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Abstract

Internet censorship is a global problem. Many countries censor the internet for dif-

ferent reasons. This threatens internet freedom and access to information. 82.8%

of websites use the Transport Layer Security (TLS) protocol, which significantly en-

hances security. However, weaknesses exposed by TLS can still be exploited for inter-

net censorship. For example, the unencrypted Server Name Indication (SNI) directly

reveals the website’s identity. We propose a modified handshake protocol, SNIT,

for both TLS 1.2 and TLS 1.3, making it difficult to conduct SNI-based censorship.

SNIT has high resistance to active probing. On average, the performance loss is 31.69

ms per TLS connection, and there is no effect on subsequent traffic. Compared to

competitive approaches, SNIT has decent overall security and performance.
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Chapter 1

Introduction

1.1 Internet censorship overview

The internet has become indispensable in people’s lives. We can get a tremendous

amount of information from the internet, some of which is perceived as harmful by

governments. Censorship is the selective suppression of sensitive and offensive content

[4]. Governments censor internet resources, usually websites or specific content on a

website, and control what people can access. Internet censorship can be divided into

technical censorship and non-technical censorship. Non-technical censorship refers

to administrative and legal means: publishing or distributing sensitive content risks

arrest. On the contrary, technical censorship refers to the selective blocking of in-

ternet resources using technical method by governments, institutions and companies.

Compared to government censorship, institutions and companies usually have more

effective ways than network-based blocking, e.g. device monitoring. In this thesis, we

focus on government censorship.
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One of the most famous censorship projects is China’s Great Firewall (GFW)

[3]. People living in mainland China are subject to strict internet censorship. Other

countries in the world, from Iran [5], Turkey [6], and India [7] to France [8] also have

different levels of internet censorship. Internet censorship restricts people’s right to

access information freely, and different countries have very different levels and topics

of censorship. Table 1.1 shows the different topics censored by five countries. All

sensitive topics are censored in China, especially those related to politics. Political

censorship also happens in Saudi Arabia [9] and Syria [9]. They are also relatively

strict in religion. Cuba is as strict as China in politics, especially corruption [3].

France has only had censorship since the terrorist attacks of 2015.

Internet censorship is based on screening: blocking sensitive content while releas-

ing others. This target is impossible to achieve perfectly: over and under-blocking

always happens. If users could encrypt and obfuscate everything perfectly, and the

censor could never identify any website being accessed by the user, it would have to

make a choice: blocking or allowing everything.

1.2 Technical blocking methods

In this section, the technical methods of blocking websites will be briefly introduced.

As new protocols improve privacy, additional blocking methods are also applied to

compete with them. The methods below are listed chronologically.

2



Table 1.1: Censored topics by country [3]

Topic censored/ Countries China Saudi Arabia Syria Cuba France

Criticism of authorities XX XX XX XX

Corruption XX X XX

Conflict XX XX XX X

Political Opposition XX XX XX XX

Mobilization for public causes XX XX XX XX

Social commentary XX X X

Blasphemy X XX

Satire XX

LGBTI issues X XX

Ethnic and religious minority XX XX XX

Note: an “XX” indicates severe censorship, and an “X” indicates limited censorship.
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1.2.1 HTTP keyword filtering

In this obsolete method, hostnames in unencrypted HTTP requests or contents on

specific web pages are compared with a watchlist. If they are on the watchlist, the

firewall will disguise itself as both sides to send TCP RST packets to the opposite

side, and the connection will be terminated. With TLS, HTTP traffic is encrypted,

and no keywords can be intercepted. Currently, 82.8% of websites use HTTPS as

the default protocol [10], so this method has little effect, especially against websites

serving sensitive content.

1.2.2 Domain Name System (DNS) manipulation

DNS translates a domain name into one or more IP addresses. Before accessing a

website, the client usually needs to query a DNS server and get the corresponding IP

address. DNS query packets are not encrypted by default, meaning that the firewall

can check unencrypted DNS query packets. If the website in the query is banned, the

firewall will send the user a response containing fake IP addresses. This method can

be bypassed by DNS over HTTPS (DoH) [11], which encrypts the DNS query packets

with HTTPS. However, methods targeting HTTPS, i.e., all methods described in this

section except HTTP keyword filtering, can also be applied against the DoH servers.

In China, 99% of DoH queries are dropped [12]. If all DNS servers supporting DoH

are blocked (or at least all servers known to the user), the user has to use traditional

DNS and is vulnerable. DoH responses may also be manipulated if the DoH server

is deployed in the regions that suffer DNS manipulation [13]. If an upper-level DNS

server is being manipulated, it may pass the fake IP addresses to the lower-level DoH

4



servers.

1.2.3 Internet Protocol (IP) address blocking

In this method, the firewall records the IP addresses belonging to the blacklisted web-

sites. All packets sent to these IP addresses, or packets belonging to specific protocols

(e.g. HTTP and HTTPS), will be discarded. This method has two significant disad-

vantages. First, if the target website and multiple other websites are hosted on the

target IP, they will be blocked together. This is especially serious for content delivery

networks (CDN). Second, most websites change their IP addresses frequently. Strict

IP blocking does not work well and leads to many overblocks. Although IP blocking

is applied in most countries, it is always a secondary means [14, 15].

1.2.4 Certificate filtering

For TLS versions earlier than 1.2, the server certificate is always sent without en-

cryption. The common name (CN) is an indispensable part of a digital certificate. It

must be the same as the website name, and the firewall can detect it [16]. In TLS

1.3, the server certificate is encrypted, so this method has no effect.

1.2.5 Server Name Indication (SNI)-based censorship

A server name indication (SNI) is sent in plaintext in all TLS versions. Like the

common name in the digital certificate, it is the name of the website that the client

is accessing. If the server is hosting multiple websites, SNI allows the server to

pick the corresponding certificate. For example, a CDN may host a large number

5



of domains. The censor can identify the server with SNI and perform SNI-based

censorship [17, 18, 19]. This is the main issue addressed in this research and will be

introduced in more detail in Chapter 3.

1.3 Circumvention tools and countermeasures

Many tools have been developed to fight against internet censorship. Most of them

appear in the form of bridges. The bridges are deployed outside the firewall and

provide an alternative path between the users and the blocked websites. All network

traffic, or at least all the traffic to the blocked websites, must be forwarded by the

servers. This comes at a cost. As a result, either the users pay for these tools or

the quality of service cannot be guaranteed. These tools can also be blocked; the

cat-and-mouse game has been going on for years. A brief introduction to these tools

will be presented here.

Figure 1.1: A Tor circuit with three relay servers between the user and google.com

The Onion Router (Tor) [20] is a widely used tool for censorship circumvention.
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It provides strong security and anonymity. Under default settings, three Tor servers

are between the user and the website, as shown in Figure 1.1. The network traffic is

encrypted and routed three times. In the figure, the packets from the user are sent to

54.36.205.38 first. Then, they will be redirected to 91.121.219.14 and 185.220.102.248

before they reach the google.com server. Neither the website nor the servers in Ger-

many or Belgium know the user’s identity, including the IP address. Tor is funded

by the US government, private foundations, and individual donors [21]. Since Tor

is free for users, its bandwidth is limited to several Mbps. Also, the long journey

raises the latency to hundreds of milliseconds. Moreover, its security faces severe

tests. China’s Great Firewall has been blocking Tor for years [22, 23], though Tor’s

developers have developed new tools to fight against it [24]. Many studies impact its

anonymity. In [25, 26], the attacker can perform deanonymization in honey relays.

The relay server can be replaced and controlled by the attacker. In [27], the bitcoin

addresses have been proven to be exploitable, and the Tor users might be linked to

the hidden services.

Since public servers are targeted by censors, tools based on Virtual Private Server

(VPS) become widespread. A VPS is a virtual machine that provides internet hosting

services. Users have access to the operating system, and multiple VPSs can be run

on a physical server. The user can build a private network with a VPS. One popular

solution is V2Ray + TLS + websocket + web [28]. V2Ray is a proxy tool that

supports multiple inbound and outbound protocols. The core idea of this solution is

to hide the encrypted proxy behind a website. The website is only an empty shell built

by the server and can be accessed with TLS. The VPS forwards encrypted network

traffic while the censor thinks the user is just accessing the website. V2Ray may still

7



get blocked, but the method of identifying it is still uncertain. Some related studies

are based on traffic analysis [28, 29, 30].

1.4 Goal for this work

Although many security protocols and censorship circumvention tools have been ap-

plied, most of them are either out-of-date or limited. There is no perfect solution. In

this research, our goal is to develop a practical and deployable circumvention solu-

tion for SNI-based censorship. It should take into account security, convenience and

performance at the same time.

8



Chapter 2

Background

2.1 Transport Layer Security overview

Transport Layer Security (TLS) is a security protocol. It provides privacy, data

integrity and authentication between two communicating applications [31]. It works

on top of a transport layer protocol, usually TCP. It can also be used with UDP [32].

The protocol is widely used in network applications, including Hypertext Transfer

Protocol Secure (HTTPS). HTTP is only designed for data communication and does

not provide confidentiality, data integrity, or authentication. If the attacker intercepts

the packets, all communications between the client and the server will be received.

More seriously, the attacker can disguise themselves as the server. In the worst-

case scenario described in Dolev-Yao model [33], the user communicates only with

the attacker and only receives messages from the attacker. In this situation, HTTP

cannot provide confidentiality or data integrity. HTTPS is HTTP encrypted with

TLS. Currently, 82.8% of websites use HTTPS as the default protocol [10]. After
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many upgrades, the latest version is TLS 1.3 [34]. The most widely-used version is

still TLS 1.2, which is supported by 99.9% of popular websites [35].

2.2 TLS handshake overview

Client Server

ServerClient

Client Server

Ciphersuite negotiation

Key exchange

Client Server

Client ServerThe client generates a premaster secret

Client Server

ServerClient

The server decrypts the premaster secret 

Client Server

After key exchange

Client Server

Client Server

The client sends a list of ciphersuites

and a random number in ClientHello

Now both sides determine

which ciphersuite to use

The server sends its certificate which

includes a public key

The client encrypts the premaster secret

with the public key and sends it

Both sides derive the master secret from

the premaster secret

Both sides derive the session keys from

the master secret

All messages are encrypted with the

symmetric cipher and a MAC attached

The server picks a ciphersuite and sends

it with a random number in ServerHello

Figure 2.1: Summary of the TLS handshake
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Cryptographic algorithms provide data confidentiality and integrity in TLS. The

cryptographic algorithms are described in the cipher suite. In TLS 1.2, a cipher

suite includes a key exchange algorithm, an authentication method, a symmetric

cipher, and a hash algorithm. An example of a TLS 1.2 cipher suite name is

TLS DHE RSA WITH AES 256 GCM SHA384: Ephemeral Diffie-Hellman (DHE)

is the key exchange algorithm, Rivest–Shamir–Adleman (RSA) is the authentication

mechanism, AES-256-GCM is the symmetric cipher, in which 256 is the key size,

and Galois/Counter Mode (GCM) is the block cipher mode. Secure Hash Algorithm

(SHA)-384 is the hash algorithm.

Figure 2.1 summarizes a TLS handshake. A cipher suite is first negotiated: the

client provides a list of supported cipher suites in its ClientHello message, and the

server picks one of them in the ServerHello message. Then, the key exchange is

performed. The purpose of the key exchange is to generate a master secret on both

sides, a 48-byte secret that is used to derive session keys for the symmetric cipher.

The key exchange is secure over a public channel, though both sides have no prior

knowledge of each other. Even if the attacker intercepts the handshake messages, it

still cannot get the key. After the key exchange, all messages are encrypted by the

symmetric cipher. A message authentication code (MAC) is also attached to each

message to ensure data integrity.

In a key exchange, first, the client generates a random number and combines

it with the latest TLS version the client supports. This is called the premaster

secret. The premaster secret is then encrypted using the public key from the server’s

certificate. The client sends the encrypted premaster secret to the server, and the

server decrypts it with the certificate’s private key. Both sides now share the same
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premaster secret. The master secret is derived from the premaster secret and the

ClientHello and ServerHello messages by the formula in Eqn. 2.1 [31]:

master secret = PRF (pre master secret, “master secret”,

ClientHello.random+ ServerHello.random) (2.1)

PRF (pseudorandom function) is the hash algorithm in the cipher suite. The Clien-

tHello and ServerHello random numbers are used to prevent replay attacks. In a

replay attack [36], the attacker intercepts the packets in a session and re-transmits

them. The server will discard a ClientHello message if its random number has previ-

ously been seen.

A symmetric cipher is also specified in the negotiated cipher suite. Its keys and

other parameters are derived from the master secret. The attacker can only decrypt

a message if they acquires the master secret or at least a session key or breaks the

symmetric cipher.

Data integrity for each message is protected by a message authentication code

(MAC). Each message must have the correct MAC, or the connection will be aborted.

For block cipher modes which do not provide authenticated encryption with associated

data (AEAD), a hash-based message authentication code (HMAC) is used. AEADs

have built-in MAC-like functionality, so the HMAC is not needed: HMAC and AEAD

share a similar working principle. As an example, Eqn. 2.2 calculates the HMAC [37]:

HMAC(K,m) = H((K ′ ⊕ opad)||H(K ′ ⊕ ipad)||m) (2.2)

where H is a cryptographic hash function, and m is the message. The hash function

must have at least a weak form of collision resistance [38]. k’ is the secret key if the
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key is smaller than the block size of the hash function. Otherwise, it is the hash value

of the key. The opad (outer pad) and ipad (inner pad) are fixed values. They make

the secret keys pseudorandom. One can only calculate the HMAC of a message with

the secret key. The attacker cannot replace a message with a new one and generate

the correct HMAC. This structure can also prevent other attacks [39, 40], and it has

no known flaws.

2.3 Digital certificate

In a handshake, the server must provide a digital certificate for authentication. The

client will verify its validity. The client will proceed to the next step if the certificate

is valid. Otherwise, the client will receive an alert that indicates an attacker might be

impersonating the server. The server can also require the client to provide a certificate

to verify its identity.

To confirm the validity of a certificate, the following parts must be verified: the

common name (CN) of the issuer and the subject, the validity period, and the dig-

ital signature. The issuer’s CN in each certificate must be identical to the subject’s

CN in the upper-level certificate. For example, if the issuer’s CN in the end-entity

certificate is GTS CA 1C3, the subject’s CN in the last intermediate certificate must

be GTS CA 1C3, too. The subject’s CN of the end-entity certificate must corre-

spond to the requested website. A wildcard is often included. If the client requests

www.google.com, the subject’s CN can be *.google.com. Also, the current time must

be in the certificate’s validity period. If the certificate is not yet effective or has

expired, the certificate is considered invalid.
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Figure 2.2: The signing and verifying of a certificate

The signing and verifying of the digital certificate are based on a public key al-

gorithm, such as RSA or ECDSA. The steps are shown in Figure 2.2. When signing,

the plaintext part of a certificate is hashed. Then, the message digest is signed by the

public key algorithm and the CA’s private key. The generated digital signature be-

comes a part of the certificate. When verifying, the client will also hash the plaintext

part and get a digest. The digital signature is verified with the public key included

in the upper-level certificate. This will recover the original digest. The two digests

are compared. If they are identical, the signature is considered valid. The owner

of a certificate holds its private key. Only the owner can sign with its private key,

but everyone can verify the signature with the public key. The private key must be
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well-kept. If the private key is leaked, the attacker can fake the owner’s identity.
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Figure 2.3: The structure of a certificate chain

The digital certificate sent by the server is usually a certificate chain. Figure 2.3

shows the typical structure of a certificate chain. The certificate chain includes multi-

ple certificates, from the end-entity certificate, one or more intermediate certificates,

and a root certificate. The end-entity certificate belongs to the server, while other cer-

tificates belong to the respective certificate authorities (CA). Each certificate, except

the root certificate, is issued and signed by the upper-level CA.

The root certificate is self-signed. It is signed with its private key and can also be

verified with its public key. The client (usually a browser) always has the public keys of
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some trusted root CAs. The root certificate’s public key should be in the client’s list,

and the root certificate can be verified. The remaining certificates are verified with

the public key of their respective upper-level certificates. All certificates in the chain

must be valid. If one or more certificates in the chain are invalid, the verification

fails. Last, verifying the end-entity certificate’s private key is also necessary. The

verification is different from other certificates in the chain. In TLS 1.3, the private

key signs the past handshake messages and can be verified with the corresponding

public key, as shown in Figure 2.3. In TLS 1.2, the certificate participates in the key

exchange, and no additional verification is needed.

A server may host multiple websites simultaneously. This is called virtual hosting.

Virtual hosting is divided into two kinds: name-based and IP-based. IP-based virtual

hosting provides a different IP address for each website. Essentially, this is no different

from using multiple servers for the client. Name-based virtual hosting hosts multiple

websites on the same IP address and distinguishes each with its hostname. If HTTPS

is applied, each website has its certificate, and the server has to pick the correct one.

The client must send a Server Name Indication (SNI) containing the hostname [41].

Then, the server can pick the corresponding certificate. For the servers hosting only

one website, SNI is theoretically optional. However, the client can never judge if the

server only hosts the requested website. SNI will be introduced in detail in the next

chapter.
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Chapter 3

TLS handshake details

In this chapter, the steps of TLS handshake will be introduced in detail, as our

proposed protocol is based on it. A brief introduction has been given in Chapter 2.

Compared to TLS 1.2, many changes have been made to the handshake protocol in

TLS 1.3. As a result, TLS 1.2 and 1.3 are divided into two sections.
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3.1 TLS 1.2 handshake

AppData

CLIENT SERVER

ClientHello

ServerHello

ServerCertificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ClientChangeCipherSpec

ClientFinished

ServerChangeCipherSpec

ServerFinished

CertificateRequest

ClientCertificate

ClientCertificateVerify

Figure 3.1: TLS 1.2 handshake

Figure 3.1 shows the complete steps of a TLS 1.2 handshake. The messages sent by

the client are marked as blue, while those sent by the server are marked as orange.

The messages in dotted lines are optional and seldom sent in real applications. Some

other steps (like ServerCertificate) are also optional in theory but are almost always

sent in practice. The messages in the boxes are encrypted. Next, each step will be

explained in detail.
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3.1.1 ClientHello

Record header

Content type Version Length

Message body

Handshake type Message length Version

Random Session ID length Session ID Cipher suite length Cipher suites Compression length

Compression Extensions length Extension type Extension length Extension body

0x16 0x0303 2 bytes 0x01 3 bytes 0x0303

Message body

32 bytes 1 byte SID len bytes 2 bytes CS len bytes 1 byte

Comp. len bytes 2 bytes ......

Message body

......

2 bytes 2 bytes Ext length bytes

Figure 3.2: The message format of TLS 1.2 ClientHello

As a sign of the beginning of a handshake, the client always sends a ClientHello

message. The message structure is shown in Figure 3.2. All TLS packets have a

5 bytes record header. The first byte indicates the content type, which is 0x16 for

TLS 1.2 handshake packets. Version 0x0303 means TLS 1.2. The length is a 2 bytes

unsigned integer, which represents the length in bytes of the remaining message after

the record header.

Strictly speaking, the server may send another message called HelloRequest before

ClientHello. However, it only appears when the server requests a renegotiation, not

in an initial handshake. A renegotiation can be performed after a TLS connection

has been successfully established, but some extra operation is required for either side.

For example, a peer wants to change the cipher suite, or the server wants to request

a peer certificate that has yet to be obtained. Renegotiation has been proven to be a

vulnerability and prone to man-in-the-middle attacks [42] and denial of service (DoS)

attacks [43]. As a result, most major implementations have disabled this feature.
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TLS 1.3 has wholly given up renegotiation [34].

The message body of ClientHello includes the highest TLS version the client sup-

ports, a random number, a session ID, and a list of available cipher suites and ex-

tensions. The handshake type is 0x01, which means ClientHello. The length is a 3

bytes unsigned integer. It is also the length of the remaining part, just like the length

in the record header. The version must be TLS 1.2, or in hexadecimal, 0x0303, in a

successful TLS 1.2 handshake. Even if the client supports TLS 1.3, the version here

is still set as 1.2, and additional extensions are added to show the difference. If the

server only supports TLS 1.2, it will reply with a ServerHello message of TLS 1.2.

Then, both sides perform a TLS 1.2 handshake. The session ID is used for session

resumption. A list of supported cipher suites is included for the server to choose

from. They need at least one common cipher suite to continue the handshake. Al-

though a few compression methods are defined [44], compression is often disabled by

default due to specific attacks against TLS-level compression [45]. In this case, the

compression method length is 1, and the only compression method is NULL (0x00).

Other optional information is placed in the extensions. The extension length

indicates the length of all extensions. Each extension has three parts: extension type,

length, and body. Server Name Indication (SNI) is the focus here. When TLS is

used for HTTPS, an SNI is always included in the extensions. Because of its use in

censorship, its details are discussed in Section 3.3.
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Record header

Content type Version Length

Message body

Handshake type Message length Version

Random Session ID length Session ID Cipher suite Compression length Compression

Extensions length Extension type Extension length Extension body

0x16 0x0303 2 bytes 0x02 3 bytes 0x0303

Message body

32 bytes 1 byte SID len bytes 2 byte 1 byte Comp. len bytes

2 bytes ......

Message body

......

2 bytes 2 bytes Ext length bytes

Figure 3.3: The message format of ServerHello

3.1.2 ServerHello

In response, the server sends a ServerHello message to the client. Its structure is the

same as that of ClientHello. The handshake type is 0x02, which means ServerHello.

The server generates its own random number. The session ID is copied from Clien-

tHello. The cipher suite is chosen from the ClientHello list and will be used for this

connection. If the server does not support any of the client’s cipher suites, it will send

an error message instead. The extensions in ServerHello do not include SNI. The rest

are similar to ClientHello’s and will not be repeated here.

3.1.3 ServerCertificate

In most cases, the server sends a ServerCertificate message right after the ServerHello.

This message is optional in the protocol, but it is essential for the client to identify

the server in real applications. The message format is shown in Figure 3.4. This

message contains all the certificates in the server’s certificate chain, from the end-

entity certificate to the root certificate. The client can verify the certificate and may

abort the connection if it is invalid. The certificate’s public key also participates in
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Record header

Content type Version Length

Message body

Handshake type Message length Certificates length

Certificate length ......

0x16 0x0303 2 bytes 0x0B 3 bytes 3 bytes

Message body

3 bytes ......

Message body

End-entity cert.

Cert. length bytes

Certificate length

3 bytes

Intermediate cert.

Cert. length bytes

Certificate length

3 bytes

Root cert.

Cert. length bytes

Figure 3.4: The message format of the Certificate message

the key exchange. The ServerCertificate is sent before the key exchange is completed

and is not encrypted. In an HTTPS session, the domain name requested by the client

is usually the subject’s common name of the end-entity certificate. Occasionally, it

is placed in an extension, the certificate subject alternative name instead. In either

case, as long as the attacker intercepts this message, they will learn the website the

client is requesting.

3.1.4 ServerKeyExchange

Record header

Content type Version Length

Message body

Handshake type Message length

0x16 0x0303 2 bytes 0x0C 3 bytes

Message body

Msg. len. bytes

Figure 3.5: The message format of ServerKeyExchange

The server sends this message when the key exchange method of the chosen cipher

suite is DHE DSS, DHE RSA, DHE ECC, or DH anon [31]. Generally, this mes-

sage contains additional information used by the Diffie-Hellman protocol, and for
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DHE RSA, a digital signature is required. If the elliptic curve cryptography (ECC)

is applied, the curve information is also sent. The format is shown in Figure 3.5. The

format of the message body varies significantly from case to case and is not shown in

the figure. Since the public key of DHE is randomly generated, this message is not

related to the server’s identity.

3.1.5 CertificateRequest

Record header

Content type Version Length

Message body

Handshake type Message length

Cert. type len

0x16 0x0303 2 bytes 0x0D 3 bytes

Message body

1 byte

Cert. type

Cert. type len bytes

Sig. alg. len

2 bytes

Sig. algorithm

Sig. alg. len bytes

Cert. auth. len

2 bytes

Cert. auth.

Cert. auth. len bytes

Figure 3.6: The message format of CertificateRequest

This message is only sent when the server needs to identify the client with a

certificate. The message format is shown in Figure 3.6. Considering that almost no

website has adopted this authentication method [46], it rarely appears. Compared to

a client certificate, an authentication in application layer is usually considered more

convenient.
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3.1.6 ServerHelloDone

Record header

Content type Version Length

Message body

Handshake type Message length

0x16 0x0303 0x0004 0x0E 0x000000

Figure 3.7: The message format of ServerHelloDone

The server will send a ServerHelloDone message after the few messages above have

been sent. As the name suggests, the messages sent by the server have ended, and

the server will wait for the client to respond. It only includes the message type and

a length of 0, as shown in Figure 3.7.

3.1.7 ClientCertificate

If the server requests the client to provide its certificate, the client must send a

ClientCertificate after ServerHelloDone. The message format is identical to the

ServerCertificate in Section 3.1.3. The certificate type and authority must be chosen

from the list in CertificateRequest. This message is also unencrypted: the attacker

can learn the identity of the user from this message.

3.1.8 ClientKeyExchange

A ClientKeyExchange is always sent, regardless of the cipher suite. If the RSA key

exchange algorithm is used, it will contain the RSA-encrypted premaster secret. If

the Diffie-Hellman algorithm is used, it sends the DH public key or an empty message,

depending on whether the DH algorithm is ephemeral or static. The difference be-
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tween the two is whether to use the same Diffie-Hellman private keys in each session.

Its message format is the same as ServerKeyExchange, though the message type is

0x10. This message is generated by the client and not related to the server’s identity.

3.1.9 CertificateVerify

Record header

Content type Version Length

Message body

Handshake type Message length

Hash algorithm

0x16 0x0303 2 bytes 0x0F 3 bytes

Message body

1 byte

Signature algorithm

1 byte

Signature length

2 bytes

Signature

Signature length bytes

Figure 3.8: The message format of CertificateVerify

If a client certificate is requested and sent, and the client certificate has signing capa-

bility, this message will follow the ClientKeyExchange. Its format is shown in Figure

3.8. This message only includes a digital signature. All past handshake messages are

hashed together and signed with the certificate private key. The hash and signature

algorithm is chosen from the lists in the CertificateRequest message. When the server

receives this message, it will verify the digital signature with the certificate’s public

key and send a fatal error message to abort the connection if the signature is invalid.

3.1.10 ClientChangeCipherSpec

After the key exchange has been completed, the client sends ClientChangeCipherSpec.

Its format is shown in Figure 3.9. All the following messages from the client side will

be encrypted. The content type in the record header is ChangeCipherSpec (0x14),
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Record header

Content type Version Length

Message body

0x14 0x0303 0x0001
0x01

Figure 3.9: The message format of ChangeCipherSpec

not handshake. The message body is fixed as a 1.

3.1.11 ClientFinished

Record header

Content type Version Length

Encrypted message body

Handshake type Message length

0x16 0x0303 2 bytes 0x14 0x00000C

Verify_data

12 bytes

Figure 3.10: The message format of ClientFinished

This is the last handshake message sent by the client, and it is the first message

encrypted with the negotiated algorithms and keys. All encrypted messages also

have a MAC or AEAD tag, which is not shown in Figure 3.10. It includes 12 bytes

of verify data, which is generated by the master secret, a string which is “client

finished” for ClientFinished or “server finished” for ServerFinished, and the hash

value of all handshake messages. If the expected value calculated by the server differs

from the received value in the ClientFinished, the server will send an alert message

and abort the connection.

3.1.12 ServerChangeCipherSpec

The format and effect of this message are the same as ClientChangeCipherSpec,

though it is sent by the server.
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3.1.13 ServerFinished

ServerFinished has the same effect as ClientFinished. After the client receives the

ServerFinished and parses it, the handshake is over, and the client will start to send

application data. All of the application data messages sent from both sides are now

encrypted.

3.2 TLS 1.3 handshake

AppData

CLIENT SERVER

ClientHello

ServerHello

ServerCertificate

ServerCertificateVerify

ClientChangeCipherSpec

ClientFinished

ServerChangeCipherSpec

ServerFinished

CertificateRequest

ClientCertificate

ClientCertificateVerify

EncryptedExtensions

Figure 3.11: TLS 1.3 handshake
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Figure 3.11 shows the complete steps of a TLS 1.3 handshake. Compared to TLS

1.2, a few changes have been made. The key exchange can be performed with only

ClientHello and ServerHello, so no additional key exchange message is required. The

CertificateVerify messages become compulsory if the corresponding certificate is sent

first. Another difference is that once the key exchange has been done on either side, all

messages from that side will be marked as application data in the record header. This

makes it more challenging to match the intercepted data packets with the handshake

steps. Moreover, only one roundtrip is needed in a TLS 1.3 handshake, while in

TLS 1.2, the number is two. This slightly improves performance. Next, the specific

differences in each step will be explained below.

3.2.1 ClientHello

As mentioned in Section 3.1.1, the ClientHello of TLS 1.3 differs from the ClientHello

of TLS 1.2 only in extensions. The record header and message body versions are still

TLS 1.2 for backwards compatibility. A new extension, which is called the supported

versions, is compulsory in TLS 1.3. It includes the TLS versions supported by the

client, and they are usually TLS 1.3 and 1.2 since versions before TLS 1.1 have been

deprecated. If the server supports TLS 1.3, it will proceed with TLS 1.3; if not, it

will switch to TLS 1.2 and send the handshake messages according to the standard

of TLS 1.2. Another necessary extension is key share. It undertakes the function of

ClientKeyExchange.
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3.2.2 ServerHello

Like ClientHello, the ServerHello is the same as in TLS 1.2 except for the extensions.

Again, the supported versions and key share extensions are included. This time, only

one version, TLS 1.3, should appear in the supported versions as a TLS 1.3 handshake.

The ServerKeyExchange message in TLS 1.2 is replaced by a new extension, the key

share. When this message is sent, the key exchange on the server side has been

completed.

3.2.3 ServerChangeCipherSpec

The purpose and format of this message are identical to the TLS 1.2’s, but it is

optional in TLS 1.3. It is only sent when the server and client work in middlebox

compatibility mode [34], which improves the compatibility with TLS 1.2 middleboxes.

3.2.4 EncryptedExtensions

Record header

Content type Version Length

Encrypted message body

Handshake type Message length Extensions length

Extension type Extension length Extension body

0x18 0x0303 2 bytes 0x08 3 bytes

Encrypted message body

2 bytes

......

......

2 bytes 2 bytes Ext length bytes

Figure 3.12: The message format of EncryptedExtensions

EncryptedExtensions is a new message defined in TLS 1.3, and it must be sent, though

the list of extensions can be empty. This is the first encrypted message from the server,

and it only includes the extensions that need to be protected, such as Heartbeat. The
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Heartbeat Extension is used to keep the connection alive by sending periodic keep-

alive messages. The extensions in EncryptedExtensions are not included in the key

exchange or associated with certificates [34].

3.2.5 CertificateRequest

Like TLS 1.2, CertificateRequest is sent only when the server needs to request a

certificate from the client. A few changes have been made to the format of this

message, but they are not relevant to this study. Also, it is encrypted in TLS 1.3.

3.2.6 ServerCertificate

The format of this message has not changed in TLS 1.3, but it is encrypted and

does not participate in the key exchange. The attacker cannot get the certificate

information by intercepting the data packet unless the encryption is broken. However,

it is still prone to active probing: the attacker can try to access the website and get

the certificate.

3.2.7 ServerCertificateVerify

This message has the same function as the CertificateVerify in TLS 1.2. However, it

is also compulsory for the server certificate in TLS 1.3 since the server certificate does

not participate in the key exchange. The format does not change, but the message is

encrypted since it must be sent after ServerCertificate.
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3.2.8 ServerFinished and ClientFinished

These two messages are still used to demonstrate that the handshake has finished on

the corresponding side. The generation of the verify data has changed: the size is

not fixed as 12 bytes, but is the full output of the HMAC.

3.3 SNI-based censorship

The format of Server Name Indication (SNI) is shown in Figure 3.13. The server

name type can only be 0x00 in practice, which means hostname. The other value,

0xFF, is reserved [47]. The server name part is the hostname that the client is

currently requesting. Because the ClientHello message is not encrypted, the SNI can

be intercepted easily.

SN list length Server name type Server name length Server name

2 bytes 1 byte 2 bytes SN length bytes

SNI extension body

Figure 3.13: The message format of the SNI extension

A censor can identify the server by parsing the ClientHello, so SNI-based censor-

ship is deployed in most countries where internet censorship exists [17, 18, 19]. Taking

the GFW as an example, all ClientHello messages are filtered, and like HTTP key-

word filtering, the censorship middlebox implements TCP packet injection if the SNI

is on the blacklist. It sends TCP RST packets to both sides to terminate the connec-

tion. One research direction is to confront TCP packet injection [48, 49, 50, 51], but
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their rivals are also evolving. Two SNI-based censorship middleboxes are deployed

by the GFW [17]. Even if the first one is not working, the second one may still be

effective. More seriously, the GFW is piloting an SNI whitelist in several cities [52].

All websites except those on the whitelist are blocked. Residual censorship is applied

in China, Iran, and Kazakhstan [53]: once a blacklisted SNI is detected, all connec-

tions between the target client’s and server’s IP address and port will be reset. This

lasts for 60 to 300 seconds. In order to bypass SNI-based censorship, encryption or

spoofing of SNI is required. Many solutions have been proposed for this, and they

will be introduced in detail and compared with SNIT in Chapter 8.
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Chapter 4

SNIT: SNI Tunneling

In this research, we propose a modification, named SNIT (SNI Tunneling), to TLS

1.2 and TLS 1.3. With SNIT, a secret website can falsify its SNI and certificate as an

innocuous website. From the censor’s point of view, accessing a secret website with

SNIT appears the same as the original handshake protocol. Compatibility for un-

modified clients and servers is maintained. For example, a server can host public.com

and secret.com simultaneously, but secret.com is accessible only via SNIT. The client

can validate the certificate of secret.com in the handshake. Next, a detailed descrip-

tion of the handshake steps will be given, using public.com as the cover domain and

secret.com as the covert domain.
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4.1 SNIT on TLS 1.2

AppData

CLIENT SERVER

ClientHello (with public SNI)

ServerHello

ServerCertificate (public)

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ClientChangeCipherSpec

ClientFinished

ServerChangeCipherSpec

ServerFinished

CertificateRequest

ClientCertificate

ClientCertificateVerify

ClientEncryptedExtensions

ServerCertificate

CertificateVerify

Figure 4.1: SNIT on TLS 1.2

The steps of SNIT on TLS 1.2 are shown in Figure 4.1. The modified steps are

marked in bold, while the additional steps are marked in bold and italics. The black

box indicates that the messages inside are encrypted and marked as application data.

The rest of the annotations are the same as in Figure 3.1. The unencrypted SNI and
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certificate are replaced with an innocuous website, and the real SNI and certificate are

sent after the end of the normal handshake process. The steps after ServerFinished

are all marked as application data in the record header since no encrypted handshake

messages should appear here. The part before this looks the same as the original

protocol, but some modifications are made to maintain the compatibility. Because of

the additional steps, the handshake needs one more roundtrip. The new and modified

handshake steps will be introduced below.

4.1.1 ClientHello

The structure of this message does not change, but the SNI is set as a cover website,

e.g. public.com, whether the client is accessing public.com with the original protocol

or secret.com with SNIT. One or more corresponding public websites protect each

secret website. Since the SNI is always the cover domain, SNI-based censorship does

not work anymore. Like Domain Fronting and BlindTLS (see Chapter 8), the public

server name can only be acquired out-of-band.

4.1.2 ServerCertificate

The first ServerCertificate, right after ServerHello, belongs to public.com. Like Clien-

tHello, this message is the same in both cases. It must be a valid certificate of

public.com. Although public.com is not the website the client wants to access, the

client should still validate the certificate, as the server might be forged by the censor.

This certificate participates in the key exchange.
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4.1.3 ClientCertificate

This message is no different from the original protocol, but the client certificate should

only be used to authenticate to public.com. The client can be identified by secret.com

by other methods, which will be explained in the next step.

4.1.4 ClientFinished

Record header

Content type Version Length

Encrypted message body

Handshake type Message length

0x16 0x0303 2 bytes 0x15 0x00000C

Verify_data XOR pw

12 bytes

Figure 4.2: The message format of ClientFinished of SNIT

Record header

Content type Version Length

Encrypted message body

Handshake type Message length

0x16 0x0303 2 bytes 0x14 0x00000C

Verify_data

12 bytes

Figure 4.3: The message format of ClientFinished of the original protocol

This message is used to distinguish the two protocols, as shown in Figure 4.4.

If the client requests public.com with the original protocol, this message does not

change, and both sides will continue with the original protocol. If the client uses

SNIT, the message format is shown in Figure 4.2. The message format of the original

ClientFinished is also shown in Figure 4.3 for comparison. The handshake type is set

as 0x15, which is named fake finished, not 0x14 or finished in the original finished

messages. The generating algorithm of the verify data does not change. It is still 12

bytes, but XORed with a 96b password. The password is set by the server, and the
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ClientHello (public)

ServerHello

ServerCertificate (public)

......

ClientChangeCipherSpec

0x14 0x15, correct password 0x15, wrong password

ClientFinished

ServerChangeCipherSpec

ServerFinished

Public website

ServerChangeCipherSpec

ServerFinished

ClientEncryptedExtensions

ServerCertificate (secret)

CertificateVerify

Secret website

Unexpected_message

Figure 4.4: The flowchart of SNIT

client must learn the correct password out-of-band. When verifying this message, the

server will send an unexpected message error to the client if the verify data is

not correct, whether the password is wrong or the verify data itself is wrong. This

is done to prevent active probing. The ServerFinished message does not change.

4.1.5 ClientEncryptedExtensions

The format of this message is identical to the EncryptedExtensions message of TLS

1.3, though it has different uses. This message is encrypted and marked as application

data in the record header, like all following handshake messages. Currently, only one
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extension, the server name indication, is supported. Its use is the same as the SNI in

the original protocol to let the server send the corresponding certificate. The censor

cannot get secret.com from the handshake unless the encryption is broken.

4.1.6 ServerCertificate

This second certificate belongs to secret.com. The message format is also the same

as the first one, except it is encrypted. Then, the client can validate the certificate

and the server’s identity. The key exchange will not be performed again since an

additional key exchange does not improve security.

4.1.7 CertificateVerify

Since the secret certificate does not participate in the key exchange, an additional

verification of the certificate’s private key is needed. The use and format of this

message are identical to the CertificateVerify of the client’s certificate. A digital

signature is generated by the certificate’s private key and all past handshake messages.
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4.2 SNIT on TLS 1.3

AppData

CLIENT SERVER

ClientHello (with public SNI)

ServerHello

ServerCertificate (public)

ServerCertificateVerify

ClientChangeCipherSpec

ClientFinished

ServerChangeCipherSpec

ServerFinished

CertificateRequest

ClientCertificate

ClientCertificateVerify

EncryptedExtensions

ClientEncryptedExtensions

ServerCertificate

ServerCertificateVerify

Figure 4.5: SNIT on TLS 1.3

The steps of SNIT on TLS 1.3 are shown in Figure 4.5. The annotations are the same

as in Figure 4.1. The modifications are similar to those of TLS 1.2. The cover domain

is still the SNI in ClientHello and the common name of the first ServerCertificate.

Like the original protocol, the certificate is encrypted and does not participate in the

key exchange, but the client still needs to validate it. The password in ClientFinished
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is still 96b. If the verify data is longer than 96 bits, the password will be XORed

with the first 96 bits of the verify data. The use and format of ClientEncryptedEx-

tensions, ServerCertificate, and ServerCertificateVerify do not change.

4.3 Deployment

Firewall

Users

public1.com

password 1

public2.com

password 2

public3.com

password 3

......

......

Reverse proxies

secret.com

HTTP server

UsersSNIT

Reverse proxy

secret.com

Regular protocol

Figure 4.6: Deployment of SNIT using reverse proxies

SNIT is compatible with the original protocol. It can be attached to any TLS

server. One feasible deployment mode is shown in Figure 4.6. Here, the origin HTTP

server of the secret website is placed outside of the firewall, with reverse proxies

supporting both the original TLS handshake and SNIT. Each proxy owns different IP

addresses, public SNIs, and passwords. These public websites must be accessible using

the original protocol. Also, all proxies must possess the secret key corresponding to

the secret.com certificate. The others can survive even if one reverse proxy is exposed

and blocked. A user inside the firewall needs a public SNI, as well as the password

and the secret SNI, to perform the handshake. The IP addresses of the proxies can
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be directly resolved from the public SNIs. After the handshake, the proxy forwards

the unencrypted application data to the HTTP server of secret.com, and the user

has access to secret.com. Also, another reverse proxy that only supports the original

protocol can be applied. This improves performance and convenience for the users

outside the firewall.

SNIT can also be deployed on CDNs. A CDN hosts many domains and owns their

corresponding certificates. This allows it to combine any public and secret websites

at will. A public website can be used to protect multiple secret websites and vice

versa. Many-to-many is also possible. This brings huge flexibility. However, CDN is

a double-edged sword. If IP blocking is applied, too many websites on the CDN will

be affected. On the one hand, this leads to severe overblocking and goes against the

target of screening. The censor may not be willing to block all normal websites on the

CDN only because of a small number of sensitive websites. On the other hand, once

the censor thinks it is worth using IP blocking, all secret websites hosted on specific

IP addresses will be blocked, including those the censor does not know.

4.4 Password distribution

Distribution is another essential part of SNIT. In order to access a secret website,

a public SNI and the matched password must be distributed out-of-band. This is

the most significant disadvantage of this protocol, though it is common for similar

approaches such as Domain Fronting [54] and HTTPT [1] (see Chapter 8). Out-of-

band distribution increases the chance of being discovered by the censor. In real

applications, different websites have different scales and security levels. Security and
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convenience can be weighed differently in different situations.

Here, a feasible method for websites with an average level of security requirements

is given. All users are divided into different user groups. The number of groups is

precisely the number of public websites. All users in a user group are given one public

SNI and the password. The public websites work independently. They can be added,

modified, or removed at any time. A user does not know the other pairs, even their

number. If an insider discloses one pair to the censor and makes it blocked, only

one user group is affected, and the others can survive. Furthermore, the censor can

never confirm that all public websites are blocked. As a result, completely blocking

a large secret website requires many insiders. For websites with higher demand for

security, a bridge distribution system can be applied [55, 56, 57]. In these studies, the

bridge distribution system is based on a user reputation system. When a user joins

the system, they receive a specific number of bridges. Credits can be earned based

on the uptime of these bridges and lost if one of them is blocked. A user with too low

reputation is considered as an insider. This prevents them from gaining additional

bridges.

In this chapter, our new protocol, SNIT, is introduced. Its difference with the

original TLS 1.2 and 1.3 protocol is explained in detail. The deployment and password

distribution are also discussed.
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Chapter 5

Implementation

5.1 Mbed TLS

Our prototype implementation is based on Mbed TLS. Mbed TLS (previously Po-

larSSL) is a lightweight TLS library [58]. It is developed by ARM. As a Trusted

Firmware project of Arm architecture, Mbed TLS is the preferred implementation of

Arm specifications. Its small code and memory footprint make it very suitable for

embedded systems. Mbed TLS has been adopted by many development frameworks

and operating systems, such as ESP-IDF [59] and RIOT [60].
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Figure 5.1: The additional messages added by SNIT, highlighted in green

The table of states is shown in Figure 5.1. The three additional messages intro-

duced in Chapter 4 are highlighted. They are the same in both TLS 1.2 and TLS 1.3,

and no other steps are added.
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Figure 5.2: The new handshake type

Figure 5.3: The password

Figure 5.2 shows the new handshake type, fake finished. Its purpose is to distin-

guish SNIT, as explained in detail in Section 4.1.4. The password is 96 bits. In our

implementation, it is stored in a 128b integer, as shown in Figure 5.3.
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Figure 5.4: The state switching of TLS 1.2 ClientFinished and ServerFinished, dif-

ference highlighted in blue

The format of ClientFinished and ServerFinished are the same. Their parsing

or writing is implemented in one function in Mbed TLS. Figure 5.4 shows the state

switching of TLS 1.2 ClientFinished and ServerFinished parsing functions as described

in Section 4.1.4. The server only parses ClientFinished, and the client only parses

ServerFinished. On the server side, the ClientFinished will always switch to the next

state, ServerChangeCipherSpec. The state table can be found in Figure 5.1. If the

original protocol is used, ServerFinished will switch to MBEDTLS SSL FLUSH BUFFERS,

the next step in the state table. This means the handshake is finished. Only when the

client uses SNIT will it switch to ClientEncryptedExtensions. The state switching of

the writing function is no different from the parsing function and will not be repeated.

Figure 5.5: The state switching of ServerCertificate
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Figure 5.6: The state switching of ServerCertificateVerify

Like ClientFinished, ServerCertificate and ServerCertificateVerify have dif-

ferent state switching under different circumstances. In TLS 1.3, the only

ServerCertificate in the original protocol and the public ServerCeritificate in

SNIT is defined as MBEDTLS SSL SERVER CERTIFICATE. The next state is always

MBEDTLS SSL CERTIFICATE VERIFY. If it is the secret ServerCertificate, the next step

is defined as MBEDTLS SSL SERVER ENCRYPTED CERTIFICATE VERIFY, which is shown in

Figure 5.1. In these two cases, the next state of ServerCertificateVerify is ServerFin-

ished or flush buffers, respectively.

Figure 5.7: The switching of protocols

If the server supports SNIT, and the message type in ClientFinished is

fake finished, the server will change to SNIT and XOR to verify data with the

password.
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Figure 5.8: The verification of the password

Since the password is XORed to the verify data, they can only be verified to-

gether. If the client uses the original protocol and gets the wrong verify data, the

server will reply with a decrypt error. If it uses SNIT and either the verify data or

the password is wrong, the server will reply with an unexpected message instead.

Figure 5.9: The disguised application data in TLS 1.2

In TLS 1.2, the three additional steps are marked as application data, but they
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are handshake messages indeed. Their record type must be changed to application

data when writing or changed to handshake when parsing. This is necessary to pass

the sanity check.

5.2 Hiawatha webserver

In order to evaluate the performance of SNIT in a realistic environment, we also imple-

mented SNIT on a web server, Hiawatha, based on Mbed TLS. We have implemented

the core functionality of SNIT, such as the handshake procedure and switching of

certificates and websites. The public and secret websites are deployed one-to-one.

The reverse proxy in Section 4.3 has not been implemented yet.

Table 5.1 shows the behaviours of the server in different situations. We mimic reg-

ular server behaviour unless all SNIT checks pass. Each column indicates a different

input or output. The inputs by the client are the public SNI, the secret SNI, and the

hostname in the HTTP request. The outputs are the public, secret certificates, and

web pages in the HTTP response. The server hosts five domains: public1.com, se-

cret1.com, public2.com, secret2.com and default.com. The corresponding certificates

are self-signed and generated by OpenSSL. There are two groups of public and secret

websites. Secret1.com and secret2.com are protected by public1.com and public2.com,

respectively. Since the reverse proxy is not yet supported, the secret websites can-

not be accessed using the original protocol from this server. A server may host more

pairs of websites or public websites, but two pairs are enough for the test. Default.com

applies when an invalid SNI or hostname is received in the HTTP request.

If the client uses the original protocol, it will get the certificate of public1.com
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Table 5.1: The behaviours of the server in different situations

Protocol Public SNI Secret SNI HTTP req. Public cert. Secret cert. Webpage

Original

Public1.com -
Public1.com

Public1.com -
Public1.com

Other Default.com

Secret1.com - Any Default.com - Default.com

Public2.com -
Public2.com

Public2.com -
Public2.com

Other Default.com

Secret2.com - Any Default.com - Default.com

Other - Any Default.com - Default.com

SNIT

Public1.com

Public1.com
Public1.com

Public1.com

Public1.com
Public1.com

Other Default.com

Secret1.com

Secret1.com

Secret1.com

Secret1.com

Public1.com Public1.com

Other Default.com

Other
Public1.com

Public1.com
Public1.com

Other Default.com

Secret1.com - - Default.com Unexpected message

Public2.com

Public2.com
Public2.com

Public2.com

Public2.com
Public2.com

Other Default.com

Secret2.com

Secret2.com

Secret2.com

Secret2.com

Public2.com Public2.com

Other Default.com

Other
Public2.com

Public2.com
Public2.com

Other Default.com

Secret2.com - - Default.com Unexpected message

Other - - Default.com Unexpected message
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or public2.com only when the corresponding SNI is set. In other cases, the client

will always get the certificate of default.com. Secret websites can never be accessed

directly with the original protocol: they can only be accessed with SNIT. The server

will behave as if the secret websites do not exist. The client can only reach the secret

websites if the correct SNI, password and HTTP request are provided.

The differentiation between the original protocol and SNIT occurs in ClientFin-

ished. Cases with wrong passwords are not listed in the table: the server will always

terminate the connection with an unexpected message error. Different passwords

are allowed for different websites in our implementation. The public SNI must be a

valid public website for the use of SNIT. To access a secret website, the client must

first receive the correct certificate. For example, to get the certificate of secret1.com,

the public SNI and the secret SNI must be set as public1.com and secret1.com, respec-

tively. As the table shows, the server will only repeat the certificate of public1.com

if the secret SNI is wrong. In this implementation, to reach secret1.com, the host-

name in the HTTP request must be secret1.com. Different pairs of public and secret

websites do not interfere with each other. The user cannot access secret1.com with

a public SNI of public2.com. In practical applications, this constraint can be waived

for convenience.

In this chapter, the implementation of SNIT is described in detail. The modifi-

cation to the source code of Mbed TLS and the behaviours of Hiawatha webserver

are explained. This implementation provides the security properties discussed in the

next chapter.
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Chapter 6

Security evaluation

Security is the most crucial part of TLS and SNIT. Our target is to disguise a secret

website as a public website and minimize the differences that can be observed by the

censor. A detailed analysis will be given in this chapter.

6.1 Possible blocking methods

SNIT is a modified version of TLS. The secret website is disguised as one or more

public websites. Once the censor suspects that a public website is using this protocol,

it can block the public website with the methods effective for websites using HTTPS,

and the secret website can no longer be accessed through the blocked public website.

These methods include DNS manipulation, certificate filtering, SNI blocking, and IP

blocking. However, their shortcomings still exist. DNS manipulation can be bypassed

by DNS over HTTPS (DoH), and SNIT can also protect DoH. If this protocol is

broadly adopted, blocking will be a cat-and-mouse game.

SNI blocking is better in comparison, but it has the same premise to apply: the
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censor must suspect the public website first. However, there is an exception: the SNI

whitelist. In this approach, the censor will block all TLS connections whose SNI is

not on the whitelist. Unfortunately, there is no perfect solution for this. Under the

SNI whitelist, the public SNI must be set as an allowed website. The server must own

and host the allowed website, or this is prone to active probing. However, only fully

compliant websites can be added to the whitelist. Their owners are less likely to allow

a secret service to exist. However, the SNI whitelist is too strict: all normal websites

which are not on the whitelist are all blocked. Even in China, only a small-scale pilot

has been conducted [52].

6.2 Passive probing

The most important security consideration is the concealment of SNIT. When a user

accesses a secret website under SNIT, all the unencrypted parts of the session are

identical to the respective public website. Figures 6.1 and 6.2 show the comparison

of the two protocols.

The client only requests a single web page from the server in all sessions. The

packets sent by the client are marked as blue, while those sent by the server are

marked as orange. For both versions, the SNI in ClientHello is public1.com, and the

ServerCertificate belongs to public1.com. From the censor’s point of view, the only

difference SNIT brings is the three additional encrypted packets. Since no changes

have been made to the process in the key exchange, the difficulty of cracking the

master secret or ciphers has not decreased.

Even so, the locations and sizes of these three packets are relatively fixed, so
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ClientChangeCipherSpec

EncryptedHandshakeMessage

ApplicationData

ApplicationData

EncryptedAlert

EncryptedAlert

ApplicationData

ApplicationData

ApplicationData

SNIT

Figure 6.1: The packets sent in an HTTP session of the original TLS 1.2 handshake

protocol and SNIT

the traffic characteristics of the two websites are not identical. Once the difference is

significant enough for the censor to suspect that the user is accessing another website,

not the corresponding public SNI, it will get blocked. Such an attack is feasible in

theory [61, 62]. For a long time, the GFW has used traffic analysis to block censorship

circumvention tools [63], not websites. Whether it will be used on websites in the

future is unknown. Traffic shaping can be applied. We leave this for future work (see

Chapter 9).
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ApplicationData

ApplicationData

ApplicationData
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Figure 6.2: The packets sent in an HTTP session of the original TLS 1.3 handshake

protocol and SNIT

6.3 Active probing

Active probing is a more severe threat: the censor can disguise itself as the user, try

to establish a connection with the server, and check if there is any abnormality. The

security goal is one can only identify the modified server if it holds the correct public

and secret SNI and password. No matter which one is incorrect, the modified server

performs like an unmodified one.
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Figure 6.3: Comparison of the behaviours of a modified and an unmodified server

when the client provides corresponding information

Figure 6.3 shows the server’s behaviours when the client (or censor) provides

different information. They simulate the situation when the censor performs an active

probing without specific information, public SNI, secret SNI or password. The server

will always send a public certificate, and if SNIT is applied, it will also send a secret

certificate or terminate the connection with an unexpected message error. The upper

half of Figure 6.3 refers to the server hosting a public and a secret website with

SNIT. In contrast, the lower half of Figure 6.3 refers to an unmodified server only

hosting a public website. Although different implementations of webservers may

behave differently, we take the Hiawatha webserver as an example.
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No secret SNI or password is required if the client uses the original protocol.

Both servers will reply with the default certificate if the client does not provide the

correct public SNI or the public certificate if on the contrary. Also, the censor will

always get an unexpected message error from both servers with SNIT once it does

not provide the correct password. SNIT replaces the handshake type finished (0x14)

with fake finished (0x15). An unmodified server cannot identify 0x15, resulting in

an unexpected message error. For the server using SNIT, as long as the message

type is set as 0x15 and the verify data (including password) is incorrect, it will

always return such an error. This is exactly the behaviour of an unmodified server.

If no password is set, the server will proceed after receiving the ClientFinished with

0x15. Though the following steps are different under TLS 1.2 or TLS 1.3, the client

will never receive the unexpected message and thus confirm that the server is using

SNIT.

The public SNI is also an essential part of SNIT. As introduced in Chapter 4, it

must be distributed along with the password. First, the server must host the domain

of the public SNI. The censor can intercept the unencrypted public SNI in the Clien-

tHello message and try to establish a TLS connection with the public SNI. In practical

applications, if the server is not hosting the corresponding domain, the server will ei-

ther send an error message or the default certificate, just like our implementation

of Hiawatha. The censor learns that users can establish a TLS connection with a

nonexistent SNI, and the server must be protecting a secret service. This problem

also exists for all similar approaches, including HTTPT and BlindTLS (see Chapter

8). Another approach is proposed in [2]. The server generates a self-signed certificate

each time a client requests a domain that the server is not hosting. Since self-signed
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certificates are widely used among developers, blocking all self-signed certificates in-

discriminately is inappropriate. However, the censor may request many random server

names from the server. If it can always get a new self-signed certificate, the censor

can block its IP address.

In addition to SNIT, the secret website can be set as accessible by users outside of

the perimeter of the censored area using the original protocol at the same time. This

provides convenience for those users since there is no need for additional distribution.

If only it uses a different IP address from any public website, the safety of the public

website will not be reduced. Moreover, repeated IP addresses should be avoided for

any public websites. If IP blocking is applied by the censor, multiple public websites

will be blocked together if they share the same IP address.

The certificate of the public website should also be verified by the client, though

it is not the website that the client really accesses. Without verification, the public

website might be forged by the censor. The secret SNI and password will then fall

into the censor’s hands. In conclusion, active probing cannot pose a threat if the

server and the client meet the above requirements.

This chapter contains the security evaluation of SNIT. Possible blocking methods

are analyzed, and passive probing and active probing are demonstrated to be inef-

fective against SNIT. In the next chapter, we describe the performance evaluation of

SNIT.
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Chapter 7

Performance evaluation

Since additional packets are sent during handshake, SNIT imposes a performance

cost. On the other hand, application data is not modified. If the proportion of

handshake is small enough, the performance loss can be negligible. In this part,

the performance of the original protocol and SNIT has been tested and compared.

The tests are carried out in LAN, and the latency is negligible. The time from the

connection establishment to receiving the HTTP response is used as the standard for

performance. Each session is repeated 1,000 times. The average, 10th percentile and

90th percentile values are reported.

Figure 7.1 shows the gap between the performance of the original protocol and

SNIT. The client is the customized client demonstration program in the new library

since it has to support SNIT. To reflect the speed of the handshake, application-

level HTTP responses are minimized. Generally, SNIT takes an additional 30-40

milliseconds, which results in an average performance loss of 37.2% or 31.69 ms. Only

the additional roundtrip and certification verification significantly affect performance.
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Figure 7.1: Time required to complete a connection for each protocol and server

In real applications, these costs will be amortized over the complete session, which is

shown in figure 7.2. Due to its complexity, the Hiawatha webserver is slightly slower

than the simple server program in the Mbed TLS library. Although TLS 1.3 is slightly

slower than TLS 1.2 in this test, the saved round trip will turn it around in practical

applications but not in a local area network.

Figure 7.2 shows the performance of both protocols for larger HTTP responses

from 512 KB to 64 MB. As the size increases, the performance loss is increasingly

amortized. The performance gap at 64 MB is only 2%. In practical applications, the

client can access many web resources during a session, and the handshake does not

need to be performed again. The longer latency also makes the performance loss even
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Figure 7.2: Time required to get different sizes of HTTP response

more negligible.

Figure 7.3 illustrates the performance of the unmodified handshake protocol. The

TLS version and server program are fixed in each group, while the server and client

programs in the original library and our library for implementation are compared. The

results within each group are very close. This means the implementation of SNIT

has very little performance impact on the original protocol. Users only accessing the

public websites pay almost nothing for the application of SNIT.

In this chapter, the performance evaluation of SNIT is performed. Under all

circumstances, the application of SNIT does not cause significant performance loss.
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Figure 7.3: Time required to perform an original handshake with different versions

of server and client
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Chapter 8

Comparison to related work

Many solutions have been proposed to encrypt or spoof the unencrypted SNI. They

will be introduced in detail and compared with SNIT.

8.1 ESNI and ECH

In TLS 1.3, the standard that has been adopted so far is Encrypted-SNI (ESNI) [64]

and its upgraded version, Encrypted ClientHello (ECH) [65]. Until now, only a few

websites support ESNI or ECH [66, 67].

Cipher suite Key share length Key share

2 bytes 2 bytes Key share len bytes

ESNI extension body
ESNI extension type

0xFFCE

ESNI extension length

2 bytes

ESNI extension body

Record digest length

2 bytes

Record digest 

Record digest length bytes

Encrypted SNI length

2 bytes

Encrypted SNI

Encrypted SNI length bytes

Figure 8.1: The message format of the ESNI extension
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The process of ESNI is as follows. An additional public key is added to the DNS

records of the server’s domain name. The server keeps the corresponding private

key. When a client makes a DNS query, it will receive the server’s IP address and

the public key. This public key plays the same role as the public key in the key

exchange. The client will perform a key exchange with the public key. It is not the

key exchange in the handshake and is only used to protect the SNI. It puts the required

cryptographic information and the encrypted server name in the ESNI extension. The

ESNI extension belongs to ClientHello and replaces the SNI extension. The format

of ESNI is shown in Figure 8.1. The cipher suite and key share are used for the key

exchange. The record digest is generated by the hash function in the cipher suite

for data integrity. The SNI is encrypted and placed in the encrypted SNI part of

the extension. Upon receiving the ClientHello, the server finishes the key exchange

and decrypts the server name. The confidentiality of ESNI is as good as that of the

application data.

However, although it cannot be broken, its use can be observed by the censor. The

extension type, 0xFFCE, is not encrypted, so the censor may block all ClientHello

messages with a 0xFFCE extension and force the users to switch to the original SNI

extensions. This has been implemented by the Great Firewall [68].

ECH is the evolved version of ESNI. It replaces the ESNI extension with a new

extension called ClientHelloInner (CHI), which includes a standard ClientHello struc-

ture. This allows all the information a ClientHello includes to be encrypted, not only

the SNI. It has the same disadvantage: the extension type can be easily identified.

There is a new standard feature of ECH, called GREASE [65], in which clients that

support ECH always send an ECH extension in every connection, whether the server
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supports ECH or not. This would make selective blocking of ECH connections im-

possible. However, ECH is not a mandatory standard. All clients supporting ECH

must support the regular ClientHello, and the censor can still block all connections

with ECH. This forces all clients to use the regular ClientHello. The reason why the

GFW has yet to block ECH may be because ECH is less popular than ESNI [69].

8.2 Other studies

Some other tools have been developed for SNI-based censorship circumvention. In

[70], a design based on early data is introduced. In TLS 1.3, early data is an extension

in the ClientHello. It is encrypted by the pre-shared key, which has to be obtained

by the client from an earlier session. The original intention is to reduce latency and

improve performance. In this design, a ClientHello#2 with a hidden SNI is placed in

the early data, and the outer ClientHello includes a public SNI, which is only used to

confuse the censor. After receiving the ClientHello, the server decrypts the early data

and proceeds with the hidden SNI. This design has a number of flaws, which have

been addressed in [70] and [64]. First, the server may be unable to distinguish the

inner ClientHello from application data. Second, early data may not be supported,

especially when the server is under DDoS. Also, early data is prone to replay attacks

[71]. Although some studies are improving its security [72, 73], whether the replay

attacks can be completely prevented remains a question.

Domain Fronting [54] is one approach deployed on CDN servers. Although CDN

servers have to check the SNI to send the corresponding certificate, the host is chosen

by the hostname in the HTTP request. For example, the client can establish a TLS
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connection with the SNI of public.com, get the certificate of public.com, and then

request secret.com. However, the client does not get the certificate of secret.com, so a

fronting server spoofing attack can be applied: the attacker distributes a fake public

website and misleads the users to a malicious secret website. As a result, major

CDNs have blocked Domain Fronting [74, 75]. An additional certificate verification

or even HTTPS-over-TLS could be added on the application layer, but this would

cause performance degradation.

Figure 8.2: HTTPT handshake [1]

HTTPT [1] takes a similar approach. It functions as a TLS server, which also has

secret proxy functionality, as shown in Figure 8.2. First, the HTTPT client performs

a TLS handshake with the web server. The web server forwards all application data

to the HTTPT server. Then, in application data, if the client sends a secret URL
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specified by the HTTPT server, the HTTPT server will redirect to the secret desti-

nation. The secret link must be distributed out-of-band. The secret destination can

be an HTTP server or any TCP server. If the client does not know the secret link,

the HTTPT server will perform as a regular HTTP server, which serves an innocuous

website. This resists the active probing attacks. HTTPT has the same disadvantages

as domain fronting: it is prone to fronting server spoofing attacks, and additional

verification will reduce performance.

Client

Firewall

Server

DNS

Proxy

1. DNS query

1. DNS query

2. TLS connection

2. TLS connection

3. TLS resumption

Figure 8.3: The flow of BlindTLS [2]

BlindTLS [2] takes another approach. It is based on session resumption, a feature

defined in both TLS 1.2 and TLS 1.3. A previous session can be resumed once a

client provides the session ID, and the handshake steps between ServerHello and

ChangeCipherSpec are skipped. This improves performance. When using BlindTLS,

the client needs a bridge. First, the client sends a DNS query to get the server IP

address of the blocked website, which is still named secret.com and performs the
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TLS handshake with the server. The SNI is secret.com. Both must be done via the

bridge. When the server sends back a resumption ticket via the bridge, the client

resumes the session without the bridge with the server. This time, the SNI is set as

an innocuous website like public.com. Then, both sides can communicate normally.

This method has a number of significant disadvantages. First, a bridge is necessary

to initiate a session. This causes a serious performance loss. Second, the censor may

drop all TLS session resumption packets. This method will block BlindTLS, while

innocent users only suffer some performance penalty [2]. This prevents BlindTLS

from massive deployment. Last, in TLS 1.3, the SNI in the resumption packet must

match the one sent in the ClientHello in the initial handshake. Unless this rule can

be broken, BlindTLS cannot work for TLS 1.3.
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8.3 Comparison of approaches

Table 8.1: The comparison of SNI protection designs

SNIT HTTPT DF Early data ESNI/ECH BlindTLS

Additional roundtrip Y Y

Out-of-band key/session Y Y Y Y

Out-of-band SNI Y Y Y Y Y

TLS 1.2 supported Y Y Y Y

TLS 1.3 supported Y Y Y Y Y

Gateway authentication Y Y Y N/A N/A

Secret authentication Y Y Y Y

Bridge required Y

Characteristics in plaintext Y

Early data required Y

The properties of all approaches mentioned in this Chapter are shown in Table 8.1.

All current designs have shortcomings. Though ESNI and ECH have become standard

with excellent performance and convenience, they have distinctive characteristics in

plaintext. Unless ECH becomes a mandatory standard, the censor can block it in-

discriminately. The disadvantages of the early data approach and BlindTLS have

been introduced in Section 8.2. These two designs are almost impossible to apply

practically. HTTPT and Domain Fronting are similar. They are prone to fronting

server spoofing attacks: the attacker distributes a fake public website and misleads

the users to a malicious secret website. This can be mitigated by compulsory certifi-

cate verification in the application layer. In principle, with the additional verification,
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they are almost identical to SNIT. Since additional application-layer interaction is not

recommended [64], this is an advantage of SNIT.

In this chapter, many related works are introduced and compared with SNIT.

Compared to competitive approaches, SNIT has decent overall security and perfor-

mance.
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Chapter 9

Future work

SNIT’s security and performance meet expectations, but there is room for further

improvement. Traffic analysis still poses a threat since the traffic characteristics of

the public and secret websites are not identical. Some additional measures, e.g. man-

ually adding delay and padding, could be taken to minimize the impact of the three

additional messages. The difference in traffic characteristics could also be minimized

with traffic shaping [76, 77, 78], though this should be implemented in the application

layer above SNIT. Also, to deploy SNIT in practical applications like the solution of

reverse proxy and CDN, more features on the Hiawatha webserver and other tools

are to be further developed. The need for out-of-band distribution is the biggest

disadvantage of SNIT and most similar approaches. Further research on distribution

is also important.
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Chapter 10

Conclusion

Internet censorship is a global problem. Many countries censor the internet for dif-

ferent reasons. This threatens internet freedom and access to information. Although

the application of TLS significantly improves security, its weaknesses can still be ex-

ploited for internet censorship. The unencrypted SNI directly reveal the website’s

identity. In this research, we proposed a modified handshake protocol, SNIT, for

both TLS 1.2 and TLS 1.3. It replaces the unencrypted SNI with an innocuous one

and tunnels the secret SNI after the normal handshake process. The censor cannot

learn the existence of the secret website unless it acquires the password. The protocol

is also highly resistant to passive and active probing. Its compatibility with regular

TLS is maintained: the server can host multiple public and secret websites with regu-

lar TLS and SNIT. The largest disadvantage of SNIT is the out-of-band distribution,

though this is common for similar approaches. It adds an average of 31.69 ms to

the initial TLS handshake, and there is no effect on subsequent traffic. Compared to

competitive approaches, SNIT has decent overall security and performance. Despite
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this, no current approach is completely satisfactory. The default unencrypted SNI

extension is the biggest enemy of anti-censorship. To achieve perfect secrecy, the SNI

must be spoofed. In conclusion, TLS is only a part of internet censorship. Perfect

secrecy can never be achieved with one protocol only.
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[6] M. Akgül and M. Kırlıdoğ, “Internet censorship in turkey,” Internet Policy Re-

view, vol. 4, no. 2, pp. 1–22, 2015. doi: 10.14763/2015.2.366.

[7] V. Agrawal and P. Sharma, “Internet censorship in india,” in Proceedings of 10th

International Conference on Digital Strategies for Organizational Success, 2019.

doi: 10.2139/ssrn.3309268.

[8] S. A. Meserve and D. Pemstein, “Terrorism and internet censorship,” Jour-

nal of peace research, vol. 57, no. 6, pp. 752–763, 2020. doi: 10.1177/

0022343320959369.

[9] A. Shishkina and L. Issaev, “Internet censorship in Arab countries: Religious and

moral aspects,” Religions, vol. 9, no. 11, p. 358, 2018. doi: 10.3390/rel9110358.

[10] “Usage statistics of default protocol https for websites, may 2023 —

w3techs.com.” https://w3techs.com/technologies/details/ce-httpsdefault. [Ac-

cessed 28-05-2023].

[11] P. Hoffman and P. McManus, “DNS queries over HTTPS (DoH),” tech. rep.,

2018. doi: 10.17487/rfc8484.

[12] R. Chhabra, P. Murley, D. Kumar, M. Bailey, and G. Wang, “Measuring DNS-

over-HTTPS Performance around the World,” in Proceedings of the 21st ACM

Internet Measurement Conference, pp. 351–365, 2021. doi: 10.1145/3487552.

3487849.

75



[13] L. Jin, S. Hao, H. Wang, and C. Cotton, “Understanding the impact of en-

crypted DNS on internet censorship,” in Proceedings of the Web Conference

2021, pp. 484–495, 2021. doi: 10.1145/3442381.3450084.

[14] K. Bock, Y. Fax, K. Reese, J. Singh, and D. Levin, “Detecting and evad-

ing Censorship-in-Depth: A case study of Iran’s protocol whitelister,” in 10th

USENIX Workshop on Free and Open Communications on the Internet (FOCI

20), 2020.

[15] T. K. Yadav, A. Sinha, D. Gosain, P. K. Sharma, and S. Chakravarty, “Where

the light gets in: Analyzing web censorship mechanisms in india,” in Proceedings

of the Internet Measurement Conference 2018, pp. 252–264, 2018. doi: 10.1145/

3278532.3278555.

[16] J. L. Hall, M. D. Aaron, S. Adams, A. Andersdotter, B. Jones, and N. Feamster,

“A survey of worldwide censorship techniques,” tech. rep., Internet-Draft draft-

irtf-pearg-censorship-04. Internet Engineering Task . . . , 2020.

[17] K. Bock, G. Naval, K. Reese, and D. Levin, “Even censors have a backup: Exam-

ining china’s double https censorship middleboxes,” in Proceedings of the ACM

SIGCOMM 2021 Workshop on Free and Open Communications on the Internet,

pp. 1–7, 2021. doi: 10.1145/3473604.3474559.

[18] D. Xue, B. Mixon-Baca, ValdikSS, A. Ablove, B. Kujath, J. R. Crandall, and

R. Ensafi, “TSPU: Russia’s decentralized censorship system,” in Proceedings

of the 22nd ACM Internet Measurement Conference, pp. 179–194, 2022. doi:

10.1145/3517745.3561461.

76
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