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semi-rough, and rough seabed conditions. To the authors’ knowledge, using 
simulated seabed in a flume tank has never been done before in this field. 
The footgear under development and presented in this study is unique in its 
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ABSTRACT

There have been many advancements in bottom trawls to reduce physical and biological 
impacts on benthic habitats. In this study, an innovative aligned-rolling footgear was designed 
and evaluated for use in the Northern shrimp (Pandalus borealis) fishery in Eastern Canada. 
We document a novel technique for comparing traditional and experimental footgears using 
engineering models and simulated seabed conditions in a flume tank. Footgears were compared 
using direct observation and by measuring warp load during simulated smooth, semi-rough, and 
rough seabed conditions in contact with bosom or wing footgear sections. Results revealed that 
the traditional footgear bottom trawl experienced significantly higher warp loads for smooth 
(0.26 t higher), semi-rough (0.68 t higher), and rough seabed conditions (0.74 t higher) in the 
bosom section. In the wing section, traditional bottom trawl produced significantly higher warp 
loads for smooth (0.38 t higher) and rough seabed conditions (0.30 t higher). Bottom trawl with 
aligned-rolling footgear reduces seabed contact up to 71.5% depending upon depth of penetration 
modelled. To our knowledge, this study represents the first attempt at using simulated seabed 
conditions in a flume tank testing footgear technology.
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INTRODUCTION

Since the 1950s, bottom trawls have been 
widely used to target demersal species in an 
efficient and economically viable manner 
[Valdemarsen, 2001; Watson et al., 2006; 
Valdemarsen et al., 2007]. Bottom trawls 
account for almost one-quarter of the total 
wild marine landings annually [Amoroso 
et al., 2018], which represents a substantial 
contribution to global food security [Kaiser et 
al., 2016]. However, these bottom-contacting 
fishing gears can result in physical and 
biological impacts on benthic habitats [Hiddink 
et al., 2017; Sciberras et al., 2018]. 

Bottom trawls typically employ heavy 
components to move, herd, guide, and finally 
capture demersal fish and shellfish in fishing 
gear [Montgomerie, 2015]. The extent of 
contact and seafloor penetration varies with 
the trawling operation, which are customized 
for the target species, depth, and seabed type 
[Løkkeborg, 2005; He, 2007; Sciberras et 
al., 2018; Depestele et al., 2019]. Bottom 
trawls can cause adverse effects on benthic 
species and habitat. Direct effects include 
mortality of benthic organisms [Collie et al., 
2005], alteration to seafloor composition and 
bathymetry [Depestele et al., 2019], reduction 
of topographic complexity [O’Neill and 
Ivanović, 2016], and changes to sediment 
biogeochemistry [Mayer et al., 1991; 
Sciberras et al., 2016]. In the first few days 
after trawling, direct mortality and bycatch 
discarded from fishing vessels can attract 
scavengers to the trawled area [Collie et al., 
2017]. In the long term, persistent trawling of 
an area can reduce benthic biomass, diversity, 
and numbers of individuals, which in turn can 

reduce productivity, change trophic structure 
and function of the benthic community, as 
well as generate changes to body size and age 
structure of benthic organisms [Jennings et 
al., 2001; Hiddink et al., 2006]. Ultimately, 
chronic trawling can produce a change towards 
communities dominated by species with faster 
life histories [Tillin et al., 2006; Johnson et al., 
2015; Van Denderen et al., 2015].

Growing concerns about seabed impacts 
[Kaiser et al., 2016] have led to the study of 
new technologies to reduce the area of contact, 
weight, or penetration depth of fishing gear 
components on the seabed, as well as the 
reduction of bycatch of benthic species [He, 
2007; He and Winger, 2010]. Much of this 
innovation has focused on improving the 
footgear of bottom trawls and has led to the 
development of footgears that roll over the 
seabed [Ball et al., 2003; He and Balzano, 
2010], or that are aligned with the towing 
direction [Winger et al., 2018], or have reduced 
area/points of contact [Nguyen et al., 2015a; 
Brinkhof et al., 2017; Larsen et al., 2018].

Roller footgear is currently used by offshore 
trawlers targeting Northern shrimp (Pandalus 
borealis) in Eastern Canada. Large rubber 
discs are threaded onto the footgear chain 
with rubber and steel spacers (i.e., lancasters) 
between them. The footgear is constructed 
in large sections that are connected together 
using swivels. The footgear is called “roller 
footgear” because these large sections are 
free to roll, allowing the footgear to move 
over hard rocky seabed and protect the 
trawl from damage [Montgomerie, 2015]. 
However, recent findings during fishing 
operations have shown that the footgear 
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sections are rolling at extremely low rates 
[Araya-Schmidt et al., 2021], which may 
produce higher sliding, digging, and drag 
forces [Fridman, 1986; Esmaeili and 
Ivanović, 2014; Winger et al., 2018]. 

Footgear components with no, or limited, 
rotation and a larger contact area with the 
seabed likely cause increased damage to 
benthic structures, higher mortality and 
exposure of benthic species, as well as 
increased sediment remobilization [O’Neill 
and Summerbell, 2016; Hiddink et al., 2017; 
Depestele et al., 2019]. Aligned footgears 
reduce seabed contact by “aligning” footgear 
discs in the direction of the tow. In the 1940s, 
the first known aligned wheel footgear was 
designed in Germany. Presumably, footgears 
that can roll over the seabed were originally 
designed to reduce fuel consumption [He and 
Balzano, 2010]. However, it has been shown 
that aligned footgear designs can reduce 
substrate material in the trawl net, bycatch, 
drag, area of contact, and presumably, seabed 
impacts [Ball et al., 2003; Zachariassen, 2004; 
He and Balzano, 2010; Winger et al., 2018].

A critical component of the fishing gear 
development cycle is flume tank testing of 
engineering models [Winger et al., 2006]. This 
allows fishing gear technologists to identify 
design defects, measure changes to trawl 
geometry due to different riggings or towing 
speeds, measure forces, and document the 
dynamic motions of the fishing gear. Several 
footgear technologies have been tested in 
flume tanks [Ball et al., 2003; Grimaldo et 
al., 2014; Nguyen et al., 2015a; Winger et 
al., 2018]. Laboratory experiments have been 
used to study the impacts of trawl doors on 

the seabed and infaunal bivalves [Gilkinson et 
al., 1998]. Seabed penetration experiments for 
beam trawls have been performed in towing 
channels [Paschen et al., 2002]. In recent years, 
numerical modelling of ground gear elements 
has been developed to estimate contact forces 
[Ivanović et al., 2008], penetration depth 
[Ivanović et al., 2011; Ivanović and O’Neill, 
2015], soil displacement [O’Neill and Ivanović, 
2016], and drag force [Ivanovic et al., 2009]. 
To our knowledge, testing model trawls with 
new footgear technologies is usually conducted 
in flume tanks with a flat moving seafloor. 
While a moving seafloor is better than no 
moving seafloor, the lack of texture does 
not allow fishing gear technologists to make 
inferences on the performance of the footgear 
over coarser seabeds.

Building on previous roller footgear concepts 
[Ball et al., 2003; Zachariassen, 2004; He 
and Balzano, 2010; Winger et al., 2018], this 
study designed and evaluated an innovative 
aligned-rolling footgear. We document a 
novel technique for comparing traditional 
and experimental footgears using engineering 
models and simulated seabed conditions in 
a flume tank. Footgears were qualitatively 
compared using direct observation and 
quantitatively assessed by measuring warp load 
during smooth, semi-rough, and rough seabed 
conditions in contact with bosom and wing 
footgear sections. The results are discussed in 
relation to expected seabed impact, prototype 
validation, and previous footgear innovations.

METHODS

Modelling of Bottom Trawl
A linear model scale of 1:10 was selected in 
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order for the bottom trawl to fit in the flume 
tank and achieve the desired wingspread 
commonly used by the commercial fishing 
vessels (approximately 37 m). The model 
was constructed at the Fisheries and Marine 
Institute’s Centre for Sustainable Aquatic 
Resources using Froude scaling laws [Tauti, 
1934; Fridman, 1973; Hu et al., 2001]. 
Force, geometric, kinematic, and dynamic 
modelling laws are commonly used in model 
scaling to approximate full-scale bottom trawl 
characteristics [Fiorentini et al., 2004; Queirolo 
et al., 2009; Sala et al., 2009; Nguyen et al., 
2015b; Thierry et al., 2020]. The fundamental 
modelling laws can be summarized as follows, 
where f and m in the subscripts represent the 
full-scale and model, respectively:

        (1)
 
        (2)

        (3)

        (4)

where λ, L, A, F, ρ, and v are the ratio of the 
length scale, length, area, force, water density, 
and towing speed, respectively.

Trawl Design
The bottom trawl design used in this study was 
a 4-panel, 2-bridle, high opening AngCos 3325 
small mesh shrimp trawl net manufactured by 
Isfell EHF in Iceland. The headline length was 
60.4 m, and the fishing line length was 71.4 
m. Floatation on the headline was provided by 
232 trawl floats (200 Isfell titanium 200 mm Ø 
2.90 kg of lift and 32 Atlantic floats 242 mm 
Ø 4.28 kg of lift). Additional floats were added 
along the selvedges (n = 25 titanium 200 mm 
Ø) and fishing line (n = 160 titanium 200 mm 
Ø). Mesh sizes ranged from 200 to 50 mm, and 
towing speed during fishing operations is 1.29 
m s-1 (2.5 knots).

Traditional Footgear
Two types of model footgears were scaled 

Figure 1: Traditional (left) and aligned-rolling (right) footgears. Bosom section and one side of bunt wing and wing sections are shown for the 
footgears. Aligned-rolling wheels are shown in green.
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and constructed for flume tank testing. The 
traditional footgear was typical of that used 
by commercial fishing vessels in Eastern 
Canada. In full-scale terms, it consisted of 
five rolling footgear sections; a 4.4 m bosom 
section with 12 rubber discs, a port, and 
starboard 4.0 m first bunt wing section with 
seven rubber discs, and a second port and 
starboard bunt wing section with five rubber 
discs (Figure 1). Each section contained 
rubbers, spacers, weights, and lancasters 
distributed along its length. Sections were 
connected by swivels, and 0.61 m diameter 
steel bobbins were placed in between 
sections. The remainder of the footgear, 
i.e., port and starboard wing sections, were 
22 m long, made of bare chain, and five 
steel bobbins of 0.61 m diameter. Dan Leno 
assemblies with a 0.61 m diameter bobbin 
were used after the second bunt wing and 
wing sections. The bosom section had 22 mm 
chain, while the remainder of the footgear 
had 19 mm chain. Toggle chains were 72 cm, 
complying with local fishing regulations. 
Rubber discs were 0.61 m in diameter. In 
total, there were 36 rubber discs and 18 steel 
bobbins in contact with the seafloor. Full-
scale weight in seawater was 2.11 t. 

Aligned-rolling Footgear
The aligned-rolling footgear consists of the 
same bosom section as the traditional footgear; 
however, the first and second bunt wing 
sections were replaced by a bare chain and four 
aligned-rolling rubber wheels (Figure 2). Wing 
sections were replaced by a bare chain and five 
aligned-rolling rubber wheels (Figure 1). The 
aligned-rolling rubber wheels were 0.61 m in 
diameter. Port and starboard wing Dan Leno 
assemblies with bobbin and first bobbin were 
also present in the aligned-rolling footgear 
configuration. The bosom section had 22 mm 
chain, while the remainder of the footgear had 
19 mm chain. Toggle chains were 72 cm long 
to comply with fishing regulations. Rubber 
discs were 0.61 m in diameter. In total, the 
aligned-rolling footgear consisted of 12 rubber 
discs, 18 aligned wheels, and four steel bobbins 
in contact with the seafloor. Full-scale weight 
in seawater was 2.03 t.

Alignment of the wheels with the towing 
direction is critically important for an aligned 
footgear to work effectively [He and Balzano, 
2010]. This was achieved in the flume tank by 
measuring the distance between the bobbins 
along the traditional footgear at a simulated 
towing speed of 1.29 m s-1 (2.5 knots), and 65 
m door spread. Angles of towing direction with 
respect to the footgear chain direction were 
then calculated for an effective design of the 
aligned wheel components in the bunt wing 
and wing sections.

Simulated Seafloor Experiment
Three aluminum plates of 1.22 m by 2.44 
m (12.2 and 24.4 m full-scale) were used 
to simulate smooth, semi-rough, and rough 
seabed conditions for the flume tank testing 

Figure 2: Schematic 
drawing of the full-scale 

prototype of an aligned-
rolling wheel in SolidWorks.
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of the traditional and experimental footgear 
(Figure 3). The smooth plate had a coat of 
paint for extra smoothness. The semi-rough 
plate had 139 rocks glued with PL Premium™ 
construction adhesive, with a mean height of 
0.010 m (0.10 m full-scale). The rough plate 
had 353 rocks glued, with a mean height 
of 0.014 m (0.14 m full-scale). Rocks were 
selected by size for each plate and randomly 
distributed on the surface (Figure 3).

The experiment began by deploying the model 
bottom trawl in the flume tank with gentle 
water flow (i.e., 0.5 m s-1 full-scale). The port 
and starboard warps were attached to a load 
cell and lowered to a height of 0.19 m off the 
seabed using the towing masts (see [Winger 
et al., 2006]). The width of the towing masts 
was set up to simulate a 65 m full-scale door 

spread, producing a lower wing-end spread 
of 37.13 m. Once the trawl was in place, the 
water flow was stopped, and an aluminum 
plate (smooth, semi-rough, or rough seabed 
condition) was lowered and placed on top of 
the flume tank belt, aligned with the centre 
of the bosom section or with the centre of the 
port wing section (Figure 3). Alignment of the 
plates with the specific footgear sections was 
achieved by marking the plates and using the 
flume tank belt lines as a reference. Once the 
plate was safely in place, the water flow was 
increased to a typical towing speed used by 
the fishing industry (1.29 m s-1 full-scale; 0.38 
m s-1 model scale). The belt was then turned 
on, and the plate went under the bottom trawl. 
Once the plate was past the bottom trawl, the 
belt was stopped, the flow was reduced, the 
bottom trawl was lifted a few centimetres 

Figure 3: (1) Bottom trawl with aligned-rolling footgear during flume tank testing with the rough plate in the wing section. (2) Bottom trawl 
with aligned-rolling footgear during flume tank testing with the smooth plate in the bosom section. (3) Close-up view of the semi-rough and 
(4) rough seabed conditions.
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from the belt, and the belt was reversed back 
to the original position. The above process 
was repeated five times for each of the two 
footgears, in two footgear sections, using three 
seabed conditions, for a total of 12 trials of five 
replicates.

Seabed Contact Calculation
The traditional and aligned-rolling footgear 
were drawn in AutoCAD 2019 using 
measurement data collected during flume tank 
testing at 1.29 m s-1, 65 m door spread, with a 
flat moving belt. This provided information on 
the discs’ alignment with respect to the towing 
direction. Following the same procedure as 
Nguyen et al. [2015a] and Winger et al. [2018], 
based on a selected penetration pathway of 
the discs and bobbins, the total contact width 
of the footgear components was calculated 
and divided by total footgear width to obtain 
the percentage of total seabed contact by 
the traditional and aligned-rolling footgears. 
Previous experiments have documented seabed 
penetration depth of bottom trawl nets in sand, 
mud, and gravel during sea trials, ranging from 
0.01 to 10 cm (Table 1). As such, a range of 
modelled penetration depths were selected 
ranging from 1 to 13 cm with 3 cm intervals. 

Warp Load Measurement
Two 45.4 kg load cells (Model-No. 31, 
Honeywell, USA) were used to record 
port and starboard warp load (kgf). Data 
acquisition hardware logged the data at a 
frequency of 50 Hz. Before starting the 
experiment, load cell data inputs were 
calibrated through a series of weight 
measurements (4, 6, 8, 14, and 20 kg). 
Bosom, bunt wing, and wing footgear sections 
were video recorded with time stamps during 
testing to correlate load data to when the 
plate was in contact with the footgear section. 
Raw loads (kgf) were imported to MS Excel. 
Port and starboard load measurements during 
footgear contact with the plate were extracted, 
added to obtain the total load (total load = 
port + starboard), converted to full-scale 
values (t), and averaged for each replicate 
measurement of footgear:section:seabed 
combination, following a similar approach as 
Tsukrov et al. [2011].

Model warp load (kgf) was converted to full-
scale values (t), following force modelling law:

        (5) 

Table 1: Studies that measured seabed penetration depth (cm) at-sea of bottom trawls in mud, sand, and gravel.
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where λ = 10, ρm = 999.6 kg m-3 and ρf =
1026.0 kg m-3, a force scale of 1:1026.41 was 
obtained.

Statistical Analysis
A three-way ANOVA was conducted to 
determine the effects of footgear section, seabed 
condition, and footgear type on the full-scale 
warp load using rstatix package [Kassambara, 
2020] in statistical software R [R Core Team, 
2020] with statistical significance considered 
at an alpha of 0.05. Pairwise comparisons of 
the mean warp loads were then conducted 
using a Tukey’s honest significant difference 
test (Tukey HSD) using the stats package in 
statistical software R [R Core Team, 2020].

Three-way ANOVA assumptions were tested 
with residual analysis in R. Normality was 
assessed using Shapiro-Wilk’s normality test, 
and Levene’s test assessed homogeneity of 
variances. Residuals were normally distributed 
(p-value > 0.05) and there was homogeneity of 
variances (p-value > 0.05).

RESULTS

A total of 60 mean warp load values were 
obtained from the experiment; five for each 
footgear, section, and seabed combination. 

Observed mean warp loads ranged between 
12.55 t for the aligned-rolling footgear with 
smooth seabed in the wing section up to 
13.57 t for the traditional footgear with the 
rough seabed in the bosom section (Table 
2). Observed mean warp load reductions 
from traditional to aligned-rolling footgear 
ranged between 1.95% to 5.54% for semi-
rough condition in wing section and rough 
condition in bosom section, respectively (Table 
2). Video recordings provided qualitative 
evidence that the aligned-rolling footgear 
wheels were rotating and in an upright 
position. Furthermore, they were able to go 
over the rocks of the plates, and there was no 
entanglement or damage to the footgear or 
bottom trawl during testing.

Depending on the footgear type and section, 
the plates contacted different components 
when passing under the model trawl. For the 
traditional footgear, in bosom location (i.e., 
plate aligned with the centre of the trawl), the 
plates made contact with 26 rubber discs and 
two bobbins, while in the port wing location 
(i.e., plate aligned with the centre of the port 
wing section), the plates contacted seven 
bobbins. For the aligned-rolling footgear, 
the bosom location of the plates produced 
contact with 12 rubber discs and six aligned-

Table 2: Observed mean warp loads (t) and standard error of the mean (SEM) for the traditional and aligned-rolling footgears in smooth, semi-
rough, and rough seabed conditions in the bosom and wing section. Warp load reduction (t) from Tukey HSD and percentage reduction in warp 
load are shown.
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rolling wheels, while in the port wing location 
contacted two bobbins and five aligned-
rolling wheels.

The seabed contact for the traditional footgear 
ranged between 24.6% and 53.5% of the 
total footgear width, depending on the depth 
penetration modelled (Figure 4, Table 3). In 
contrast, the seabed contact for the aligned-
rolling footgear ranged between 9.4% and 
15.3%. Thus, the reduction in seabed contact 
for the aligned-rolling footgear ranged between 
61.8% and 71.5%, compared to the traditional 
footgear. AutoCAD drawings suggested 
that rubber disc angles with respect to the 

towing direction ranged between 3° to 25°, 
32° to 51°, and 54° to 58° for the traditional 
footgear bosom, first bunt wing, and second 
bunt wing sections, respectively. The aligned-
rolling footgear bosom section was identical 
to the traditional footgear bosom section; in 
consequence, the angles of the bosom rubber 
discs were the same (between 3° and 25°, with 
respect to the towing direction). The remainder 
of the rubber discs were aligned with the 
towing direction (0° angles).

Results from the ANOVA suggested a 
statistically significant three-way interaction 
between section, seabed condition, and 

Figure 4: Seabed contact comparison for traditional and aligned-rolling footgear at three modelled pathway depths (1, 7, and 13 cm). Left 
drawing shows seabed contact for the traditional footgear (grey = 24.6%) and aligned-rolling footgear (green = 9.4%) at a modelled pathway 
depth of 1 cm. Middle drawing shows seabed contact for the traditional footgear (grey = 46.5%) and aligned-rolling footgear (green = 13.6%) 
at a modelled pathway depth of 7 cm. Right drawing shows seabed contact for the traditional footgear (grey = 53.5%) and aligned-rolling 
footgear (green = 15.3%) at a modelled pathway depth of 13 cm. Lateral view of rubber discs at the different penetration depths are shown 
for each drawing.

Table 3: Seabed contact (m), seabed contact percentage (%) with respect to the total footgear width, and contact reduction (%) for the 
traditional and aligned-rolling footgear in modelled penetration depths of 1, 4, 7, 10, and 13 cm.
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Figure 5: Boxplot of warp load for the aligned-rolling and traditional footgears with smooth, semi-rough, and rough seabed conditions in the 
bosom and wing footgear sections. Colours represent smooth, semi-rough, and rough seabed conditions. The horizontal line in the middle of 
the boxes represents the median load. The lower and upper limit of the boxes shows the first and third quartile, respectively. Lower and upper 
whiskers represent scores outside the interquartile range. Significant three-way interaction statistics are shown in the upper section. Tukey’s 
HSD compact letter display on top of the boxes are showing which group means are significantly different from each other.

Table 4: Three-way ANOVA table for warp load (t) of aligned-rolling and traditional footgears for smooth, semi-rough, and rough seabed 
conditions in the bosom and wing sections.
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footgear (F(2, 48) = 8.966, p-value < 0.001) 
(Figure 5, Table 4). Tukey HSD post hoc 
test showed that the traditional footgear 
produced significantly higher mean warp 
loads for all seabed conditions in the bosom 
section, compared to the aligned-rolling 
footgear in that same section; warp load in 
traditional footgear was 0.26 t greater for 
the smooth plate ([0.003, 0.517] 95% C.I., 
p-value= 0.044), 0.68 t greater for the semi-
rough plate ([0.42, 0.93] 95% C.I., p-value 
< 0.001), and 0.74 t greater for the rough 
plate ([0.48, 1.00] 95% C.I., p-value < 0.001) 
(Figure 5, Supplemental Table 1 located 
after “References”). With the plates in wing 
section, the mean warp load was significantly 
higher for traditional footgear in smooth plate 
(difference = 0.38 t [0.12, 0.63] 95% C.I., 
p-value < 0.001) and rough seabed (difference 
= 0.30 t [0.05, 0.56] 95% C.I., p-value = 
0.008). For the semi-rough seabed, the mean 
warp load indicated a difference; however, 
the p-value was slightly over the alpha of 0.5 
(difference = 0.25 t [-0.003, 0.51] 95% C.I., 
p-value = 0.055) (Figure 5, Supplemental 
Table 1 located after “References”).

The traditional footgear experienced 
significantly higher warp loads in the bosom 
section for semi-rough and rough seabed 
conditions, compared to the same conditions 
for the wing section, with a statistically 
significant difference of 0.35 t [0.09, 0.61] 
95% C.I. (p-value = 0.001) and 0.52 t [0.26, 
0.78] 95% C.I. (p-value < 0.001), respectively. 
By comparison, the aligned-rolling footgear 
showed no significant difference in warp 
loads between bosom and wing sections, 
for either the semi-rough seabed (difference 
= 0.07 t [-0.19, 0.33] 95% C.I., p-value = 

0.998) or the rough seabed (difference = -0.08 
t [-0.34, 0.18] 95% C.I., p-value = 0.995) 
(Figure 5, Supplemental Table 1 located
after “References”).

DISCUSSION

This study documents a novel technique 
for comparing traditional and experimental 
footgears using engineering models and 
simulated seabed conditions in a flume tank. 
Footgears were qualitatively compared using 
direct observation and quantitatively assessed 
by measuring warp load during smooth, 
semi-rough, and rough seabed conditions. 
During qualitative observations, the dynamics 
of the traditional footgear model seemed 
to mimic very closely the dynamics of the 
full-scale traditional footgear observed 
at sea in Araya-Schmidt et al. [2021]; the 
bouncing of the footgear sections over the 
simulated seabed was realistic compared to 
the video collected on full-scale trawls at 
sea. The approach proved helpful for initial 
prototype validation before proceeding to 
expensive sea trials, supporting the fishing 
gear development cycle [Winger et al., 2006]. 
This same approach has been conducted for 
the development of novel trawl doors (e.g., 
[Sala et al., 2009]), netting (e.g., [Kebede and 
Winger, 2020]), and footgear (e.g., [Ball et 
al., 2003; Grimaldo et al., 2014]).
 
Results from our flume tank testing revealed 
that the aligned-rolling footgear substantially 
reduced the width of contact with the seabed 
compared to the traditional footgear. These 
results are encouraging, validating the simple 
concept that aligning footgear components 
with the towing direction can substantially 
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reduce seabed contact width. Winger et al. 
[2018] found similar results when flume tank 
testing an aligned (non-rolling) footgear, which 
reduced the predicted contact width with the 
seabed by 60% at a modelled penetration depth 
of 5.08 cm. Similarly, Nguyen et al. [2015a] 
found reductions in contact width, from 
traditional to experimental footgear, of 84% 
and 91% for 9-drop chain and 5-drop chain 
footgears, respectively (modelled penetration 
depth = 5.08 cm). While the previous example 
produced greater reductions in contact width 
than this study, it is important to note that there 
is a trade-off between the width of contact 
and the risk to damage the trawl; an exposed 
fishing line near a rough seabed with large 
rocks will likely lead to more trawl damage. 
Therefore, it is fundamental to consider the 
seabed type when developing a new footgear. 

Our results also revealed a significant reduction 
in warp load associated with the aligned-
rolling footgear compared to the traditional 
footgear. We attribute the increased drag of 
the traditional footgear to the larger number 
of rubber discs and bobbins producing greater 
sliding friction forces against the seabed, 
especially rubber discs in the bunt wing 
sections that are not aligned with the towing 
direction. By comparison, the aligned-rolling 
footgear exhibited less drag due to fewer 
rubber discs, fewer bobbins, and the aligned-
rolling wheels. The rolling nature of the wheels 
meant they experienced mainly rolling friction 
rather than sliding forces [Fridman, 1986]. 
The reduction in the cross-sectional area 
experienced by the aligned-rolling footgear 
presumably reduced hydrodynamic drag and 
could also have contributed to the overall 
reduction in warp tension [Fridman, 1986]. 

These results are consistent with Ball et al. 
[2003], in which a rollerball net (i.e., with 
aligned wheeled components) reduced towing 
force by 12% at-sea trials when compared 
with a traditional design. Previous flume 
tank experiments with flat moving belts have 
shown that drag is directly related to towing 
speed [Fiorentini et al., 2004; Queirolo et al., 
2009], which is not our case, where water flow 
remained constant, and seabed condition was 
changed during the experiment. However, it 
would be interesting to understand the effect 
on drag of several towing speeds using this 
simulated seabed approach.

Warp loads observed in this study may differ 
from full-scale warp loads at-sea due to many 
factors, such as seabed type, wind, current, 
and swell [Fiorentini et al., 2004; Sala et al., 
2009; Nguyen et al., 2015b]. However, with 
the addition of a simulated seabed in flume 
tank testing, model warp loads for the different 
seabed conditions provide an approximation 
of the expected differences in full-scale 
warp loads from smooth to rough conditions. 
Fiorentini et al. [2004] found less than 15% 
difference in warp load between model and 
full-scale trawl tests for the traditional trawl, 
but at the same time, large discrepancies for the 
experimental trawl were observed.

A key limitation of the reported study was the 
size of the plates. Ideally, the plates would 
have been large enough to cover the entire 
width of the trawl path, which would present 
a more realistic scenario and produce greater 
warp load differences between the footgears. 
Unfortunately, we needed to make trade-
offs concerning safety, ease of deployment, 
and potential damage to the facility. We also 
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recognize that the rocks in our study were 
permanently glued to the plates, whereas 
rocks on the seabed are commonly displaced 
by bottom trawls during full-scale fishing 
operations. For example, Freese et al. [1999] 
found that tire footgear, designed to bounce 
over the objects, displaced 19% of the boulders 
with a median size of 0.75 m in the trawl 
pathway. It would be of value to measure rock 
displacement by the aligned-rolling footgear. 
However, it is expected that traditional footgear 
would produce more rock and seabed material 
displacement when compared to aligned-rolling 
footgear. This was proven by Ball et al. [2003], 
where rollerball footgear reduced seabed debris 
material in the trawl net by 66% during sea 
trials. Experimental bottom fishing studies 
have shown that fishing gears that penetrate 
deeper in the sediment will increase depletion 
in abundance and produce a slower recovery 
to control conditions of the benthic community 
[Sciberras et al., 2018]. We hypothesize that 
full-scale aligned-rolling footgear, due to its 
aligned and rolling capacities, will reduce 
sliding forces and width of seabed contact, thus 
reducing penetration depth in the seabed during 
commercial operations.

An aligned rolling-footgear with reduced width 
of seabed contact, drag, and penetration depth 
would be beneficial for the fishing industry and 
ecosystem; it could potentially reduce seabed 
impact and fuel consumption, including CO2 
emissions. Not only fisheries managers are 
concerned about the consequences of fishing 
on the ecosystem, but also consumers prefer 
sustainable seafood certified by different 
organizations [Grieve et al., 2015; Kaiser et al., 
2016]. An aligned-rolling footgear technology 
could aid in the certification of a fishery as 

sustainable, reducing ecosystem impacts, 
improving acceptance of seafood products, and 
increasing profit of the fishing activity.

CONCLUSIONS

This study documents a novel technique 
for comparing traditional and experimental 
footgears using engineering models and 
simulated seabed conditions in a flume tank. 
We show that an innovative aligned-rolling 
footgear performed well over smooth, semi-
rough, and rough seabed conditions. The new 
footgear exhibited significantly lower warp 
loads compared to traditional footgear and is 
predicted to produce drastically lower contact 
with the seabed. Reduced drag was attributed 
to a reduction in contact points, alignment with 
towing direction, and rotation of the footgear 
components, replacing most of the sliding 
friction by rolling friction forces. 
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Supplemental Table 1: Tukey HSD comparisons with difference in warp load (t), lower and upper 95% Confidence Intervals (C.I.), and p-values. 
Significant p-values are in bold.
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