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Introduction
The amount of daily data collected by ocean 
observing systems is massive. The National 
Oceanic and Atmospheric Administration 
(NOAA) in the United States collects around 20 
terabytes of ocean data every day, and projects 
that its archives will store over 250 petabytes 
(PB) of ocean data by 2030. To put that in 
perspective, 200 PB is the estimated volume of 
all written material that has ever been printed. 
Ever. In addition to the sheer volume, ocean 
data comes in many different flavours covering 
the biological, chemical, and physical nature 
of the ocean. The instrument types needed 
to collect this information are numerous, 
including temperature loggers, oxygen sensors, 
fluorometers, turbidity monitors, acoustic 
Doppler current profilers, hydrophones, 
satellites, and many more. All of these data types 
present their own challenges for interpreting 
and understanding oceanography from surface 
to seafloor. Free, open-source software has been 
developed to assist in processing oceanographic 
data to elucidate spatial and temporal patterns 
in the ocean. However, this wealth of collected 
environmental data is only the tip of the iceberg.

Advances in camera and image capture 
technologies and infrastructure for long-
term deployments have led to a revolution 
in underwater data collection. From 
opportunistic time-lapse imagery to near 
real-time, high-definition video, our ability 
to collect high quality time-series of the 
seafloor has never been greater. However, this 
revolution has generated a looming question: 
who is going to watch it all? There is so much 
biological information contained in a single 
image – what species are present? How many 
species are there? What are they doing? What 
sort of habitat do they live in? How do they 
interact with their habitat? Furthermore, video 
and imagery data files are large, requiring 
massive storage capacity, which is energy 
intensive and expensive. 

As the saying goes, a picture is worth 
a thousand words. To give a real-world 
example, a seven-year oxygen sensor dataset 

collected at one observation/second takes 
up around 14 GB when saved as a series of 
comma-separated values. In contrast, a single 
five-minute, high-resolution video clip (fast 
becoming the industry standard in seafloor 
observing systems) is around 180 MB. Seven 
years of these videos collected hourly is about 
11,000 GB – or 785 times larger than the 
oxygen text files. How many words are those 
pictures worth?

The Need for Automated Video Analysis
Because each video or image contains 
so much information, it is incredibly 
time-consuming and labour intensive to 
process. Video and imagery collected 
from seafloor observatories are commonly 
used to identify the organisms present in a 
particular area. Marine plants and animals 
provide numerous ecosystem services from 
which humans benefit, such as producing 
food, filtering water, recycling nutrients, 
and producing the oxygen we breathe. 
Data collected on the diversity of marine 
life helps inform fisheries management, 
marine spatial planning, ecosystem health 
assessments, and fosters a connection with 
an otherwise unseen environment. Analyzing 
these data often requires expert knowledge 
or training to reliably identify the species of 
interest. Manual identification of organisms 
in video is time-consuming and represents a 
large bottleneck.

During co-author Command’s master’s 
degree studies at the Marine Institute of 
Memorial University of Newfoundland and 
Labrador, he had the opportunity to work with 
Ocean Networks Canada’s (ONC) seafloor 
observatories off the coast of British Columbia, 
and the Marine Institute’s newly installed 
cabled observatory in Holyrood, Newfoundland. 
At both sites, he studied temporal trends in the 
abundance of large seafloor organisms (Figure 
1). As an example, 2,228 videos (~389 GB of 
data) required three months of work to count 
a single species of sea urchin. To put that in 
perspective, ONC alone collects roughly 10 GB 
of underwater videos daily. 
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Advances in artificial intelligence are already 
making computer vision tasks faster and 
more efficient, and more accurate than ever. 
Pre-trained models, open access software and 
code, large libraries of labelled data, and large 
communities are working together to share 
research and push the cutting edge of artificial 
intelligence. From particle counts and 
object tracking, to automated classification 
of organisms using complex algorithms 
modelled on the human brain, combinations 
of machine learning and computer vision 
approaches are rapidly improving our ability 
to process video and imagery data. 

To Supervise or not to Supervise?
Two main categories of machine learning are 
used to automate image analysis – supervised 
and unsupervised learning – which lends 
themselves to different tasks. Supervised 
learning requires the model to be trained on a 
labelled dataset to learn, for example, which 
image belongs to which category (i.e., fish 
versus crab). Once the model has been trained, 
it is put to the test on a batch of previously 
unseen images to see how well it can recognize 
and correctly classify each image (i.e., how 
often does the model say fish = fish versus fish 

= crab). To accomplish this, an expert must 
first create the labelled dataset by assigning 
categories to pixels within a series of images 
collected from an observatory, for example. By 
putting in the time upfront, a researcher can 
train a supervised learning model to recognize 
species, and (hopefully) correctly classify 
unseen images into the correct categories. 

One major limitation of supervised learning 
is the time-consuming nature of creating 
the labelled dataset in the first place. The 
minimum amount of data needed for a 
high-performing model depends on many 
factors, but a general rule of thumb is to 
make sure the amount of training data is at 
least 10 times the number of features used 
for training. For underwater images, there 
are often dozens of features extracted from 
an image relating to size, shape, texture, and 
colour that can inform classification, so the 
minimum training data size can be on the 
order of 1,000-10,000 images. Additionally, 
the model can only identify images and 
make predictions for the labels (i.e., species) 
for which it was trained. Expanding the 
labelled dataset to include a new species and 
retraining the model is time-consuming. 

Figure 1: Images from Ocean Networks Canada’s cabled observatories co-author Command used for his master’s degree research. Left: The 
pink urchin Strongylocentrotus fragilis at the Barkley Canyon Upper Slope node of the NEPTUNE cabled observatory off Vancouver Island, 
British Columbia. Right: The northern sunstar, Solaster endeca, and the sea cucumber, most likely Psolus phantapus, at the Holyrood Bay 
Underwater Network in Conception Bay, Newfoundland and Labrador. Distance between the lasers in the left image is 10 cm. 
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Where supervised learning requires a labelled 
dataset to learn to assign labels, unsupervised 
learning looks for patterns in an unlabelled 
dataset and clusters similar items together 
based on some criteria. The major challenge 
with unsupervised learning is defining 
the criteria with which clusters should be 
separated. This may be done by extracting 
features from an image, such as colour, shape, 
and texture, and separating images into groups 
based on how (dis)similar they are. Automated 
feature extraction using computer vision 
software (i.e., opencv in C++ or Python) is 
becoming more accessible and more efficient, 
and unsupervised learning is particularly useful 
for pattern recognition tasks. 

There are several drawbacks with unsupervised 
learning for images. First, there is the 
computational complexity of working with 
very large, unlabelled datasets that are 
required to produce the desired outcome. 
Second, clustering algorithms are often 
difficult to interpret as there is sometimes 
limited or zero capacity to determine the 
criteria by which a particular clustering 
decision was made. Finally, clusters created 
with unsupervised learning may be inaccurate 

and often require extensive validation by 
experts or with available “ground truth” data. 
This is especially problematic when different 
species have very similar features, making 
it difficult to accurately distinguish between 
two different clusters of organisms that may 
have different ecological niches (i.e., consume 
different foods, are active at different times 
of day, etc.) but similar features in an image 
(Figure 2). This last point becomes especially 
challenging in underwater imagery, where 
variable lighting conditions may reduce 
image quality and make it more difficult to 
differentiate features among similar species. 

The Power of the (Artificial) Brain
Artificial neural networks (ANNs; Figure 
3) are one promising avenue of machine 
learning. These algorithms are based on the 
architecture of the human brain, and consist 
of layers of nodes (or neurons) connected by 
weighting functions (or synapses). An input 
is fed into the network, and passes through a 
series of weighting functions in each layer that 
determines if the information should be passed 
to the next layer, or stop. The output of each 
layer is determined by an activation function, 
which is influenced by the relative importance 

Figure 2: Images of black coral Leiopathes sp. taken from the ROV Holland I on the 2018 Tectonic Ocean Spreading at the Charlie-Gibbs 
Fracture Zone (TOSCA) expedition to the Charlie-Gibbs Fracture Zone on the Mid-Atlantic Ridge. Each of these images likely contains different 
species of the genus Leiopathes; however, distinguishing them in images may be impossible, requiring genetic techniques.
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of each input, and becomes the input for the 
next layer. The network continues in this way 
to identify features based on thresholding 
criteria at each layer and produces an output 
– either a classification probability or a value. 
The weights for each node are determined 
through training and backpropagation, where 
the result is fed backwards through the network 
to fine-tune the weights and improve the 
model – this process is repeated numerous 
times to adjust weights to produce the expected 
output. This is computationally costly and 
time-consuming, but with the help of hardware 
improvements over the past decade, has 
become more feasible and accessible.

Convolutional neural networks (CNNs; Figure 
4) are a subset of ANNs that are particularly 
suited to deriving features from images. 
CNNs make use of convolution and pooling, 
steps that feed into and train a layered ANN 
to extract information and classify images 
or objects in a video. The convolution step 
defines what the important features are in an 

image, such as edges. The pooling step shrinks 
the information in a given frame by taking 
averages or finding maxima of nearby pixels 
for a sample window of a certain size, which 
is applied across an entire frame – essentially 
keeping only the important features as defined 
by the convolution step. By combining 
these steps of finding important features and 
removing the noise, information is passed 
through the network; convolution and pooling 
steps are repeated multiple times to condense 
the information contained in a frame and 
flatten the input image to be fed into the ANN. 
Most, if not all, modern computer vision 
models incorporate CNNs.

The possible applications for this technology 
are virtually limitless given the amount of 
video data collected daily by ocean observing 
systems. These models have been applied to 
fish identification for fisheries management 
and stock assessment, classification of algae 
species from plankton tows to monitor 
phytoplankton blooms, and environmental 

Figure 3: Structure of an artificial neural network (ANN). Input variables are fed into the network at the input layer and a calculation is 
performed. A series of weights and mathematical functions are applied, and errors are calculated to determine if the output, or signal, of a layer 
continues to the next layer. The weights and decisions made are not directly observable from the input and output of the network, so these are 
referred to as “hidden layers.” The output layer takes as inputs the result of the hidden layers and calculates the output of the network.
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monitoring of marine energy projects such as 
wind or oil and gas platforms. These models 
are usually purpose-built but could be trained 
on similar datasets to address other problems 
from basic ecology to assessing responses to 
climate change.

This approach has been applied to the 
identification of pink urchins (Strongylocentrotus 
fragilis) from underwater video with 99% 
accuracy – the same species for which co-
author Command manually sifted through 
2,228 videos over the course of three 
months to count. This species lends itself 
well to computer vision tasks as it is easily 
distinguished from the background and other 
nearby organisms by its pink colour and 
unique morphology. 

Computer Vision Underwater
Computer vision software has been optimized 
for object tracking and identification of day-
to-day objects and situations, such as traffic 
and faces, to make light work of everyday 
situations (think self-driving cars and facial 
recognition). However, unique challenges 
exist for computer vision tasks in the marine 
environment. Variable or uneven lighting 
conditions due to high turbidity and particle 
loading create distorted or hazy images. 

Figure 4: Diagram of a convolutional neural network (CNN). Convolutions are a class of mathematical functions that describe the amount of 
overlap between two functions as one is shifted over the other (i.e., it “blends” the functions). CNNs use a series of convolution and pooling 
steps to filter and reduce the dimensions of an input matrix, and are particularly well suited to extracting features from images. The result of 
a CNN is often fed into the input layer of an artificial neural network (ANN) that provides the classification step.

Camera lenses can also become obscured 
through fouling by algae. Light attenuation 
with depth and the use of artificial lighting 
can also produce variable lighting conditions, 
with optical backscatter and colour fading 
making species identification more difficult. 
Addressing these challenges requires careful 
pre-processing of video and image data. Image 
processing pipelines to deal with each of these 
challenges are needed, but so far are only 
available on a case-by-case basis. 

One possible way to improve predictions 
for some species would be to incorporate 
known life-history traits and ecologies into 
machine learning models. Spatiotemporal 
data about diel vertical migration and burrow 
emergence, or seasonal spawning and 
migration patterns using video timestamps 
and GPS tracking of instruments could help 
a model learn which organisms are likely to 
be present at a given site at a given time, and 
improve accuracy. 

You Can Help
Machine learning models and CNNs can help 
information flow faster by automating some 
of the processing tasks, like object detection 
and classification, but only after training on 
a large dataset of labelled images. Labelling 
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these images is likely the most time-consuming 
part of the analysis, and cannot be automated 
without having a large, labelled dataset in the 
first place. How do we overcome this paradox 
of image analysis? This is where you come in. 

Over the course of your internet use, you 
most likely have come across Google’s image 
CAPTCHA. This usually shows up as the final 
“security check” before submitting an online 
form. For this check, Google shows you a grid 
of images and asks you to select only images 
with a stop sign or a crosswalk, or something 
similar. Have you ever wondered why these 
images are always related to traffic? Google is 
making use of perhaps the most efficient way 
to create a massive, labelled dataset – crowd 
sourcing annotations – to train its driverless 
car algorithms. 

A few similar applications exist for 
identifying species in underwater images, 
and studies have been done to compare the 
performance of experts, machine learning 
algorithms, and trained volunteers (i.e., “the 
crowd”). Ocean Networks Canada’s “Digital 
Fishers” is a crowd-sourced ocean science 
observation game where players label deepsea 
videos from ONC’s cabled observatories and 
remotely operated vehicle dives. The player 
progresses through the game with each level 
unlocking more information about organisms 
and asking for more complex annotations. 
These crowd-sourced annotations directly 
contribute to ONC’s database, creating a 
labelled dataset to train machine learning 
algorithms to automatically identify deepsea 
organisms from which scientists will be able 
to extract valuable information.

The fields of computer vision and artificial 
intelligence have the potential to unlock the 
bottleneck on underwater image and video 
processing and analysis. Given the current rate 
of ocean data collection, and the upcoming 
investment in ocean research brought by the 
United Nations Decade of Ocean Science for 
Sustainable Development, we certainly have 
our work cut out for us.  u
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