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Abstract 

Bone is a dynamic tissue that changes throughout life. This process is governed by 

osteocytes that exist in a lacuno-canalicular network (LCN), but is altered by several factors, 

including exercise, age, nutrition, and substance use. Artificial intelligence brought several 

enhancements to image segmentation for medical imaging. However, it has not been applied to 

study the LCN in human bone. This thesis implements novel deep learning methods on 

Synchrotron Radiation micro-Computed Tomography (SRµCT) datasets of human rib cortical 

bone microstructure to characterize osteoporosis-related features. 

 Ninety-seven human left sixth rib specimens (male: n = 60, female n = 37) were excised 

from cadavers with informed consent. The specimens were divided into age categories defined by 

decade. A 50-slice subset from six samples was segmented to train the U-Net++ deep learning 

model. It was compared to traditional and manual segmentation methods. Deep learning performed 

comparably to the traditional method, although it was more time-efficient. A follow-up model with 

the MA-Net architecture more accurately segmented the data. Comparing segmented 

microstructural parameters with opioid use, sex, and age revealed age as the most significant 

predictor of deteriorating bone health. The results did not provide strong evidence of drug-induced 

impacts on bone health as originally predicted, however, there are some indications hinting at a 

link between opioid use and bone health. A follow-up study implementing a rabbit model is 

underway to eliminate confounding factors present in a human population. However, this project 

successfully created a novel segmentation algorithm that performed more efficiently in SRµCT 

data segmentation.   
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General Summary 

Bone tissue is composed of cells that alter its structure throughout life to maintain its health and 

stability. These cells coordinate responses to various stimuli, and are impacted by exercise, age, 

nutrition, and substance use.  Traditional methods for analyzing bone health are time-consuming 

and cumbersome. However, innovations in computer science and artificial intelligence have 

facilitated new pathways for the automatic classification of structures for analysis. This thesis 

sought to utilize these new techniques to identify the impacts of opioid use on bone health. 

 

Left sixth rib specimens were collected from 97 cadaveric specimens with a history of opioid 

abuse. The specimens were imaged using high-resolution imaging modalities. The novel 

techniques performed significantly better than the current techniques. The results did not reveal an 

impact of opioid use on the bone cellular network. A rabbit model is underway to tease out 

additional variables that affect bones. 
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1. Introduction 
 

1.1 The Bone Hierarchical System 

The skeletal system is a highly dynamic organ that impacts other systems in the human body. 

Bones are continuously adapting to internal and external stimuli, including hormonal fluctuations 

and changing mechanical demands1–5. Further, bones are explicitly involved in maintaining 

calcium homeostasis, acting as a framework for muscle movement, and protecting internal 

organs6–9. These are but a few of the several important physiological processes that the skeletal 

system is involved in.   

 

Bone itself is hierarchical, with complex compositions at each structural level6,10 (Figure 1.1). At 

the surface level, bones can be separated into categories based on their shape which is important 

in the function of the skeletal elements. Further, all bones are comprised of cortical and trabecular 

bone layers which have distinct mechanical properties that contribute to the bone’s mechanical 

environment. In order to coordinate and maintain the skeletal system, three main cell types work 

in tight regulation: osteocytes, osteoblasts, and osteoclasts. The cells work to regulate the amount 

and quality of the neighboring mineralized bone matrix which is primarily composed of individual 

crystals and collagen fibrils. 
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Figure 1.1. The hierarchical structure of bone. The most macroscopic categorization of bone is 

into long bones (e.g., femoral, radius) and flat bones (e.g., frontal, temporal) followed by the types 

of tissues (cortical and trabecular). Further delving into bone structure, the types of cells can be 

distinguished (e.g., osteoblast, osteoclast, osteocytes, bone lining cells). At the nanoscale 

resolution, the individual components of bone can be appreciated, including collagen fibrils and 

hydroxyapatite. This figure was created in BioRender. 
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1.2 Bone Types 

There are five major types of bones; long, short, flat, irregular, and sesamoid bones. Long bone 

morphology can be separated into three distinct regions; epiphyses, metaphyses, and diaphysis11. 

The epiphysis is either end of the long bone and contains an articular surface that allows the bone 

to associate with the bones superior and inferior to it. The articular surface is covered in articular 

cartilage, just beneath the cartilage is subchondral bone. This layer of bone acts as a shock absorber 

during mechanical loading12. The metaphysis is funnel-shaped and growth occurs from this region. 

The final region is the diaphysis which is a shaft that connects the two metaphyses together.  

 

Short bones are cubed-shaped bones containing the carpals and tarsals of the hand and ankle. Flat 

bones are usually long and flat. They are not typically exposed to high mechanical loads, so they 

remain largely unaffected by exercise and other activities. Irregular bones do not fit neatly into 

any of the other categories. Vertebrae, os coxae, and scapulae are all examples of irregular bones. 

The os coxae and scapulae provide attachment sites for the limbs to facilitate movement. The final 

category, sesamoid bones, are a special categorization of bones where the skeletal element itself 

does not directly articulate with another bone13. The most well-known example is the patella or 

the ‘knee cap’. The patella is encased in the quadriceps femoris tendon and acts as a jib to reduce 

the force required by adding torque to the system14.   

 

1.3 Bone Tissue Types 

All bones are composed of two types of tissue: cortical and trabecular bone. The primary difference 

between these tissue types is the density of bone and consequently the amount of empty porous 
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space within them. Cortical (compact) bone is highly dense and has between 5-15% porosity. As 

a result, cortical bone is more resistant to mechanical regions than trabecular bone. As such, 

cortical bone is usually found as the outer layer of all bones providing a hard protective shell. This 

outer protective shell is referred to as the periosteal surface and is covered in soft tissue called the 

periosteum. Further, diaphyses of all long bones are primarily composed of cortical bone because 

of the concentration of mechanical strain to smaller regions. Due to its strong mechanical 

competency, cortical bone comprises 80% of the adult human skeleton15. 

 

Trabecular (spongy or cancellous) bone is the compromise in mechanical resistance and material 

requirement. It has a porosity closer to 75% making it lightweight, especially in comparison to 

cortical bone16–18. Another key characteristic are unique structures termed trabecular struts. They 

are similar to I beams in a house. They provide structural support to the skeletal system without 

using too much space or material. They are typically concentrated in epiphyses and metaphyses of 

long bones, although they line inside of most bones. Additionally, these struts are usually aligned 

in an isotropic direction that corresponds with their principal mechanical demand. To resist stress 

in any particular direction, a trabecular strut has to be aligned in that direction. Struts that are not 

aligned in that direction are anisotropic. The general measure of a regions of the alignment of these 

struts is the degree of anisotropy. 

 

1.4 Types of bone cells 

The cortical and trabecular tissues are governed and maintained by four main bone cells: 

osteoblasts, osteoclasts, osteocytes, and bone lining cells (BLC). Each play a role in the 
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maintenance of bone tissues. Osteoblasts form new bone by secreting osteoid, a matrix of type 1 

collagen, water, and non-collagenous proteins and then mineralize the tissue with hydroxyapatite, 

Ca5(PO4)3(OH)19, forming a complete packet of bone. Osteoclasts remove old packets of bone by 

sealing them up and using hydrochloric acid and cathepsin, among others,  to dissolve 

hydroxyapatite and the collagenous matrix, respectively. Osteocytes are the most ubiquitous cell 

in bone (95%) and work to modify their localized environment while coordinating the osteoblasts 

and osteoclasts in a larger scale bone remodeling process2,20,21. The BLCs have a similar function 

to osteocytes, however as their name implies, the line the inner and outer surfaces bones. The 

function of these cells and their roles in bone remodeling will be discussed further in section 1.7. 

Despite these bone cells all working together in the maintenance of bone tissues, they have 

different origins. 

 

Osteoblasts originate from mesenchymal stem cells located in bone marrow. These stem cells are 

encouraged to differentiate and mature into osteoblasts in response to complex coordination of 

pathways and gene expression (e.g., Wnt signaling, osterix). However, Runx2 is the master gene 

for osteoblast production, and it is highly conserved in the class Mammalia22. Evidence for this 

was provided in Runx2 knockout studies, as no osteoblasts were present in the knockout 

specimens23,24. The proliferation phase of mesenchymal stem cells is induced by the accumulation 

of Runx2 and ColIA120. During this phase, the cells accumulate alkaline phosphatase, denoting 

the transition from mesenchymal stem cells to pre-osteoblasts. The signal of a mature osteoblast 

is the accrual of osterix and collagen type 1. Osteocytes and bone lining cells are terminally 

differentiated osteoblasts after the remodeling in that region has finished. 
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Osteoclasts are derived from mononuclear hematopoietic stem cells. The maturation and 

differentiation of osteoclasts are primarily controlled by macrophage colony-stimulating factor and 

RANKL, which are produced by osteoblasts, osteocytes, and bone lining cells. The M-CSF 

promotes differentiation and inhibits apoptosis, while RANKL is essential for inducing osteoclast 

formation. All three prominent bone cells have critical regulatory controls over each other to 

control their expression. One of the most critical control mechanisms is the RANKL/OPG 

signaling pathway. 

 

Pre-osteoclasts and mature osteoclasts express the receptor activator for nuclear kappa-Β (RANK) 

receptor extracellularly. This receptor binds its ligand (RANKL) and induces osteoclast 

differentiation and formation (Figure 1.2). The exact downstream mechanism has yet to be 

elucidated. However, several pathways have been determined to be involved, including TNF 

receptor-associated factors (TRAF), inhibitors of NF-kappaβ kinase (IKK), c-Jun N-Terminal 

Kinase (JNK), c-myc, p38, and NFATc1. Osteoblasts, osteocytes, and bone lining cells express 

RANKL and act as positive regulators of osteoclasts. However, studies have shown that osteocytes 

are the primary source of RANKL25,26. A study by Xiong and colleagues (2011) discovered that 

selectively knocking out osteocyte expression of RANKL reduced osteoclast numbers by 70%, 

suggesting the importance of osteocyte and local expression of RANKL. Additionally, Osteoblasts 

and BLCs can release OPG. It is a decoy receptor that binds RANKL, preventing it from binding 

to RANK receptors and inhibiting osteoclast activity (Figure 1.2). The absence of OPG leads to 

uncontrolled osteoclast activity. This pathway is further modulated by other systems (e.g., 

hypothalamic-pituitary-gonadal axis), hormone messengers (e.g., parathyroid hormone, estradiol, 
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testosterone), and local factors (e.g., TNF-α, BMPs, IL-1, IL-6, IL-11). The hypothalamic-

pituitary-gonadal axis controls serum sex hormones that modifies osteoclast activity. 
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Figure 1.2. Opioids have two distinct direct and indirect ways of modulating osteoblast function. 

Normally, the hypothalamus releases gonadotropin releasing hormone (GnRH) that stimulates the 

pituitary to release follicle stimulating hormone and luteinizing hormone. Specifically, the 

lutenizing hormone increases the production of sex hormones (female – estradiol; male – 

testosterone). In males, aromatase converts testosterone to estradiol. Osteoblasts and osteocytes 

can control osteoclast production through the release of RANKL which binds to the osteoclast 

RANK receptor to induce maturation. Osteoblasts can further regulate this process through the 

release of decoy receptors (OPG) which bind RANKL and prevent it from binding to osteoclasts. 
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Estradiol regulates this pathway by increasing the release of OPG and decreasing the release of 

RANKL. When opioids are introduced, they reduce the release of GnRH resulting in decreased 

serum estradiol and increased osteoclast activity. Additionally, opioids bind directly to osteoblast 

inhibiting their bone-formation activities. This figure was created in BioRender and was adapted 

from Ming et al. 202027 and Seyfried et al 201228. 
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1.5 Bone extracellular matrix 

At the submicron level, hydroxyapatite comprises 65% of bone10. The rest of submicron bone is 

composed of collagen (25%) and water (10%)6,29. Hydroxyapatite is composed of calcium, 

phosphate, and hydroxyl groups and is primarily responsible for the strength and stiffness of 

bones30. However, hydroxyapatite is a brittle material unsuitable for the natural human condition 

alone. Collagen is a compliant material allowing deformation to occur before breaking under 

mechanical loads31. The balance of hydroxyapatite and collagen is delicate and contributes 

significantly to bone's mechanical properties. Previous studies have shown that highly mineralized 

bone is exceptionally stiff and brittle, whereas their less mineralized counterparts are more 

plastic31. They illustrate the delicate balance of bone composition and the importance of regulating 

it to achieve peak mechanical performance. Imbalance in this composition can lead to skeletal 

diseases.  

 

One example of a skeletal disease from the imbalance of hydroxyapatite collagen is rickets. This 

disease is typically present in children. It is caused by low vitamin D, calcium, and/or phosphorous 

leading to weak bones32. Calcium and phosphorous are critical components to hydroxyapatite 

which is needed for strength. Osteogenesis imperfecta is another example of a skeletal disease 

impacting the balance of collagen and hydroxyapatite. This is a genetic disorder that impacts the 

ability to make type 1 collagen resulting in deficient and not enough collagen33. This disease is 

often referred to as brittle bone disease because the bones fracture more easily. 
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1.6 The lacuno-canalicular network 

Throughout all types of bone is an extensive network that monitors bone health and coordinates 

an appropriate response to external stimuli. The network is called the lacuno-canalicular network 

(LCN) (Figure 1.3) and it connects the periosteal and endosteal surfaces together. As the name 

suggests, this network is composed of lacunae and canaliculi. Each osteocyte has 40-100 dendritic-

like projections extending into the fluid-filled channels (canaliculi) and connecting via gap 

junctions21,25. Osteocytes have shown the ability to alter the length of their projections 

retroactively. The fluid contains nourishment for the osteocytes, and the canaliculi act as channels 

for the osteocytes to communicate with each other via pressure changes and signaling molecules. 

In addition to osteocytes, bone lining cells (BLCs) that line the periosteal and endosteal surfaces 

of bone are proposed to coordinate a process of bone renewal in conjunction with osteocytes34.  
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Figure 1.3. Confocal laser scanning microscopy image stack of the lacuno-canalicular network. 

Osteocytes reside in the lacunae (blue) and are interconnected with each other via fluid-filled 

canaliculi (pink). The lacunae are ellipsoid in nature and their associated canaliculi are thin 

channels. This network is the current theory for osteocyte communication. This figure was used 

with permission from Dr. Andronowski. 
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1.7 Basic multicellular units and skeletal remodeling 

This extensive network can facilitate a highly coordinated process to repair bone in response to 

mechanical stressors or spontaneous remodeling events. Osteocytes act as mechanotransducers, 

translating the mechanical signals from dynamic changes in the canalicular fluid (e.g., microcrack) 

to chemical ones. Under significant mechanical loading, nitric oxide, adenosine triphosphate, and 

prostaglandins are released and are critical to signaling an appropriate response21. This process, 

typically referred to as the activation, resorption, and formation (ARF) sequence20 can be further 

expanded into the activation, resorption, reversal, formation, mineralization, and quiescence 

(ARRFMQ)35,36. The ARRFMQ sequence is primarily spearheaded by the basic multicellular unit 

(BMU), which is composed of osteoclasts and osteoblasts.  

 

Osteocytes and BLCs coordinate the remodeling process by recruiting BMUs in the activation 

phase through the release of osteopontin. Specifically, hematopoietic stem cells are recruited to 

the area where the expression of macrophage colony-stimulating factor (M-CSF) and receptor 

activator for nuclear factor kappa-B ligand (RANKL) initiate the differentiation and proliferation 

of osteoclasts25,26. Originally, apoptotic osteocytes were thought to be the primary signal, however, 

neighboring osteocytes have been shown to express a higher RANKL/OPG ratio comparatively21. 

The tip of the BMU, referred to as the cutting cone, is composed of osteoclasts resorbing old bone 

tissue away in the resorption phase. The osteoclasts form a seal around the bone using actin-rich 

podosomes, creating a ruffled area for increased surface contact, and they secrete cathepsin K and 

hydrochloric acid into the sealed space around the bone37,38. The acidic environment forces the 

dissolution of the old bone, and a large canal is produced. The edge of the canal is referred to as 

the reversal line (or cement line) and signifies the edge of the osteon. A typical resorptive event 
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will create a resorptive bay between 200-300 µm5. Additionally, studies have shown that 

osteoclasts engulf and remove the apoptotic osteocytes3,20,39. During the reversal phase, mono-

nuclear cells smooth out the canal in preparation for formation, specifically the deposition of the 

reversal (or cement) line.  

 

Osteoblasts adhere to the reversal line and deposit osteoid, a soft bone matrix absent of 

hydroxyapatite, during the formation phase. The osteoid is laid down in concentric layers, forming 

individual lamellae. The constriction of the canal in formation gives a traditional BMU a cone-

shaped appearance, often termed the osteoblastic closing cone36. At a certain point, closing ceases, 

leaving behind a Haversian canal permeated by blood vessels. Some osteoblasts become entombed 

when laying down the bone matrix. Osteoblasts secrete hydroxyapatite to mineralize the 

surrounding bone tissue in the mineralization phase5. This mineralization phase occurs in two 

stages: vesicular and fibrillar. Small vesicles (30 – 200 nm) are released from the osteoblasts into 

the surrounding osteoid during the vesicular phase. The osteoid immobilizes the vesicles, and 

during the fibrillar phase, the vesicles rupture, expelling the hydroxyapatite crystals20. The 

entrapped osteoblasts transition to immature osteocytes and begin extending projections to create 

communication channels with the surrounding osteocytes, thus forming the LCN. The decreased 

production of osteocalcin, collagen type 1, and alkaline phosphatase, along with the upregulation 

of dentin matrix protein and sclerostin, indicate a mature osteocyte20,21. The quiescence phase is 

marked by the transition from mature osteoblasts to mature osteocytes. However, not all 

osteoblasts transition to osteocytes. The rest either differentiate into BLCs or undergo apoptosis31. 

After approximately 120 days, the remodeling process is completed through one transverse cross-

section in human cortical bone5. In one year, about 10% of the skeleton has been remodeled9. 
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Inside the bone matrix (intracortical), BMUs tunnel through the tissue (Figure 1.4). Bone on the 

periosteal and endosteal surfaces is also remodeled in a highly coordinated manner, however, it 

does not involve tunneling. Osteoclasts dig trenches, removing old bone, and osteoblasts fill the 

trenches with new bone (Figure 1.5). Lining the endosteal and periosteal surfaces of the bone are 

BLCs that can physically resist osteoclast activity. Additionally, BLCs can release osteoprotegerin 

(OPG) and RANKL to inhibit or induce osteoclast activity. Dysregulation of the bone remodeling 

system can lead to an imbalance of resorption and formation. While this imbalance typically favors 

resorption, leading to pathological conditions such as osteoporosis25, there are cases where 

formation predominates over resorption, such as osteopetrosis20. Understanding the cells that 

contribute to bone microstructure, their origin and function, is integral in furthering the 

foundational knowledge of various bone-related pathologies. 
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Figure 1.4. A BMU remodeling intracortical bone. The rounded aspect of the BMU is composed 

of osteoclasts (blue) that resorb away old bone. Mononuclear cells (yellow) smooth out the edge 

of the resorption bay to prepare it for the osteoblasts (red) that infill bone lamellae concentrically. 

During this process, some osteoblasts become encased in the bone matrix and transition into 

osteocytes (purple). The central Haversian canal remains unfilled and supplies nutrients through 

blood vessels to the surrounding cells (osteocytes, osteoblasts, osteoclasts, and mononuclear cells). 

This figure was created in BioRender. 
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Figure 1.5. Periosteal bone remodeling differs from intracortical remodeling in the appearance of 

the BMU. Osteoclasts (blue) resorb a crater of existing bone that is replaced with new bone by the 

osteoblasts (red). This figure was created in BioRender. 
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The LCN is a comprehensive, interconnected osteocyte system that permeates all bone structures. 

Its coordination BMUs and skeletal remodeling is inextricably linked to normal bone function, and 

its impairment is related to debilitating disease processes. This makes understanding this network 

crucial in developing proper treatments for common diseases. Osteoporosis is one such disease 

that may be treated with an increased understanding of the LCN. Another important consideration 

is the additional factors that potentially contribute to disease progression. Factors impacting the 

LCN and overall bone quality are diet, exercise, alcohol, tobacco, opioids, etc. The crux of this 

research project is determining the impact opioids may have on cortical bone microstructure and 

its impairment of the LCN, leading to debilitating conditions such as osteoporosis.  

 

1.8 Osteoporosis 

One of the most debilitating bone diseases is osteoporosis, which afflicts 200 million people 

worldwide40. Canada is no exception, with two million people suffering from osteoporosis. 

Further, it is estimated that one in every three females and one in every five males will suffer from 

a fracture directly related to osteoporosis in their lifetime41. Hip fractures are exceptionally 

debilitating, as only 33% of older females can return to independent living, and 30% of patients 

require at-home nurses40. Annually, there are ~ 250,000 osteoporotic-related hip fractures with a 

20% mortality rate40. The preference towards older females is attributed to menopausal bone loss1. 

This disease affects millions daily and immensely impacts public health42. Its global effect is set 

to increase as the World Health Organization (WHO) predicts 2.1 billion people at least 60 years 

old within the next 35 years43. The most common treatment for osteoporosis is the administration 

of bisphosphonates, however, it can have adverse side effects40. 
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Osteoporosis is caused by the uncoupling of resorption and formation involved in routine bone 

maintenance and is influenced by many risk factors (e.g., diet, activity level, hormones, etc.). The 

criteria for diagnosing osteoporosis as defined by the WHO is the comparison of the bone mineral 

density (BMD) of a patient to the BMD of a young, healthy adult female with a difference of 2.5 

standard deviations being a positive diagnosis for osteoporosis44. Most measures rely on areal 

BMD provided by dual X-ray absorptiometry (DXA) and analysis of sites composed 

predominantly of trabecular bone (e.g., vertebrae). However, the human skeleton is almost entirely 

composed of cortical bone (~80%)9,45, and most appendicular bone loss is cortical. Cortical bone 

remains understudied even though it substantially deteriorates in the aging skeleton. This 

underpins a need for additional research studying cortical bone. Previously, this was due to 

imaging resolution's incapability of analyzing cortical bone microstructure46. Further, the 

diagnosis relies on the appearance of macroscopic structures. Still, the cellular system that controls 

the formation and resorption of bone lies at the microscopic level and may be necessary for 

increasing our foundational knowledge of the progression of this disease and possible targets for 

pharmaceutical intervention. 

 

1.9        Current and projected trends in opioid usage 

Today, opioid use is increasing in prevalence and affecting millions worldwide. The World Health 

Organization estimated 62 million opioid users (1.22%) globally and 11.79 million (3.63%) in 

North America, representing the largest continent for opioid use in 201947. In this report, opioids 

were the most concerning drug reported as they estimated that more than 70 percent of 18 million 

years of life lost were due to opioid use47. Further, they project an 11 percent increase in opioid 
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users by 2030, emphasizing that opioid use is not decreasing, especially in low and middle-income 

countries47. 

 

Fentanyl, an opiate, is considered the most commonly used intraoperative analgesic in North 

America, South America, Europe, and parts of Africa and Asia48–50. There were 9,327 opioid-

related hospitalizations in Canada in 201751. One in eight people were prescribed opioids in 2018 

alone52. Prescription opioid use is currently in decline in terms of starting/continuing prescriptions, 

dosages, and duration of opioid treatment52. However, it is still considered the gold standard in 

managing chronic pain53. This general trend is encouraging; however, it is not indicative of the 

entire narrative. Illicit opioids are increasingly available because they are cheap to manufacture 

and highly addictive54, and people are turning to this resource to supplement their opioid addiction. 

The consequences can be dire with seventy-eight percent of opioid-related deaths attributed to 

illicit fentanyl use in 201955. Death statistics related to opioid use fluctuated in recent years until 

2020 in Canada. There were 6,638 deaths, a 180% increase in deaths from 2019. A further increase 

in deaths was reported in 2021, with 7,902 deaths related to the narcotic56. This staggering increase 

is potentially linked to the global COVID-19 pandemic. The Public Health Agency of Canada 

(PHAC) used mathematical modeling to predict the number of opioid-related deaths in each 

quarter of 2022. In their model, there are two variables: 1) healthcare prevention of deaths (30 

percent) and 2) availability of fentanyl. If healthcare interventions continue to prevent the same 

number of deaths (30%), mortality will continue to rise regardless of the fentanyl supply changing. 

If healthcare prevents more deaths (50%) and the fentanyl supply increases, opioid-related deaths 

will plateau and remain consistent with previous years. If healthcare prevents more deaths (50%) 

and the fentanyl supply remains the same, opioid-related deaths will decrease57. 
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The global COVID-19 pandemic, combined with government measures to curb the spread of 

infection, resulted in increased stress, isolation, and boredom. These factors have impacted 

people's choices and consumption of narcotics. Prescription drug shortages caused people to turn 

to illicit substances (e.g., heroin and fentanyl) as a supplement. There was a global increase in 

pharmaceutical opioid consumption of 25 percent, and the United States reported an increase in 

the use of heroin and fentanyl47. Additionally, opioids are consistently ranked as one of the main 

reasons for receiving addiction treatment, especially in Europe, North America, and Asia. 

Treatment for opioid addiction accounted for 57 percent of all European drug treatments47. The 

opioid epidemic has only worsened in the wake of the COVID-19 pandemic.  

 

Opioids have widespread use, legally and illegally, in Canada and similarly have widespread health 

consequences. Side effects of opioids include dizziness, cognitive impairment, nausea, vomiting, 

respiratory depression, and overdose. Illicit opioid use and needle-sharing have caused the spread 

of HIV and hepatitis, unintended but often deadly consequences of opioid use47. Opioids can 

indirectly impact the skeletal system by altering an individual's mental faculties with sedative 

effects, increasing the risk of falls and fall-related fractures. Additionally, opioids can impact the 

skeletal system by altering osteoblast and osteoclast production. They can further dysregulate 

normal bone maintenance by affecting societal conditions (e.g., malnutrition) and contributing to 

disease and organ failure development and progression.  
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1.10 Opioids' influence on bone health 

Opioids have negative direct and indirect effects on skeletal health. The direct impact on the 

skeletal system is through opioid receptors on osteoblasts. Osteoblasts canonically have three 

opiate receptors: mu, kappa, and delta. The more potent opiates (e.g., morphine, heroin, fentanyl) 

are all mu receptor agonists. Research on the effects of Kappa opioid receptors (KOR) and delta 

opioid receptor (DOR) agonists remains largely vacant58. Mu receptor agonists correspond with 

decreased serum calcium and estradiol and increased osteocalcin and alkaline phosphatase59. 

Increased osteocalcin and alkaline phosphatase are indicators of increased bone turnover, which 

are commonly elevated in diseases like osteoporosis. Boshra (2011) found an increase in 

osteopontin, a hematopoietic stem cell recruiter, corresponding to increased osteoclast activity and 

bone turnover. In vitro studies also indicate reduced osteoblast activity59,60. A new opioid receptor, 

the opioid growth factor receptor (OGFR), has recently been discovered and described60,61. Thakur 

et al. (2016) and Tanaka et al. (2019) show evidence of increased OGFR expression over the 

canonical opioid receptors. Blockage of OGFR resulted in decreased osteoblast proliferation but, 

interestingly, did not significantly affect differentiation60. Additionally, Thakur and colleagues 

(2016) described increased OGFR expression during differentiation. Naloxone, an opioid 

antagonist, only affects mesenchymal stem cells or osteoblasts if an opioid growth factor receptor 

is present, underlining the importance of OGFR61.  

 

Opioids, especially mu receptor agonists, influence the hypothalamic-pituitary-gonadal (HPG) and 

hypothalamic-pituitary-adrenal (HPA) axes (Figure 1.2). They prevent the release of 

gonadotropin-releasing hormone from the hypothalamus, which reduces follicle-stimulating 

hormone and luteinizing hormone secretion from the pituitary gland. Ultimately, the production of 
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estradiol and testosterone is severely reduced. As described in Figure 1.2 estradiol is crucial in 

modulating the OPG/RANKL/RANK pathway and further inhibits interleukin-1, 6 and tumor 

necrosis factor-α preventing osteoclastic activity59. The reduction in serum sex steroids is more 

pronounced in males. Coluzzi et al. (2015) reported androgen levels in males reached near 

castration levels. Opioid-induced androgen deficiency (OPIAD) affects many males prescribed an 

opioid to manage chronic pain53. This is an important phenomenon because testosterone is 

converted to estradiol in males via the enzyme, aromatase. Reduction in serum estradiol leads to 

increase bone turnover.  

 

Long-term opioid use has also been linked to malnutrition. In a study analyzing the nutritional 

patterns of patients with long-term opioid usage, the authors found a substantial decrease in 

average caloric consumption from normal individuals as determined by the US Department of 

Health and Human Services62,63. Additionally, they noted decreased intake of vitamins D and E 

and magnesium62,63. Opioids can disrupt microbial diversity, cholesterol/bile metabolism, and the 

mucosal barrier, reducing intestinal immunity against gut pathogens64 and leading to increased 

pathogenesis and sepsis65. They further dysregulate intestinal health by decreasing gut motility, 

contributing to constipation in patients63,66. Reduced intestinal calcium absorption is compensated 

for by bone resorption. This increased resorption leads to more fragile and brittle bones. 

 

Additionally, opioids are proposed to reduce bone health in patients partially due to their sedative 

effects67. Dizziness is a side effect associated with the use of opioids, as they directly impair the 

central nervous system. The dizziness increases the risk of falls, ultimately contributing to fall-

related fractures. Altogether, the direct and indirect consequences of prolonged opioid use cause a 
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maelstrom of complications to the skeletal system. Several studies have demonstrated the use of 

opioids causes prolonged recovery times after orthopedic surgeries53,68.  

 

1.11 Quantification of cortical bone morphology 

For centuries, bone researchers communicated using terminology unknown and confusing to those 

outside the field. In 1987, Parfitt proposed a unified list of relevant bone nomenclature (Table 1.1) 

to standardize the field and make it more accessible. This widely accepted nomenclature has been 

modified and incorporated into imaging analysis programs since its inception69,70. BoneJ, a plugin 

for ImageJ71, uses the ASBMR nomenclature when extracting data related to cross-sectional 

geometry. Similarly, the imaging software CTAn v. 1.18.8.0 (Bruker, Billlerica, United States of 

America) can characterize and quantify cross-sectional parameters of whole bone or cortical and 

trabecular bone from laboratory µCT. Cooper and colleagues (2003) converted CTAn’s parameters 

for trabecular bone to apply to SRµCT images of cortical bone for analysis of vascular pores and 

osteocyte lacunae (Table 1.2).  
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Table 1.1. Standard nomenclature for bone, bone cells, and morphological parameters 
Abbreviation Meaning 
Ct Cortical bone 
BS Bone surface 
BV Bone volume 
TV Tissue volume 
Ca Canal/canalicula/canlicular 
Po Pore/porous/porosity 
Lc Lacuna/lacunar 
Dm Diameter 
Dn Density 
Th Thickness 
BMU Basic multicellular unit 
Ca.V Canal volume 
Ca.Ar Canal area 
Ct.Th Cortical thickness 
BV/TV Bone volume (%) 
BS/TV Bone surface (mm^2/mm^3) 
Ct.Po Cortical porosity 
Ct.Th Cortical thickness 
*Modified from Parfitt et al. 1987 and Dempster et al. 2013. 

 

Table 1.2. CTAn terminology for µCT of trabecular bone and its conversion for SRµCT cortical 
bone 
CTAn term Translation for pores Translation for lacunae 
Bone volume Pore volume Lacunar volume 
Bone surface Pore surface Lacunar surface 
Bone volume fraction Cortical Porosity - 
Bone surface-to-tissue volume Pore surface-to-tissue volume Lacunar surface to tissue volume 
Trabecular thickness Pore diameter Lacunar diameter 
Trabecular separation Pore separation Lacunar separation 
*Modified from Cooper et al. 2003. 
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1.12 Synchrotron Radiation Micro-Computed Tomography 

Desktop micro-computed tomography (µCT) machines lack the ability to acquire 3D datasets at 

1.5 µm, the resolution required to reveal osteocyte lacunae. Thus, researchers are turning to 

synchrotron radiation micro-computed tomography (SRµCT). Synchrotron imaging facilities are 

particle accelerators that produce brilliant braking radiation (bremsstrahlung) to achieve imaging 

resolutions and subsequent 3D datasets that are otherwise impossible without further tradeoffs 

(e.g., increased imaging time). Heated tungsten oxide serves as the electron producer for the system 

(Figure 1.6). The released electrons travel to the linear accelerator, which uses radio waves to 

energize the electrons to move near the speed of light72. Afterward, they enter the booster ring, 

where microwave fields raise the electrons' energy from 250 MeV to 2,900 MeV73. Finally, the 

electrons enter the storage ring surrounded by magnets that force the electrons to move around the 

ring74 and the ring is kept at -270˚C to reduce excess power loss. This causes the electrons to give 

off energy accepted by the beamlines for imaging. Electron density in the ring gradually declines 

over time; thus, new electrons are constantly introduced to maintain the current. The synchrotron 

facility creates monochromatic light, allowing for higher spatial resolution than the polychromatic 

light of laboratory micro-computed tomography72. 
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Figure 1.6. A diagram of a typical third generation synchrotron facility. The electron gun 

encourages the release of electrons that are accelerated near the speed of light by the linear 

accelerator. Afterwards, the electrons move into the booster ring. A radiofrequency cavity inside 

the booster ring energizes the electrons to a desired energy level. This varies based on the facility, 

but usually ranges from 1 – 8 GeV. The electrons than travel to the storage ring where they reside 

for hours. Charged electrons want to travel in a straight line so large magnets are used to force the 

electrons around the ring. During that bend, energy is released by the electrons, this is referred to 

as synchrotron radiation. The radiation is accepted by the beamlines where they are modified to 

the researchers’ experimental parameters. Specialized magnets exist in the booster ring that modify 

the electrons to produce higher intensity light. This figure was created in BioRender. 
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The Canadian Light Source (CLS) facility was first opened on December 9, 200375, but the 

BioMedical and Imaging Therapy Bend Magnet (BMIT-BM) beamline would not open until 

201176. The purpose of the BMIT beamline is research in medicine, agriculture, and other 

biomedical sciences, with specific focus areas on respiratory, bone, tissue, and scaffold imaging76–

79. SRµCT has the unprecedented ability to non-destructively visualize osteocytes in 3D owing to 

its resolution capabilities of 0.5-10µm72,80 and contributed to the revolutionary discovery of 

osteocyte function in bone21. Furthermore, SRµCT has frequently been utilized to study lacunar 

and pore morphometry in connection with normal bone maintenance, aging, and disease2,81–87 

making this system an appropriate imaging technique for the analysis of lacunae and pores. At 

CLS, 22 beamlines produce different spectral ranges for various imaging modalities. This 

experiment necessitated using the BMIT-BM for SRµCT. Further, the BM beamline has phase 

contrast potential.  

 

 

1.13 Deep learning 

Artificial intelligence is (AI) a broad categorization for the science of implementing computers to 

perform actions without human input. One subsection of AI is machine learning which implements 

computer algorithms and models to complete tasks. A novel subsection of machine learning has 

emerged as deep learning. The general principle of deep learning is to teach a computer to apply 

algorithms adaptively to complete tasks. Theoretically, this should allow deep learning to complete 

tasks too complicated for traditional machine learning algorithms. To accomplish this deep 

learning uses a multi-layered approach with at least three layers88. Each layer consists of several 

‘neurons’ that together form a neural network. The design was based on biological neurons that 

learn to complete distinct tasks (Figure 1.7). A convolutional neural network is a type of neural 
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network that was developed to enhance image visualization and segmentation. A convolutional 

translation is applied at each layer and then passed down to the next layer. The convolution 

converts a cluster of neighboring pixels into a single number. This occurs until the computer has 

scanned the entire image. The resulting group of numbers is passed down to subsequent layers for 

further convolutions. Typically, the earlier layers focus on simple pattern recognition of shapes 

and edges. Deeper layers focus on more complex patterns using more sophisticated filters for 

complete processes such as full animal detection. 
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Figure 1.7. A typical example of a multilayered neural network. This is the most basic neural 

network architecture where each layer is composed of artificial neurons that learn from the image 

and pass their output to the next layer. Each layer learns different distinct features starting with 

basic structures (e.g., circles) to more complicated structures (e.g., hand). This figure was created 

in BioRender. 
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Several different architectures exist for convolutional neural networks, such as U-Net and MA-

Net that apply different algorithms to learn and segment images. U-Net was groundbreaking by 

introducing a U-shaped architecture89. This architecture has been extensively tested on multiple 

biological specimens, achieving exceptional segmentation results on all tests89,90. Since its 

inception, the U-Net model architecture has been modified to improve its image segmentation 

capabilities in new models: wide U-Net and U-Net++.  

 

U-Net++ has several advantages over its predecessor, including skip connections with dense 

convolutional layers and deep supervision91. The original U-Net architecture has a simple encoder 

backbone followed by a decoder sub-network89. The skip connections with heavy convolutional 

layers allow for improved recovery of fine details. Before each skip layer, a concatenation layer 

combines the previous convolutional layers with a corresponding up-sampled output91. The layer 

receives a concatenated input, applies a convolutional transformation to the data, and outputs it to 

the next91. The deep supervision, introduced in U-Net++, has two modes: accuracy and speed. The 

accurate mode averages all outputs of all segmentations, and the fast mode is only from 

segmentation branches to determine speed gain and model pruning. These improvements have 

significantly advanced image segmentation in medicine over its predecessors. 

 

Deep learning has been applied extensively to the medical field, including automated image 

analysis of bone92–95. A common task in the medical field is assessing bone age from 

radiographs92,93,96,97. Previous manual techniques apply the use of Greulich and Pyle or the more 

accurate Tanner Whitehouse atlases, which are time-intensive determinations. Thus, deep learning 
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has been applied to circumvent the time-intensive procedure with a more efficient alternative. 

Generally, deep learning models have been demonstrated to outperform radiology residents and 

less experienced practitioners, and results are comparable to radiologists with more than ten years 

of experience92,93,96,97. In one study, the deep learning model outperformed all reviewers when 

grouped, but excluding the pediatric endocrinologist significantly improved the reviewers’ 

results93. The authors concluded that this is possibly a result of real-time bone age assessment, 

further supporting deep learning given the time constraints of working in an outpatient clinic93. 

The use of deep learning has been further applied to the identification and labeling of bone tumors 

on radiographs. In both studies, the models outperformed radiology residents and junior 

radiologists but were comparable to experienced senior radiologists98,99. 

 

1.14 Research Objectives: 
 

The objectives of this research are to 1) apply deep learning architectures to SRµCT data from 

human rib bone specimens with known demographics, 2) compare it to the existing standard for 

high-resolution bone data segmentation, and 3) characterize potential effects of opioid use on bone 

microstructure. Hypotheses include: 

1. U-Net++ architecture will more accurately segment SRµCT data of bone than the current 

standards (CTAn, Bruker) for data processing, and  

2. Prolonged opioid exposure will dysregulate the bone remodeling process represented by 

increased cortical porosity, pore convergence, and pore diameter and reductions in 

osteocyte lacunar number, density, volume, and diameter. 
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2. Materials and Methods 

To test the hypothesis of opioid-induced dysregulation of the bone remodeling process, 97 left-

sixth midshaft human rib samples (n = 97) were procured from organ donors through a contract 

with a non-profit organ procurement organization (OPO) (Lifebanc, Cleveland, United States of 

America) that obtained informed consent from the donors or their next-of-kin. The research was 

approved by Newfoundland and Labrador Health Research Ethics Board (Protocol Reference 

#2020.308, Appendix 7.1).  The study cohort comprised nearly 38% female (37) and 62% male 

(60) donors. Similarly, there was almost an even distribution among opioid abuse (47) and controls 

(50). The cases were divided into opioid users and controls based on their reported health history 

(Table 2.1). Individuals were selected between the ages of 20 and 60 to avoid modeling events in 

younger growing individuals and age-associated degenerative changes in bone microstructure and 

hormonal changes resulting from menopause in older individuals. The OPO collected a detailed 

donor profile, including serology and toxicology reports, organ charts, past medical history, and a 

detailed questionnaire from the individual before death or the next of kin.  
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Table 2.1. Opioid use history for the experimental cohort. 
Sample # Sex Age Experimental Group Notes Concerning Opioid Use 

6 F 21 Control - 
1 F 28 Control - 
4 F 29 Control - 
92 F 32 Control - 
49 F 35 Control - 
97 F 35 Control - 
86 F 36 Control - 
31 F 38 Control - 
18 F 39 Control - 
19 F 39 Control - 
72 F 40 Control - 
93 F 43 Control - 
17 F 44 Control - 
47 F 47 Control - 
87 F 48 Control - 
25 F 49 Control - 
27 F 50 Control - 
65 F 53 Control - 
69 F 54 Control - 
12 F 55 Control - 
71 F 55 Control - 
39 F 56 Control - 
24 F 58 Control - 
85 M 20 Control - 
60 M 22 Control - 
38 M 23 Control - 
50 M 23 Control - 
41 M 24 Control - 
59 M 26 Control - 
48 M 29 Control - 
10 M 32 Control - 
15 M 34 Control - 
67 M 36 Control - 
68 M 36 Control - 
36 M 37 Control - 
22 M 38 Control - 
45 M 39 Control - 
7 M 40 Control - 
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77 M 41 Control - 
43 M 43 Control - 
57 M 45 Control - 
21 M 46 Control - 
32 M 46 Control - 
52 M 48 Control - 
81 M 50 Control - 
23 M 51 Control - 
58 M 53 Control - 
80 M 53 Control - 
28 M 55 Control - 
35 M 56 Control - 
83 F 25 Opioid user OD, heroin abuse 
30 F 26 Opioid user OD, prior ODs 

29 F 28 Opioid user OD, heroin, cocaine, benzos, 
marijuana abuse ~13 years 

46 F 28 Opioid user Polysubstance abuse 
42 F 29 Opioid user Opioid use disorder 
62 F 32 Opioid user Heroin use (7 years) 
75 F 33 Opioid user Drug abuse 

66 F 39 Opioid user Polysubstance use (fentanyl) for 2 
years 

89 F 40 Opioid user Heroin and fentanyl abuse 
13 F 43 Opioid user Opioid use disorder 
76 F 44 Opioid user Crack cocaine, heroin abuse 

11 F 49 Opioid user Street opioid use for past year 
(suicide by benzos) 

88 F 50 Opioid user Heroin, fentanyl abuse 
37 F 52 Opioid user ODs 
56 M 23 Opioid user Heroin use (5 years) 

26 M 25 Opioid user Cocaine, meth, suspected synthetic 
opioid, THC use; IV opioid use  

94 M 25 Opioid user Heroin use for a while 

79 M 27 Opioid user Heroin (10 years), fentanyl (3-4 
years) 

95 M 28 Opioid user Polysubstance abuse 
3 M 29 Opioid user OD (Tox + Fentanyl) 

2 M 32 Opioid user Positive toxicology of opiates, 
THC, amphetamines 

5 M 32 Opioid user OD, daily heroin use for 12 years) 
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40 M 35 Opioid user Heroin use (5 years) 
70 M 38 Opioid user Heroin abuse 
84 M 38 Opioid user Drug abuse 
96 M 38 Opioid user Fentanyl for 2 years 
61 M 39 Opioid user OD (Heroin + fentanyl) 
33 M 41 Opioid user OD, 10-year history of heroin use 
54 M 42 Opioid user OD 
73 M 43 Opioid user Heroin use (3 years) 

16 M 45 Opioid user Methamphetamine use on and off 
for 30 years 

55 M 45 Opioid user Polysubstance use for 1 year 

44 M 46 Opioid user Heroin and fentanyl use for 8-15 
years 

14 M 47 Opioid user Nothing listed 
34 M 47 Opioid user Polysubstance abuse 
90 M 47 Opioid user Drug OD (meth for 2 years) 

78 M 48 Opioid user Polysubstance abuse (heroin, 
meth, crack cocaine) 

53 M 49 Opioid user Opioid use for 2 years 
64 M 50 Opioid user Smoked methamphetamines daily 
9 M 51 Opioid user OD 
8 M 52 Opioid user History of polysubstance abuse 
74 M 53 Opioid user Polysubstance abuse 
91 M 54 Opioid user Heroin (~17-20 years) 
51 M 56 Opioid user Fentanyl use for 5 years 
63 M 57 Opioid user Opioid abuse (Heroin for 25 years) 
20 M 58 Opioid user Past cocaine use 
82 M 58 Opioid user Heroin, fentanyl abuse 

* The thickest bar indicates a split between opioid user and control. The two thicker bars indicate 

a split between male and female within the opioid use and control groups. The ‘-‘ indicates no 

reported opioid use. 
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The ideal sampling site was the left sixth rib to eliminate the influence of mechanical loading on 

bone microstructural parameters. Mechanical load can vary amongst individuals and may be an 

indirect consequence of substance use. For example, a person with a more active lifestyle will have 

different bone microstructure in the femoral cortex compared to someone with a more sedentary 

lifestyle regardless of opioid use history. Additionally, during the 1960s left sixth ribs were 

routinely used for bone biopsy. This excess of sample material allows for comparisons to be made 

from the project. These two essential factors make the left sixth rib a suitable candidate for this 

study. 

 

2.1 Sample Procurement 

Following the OPO’s collection of vital organs for transport, Dr. Andronowski procured three-to-

five-inch segments of the mid-shaft left sixth rib in the operating room for research purposes. 

Samples were wrapped in saline-soaked gauze, transported on ice, and subsequently stored in a 

negative -20˚C freezer until further processing. 

 

2.2 Sample Preparation 

In order to prepare the samples for imaging, the samples had to be stripped of soft tissue and fixed. 

The frozen samples were thawed in the refrigerator for 24 hours to accomplish this. All soft tissues 

were removed from the periosteal and endosteal borders following a protocol outlined by 

Crowder100. The samples were stripped of soft tissue by pulling on the soft tissues with a pair of 

tweezers. The soft tissue that remained adhered to the periosteal surface sample was removed with 

gentle scraping using a dental scraper (Catalog No. MERKQ0130JK, Antonki, Shenzhen, the 

People’s Republic of China). The Endosteal (inner) surface of the bone was flushed using a water 
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flosser (ASIN: B0CC95VN4L, INSMART, Hanoi, The Socialist Republic of Viet Nam). 

Afterwards, the samples were fixed in 70% denatured ethanol to preserve the tissue101. 

 

The field of view of our experimental setup is approximately four millimeters by five millimeters, 

which is far smaller than the procured samples. An Andronowski et al. (2020) initiative created a 

standardized protocol to create samples that are two millimeters by five millimeters to fit the field 

of view and account for some lateral movement of the sample during rotation102. Some 

modifications have been made to the original procedure. Briefly, a five-millimeter section was 

removed using an Isomet 1000 (Buelher, Catalog No. 11-2180, Lake Bluff, United States of 

America) equipped with a diamond-tipped wafering blade. The rib was gently secured to a chuck 

and lowered onto the blade, spinning at 100 rotations per minute. A small section of bone was 

initially removed to produce a smooth surface for mounting. Then the five-millimeter section was 

procured by adjusting the blade 5.5 millimeters to account for the thickness of the blade. At this 

stage, the sample has the appropriate height but is still too wide for the experimental setup. To 

acquire a sample of the proper width, the sample is adhered to an aluminum tin via thermal epoxy 

resin (CrystalBond™, Electron Microscopy Sciences, Catalog No. 50400-01, Hatfield, United 

States of America) and cored with a three-millimeter diamond-tipped bench drill press (Proxxon, 

Catalog No. 38-128, Hickory, United States of America). The sample is submerged in deionized 

water to prevent heat-associated damage to the sample. The resulting product is a cylindrical core 

with a two-millimeter diameter and a five-millimeter height. The cores are stored in a labeled 

micro-centrifuge tube for safe storage and transportation.  
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2.3 Imaging 

The cores were securely transported to the CLS for imaging experiments (University of 

Saskatchewan, Saskatoon, Saskatchewan). The cores were secured to the mounting station in the 

BMIT-BM beamline. Before imaging, the samples were rotated to check for lateral movement. 

Significant lateral movement can cause issues during subsequent reconstruction and image 

analysis. Three thousand image projections were acquired for each sample with a 180-degree 

rotation and a 0.06-step increment. An additional 100 flat and 50 dark images were taken to correct 

for noise of the detector and X-rays in the images during reconstruction for a total of 3,150 

projections. Flat images are images acquired with the shutter open and x-rays passing through, but 

the sample has been removed, so no x-rays are passing through the sample and on to the detector. 

Dark images are taken with the shutter closed to acquire a dark profile. The highly sensitive camera 

cannot be removed and cleaned every time dust collects on it or the scintillator. The flats and dark 

images correct for these ‘impurities’ to improve data quality. The energy set for the experiments, 

pixel size, and sample detector distance were 20 keV, 1.5 µm, and 0.05 m, respectively. 

 

2.4 Image Processing 

Tofu (Karlsruhe Institute of Technology, Karlsruhe, Germany)103,104, software developed by 

beamline scientists at CLS and colleagues, was the platform used to reconstruct the images with a 

Fourier transform to produce 3-dimensional image stacks while reducing noise and artifacts within 

the sample. A set of images typically includes cortical and trabecular bone, and outside space. 

Cortical bone was the target of analysis. Thus, the sample was cropped using ImageJ v. 1.53t 

(National Institute of Health, Bethesda, United States of America)71, excluding trabecular bone 
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and empty space. All samples were cropped, striking a balance between the largest area and the 

number of slices included.  

 

2.5 Image Segmentation 

The image segmentation aimed to isolate osteocyte lacunae and porous structures for 

morphological analysis. The nomenclature was standardized according to the American Society of 

Bone Mineral Research (ASBMR)69,70. Several morphological parameters extracted for statistical 

comparison include lacunar and pore diameter, lacunar and pore thickness, lacunar and pore 

volume, and lacunar and pore density (Table 2.2). 

 
Table 2.2. CTAn laboratory µCT parameters converted to SRµCT parameters 

CTAn ASBMR term Translation for pores Translation for lacunae 
Bone volume Pore volume Lacunar volume 
Bone surface Pore surface Lacunar surface 

Bone volume fraction Pore volume percentage Lacunar volume percentage 
Bone surface-to-tissue volume Pore surface to volume Lacunar surface to volume 

Trabecular thickness Pore diameter Lacunar diameter 
Trabecular separation Pore separation Lacunar separation 
Structural model index Pore circularity Lacunar circularity 
Degree of anisotropy Pore degree of anisotropy Lacunar Degree of Anisotropy 
Number of objects Number of pores Number of lacunae 

 
2.6 Deep Learning 
 
All SRµCT data sets were imported into ORS Dragonfly software for segmentation and deep-

learning training. Using Dragonfly’s extensive region of interest (ROI) tools, pores and lacunae 

were isolated into separate ROIs. All slices were manually checked, ensuring all humanly 

identifiable objects, such as pores and lacunae, were correctly labelled. All issues were manually 

corrected before training the deep learning model. Each sample dataset consisted of 57 slices with 
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six total datasets. Two deep learning models were trained: one for porosity (as it includes resorptive 

areas) and the other for the lacunae. Each model has two classes: the segmentation target (pore or 

lacunae) and the background. This process has yet to be applied to bone specimens. As such, all 

available architectures in ORS Dragonfly were tested. The efficacy of these models was compared 

using their best reported ORSDiceLoss (Appendix 7.2). The lower the reported DiceLoss values, 

the more overlap between the ground truths and the trained model and less unlabeled neighboring 

voxels. DiceLoss was the chosen metric because it is not affected by imbalanced classes and is 

generally recommended for medical imaging90. The architecture that was determined to provide 

the best segmentation results was UNet++91.  

 

The training parameters (e.g., data augmentation, stride ratio, patch size) were extensively tested 

to develop the most accurate model (Appendix 7.2). The model was trained for two days using 

the six pore training datasets. A different model with identical parameters was trained for two days 

using the six lacunar datasets. These fully operational models were applied to all 97 samples. Each 

sample underwent morphological operations (e.g., closing) to correct the few mistakes in the 

model’s segmentation output. All samples were manually checked and approved by the user. All 

ROIs produced by the deep learning model and corrected by the user are binarized and exported. 

The samples are imported CTAn (Bruker, Billerica, United States of America) for data extraction 

(Appendix 7.3).  

 

2.7 Statistical analysis 

All statistics were computed in SPSS (v. 28.0.1.0, IBM, Armonk, United States of America). 

Descriptive statistics were calculated for each dependent variable. The distribution of data points 
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was tested for normality using Shapiro-Wilk tests. Homogeneity of variances were calculated 

using Levene’s tests. If a variable violated the Shapiro-Wilk or Levene’s test, it was log-

transformed with a base of 10. The data were also tested for outliers and extreme outliers. A data 

point was considered an extreme outlier if it was outside the first and third quartile ± three * the 

interquartile range. A normal outlier follows the same equation except substituting the three for a 

1.5. Samples that were repeatedly classified as outliers were considered for removal. Kruskal-

Wallis nonparametric tests were used to compare the effects of age, sex, and experimental group 

on lacunar and pore morphometric variables (Figure 2.1). Multivariate linear regressions were 

conducted to determine the relationship between age and sex and age and experimental group.  
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Figure 2.1. The statistical decision tree employed to choose the correct tests. The chosen route 

(green arrows) saw the employment of Shapiro-Wilk’s normality test, Levene’s homogeneity 

test, and Kruskal-Wallis nonparametric test. This image was created in BioRender. 
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The deep learning model was compared to CTAn and manual segmentations with their respective 

pore and lacunar measurements. Additionally, the DICE similarity coefficient and true positive 

rate (TPR) were calculated using manual segmentation and utilized to compare the deep learning 

U-Net++ model and CTAn approach. DICE is a comparison between the manual outcome and the 

segmentation being compared. The score is between 0 and 1, with a closer value to one 

representing a segmentation more similar to the manual outcome. TPR is comparable to DICE in 

its measurement scoring, however, it measures the number of pixels correctly identified as a group. 

These measurements were selected as they are commonly used to evaluate the effectiveness of a 

model90,94,99,105. 
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3. Results 

A breakdown of the sample demographics and potential categorical groups can be viewed in Table 

3.1. The samples were categorized into opioid use or control based on their previous reported 

history of opioid use which is presented in Table 2.1. Descriptives for the bone morphometric 

parameters were extracted in CTAn from dragonfly-trained SRµCT data and are located in Table 

3.2. The data were tested for normality and homogeneity. When split by age and sex, eight 

variables failed the Shapiro-Wilks normality tests, and two failed Levene’s test for homogeneity 

of variances. The trend persisted even after log-transforming the data (Table 3.3). Similarly, when 

split into groups based on sex, age, and opioid use, the data failed to meet assumptions of normality 

and homogeneity (Table 3.4). Since no normality and homogeneity could be established in the 

data, a Kruskal-Wallis nonparametric test was used to analyze the differences between the groups 

with a Tukey-Kramer post hoc analysis. This test does not make assumptions based on the dataset’s 

normality. Additionally, linear regressions were used to determine if there was a linear relationship 

between each variable and age. The linear regressions were further split by sex to establish sex-

specific trends in aging. To analyze the efficaciousness of our deep learning model an analysis of 

variance (ANOVA) and a student’s t-test were employed. Data were extracted in CTAn and ORS 

Dragonfly to avoid any potential computer software biases. For the normality, homogeneity, 

Kruskal-Wallis, ANOVA, and student t-tests, a p-value less than 0.05 was considered statistically 

significant. 
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Table 3.1. The specific breakdown of all samples crossed by age, sex, and experimental group. 

    Experimental Group 

Age Sex Control Opioid user 

20-29 
Male 7 6 

Female 3 5 

30-39 
Male 7 7 

Female 7 3 

40-49 
Male 7 11 

Female 6 4 

50-59 
Male 6 9 

Female 7 2 

Totals 50 47 
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Table 3.2. Descriptive statistics for lacunar and pore morphometric variables 

Variable Mean Skewness Kurtosis 
% Lacunar Volume 0.637 0.88 3.035 

% Lacunar Surface Area 0.769 1.101 1.993 
Lacunar Surface : Volume 1.035 -0.038 14.135 
Lacunar Surface Density 4.329 -1.1492 5.156 

Lacunar Diameter 2280.416 4.716 20.778 
Lacunar Separation 38296.331 4.719 20.8 

Lacunar Structural Model Index 2.603 -1.457 4.356 
Lacunar Degree of Anisotropy 0.727 0.303 3.288 

Lacunar Number Density 5651.031 6.456 42.695 
% Pore Volume 5.805 1.86 6.665 

% Pore Surface Area 48.042 0.642 0.794 
Pore Surface : Volume 0.119 2.391 11.057 
Pore Surface Density 0.006 1.317 3.628 

Pore Diameter 67.048 0.972 1.585 
Pore Separation 271.975 0.729 0.273 

Pore Structural Model Index 2.649 0.387 0.005 
Pore Degree of Anisotropy 0.864 -1.608 3.800 

Pore Number Density 22.516 1.742 2.493 
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Table 3.3. Normality and homogeneity tests when split by sex and age after log transformation 

Homogeneity Test 
(Sex_Age) 

% Pore 
Volume 

% Pore 
Surface 

Area  

Pore Surface 
Volume Ratio 

Pore Surface 
Density 

Pore 
Diameter 

Pore 
Separation SMI DA Number 

Density 

Levene 0.053 0.143 0.445 0.19 0.475 0.911 0.95 0.198 0.129 

Normality Tests 
(Sex_Age) 

% Pore 
Volume 

% Pore 
Surface 

Area  

Pore Surface 
Volume Ratio 

Pore Surface 
Density 

Pore 
Diameter 

Pore 
Separation SMI DA Number 

Density 

Shapiro-Wilk (20F) 0.578 0.205 0.263 0.164 0.807 0.094 0.98 0.029 0.454 
Shapiro-Wilk 

(20M) 0.001 0.0001 0.187 0.0002 0.366 0.463 0.92 0.0001 0.836 

Shapiro-Wilk (30F) 0.866 0.834 0.14 0.032 0.256 0.325 0.79 0.05 0.65 
Shapiro-Wilk 

(30M) 0.522 0.126 0.195 0.957 0.538 0.971 0.41 0.314 0.438 

Shapiro-Wilk (40F) 0.608 0.138 0.804 0.546 0.817 0.526 0.94 0.023 0.471 
Shapiro-Wilk 

(40M) 0.701 0.6 0.466 0.075 0.167 0.293 0.38 0.002 0.816 

Shapiro-Wilk (50F) 0.746 0.785 0.043 0.729 0.146 0.245 0.54 0.01 0.176 
Shapiro-Wilk 

(50M) 0.585 0.192 0.613 0.915 0.37 0.151 0.99 0.758 0.668 

Homogeneity Test 
(Sex_Age) 

% 
Lacunar 
Volume 

% 
Lacuna

r 
Surface 

Area  

Lacunar 
Surface 

Volume Ratio 

Lacunar 
Surface Density 

Lacunar 
Diameter 

Lacunar 
Separation SMI DA Number 

Density 

Levene 0.235 0.124 0.01 0.34 0.706 0.001 0.57 0.221 0.004 

Normality Tests 
(Sex_Age) 

% 
Lacunar 
Volume 

% 
Lacuna

r 
Surface 

Area  

Lacunar 
Surface 

Volume Ratio 

Lacunar 
Surface Density 

Lacunar 
Diameter 

Lacunar 
Separation SMI DA Number 

Density 

Shapiro-Wilk (20F) 0.004 0.828 0.351 0.051 0.269 0.768 0.55 0.045 0.256 
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Shapiro-Wilk 
(20M) 0.768 1.71E-

15 0.000011 0.891 0.347 0.000004 0 0.723 0.000045 

Shapiro-Wilk (30F) 0.606 0.015 0.276 0.782 0.142 0.367 0.52 0.236 0.46 
Shapiro-Wilk 

(30M) 0.445 0.973 0.000062 0.061 0.004 0.005 0.98 0.21 0.000022 

Shapiro-Wilk (40F) 0.165 0.898 0.963 0.25 0.791 0.948 0.79 0.591 0.217 
Shapiro-Wilk 

(40M) 0.086 0.944 0.000001 0.025 0.000009 0.001 0.66 0.152 0.000006 

Shapiro-Wilk (50F) 0.983 0.00008
9 0.000217 0.149 0.059 0.000013 0.37 0.413 0.000211 

Shapiro-Wilk 
(50M) 0.604 0.281 0.000028 0.981 0.000424 0.115 0 0.068 0.000035 

*  Bold and italics represent statistical significance. SMI – structural model index and DA – degree of anisotropy. Essentially SMI is a 
measure of roundness of an object and DA is a measure of orientation of structures along a particular axis. 
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Table 3.4. Log-transformed normality and homogeneity tests when split by age, sex, and opioid use. 

Normality 
Tests 

% Pore 
Volume 

% Pore 
Surface 

Area  

Pore Surface 
Volume Ratio 

Pore Surface 
Density 

Pore 
Diameter 

Pore 
Separation SMI DA Number 

Density 

Shapiro-Wilk 
(20Fc) 0.764 0.841 0.502 0.211 0.966 0.436 0.6 0.02 0.902 

Shapiro-Wilk 
(20Fd) 0.577 0.057 0.206 0.149 0.607 0.163 0.84 0.09 0.238 

Shapiro-Wilk 
(20Mc) 0.135 0.982 0.603 0.372 0.39 0.71 0.9 0 0.957 

Shapiro-Wilk 
(20Md) 0.046 0.006 0.379 0.021 0.291 0.096 0.55 0.13 0.297 

Shapiro-Wilk 
(30Fc) 0.954 0.905 0.42 0.073 0.482 0.606 0.8 0.58 0.882 

Shapiro-Wilk 
(30Fd) 0.583 0.862 0.852 0.463 0.739 0.148 0.71 0.24 0.635 

Shapiro-Wilk 
(30Mc) 0.741 0.314 0.53 0.168 0.628 0.465 0.82 0.4 0.622 
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Shapiro-Wilk 
(30Md) 0.328 0.013 0.294 0.76 0.702 0.464 0.63 0.14 0.481 

Shapiro-Wilk 
(40Fc) 0.387 0.047 0.797 0.976 0.651 0.694 0.65 0.02 0.653 

Shapiro-Wilk 
(40Fd) 0.714 0.877 0.478 0.955 0.807 0.575 0.22 0.78 0.819 

Shapiro-Wilk 
(40Mc) 0.566 0.014 0.954 0.001 0.92 0.533 0.27 0.75 0.963 

Shapiro-Wilk 
(40Md) 0.047 0.695 0.285 0.722 0.163 0.721 0.36 0 0.781 

Shapiro-Wilk 
(50Fc) 0.489 0.815 0.216 0.779 0.341 0.414 0.15 0.01 0.169 

Shapiro-Wilk 
(50Fd) - - - - - - - - - 

Shapiro-Wilk 
(50Mc) 0.02 0.285 0.86 0.724 0.881 0.72 0.66 0.88 0.926 

Shapiro-Wilk 
(50Md) 0.608 0.076 0.494 0.681 0.593 0.145 0.75 0.94 0.922 
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Normality 
Tests 

% 
Lacunar 
Volume 

% 
Lacunar 
Surface 

Area  

Lacunar 
Surface 

Volume Ratio 

Lacunar 
Surface 
Density 

Lacunar 
Diameter 

Lacunar 
Separation SMI DA Number 

Density 

Shapiro-Wilk 
(20Fc) 0.025 0.559 0.793 0.701 0.529 0.803 0.59 0.37 0.461 

Shapiro-Wilk 
(20Fd) 0.001 0.991 0.549 0.153 0.416 0.482 0.03 0.11 0.263 

Shapiro-Wilk 
(20Mc) 0.931 0.338 0.828 0.904 0.495 0.678 0.73 0.81 1 

Shapiro-Wilk 
(20Md) 0.937 0.01 0.005 0.787 0.635 0.000971 0.04 0.42 0.029 

Shapiro-Wilk 
(30Fc) 0.793 0.003 0.125 0.896 0.142 0.523 0.38 0.28 0.654 

Shapiro-Wilk 
(30Fd) 0.594 0.427 - 0.632 0.918 0.475 0.19 0.47 0.864 

Shapiro-Wilk 
(30Mc) 0.301 0.548 0.003 0.025 0.031 0.019 0.92 0.36 0.00007 
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Shapiro-Wilk 
(30Md) 0.569 0.471 0.85 0.644 0.748 0.745 0.71 0.72 0.654 

Shapiro-Wilk 
(40Fc) 0.349 0.617 0.951 0.148 0.941 0.989 0.74 0.51 0.177 

Shapiro-Wilk 
(40Fd) 0.1 0.493 0.886 0.345 0.244 0.282 0.26 0.06 0.875 

Shapiro-Wilk 
(40Mc) 0.647 0.474 0.885 0.23 0.994 0.984 0.87 0.73 0.736 

Shapiro-Wilk 
(40Md) 0.287 0.932 0.000004   0.012                                                                                                                                                                                                                                                                                                                               0.000044 0.000413 0.66 0 0.000002 

Shapiro-Wilk 
(50Fc) 0.684 0.001 0.000058 0.512 0.182 0.000021 0.21 0.25 0.00003 

Shapiro-Wilk 
(50Fd) - - - - - - - - - 

Shapiro-Wilk 
(50Mc) 0.973 0.024 0.004 0.982 0.051 0.245 0.49 0.8 0.014 

Shapiro-Wilk 
(50Md) 0.245 0.791 0.446 0.34 0.983 0.932 0 0.27 0.058 
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* F – Female, M – Male, c – control, d – opioid use. Bold and italics represent the significance.
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3.1 Kruskal-Wallis nonparametric tests revealed significant differences between age, sex, 

and opioid use.  

Kruskal-Wallis nonparametric tests was split by opioid use, sex, and age, and revealed a significant 

difference in percent lacunar volume (p = 0.016), percent lacunar surface area (p = 0.029), lacunar 

surface density (p = 0.029), and lacunar number density (p = 0.047) (Table 3.5). The remaining 

lacunar variables and all pore variables were not significant (Table 3.6). Tukey-Kramer post hoc 

tests indicate that most comparisons are significantly different due to age (Figure 3.1) or the 

interaction of sex and age. The percentage of lacunar surface area decreased with opioid use 

between males in their 20s (p = 0.029) and their 50s (p = 0.046) (Table 3.5). Further, males in 

their 30s differed in lacunar surface area to volume ratio (p = 0.018) and lacunar diameter (p = 

0.025) from opioid use. Lacunar degree of anisotropy significantly differed among males in their 

20s (p = 0.032) and females in their 50s (p = 0.034) due to opioid use (Figures 3.2, 3.3). Degree 

of anisotropy for lacunae is the level of which the lacunae are not organized along the same 

direction. Groups with a higher degree of anisotropy are likely to be stronger in all directions, but 

weaker in the principal loading direction compared to samples that are more isotropic. There are 

an additional 37 interactions where opioid use may contribute to deteriorating bone health, 

however, sex or age (in some instances both) differ, so discerning the cause of the deterioration is 

impossible.  
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Table 3.5. Kruskal-Wallis Non-parametric Tests with Tukey Kramer Post Hoc Analysis of Lacunar Morphometric Variables. 

 % Lacunar 
Volume 

% Lacunar 
Surface 

Area 

Lacunar 
Surface 

Volume Ratio 

Lacunar 
Surface Density 

Lacunar 
Diameter 

Lacunar 
Separation 

Lacunar 
SMI 

Lacunar 
DA 

Lacunar Number 
Density 

Kruskal-Wallis 
(significance) 0.016 0.029 0.402 0.029 0.575 0.254 0.828 0.387 0.047 

20 Male Opioid 
user - 20 

Female Control 0.269 0.018 0.485 0.734 0.538 0.549 0.237 0.808 0.719 
20 Male Opioid 

user - 20 
Female Opioid 

user 0.289 0.041 0.394 0.949 0.641 0.562 0.449 0.081 0.936 
20 Male Opioid 
user - 20 Male 

Control 0.195 0.029 0.137 0.957 0.207 0.641 0.663 0.032 0.95 
30 Male 

Control - 20 
Male Control 0.059 0.202 0.044 0.138 0.054 0.479 0.351 0.235 0.144 

30 Male 
Control - 30 
Male Opioid 

user 0.149 0.758 0.018 0.37 0.025 0.518 0.176 0.711 0.428 
30 Male Opioid 

user - 20 
Female Control 0.665 0.158 0.029 0.449 0.058 0.3 0.236 0.396 0.402 

40 Female 
Control - 20 

Female Control 0.13 0.014 0.142 0.094 0.139 0.066 0.132 0.913 0.144 
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40 Female 
Control - 20 

Female Opioid 
user 0.124 0.033 0.963 0.135 0.589 0.386 0.257 0.182 0.228 

40 Female 
Control - 20 

Male Control 0.069 0.022 0.612 0.08 0.869 0.267 0.397 0.089 0.144 
40 Female 

Control - 30 
Female Control 0.266 0.048 0.818 0.247 0.438 0.388 0.16 0.319 0.467 

40 Female 
Opioid user - 20 
Female Opioid 

user 0.048 0.42 0.331 0.069 0.693 0.315 0.877 0.505 0.085 
40 Female 

Opioid user - 20 
Male Control 0.025 0.407 0.124 0.04 0.275 0.222 0.610 0.352 0.048 

40 Male 
Control - 20 

Female Control 0.008 0.025 0.168 0.005 0.203 0.007 0.296 0.216 0.007 
40 Male 

Control - 20 
Female Opioid 

user 0.004 0.058 0.92 0.005 0.784 0.065 0.558 0.957 0.007 
40 Male 

Control - 20 
Male Control 0.001 0.042 0.489 0.001 0.628 0.028 0.812 0.754 0.002 

40 Male 
Control - 20 
Male Opioid 

user 0.063 0.818 0.412 0.002 0.426 0.01 0.836 0.065 0.004 
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40 Male 
Control - 30 

Female Control 0.011 0.087 0.939 0.01 0.621 0.053 0.413 0.676 0.019 
40 Male 

Control - 30 
Male Opioid 

user 0.005 0.285 0.297 0.009 0.422 0.033 0.856 0.615 0.015 
40 Male 

Control - 50 
Male Control 0.258 0.17 0.836 0.089 0.715 0.169 0.709 0.85 0.045 

40 Male Opioid 
user - 20 

Female Control 0.051 0.017 0.223 0.053 0.31 0.073 0.281 0.426 0.068 
40 Male Opioid 

user - 20 
Female Opioid 

user 0.036 0.037 0.69 0.069 0.916 0.464 0.52 0.496 0.1 
40 Male Opioid 
user - 20 Male 

Control 0.012 0.022 0.277 0.03 0.324 0.314 0.786 0.298 0.045 
40 Male Opioid 
user - 20 Male 

Opioid user 0.333 0.825 0.553 0.044 0.657 0.142 0.827 0.174 0.066 
40 Male Opioid 
user - 30 Male 

Opioid user 0.044 0.225 0.14 0.127 0.181 0.348 0.848 0.891 0.206 
50 Female 

Control - 20 
Female Control 0.029 0.008 0.585 0.104 0.513 0.141 0.278 0.816 0.104 

50 Female 
Control - 20 0.019 0.016 0.28 0.149 0.65 0.681 0.532 0.074 0.161 
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Female Opioid 
user 

50 Female 
Control - 20 

Male Control 0.007 0.01 0.078 0.087 0.2 0.534 0.779 0.027 0.091 
50 Female 

Control - 30 
Female Control 0.048 0.024 0.319 0.275 0.761 0.715 0.389 0.139 0.355 

50 Female 
Control - 30 
Male Opioid 

user 0.024 0.105 0.034 0.26 0.11 0.575 0.89 0.163 0.307 
50 Female 

Control - 50 
Male Control 0.563 0.057 0.41 0.797 0.688 0.894 0.74 0.044 0.518 

50 Female 
Control - 50 
Male Opioid 

user 0.843 0.988 0.707 0.544 0.953 0.162 0.307 0.039 0.481 
50 Female 

Opioid user - 20 
Male Control 0.561 0.268 0.047 0.801 0.046 0.875 0.828 0.518 0.889 

50 Female 
Opioid user - 20 

Male Opioid 
user 0.755 0.687 0.346 0.833 0.272 0.637 0.933 0.036 0.925 

50 Female 
Opioid user - 30 

Male Opioid 
user 0.776 0.644 0.026 0.89 0.027 0.908 0.951 0.234 0.759 
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50 Female 
Opioid user - 50 
Female Control 0.221 0.537 0.415 0.375 0.254 0.796 0.976 0.034 0.323 

50 Male 
Control - 20 

Male Control 0.043 0.558 0.384 0.166 0.406 0.464 0.548 0.91 0.328 
50 Male Opioid 

user - 20 
Female Control 0.035 0.006 0.379 0.032 0.47 0.01 0.731 0.187 0.027 
50 Male Opioid 

user - 20 
Female Opioid 

user 0.023 0.012 0.448 0.039 0.672 0.09 0.789 0.992 0.035 
50 Male Opioid 
user - 20 Male 

Control 0.007 0.006 0.146 0.016 0.193 0.04 0.469 0.779 0.013 
50 Male Opioid 
user - 20 Male 

Opioid user 0.234 0.763 0.86 0.024 0.93 0.014 0.249 0.046 0.02 
50 Male Opioid 

user - 30 
Female Control 0.058 0.017 0.522 0.078 0.793 0.074 0.914 0.621 0.092 
50 Male Opioid 
user - 30 Male 

Opioid user 0.028 0.089 0.067 0.072 0.101 0.046 0.243 0.558 0.074 
50 Male Opioid 
user - 50 Male 

Control 0.673 0.046 0.678 0.394 0.714 0.232 0.184 0.881 0.175 
*Interactions where there is no significance have been removed. Bold and italics represent statistical significance. 
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Table 3.6. Kruskal-Wallis Non-parametric Tests with Tukey Kramer Post Hoc Analysis of Pore Morphometric Variables. 

 % Pore 
Volume 

% Pore 
Surface Area 

Pore Surface 
Volume Ratio 

Pore Surface 
Density 

Pore 
Diameter 

Pore 
Separation Pore SMI Pore DA Pore Number 

Density 
Kruskal-Wallis 
(significance) 0.781 0.848 0.747 0.920 0.816 0.564 0.916 0.819 0.902 

20 Female 
Opioid user - 20 
Female Control 

0.122 0.496 0.082 0.902 0.048 0.93 0.273 0.938 0.627 

30 Female 
Opioid user - 20 
Female Control 

0.197 0.495 0.03 0.695 0.03 0.622 0.885 0.622 0.258 

40 Female 
Opioid user - 50 

Male Opioid 
user 

0.258 0.915 0.509 0.109 0.559 0.032 0.98 0.854 0.722 

40 Male Control 
- 50 Male 
Control 

0.36 0.028 0.688 0.526 0.628 0.426 0.504 0.117 0.808 

50 Male Opioid 
user - 20 Female 

Control 
0.011 0.378 0.011 0.387 0.012 0.169 0.201 0.827 0.84 

50 Male Opioid 
user - 30 Female 

Opioid user 
0.331 0.962 0.915 0.179 0.882 0.048 0.271 0.41 0.113 

*Interactions where there is no significance have been removed. Bold and italics represent statistical significance 
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Figure 3.1. SRµCT renders of a young female adult (A) and an older female adult (B). 

Qualitatively, the density of lacunae (gold) decreases with age and porosity increases with age 

(multi-coloured). Scale Bar: 0.5 mm.
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Figure 3.2. Synchrotron micro-CT data from ninety-seven human left sixth femora separated into 

age, sex, and opioid use classes (c – control, d – opioid use) lacunar morphometry compared via 

Kruskal-Wallis non-parametric tests. The * indicates significant differences (p-value < 0.005) 

between the groups included under the brackets. Only differences where sex or opioid use were 

significant are represented. In the first graph (A), lacunar surface area was significantly different 

in the opioid use comparison for 20-year-old and 50-year-old males. A similar trend is observed 

as a sex difference in the 20-year-old opioid user category (B). Lacunar surface area to volume 

ratio (C) indicates a significant difference between opioid users and controls in the 30-year-old 

and 50-year-old males. A significant difference was observed in the 30-year-old male opioid user 

category for lacunar diameter (D). Lacunar degree of anisotropy displayed a significant difference 

between the 20-year-old male opioid user group and the controls (E). However, 50-year-old female 

opioid user group show an opposite trend for lacunar degree of anisotropy (F), with a decrease 

with opioid use compared to an increase with opioid use in the male subgroup. Finally, lacunar 

degree of anisotropy exhibited a significant difference between the 50-year-old male and females 

control groups (G). 
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Figure 3.3. Left sixth rib SRµCT renders from a healthy control (A) and opioid user (B). Lacunar 

density (gold) is decreased in opioid users while their pores (multi-coloured) are larger in diameter. 

Scale Bar = 0.5 mm.   
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3.2 Age-related decline of lacunar morphology is disrupted by opioid use 

Linear regressions were run to assess the impact of age on lacunar and pore morphometric 

variables over the lifespan. Weak correlations were determined between percent lacunar volume 

(r2 = 0.1720), percent lacunar surface area (r2 = 0.1043), and age (Figure 3.4). Running a multiple 

regression with age and opioid use revealed in percent lacunar volume (control r2 = 0.2886, opioid 

user r2 = 0.09995) and percent lacunar surface area (control r2 = 0.1922, opioid user r2 = 0.03288) 

that the linear trend was more significant in the control group than the opioid user group (Figure 

3.5). A similar trend was observed when a multiple regression was run with age and sex. Females 

had a stronger correlation with age in percent lacunar volume (female r2 = 0.2354, male r2 = 

0.1470), percent lacunar surface area (female r2 = 0.2451, male r2 = 0.0529), and pore number 

density (female r2 = 0.1836, male r2 = 0.002052) than males (Figures 3.6, 3.7). These results 

suggest that drug use disrupt the normal aging process, however, percent lacunar surface area was 

lower in the drug use group compared to the control. This may suggest that drug use has created 

conditions where young drug users have bone similar to older controls.  
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Figure 3.4. Linear regressions of 97 human left sixth ribs analyzing lacunar morphometrical 

parameters.  The regressions show a correlation between declining percent lacunar volume and 

percent lacunar surface area with age. These are the two strongest correlations between all lacunar 

and pore morphometric variables analyzed.  
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Figure 3.5. Multiple linear regression correlating age and opioid use in the cohort of 97 individuals 

comparing lacunar morphometric data. A correlation between controls and age were observed in 

percent lacunar volume and percent lacunar surface area. However, opioid use does not have the 

same correlation. In fact, opioid use may have contributed to dysregulation of this correlation. This 

trend is reversed in lacunar separation with opioid use having a strong correlation with age and 

increasing separation.  
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Figure 3.6. Multiple linear regressions correlating age and sex. Deterioration of lacunar 

morphology was more highly correlated with females than males. The lone exception is lacunar 

surface density where males had a stronger correlation. 



 
 

85 

 

Figure 3.7. Three-dimensional renders of male (A) and female (B) left sixth ribs from SRµCT 

data. There is a higher lacunar density (gold) in the male specimen compared to the female. Porous 

structures (multi-coloured), however, were larger in diameter in females. Scale Bar = 0.5 mm.  
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3.3 CTAn outperformed deep learning in segmentation accuracy 

The deep learning architecture chosen for this experimental model was U-Net++. A subsection of 

these data were segmented manually, using the deep learning model, and traditional thresholding 

and despeckling techniques in CTAn (Bruker). The products of the two methods were compared 

to each other and the manual segmentation, which acted as the ground truth121. An analysis of 

variance (ANOVA) revealed that the established CTAn protocol and the deep learning model 

significantly differed in average lacunar volume (p = 0.005), average lacunar surface (p = 0.022), 

lacunar diameter (p = 0.001), average pore volume (p = 0.005), average pore surface (p = 0.002), 

and pore number (p = 0.001). The deep learning model differed from the manual segmentation in 

average lacunar surface area (p = 0.038), average pore volume (p = 0.005), average pore surface 

area (p = 0.002), and pore number (p = 0.001). However, CTAn differed from the manual 

segmentation in lacunar diameter (p = 0.018; Table 3.7). The presented results indicate no 

statistical difference between DICE and TPR (Table 3.8). The DICE similarity coefficient 

represents the overall similarity of the segmentation to the manual segmentation indicating the 

most accurate segmentation. The DICE scores for lacunae were average for both CTAn and deep 

learning (0.668 and 0.599, respectively), while it was markedly improved for the identification of 

pores (0.815 and 0.807). True positive rate, known more commonly as sensitivity, is the ability of 

the segmentation methods to correctly identify a structure and classify it appropriately. For pore 

morphology, CTAn and deep learning segmentations performed exceptionally well (0.835 and 

0.839). CTAn similarly performed well in the positive identification of lacunae (0.845), however, 

deep learning’s performance was dismal in comparison (0.543). 
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Table 3.7. ANOVA tests between the deep learning model, CTAn, and manual segmentation 

ANOVA 

Lacunar 
Morphology 

Avg Lacunar 
Volume (µm3) 

Total Lacunar 
Volume (µm3) 

Avg Lacunar 
Surface Area 

(µm2) 

Total Lacunar 
Surface Area 

(µm2) 

Lacunar 
Diameter (µm) 

Lacunar 
Separation (µm) 

Lacunar 
Number (#) 

Levene 
Statistic 0.976 0.315 0.96 0.474 0.752 0.025 0.957 

Shapiro-Wilk 0.753 0.757 0.905 0.56 0.891 0.001 0.092 
p-value 0.007 0.264 0.015 0.513 0.001 0.569 0.945 

Post-hoc 

CTAn - Deep 
Learning 0.005 0.98 0.022 0.534 0.001 0.742 0.942 

CTAn - 
Manual 0.672 0.929 0.957 0.987 0.018 0.984 0.97 

Deep Learning 
- Manual 0.005 0.861 0.038 0.625 0.225 0.73 0.995 

ANOVA 

Pore 
Morphology 

Avg Pore 
Volume (µm3) 

Total Pore 
Volume (µm3) 

Pore Surface 
Area (µm2) 

Total Pore Surface 
Area (µm2) 

Pore Diameter 
(µm) 

Pore Separation 
(µm) 

Pore Number 
(#) 

Levene 
Statistic 0.047 0.935 0.028 0.988 0.971 0.227 0.001 

Shapiro-Wilk 0.045 0.002 0.02 0.003 0.061 0.032 0.001 
p-value 0.001 0.858 0.001 0.91 0.997 0.173 0.001 

Post-hoc 

CTAn - Deep 
Learning 0.005 0.98 0.002 0.911 0.997 0.234 0.001 

CTAn - 
Manual 0.672 0.929 0.644 0.996 0.998 1 0.961 

Deep Learning 
- Manual 0.005 0.861 0.002 0.945 1 0.226 0.001 

*  Bold and italics represent statistical significance. 
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Table 3.8. DICE and TPR scores between the deep learning model and CTAn 

DICE Lacunae Pores TPR Lacunae Pores 

CTAn 0.668 0.815 CTAn 0.849 0.835 

Deep Learning 0.599 0.807 Deep Learning 0.543 0.839 

Levene 0.14 0.991 Levene 0.056 0.144 

Shapiro-Wilk 0.035 0.912 Shapiro-Wilk 0.03 0.324 

p-value 0.431 0.38 p-value 0.052 0.634 

*  Bold and italics represent statistical significance. 

 

3.4 Deep learning outperformed CTAn using a different model architecture 

Noticeable improvements could be made to the original U-Net++ model architecture. Further, 

more model architectures were tested to find out if a different model architecture could perform 

better than U-Net++. During the initial testing, only one model architecture appeared to be slightly 

better than U-Net++, the multiscale attention network (MA-Net)106. Comparing DICE and 

accuracy scores (Table 3.9) for these two networks revealed MA-Net and U-Net++ were 

comparable with some comparisons favoring one network over the other. However, when it comes 

to normalization and normalization plus denoising, MA-Net had a higher DICE score than U-

Net++ (0.914 and 0.652, and 0.929 and 0.829, respectively). Thus, further testing with MA-Net 

was conducted to see if it outperformed CTAn where its predecessor U-Net++ failed.   
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Table 3.9. DICE and Accuracy scores calculated between U-Net++ and MA-Net 

Parameter Test U-Net++ MA-Net 
Accuracy DICE Accuracy DICE 

Default 0.99309 0.91712 0.99371 0.9212 

Normalization 0.9843 0.6517 0.99324 0.9140 

Normalization + Calibration 0.99563 0.94857 0.99485 0.9402 
Bilateral Smoothing Filter + 

Normalization 0.99418 0.9285 0.99402 0.9253 

Denoising (Mean Shift 
Smoothing Filter) + 

Normalization 
0.98883 0.82867 0.99433 0.9290 

 

Similar to the comparisons made with U-Net++ and CTAn, lacunar and pore morphometric data, 

along with DICE and accuracy scores were used to determine if MA-Net was better than CTAn. 

Accuracy and DICE scores showed that CTAn outperform deep learning’s segmentation in 

porosity significantly (Figure 3.8)107. The deep learning DICE and accuracy scores, while 

significantly different, still averaged 0.92 and 0.99, respectively. These scores are indicative of a 

highly successful segmentation. However, the lacunar segmentation showed no significant 

difference between CTAn and deep learning. Despite this, CTAn had a greater standard error than 

deep learning. The comparison of morphometric variables reveals a different trend. CTAn’s 

segmentation differed from the manual segmentation in lacunar surface area to volume ratio, 

lacunar diameter, lacunar separation, and pore separation; meanwhile, the MA-Net architecture 

did not (Figure 3.9)107. MA-Net only differed from the manual segmentation in the lacunar 

structural model index. 
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Figure 3.8. Fourteen samples were segmented using deep learning, CTAn’s segmentation tools, 

and manually. Accuracy and DICE scores were extracted for the segmentations by comparing them 

to the manual segmentations. Accuracy is the quotient of the number of correct predictions to the 

total number of predictions. DICE is a direct measure of the similarity between the two 

segmentations. A score of 1.0 indicates the deep learning’s segmentation (or CTAn’s) is the exact 

same as the ground truth for accuracy and DICE scores. The letters above each bar represent their 

A. B. 

C. D. 
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group identifier. If the identifier differs from another group this indicates a significant difference 

from each other. For example, in pore DICE, CTAn is denoted by ‘a’ and deep learning is denoted 

by ‘b’. CTAn is significantly different from deep learning. Graphs A and C are comparing the 

accuracy of the labeling of lacunae and pores by CTAn and deep learning when compared to the 

manual segmentation. Lacunar DICE comparisons did not reveal a significant difference (B), 

however, pore DICE scores are reportedly significant with CTAn having a higher score than deep 

learning (D).  
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Figure 3.9. Structural data was extracted from 14 samples using the manual CTAn, and deep 

learning segmentations. ANOVAs were used to test the difference between the groups. CTAn 

differed significantly from manual and deep learning in four comparisons (A, B, C, E). Conversely, 

CTAn only differed from deep learning once in the lacunar structural model index (D). In that 

variable, deep learning also differed from manual segmentation. Deep learning’s close association 

with the manual segmentation and CTAn’s significant deviation from it suggests that this deep 

A. B. 

C. D. 

E. 
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learning algorithm segmented the data more similarly to the manual segmentation indicating that 

it was more accurate than CTAn. The letters above each bar represent their group identifier. If the 

identifier differs from another group this indicates a significant difference from each other. For 

example, in pore separation, CTAn is denoted by ‘a’, and deep learning and manual are denoted 

by ‘b’. CTAn is significantly different from deep learning and manual, however, deep learning and 

manual are not significantly different from each other.  
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4. Discussion 

This study implemented novel AI-based segmentation techniques to study the impact of prolonged 

opioid use on human bone microstructure. The microstructure was analyzed with high resolution 

synchrotron technology that allowed the visualization of osteocyte lacune and porous spaces. 

These parameters were used as proxies to determine bone health. Separately deep learning models 

(U-Net++ and MA-Net) were compared to manual and CTAn segmentations. The U-Net++ model 

was slightly worse than CTAn segmentations, but MA-Net outperformed both. However, U-Net++ 

was the fastest model to implement. 

 

4.1 Synchrotron Radiation Micro Computed Tomography 

Employing synchrotron-based imaging techniques offers many benefits. For example, synchrotron 

radiation micro-computed tomography can image at higher resolutions than laboratory µCT with 

significantly improved throughput. SRµCT can produce images with 1.5 µm resolution, which is 

greater than the 5 µm resolution that most laboratory µCT machines can achieve. Increasing the 

resolution shrinks the field of view, but 1.5 µm is necessary as it is the minimum resolution needed 

to resolve osteocyte lacunae46. This compromise creates a resolution dependency108. The field of 

view must be partially sacrificed to achieve a high resolution to visualize the structures of interest. 

It should be noted that nano-computed tomography (nano-CT) machines can produce resolutions 

as minuscule as 400 nm109. However, the synchrotron can produce a full scan in minutes, and nano-

CT produces a scan at a similar resolution in hours. More prolonged exposure to radiation increases 

the risk of radiation-induced damage, affecting the study results. Thus, SRµCT imaging is the 

preferred imaging modality for this study. 
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4.2 Deep learning is comparable to traditional segmentation methods with quicker 

processing times 

Artificial intelligence has been around for decades but has recently seen an increase in popularity 

and usage due to the advent of deep learning. The most famous example of AI in recent times is 

ChatGPT (OpenAI). The full scope of AI has yet to be realized; however, various disciplines are 

working to incorporate AI into their research, including the medical and anthropological areas. 

Deep learning has been applied to attempt to automate the evaluation of bone mineral density110,111, 

fractures95, and trabecular bone architecture112. Using a convolutional neural network deep 

learning model resulted in significantly improved detection and diagnosis of osteoporosis110,111. 

Deep learning has seen similar results in fracture detection. One of the first studies, for example, 

did not use convolutional layers and achieved an accuracy of 94.3% in correctly labeled 

fractures95,113. Using convolutional neural networks, fracture detection outperformed general 

physicians and orthopedists and was comparable to senior radiologists95,114,115. Implementing deep 

learning alongside medical professionals has proven helpful in fracture detection95,116.  

 

AI segmentation has recently been implemented to segment osteons in cortical bone 

microstructure. Littek and colleagues (2023) used deep learning to segment intact and fragmentary 

osteons. Intact osteons had 90% of their borders, and fragmentary osteons were defined as having 

more than 10% of canals within their border94. The model achieved a DICE score of 0.73 for intact 

osteons, however, it only managed a 0.38 DICE score for fragmentary osteons94. The segmentation 

of fragmentary osteons was far too inconsistent for reliable use. Perhaps deep learning could 

perform more reliably with refinement or an alternative model. To my knowledge, the current 
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study is the first to implement deep learning in the image segmentation of cortical bone 

microstructure in SRµCT data. One sample from this data typically has more than 2,000 images, 

making it impossible to manually segment all slices within a reasonable time frame. Previously, 

these data were segmented using thresholding, despeckling, and closing in CTAn. However, these 

tools struggle because they do not allow for manual correction and often fail to accurately segment 

the edges of lacunae and pores. Deep learning was presented as a possible more time-efficient and 

accurate method of segmenting the images.  

 

The data revealed that CTAn was closer to the manual segmentation in lacunar and pore 

morphometric variables than deep learning. The deep learning U-Net++ model significantly 

differed from manual segmentation in four cases, where CTAn was different from manual in one 

case. However, the DICE and TPR scores contradict these findings. When these scores between 

the deep learning model and CTAn were compared, they did not differ significantly. The average 

DICE scores were comparable for lacunae (CTAn – 0.668, U-Net++ – 0.599) and pores (CTAn – 

0.815, U-Net++ – 0.807)117. True positive rate values support CTAn over U-Net++ for lacunae 

(0.849 and 0.543, respectively) but support U-Net++ for pores (0.839 and 0.835, respectively)117. 

Overall, the data supports a comparable performance between the two segmentation methods, with 

U-Net++ performing slightly worse.  

 

There are two critical caveats in this work: 1) there were no morphological tools applied to the U-

Net++ results that can dramatically increase the model’s performance, especially the TPR for 

lacunae, which could likely be increased with a simple filter to filter out artifacts labeled as lacunae 
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based on their size, and 2) the time required to achieve the segmentation. While time was not 

actively measured, the time required to apply the model is less than that required to design and 

apply a set of operations via CTAn. Additionally, the time spent is different; in CTAn, the person 

has to manually monitor and adjust the segmentation. With the deep learning model, the computer 

handles the rest after setup, allowing the researcher to complete other pertinent tasks. This model 

could likely be improved using morphological operations, primarily through the exclusion of 

artifacts incorrectly identified as lacunae. 

 

A follow-up to the U-Net++ model was conducted to see if there was a better model architecture. 

MA-Net was the only other model that performed the segmentation accurately. MA-Net had better 

DICE scores when normalization was applied107. Normalization was the only factor that had a 

substantial impact on the reported DICE scores, so MA-Net was concluded to be a better model 

for the segmentation of bone microstructure. MA-Net was further used to determine if it was better 

than the CTAn protocol. Pore DICE and accuracy scores were significantly better in CTAn, 

however, both segmentation models reported scores in the 90% range. Specifically, the accuracy 

scores only differed from each other by 0.0057%. While statistical significance is observed and 

reported, the actual impact on the success and reliability of the segmentation is negligible. A better 

contribution to the comparison is analyzing the lacunar DICE scores. For CTAn, the scores ranged 

from 0.286681 – 0.96332 and MA-Net ranged from 0.794538 – 0.946417. Overall, the ranges for 

both segmentation methods are concerning. The use of MA-Net has a better distribution and will 

likely provide a more accurate segmentation for lacunae than CTAn. Additionally, in 

morphometric variables, MA-Net was significantly better than CTAn as it was more consistent 
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with the manual segmentation. This further supports the use of deep learning models in image 

segmentation and highlighted a promising potential to improve its efficacy.  

 

4.3 Age is the strongest predictor of deteriorating bone health followed by sex 

The nonparametric tests revealed age as a significant predictor in percent lacunar volume, percent 

lacunar surface area, lacunar surface area volume ratio, lacunar surface density, lacunar diameter, 

lacunar separation, lacunar degree of anisotropy, lacunar number density, percent pore volume, 

percent pore surface area, pore surface to volume ratio, pore diameter, pore separation. Thirty-nine 

significant interactions were identified where age was the only variable. Additionally, only 10 out 

of 133 (~8%) significant interactions did not have age as a significant variable. Age is one of the 

most significant, if not essential, factors for deteriorating bone health (Figure 3.1). It has been 

postulated that humans reach skeletal maturity by the third decade of life, after which bone 

resorption tends to outpace bone formation, leading to increased bone loss. However, aging can 

affect multiple systems, including the levels of sex hormones. 

 

The most exaggerated example of this is menopause in females, which leads to a substantial decline 

in estradiol. As described in section 1.4 and summarized in Figure 1.5, estradiol modulates the 

release of OPG and RANKL to prevent the accumulation of osteoclasts, subsequently protecting 

bone health. Menopause is a significant reason that fractures are more common in older females 

than older males. Thus, there should be an expected difference in bone health between older 

females and males. This study's results differ as a significant difference was not discovered 

between the older sexes. The evidence of only sex playing a factor in this study was between males 
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and females in their 20s for percent lacunar surface area and in their 50s for lacunar degree of 

anisotropy. Sex is perceived to be integral in an additional 58 interactions (Figure 3.7). Regardless, 

both sexes are more likely to experience a fracture as they age than their younger counterparts.   

 

One of the most well-studied phenomena in bone biology is the aging process. Over a century ago, 

Todd118 described the macroscopic changes to the pubic bone regarding age and sex. Since then, 

the field exploded with hundreds of articles describing macroscopic changes to bone and the 

attention turning to microstructural bone alterations. Most literature agrees that bone mineral 

density and bone mineral content increase until the mid-thirties when a gradual shift to declining 

bone health is noticed15,119–126 at various skeletal sites (e.g., lumbar spine, hip, forearm). Chen and 

colleagues (2013) reported a decrease of 70% in volumetric bone mineral density between 40-70 

years of age, with similar decreases in BV/TV at the femoral neck (20%) between 60-90 years old. 

However, the radius appeared more resistant to aging, with only a 27% decrease in BV/TV over 

70 years121. Nearly 40% of total trabecular bone loss is estimated to occur before 50, however, this 

differs dramatically from cortical bone (10%)127. This observation is explained by endosteal 

resorption of trabecular bone due to its high surface area and is more metabolically active than 

cortical bone15,122,123,128. Halloran and colleagues124 reported a decrease in trabecular bone volume 

by 52%, marked by reductions in trabecular number, increases in trabecular separation, and 

structural model index (SMI).  An increase in SMI indicates that the trabecular struts are more rod-

like. This is significant because rod-like trabeculae are more susceptible to bending and buckling 

failures121. These findings were further corroborated by Russo and colleagues129 who reported an 

age-associated decrease in lower total and trabecular bone density. 
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However, cortical bone comprises 80% of the adult skeleton15, so it is improbable that it will 

remain unaffected by the aging process. In fact, around the age of 50, a more rapid decline is 

reported and involves cortical bone119,125. The femoral diaphysis increased with age but was 

coupled with cortical thinning and decreased cortical area124,130. This study reports decreased 

lacunae and their surface area and volume with age. This is further made evident by the increased 

separation between lacunae and decreased surface density. These results are only apparent in the 

furthest age categories and suggest that age does not significantly impact cortical bone 

microstructure until the sixth decade, consistent with the literature on age-associated impacts on 

the cortical bone. The linear regressions for percent lacunar volume and lacunar surface area 

corroborate these findings with a decreasing trend (negative correlation) with age. One study found 

that cortical thickness decreased by 3-5% and cortical porosity increased by 31-33% per decade at 

the femoral neck between 60-90121. This led to a 2-fold increase in fracture risk every four years. 

Similarly, the radius showed increased cortical porosity and pore diameter with age and an 

associated decrease in cortical thickness121. Similarly, this study found that cortical porosity 

increased with age. Further, this study reported that the number of pores increased, and their 

separation decreased. The increasing pore volume and decreasing separation have been noted in 

previous studies2. They may indicate pore coalescence in a process called trabecularization, which 

is the transition of cortical bone to trabecular bone during aging131,132. Further evidence of this 

phenomenon is phenomenon a study where they indicated a decrease in cortical volumetric bone 

mineral density and cortical thickness, and an increase in cortical porosity and diameter, however, 

their trabecular parameters were healthier than their cortical ones in the older population at the 

ultra-distal radius133. Due to trabecularization and age-associated degeneration of bone, people 
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over 60 have an increase in incomplete osteons128. Twenty-five percent of the endosteal surface is 

actively involved in remodeling in individuals 70 and older128.  

 

Several researchers have sought to determine the reason for the age-associated decline in bone 

health. A prevailing explanation is the disuse or ‘use it or lose it’ principle. This principle is more 

colloquially used to describe building and maintaining muscle. This is suitable because muscle 

and bone interaction (or lack thereof) may cause age-associated decline. More force is exerted on 

bone by muscle than by body weight, as the muscles need to generate two pounds of force to move 

one pound of body weight123. This is under normal conditions; however, athletes can sometimes 

briefly exert muscle force that is five times that of their body weight123. Muscle and bone loss 

becomes more rapid at 60 years of age120, and by 80, nearly 50% of muscle strength has dissipated, 

and bone mass may follow changes in bone strength123. Physical activity declines with age15,126 in 

line with the age-associated decline in bone health. Some reports list it as an extrinsic factor in 

bone health122. Further muscle paralysis has been shown to exacerbate bone loss, possibly due to 

the release of irisin by muscle tissue, which interacts with estradiol to impact bone negatively122. 

Exercise is a possible treatment showing positive outcomes on bone health134, however, even 

ambulatory older females lose 1% of femoral bone annually135. There must be other contributing 

factors leading to age-associated bone fragility. 

 

Several studies have analyzed hormonal and mineral fluctuations over the human lifespan and 

calculated their impact. Serum calcium decreases with age136, which stimulates the activation of 

vitamin D and parathyroid hormone (PTH). Vitamin D is responsible for maintaining calcium and 
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phosphorous intestinal absorption and retention in the kidneys. Parathyroid hormone stimulates 

osteoclasts to increase bone resorption and release calcium and phosphorus. Disrupting the balance 

of vitamin D and PTH can lead to increased bone resorption to restore calcium and phosphorus 

homeostasis. Aging disrupts this homeostasis with vitamin D significantly decreasing122 and intact 

parathyroid hormone increasing (iPTH) after age 6515,136. Additionally, sclerostin increases nearly 

3.5 times127 with age. The sost gene and its product, sclerostin, are involved in osteoblast 

downregulation and decreased bone formation126. Aging also significantly impacts testosterone 

and estradiol levels. A preliminary study indicated a significant fall in the Free Androgen Index 

(FAI) in males137. A follow-up study reported a decrease in available testosterone by 64% and a 

124% increase in sex hormone-binding globulin (SHBG)127. Estradiol also decreases with age, 

especially during menopause. Demontiero and colleagues (2012) reported an 87.5% decrease in 

estradiol and a 70% decrease in estrone, and this period can last for up to 10 years.  

 

Researchers have analyzed the sex-related differences. Bone mineral density is increased in males 

compared to females at the lumbar spine, and with age, femoral sites decrease among the sexes, 

however, it is more pronounced in females with a bone loss rate twice that of males138.  By 90, 

Kiebzak (1991) reported that females may lose 50% of peak trabecular bone mass while males will 

only lose 10-25%. Warming and colleagues (2002) analyzed the distal forearm, total hip, and 

lumbar spine, determining that peak BMD was 12-25% higher in males than females. Males had 

35-42% more bone area than females127. Additionally, females experience significant bone loss in 

midlife, while it does not begin in males until 70-75 years127. Several studies indicate that females 

had significant bone loss between 50-59 during perimenopause119,127,139. Studies have shown that 

females have lower trabecular and cortical bone density121,122,129. The sex-related differences in 
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trabecular bone appear from females losing whole trabeculae while males' trabecular struts get 

thinner121,127 and the trabecular number has a more significant impact on bone strength. Cortical 

vBMD and cortical thickness are lower in females than in males121. This study revealed that 

females have a higher lacunar surface area and degree of anisotropy than males, meaning their 

lacunae are oriented in different planes. When the linear regressions were split by sex it became 

evident that there was a more significant correlation between females and aging than males for 

percent lacunar volume and surface area. The use of hormone replacement therapy can markedly 

attenuate the effect of estradiol deficiency119. Several other factors can influence bone health, 

including genetics, alterations in cellular components, biochemical and vasculature status, 

nutrition, physical activity, medical conditions, and drugs122. 

 

4.4 Opioid use is not a significant predictor of LCN dysregulation 

Opioid use had few significant interactions (45/133) and fewer interactions (5/133) where it was 

the sole contributor. Lacunar surface area differed between control and opioid users for males in 

their 20s and 50s. Males in their 30s differed significantly based on opioid use for lacunar surface 

area to volume ratio and lacunar diameter. Males in their third decade of life and females in their 

6th decade of life varied by opioid use in the lacunar degree of anisotropy (Figure 3.3). 

Additionally, multiple regressions revealed that opioid use dysregulated the normal aging process, 

as seen in the control group, possibly due to the overall lower values for percent lacunar volume 

and surface area. The trends observed in this study directly conflict with some of the available 

literature. Literature on opioid use trends suggests that older populations were more likely to have 

and refill opioid prescriptions than younger individuals140–143. Schieber and colleagues (2020) 

reported 2.6 times increase in prescriptions for opioids among patients 65 and older than 20-24 

years old. The 55–64-year-old category had the highest prescriptions filled per person at four and 



 
 

104 

a half. The most common perceptible rationale reported for this trend was pain and the push by the 

American Pain Society to include pain as the fifth vital sign143,144. This corroborates the significant 

differences visualized in the older age categories in this study.  

 

However, these trends do not support the differences seen in the younger age groups. The most 

probable cause for this is the use of illicit opioids. Heroin use in the United States has been rising 

since 2002145. Additionally, Park and colleagues (2020) reported that the significant sources of 

misused prescription opioids for younger individuals were from friends and relatives, while the 

primary source for older individuals was from physicians. Another contradiction with this study is 

several reports indicating that females had a higher prevalence of opioid use than males140,142,146. 

Again, it appears that this trend is from legal sources of opioids. Males have higher rates of heroin 

use than females145 and males are more likely to get opioids from relatives, friends, and drug 

dealers than females141.  

 

The literature suggests that opioids would produce a more exaggerated effect on bone quality than 

is represented in this study. One study found that 74.3% of opioid users have low bone mass, with 

29% with osteoporosis and 48% with osteopenia147. Other studies found that opioid use is 

correlated to hypogonadism with 50%148, 85%149, and 87.5%150 of opioid users having 

hypogonadism. Of the 85% of patients, 21% were diagnosed with osteoporosis, and 50% were 

diagnosed with osteopenia149. Methadone, a synthetic long-acting opioid, is commonly used to 

treat opioid addiction. Grey and colleagues (2011) reported that the dosage and duration of the 

prescription have increased due to improved outcomes for opioid users, however, there are several 



 
 

105 

concerns, including the development of osteoporosis. Studies have validated the concern for the 

development of osteoporosis. One study reported 97% of males and 75% of females having low 

DXA scores, with 61% of the males having osteoporosis and 54% of the females having 

osteopenia151.  An Additional study on males on methadone treatment reported they had a lower 

BMD by one standard deviation, leading to an increased risk of fracture152. The results of this study 

may conflict with the existing literature due to the complex nature of humans and the several 

varying facets that affect bone health. In the study, 30 (60%) samples from the control group 

reported excessive tobacco and alcohol abuse. These substances can negatively affect bone health, 

similar to opioids. The extensive use of tobacco can cause hypogonadism and directly inhibit 

osteoblast production153,154. The literature surrounding alcohol use is conflicting mainly due to the 

variable and arbitrary definitions of alcohol consumption. However, the literature is consistent that 

heavy alcohol consumption negatively impacts bone health155–158.  

 

Fortunately, the effects of opioid use can be counteracted through several interventions, including 

hormonal replacement therapy and exercise. In one study, 73% of males on testosterone 

supplements had normal bone mineral density, while the remaining 27% had osteopenia150. Eight 

months of aerobic exercise in young opioid-dependent females increased bone quality in all 

participants. The experimental group had a 32.8% increase in bone quality at the calcaneus134. 

These treatments have positive effects on both health and have provided evidence that they can 

reverse the effects of opioid abuse.  
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4.5 Limitations 

Despite the utility of synchrotron analysis, it has several inherent limitations. There are only 23-

member synchrotron facilities worldwide, all with competitive peer-review application processes 

for instrumental operating time. Even fewer synchrotrons offer the capabilities to complete 

biomedical research, including two in North America, one in Europe, and one in Asia. The 

Advanced Photon Source in the United States is undergoing substantial upgrades, leaving only 

three facilities worldwide. As a result of the scarcity of facilities and the high demand of potential 

users, allotted time at a facility is rare, competitive, and often requires expensive travel 

arrangements.  

 

Additionally, due to the nature of X-rays (µCT and SRµCT) and our sample processing techniques, 

the quantification of osteocytes is conducted indirectly through the measurement of their lacunae. 

However, the lacunae can be unoccupied. The percentage of filled lacunae varies with age, with a 

report indicating that 5-40% of lacunae are unoccupied83,84. Additionally, due to the radiation dose 

of SRµCT at 1.5 µm resolution, the experiment had to be ex vivo, sacrificing the context of an in 

vivo model.  

 

Regardless, SRµCT provides a wealth of invaluable knowledge into bone microstructure that is 

otherwise impossible without decreasing efficiency (nano-CT) or sacrificing the third dimension 

(confocal laser scanning microscopy and serial sectioning). 
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Another complicated yet necessary aspect of this study involves using human skeletal material. 

Humans, by nature, are multifaceted, with extensive and complex life histories. The donors 

involved in the study have complicated past medical records that must be clarified. Most medical 

information is received through questionnaires and relies on the donor or their next of kin’s 

honesty, accurate recollection, and knowledge of the events. Sometimes, only the use of ‘opiates’ 

is reported, which makes analysis more troubling. An opiate is a peptide with analgesic properties60 

and represents a broad class of narcotics. However, different opiates can affect any of the three 

canonical receptors (µ, κ, δ) and the OGFR differently and have different affinities for these 

receptors. For example, morphine targets the µ receptor, but dezocine has a higher affinity than 

morphine for µ and κ receptors159. Other examples of opiates include tapentadol, oxycodone, 

buprenorphine, hydromorphone fentanyl, and methadone. Tapentadol is a µ receptor agonist and 

noradrenaline reuptake inhibitor, and hydromorphone is a semisynthetic opioid. Fentanyl is fully 

synthetic and 100 times more potent than morphine160. The varying types of opioids, their side 

effects, and the additional past medical information make unraveling the cause of bone degradation 

challenging. Surgeries and associated recovery drugs or diseases, such as chronic kidney disease, 

can additionally impact the skeletal system.  

 

Other lifestyle factors complicate the interpretation of the results. For example, an opioid user may 

also be engaged in polysubstance use. In this study, the most common confounding substances 

reportedly used were tobacco and alcohol. At the same time, the directionality of alcohol’s specific 

effect on the skeleton is shrouded by conflicting reports. All known reports suggest alcohol impacts 

the skeletal system155,156,158,161. Tobacco use diminishes bone quality directly and indirectly by 

modulation of osteoblastogenesis, inducing hypogonadism, reducing intestinal calcium 
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absorption, and increasing the ratio of RANKL to OPG153,162,163. Substance users are often 

associated with poor socio-economic status, which can affect their diet and exercise. Both are 

incredibly important for the maintenance and healthy aging of bone tissues.  

 

Additionally, the questionnaires are collected at or near the time of death. This is a tumultuous 

time for the families and may inhibit an accurate recollection of the events. Additionally, the staff 

has to deal with death and suffering families daily. The healthcare system was pushed to the brink 

of collapse amidst the global COVID-19 pandemic164,165. The taxing workload of healthcare 

workers has them struggling to maintain their mental health166. Given their immense workload and 

emotionally stressful positions, it is probable that they will make mistakes. 

 

Drug addiction is the most heavily stigmatized condition internationally167, but there are further 

stigmatized conditions that are often associated with drug addiction. Joblessness, homelessness, 

and unkemptness are heavily stigmatized qualities worldwide, and drug-addicted persons can often 

find themselves associated with these categories167. Similarly, surveys have reported that people 

believe that those suffering from drug addiction (legal or illegal) should have lower priority in the 

healthcare system168 and are often receiving inferior healthcare169–172. Additionally, fear of 

stigmatization can cause people to avoid seeking medical care170 or hiding their opioid use 

entirely173,174. As a result, the accuracy of the information on their opioid use is questionable. 

 

An ongoing live animal study in the Andronowski Lab seeks to control for several of these 

confounding factors. New Zealand White rabbits will be administered subcutaneous injections of 
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low or high-dose morphine and fentanyl. The rabbits will be under the same living conditions with 

food and water ad libitum and a designated amount of time for enrichment. The serum will be 

analyzed to ensure total administration of the opioids and to test hormone levels. This study seeks 

to reveal key morphological distinctions between the opioid groups and the controls.  
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5. Conclusions 

The skeletal system is a crucial component to several critical human functions, including 

protecting the internal organs, acting as scaffolding for movement, and production of red blood 

cells. Similar to other systems, various pathologies exist that can impair the bone’s ability to 

function. One such pathology, osteoporosis, afflicts millions of people worldwide and the 

incidence of this debilitating disease is only set to increase. It is marked by increased resorption 

cavities and reduced cortical and trabecular bone. The resulting brittle bone is more susceptible to 

fractures leading to complicated recoveries. Age, diet, disease, and exercise are a few risk factors 

for the development of osteoporosis. Some drugs (pharmaceutical and illicit) have been implicated 

as additional risk factors (e.g., opioids, alcohol, tobacco). Opioids inhibit osteoblastogenesis, sex 

hormone production, and cognitive function leading to an increased risk of osteoporosis. 

  

This work sought to evaluate the impacts of the opioid exposure microstructural bone health in 

humans. Utilizing SRµCT, osteocyte lacunae and resorption spaces were the primary targets of 

investigation. To increase efficiency of image analysis, a novel deep learning algorithm was 

employed to semi-automatically segment all datasets. However, no significant trends were 

established between bone health and opioid use likely due to the multifactorial nature of the human 

specimens. A follow-up study is being conducted using a rabbit model to control for most 

confounding variables, including activity, diet, amount and timing of opioid administration. 

Further, fluorochrome injections will allow the tracking of bone remodeling over time. Despite the 

results of this study, the deep learning algorithm employed demonstrated comparable performance 

to established segmentation methods. This suggests a use for it in the future of data acquisition in 

SRµCT and other imaging modalities. 
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Appendix 7.2: Deep Learning Training Tests 

Definitions for the parameters tested: 

Best Val Loss -  The best reported loss  from the loss function during the data training. 

Depth Level – Depth of the convolutional neural network. 

Initial Filter Count – number of filters applied at the first convolutional layer 

Brightness – Darkens the image by a specified amount during the training process. 

Gaussian Noise – Adds noise to the data for training. 

Elastic Transformation – Stretches the training data to a specific range. 

Patch Size – Separates the training data to a specified size of pixels to decrease training time and 

computer memory usage. 

Stride Ratio – Ratio of the overlap between adjacent patches. 

Batch Size – Patches are randomly categorized and sorted into batches. Batch size determines the 

number of patches per batch. 

Loss Function – The detected error between the predicted segmentation and the outcome. 

Optimization Algorithm – A calculation that uses the loss function to update training parameters 

to reduce future predictive errors. 
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Table 1. U-Net++ Parameter Testing. 

Test Type Best Val 
Loss 

Depth 
level 

Initial 
filter count Brightness Gaussian 

Noise 
Elastic 

Transformation 
Patch 
size 

Stride 
ratio Batch size Loss function Optimization 

algorithm 

Depth 
Level 

0.07686 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02741 2 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02097 3 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02342 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02208 5 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.025 6 32 N N N 64 1 32 ORSDiceLoss Adadelta 

0.07607 7 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Initial 
Filter 
Count 

0.02516 4 8 N N N 64 1 32 ORSDiceLoss Adadelta 
0.01991 4 16 N N N 64 1 32 ORSDiceLoss Adadelta 
0.08243 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02188 4 64 N N N 64 1 32 ORSDiceLoss Adadelta 
0.10173 4 128 N N N 64 1 32 ORSDiceLoss Adadelta 
0.01528 4 256 N N N 64 1 32 ORSDiceLoss Adadelta 

Horizon
tal Flip 

0.03317 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

0.02378 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Vertical 
Flip 

0.02348 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

0.074 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Rotate 

0.01954 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.0277 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02852 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.0785 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02238 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
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0.07817 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02321 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02401 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.08669 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.03018 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.08334 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02483 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02706 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Shear 

0.08318 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02893 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02371 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02194 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02211 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02176 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.03398 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02358 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.07794 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02581 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02243 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Scale 

0.06872 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.08308 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.0215 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.08123 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.01752 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.07212 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02298 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02145 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.01736 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.07193 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

Brightn
ess 

0.02679 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.03641 4 32 0.1-2 N N 64 1 32 ORSDiceLoss Adadelta 
0.02099 4 32 0.2-1.9 N N 64 1 32 ORSDiceLoss Adadelta 
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0.03115 4 32 0.3-1.8 N N 64 1 32 ORSDiceLoss Adadelta 
0.02418 4 32 0.4-1.7 N N 64 1 32 ORSDiceLoss Adadelta 
0.0263 4 32 0.5-1.6 N N 64 1 32 ORSDiceLoss Adadelta 
0.07404 4 32 0.6-1.5 N N 64 1 32 ORSDiceLoss Adadelta 
0.03172 4 32 0.7-1.4 N N 64 1 32 ORSDiceLoss Adadelta 
0.01992 4 32 0.8-1.3 N N 64 1 32 ORSDiceLoss Adadelta 
0.07878 4 32 0.9-1.2 N N 64 1 32 ORSDiceLoss Adadelta 
0.07724 4 32 0.9-1.1 N N 64 1 32 ORSDiceLoss Adadelta 

Noise 

0.0881 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.03059 4 32 N 0-0.1 N 64 1 32 ORSDiceLoss Adadelta 
0.03267 4 32 N 0-0.09 N 64 1 32 ORSDiceLoss Adadelta 
0.04419 4 32 N 0-0.08 N 64 1 32 ORSDiceLoss Adadelta 
0.08511 4 32 N 0-0.07 N 64 1 32 ORSDiceLoss Adadelta 
0.08254 4 32 N 0-0.06 N 64 1 32 ORSDiceLoss Adadelta 
0.03495 4 32 N 0-0.05 N 64 1 32 ORSDiceLoss Adadelta 
0.08257 4 32 N 0-0.04 N 64 1 32 ORSDiceLoss Adadelta 
0.03378 4 32 N 0-0.03 N 64 1 32 ORSDiceLoss Adadelta 
0.05272 4 32 N 0-0.02 N 64 1 32 ORSDiceLoss Adadelta 
0.08341 4 32 N 0-0.01 N 64 1 32 ORSDiceLoss Adadelta 
0.08059 4 32 N 0-0.001 N 64 1 32 ORSDiceLoss Adadelta 

Elastic 
Transfo
rmation 

0.08389 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02734 4 32 N N 0.01-1 64 1 32 ORSDiceLoss Adadelta 
0.07815 4 32 N N 0.05-0.95 64 1 32 ORSDiceLoss Adadelta 
0.03482 4 32 N N 0.1-0.9 64 1 32 ORSDiceLoss Adadelta 
0.02531 4 32 N N 0.15-0.85 64 1 32 ORSDiceLoss Adadelta 
0.0264 4 32 N N 0.2-0.8 64 1 32 ORSDiceLoss Adadelta 
0.08462 4 32 N N 0.25-0.75 64 1 32 ORSDiceLoss Adadelta 
0.02554 4 32 N N 0.3-0.7 64 1 32 ORSDiceLoss Adadelta 
0.02654 4 32 N N 0.35-0.65 64 1 32 ORSDiceLoss Adadelta 
0.02512 4 32 N N 0.4-0.6 64 1 32 ORSDiceLoss Adadelta 
0.02097 4 32 N N 0.45-0.55 64 1 32 ORSDiceLoss Adadelta 
0.08279 4 32 N N 0.5-0.5 64 1 32 ORSDiceLoss Adadelta 
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0.02096 4 32 N N 0.08-0.16 64 1 32 ORSDiceLoss Adadelta 

Stride 
Ratio 

0.01552 4 32 N N N 64 0.05 32 ORSDiceLoss Adadelta 
0.01697 4 32 N N N 64 0.15 32 ORSDiceLoss Adadelta 
0.01482 4 32 N N N 64 0.25 32 ORSDiceLoss Adadelta 
0.02064 4 32 N N N 64 0.35 32 ORSDiceLoss Adadelta 
0.02827 4 32 N N N 64 0.45 32 ORSDiceLoss Adadelta 
0.03631 4 32 N N N 64 0.55 32 ORSDiceLoss Adadelta 
0.08015 4 32 N N N 64 0.65 32 ORSDiceLoss Adadelta 
0.09291 4 32 N N N 64 0.75 32 ORSDiceLoss Adadelta 
0.0754 4 32 N N N 64 0.85 32 ORSDiceLoss Adadelta 
0.0357 4 32 N N N 64 0.95 32 ORSDiceLoss Adadelta 
0.02512 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.09936 4 32 N N N 64 1.1 32 ORSDiceLoss Adadelta 
0.66014 4 32 N N N 64 1.2 32 ORSDiceLoss Adadelta 
0.03369 4 32 N N N 64 1.3 32 ORSDiceLoss Adadelta 
0.15741 4 32 N N N 64 1.4 32 ORSDiceLoss Adadelta 
0.66541 4 32 N N N 64 1.5 32 ORSDiceLoss Adadelta 
0.65964 4 32 N N N 64 1.6 32 ORSDiceLoss Adadelta 

Patch 
Size 

0.02447 4 32 N N N 32 1 32 ORSDiceLoss Adadelta 
0.05351 4 32 N N N 40 1 32 ORSDiceLoss Adadelta 
0.0548 4 32 N N N 48 1 32 ORSDiceLoss Adadelta 
0.02396 4 32 N N N 56 1 32 ORSDiceLoss Adadelta 
0.02415 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.0352 4 32 N N N 72 1 32 ORSDiceLoss Adadelta 
0.02127 4 32 N N N 80 1 32 ORSDiceLoss Adadelta 
0.04146 4 32 N N N 88 1 32 ORSDiceLoss Adadelta 
0.03454 4 32 N N N 96 1 32 ORSDiceLoss Adadelta 
0.65269 4 32 N N N 104 1 32 ORSDiceLoss Adadelta 
0.04483 4 32 N N N 112 1 32 ORSDiceLoss Adadelta 
0.62585 4 32 N N N 120 1 32 ORSDiceLoss Adadelta 

Batch 
Size 

0.04399 4 32 N N N 64 1 1 ORSDiceLoss Adadelta 
0.04066 4 32 N N N 64 1 2 ORSDiceLoss Adadelta 
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0.03134 4 32 N N N 64 1 4 ORSDiceLoss Adadelta 
0.02769 4 32 N N N 64 1 8 ORSDiceLoss Adadelta 
0.02508 4 32 N N N 64 1 16 ORSDiceLoss Adadelta 
0.07723 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.02449 4 32 N N N 64 1 64 ORSDiceLoss Adadelta 
0.04177 4 32 N N N 64 1 128 ORSDiceLoss Adadelta 

Loss 
Functio

n 

0.01177 4 32 N N N 64 1 32 Categorical 
Crossentropy Adadelta 

0.10984 4 32 N N N 64 1 32 Categorical 
Hinge Adadelta 

-0.95017 4 32 N N N 64 1 32 Cosine 
Similarity Adadelta 

0.01098 4 32 N N N 64 1 32 KLDivergence Adadelta 
0.02335 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 

0.04656 4 32 N N N 64 1 32 OrsJaccardDist
ance Adadelta 

Optimiz
ation 

Algorit
hm 

0.02358 4 32 N N N 64 1 32 ORSDiceLoss Adadelta 
0.67523 4 32 N N N 64 1 32 ORSDiceLoss Adagrad 
Error 4 32 N N N 64 1 32 ORSDiceLoss Adam 
Error 4 32 N N N 64 1 32 ORSDiceLoss Adamax 

0.66221 4 32 N N N 64 1 32 ORSDiceLoss Ftrl 
Error 4 32 N N N 64 1 32 ORSDiceLoss Nadam 
Error 4 32 N N N 64 1 32 ORSDiceLoss RMSProp 

0.66406 4 32 N N N 64 1 32 ORSDiceLoss SGD 
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Table 2. U-Net 3D Parameter Testing 

Test Type Best Val 
Loss 

Initial 
filter count Brightness Gaussian 

Noise 
Elastic 

Transformation Slices Patch 
size 

Stride 
ratio 

Batch 
size Loss function Optimization 

algorithm 

Depth 
Level and 
Patch Size 

0.03128 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.01968 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02064 32 N N N 64 64 1 16 ORSDiceLoss Adadelta 
0.02389 32 N N N 64 64 1 16 ORSDiceLoss Adadelta 
0.02377 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.33079 32 N N N 64 64 1 16 ORSDiceLoss Adadelta 

Initial 
Filter 
Count 

0.03663 8 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02125 16 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02429 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03204 64 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.04873 128 N N N 32 32 1 32 ORSDiceLoss Adadelta 

Brightness 

0.03189 32 0.9-1.10 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03001 32 0.8-1.2 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03614 32 0.7-1.3 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02984 32 0.6-1.4 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02864 32 0.5-1.5 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03004 32 0.4-1.6 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03443 32 0.3-1.7 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03418 32 0.2-1.8 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03283 32 0.1-1.9 N N 32 32 1 32 ORSDiceLoss Adadelta 
0.03829 32 0.1-2.0 N N 32 32 1 32 ORSDiceLoss Adadelta 

Noise 

0.03408 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.04395 32 N 0-0.01 N 32 32 1 32 ORSDiceLoss Adadelta 
0.04563 32 N 0-0.02 N 32 32 1 32 ORSDiceLoss Adadelta 
0.04238 32 N 0-0.03 N 32 32 1 32 ORSDiceLoss Adadelta 
0.05364 32 N 0-0.03 N 32 32 1 32 ORSDiceLoss Adadelta 
0.04375 32 N 0-0.04 N 32 32 1 32 ORSDiceLoss Adadelta 
0.05653 32 N 0-0.05 N 32 32 1 32 ORSDiceLoss Adadelta 



 
 

143 

0.04794 32 N 0-0.06 N 32 32 1 32 ORSDiceLoss Adadelta 
0.06191 32 N 0-0.07 N 32 32 1 32 ORSDiceLoss Adadelta 
0.05778 32 N 0-0.08 N 32 32 1 32 ORSDiceLoss Adadelta 
0.3432 32 N 0-0.09 N 32 32 1 32 ORSDiceLoss Adadelta 
0.05595 32 N 0-1.0 N 32 32 1 32 ORSDiceLoss Adadelta 

Elastic 
Transform

ation 

0.02822 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02654 32 N N 0.08-0.16 32 32 1 32 ORSDiceLoss Adadelta 
0.02991 32 N N 0.07-0.17 32 32 1 32 ORSDiceLoss Adadelta 
0.02474 32 N N 0.06-0.18 32 32 1 32 ORSDiceLoss Adadelta 
0.04061 32 N N 0.05-0.19 32 32 1 32 ORSDiceLoss Adadelta 
0.02668 32 N N 0.04-0.20 32 32 1 32 ORSDiceLoss Adadelta 
0.03065 32 N N 0.03-0.21 32 32 1 32 ORSDiceLoss Adadelta 
0.02359 32 N N 0.02-0.22 32 32 1 32 ORSDiceLoss Adadelta 
0.02922 32 N N 0.01-0.23 32 32 1 32 ORSDiceLoss Adadelta 
0.02429 32 N N 0.01-0.60 32 32 1 32 ORSDiceLoss Adadelta 
0.0292 32 N N 0.01-0.80 32 32 1 32 ORSDiceLoss Adadelta 
0.02419 32 N N 0.01-1.00 32 32 1 32 ORSDiceLoss Adadelta 

Use 
Validation 

0.02854 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.6723 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02594 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02586 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02689 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 

Stride 
Ratio 

0.02602 32 N N N 32 32 0.25 32 ORSDiceLoss Adadelta 
0.02647 32 N N N 32 32 0.5 32 ORSDiceLoss Adadelta 
0.0321 32 N N N 32 32 0.75 32 ORSDiceLoss Adadelta 
0.02342 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.04769 32 N N N 32 32 1.25 32 ORSDiceLoss Adadelta 
0.05353 32 N N N 32 32 1.5 32 ORSDiceLoss Adadelta 
0.06333 32 N N N 32 32 1.75 32 ORSDiceLoss Adadelta 
0.08032 32 N N N 32 32 2 32 ORSDiceLoss Adadelta 
0.06158 32 N N N 32 32 2.25 32 ORSDiceLoss Adadelta 

Batch Size 0.19526 32 N N N 32 32 1 1 ORSDiceLoss Adadelta 
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0.31668 32 N N N 32 32 1 2 ORSDiceLoss Adadelta 
0.44534 32 N N N 32 32 1 4 ORSDiceLoss Adadelta 
0.07265 32 N N N 32 32 1 8 ORSDiceLoss Adadelta 
0.03108 32 N N N 32 32 1 16 ORSDiceLoss Adadelta 
0.02481 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.02413 32 N N N 32 32 1 64 ORSDiceLoss Adadelta 
0.01931 32 N N N 32 32 1 128 ORSDiceLoss Adadelta 

Loss 
Function 

0.00156 32 N N N 32 32 1 32 Categorical 
Crossentropy Adadelta 

0.07289 32 N N N 32 32 1 32 CategoricalHing
e Adadelta 

-0.96065 32 N N N 32 32 1 32 CosineSimilarit
y Adadelta 

0.00181 32 N N N 32 32 1 32 KLDivergence Adadelta 
0.02928 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 

0.05485 32 N N N 32 32 1 32 ORSJaccardDis
tance Adadelta 

Optimizati
on 

Algorithm 

0.02256 32 N N N 32 32 1 32 ORSDiceLoss Adadelta 
0.67346 32 N N N 32 32 1 32 ORSDiceLoss Adagrad 
Error 32 N N N 32 32 1 32 ORSDiceLoss Adam 
Error 32 N N N 32 32 1 32 ORSDiceLoss Adamax 

0.66914 32 N N N 32 32 1 32 ORSDiceLoss Ftrl 
0.66761 32 N N N 32 32 1 32 ORSDiceLoss Nadam 
Error 32 N N N 32 32 1 32 ORSDiceLoss RMSprop 

0.35146 32 N N N 32 32 1 32 ORSDiceLoss SGD 
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Appendix 7.3: Extracting Data With CTAn From ORS Dragonfly Deep Learning Outputs 
Created by Joshua Taylor (Last Updated: April 6, 2023) 

 
Note: This SOP assumes the reader can generate deep learning outputs (or other ROIs) in ORS 

Dragonfly. Please refer to other SOPs if this is not the case. 

 

Task 1: ORS Dragonfly 

1. Look for the ‘Properties’ tab, typically on the right-hand side. 

2. Right click on the ROI to be extracted. 

3. Hover the mouse over ‘Export >’ and select ‘ROI as binary...’ (Figure 1). 

4. A new prompt will appear asking where and what name to save the file under. 

a. The location is purely organizational and is up to the user. 

b. The name must not have any spaces. 

5. Click ‘Ok’. 
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Figure 1. Exporting ROIs from Dragonfly. 
 

Task 2: Fiji/ImageJ 

1. Open Fiji (  or  ). 

2. Drag and drop the folder of image files into Fiji. 

a. A new prompt will appear, just click ‘OK’. 

3. Once the image stack has opened, click ‘File’. 

4. Hover over ‘Save As >’ and select ‘Image Sequence...’ (Figure 2). 
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Figure 2. Saving the files in Fiji. 
 

5. A new window will emerge. Make sure the fields match Figure 3. 
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Figure 3. The three most important fields are the directory, format (TIFF) and the checkmark for 
‘Use slice labels as file names’. Since the last option is check marked, the other options do not 
matter.  
 

6. Click ‘OK’ 

 

Task 3: Bulk Rename Utility 

 

CTAn does not recognize the filetype ‘.tiff’ which Dragonfly saves as. CTAn recognizes the 

older ‘.tif’ file format, which is what Fiji saves in. This is the reason that the Fiji tasks exist. 

However, Fiji will save the document as ‘NameoftheDocument.tiff.tif’ . For some reason, it 

recognizes ‘.tiff’ as a part of the name and not the type.  

 

7. Open Bulk Rename Utility . 

8. Using the left-hand panel, navigate to the location of the files (Figure 4). 

9. In the middle panel, click on the first file and press ‘CTRL’ + ‘A’. 
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a. All files should be selected. 

10. In the remove box, increase the ‘Last n’ number until ‘.tiff’ is gone (usually 5). 

11. Click ‘Rename’. 

12. A warning will pop-up saying the action is irreversible. 

a. Take a second to make sure that you are in the right location and working with the 

right files. When you are confident that it is doing the right action, press ‘OK’. 

 
Figure 4. The Bulk Rename Utility Application default window. The file panel (green) shows 
the contents of the immediate directory in the directory window (blue). Once the files appear in 
the green panel, select the first file and press ‘Control’ + ‘A’ so all files are selected. In the 
remove panel (red), adjust the ‘Last n’ selection to remove ‘.tiff’ (5). Click the Rename (yellow) 
button to rename all of the files in just one click. 
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Task 4: CTAn 

1. Open CTAn . 

2. Click the folder icon in the top left corner (Figure 5, purple).

 
Figure 5. The default window view of CTAn with no images loaded in. 
 

3. Navigate to the images to be opened and click on the first image (Figure 6). 

a. Note the ‘Open as: Dataset’ option should now be usable. 

b. If the button is unusable or you cannot see the images, there is something wrong 

with the images that CTAn cannot recognize. 

i. There are way too many possibilities for these issues to list, but below are 

the two common problems and solutions.   

1. Problem: Cannot see the images in the CTAn window. 

a. Solution: use Fiji to convert the filetype to something 

CTAn recognizes (.tif or .bmp). 
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2. Problem: The ‘Open as: Dataset’ prompt is not editable. 

a. Solution: Use Bulk Rename Utility to ensure the image 

files all end in a 4 padded digit (eg., File_0001) and there 

are no spaces in the file name. 

 
Figure 6. CTAn’s GUI for opening a dataset. Note that an image is selected and that the ‘Open 
as: Dataset’ option is editable and not grayed out. These are signs that opening the dataset in 
CTAn will be successful. 

4. If everything is okay, click ‘Open’. 

5. Adjust the pixel size by going to ‘Image’ -> ‘Properties…’ (‘Alt’ + ‘Enter’) (Figure 7). 

6. A new window will emerge. Click ‘Change’ and enter the correct value. 
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Figure 7. Change the pixel size of the image by going to ‘Image’ -> ‘Properties…’ (purple box) 
and clicking ‘Change’ in the new pop-up window (blue box).  

7. Press the custom processing tool . 

8. Navigate to the Plug-Ins section on the right panel (Figure 8 and 9). 

 
Figure 8. The window for CTAn with a sample preloaded and the custom processing tool 
selected. The Plug-Ins section is to the right of the image. 
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Figure 9. A close up of the Plug-Ins section. 
 

9. Double click ‘Thresholding’. 

a. Adjust the values (0 and 50 work). 

10. Click the + button twice. 

a. You are adding the thresholding function twice. The only reason this function is 

needed is because CTAn will output an error saying it requires a black and white 

image.  

11. Double click 3D analysis, select ‘Additional Values’, and select all values below it 

(Figure 10). 
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Figure 10. The 3D analysis settings. 

12. Click the + button. 

13. Select ‘Individual object analysis’ and press the + button. 

14. Double click ‘Save bitmaps’ and make sure the settings are as follows (Figure 11): 

a. Apply to: Image 

b. File Format: TIF 

c. Custom Subfolder: Lacunae or Pores (whichever you are applying it to) 
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Figure 11. Save bitmaps settings. 

15. Click ‘OK’. 

16. Click the + button to add it. 

17. (Optional): Export the task list as a .ctt file. Ensures the task list remains the same and 

you can import it instead of adding each item individually. 

18. Press the play button to run through the task list. 
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Figure 12. An example of a completed task list. 
 

Table 1. A description of all tools in CTAn’s image processing window. 

CTAn Processing Tools 

Symbol Function 

 

Restores the dataset to its original imported configuration. Any effects of the tasks run 

on the dataset will be reverted. The original dataset is open and no tasks have been 

run on it so that is why the appearance of the restore symbol is gray. 

 Runs through the entirety of the task list unless paused 

 

Pauses the task that is highlighted. If you run the task list, CTAn will stop at the 

paused task. It will not skip it if tasks after it do not have the paused icon 

 

This adds a task to the task list. The tab is on the task list and not on internal so no 

tasks can be added at this time, hence its gray appearance. 
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The down arrow moves a task down on the task list. The currently selected item is at 

the bottom of the task list so it cannot be moved down. The gray appearance of the 

tool is an indicator of that. 

 

The up arrow moves a task up on the task list. This raises its priority as the first item 

on the list is applied first. 

 Removes the currently selected item from the task list. 

 Completely clears the task list of all tasks. 

 Import a task list from a file saved locally. 

 

Exports a task list into a .ctt file. This file can be imported later to save time from 

reading all of the tasks. 
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