another ellipse centred on the origin. The implication of this result is that,

in a seismological context, an elliptical slowness curve is equivalent to an elliptical

wavefront. As an illustration of this result, we present a plot of the two ellipses in

Figure A.1 for parameter values specified in the caption. Therein, we have set 2 = 2

for scaling purposes so that r(ϑ) and R(ϑ) intersect on the y-axis; note that, in

general, these curves may or may not intersect.

r(ϑ)

R(ϑ)

x

y

Figure A.1: The polar reciprocal of an ellipse is an ellipse. The first curve (red ellipse)
is specified by position vector (A.20), where a = 5/2 and b = 2. The second curve
(blue ellipse) is specified by position vector (A.21), where 2 = 2. For both curves, we
draw the position vectors r(ϑ) and R(ϑ), specified at ϑ = 17↔, along with a segment
of a tangent line and the unit normal vector.
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A.2.3 Transverse isotropy

In Section 3.3, we present the slowness curves for the qP , qSV , and SH waves in

several transversely isotropic media, specified by di!erent elasticity-parameter values.

In a similar manner to the ellipse, we can plot the wavefronts that correspond to the

slowness curves using polar reciprocity and position vector (A.19).

Let us recall that the slowness curve for a given wave is generated using the inverse

of its phase velocity, which are given in expression (3.8) for the qP and qSV wave

and expression (3.9) for the SH wave. For any of these waves, we specify the

coordinates of the slowness curve using position vector (A.18), with

f(ϑ) = cosϑ/v(ϑ) and g(ϑ) = sinϑ/v(ϑ), where v(ϑ) can be replaced vqP (ϑ),

vqSV (ϑ), or vSH(ϑ). By polar reciprocity, the coordinates of wavefronts,

corresponding to each of the slowness curves, are specified using position

vector (A.19), with

f →(ϑ) = →v(ϑ) sinϑ+ v→(ϑ) cosϑ

v(ϑ)2
and g→(ϑ) =

v(ϑ) cosϑ→ v→(ϑ) sinϑ

v(ϑ)2
;

the derivatives v→
qP
(ϑ), v→

qSV
(ϑ), and v→

SH
(ϑ) are given in expressions (4.40)–(4.42).

Now, let us turn our attention now to the Green-River shale medium. We consider

the slowness curves in Figure 3.2(a), which are generated using elasticity

parameters (3.26), and in Figure 3.2(c), which are generated with the same elasticity

parameters, but subjected to nondetachment condition (3.12a), i.e., cTI

1133
= →cTI

2323
.

For the former, we use position vector (A.19) to generate the wavefronts in

Figure A.2(b). Therein, we observe that magnitude of the qP wavefront is the

greatest among the three waves, which is consistent with its slowness having the

least magnitude, that the eight cusps of the qSV wavefront correspond to the eight

points of inflection of its slowness surface, and that the SH wavefront is an ellipse as

a consequence of its elliptical slowness.

For the latter, we generate the wavefronts in Figure A.3(b) subject to cTI

1133
= →cTI

2323
,

As is discussed in Chapter 3, while the innermost curve corresponds to the qP wave,

the slowness curves of the qP and qSV waves become connected with one another.

Moreover, the curves are no longer smooth at the point of their intersection. Therefore,

while continuity is maintained, the derivative of the phase velocity is not defined at
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qP

qSV

SH

(a) Slownesses

z
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qP

qSV

SH

(b) Wavefronts

Figure A.2: Slownesses and wavefronts in Green-River shale, generated using elasticity
parameters (3.26). The red curves correspond to the qP wave, blue curves to the qSV

wave, and green curves to the SH wave. In subplot (b), 2 =
√

2

11
for scaling purposes

so that the wavefronts are comparable to the slownesses.

z

x
qP

qSV

SH

(a) Slownesses

z

x

qP

qSV

SH

(b) Wavefronts

Figure A.3: Slownesses and wavefronts in Green-River shale, generated using elasticity

parameters (3.26), but subjected to cTI

1133
= →cTI

2323
. In subplot (b), 2 =

√
2

11
.
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these locations. As a result, although the outer curve is continuous—and despite

segments of ellipses being present in the wavefront— the qP and qSV wavefronts are

discontinuous. This result can be verified by matching the red and blue wavefront

segments in Figure A.3(b) to the corresponding segments of the slowness curve in

Figure A.3(a) using polar reciprocity. Beyond these aspects, it remains the case that

the SH wavefront is an ellipse as a consequence of its elliptical slowness.
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A.3 Nelder-Mead algorithm

In Section 5.4.2, we discuss the Nelder-Mead algorithm and its specifications for the

traveltime inversion. For convenience of the readership, we provide these specifications

within Algorithm 1. Note that, for consistency with the notation in this dissertation,

we have made several notational adjustments from the cited sources.

Algorithm 1 Nelder-Mead algorithm (adapted from Conn et al. (2009, p. 143)
and Gao and Han (2012, Section 1))

Initialization: Choose an initial simplex of vertices ς0 = {ς1
0, . . . ,ς

n+1
0 }. Evaluate f at the

points in ς0. Choose scaling constants:

↽ = 1, ⇀ = 2, ⇁ = 1
2 , δ = 1

2 . (A.22)

for k = 0, 1, 2, . . . do

0. Set ς = ς
k
.

1. Order: Order the n + 1 vertices of ς =
{ς1, . . . ,ςn+1} so that

f1 = f(ς1) ↙ · · · ↙ fN = f(ςN ).

2. Reflect: Reflect the worst vertex ςn+1

over the centroid ςc = 1
n


n

i=1 ς
i of the

remaining n vertices:

ςr = ςc + ↽

ςc → ςn+1 .

Evaluate fr = f(ςr). If f1 ↙ fr < fn,
then replace ςn+1 by the reflected point
ςr and terminate the iteration: ς

k+1 =
{ς1, . . . ,ςn,ςr}.

3. Expand: If fr < f1, then calculate the
expansion point

ςe = ςc + ⇀ (ςr → ςc)

and evaluate fe = f(ςe). If fe ↙ fr,
replace ςn+1 by the expansion point ςe

and terminate the iteration: ς
k+1 =

{ς1, . . . ,ςn,ςe}. Otherwise, replace ςn

by the reflected point ςr and terminate
the iteration: ς

k+1 = {ς1, . . . ,ςn,ςr}.

4. Contract: If fr ∞ fn, then a
contraction is performed between the
best of ςr and ςn+1.
(a) Outside contraction: If

fr < fn+1, perform an outside
contraction

ςoc = ςc + ⇁ (ςr → ςc)

and evaluate foc = f(ςoc). If
foc ↙ fr, replace ςn+1 by the
outside contraction point ςoc and
terminate the iteration: ς

k+1 =
{ς1, . . . ,ςn,ςoc}. Otherwise,
perform a shrink.

(b) Inside contraction: If
fr ∞ fN+1, perform an inside
contraction

ςic = ςc → ⇁ (ςr → ςc)

and evaluate f ic = f(ςic). If
f ic ↙ fn+1, replace ςn+1 by
the inside contraction point ςic

and terminate the iteration:
ς
k+1 = {ς1, . . . ,ςn,ςic}.

Otherwise, perform a shrink.
5. Shrink: Evaluate f at the n points

ς1 → δ

ςi → ς1, for i = 2, . . . , n+ 1,

and replace ς2, . . . ,ςn+1 by these points,
terminating the iteration: ς

k+1 = {ς1→
δ

ςi → ς1}.

end for
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A.4 Simulation study

A.4.1 Noise

In Section 5.5.1, we discuss the generation of simulated measurement errors, otherwise

referred to as noise. For the purposes of the simulation study, we generate three sets of

noise for both the simulated ZVSP and WVSP traveltimes, which we present herein.

Figure A.4: ZVSP noise profiles. Left-hand column: residuals with respect to receiver
depth; horizontal lines spaced at 0.5-millisecond intervals. Right-hand column:
residuals in histogram format; binning width of 0.25 milliseconds.
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Figure A.5: WVSP noise profile #1. Left-hand column: residuals with respect to
source o!set; horizontal lines spaced at one-millisecond intervals. Right-hand column:
residuals in histogram format; binning width of 0.5 milliseconds.
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Figure A.6: WVSP noise profile #2. Figure formatting consistent with Figure A.5.
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Figure A.7: WVSP noise profile #3. Figure formatting consistent with Figure A.5.
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A.4.2 Optimization outputs

In Section 5.5.3, we discuss the results of the simulation study optimization. Due

to the similarity of results across noise profiles, we present only those results that

correspond to noise profile #1 in Table 5.2, therein. Herein, for completeness, we

include the results for noise profiles #2 and #3 in Tables A.1 and A.2.
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Noise profile #2

Model A First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1800
2478
2728
0.7
0.5
0.3
0.01
0.01
0.01
1100
1600

lower

1794
2064
2507
0.4774
0.4212
0.2091
0.0010
0.0010
0.0010
500
1070

upper

1837
2530
2793
0.7170
1.0602
0.7986
0.0331
0.0360
0.0199
1295
1866

ς↑

1805
2396
2677
0.6811
0.4212
0.2991
0.0137
0.0049
0.0112
907
1438

µ

1810
2329
2686
0.6550
0.5690
0.3436
0.0111
0.0105
0.0100
862
1510

ω

11
109
50

0.0525
0.1308
0.0856
0.0056
0.0072
0.0027
192
154

ω/µ

0.0059
0.0469
0.0187
0.0802
0.2299
0.2492
0.5089
0.6804
0.2684
0.2233
0.1023

Model B First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1900
2300
2500
0.5
1.25
0.75
0.05
0.1
0.15
1000
1500

lower

1855
2045
2489
0.4680
0.0468
0.6196
0.0120
0.0658
0.1414
629
1479

upper

1909
2742
2541
0.7620
1.6245
0.8786
0.0644
0.1272
0.1648
1226
1542

ς↑

1901
2335
2509
0.4978
1.1512
0.7224
0.0508
0.0975
0.1536
1015
1503

µ

1899
2347
2512
0.5089
1.0561
0.7221
0.0484
0.0984
0.1537
1000
1506

ω

6
132
9

0.0284
0.1924
0.0375
0.0096
0.0077
0.0033
124
10

ω/µ

0.0031
0.0563
0.0037
0.0559
0.1822
0.0520
0.1975
0.0786
0.0215
0.1243
0.0065

Model C First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

2000
2300
2600
0.3
0.3
0.3
0.01
0.1
0.01
800
1400

lower

1974
2099
2566
0.0179
0.0010
0.2264
0.0010
0.0645
0.0085
500
1310

upper

2052
2418
2658
0.4396
0.4829
0.3258
0.0300
0.1123
0.0188
1008
1532

ς↑

2009
2325
2610
0.2667
0.2232
0.2757
0.0138
0.0923
0.0132
800
1405

µ

2008
2322
2611
0.2694
0.2293
0.2753
0.0139
0.0919
0.0132
798
1408

ω

7
34
9

0.0343
0.0581
0.0132
0.0036
0.0054
0.0013
48
17

ω/µ

0.0035
0.0148
0.0033
0.1272
0.2535
0.0478
0.2590
0.0582
0.0981
0.0598
0.0119

Table A.1: Optimization outputs for simulated traveltimes corresponding to models
A, B, C and noise profile #2. Formatting consistent with Table 5.2.
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Noise profile #3

Model A First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1800
2478
2728
0.7
0.5
0.3
0.01
0.01
0.01
1100
1600

lower

1709
2071
2530
0.0377
0.2331
0.2335
0.0010
0.0015
0.0010
500
1083

upper

1907
2682
2814
1.2216
1.2625
1.0648
0.0394
0.0405
0.0126
1452
1900

ς↑

1807
2638
2814
0.6784
0.3664
0.3029
0.0097
0.0122
0.0044
1386
1881

µ

1803
2311
2680
0.6824
0.5962
0.3612
0.0101
0.0140
0.0080
866
1487

ω

31
198
68

0.1846
0.2341
0.1772
0.0072
0.0089
0.0032
312
220

ω/µ

0.0171
0.0857
0.0253
0.2705
0.3927
0.4907
0.7139
0.6388
0.4033
0.3602
0.1482

Model B First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

1900
2300
2500
0.5
1.25
0.75
0.05
0.1
0.15
1000
1500

lower

1881
2113
2472
0.4816
0.0010
0.5925
0.0302
0.0700
0.1366
790
1471

upper

1906
2778
2538
0.5928
1.9069
0.8321
0.0659
0.1284
0.1628
1226
1526

ς↑

1902
2414
2495
0.4951
1.5617
0.7373
0.0594
0.1020
0.1442
1120
1486

µ

1900
2375
2499
0.5024
1.4120
0.7312
0.0562
0.1012
0.1460
1076
1490

ω

4
130
10

0.0133
0.2670
0.0374
0.0046
0.0075
0.0046
81
8

ω/µ

0.0020
0.0546
0.0041
0.0265
0.1891
0.0511
0.0826
0.0745
0.0312
0.0752
0.0055

Model C First-pass bounds Second-pass statistics




ς

a1
a2
a3
b1
b2
b3
↼1

↼2

↼3

ϖ2
ϖ3





true

2000
2300
2600
0.3
0.3
0.3
0.01
0.1
0.01
800
1400

lower

1874
2082
2530
0.2138
0.0099
0.1594
0.0010
0.0651
0.0010
503
1274

upper

2023
2442
2683
1.0404
0.5945
0.3602
0.0387
0.1556
0.0156
1107
1601

ς↑

1993
2331
2571
0.3371
0.2338
0.3243
0.0136
0.1330
0.0010
866
1344

µ

1989
2290
2601
0.3565
0.3412
0.2944
0.0129
0.1121
0.0044
833
1402

ω

13
65
25

0.0698
0.1252
0.0268
0.0081
0.0177
0.0033
99
59

ω/µ

0.0063
0.0285
0.0095
0.1958
0.3669
0.0912
0.6257
0.1581
0.7545
0.1191
0.0417

Table A.2: Optimization outputs for simulated traveltimes corresponding to model
A, B, C and noise profile #3. Formatting consistent with Table 5.2.
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