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Who should read this paper?
This research study is of benefit to fishers and researchers interested in theory 
and applications of ocean colour remote sensing, the marine ecosystem and 
pollution, water quality and eutrophication, and inland and coastal water 
quality. Fishers can use ocean colour data to identify potential fishing zones. 
Managers and researchers can use remote sensing derived ocean colour data 
for monitoring the negative impacts of harmful algal blooms and aquaculture. 
Moreover, such data is very efficient for ecosystem modelling.   

Why is it important?
Numerous machine learning (ML)-based methods have been proposed to 
estimate the ocean colour from remote sensing data that have yielded promising 
results. However, most of them were non-automatic or semi-automatic 
approaches and required in-situ samples. The framework presented here is 
designed to automatically estimate the level of ocean colour by applying an 
unsupervised ML classification method on a remote sensing image. The ocean 
colour map generated by the proposed method can be used as an input data 
for navigation and saving fuel in commercial shipping. The results can also 
be utilized in fish finding analyses to predict places where the possibility of 
fish is high. Additionally, the results can be helpful in coastal monitoring and 
measuring water quality. 
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ABSTRACT

Satellites allow users to observe ocean colour in a way that is not possible from a ship or the 
shore. Ocean colour depends on interactions of incident light with particles or substances in the 
water. These light interactions cause the ocean to be a variety of shades depending on what the 
water is composed of and how these materials change the reflections of the light. The ocean 
colour fluctuation can be caused by different compositions, such as the biomass of phytoplankton 
or zooplankton, and can lead to a change in ocean colour, for example, from normal clear blue 
into a variety of shades of green. Satellites take measurements that can be used to calculate ocean 
colour and concentrations of materials in the ocean. This study focused on ocean colour mapping 
using satellite images captured from the Mediterranean Sea. The Iterative Self Organizing Data 
Analysis Techniques Algorithm (ISODATA) unsupervised machine learning (ML) algorithm was 
employed to determine ocean colour. The produced map is a basic way of displaying ocean colour 
and is easy for users of any skill level to produce. Finally, it was observed that having more 
information about phytoplankton and applying it to the algorithm could improve the results.

KEYWORDS

Ocean colour; Remote sensing; Phytoplankton; ISODATA; Machine learning



104   The Journal of Ocean Technology, Vol. 16, No. 3, 2021 Copyright Journal of Ocean Technology 2021

INTRODUCTION

The ocean gets its colour from interactions 
of incident light with substances or particles 
that are in the water [Aiken, 1994; Blondeau-
Patissier, 2014; Groom et al., 2019]. 
Among these substances, phytoplanktons 
have a significant effect on the seawater 
colour changes through the process of 
its photosynthetic organisms that contain 
chlorophyll [Blondeau-Patissier, 2014]. This is 
mainly because green pigment – chlorophyll – 
transmits light spectrum at green wavelengths 
while absorbs it at blue and red wavelengths 
[Blondeau-Patissier, 2014; Groom et al., 
2019]. Consequently, the ocean colour will 
change from blue to green over regions with 
high phytoplankton densities [Aiken, 1994; 
Blondeau-Patissier, 2014; Groom et al., 2019]. 
Depending on the phytoplankton abundance and 
its species and weather conditions, the level of 
this discolouration is usually different [Aiken, 
1994]. Ocean colour data is typically obtained 
by measuring the light intensity at different 
wavelengths [Aiken, 1994; Blondeau-Patissier, 
2014; Groom et al., 2019; Abbas et al., 2019]. 
Such data can then be utilized to estimate 
material concentrations in surface ocean waters 
and determine the amount of biological activity 
[Cullen, 1982; Dore et al., 2008]. 

Ocean colour can be mainly estimated using 
direct or indirect measurements. Direct 
methods use field data derived from water 
sampling by vessels or a more permanent 
method, such as a land-based observation site 
[Joint and Groom, 2000]. These measurements 
are not ideal for monitoring the ocean colour 
in large spatio-temporal scales and typically 
include gaps and patchy observations [Abbas 

et al., 2019]. Moreover, they cannot collect 
observations fast enough to provide a global 
synoptic view of phytoplankton abundance 
[Joint and Groom, 2000]. However, indirect 
ocean colour measurements would come 
from data collected by airborne or spaceborne 
remote sensing systems [Abbas et al., 
2019]. Regarding ocean colour estimation, 
passive remote sensing systems provide 
valuable information [Amani et al., 2020] 
affordably. These satellite systems record 
the ocean colour by measuring the sunlight 
reflected from the water’s surface in different 
wavelengths spectrum. Data collected from 
passive satellites can also be used to determine 
the concentrations of particles, such as 
phytoplankton and dissolved materials in 
shallow ocean water [Abbas et al., 2019]. 

There are many passive spaceborne remote 
sensing systems, the data of which can be 
used to estimate ocean colour [Aiken, 1994; 
Blondeau-Patissier, 2014; Groom et al., 
2019]. In 1978, the National Aeronautics and 
Space Administration (NASA) launched the 
Nimbus-7 rocket equipped by the Coastal Zone 
Colour Scanner for ocean colour measurements 
[Hovis et al., 1980]. Before this mission, 
different methods were used to observe ocean 
colour, but this new mission specifically 
focused on the parameters that would affect the 
ocean colour [Hovis et al., 1980]. This satellite 
had four spectral bands primarily used for 
ocean colour [Hovis et al., 1980]. The Sea-
viewing Wide Field-of-view Sensor was also 
the first sensor dedicated to global ocean colour 
observation [Unninayar and Olsen, 2015]. This 
sensor had eight spectral bands, and its main 
objective was to determine the bio-optical 
reflectance characteristics of the upper region 
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of the ocean and understand the methods used 
for observed variations [Unninayar and Olsen, 
2015]. Additionally, the data derived from 
NASA’s Aqua Moderate Resolution Imaging 
Spectroradiometer (MODIS), launched in 
2002, provide a wide range of essential data 
in nine spectral bands (in the visible-NIR) 
for daily ocean colour estimation [Guo et al., 
2019]. The data acquired by the Ocean and 
Land Colour Imager carried by Sentinel 3 
satellite (launched in February 2016) with 21 
spectral bands from 400 to 1,020 nm is another 
valuable source for ocean colour determination 
[Nieke et al., 2012]. The ocean colour can also 
be achieved from higher-resolution optical 
satellites, such as Landsat 8 at 30 m and 
Sentinel 2 at 10-60 m [Blondeau-Patissier et 
al., 2014; Groom et al., 2019]. 

So far, many remote sensing and ML 
algorithms have been developed to reconstruct 
the ocean colour from remote sensing images. 
For example, Franz et al. [2014] measured 
the ocean colour from Landsat 8 images 
based on the remote sensing reflectance data 
acquired by SeaDAS. Moreover, Zheng and 
DiGiacomo [2017] introduced the generalized 
stacked-constraints model for measuring 
Chl-a from remote sensing images in the 
coastal regions. Abbas et al. [2019] also 
proposed the Ocean Colour 3M algorithm 
to estimate Chl-a from MODIS data in the 
coastal area. This method was based on the 
blue-green spectral band ratios and colour 
indices which are not suited for cloudy 
regions. Finally, Park et al. [2019] employed 
the random forest algorithm and extremely 
randomized tree method for the reconstruction 
of the ocean colour data in the Polar Regions 
using microwave-based remote sensing data. 

Although many research studies have been 
developed for ocean colour estimation from 
remote sensing data, a relatively low number 
of studies have utilized automatic ML 
algorithms to determine ocean colour. Thus, 
this study aims to automatically determine 
the ocean colour levels from Landsat 8 
satellite images using an unsupervised ML 
classification algorithm.

STUDY AREA AND DATA

Study Area
This paper focused on an area of the 
Mediterranean Sea which marked around 
the coordinates 40° 19’ 58.48” N and 25° 
34’ 29.68” E (Figure 1). The reason behind 
choosing this area was its clear water in 
which the plankton or other causes of ocean 
colour changes can be better distinguished 
from satellite images. Moreover, visual 
analysis of satellite images between 2013 
to 2020 in Google Earth confirms that the 
plankton concentrations in the study area were 
increased from 2018 up to now. 

Remote Sensing Data and Preprocessing
A multispectral optical image acquired by 
Landsat 8 (i.e., downloaded from the United 
States Geological Survey web site: https://
earthexplorer.usgs.gov/) was employed to 
determine ocean colour of the study area. The 
detail of the satellite data used in this study is 
listed in Table 1. Figure 2 also shows the true 
colour composite of the Landsat-8 image. 

Before any processing with optical satellite 
images, they should be radiometrically 
corrected with a reliable atmospheric 
correction. To this end, the FLAASH® 
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Figure 1: Locations of the study 
area and time-series satellite 
images from 2013-2020.
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Table 1: Characteristics of the Landsat 8 image used in this study.

Figure 2: Landsat 8 image 
acquired from the study 
area in 2019.
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atmospheric correction tool in the ENVI 
software package was employed to generate 
surface reflectance data by removing the effects 
of clouds and aerosols from the radiance image.

METHOD

Along with the main spectral bands of the 
Landsat 8 image (Table 1), we also used 
two widely used remote sensing indices of 
the normalized difference vegetation index 
(NDVI) [Jensen, 1996] (Equation 1) and 
normalized difference water index (NDWI) 
[Gao, 1996] (Equation 2) to improve the 
ocean colour classification. 

      (1)

     (2)

where ρRed, ρNIR, and ρSWIR are the reflectance 
values in the red, near infrared (NIR), and 
Shortwave Infrared (SWIR) spectral bands 
(i.e., bands 4, 5, and 6), respectively. 

Higher plankton levels produce different 
shades of blue and green in water bodies, 
which can easily be detected using a ML 
algorithm. There are two main groups of ML 
classification algorithms: supervised and 
unsupervised [Chaovalit and Zhou, 2005; 
Sathya and Abraham, 2013]. The supervised 
ML classifications are human-guided 
algorithms that assign a class label to input 
data based on a set of training data [Chaovalit 
and Zhou, 2005]. In contrast, unsupervised 
ML classifications automatically analyze and 

learn image pixels from unlabelled data and 
assign pixels to spectral clusters [Chaovalit 
and Zhou, 2005; Sathya and Abraham, 
2013]. In many remote sensing applications 
where a high level of automation and low-
cost computational expenses are required, 
unsupervised ML classification algorithms 
are of interest [Chaovalit and Zhou, 2005; 
Moghimi et al., 2017]. 

In this study, we employed the ISODATA 
[Ball and Hall, 1965] unsupervised algorithm 
for clustering the study area into different 
ocean colour levels due to its high efficacy 
and low computational complexity [Jensen, 
1996; Memarsadeghi et al., 2007]. The 
ISODATA is a developed version of k-means 
clustering in which splitting and merging of 
clusters are embedded [Navulur, 2006]. The 
ISODATA algorithm is also more flexible than 
the k-means algorithm because it allocates 
a dynamically different number of clusters. 
However, the number of clusters is fixed in 
the k-means clustering algorithm [Navulur, 
2006]. ISODATA initially computes the 
means of evenly distributed clusters as initial 
centroids within the feature space and then 
iteratively assigns the remaining pixels to 
the closest centroid using minimum distance 
techniques [Jensen, 1996; Memarsadeghi 
et al., 2007; Ma et al., 2020]. The new 
centroids are recalculated using the current 
cluster memberships and pixels re-clustered 
in each iteration [Jensen, 1996; Ma et al., 
2020]. The number of clusters is decreased/
increased during each iteration by merging 
similar clusters or splitting clusters with high 
standard deviations using actual thresholds 
[Jensen, 1996; Ma et al., 2020]. This process 
is terminated when a convergence criterion is 
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met or the maximum number of iterations is 
reached [Jensen, 1996; Ma et al., 2020].

The results of ISODATA do not represent 
ocean levels, and labels need to be allocated 
to them based on the spectral properties. To 
this end, the water body was first extracted 
by thresholding of NDWI with the Otsu 
algorithm [Otsu, 1979]. The mean of the 
NDVI for each cluster in the detected water 
body area was then considered as levels of 
planktons in the study area, where the cluster 
with the low mean value was assigned to a 
lower level and vice versa. 

RESULTS AND DISCUSSION

Even though the ISODATA algorithm can 
regulate the number of clusters, a set of 
parameters directly affect its results. Among 
these parameters, the distance and typical 
deviation thresholds are the most critical 
parameters because they control the ISODATA 
convergence by merging clusters and/or 
dividing clusters. Although default settings of 
the ISODATA parameters may produce a good 
performance, we employed the widely used 
grid search method for hyperparameter tuning. 
In this way, the Xie and Beni’s Index (XB) 
[Xie and Beni, 1991] was used as a parameter 
selection measure to search for optimum 
distance and typical deviation thresholds. The 
XB can be represented based on the ratio of the 

compactness and separability of clusters as 
following [Xie and Beni, 1991]: 

     (3)

  
where c is the number of clusters, the set of 
N observations is represented by the X ={Xj| 
j=1,2,...,N}, and υi is the i-th cluster centre. 
The lower XB value provides better clustering 
results in terms of the compactness and 
separability of clusters [Xie and Beni, 1991]. 
It is worth noting that the other parameters of 
the ISODATA algorithm were set as defaults 
(Table 2) when the distance and typical 
deviation thresholds were obtained by the grid 
search method. The results from the grid search 
are shown in Figure 3. 

As shown in Figure 3A, the variation of the 
distance and typical deviation thresholds 
significantly affected the ISODATA 
performance, indicating the high sensitivity 
to these threshold vaues. Therefore, a 
combination of these thresholds in the 
optimum space can satisfy the requirements of 
XB. Finally, the optimal thresholds meet in a 
minimum space with blue colour in the grid, 
where the optimal combination of the distance 
and typical deviation thresholds, respectively, 
were 0.5 and 0.8. Figure 3B indicated that the 
credible XB value was attained for 16 clusters 

Table 2: The tuning parameters of the ISODATA algorithm. 
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Figure 3: (A) The grid search for the distance and typical deviation thresholds in the ISODATA clustering based on the Xie and Beni’s Index (XB), 
and (B) the final cluster number resulted from the selected optimum thresholds.

A

B
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within range of [2,20] after the clustering 
process with optimum values obtained for the 
desired thresholds. 

As discussed, the ISODATA algorithm was 
applied to the input data (i.e., spectral bands 
of Landsat 8 as well as the NDVI and NDWI) 
by assigning the optimum distance and typical 
deviation thresholds and initial cluster range 
[Park et al., 2019; Moghimi et al., 2017]. When 
the unsupervised classification was applied, the 
map with 16 clusters was initially produced, 
including different ocean colour levels. To 
assign labels to each cluster, water bodies 
and clouds were first separated from land 
by thresholding the NDWI index. Then, by 
masking the land using the NDVI index, clouds 
with positive values in NDVI were separated 
from water bodies (i.e., negative values of 
NDVI). Finally, the rest of the clusters in the 
water body were combined based on the NDVI 
values and were assigned to five ocean colour 
levels. The final unsupervised classification is 
provided in Figure 4. 

As shown in Figure 4, five levels of ocean 
colours were determined for the study area 
using the ISODATA algorithm. Different ocean 
colour levels indicate various plankton levels. 
Level 1 is the areas with a lower concentration 
of plankton, while level 5 shows the highest 
concentrations of plankton. In fact, level 1 has 
the most apparent ocean colour, while level 5 
has the deepest green shade. Moreover, lighter 
green areas were found in level 1, while the 
deeper green shades were found in level 5. 

The ISODATA unsupervised classification 
algorithm is an easy but effective algorithm 
to produce ocean colour maps. Moreover, 

since unsupervised classifications do not 
require previous knowledge and in-situ data, it 
significantly reduces cost and human error in 
producing the results. 

With all advantages of unsupervised 
classification algorithms for ocean colour 
mapping, there are still multiple disadvantages. 
For example, unsupervised classification 
algorithms usually have lower accuracies 
compared to supervised machine learning 
methods. However, it should be noted 
supervised methods need in-situ data, which 
were not available in this study. 

CONCLUSION

The changes in ocean colour can reveal 
valuable information about the ocean and 
what is happening below its surface. Remote 
sensing methods are practical tools for 
ocean colour estimation. In this study, we 
presented a simple but efficient method to 
determine ocean colour levels using the 
ISODATA unsupervised algorithm. The 
technique used in this study demonstrates a 
simple approach to determine the levels of 
phytoplankton concentrations. Moreover, this 
is a straightforward approach for users with 
any skill level to analyze remote sensing data 
for different oceanographic applications. One 
of the limitations of this study was the lack 
of the ground truth. In future studies, more 
advanced ML algorithms along with suitable 
number of field data should be employed to 
determine the amount of ocean colour change 
and the reasons behind these changes. 
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Figure 4: Unsupervised classification of ocean colour in the Mediterranean Sea.
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