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Abstract

The research presented in this thesis enhances the accuracy and efficiency of wind

turbine blade (WTB) inspections using advanced image processing and computer

vision techniques. It addresses significant challenges in existing methods by intro-

ducing novel segmentation and defect detection strategies for WTBs, utilizing the

high-resolution Blade30 drone imagery dataset.

The thesis is comprised of two main components. First, it develops an improved

U-Net model, named Pixel U-Net, which incorporates pixel shuffle and unshuffle op-

erations to enhance binary segmentation of WTBs. This model is specifically tailored

to overcome the complex backgrounds in drone images that typically hinder accurate

segmentation. Extensive testing shows that Pixel U-Net and its variations outperform

existing models by effectively isolating WTB areas from challenging backgrounds, thus

setting the stage for more reliable defect detection.

Second, the study introduces a cascaded approach that combines refined WTB im-

ages with YOLO-based object detection to identify and classify defects. This method

significantly reduces false positives in complex backgrounds, enhancing detection reli-

ability. The thesis evaluates various YOLO configurations, showing that the proposed

methodology outperforms traditional WTB defect detection techniques.

This work significantly advances automated visual inspection systems for renew-

able energy assets, enhancing both the precision of defect detection and the oper-

ational efficiency of maintenance protocols for wind turbines. These improvements

could lead to more reliable and cost-effective maintenance strategies, which are vital

for the sustainable operation of wind energy projects. The findings have the potential

to influence future developments in the field, promoting more effective maintenance

approaches for wind turbines.
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Chapter 1

Introduction

1.1 Problem Statement

Wind turbine technicians remain at a significant risk of fatal injuries, and their job is

considered one of the most dangerous jobs in the energy sector. The responsibilities

of a wind turbine technician involve the inspection of wind turbine blades (WTBs)

for any defects and contamination on the blade surface. With recent advancements

in the domain of computer vision, images captured by drones have been used to

analyze wind turbines for any defects or contaminations. Images of different WTBs

captured by a drone are given in Figure 1.1. These images are taken from the publicly

available Blade30 dataset [1]. The process of WTB surface inspection and monitoring

can be automated by training object detection algorithms to recognize any defect or

contamination on the WTB surface. Two noticeable problems exist with the currently

available methods in this domain.

The first problem is related to the resolution of the images. The images of WTB

captured by drones are usually high-resolution images, as can also be noticed from the
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Figure 1.1: Drone images of different wind turbine blades taken from Blade30 dataset

size of drone images in the Blade30 dataset. Since wind turbines are big structures

with heights reaching over 260 meters and blade lengths reaching about 110 meters,

these high-resolution images ensure that details on the WTB surface are captured

by the drone. However, with high-resolution images, the training process of object

detection algorithms becomes slow.

The second problem is related to the training results of object detectors on WTB

images. Since WTB images consist of challenging and diverse backgrounds, the object

detection algorithm can often confuse the background as a region of interest as well.

This can be noticed in the detection result presented in Figure 1.2. The object de-

tection algorithm classified a section from the background as ‘surface contamination

- dirt.’ In object detection tasks, this is referred to as a false positive detection, as it

was a positive detection that was made by the algorithm, but it was incorrect.

Recently, researchers have proposed different methods to identify defects and con-

tamination on WTBs [2] [3] [4]. However, these methods are limited to architectural

changes in the neural networks used for the detection. They introduced changes in the

You Only Look Once v5 (YOLOv5) architecture and used the modified architectures

to identify a maximum of 4 different categories of defects. In actual scenarios, and for

a more accurate inspection of defects, the types of defects can be divided into many

different categories.

In the domain of defect detection on WTBs, it was crucial to address these issues
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Figure 1.2: Problem of false positives on wind turbine blade images

and ensure that the performance of object detectors to identify defects and contami-

nations on WTB surface was efficient, robust and accurate. It was also necessary to

perform the task for a greater number of categories of defects and contamination than

the categories available in the current literature.

1.2 Research Objectives

To tackle the problems mentioned above, this research aimed to develop an efficient

methodology to generate accurate defect detection results on WTB images. The main

objectives of this thesis are as follows:

• Experiment with segmentation techniques (such as U-Net and its variations) to

extract WTB areas from drone images.

• Experiment with image processing techniques (such as edge detection and sliding

window) to additionally extract the area around the edges of WTBs.

• Train and test object detection algorithms (such as different versions of YOLO)

for defect detection on WTB images.
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• Prove the novelty and superiority of the proposed methodology by comparison

with existing techniques in the domain of WTB defect detection (such as AFB-

YOLO [2], MI-YOLO [3], and MC-YOLO [4]).

1.3 Structure of Thesis

This thesis follows a manuscript format. It is divided into 5 chapters. A brief overview

of the contents of each of these chapters is provided below:

• Chapter 1 contains the problem statement, research objectives, structure of

thesis, the main contributions of the thesis, list of publications, and the dataset

availability statement.

• Chapter 2 consists of a thorough literature review into segmentation tech-

niques, object detection in computer vision, and finally, image processing and

defect detection on WTBs.

• Chapter 3 is the research work published in the Signal, Image and Video Pro-

cessing journal [5]. This chapter covers the first part of the proposed method-

ology in this thesis, which is the segmentation of WTB images. The chapter

proposes a novel architecture for binary segmentation of WTBs called Pixel

U-Net and its variations, which outperform existing architectures in training,

validation and testing.

• Chapter 4 is the research work that has been accepted for publication in the

Computers and Electrical Engineering journal. This chapter describes the sec-

ond part of the proposed methodology of this thesis, which is the image pro-

cessing and defect detection on segmented WTB images. In this chapter, the
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proposed methodology has also been compared with existing methods for defect

detection on WTBs, and has been proven to outperform those methods.

• Chapter 5 provides a thorough conclusion of the objectives and findings from

the complete research work. Furthemore, this research work proposes a future

direction for further continuation of this work.

Please note that parts of Chapter 2 are taken from the published work in Chapter

3 titled,“Pixel U-Net: An Improved Version of U-Net for Binary Segmentation of

Wind Turbine Blades”, and the published work in Chapter 4 titled, “Enhanced Defect

Detection on Wind Turbine Blades Using Binary Segmentation Masks and YOLO”.

1.4 Contributions of Thesis

The thesis aims to provide a robust and effective methodology for the purpose of defect

detection on WTBs. The main contributions of the thesis work can be summarized

as follows:

1. A novel architecture, Pixel U-Net, that outperforms all other architectures under

study in validation performance for the binary segmentation of WTB images.

2. Two architectural variations of Pixel U-Net, namely U-Net + HS-Block + Pixel

Unshuffle and Pixel U-Net + Attention, that prove that the inclusion of pixel

shuffle and pixel unshuffle operations in architecture improves the overall per-

formance of WTB segmentation.

3. A novel pre-processing pipeline using binary masks and edges of WTBs to gener-

ate a new version of WTB image dataset that optimizes storage space, training

speed, and accuracy.
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4. A comparative analysis using different versions of YOLO to demonstrate the

performance of YOLO object detectors on WTB images.

1.5 List of Publications

As a part of this thesis, two publications have been presented, which have gone through

a peer-review process. The two publications are listed as follows:

1. Syed Zeeshan Rizvi, Mohsin Jamil, and Weimin Huang. Pixel u-net: an im-

proved version of u-net for binary segmentation of wind turbine blades. Signal,

Image and Video Processing, 18:6299–6307, 2024. The full text of the published

paper is available to read at this link: https://rdcu.be/dKLtV .

2. Syed Zeeshan Rizvi, Mohsin Jamil, and Weimin Huang. Enhanced defect detec-

tion on wind turbine blades using binary segmentation masks and yolo. Com-

puters and Electrical Engineering, 120:109615, 2024.

1.6 Data Availability Statement

This thesis work makes use of the Blade30 dataset. The original version of the Blade30

dataset can be found at this link: https://github.com/cong-yang/Blade30 . In Chap-

ter 4, a refined version of the Blade30 dataset was used, which consisted of 307 im-

ages and 9 classes. This refined version of the original Blade30 dataset has been

made publicly available for ease of further research and can be found at this link:

https://shorturl.at/VdPOn.
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Chapter 2

Literature Review

As presented in Figure 2.1, the complete methodology proposed in this thesis can be

broadly divided into 3 basic parts in terms of image processing and computer vision:

image segmentation, edge detection, and object detection. Hence, the literature re-

view has been split into sections that discuss these techniques separately and give an

overview of the progress of research in these domains. The last section discusses these

techniques in the light of recent research done specifically in the domain of WTB

image processing and defect detection.

2.1 Image Segmentation

As displayed in Figure 2.2, image segmentation techniques can be broadly classified

into two categories – traditional and deep-learning based. The traditional methods

consist of different image processing techniques, such as thresholding, region-based

segmentation, edge segmentation, clustering-based segmentation, and active contour

segmentation [1]. Thresholding is a simple method used to separate the object from
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the boundaries of different objects, thereby segmenting them. In clustering-based seg-

mentation, pixels are grouped into clusters using clustering algorithms. Each cluster

then represents a different region of the image. This can be a useful technique when

the image consists of distinct regions with colour intensities. Active contour methods

use evolving curves within an image to identify object boundaries. These methods

can be useful when dealing with objects which have complex shapes, as the curve can

be aligned until it fits the object’s boundary accurately.

The more recent segmentation techniques fall under the umbrella of deep learning.

These modern techniques use convolutional neural networks (CNNs) to derive feature

information from images and identify patterns. Unlike the standard neural networks

which receive a flattened input, CNNs are unique and better suited for use with

images based on their ability to preserve spatial information as they can work with

multi-dimensional arrays. CNNs learn to identify the features of complex objects

in an image, thereby developing a better dynamic understanding of what is present

in an image. This is done by utilizing mathematical operations, some of which are

convolution, logistic regression, normalization and activation. One of the earliest

deep learning-based image segmentation architectures was introduced in 2015 by the

name of SegNet [2]. This architecture discussed the idea of ‘encoder’ and ‘decoder’

in an architecture designed for image segmentation. The encoder path extracts low-

level features from the image by reducing the spatial dimension, and increasing the

number of filters. On the other hand, the decoder increases the spatial dimension

by decreasing the number of filters again. This way, the encoder develops a good

understanding of the features, whereas the decoder develops a rich understanding of

the spatial information. In the same year, the popular U-Net architecture [3] was

published, which was also built on the idea of encoder and decoder layers, connected

together with skip connections to prevent information loss and generate better feature
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diagonally across pixel values. In the following years, the Sobel edge detector [6] was

introduced, which enhanced the detection of edges by combining results from hori-

zontal and vertical edge detectors based on 3x3 convolution kernels. In the category

of early edge detectors, the Prewitt operator [7] was also introduced, which works in

a similar way to the Sobel operator but has uniform values in the kernel, unlike the

Sobel operator, which places more weight towards the center of the kernel.

Consequently, in the category of advanced edge detection algorithms, the Canny

edge detector [8] was introduced, which continues to be a very popular edge detector

due to its accurate and refined edge detections. Canny edge detector works in a multi-

step process, where it first removes the noise from an image, and then it calculates

the strengths and direction of edges to refine them further and make them sharper.

Finally, a thresholding operation is performed that ensures only the most significant

edges are kept. Another advanced edge detector is the Laplacian of Gaussian (LoG)

operator [9] which applies the Laplacian operator on images to enhance regions of

rapid intensity change, thereby making the edges prominent.

With the emerging research in deep learning (DL), researchers have also experi-

mented with convolutional neural networks (CNNs) to perform the task of edge de-

tection [10]. These modern methods perform the task of edge detection by learning

from vast amounts of data and not relying on hand-crafted features. However, as with

any other DL methods, more computational resources and execution time is required

for these methods.
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on images. Within deep learning, object detection algorithms can be broadly divided

into two categories: two-stage, and one-stage detectors. Region-based convolutional

neural network (RCNN) [16] is one of the earliest two-stage detectors proposed. It

extracts different proposed regions for an object in an image and then passes each of

these proposed regions to a CNN to make predictions for the class of the object. This

makes the object detection process slow, and it cannot be used for real-time object

detection. To tackle the issue, Fast RCNN [17] and Faster RCNN [18] were proposed

as improved versions of RCNN. However, these algorithms continued to be additions

to the two-stage detectors.

You Only Look Once, or YOLO [19], was the first single-stage detector proposed

in 2016. This algorithm could predict all the objects present in an image by passing

the image to a CNN just once, which defines the algorithm’s name. YOLO allows

faster object detection and can perform well on real-time applications. YOLO archi-

tectures are generally divided into three main parts: backbone, neck and head. The

backbone extracts features from the image, the neck merges multi-scale features to

assist with detections of variable sizes, and the head outputs the class and bounding

box for the object. Many improved versions of YOLO have been proposed over recent

years. Focusing on the advancements made in the YOLO series since 2020, YOLOv5

[20] streamlined the object detection pipeline by introducing different model variants

for balancing speed and performance, advanced data augmentation techniques, and

auto anchor calculation. The modular design introduced with YOLOv5 contributed

significantly to scalability, as it made it easy to adjust the network size for different

applications. YOLOv5 uses the Cross Stage Partial Darknet (CSPDarknet) as its

backbone, which is an improvement of the original Darknet backbone used in the

earliest versions of YOLO. It further uses the Path Aggregation Network (PANet) in

the neck to enhance feature propagation between different scales and improve object
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detection, particularly for small objects. In 2022, YOLOv6 [21] was introduced, which

was focused on industrial-grade performance and offered further improvements in the

architecture. YOLOv6 incorporated anchor-free detection heads and a more efficient

backbone network using EfficientRep, improving inference speed and accuracy on

small objects. It further used RepVGG-based blocks to optimize performance of the

backbone. The seventh version of YOLO, referred to as YOLOv7 [22], was presented

in the same year. YOLOv7 further optimized the backbone by using an extended

efficient layer aggregation network (E-ELAN), which improves feature fusion and the

model’s ability to learn better representations from different layers. YOLOv7 also

incorporated new strategies for feature pyramid network (FPN) and PANet optimiza-

tions in the head part, leading to better multi-scale object detection. With further

improvements in the architecture, YOLOv8 [23] was released in 2023. YOLOv8 refined

the advancements in the YOLO series by adopting a more flexible framework with

enhancements in the detection head and feature extraction, achieving state-of-the-art

performance across a wider range of tasks.

2.4 Image Processing and Defect Detection

on WTBs

Segmenting the WTB area from a challenging background is a crucial pre-processing

step in identifying defects on the WTB surface. Once a segmented WTB image is

obtained, it can be mapped onto the original WTB image to extract only the relevant

area, which can be used to train an object detector for surface defects. A method

proposed in [24] uses “regression crop” to crop the surface of WTB out of images

and perform detection only across the surface. A technique presented in [25] gives an
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improved version of U-Net that can effectively segment WTB from infrared images

using hierarchical split depthwise separable convolution operations. Another improved

version of U-Net specifically to segment WTB areas was proposed in [26], which made

use of an efficient channel attention network and point wise spatial attention network.

In terms of segmentation of WTB images, state-of-the-art performance was reported

in another improved version of U-Net called Pixel U-Net [27], in which the max pooling

and transpose convolution operations in the U-Net architecture were replaced by pixel

shuffle and unshuffle operations.

Since WTB surfaces are large and the whole blade surface cannot be captured

in high definition in a single drone image, researchers have proposed image stitch-

ing techniques to generate accurate images of the complete WTB image. One such

technique was proposed in [28], in which authors perform different geometrical calcu-

lations to align images belonging to the same WTB and create a panoramic image.

Another technique was proposed in [29] that features a two-level process that com-

bines coarse-grained initial alignment using blade edges and drone-blade distances

with fine-grained adjustments optimized by texture and shape losses. Other than

extracting relevant areas from images of WTBs, work has also been done to improve

the quality of WTB images captured in varying lighting conditions. In [30], a method

that uses cartoon and texture maps to enhance the illumination of WTB images is

proposed.

In addition to research on pre-processing techniques used on WTB images, re-

searchers have experimented with DL to build networks that can be trained for the

specific application of identifying defects on WTBs. A method was proposed in [31]

that can identify small defects on WTB using an improved version of YOLOv5 to

perform the task. In another work [32], an attention and feature-balanced version of



17

Table 2.1: Recently proposed methods for WTB defect detection

mAP @ 0.5 (%) FPS (frames/sec) Number of Classes
AFB-YOLO [32] 83.7 63.4 2
MI-YOLO [33] 92.1 - 1

MI-YOLO + Alpha IoU [33] 93.2 - 1
MC-YOLO [34] 94.2 25.1 4

YOLO (AFB-YOLO) is proposed, which helps in gathering more feature information

for improved detection. In this improved architecture for YOLOv5s (where s stands

for small), the authors also replace the intersection over union (IoU) loss with effi-

cient IoU (EIoU) loss for bounding box calculations. In another work [33], the authors

introduced an improved version of YOLOv5s called multivariate information YOLO

(MI-YOLO) for defect detection on WTBs. In this architecture, authors replace some

parts from the original YOLOv5s backbone and also infuse the MobileNetv3 backbone

in the network. In their ablation study, they also extend their workings to replace

the IoU loss with Alpha-IoU loss for bounding box calculations. In [34], another im-

provement to YOLOv5s was proposed called MC-YOLO. This modified architecture

replaced the complete original backbone of YOLOv5s with the MobileNetv3 backbone.

For real-time monitoring of WTB, the inference speed is very important. This is ad-

dressed in [35], where the researchers proposed an improved version of YOLOX-Nano

which greatly increases the inference speed.

Table 2.1 gives an overview of the recently proposed methods for defect detection

on WTBs. As it can be noted from the table, these methods used custom datasets

that had different number of defects, ranging from a minimum of 1 to a maximum of

4 defects. The accuracy comparisons have been provided in the respective research

papers in the form of mean average precision (mAP) score, which is one of the most

commonly used metric in the domain of object detection. A higher frames per sec-

ond (FPS) score makes the method more suitable for real-time application, which is
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another useful calculation to have when deploying the trained algorithm on a drone

to identify defects on WTBs in real-time. The obtained FPS score was not provided

in [33].
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3.1 Abstract

Wind turbine technicians face significant risks of fatal injuries, which can be mitigated

by utilizing drones to capture images of wind turbine blades (WTBs) for remote in-

spection and maintenance. Different computer vision and image processing techniques

can be applied to these captured drone images to automate the process of WTB in-

spection. However, the captured drone images consist of challenging backgrounds,

due to which the WTB area needs to be extracted from the image as a pre-processing

step. This paper introduces Pixel U-Net, an enhanced U-Net architecture tailored

for binary segmentation of WTB images, improving segmentation accuracy with pixel

shuffle and unshuffle operations. Evaluated against baseline U-Net architecture and

its variations using the publicly available Blade30 dataset, Pixel U-Net achieves an

average validation accuracy of 99.0% and surpasses existing methods in WTB image

segmentation. Additionally, novel architectural variations, namely U-Net + HS-Block

+ Pixel Unshuffle and Pixel U-Net + Attention, have also been proposed in this study,

which exhibit superior performance with an average training loss of 0.012 and an av-

erage testing accuracy of 98.3%, respectively. Qualitative comparisons of the results

further highlight the efficacy of deep learning-based segmentation techniques in ad-

vancing wind turbine inspection and maintenance practices.

3.2 Introduction

Image segmentation is one of the most widely used techniques in computer vision.

It involves separating different areas of interest in an image. Each segmented area

corresponds to a specific object, shape, or category within the image. The technique

has been widely used for numerous different applications, such as autonomous driving
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[1], video surveillance [2], remote sensing using satellite imagery [3], and augmented

reality [4].

The use of image segmentation for the identification of wind turbine blades (WTBs)

has recently gained researchers’ interest. Routine maintenance is required to ensure

the smooth functioning of wind turbines. The manual inspection of wind turbines by

human subjects is a risky job and can prove to be fatal as well [5]. With the emerg-

ing trends in technology, researchers have used drones to capture images of WTBs

[6] for remote analysis. These captured images and datasets have paved the way for

further studies on the automatic inspection of WTBs using deep learning methods.

Image segmentation techniques allow for separating the blade area from the back-

ground, consisting of landscapes, varying colours of the sky, ocean, or infrastructure.

These challenging backgrounds can confuse object detection models, resulting in false

positive detections [7]. A good pre-processing technique to prepare the dataset for

training object detectors is to segment the relevant area of WTBs from the image and

feed only the area of interest to training models to automatically detect defects on

the WTB surface.

Image segmentation techniques can be broadly classified into two categories –

traditional and deep learning-based. The traditional methods consist of different

image processing techniques, such as thresholding, region-based segmentation, edge

segmentation, and clustering-based segmentation [8]. The more recent segmentation

techniques fall under the umbrella of deep learning. These modern techniques use

convolutional neural networks (CNNs) to derive feature information from images and

identify patterns. One of the earliest deep-learning based image segmentation archi-

tectures was introduced in 2015 by the name of SegNet [9]. This architecture discussed
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the idea of ‘encoder’ and ‘decoder’ in an architecture designed for image segmenta-

tion. In the same year, the popular U-Net architecture [10] was published, which was

also built on the idea of encoder and decoder layers, connected together with skip

connections to prevent information loss and generate better feature representation.

Following this work, DeepLab [11] was introduced, which introduced the techniques

of atrous convolutions and atrous spatial pyramid pooling to further increase the

efficiency of segmentation models.

Segmenting theWTB area from a challenging background is a crucial pre-processing

step in identifying defects on the WTB surface. Once a segmented WTB image is

obtained, it can be mapped onto the original WTB image to extract only the rele-

vant area, which can be used to train an object detector for surface defects. Refer-

ring to the application of image segmentation on WTBs, different variations of deep

learning-based techniques have been utilized to segment WTB areas from images. In

[12], different attention mechanisms are fused into the original U-Net architecture to

improve feature extraction. In another work [13], the hierarchical split depth-wise

separable convolution operations are utilized instead of the basic convolution opera-

tions in the U-Net architecture to improve segmentation performance. In this work,

Figure 3.1: Sample image set from Blade30 dataset
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the convolution block utilizing hierarchical split depthwise separable convolution op-

erations is referred to as the hierarchical split block (HS-Block). In this research,

further improvements to the U-Net architecture are proposed. These improvements

involve integrating pixel shuffle and pixel unshuffle operations [14] in the U-Net archi-

tecture instead of the transpose convolution and max pool operations, respectively.

Three different architectural improvements are proposed using the pixel shuffle and

pixel unshuffle operations, namely U-Net + HS-Block + Pixel Unshuffle, Pixel U-Net,

and Pixel U-Net + Attention. The proposed architectures are compared with existing

architectures, namely baseline U-Net, Attention U-Net [15], and U-Net + HS-Block.

For the experiments in this work, the Blade30 dataset [6] is used, which is a publicly

available dataset of WTB images. The Blade30 dataset consists of drone images of 33

different blades, making it a dataset rich in varying background information. A pair

of a WTB image with its corresponding segmentation mask from the Blade30 dataset

is provided in Figure 3.1. Five different splits of the Blade30 dataset were used in

the experiments, and Pixel U-Net achieves the best accuracy on each validation set,

whereas the other two proposed variations, U-Net + HS-Block + Pixel Unshuffle,

and Pixel U-Net + Attention, achieve the best performance in training and testing,

respectively.

The main contributions of this research work can be listed as follows:

1. A novel architecture, Pixel U-Net, that outperforms all other architectures under

our study in validation performance for the binary segmentation of WTB images.

2. Two architectural variations of Pixel U-Net, namely U-Net + HS-Block + Pixel

Unshuffle and Pixel U-Net + Attention, that prove that the inclusion of pixel

shuffle and pixel unshuffle operations in architecture improves the overall per-

formance of WTB segmentation.
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This research work is divided into 4 sections, including this section. The next

section will discuss the architectures under study, and the proposed architectural

changes. The third section will include details regarding the experimental setup,

pre-processing of the dataset, and discussion of our obtained results. Finally, the

conclusion of this study will be provided in Section 3.5.

3.3 Methodology

In this study, various segmentation models are explored and expanded upon. The

methodology section is divided into different sub-sections to aid understanding, each

detailing components of the final proposed model, Pixel U-Net. These include an

overview of the baseline U-Net model, the concept of attention in U-Net, the function-

ing of hierarchical split convolution operations, and finally, the architectural details

of the proposed model – Pixel U-Net, and its proposed variations.

3.3.1 Baseline U-Net Model

The original U-Net architecture [10] can be visualized in the shape of the alphabet U,

which can be symmetrically divided from the centre. The left side of the architecture

represents the contraction path, which is also referred to as the encoder. This side

of the U-Net receives an image as an input. The image is passed twice through a

series of a convolution blocks, followed by a batch normalization layer to reduce over-

fitting, followed by the rectified linear unit (ReLU) as an activation layer to introduce

non-linearity in the training process. After this, the image is down-sampled using a

maxpool operation. Using a 2x2 window for maxpooling reduces the spatial dimen-

sions by half. The function of the contraction path is to extract low-level features
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from the input image. This is done by reducing the spatial dimension and increasing

the number of filters as the input passes through the described operations.

The right side of the U-Net architecture represents the expansion path, also called

the decoder. This side follows the same sequence of convolution blocks, batch nor-

malization, and activation layers described above. However, the maxpool operation

is replaced by transpose convolution. In doing so, the spatial dimension of feature

maps increases, whereas the number of filters decreases. A 2x2 transpose convolution

is applied, which doubles the spatial dimensions and reduces the number of filters by

half. In U-Net architecture, skip connections connect the encoder with the decoder.

These skip connections concatenate filters of the same spatial dimensions from the

encoder and decoder. This is particularly important during backpropagation. If the

skip connections did not exist, the encoder would have received very small gradients

during backpropagation, and learning low-level features would have been slow. Skip

connections ensure that the model develops a good understanding of the low-level

features and spatial information.

At the bottom of the U-shaped architecture, the encoder and decoder are joined by

a bottleneck layer that extracts the most abstract and high-level features. The final

layer of the decoder consists of a 1x1 convolution block, which gives an output feature

map with the number of channels equal to the number of classes being predicted.

Since we are working on a binary segmentation problem, the prediction, x, is passed

through the sigmoid activation function to scale output predictions between 0 and 1.

The formula for the sigmoid activation function is given below.

σ(x) =
1

1 + e−x
(3.1)
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by x. Since g comes from a deep part of the whole architecture, it is rich in feature

information, whereas x is rich in spatial information since it comes from a relatively

earlier part of the network. The attention block uses spatial and feature information

and concatenates them after passing through 1x1 dimensional filters. This helps in

further increasing the weights of relevant regions on the image, and further reducing

the weights of irrelevant regions. The outputs are then passed through a ReLU acti-

vation function before passing through another filter of 1x1 dimension. The output

from that filter is passed through the sigmoid activation function. Once the weights

are in the range of 0-1, they are multiplied with the input x to determine the areas

of interest in the image.

3.3.3 Functioning of HS-Block

In [13], an improved version of U-Net was proposed, built on hierarchical split depth-

wise separable convolutions, originally proposed by Yuan et al. [16]. A visualization of

the hierarchical split operation is presented in Figure 3.3. Adding pointwise convolu-

tion operations before and after the hierarchical split depthwise separable convolution

operation, and concatenating the output of this operation with the original input gives

the HS-Block. The structuring of the HS-Block is presented in Figure 3.4.

In the proposed architecture of improved U-Net using HS-Block, the authors re-

place one of the series of convolution blocks, batch normalization, and ReLU activa-

tion with the HS-Block. The authors state that this helps extract better multi-scale

feature representations. The HS-Block splits the input feature map into a number

of groups. As shown in Figure 3.3, these groups go through a depth-wise separable

convolution [17], which is a combination of depth-wise and point-wise convolution op-

erations in the specific order. The depth-wise separable convolution operations have
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information present in different filters, thereby reducing the number of filters while

doing so. The formulae by which the size of the resulting feature map and number of

filters is calculated using the pixel shuffle and pixel unshuffle operations are given in

equations (3.2) - (3.7). The width and height of the input feature map are given by

Win and Hin, respectively, whereas they are defined by Wout and Hout, respectively,

for the output feature map. The number of filters in the input and output feature

maps is given by Nin and Nfilters, respectively. The term factor is used to define the

up-scaling factor in (3.2), (3.3) and (3.4), and the down-scaling factor in (3.5), (3.6)

and (3.7). It can be observed from (3.2), (3.3) and (3.4) that pixel shuffle operation

results in the same spatial dimensions of width and height as a normal upscaling

function would have, however, this new information is derived from the existing filters

instead of interpolation or convolution operations. Hence, the number of filters also

changes, as shown in equation (3.4).

Wout = Win × factor (3.2)

Hout = Hin × factor (3.3)

Nfilters =
Nin

factor2
(3.4)

Likewise, pixel unshuffle refers to the opposite operation, in which the size of fea-

ture maps is reduced, and the information present in the feature map is used to create

additional filters, thereby increasing the number of filters present. A comparison be-

tween max pool and pixel unshuffle operations to reach the same spatial dimensions is

provided in Figure 3.5. It can be observed that while the max pool operation selects
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pixel unshuffle and pixel shuffle operations (referred to as Pixel U-Net + Attention).

Figure 3.6 presents a representation of the proposed novel architecture of Pixel U-Net

+ Attention.

The loss function that is used is a combination of binary cross entropy loss [19]

and dice loss [20]. The formula for the dice score is provided in equation (3.8). Dice

score is a commonly used metric for image segmentation tasks. In the numerator, the

formula calculates the product between the predicted probability of pixels and the

corresponding values in the ground truth mask (either 0 or 1). In the ground truth

masks, the value of 0 represents the image background, and a value of 1 represents

the WTB area. The product is multiplied by 2 to give more weight to the numerator,

shifting more focus towards the area of interest only. The denominator is the sum

of predicted pixel values and the ground truth mask values. A small value of ε is

added to avoid division by zero. Adding the binary cross entropy loss with the dice

loss gives the loss function provided in equation (3.9), which is used for training in

this research work. Each ground truth pixel value is given by y, whereas x gives the

predicted value. The total number of pixel values is given by N . The binary cross

entropy loss is focused on the entire image, whereas the dice loss is focused on the

region of overlap. Where the binary cross entropy loss ensures each pixel is accurately

classified, the dice loss ensures the overlapping of the predicted foreground with the

ground truth improves. This is what makes the combination of both these losses a

good metric to calculate the training loss.

Sdice =
2×

∑

(ytrue × xpred)
∑

ytrue +
∑

xpred + ε
(3.8)
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LBCE+Dice = −
1

N

N
∑

i=0

[yi · log xi + (1− yi) · log(1− xi)] + (1− Sdice) (3.9)

3.4 Experiment and Results

3.4.1 Experimental Setup

For the experiments, 1240 images were picked from the Blade30 dataset [6] along

with their corresponding binary segmentation masks. By randomly splitting the 1240

images into different train, validation and test folders, five different random arrange-

ments were created. This was done to ensure the robustness of the obtained results

by observing if all arrangements give the same collective outcome. Each arrangement

is referred to as a split in this text. In each split, 72% images were used for training,

13% were used for validation, and the remaining 15% were kept separately to test

trained models. It was important to ensure Win and Hin in equations 3.5 and 3.6

were always divisible by 2 to avoid any loss of information during downscaling when

running the pixel unshuffle operations. It was also important to maintain the original

aspect ratio of the images. Due to these reasons, the images and the masks were

reshaped to a size of 608 x 416. For all the trainings, a batch size of 4 was chosen, and

training was continued for 30 epochs. Adam optimizer was used as the optimization

algorithm as it offers efficient convergence and robustness while optimizing gradients

during back-propagation. Some initial experiments were conducted using different

learning rate schedulers, and cosine annealing gave the best results; therefore, it was

chosen for all subsequent experiments. Cosine annealing uses the cosine function to

adjust the learning rate over time. Initially, the learning rate was set at 0.0001. An
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Table 3.1: Training, validation, and testing results

Model
Avg Training

Loss
(last 10 epochs)

Avg Validation
Dice Score

(last 10 epochs)

Avg Testing
Dice Score
(best epoch)

Training Time

Split 1

U-Net 0.01937 0.9862 0.9835 11m 30s
Attention U-Net 0.08559 0.9880 0.9834 12m 25s
U-Net+HS-Block 0.01351 0.9913 0.9829 8m 38s
U-Net+HS-Block+Pixel Unshuffle 0.01056 0.9895 0.9811 10m 13s
Pixel U-Net 0.01207 0.9916 0.9835 10m 27s
Pixel U-Net+Attention 0.01664 0.9905 0.9832 11m 41s

Split 2

U-Net 0.01956 0.9884 0.9809 11m 36s
Attention U-Net 0.01912 0.9744 0.9803 12m 38s
U-Net+HS-Block 0.01581 0.9902 0.9821 8m 57s
U-Net+HS-Block+Pixel Unshuffle 0.01304 0.9884 0.9789 10m 18s
Pixel U-Net 0.01786 0.9912 0.9828 10m 28s
Pixel U-Net+Attention 0.01237 0.9905 0.9812 11m 35s

Split 3

U-Net 0.01630 0.9845 0.9823 15m 14s
Attention U-Net 0.01201 0.9847 0.9221 12m 44s
U-Net+HS-Block 0.01139 0.9901 0.9839 8m 58s
U-Net+HS-Block+Pixel Unshuffle 0.01098 0.9867 0.9838 10m 11s
Pixel U-Net 0.01157 0.9905 0.9822 11m 35s
Pixel U-Net+Attention 0.01244 0.9899 0.9828 10m 25s

Split 4

U-Net 0.03332 0.9833 0.9831 11m 34s
Attention U-Net 0.04754 0.9748 0.9828 12m 48s
U-Net+HS-Block 0.01391 0.9800 0.9815 9m 3s
U-Net+HS-Block+Pixel Unshuffle 0.01292 0.9826 0.9830 10m 22s
Pixel U-Net 0.01523 0.9858 0.9825 10m 26s
Pixel U-Net+Attention 0.01366 0.9793 0.9840 11m 42s

Split 5

U-Net 0.01572 0.9885 0.9822 11m 37s
Attention U-Net 0.01271 0.9885 0.9815 12m 54s
U-Net+HS-Block 0.01897 0.9874 0.9826 9m 11s
U-Net+HS-Block+Pixel Unshuffle 0.01503 0.9901 0.9815 10m 23s
Pixel U-Net 0.01388 0.9902 0.9826 10m 19s
Pixel U-Net+Attention 0.01059 0.9899 0.9825 11m 32s

image scaling factor of 0.5 was chosen to speed up training, which implies that the

architectures received images of size 304 x 208 as inputs for training.

To calculate the training loss, a combination of cross entropy and dice loss was

used as described in equation (3.9). During validation, only the dice score was used

as the metric to determine performance, the functioning of which was described in

equation (3.8). A dice score of 1.0 reflects a perfect overlap between predicted and

ground truth images, whereas a dice score of 0 reflects no overlap.

Different variations of the proposed architecture, along with already existing U-

Net architectures, were trained and results were compared. The results of baseline

U-Net, Attention U-Net and U-Net + HS-Block were compared with the proposed



40

architectural variations, namely U-Net + HS-Block+Pixel Unshuffle, Pixel U-Net,

and Pixel U-Net + Attention. For graphical analysis, the results of training and

validation are provided in Figure 3.7 of all splits. Table 3.1 presents a numerical

representation of the results. For this table, the obtained numerical values of training

loss and validation dice of the last 10 epochs were averaged in each split. Table 3.1

also presents the average training times on all splits for each architecture. To test

the trained models, the respective weights for each model that generated the best

results were identified. Using those weights, the dice score was calculated between

each obtained prediction and its corresponding ground truth and then averaged for all

test images in each split. These obtained testing results are also presented in Table

3.1. To summarize the analysis of all splits, results of each model from all splits were

added and are presented in Table 3.2. Finally, some of the obtained predictions on

the testing set are displayed in Figure 3.8 for a qualitative analysis.

3.4.2 Analysis of Results

We experimented with training the existing and proposed architectures for 20, 30

and 40 epochs. It was noted that training for 20 epochs resulted in underfitting and

training for 40 epochs made it difficult to distinguish between the performance of all

architectures. Training for 30 epochs offered a good balance and a good representation

of the performance of all architectures. The graphs have been presented in this work

Table 3.2: Sum of results from 5 splits

Training Loss Validation Dice Score Testing Dice Score
U-Net [10] 0.10427 4.9309 4.9120
Attention U-Net [15] 0.17697 4.9104 4.8501
U-Net+HS-Block [13] 0.07359 4.9390 4.9130
U-Net+HS-Block+Pixel Unshuffle 0.06138 4.9374 4.9083
Pixel U-Net 0.07061 4.9493 4.9136
Pixel U-Net+Attention 0.06570 4.9401 4.9137
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to analyze the progress of training and validation, and the presence of outliers for all

architectures. From the graphs, it can be noted that with the exception of U-Net and

Attention U-Net, all architectures generally follow a smooth training and validation

progress. After about 20 epochs of training, the training and validation performance

becomes difficult to distinguish from the graphs, necessitating a clearer representation

of the results. This is achieved in Table 3.1 for the last 10 epochs.

The quantitative results in Table 3.1 show that the proposed architecture, Pixel

U-Net, outperforms other architectures in the validation phase in all splits. The other

variations of Pixel U-Net (U-Net + HS-Block + Pixel Unshuffle, and Pixel U-Net +

Attention) demonstrate the best performance in training and testing. These results,

along with the summarized analysis in Table 3.2, can provide promising grounds for

more future research to conclude that the inclusion of pixel shuffle and pixel unshuf-

fle operations in the U-Net architecture can help in improving binary segmentation

accuracy for WTB images by preserving spatial information. The run times for all ex-

periments presented in Table 3.1 make it evident that introducing HS-Block in U-Net

architectures helps reduce training times, as discussed earlier in Section 3.3. However,

introducing pixel shuffle and pixel unshuffle operations with the standard HS-Block

increases the training times because of the additional convolution operations. How-

ever, comparing Pixel U-Net with baseline U-Net, and Pixel U-Net + Attention with

Attention U-Net, we can notice that the training concludes in less time with the

proposed architectural changes.

The qualitative analysis is presented in Figure 3.8. It can be observed that the

creators of the Blade30 dataset considered the near-field wind turbines as areas of

interest, and not the wind turbines which were present in far-field. The same pattern

is learned by the existing and proposed architectures that are tested in this article.
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Split 1

Split 2

Split 3

Figure 3.7: Training and validation graphs for each split
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Split 4

Split 5

Figure 3.7: Training and validation graphs for each split (cont.)

The figure displays better predictions of the proposed architectural changes than those

made by existing architectures. It can be noted that introducing the pixel shuffle and

pixel unshuffle operations in the U-Net architecture results in better identification

of edges of the relevant area of WTB and hence better segmentation predictions on

WTBs against challenging backgrounds.
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Input Image U-Net

0.9880

Attention U-Net

0.9812

U-Net+HS-Block

0.9799

Ground Truth U-Net+HS-Block

+Pixel Unshuffle

0.9897

Pixel U-Net

0.9898

Pixel U-Net+

Attention

0.9894

Input Image U-Net

0.9822

Attention U-Net

0.9832

U-Net+HS-Block

0.9836

Ground Truth U-Net+HS-Block

+Pixel Unshuffle

0.9860

Pixel U-Net

0.9852

Pixel U-Net+

Attention

0.9862

Figure 3.8: Qualitative analysis on test images. Dice score was calculated of predicted
masks with ground truth masks, and have been provided for each architecture
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3.5 Conclusion and Future Work

In this study, an improved version of the U-Net architecture that is tailored for binary

segmentation of wind turbine blade (WTB) images was proposed. Through a compre-

hensive evaluation using the Blade30 dataset, it was demonstrated that Pixel U-Net

outperforms existing architectures, namely baseline U-Net, Attention U-Net, and U-

Net + HS-Block, in terms of validation performance for WTB image segmentation,

with an average accuracy of 99.0% across 5 different splits.

This research additionally contributes novel architectural variations of Pixel U-Net,

namely U-Net + HS-Block + Pixel Unshuffle, and Pixel U-Net + Attention, which

outperformed the existing architectures in the study in both training and testing

phases, respectively. These findings underscore the potential of pixel shuffle and pixel

unshuffle operations in improving segmentation accuracy and performance for WTB

image segmentation.

In our experiments with the Blade30 dataset, we use U-Net + HS-Block + Pixel

Unshuffle to increase understanding of low-level features, Pixel U-Net to increase

understanding of both low-level features and spatial information, and Pixel U-Net

+ Attention to infuse attention mechanisms to WTB image segmentation. Moving

forward, future research could explore further optimizations and refinements to the

Pixel U-Net architecture, investigate the applicability of the proposed techniques to

other domains, and explore additional datasets to validate the generalizability of the

findings from this research. By addressing these avenues, we can continue to drive

innovation in WTB inspection methodologies and support the sustainable growth of

renewable energy infrastructure.
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4.1 Abstract

The detection of defects and contamination on wind turbine blades (WTBs) using

neural networks is a rapidly growing research area. One problem with publicly avail-

able datasets of wind turbine blade images is that the image size is quite large, which
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results in slower training of object detectors. A new pre-processing pipeline is pro-

posed in this research, in which the Blade30 dataset is used to create a new masked

version of the dataset that effectively takes about 50% less disk space. To provide a

thorough comparative analysis and to prove the robustness of the proposed approach,

the masked version of the dataset is trained with different YOLO object detectors,

namely YOLOv5, YOLOv6, YOLOv7 and YOLOv8. The obtained results reflect that

the time taken for the proposed pre-processing approach and completing 300 epochs

of training with YOLO object detectors helps in cutting down around 1-2 hours com-

pared to training with the original version of the dataset. Validation results using

the proposed technique demonstrate a gain in mean average precision (mAP) scores

ranging from 0.8-7.9% across different versions of YOLO compared with the results

on the original dataset, and a gain in mAP scores ranging from 1.1-22.7% compared

with different existing methods for WTB defect detection. Testing with the trained

weights obtained through the masked version of the dataset shows a significant gain

in mAP scores, ranging from 27.3-33.7%.

4.2 Introduction

The recent advancements in research in computer vision have opened doors to nu-

merous new possibilities. Object detection continues to be one of the most valuable

applications in computer vision. It refers to identifying objects of interest in an image

and drawing a bounding box around them to localize them. Object detection has been

effectively used to solve many real-world problems, such as person detection in chal-

lenging scenarios [1], brain tumour diagnosis [2], crowd counting [3], disease detection

on crops [4], and video surveillance [5], to name a few. One such area in which object

detection is gaining the interest of computer vision researchers is damage detection
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Figure 4.1: Sample image from Blade30 dataset showing the WTB and the respective
segmentation mask

on wind turbine blades (WTB).

Wind turbines are a source of clean and renewable energy. Since wind turbines are

subject to strong winds and adverse weather conditions, they require routine main-

tenance for continued efficient performance. Different methods are used to perform

non-destructive testing of wind turbine blades. Some of these methods include ultra-

sonic testing [6], tap testing [7], and infrared thermography [8]. Visual inspection is

one of the most common methods to identify structural damage on wind turbines [9].

The use of drones has become a popular method for visually inspecting wind turbines

[10]. WTB inspection using drones can significantly reduce turbine downtime from

1.5 hours (using conventional methods) to an average of just 20 minutes [11]. Using

drones for WTB inspection also mitigates the risks of human injury or even death.

A study suggests that most deaths occur during the construction or maintenance of

wind turbines [12]. Furthermore, since drones can capture and store images of WTBs,

they also help maintain a better record of the condition of the turbine, which can be

revisited at any time.

Researchers have used various image processing techniques to get a better rep-

resentation of wind turbine images captured using drones. Experiments performed
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in [13] reconstruct a 3D model of a WTB using multiple images. A technique was

proposed in [14] to measure strain on wind turbines using drone images. In another

work presented in [15], images of WTBs were synthetically generated to address the

problem of motion blur when drones are used. With continued research in computer

vision, captured drone images have been used to train computer vision algorithms

to identify damages on WTBs automatically [16]. However, the availability of WTB

image datasets in the public domain remains a problem for researchers. Recently,

the Blade30 dataset [11] was made publicly available, which offers a collection of

annotated images for the purpose of identifying different types of defects and con-

tamination on WTB. As shown in Figure 4.1, Blade30 consists of images of WTBs

and binary segmentation masks of corresponding images. One major problem with

WTB images captured using drones is the size of the images. Each image present in

the Blade30 dataset is roughly of the size 5400 x 3600. Images of a higher resolution

result in slow training of object detection algorithms [17]. Moreover, datasets with

images of higher resolution also need a good amount of storage space on the hard

drive. It is also worth mentioning that the presence of a challenging background can

increase the possibility of false positive detections by the object detector algorithm.

One such case for this is shown in Figure 4.2.

This research proposes a novel pre-processing pipeline that helps in creating a

new version of WTB images. The Blade30 dataset has been used in this research to

demonstrate the effectiveness of the proposed approach. Through different experi-

ments, it is proven in this work that the new version of the Blade30 dataset prepared

using the proposed approach significantly reduces the storage space required, takes

less time to complete training, and achieves better training results compared to the

original version of the Blade30 dataset. In this work, a comparative analysis of the

performance of different You Only Look Once (YOLO) models for defect detection
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Figure 4.2: Background in images results in the detection of false positives

on WTB surfaces is also presented.

The main contributions of this research are summarized below:

1. A novel pre-processing pipeline using binary masks and edges of WTBs to gener-

ate a new version of WTB image dataset that optimizes storage space, training

speed, and accuracy.

2. A comparative analysis using different versions of YOLO to demonstrate the

performance of YOLO object detectors on WTB images.

The next sections in this paper are organized as follows. Section 4.3 discusses the

related work performed in the domains of object detection and WTB defect detection.

Section 4.4 presents the complete methodology. Section 4.5 details the experimental

design, and Section 4.6 discusses the obtained results. Finally, Section 4.7 constitutes

the conclusion.
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4.3 Related Work

The detection of defects on WTB using computer vision techniques falls under the

category of object detection. For this specific problem, objects are classified as dif-

ferent types of damages, defects, or contaminations on surfaces of WTBs. Reviewing

the literature on object detection algorithms to understand their development with

time is vital. Due to this reason, this section is divided into two parts. The first part

gives a brief overview of the literature in the object detection domain, and the second

part discusses work performed using deep learning (DL) to process WTB images and

identify damages on them automatically.

4.3.1 Progress of Object Detection Algorithms

Before intensive research in the DL domain for object detection, conventional algo-

rithms were used. For these algorithms, features had to be extracted before passing

them to a classification method. One of the earliest of these algorithms is Viola-

Jones object detection [18], which proposed the approach of making integral images

and then performing detection using Haar features. Building on the research in ob-

ject detection and recognition, in 2004, Scale Invariant Feature Transform (SIFT)

[19] was used to extract features from an image and compare them with an existing

database of features to recognize the object present in the image. Following this, in

2006, Histogram of Oriented Gradient (HOG) [20] approach was introduced, which

presented a new approach to object detection using support vector machine as a clas-

sifier. The extraction of features from the frequency domain for object detection has

also been studied in various research works [21] [22]. Deep learning methods can
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perform object detection using neural networks without the need for extracting fea-

tures as a pre-processing step. These algorithms use convolutional neural networks

(CNNs) to perform computation on images. Within deep learning, object detection

algorithms can be broadly divided into two categories, two-stage, and one-stage de-

tectors. Region-based convolutional neural network (RCNN) [23] is one of the earliest

two-stage detectors proposed. It extracts different proposed regions for an object in

an image and then passes each of these proposed regions to a CNN to make predic-

tions for the class of the object. This makes the object detection process slow, and

it cannot be used for real-time object detection. To tackle the issue, Fast RCNN [24]

and Faster RCNN [25] were proposed as improved versions of RCNN. However, these

algorithms continued to be additions to the two-stage detectors.

You Only Look Once, or YOLO [26], was the first single-stage detector proposed

in 2016. This algorithm could predict all the objects present in an image by passing

the image to a CNN just once, which defines the algorithm’s name. YOLO allows

faster object detection and can perform well on real-time applications. Many im-

proved versions of YOLO have been proposed over recent years. Focusing on the

advancements made in the YOLO series since 2020, YOLOv5 [27] streamlined the

object detection pipeline by introducing different model variants for balancing speed

and performance, advanced data augmentation techniques, and auto anchor calcula-

tion. In 2022, YOLOv6 [28] was introduced, which was focused on industrial-grade

performance and offered further improvements in the architecture. The seventh ver-

sion of YOLO, referred to as YOLOv7 [29], was presented in the same year. YOLOv7

uses extended efficient layer aggregation network to improve model’s efficiency. With

further improvements in the architecture, YOLOv8 [30] was released in 2023 that

offered state-of-the-art performance on benchmark datasets for object detection.
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4.3.2 Image Processing and Defect Detection on WTB Im-

ages

As shown in Figure 4.2, the background in WTB images results in the detection of false

positives on images. As discussed in the next section in equation (4.9), false positives

directly affect the precision of the object detector. Due to this reason, work has been

done on pre-processing WTB images to extract only the relevant area. A method

proposed in [31] uses “regression crop” to crop the surface of WTB out of images

and perform detection only across the surface. A technique presented in [32] gives an

improved version of U-Net that can effectively segment WTB from infrared images

using hierarchical split depthwise separable convolution operations. Another improved

version of U-Net specifically to segment WTB area was proposed in [33], which made

use of an efficient channel attention network and point-wise spatial attention network.

In terms of segmentation of WTB images, state-of-the-art performance was reported

in another improved version of U-Net called Pixel U-Net [34], in which the max pooling

and transpose convolution operations in the U-Net architecture were replaced by pixel

unshuffle and pixel shuffle operations.

Since WTB surfaces are large and the whole blade surface cannot be captured

in high definition in a single drone image, researchers have proposed image stitch-

ing techniques to generate accurate images of the complete WTB image. One such

technique was proposed in [35], in which authors perform different geometrical calcu-

lations to align images belonging to the same WTB and create a panoramic image.

Another technique was proposed in [11] that features a two-level process that com-

bines coarse-grained initial alignment using blade edges and drone-blade distances

with fine-grained adjustments optimized by texture and shape losses. Other than

extracting relevant areas from images of WTBs, work has also been done to improve
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the quality of WTB images captured in varying lighting conditions. In [36], a method

that uses cartoon and texture maps to enhance the illumination of WTB images is

proposed.

In addition to research on pre-processing techniques used on WTB images, re-

searchers have experimented with DL to build networks that can be trained for the

specific application of identifying defects on WTBs. A method was proposed in [37]

that can identify small defects on WTB using an improved version of YOLOv5 to

perform the task. In another work [38], an attention and feature-balanced version of

YOLO (AFB-YOLO) is proposed, which helps in gathering more feature information

for improved detection. In this improved architecture for YOLOv5s (where s stands

for small), the authors also replace the intersection over union (IoU) loss with effi-

cient IoU (EIoU) loss for bounding box calculations. In another work [39], the authors

introduced an improved version of YOLOv5s called multivariate information YOLO

(MI-YOLO) for defect detection on WTBs. In this architecture, authors replace some

parts from the original YOLOv5s backbone and also infuse the MobileNetv3 backbone

in the network. In their ablation study, they also extend their workings to replace

the IoU loss with Alpha-IoU loss for bounding box calculations. In [40], another im-

provement to YOLOv5s was proposed called MC-YOLO. This modified architecture

replaced the complete original backbone of YOLOv5s with the MobileNetv3 backbone.

For real-time monitoring of WTB, the inference speed is very important. This is ad-

dressed in [41], where the researchers propose an improved version of YOLOX-Nano

which greatly increases the inference speed.
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4.4.1 Generation of Binary Segmentation Masks using Pixel

U-Net

Pixel U-Net [34] is an improved version of the baseline U-Net segmentation model.

The architectural improvements proposed in Pixel U-Net tailor it for the task of binary

segmentation of WTBs. The authors also prove with different experiments that Pixel

U-Net outperforms baseline U-Net for the task of binary segmentation of WTBs.

Pixel U-Net builds further upon the concept of hierarchical split depthwise separable

convolutions in U-Net architecture proposed in [32]. In the proposed architecture of

Pixel U-Net, the max pooling operations from the original U-Net architecture are

replaced with pixel unshuffle operations in the encoding process, and the transpose

convolution operations are replaced by the pixel shuffle operations during the decoding

process. This helps the segmentation model develop a better understanding of low-

level features and spatial information.

Since the goal is to segment the WTB area into foreground and everything else

into background, the problem is treated as a binary segmentation problem and the

model is optimized using binary cross-entropy loss. The dice score is also used for

the calculation of loss during training process. Equation (4.1) presents the formula

for the calculation of dice score, in which the ground truth pixel values of the binary

mask are represented by ytrue and the predicted pixel values of the binary mask are

represented by xpred. To avoid division by zero, a small value of ε is added to the

fraction. The complete loss function in equation (4.2) is simply a sum of the binary

cross entropy loss and dice loss. In this formula, the ground truth pixel values are

represented by yi, and the predicted pixel values are represented by xi, whereas the

total number of pixels is given by N . The training process for Pixel U-Net works

towards optimizing the performance of binary segmentation using this loss function,
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Figure 4.4: Actual WTB image (left), ground truth binary segmentation mask (mid-
dle), binary segmentation mask generated by Pixel U-Net (right)

and the trained model is then able to generate binary segmentation masks of WTBs

such as the one shown in Figure 4.4 (right).

Sdice =
2 ∗

∑

(ytrue ∗ xpred)
∑

ytrue +
∑

xpred + ε
(4.1)

LBCE+Dice = −
1

N

N
∑

i=0

[yi · log xi + (1− yi) · log(1− xi)] + (1− Sdice) (4.2)

4.4.2 Extraction of Relevant WTB area

Figure 4.5: Binary segmentation mask (left) and the obtained edge image from it
using Canny edge detector (right)

Once the binary segmentation masks are obtained, they are used to create the
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mapped version of WTB image. First, the WTB image and mask are resized to the

same size. A new image is created, with pixel values P . The pixel values in the WTB

image are represented by I, whereas the pixel values in binary segmentation mask

are represented by S. The following formula is used to fill in pixel values in the new

image.

P =















I, if S = 1

0, if S = 0

(4.3)

This results in the image shown in Fig. 4.6 (middle). However, the problem with

images like these is that due to an absence of background close to the WTB edges, the

object detection algorithm fails to learn defects or contamination on the edges. To

solve this problem, the edge images of WTB blades are obtained. The edges of WTB

can be accurately extracted using the binary segmentation masks. Extraction of edges

of WTB is vital for the method proposed in this sub-section. Experiments were done

with different edge detectors, and it was found that the Canny edge detector [42]

gives the best results on the binary segmentation masks. Experiments were also done

to apply the Canny edge detector directly on the original WTB images to extract

the edges of WTBs, but the challenging and diverse nature of backgrounds in WTB

Figure 4.6: Original WTB image from Blade30 dataset (left), masked version using
binary segmentation mask only (middle), masked version using binary segmentation
mask and edge image (right)
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images made it difficult to obtain consistent edges directly on original WTB images.

Fig. 4.5 shows an obtained edge image from the binary segmentation mask. The

Canny edge detector works by first smoothing the mask using a Gaussian filter [43].

The smoothing of the mask is done to remove noise from the image. After smoothing,

the mask is convolved with Sobel filter [44]. The Sobel operator identifies edges both

in the x-direction (Kx) and y-direction (Ky) by using the filter operations below.

Kx =













−1 0 1

−2 0 2

−1 0 1













, Ky =













1 2 1

0 0 0

−1 −2 −1













(4.4)

The convolved result of the mask with Sobel operators in the x-direction and y-

direction is represented by Ix and Iy, respectively. These values collectively represent

a gradient vector in the form of (Ix , Iy) that can be used to calculate the magnitude

M and direction D using the following equations.

M =
√

I2x + I2y (4.5)

D = arctan

(

Iy

Ix

)

(4.6)

These obtained results are used to perform non-maximum suppression, which sup-

presses repetitive edge lines and gives a clean edge image, as shown in Fig. 4.5.

Once both the binary segmentation mask and its corresponding edge images are

obtained, they are used to extract not just the WTB surface, but also a clean area

around the edge of WTB. A sliding window of a fixed size f (this size is set to be

1/10th of the width or height of the image, whichever is greater) is applied on the
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edge image. The window moves through the whole edge image with pixel values E.

The fxf window of pixel values around the pixel value I in the original WTB image

is represented by Iw. The pixel values of the new image are represented by P and the

fxf window of pixel values around P is denoted by Pw. The pixel values of binary

segmentation mask are represented by S. This modified approach to obtain pixel

values P for the new image can be represented by the formula below.

Pw =































Iw, if E = 1

I, if S = 1

0, if S = 0

(4.7)

Applying this methodology results in mapped images such as the one shown in

Fig. 4.6 (right), which are used in further experimentation.

4.4.3 Object Detection using YOLO

The original version of the Blade30 dataset and the new version of the dataset are

trained for 9 different types of defects and contamination using different versions of

YOLO, namely YOLOv5, YOLOv6, YOLOv7 and YOLOv8. In terms of architecture,

YOLO model architectures are divided into three basic parts. First is the backbone,

in which features are extracted from the image. Second is the neck, in which features

are combined to learn patterns in the dataset. And third is the head, which predicts

the class and location of objects in the image. Once these predictions are made, the

result is further refined by the algorithm by applying the non-maximum suppression

technique. This technique uses the intersection over union (IoU) value of all predicted

boxes, and if this value is greater than a set threshold value, the bounding box with a
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lower confidence score is suppressed. The IoU is defined by the formula given below.

A and B define two different bounding boxes for which the IoU is to be calculated.

IoU =
(A ∩ B)

(A ∪ B)
(4.8)

To measure the accuracy of the training process, the algorithm uses mean average

precision (mAP) metric. Precision is defined as the ratio of correct predictions of a

class to the total number of predictions for that class. Recall is the ratio of correct

predictions to the total number of objects from that class present. The formulae

for precision and recall are given in equation (4.9) and (4.10), respectively. Correct

predictions are referred to as true positives (TP) and true negatives (TN), whereas

incorrect predictions are referred to as false positives (FP) and false negatives (FN).

Once the precision and recall values are calculated, the F1-score relates both metrics

with the formula given in equation (4.11).

Precision =
TP

TP + FP
(4.9)

Recall =
TP

TP + FN
(4.10)

F1 =
2× Precision× Recall

Precision + Recall
(4.11)

Average precision (AP) is defined as the area under the precision-recall curve and

is calculated separately for each class. As the name defines, mAP is the mean of all

AP values obtained for each class. In the formula in equation 4.12, N represents the

total number of classes.



65

mAP =
1

N

N
∑

i=1

APi (4.12)

The performance of YOLO algorithms is compared in this research using obtained

mAP scores at different IoU thresholds on the original, as well as the masked version

of the Blade30 dataset. For example, mAP0.50 represents the mAP scores obtained

when IoU threshold was set at 0.50. The metric mAP0.50:0.95 gives a better overview of

performance as it reflects the average obtained by setting IoU thresholds at intervals

of 0.05, starting at 0.50 and ending at 0.95. The performance comparison of the

proposed methodology in this work with existing techniques proposed by researchers

for the same problem is done using mAP, precision, recall, and F1 metrics.

4.5 Experimental Setup

4.5.1 Pre-processing of Dataset

The Blade30 dataset consists of a total of 1302 high-resolution images, along with their

binary segmentation masks. For the first step, Pixel U-Net was trained to generate

binary segmentation masks. A total of 1054 image-mask pairs were used for this

purpose, out of which 15% images were used for validation. The discarded images

were removed from the dataset based on inaccurate ground truth binary segmentation

masks. To achieve quicker training, the images were resized to 608 x 416, and a scaling

factor of 0.5 was used. A batch size of 4 was used, and the initial learning rate was

kept at 0.0001. The algorithm was trained for 30 epochs. The training and validation

results from this step are provided in Figure 4.7. At the end of the training process,

the model is able to achieve a training loss value of 0.00789 and a validation dice score
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Table 4.1: Breakdown of time for pre-processing steps

Pre-processing Step Time (s)
Training Pixel U-Net 627.00
Resizing images to 608 x 416 6.53
Running inference on trained model 7.58
Obtaining edge images 0.76
Extracting relevant WTB area 2.99
Mapping onto original size 11.93

Total Time 656.79

4.5.2 Training Object Detectors

Following the pre-processing steps in the previous sub-section, two versions of the

Blade30 dataset were obtained for experiments. The first version consisted of original

images from the Blade30 dataset, whereas the second version consisted of masked

images from the Blade30 dataset, as shown in Figure 4.6 (right). Before starting the

training, both versions of the dataset were refined to remove under-represented classes.

In some cases, under-represented classes were merged into visually similar classes.

Moreover, classes which did not have good diversity were also removed. A total of 9

classes remained to train the YOLO object detectors for comparative analysis. Both

versions of the dataset consisted of 249 labelled images with good class representation,

and 58 background images, making a total of 307 images. The datasets were split into

73%, 17% and 10% for training, validation and testing respectively. It was ensured

that both versions of the dataset had exactly the same images in the train, validation

and test set. The experiments were performed on NVIDIA RTX 2000 Ada, and 8

GB of video RAM (VRAM) was used. A batch size of 8 was used for training, and

a batch size of 4 was used for validation. For all YOLO models, the respective pre-

trained weights on the COCO dataset were used, and the models were further trained

for 300 epochs on both versions of the Blade30 dataset. All training experiments

were performed using the MMYOLO toolbox by OpenMMLab [45]. A complete flow
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chart of the proposed methodology in this research, including all pre-processing steps

required during training and testing, is presented in Figure 4.8.

The proposed methodology was also compared for performance with recently pro-

posed techniques for defect detection on wind turbine blades by researchers, namely

AFB-YOLO [38], MI-YOLO [39], and MC-YOLO [40]. For this comparison, training

with these methods was also performed for 300 epochs with the same dataset split

described above, and using pre-trained weights on the COCO dataset. For better

adaptability with the pre-trained weights, all the methods were trained using the

complete intersection over union (CIoU) loss function [23] for the bounding box loss.

It is to be noted that the authors of [38] originally worked with the efficient inter-

section over union (EIoU) loss function [46], but the experiments conducted in this

research gave a better performance for all architectures with the CIoU loss when pre-

trained weights were used, and hence it was eventually used for comparison. The

training progression for all methods is provided in Figure 4.9. To make the graph-

ical comparison clear, a time-weighted exponential moving average with a factor of

0.7 was used to smooth the precision and recall graphs. The original results without

smoothing can be seen at the backdrop of the precision and recall graphs. The actual

final values obtained at epoch 300 from these graphs for the performance metrics are

given in Table 4.2. Using the respective weights from the best-performing epoch of

each method, testing was conducted and the obtained results are provided in Table

4.3.

Table 4.2: Comparison of training performance of proposed methodology with existing
methods

YOLOv5 Original [27] AFB-YOLO [38] MI-YOLO [39] MC-YOLO [40] YOLOv5 Masked
Precision ↑ 0.861 0.820 0.654 0.562 0.850
Recall ↑ 0.841 0.810 0.827 0.660 0.863
F1 ↑ 0.851 0.815 0.730 0.607 0.856
mAP0.50 ↑ 0.864 0.846 0.820 0.710 0.886
mAP0.50:0.95 ↑ 0.620 0.571 0.501 0.404 0.631
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Table 4.3: Comparison of testing performance of proposed methodology with existing
methods

YOLOv5 Original [27] AFB-YOLO [38] MI-YOLO [39] MC-YOLO [40] YOLOv5 Masked
Precision ↑ 0.356 0.320 0.287 0.343 0.652
Recall ↑ 0.426 0.604 0.750 0.688 0.674
F1 ↑ 0.388 0.418 0.415 0.458 0.663
mAP0.50 ↑ 0.739 0.647 0.579 0.603 0.838
mAP0.50:0.95 ↑ 0.315 0.379 0.350 0.356 0.652

4.6 Analysis of Results

Table 4.4: Storage space and training time comparison

Original Version Masked Version
Time Difference

(h)
Dataset size (MBs) ↓ 1200 589 -

Training time
(hours) ↓

YOLOv5s [27] 9.183 7.642 1.541
YOLOv6s [28] 9.860 8.686 1.174
YOLOv7t [29] 12.20 10.10 2.100
YOLOv8s [30] 9.397 8.156 1.241

In the tables in this manuscript, a down arrow represents that a lower value of

the metric is better, whereas an up arrow suggests that a higher value of the metric

is better. From Table 4.4, it can be observed that preparing the WTB image dataset

using the proposed methodology results in a significant reduction in the required

storage space, which leads to quicker training. The total time taken by the pre-

processing steps required for this methodology is given in Table 4.1, which equates to

0.182 hours. Adding this time to the training time, it can be noted that the overall

time for the proposed methodology still helps in reducing training time by about 1-2

hours.

It was also observed that the proposed data pre-processing methodology helps

significantly improve the mAP scores obtained at the end of the training process. As

presented in Table 4.5, almost every experiment noted a gain in mAP when the masked

version of the dataset was used. This increase in performance is attributed to the

object detector being able to focus only on the area of interest using masked images,
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Table 4.5: Comparison of obtained mAP values from experiments

Original Version Masked Version Gain in mAP

mAP0.50 ↑

YOLOv5s 0.864 0.886 2.2%
YOLOv6s 0.929 0.902 -2.7%
YOLOv7t 0.819 0.828 0.9%
YOLOv8s 0.778 0.857 7.9%

mAP0.75 ↑

YOLOv5s 0.752 0.779 2.7%
YOLOv6s 0.781 0.801 2.0%
YOLOv7t 0.693 0.702 0.9%
YOLOv8s 0.594 0.634 4.0%

mAP0.50:0.95 ↑

YOLOv5s 0.620 0.631 1.1%
YOLOv6s 0.624 0.651 2.7%
YOLOv7t 0.557 0.565 0.8%
YOLOv8s 0.523 0.571 4.8%

Table 4.6: Wilcoxon Signed Test results

YOLOv5s YOLOv6s YOLOv7t YOLOv8s
0.01160 0.00001 0.00494 0.00048

A comparative analysis of the training progression of different YOLO models on

both versions of the dataset is given in Figure 4.10. It can be seen that the training

progresses normally with little to no difference on both versions of the dataset. Com-

paring the performance of the object detectors, YOLOv5s achieved the lowest loss

value in 300 epochs of training. YOLOv5s was hence chosen to perform testing on

the two versions of the dataset. The weights from the epoch that obtained the best

mAP scores were chosen for each version of the dataset, respectively. The quantitative

results obtained through testing are presented in Table 4.3. In this table, YOLOv5

Original refers to training and testing using the original dataset, whereas YOLOv5

Table 4.7: Computational complexity of YOLO models

YOLOv5s YOLOv6s YOLOv7t YOLOv8s
Model Parameters 7.04M 17.19M 6.04M 11.14M

FLOPS 20.38G 56.03G 16.86G 36.56G
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shifting focus towards dataset pre-processing instead of architectural improvements

helps in improving the efficiency of the object detector.

Ground Truth YOLOv5 Original AFB-YOLO

MI-YOLO MC-YOLO YOLOv5 Masked

Ground Truth YOLOv5 Original AFB-YOLO

MI-YOLO MC-YOLO YOLOv5 Masked

Figure 4.11: Qualitative comparison of detections of proposed method with existing
methods for WTB defect detection

Using the proposed methodology, the time taken per image was also reduced. For

testing, the time taken by the first pre-processing step in Table 4.1 can be ignored

(Training Pixel U-Net), and the remaining time durations are added. This gives a
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total time of 29.79 seconds. A total of 307 images were used for the steps in Table 4.1,

giving the time taken per image for the remaining steps to be 0.01 seconds. Adding

this time to the inference time per image as shown in Table 4.8, the total time for

testing using the proposed method is still lower than the time for testing using the

original version of the dataset.

For a qualitative comparison, some of the results from the testing phase are pre-

sented in Figure 4.11. The common observation that can be made from the results is

that given the relevant area for detection, the model trained and tested on the masked

version of the dataset (YOLOv5 Masked) gives a better performance than the differ-

ent models that were compared. The confidence threshold was set to be 0.3 for all

the models during testing, and the results display that YOLOv5 Masked has a better

detection accuracy with robust performance compared to other methods. Using other

methods resulted in repeated detections and lower confidence in detections. This

can be attributed to the challenging nature of backgrounds in WTB images during

training, which were avoided by YOLOv5 Masked due to the masking of the dataset.

4.7 Conclusion

A novel pre-processing technique to aid with identifying defects and contamination on

the surface of WTB is proposed in this work. The binary segmentation masks of WTB

images are used to create edge images in this work, which are then collectively used to

extract only the area of interest from the WTB image, resulting in a mapped version of

the original dataset. Through extensive experiments with different versions of YOLO,

namely YOLOv5, YOLOv6, YOLOv7 and YOLOv8, it is proven that the proposed

technique helps in reducing the storage space required for WTB image datasets to



76

half, and reduces training time for object detectors by about 1-2 hours. The obtained

results with the proposed method during training demonstrate a gain in mAP scores

ranging from 0.8-7.9% across different versions of YOLO, and a gain in mAP scores

ranging from 1.1-22.7% across different existing methods. A significant gain in mAP

scores was noted with the proposed method during testing, ranging from 27.3-33.7%.

Data Availability Statement

The original Blade30 dataset is publicly available at this link: https://github.com/

cong-yang/Blade30. The refined version of the Blade30 dataset that has been used

in this research consisting of 307 images with 9 classes is publicly available at this link:

https://universe.roboflow.com/memorial-university-of-newfoundland-y9kcb/

blade-damage-detection-v2/dataset/7. The codes and the results associated with

this manuscript can be made available to the reader upon request.

4.8 Bibliography

[1] C Jayavarthini and C Malathy. An improved deep-layer architecture for real-

time end-to-end person recognition system. Computers & Electrical Engineering,

96:107550, 2021.

[2] Dillip Ranjan Nayak, Neelamadhab Padhy, Pradeep Kumar Mallick, and Ashish

Singh. A deep autoencoder approach for detection of brain tumor images. Com-

puters and Electrical Engineering, 102:108238, 2022.



77

[3] Lixian Yuan, Yandong Chen, Hefeng Wu, Wentao Wan, and Pei Chen. Crowd

counting via localization guided transformer. Computers and Electrical Engi-

neering, 104:108430, 2022.

[4] Nirmal Raj, Senthil Perumal, Sanjay Singla, Girish Kumar Sharma, Shamimul

Qamar, and A Prabhu Chakkaravarthy. Computer aided agriculture development

for crop disease detection by segmentation and classification using deep learning

architectures. Computers and Electrical Engineering, 103:108357, 2022.

[5] Sannasi Ganapathy and Devansh Ajmera. An intelligent video surveillance sys-

tem for detecting the vehicles on road using refined yolov4. Computers and

Electrical Engineering, 113:109036, 2024.

[6] Melody A Drewry and George A Georgiou. A review of ndt techniques for wind

turbines. Insight-Non-Destructive Testing and Condition Monitoring, 49(3):137–

141, 2007.
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Chapter 5

Conclusion

In this thesis work, an efficient and robust methodology was developed to detect de-

fects and contamination on WTBs automatically. In this methodology, the WTB area

is effectively segmented from the original drone image using Pixel U-Net, which is a

novel architecture proposed as part of this thesis work. Pixel U-Net is an improved

version of the U-Net architecture. The Pixel U-Net architecture replaces the max

pooling and transpose convolution operations in the original U-Net architecture with

pixel unshuffle and pixel shuffle operations respectively. Experiments in this work

demonstrate a better segmentation performance on WTBs compared to the perfor-

mance of existing architectures. As part of ablation studies carried out in this work,

two different variations of Pixel U-Net have also been proposed, namely HS-Block +

Pixel Unshuffle, and Pixel U-Net + Attention.

As part of the next step in the proposed methodology, image-processing techniques

have been used to extract the relevant WTB area once the binary segmentation masks

are obtained. In addition to the actual WTB area, the relevant WTB area has been

defined to be some part around the edges of WTB as well. This ensures a better
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detection of defects and contamination on the edges of WTBs. Once the relevant area

is obtained, different versions of YOLO were trained to identify defect and contami-

nation on WTBs. Through experiments, it has been proven in this research that the

proposed methodology not only outperforms existing methods in WTB defect detec-

tion, but also helps in reducing the size of the dataset by about half, and reduces

training time by about 1-2 hours.

5.1 Future Work

As WTB defect detection is a relatively new area in the domain of computer vision,

there is a scarcity of WTB datasets that are publicly available. All the experiments

in this research were carried out using the publicly available Blade30 dataset. To help

future researchers build up on this work, the refined version of the Blade30 dataset

used in this research, with the exact training, validation, and test splits, has been made

available at this link: https://shorturl.at/VdPOn. As more WTB datasets become

publicly available, a good future direction will be to validate the results presented in

this thesis work on other WTB datasets as well. To assist future researchers in the

domain of WTB defect detection, if resources permit, it would also be very helpful

to gather a new WTB dataset captured using drones, annotate it for defects and

contamination, and make it publicly available for the research community to use.

Additionally, while this thesis focused on WTBs, the potential of Pixel U-Net

in other domains remains largely untapped. Applying it across different contexts

could validate its universal effectiveness and lead to new adaptations for various seg-

mentation tasks. Therefore, extending this research to other domains is a promising

direction for future work.
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