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Abstract 

The advent of commercially accessible depth sensors, augmented reality headsets, and 

smartphones equipped with depth sensing technologies has revolutionized the acquisition of 3D 

data, enabling comprehensive spatial understanding in real-world environments. This 

advancement has led to the widespread adoption of 3D data, offering significant benefits across a 

range of applications, from augmented reality to autonomous navigation. However, the complexity 

of indoor scenes poses significant challenges for 3D computer vision systems, particularly in 

cluttered environments where background surfaces hinder the detection and analysis of relevant 

foreground objects. This PhD thesis presents a comprehensive study of perspective-independent 

point cloud processing techniques tailored to address the challenges posed by cluttered and 

complex indoor environments. The primary objectives focus on streamlining 3D computer vision 

workflows by contextually segmenting and subtracting 3D background surfaces while enhancing 

3D scene perception through accurate identification of these surfaces and spatial relationships 

within indoor scenes. Alongside the primary objectives, this thesis also addresses two sub-

objectives: size reduction of indoor point clouds and labeling of various elements within complex 

indoor scenes. To achieve these objectives, four research endeavors are presented. Initially, two 

techniques were implemented for bounding surface segmentation and removal: Iterative Region-

based RANdom SAmple Consensus (IR-RANSAC) and orientation-based M-estimator SAmple 

Consensus (MSAC). They considerably reduce the size of 3D datasets and the search space of 

various 3D computer vision applications, resulting in enhanced performance and faster processing 

times. IR-RANSAC demonstrates robust performance with a mean F1 score above 94%, while 

Orientation-based MSAC achieves a mean F1 score exceeding 98%, showcasing its superior 

performance and notable computational efficiency. In the subsequent work, PiGPDS, a 
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perspective-independent ground plane detection and segmentation method, was introduced as a 

method for detecting and segmenting ground planes in 3D complex indoor environments, where 

the position and orientation of the sensor are unrestricted and unknown. PiGPDS demonstrated 

exceptional performance, achieving an average F1 score of 96.01%, accurately segmenting ground 

surfaces of complex 3D indoor scenes acquired from diverse locations with varying pitches and 

yaws. Finally, in the concluding endeavor, PiPCS, a Perspective-Independent Point Cloud 

Simplifier, stands as a significant advancement, building upon the foundational research laid out 

in earlier studies. PiPCS redefines conventional 3D background subtraction techniques by 

contextually segmenting and eliminating 3D background components, yielding precisely 

segmented 3D foreground objects without relying on colour or historical data. PiPCS demonstrates 

outstanding performance, achieving an average F1 score of 91.27% and substantial size reductions 

averaging 74.11% across all dataset's point clouds. PiPCS optimizes 3D computer vision systems 

by streamlining their workflows, enhancing indoor scene perception, reducing point cloud size, 

and enabling precise labeling within complex indoor environments. 
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Chapter 1. Introduction 

 The emergence of commercially available depth sensors has enabled a deeper 

understanding and accurate representation of spatial information in real-world environments. 

Consequently, 3D data have become widely adopted and provide substantial benefits across 

diverse applications, ranging from human activity recognition to augmented reality. 

In general, indoor bounding surfaces (e.g., surrounding walls, and floor) comprise a large 

percentage of points within each frame of 3D point clouds, recognized as one of the primary 

representations of 3D data. These surfaces can decrease the performance of 3D computer vision 

algorithms (e.g., object segmentation and tracking) by cluttering their search space. Therefore, a 

robust bounding surface segmentation and removal technique can significantly reduce the search 

space and bring three main benefits to the computer vision systems: improving downstream results, 

speeding up downstream processes, and reducing the overall size of the point clouds. Popular plane 

segmentation methods such as Random Sample Consensus (RANSAC) [1] and its improved 

variants, are widely used to segment and remove surfaces from a point cloud. However, these 

estimators easily result in the incorrect association of foreground points to background bounding 

surfaces because of the stochasticity of randomly sampling, and the limited scene-specific 

knowledge used by these approaches. To address these challenges, I introduced two bounding 

surface removal techniques for complex 3D indoor environments. These approaches were 

developed to rely solely on the raw depth map from unorganized point clouds and support a variety 

of sensor perspectives. In my first work, IR-RANSAC [2], I proposed a robust bounding surface 

removal and size reduction technique for complex 3D indoor environments. In my subsequent 

work [3], I build upon my initial IR-RANSAC method, achieving both a marginal performance 

boost and a significant reduction in processing time compared to IR-RANSAC. 
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Several computer vision applications, such as augmented reality and robot navigation, 

benefit from identifying the location of the ground surface.  However, current 3D ground plane 

detection methods require one or more of these assumptions: the largest plane of the scene is the 

ground plane; one or multiple depth sensors are placed in specific orientations or positions; a video 

sequence of data is accessible; the input point cloud is organized; or foreground objects (e.g., a 

human body) are positioned vertically on the ground plane of the scene. To address these restrictive 

assumptions, I proposed a perspective-independent ground plane detection and segmentation 

(PiGPDS) [4] that only requires a single point cloud of an indoor scene and only assumes that the 

3D scene contains one surface parallel to its actual ground plane, which is almost always valid for 

cluttered and complex indoor environments.  

The significance of background subtraction in the domains of image processing and 

computer vision is paramount. This essential preprocessing step simplifies scene information by 

isolating important foreground objects, enhancing the efficiency and accuracy of a wide range of 

computer vision applications, such as moving object detection, and video surveillance. Depth-

based background subtraction techniques often adopt well-known 2D background modeling 

techniques, such as Mixture of Gaussians and frame difference. While these methods can address 

certain limitations of 2D background modeling methods, such as challenges related to illumination 

changes, they still inherit some of the drawbacks associated with 2D background modeling 

techniques they are derived from. To overcome these limitations, I developed a Perspective-

Independent Point Cloud Simplifier (PiPCS) [5], a native 3D background modeling solution, 

drawing from the foundation laid by the three preceding studies [2], [3], and [4]. PiPCS expands 

the conventional concept of background subtraction to encompass the identification, segmentation, 

and removal of 3D background bounding surfaces, such as walls, windows, curtains, ceilings, and 
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floors, from indoor point clouds. Unlike conventional background subtraction techniques, PiPCS 

contextually segments and eliminates 3D background components, yielding precisely segmented 

3D foreground objects without relying on colour or historical data. PiPCS optimizes 3D computer 

vision systems by streamlining their workflows, enhancing indoor scene perception, reducing point 

cloud size, and enabling precise labeling within complex indoor environments. 

The motivation for developing these perspective-independent solutions that exclusively 

utilize 3D coordinates of foreground objects is rooted in the broader objective of creating 

intelligent, contextually aware assistive technologies tailored for individuals facing a variety of 

challenges, such as neurodegenerative conditions, cognitive disabilities, and the elderly. These 

technologies are designed to facilitate monitoring within the privacy of users' homes or private 

healthcare settings. By relying solely on the depth information, the system mitigates errors in 

conditions where colour information is limited or absent, such as in dimly lit indoor environments. 

Furthermore, depth-based computer vision solutions inherently enhance privacy by capturing only 

the 3D coordinates of foreground objects, such as the human body, without relying on identifying 

colour data. The overarching goal of this project is to develop plug-and-play monitoring systems, 

enabling users to install them independently without requiring expert assistance. This user-centric 

approach acknowledges that sensor placement may be influenced by convenience rather than 

optimal performance, highlighting the need for robust point cloud processing techniques that can 

adapt to various challenging environments while supporting varied sensor positions and 

orientations. 
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1.1 Research Objectives 

The primary objectives of this research are to streamline the intricate workflows of 3D 

computer vision applications and enhance 3D indoor scene perception through the development 

and integration of perspective-independent point cloud processing techniques.  The detailed 

breakdown of these objectives is presented below. 

• Objective 1. Streamlining 3D Computer Vision Workflows 

The first objective centers on simplifying 3D indoor point clouds, i.e., contextually 

segmenting and subtracting 3D background bounding surfaces (e.g., walls, curtains, 

windows, floors, and ceilings) while retaining segmented 3D foreground objects 

within complex indoor scenes. 

• Objective 2. Enhancing 3D Indoor Scene Perception 

The second objective focuses on analyzing the segmented 3D background bounding 

surfaces to identify their elements like the ceiling, floor, and surrounding walls. The 

specific emphasis is on accurately identifying the ground plane because once 

known, it inherently provides information about the ceiling and surrounding walls. 

This approach enables a comprehensive understanding of the spatial relationships 

among 3D background elements and 3D foreground objects within indoor scenes. 

In addition to the primary objectives, this research also has two sub-objectives: size 

reduction of indoor point clouds and labeling of various components within complex indoor 

scenes. Further details regarding these two objectives are outlined below. 

• Sub-Objective 1. Size Reduction 

This objective aims to reduce the size of 3D indoor point clouds by removing non-

essential large background bounding surfaces, effectively addressing 

computational and storage challenges. Additionally, it can enhance data 

transmission efficiency by strategically subtracting unchanging 3D background 
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from point cloud frames and transmitting a single instance alongside the 3D 

foreground objects of each frame. 

• Sub-Objective 2. Labeling 

This objective serves as a robust labeling tool, accurately segmenting and labeling 

both 3D background and 3D foreground objects within indoor point clouds, 

benefiting machine learning-based computer vision applications. 

1.2 Research Contributions 

This research expands the conventional concept of background modeling and subtraction 

to contextually segment and subtract 3D background bounding surfaces (e.g., ceiling, floor, and 

surrounding walls) and retain segmented 3D foreground objects within complex indoor scenes 

without relying on colour and historical information. This study is fundamentally focused on 

optimizing 3D computer vision workflows, presenting four comprehensive solutions that 

contribute substantially to the advancements in the field of 3D point cloud processing. 

First, it serves as an essential preprocessing step for a variety of 3D computer vision 

applications, including 3D object segmentation, human tracking, and human activity recognition. 

As a preprocessing step, it effectively narrows the search space for downstream processes by 

segmenting 3D background and foreground objects of indoor scenes, allowing for the easy 

elimination of only background objects in tasks requiring foreground identification, resulting in 

notable performance and accuracy improvements of these applications. 

Second, it can significantly reduce the size of 3D indoor point clouds by eliminating their 

large background bounding surfaces, which are non-essential for the majority of 3D computer 

vision applications, thereby yielding a streamlined and compact dataset. This contribution 

addresses a critical challenge in the field, where large point cloud datasets can pose significant 
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computational and storage burdens. In addition, it has the potential to optimize data transmission 

processes by first removing the unchanging and redundant 3D background from all point cloud 

frames and then transmitting one instance of the 3D background alongside the 3D foreground 

objects of each frame. This supplementary application can contribute to data transmission 

efficiency and resource optimization. 

Third, it significantly advances 3D indoor scene perception by accurately segmenting all 

points associated with each boundary of the 3D background, including the ceiling, floor, and 

surrounding walls within an indoor scene. This capability is particularly beneficial in applications 

such as virtual reality, where achieving an accurate interpretation of 3D space is crucial for 

immersive experiences and precise scene representation.  

Fourth, it can serve as a labeling tool by accurately segmenting both 3D background and 

3D foreground objects within indoor point clouds, providing benefits to machine learning-based 

computer vision applications.   

The research and its derived solutions distinguish themselves through the following key 

advantages: 

• Perspective independence: supporting a wide range of sensor heights relative to the 

ground, along with different pitches and yaws, adapting to almost all practical 

sensor perspectives. This is critical to ensuring optimal system performance and 

consistent results in diverse and non-ideal sensor setups and data collection 

scenarios. 

• Privacy enhancement: prioritizing privacy by exclusively capturing 3D coordinates 

of foreground objects, such as the human body, without the need for descriptive 

colour data. This characteristic makes it particularly well-suited for applications in 

sensitive environments, such as private healthcare settings where monitoring 

patients or elderly individuals requires privacy protection. 
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• Universal sensor and data compatibility: relying solely on the raw depth map from 

unorganized point clouds, confirming its adaptability to a range of sensor types. 

This key advantage enables its application across a wide range of 3D sensors, 

making it a versatile solution that seamlessly works with both organized and 

unorganized point clouds. 

1.3 Literature Review 

To avoid repetition due to the manuscript-style presentation of this thesis, a summary of 

the literature review is provided in this section. For a more comprehensive and detailed literature 

review, readers are encouraged to refer to the following chapters. 

1.3.1 RGB, Depth and RGBD Data 

RGB data has been highly valuable in computer vision due to its comprehensive colour 

information, capturing the diverse visual world. Algorithms for analyzing RGB data often rely on 

colour variations, patterns, and contrasts to extract meaningful information from images or video 

streams. Recent advancements in Artificial Intelligence (AI), fueled by the availability of large 

collections of 2D images, have made RGB-based computer vision methods even more effective. 

These AI-powered approaches utilize deep learning and neural networks to better understand RGB 

data, enabling accurate analysis and interpretation of visual scenes. On the other hand, RGB-based 

computer vision applications, such as background modeling, encounter various challenges, 

including bootstrapping, colour camouflage, illumination changes, intermittent motion, and 

foreground shadows, as discussed in [6] and [7]. 

In contrast to RGB sensors, depth sensors such as stereo vision, structured light, time-of-

flight (ToF), and LiDAR offer spatial information about the scene, holding the potential to mitigate 

some of the challenges of the RGB-based methods. Stereo vision sensors (e.g., ZED X [8]) 
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function by analyzing the disparities in perspective between images captured by a pair of cameras, 

enabling the estimation of depth information. Structured light sensors (e.g., Microsoft Kinect V1) 

operate by projecting a predefined infrared (IR) light pattern onto a scene. When this pattern 

interacts with the scene, the pattern becomes distorted. Subsequently, an infrared camera captures 

this distorted pattern, resulting in a depth map that represents the scene's 3D structure. ToF sensors 

(e.g., Microsoft Kinect V2, Microsoft Azure Kinect [9], and ToF sensor integrated in Microsoft 

HoloLens headset [10]) operate by emitting pulses of infrared light and measuring the time it takes 

for these pulses to travel to an object and bounce back to the camera's sensor. This timing 

information is then used to calculate the distance from the camera to various points on the object's 

surface, yielding improved accuracy and performance in depth sensing compared to structured 

light sensors. Similarly, LiDAR scanners, such as those integrated into devices like the Apple 

Vision Pro [11] and iPhone 15 Pro [12], also emit light pulses and measure the time it takes for 

these pulses to reflect off objects. However, LiDAR scanners use laser pulses, enabling them to 

provide highly detailed 3D representations of the environment with increased precision and range 

compared to ToF sensors. 

While depth data are less affected by the challenges that impact RGB-based computer 

vision methods, particularly background modeling, relying exclusively on depth data can also 

present its own set of challenges, including depth shadows, depth camouflage, sensor distance 

limitations, and specular surface reflections, as discussed in [7] and [13]. 

Hence, many 3D computer vision applications aim to leverage the complementary 

relationship between colour and depth data acquired from RGBD sensors. These sensors integrate 

RGB and depth data to construct a 3D point cloud, capturing colour through RGB cameras while 

simultaneously measuring object distances using depth sensors. The registration of these data 
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generates a detailed 3D representation of the environment, with each voxel in the point cloud 

containing both colour and 3D coordinates. 

Point cloud data can be categorized into two main types: organized and unorganized 

datasets. Organized datasets are structured in a matrix-like format, allowing easy access to voxels 

based on their spatial or geometric relationships using indexing. In contrast, unorganized datasets 

lack such defined relationships between adjacent voxels, and the voxel coordinates are stored as 

an unordered one-dimensional array. Converting an organized point cloud to an unorganized one 

is a straightforward task, whereas the reverse conversion process is notably more intricate and 

resource-intensive. As spatial relationships between voxels are maintained in organized point 

clouds, point cloud processing becomes less challenging. Nevertheless, computer vision methods 

tailored for unorganized datasets are universal [14], meaning they can also be applied to organized 

datasets. 

Although RGBD approaches have shown enhanced performance compared to depth-based 

techniques in certain contexts, they come with their own set of limitations. RGBD methods 

demand more computational resources due to two main factors: the fusion of depth and colour data 

to create a point cloud and the simultaneous processing of both colour and depth information. 

Additionally, RGBD-based methods are more error-prone in situations where colour information 

is limited or absent, such as dark indoor environments, compared to their depth-based counterparts. 

Furthermore, depth-based computer vision solutions, by design, promote privacy as they 

exclusively capture 3D coordinates of foreground objects (e.g., the human body) without reliance 

on more identifying colour data. This makes them suitable for applications like human tracking or 

pose estimation in private settings, such as monitoring patients or elderly individuals within the 

privacy of their homes. 
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1.3.2 Plane Segmentation 

In general, plane segmentation methods can be categorized into three categories: model 

fitting-based methods, region growing-based methods, and clustering feature-based methods. 

1.3.2.1 Model Fitting-based Methods 

Random Sample Consensus (RANSAC) [1] and Hough transform [15] are the most 

commonly used model fitting-based methods for plane segmentation. The Hough transform is a 

voting technique for identifying objects that can be modeled parametrically, such as lines, planes, 

and spheres. Every point is transformed into a unique function (e.g., a sinusoid when modeling 

lines) in a discretized parameter space. Objects of interest can then be extracted by selecting the 

maximal intersections between the functions in the discretized parameter space, where the spatial 

tolerance for model fitting (e.g., to compensate for sensor resolution, noise, and object surface 

variations) can be accommodated by changing the resolution of the parameter space. The Hough 

transform has been successfully used for 3D plane segmentation in several publications (e.g., [16] 

and [17]). Unfortunately, although Hough transform-based methods can robustly segment 3D 

objects, they necessitate large amounts of memory and significant computational time [18], and 

their results depend significantly on the proper selection of segmentation parameters [19]. More 

importantly, Hough transform is unable to discriminate between voxels that lie within a 

parameterized model (i.e., inliers) and outside the model (i.e., outliers) since spatial relationships 

are not preserved in the Hough parameter space. The result is that foreground points that belong 

to objects that are spatially close to the parameterized background model will often be associated 

with the model, and ultimately the background scene. 

The RANSAC algorithm begins with a random selection of data points that estimate the 

corresponding model parameters (e.g., three points for a plane). Then, the remaining points are 
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examined to determine how many of them are well-approximated by the model by identifying 

which points are within a fixed threshold (e.g., the orthogonal distance from the planar model). 

This process is iteratively repeated a user-defined number of times. Terminally, the RANSAC 

algorithm returns the model with the highest percentage of inliers. Many researchers have 

proposed RANSAC-based algorithms for 3D plane segmentation, such as [19], [20], and [21]. 

According to a performance comparison by Tarsha-Kurdi et al. [22], the RANSAC 

algorithm outperforms the Hough transform approach for 3D roof plane segmentation in terms of 

both speed and accuracy. However, RANSAC suffers from spurious plane detection in complex 

3D indoor environments [21]. 

1.3.2.2 Region Growing-Based Methods 

In general, region growing-based methods have two main stages. First, they pick a seed 

point and then merge the neighbouring points or voxels that comply with the predefined criteria 

(e.g., similar normal vector). Several researchers proposed point-based, voxel-based, and hybrid 

region growing techniques for 3D point cloud segmentation. Tóvári and Pfeifer [23] proposed a 

point-based region growing algorithm that merges adjacent points to a seed region based on their 

normal vectors and distance to the adjusting plane. Nurunnabi et al. [24] utilized the same criteria 

but with a different seed point selection approach and a better normal vectors estimation. 

Voxel-based region growing algorithms (e.g., [25] and [26]) improve the speed and 

robustness of point-based methods by voxel-wise processing of the 3D point clouds. Xiao et al. 

[27] proposed a 3D plane segmentation method based on a hybrid region growing approach 

utilizing a subwindow and a single point as growth units. Although their technique is significantly 

faster than the point-based region growing approach, it was intended for only organized point 

clouds. Vo et al. [18] proposed a fast plane segmentation technique for urban environments. The 
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method consists of two main stages: first, a coarse segmentation was achieved using an octree-

based region growing approach, then a point-based process refined the results by adding 

unassigned points into incomplete segments. 

Region growing-based methods are easy to employ for 3D plane segmentation, primarily 

for organized point clouds. However, their output results depend on the growing criteria, the seed 

point selection, and the textures or roughness of planes [28]. Furthermore, they are not robust to 

occlusion, point density variation, and noise [29]. 

1.3.2.3 Clustering Feature-Based Methods 

Clustering feature-based methods adopt a data clustering approach based on characteristics 

of planar surfaces, such as normal vector attributes. Filin [30] proposed a clustering method based 

on an attribute vector comprising a point location, its tangent plane's parameters, and the height 

difference between the point and its adjacent points. In another work, Filin and Pfeifer [31] 

computed the point features using a slope adaptive neighborhood system and employed a mode-

seeking algorithm to extract clusters. Then, they extended or merged those clusters with their 

adjacent points or clusters if they share analogous standard deviations and surface parameters. 

Czerniawski et al. [32] applied a simple density-based clustering algorithm to a normal vector 

space (i.e., a Gaussian sphere). The dense clusters on the Gaussian sphere represent the directions 

perpendicular to large planes. Zhou et al. [33] proposed a clustering feature-based method for 

segmenting planes in terrestrial point clouds. First, they created a 4D parameter space using planes’ 

normal vectors and their distance to the origin. Then, they segmented the planar surfaces by 

applying the Iso cluster unsupervised classification method. 

Despite the efficiency of clustering feature-based methods, employing multi-dimensional 

features in large point clouds is computationally intensive [18]. Furthermore, they are sensitive to 
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noise and outliers [34]. Moreover, the clustering segmentation approaches cannot reliably segment 

the edge points as these points may have different feature vectors compared to the surface points. 

1.3.3 Ground Plane Detection 

Most common conventional 2D methods for estimating the ground plane are homography-

based, such as [35],  [36], and [37]. These methods rely on certain assumptions; for example, the 

camera's field of view should be parallel to the ground, and the ground plane should dominate most 

of the field of view. Compared to conventional 2D methods, deep learning-based techniques such 

as [38], [39] and [40] can provide more accurate results; however, their ability to provide accurate 

depth estimation in unknown scenes is limited by the single-view scale ambiguity [41]. Due to the 

limitations imposed by these restrictive assumptions and the fact that 2D data are not sufficient to 

fully represent the spatial relationships between the ground plane and other objects in an indoor 

scene, many researchers have opted for 3D ground plane detection as a more effective solution for 

cluttered and dynamic indoor environments. 

Many conventional 3D techniques for identifying the ground plane use one or more of the 

following: the Hough transform algorithm [42], the RANSAC algorithm [43], or normal vectors 

of the scene's surfaces. For instance, Borrmann et al. [44] utilized a 3D Hough transform and a 

ball-shaped accumulator for ground plane detection in 3D point clouds, while Zeineldin and El-

Fishawy [45] proposed an enhanced RANSAC algorithm to identify the ground plane and 

obstacles for individuals with visual impairments. However, these model fitting-based methods 

can only work if the ground plane is the largest in the scene; additionally, the RANSAC algorithm 

is prone to detecting spurious planes in 3D complex indoor environments [46]. Holz et al. [47] 

proposed a normal-based plane segmentation method for mobile navigation in indoor 

environments. Although their approach can successfully identify the ground plane of indoor 
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scenes, it is restricted to structured point clouds and only functions properly when the sensor's 

pitch angle is zero. To overcome these limitations, Zhang and Czarnuch [48] proposed a 

perspective-independent ground estimation method by processing a video sequence of RGB-D 

data. Their method can successfully detect the ground plane of dynamic indoor scenes regardless 

of ground plane size and camera orientation but requires at least one human body to be visible and 

moving in the RGB-D camera's field of view. 

1.3.4 Depth-based Background Subtraction 

Depth-based background subtraction techniques center around exploiting the distinct 

spatial relationships between foreground objects and their surrounding backgrounds within the 

depth data. These methods often adopt well-known 2D background modeling techniques, 

including thresholding, single Gaussian [49], Mixture of Gaussians (MoG) [50], and frame 

difference, and are employed across a spectrum of 3D computer vision applications such as fall 

detection [51], human tracking [52] and gesture recognition [53]. 

Thresholding, a fundamental 2D segmentation technique, serves as a basic method for 

background subtraction in depth maps. For instance, Cinque et al. [54] employed Otsu thresholding 

to isolate foreground objects in the depth map and subsequently refined the segmented foregrounds 

by applying region growing and morphological operations. 

The single Gaussian and MoG models have been widely utilized for depth-based 

background subtraction. For example, Rougier et al. [51] employed the single Gaussian model for 

fall detection among the elderly, and Zhang et al. [55] embraced it as a key initial step in object 

detection. Frick et al. [56] employed the MoG algorithm to isolate foreground regions from the 

background for creating 3D-TV contents.  
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The well-established frame difference method, initially developed for background 

subtraction of 2D videos, has demonstrated adaptability in scenarios where only depth information 

is available. This method has been employed in several 3D computer vision applications, including 

human tracking [52] and gesture recognition [53], to segment foreground objects, such as human 

bodies. 

While the aforementioned depth-based background subtraction techniques can address 

certain limitations of 2D background modeling methods, such as challenges related to illumination 

changes, they still inherit some of the drawbacks associated with 2D background modeling 

techniques they are derived from. For example, choosing the suitable depth threshold can still be 

challenging when the background itself is dynamic or contains moving objects, often requiring 

manual tuning based on the depth map's characteristics. 

Several depth-based deep learning methods are available for outdoor point cloud 

processing, particularly for semantic segmentation (e.g., [57], [58], and [59]). These methods have 

shown significant advancements in accurately classifying and labeling point cloud data, essential 

for various applications such as autonomous driving and urban scene understanding. These 

approaches are trained on large labeled datasets, such as the SemanticKITTI dataset [60], which 

provides extensive outdoor scenes for robust model training. However, most 3D indoor semantic 

segmentation methods are based on RGBD data. In addition, no depth-based deep learning 

methods are currently available in the existing literature for 3D background subtraction or 

simplifying 3D point clouds of indoor environments. 
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1.4 Thesis Organization 

This PhD thesis adopts a manuscript-style format. The current chapter introduces the thesis, 

detailing its objectives, contributions, literature review and structure. Chapters 2 through 5 each 

contain a manuscript that has been published to peer-reviewed publications.  

Chapter 2 was published as an article titled "Automatic Super-Surface Removal in 

Complex 3D Indoor Environments Using Iterative Region-Based RANSAC" in the journal 

Sensors in May 2021. 

Chapter 3 was presented as a conference paper titled "Bounding Surface Segmentation and 

Removal in Complex 3D Indoor Environments Using Orientation-based MSAC" at the 30th 

Annual Newfoundland Electrical and Computer Engineering Conference (NECEC), St. John's, 

Canada, in November 2021. 

Chapter 4 was presented as a conference paper titled "PiGPDS: Perspective Independent 

Ground Plane Detection and Segmentation for Complex 3D Indoor Scenes" at the IEEE 

International Conference on Digital Image Computing: Techniques and Applications (DICTA), 

Port Macquarie, Australia, in November 2023. 

Chapter 5 was published as an article titled "PiPCS: Perspective Independent Point Cloud 

Simplifier for Complex 3D Indoor Scenes" in the journal IEEE Access in August 2024. 

Finally, chapter 6 provides a concise summary of the thesis, along with insights into 

potential future research paths. Copyright permissions to reproduce manuscripts in this thesis have 

been obtained as necessary. 
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advertising or promotional purposes or for creating new collective works for resale or redistribution, please 
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2.1 Abstract 

Removing bounding surfaces such as walls, windows, curtains, and floor (i.e., super-surfaces) 

from a point cloud is a common task in a wide variety of computer vision applications (e.g., object 

recognition and human tracking). Popular plane segmentation methods such as Random Sample 

Consensus (RANSAC), are widely used to segment and remove surfaces from a point cloud. 

However, these estimators easily result in the incorrect association of foreground points to 

background bounding surfaces because of the stochasticity of randomly sampling, and the limited 

scene-specific knowledge used by these approaches. Additionally, identical approaches are 

generally used to detect bounding surfaces and surfaces that belong to foreground objects. 

Detecting and removing bounding surfaces in challenging (i.e., cluttered and dynamic) real-world 

scenes can easily result in the erroneous removal of points belonging to desired foreground objects 

such as human bodies. To address these challenges, we introduce a novel super-surface removal 

technique for 3D complex indoor environments. Our method was developed to work with 

unorganized data captured from commercial depth sensors and supports varied sensor 

perspectives. We begin with preprocessing steps and dividing the input point cloud into four 

overlapped local regions. Then, we apply an iterative surface removal approach to all four regions 

to segment and remove the bounding surfaces. We evaluate the performance of our proposed 

method in terms of four conventional metrics: specificity, precision, recall, and F1 score, on three 

generated datasets representing different indoor environments. Our experimental results 

demonstrate that our proposed method is a robust super-surface removal and size reduction 

approach for complex 3D indoor environments while scoring the four evaluation metrics between 

90% and 99%. 
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Keywords – RANSAC, point cloud, bounding surface removal, wall removal, 3D background 

subtraction, 3D plane segmentation, 3D preprocessing technique, 3D size reduction 

2.2 Introduction 

In image processing, background subtraction is widely used in object detection and 

tracking approaches [1–3] with broad applications such as human tracking [4, 5], face recognition 

[6], traffic management [7], and surveillance systems [8,9]. Background subtraction is typically a 

preprocessing phase used to identify and differentiate the foreground pixels (representing objects 

of interest) from the background pixels (representing uninteresting information). The background 

pixels can then be subtracted or removed from the original image, leaving only the foreground 

pixels, which reduces the storage space requirements, reduces the computational complexity, and 

improves the overall algorithm performance of downstream image processing techniques. 

Established 2D background subtraction approaches are based on static background segmentation 

methods [10], adaptive Gaussian mixture models [11,12], real-time codebook models [13,14], and 

independent component analysis-based techniques [15,16]. Although advanced 2D background 

subtraction techniques can handle gradual illumination changes and repetitive movements in the 

background, they perform poorly in the presence of shadows or foreground regions with colours 

similar to the background [17]. The release of commercially available and inexpensive depth 

sensors such as the Microsoft Kinect opened new doors for improved background subtraction 

techniques because of the availability of additional depth data associated with each pixel of colour 

data. Depth sensor (RGB-D) systems are more robust for background detection problems 

compared to classic colour-based systems because depth data are largely invariant to colour, 

texture, shape, and lighting [18,19]. As a result of the advantages of combined depth and colour 

information, data from RGB-D sensors have also been widely used in background segmentation 



38 
 

methods (e.g., [17,20,21]) which have been thoroughly reviewed (see [22] for a comprehensive 

review of different 3D background subtraction methods and their capabilities in solving common 

background segmentation challenges). 

Background subtraction methods are generally used to analyze individual images and 

identify the foreground by first estimating a reference background that is developed from historical 

information obtained from videos or sequences of images. Therefore, the classic application of 2D 

background subtraction is separating dynamic or moving objects from a relatively static or slow-

changing background scene. However, RGB images only contain intensity information and spatial 

information that is largely restricted to the two dimensions of the image that are perpendicular to 

the camera's perspective. Accordingly, identifying the boundaries between objects, or conversely 

identifying object interactions or contact, is limited mainly to detectable intensity differences. In 

applications that utilize RGB-D data, interactions or contact between objects and object spatial 

relationships can be more directly measured. 

Furthermore, registration between depth and RGB data allows traditional 2D background 

subtraction approaches to be supplemented with additional depth-based approaches (e.g., [23] and 

[24]), and further allows RGB-D data to be represented as 3D point clouds [25]. For example, 

reliably identifying and removing static background components such as roads and walls before 

modeling the background can result in both improved background subtraction and improved 

foreground segmentation using both 2D and RGB-D data; improvements that to our knowledge 

have only been realized through approaches that require additional data and computation, such as 

motion estimation between consecutive frames (e.g., [26]). Identifying static background 

components suffers from the same limitations as modeling the entire background using 2D data, 

suggesting that little benefit is afforded by first removing these background objects, then modeling 
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the background. However, with RGB-D data, parametrically modeled objects (e.g., planes, 

spheres, cones, cylinders, and cubes) are far more reliably detectable. As a result, researchers have 

attempted to segment or remove large planar surfaces (e.g., walls, ceiling, and floor surfaces) as a 

preprocessing or fundamental step before all other algorithms (e.g., [27–29]). 

In general, large planar surfaces comprise a large percentage of points within each frame 

of RGB-D data captured in indoor environments. However, outside specific applications that seek 

to identify significant surfaces (e.g., ground plane detection [30]), large planar surfaces are not 

often the objects of interest in 3D computer vision applications. Notably, smaller planar surfaces 

(e.g., tabletops, chair seats and backs, desks) are more likely to be of interest than larger surfaces 

at the boundaries of the scene. Furthermore, the large bounding surfaces can decrease the 

performance of 3D computer vision algorithms (e.g., object segmentation and tracking) by 

cluttering their search space. Therefore, a robust removal technique for points that belong to 

surfaces at the outer boundaries of the RGB-D data can significantly reduce the search space and 

bring three main benefits to the computer vision systems: improving downstream results, speeding 

up downstream processes, and reducing the overall size of the point clouds. We refer to these large 

surfaces, which may include points from multiple planes or objects (e.g., points that represent a 

wall, window, and curtains) at the extremes of the point clouds as super-surfaces in the context of 

background subtraction applications. Our objective is to develop a robust technique of removing 

super-surfaces from RGB-D data captured from indoor environments and represented as point 

clouds. Our intention is that our super-surface removal technique will function as a pre-processing 

step, improving existing computer vision techniques, and reducing storage requirements, without 

removing any foreground data. 
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2.2.1 Related Work 

Point cloud data are classified as either organized or unorganized datasets. Organized 

datasets are represented by a matrix-like structure, where the data (i.e., voxels) are accessible by 

index, usually according to their spatial or geometric relationship. Unlike organized point clouds, 

the relationships between adjacent voxels of unorganized datasets are unknown, and the data are 

simply stored as a one-dimensional, unsorted array. Data from RGB-D sensors are typically stored 

as organized point clouds, where indexes are referenced according to the spatial resolution of the 

sensor. However, point cloud pre-processing steps such as down-sampling often produce 

unorganized point clouds. While it is trivial to convert an organized to an unorganized point cloud, 

the converse is much more complicated and costly. Since spatial relationships between voxels are 

preserved, plane detection is less challenging for organized point clouds. However, computer 

vision approaches designed for unorganized datasets are universal [31] (i.e., they can also be used 

for organized datasets), so a robust plane detection approach must work with unorganized datasets 

and not rely on the spatial relationship of voxels as derived from their storage indices. In general, 

plane segmentation methods can be categorized into three categories: model fitting-based methods, 

region growing-based methods, and clustering feature-based methods. 

2.2.1.1 Model Fitting-based Methods 

Random Sample Consensus (RANSAC) [32] and Hough transform [33] are the most 

commonly used model fitting-based methods for plane segmentation. The Hough trans-form is a 

voting technique for identifying objects that can be modeled parametrically, such as lines, planes, 

and spheres. Every point is transformed into a unique function (e.g., a sinusoid when modeling 

lines) in a discretized parameter space. Objects of interest can then be extracted by selecting the 

maximal intersections between the functions in the discretized parameter space, where the spatial 
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tolerance for model fitting (e.g., to compensate for sensor resolution, noise, and object surface 

variations) can be accommodated by changing the resolution of the parameter space. The Hough 

transform has been successfully used for 3D plane segmentation in several publications (e.g., 

[34,35]). Unfortunately, although Hough transform-based methods can robustly segment 3D 

objects, they necessitate large amounts of memory and significant computational time [36], and 

their results depend significantly on the proper selection of segmentation parameters [37]. More 

importantly, Hough transform is unable to discriminate between voxels that lie within a 

parameterized model (i.e., inliers) and outside the model (i.e., outliers) since spatial relationships 

are not preserved in the Hough parameter space. The result is that foreground points that belong 

to objects that are spatially close to the parameterized background model will often be associated 

with the model, and ultimately the background scene. 

The RANSAC algorithm begins with a random selection of data points that estimate the 

corresponding model parameters (e.g., three points for a plane). Then, the remaining points are 

examined to determine how many of them are well-approximated by the model. Terminally, the 

RANSAC algorithm returns the model with the highest percentage of inliers that are within a fixed 

threshold (e.g., the orthogonal distance from the planar model). Many researchers have proposed 

RANSAC-based algorithms for 3D plane segmentation, such as [37–39]. 

Awwad et al. [37] proposed a RANSAC-based segmentation algorithm that first clusters 

the data points into small sections based on their normal vectors and then segments the planar 

surfaces. This implementation of RANSAC prevents the segmentation of spurious surfaces in the 

presence of parallel-gradual planes such as stairs. Chen et al. [38] developed an improved 

RANSAC algorithm through a novel localized sampling technique and a region growing based 

approach. Their proposed method, intended to segment polyhedral rooftops from noisy Airborne 
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Laser Scanning (ALS) point clouds, is based on the assumption that rooftops comprise only planar 

primitives. Li et al. [39] proposed an enhanced RANSAC algorithm based on Normal Distribution 

Transformation (NDT) cells to prevent segmenting spurious planes. The algorithm considers each 

NDT cell rather than each point. After dividing the data points into a grid of NDT cells, a 

combination of the RANSAC algorithm and an iterative reweighted least-square approach fit a 

plane in each cell. Finally, a connected-component approach extracts large planes and eliminates 

points that do not belong to planes. Although the proposed method can detect 3D planes more 

reliable and faster than the standard RANSAC, it requires cell size tuning for different datasets. 

According to a performance comparison by Tarsha-Kurdi et al. [40], the RANSAC 

algorithm outperforms the Hough transform approach for 3D roof plane segmentation in terms of 

both speed and accuracy. However, RANSAC suffers from spurious plane detection in complex 

3D indoor environments [39]. 

2.2.1.2 Region Growing-Based Methods 

In general, region growing-based methods have two main stages. First, they pick a seed 

point and then merge the neighbouring points or voxels that comply with the predefined criteria 

(e.g., similar normal vector). Several researchers proposed point-based, voxel-based, and hybrid 

region growing techniques for 3D point cloud segmentation. Tóvári and Pfeifer [41] proposed a 

point-based region growing algorithm that merges adjacent points to a seed region based on their 

normal vectors and distance to the adjusting plane. Nurunnabi et al. [42] utilized the same criteria 

but with a different seed point selection approach and a better normal vectors estimation. 

Voxel-based region growing algorithms (e.g., [43,44]) improve the speed and robustness 

of point-based methods by voxel-wise processing of the 3D point clouds. Xiao et al. [45] proposed 

a 3D plane segmentation method based on a hybrid region growing approach utilizing a 
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subwindow and a single point as growth units. Although their technique is significantly faster than 

the point-based region growing approach, it was intended for only organized point clouds. Vo et 

al. [36] proposed a fast plane segmentation technique for urban environments. The method consists 

of two main stages: first, a coarse segmentation was achieved using an octree-based region 

growing approach, then a point-based process refined the results by adding unassigned points into 

incomplete segments. 

Region growing-based methods are easy to employ for 3D plane segmentation, primarily 

for organized point clouds. However, their output results depend on the growing criteria, the seed 

point selection, and the textures or roughness of planes [46]. Furthermore, they are not robust to 

occlusion, point density variation, and noise [47]. 

2.2.1.3 Clustering Feature-Based Methods 

Clustering feature-based methods adopt a data clustering approach based on characteristics 

of planar surfaces, such as normal vector attributes. Filin [48] proposed a clustering method based 

on an attribute vector comprising a point location, its tangent plane's parameters, and the height 

difference between the point and its adjacent points. In another work, Filin and Pfeifer [49] 

computed the point features using a slope adaptive neighborhood system and employed a mode-

seeking algorithm to extract clusters. Then, they extended or merged those clusters with their 

adjacent points or clusters if they share analogous standard deviations and surface parameters. 

Czerniawski et al. [28] applied a simple density-based clustering algorithm to a normal vector 

space (i.e., a Gaussian sphere). The dense clusters on the Gaussian sphere represent the directions 

perpendicular to large planes. Zhou et al. [50] proposed a clustering feature-based method for 

segmenting planes in terrestrial point clouds. First, they created a 4D parameter space using planes’ 
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normal vectors and their distance to the origin. Then, they segmented the planar surfaces by 

applying the Iso cluster unsupervised classification method. 

Despite the efficiency of clustering feature-based methods, employing multi-dimensional 

features in large point clouds is computationally intensive [36]. Furthermore, they are sensitive to 

noise and outliers [51]. Moreover, the clustering segmentation approaches cannot reliably segment 

the edge points as these points may have different feature vectors compare to the surface points. 

2.2.2 Contributions 

Several 3D plane segmentation methods can satisfactorily detect different planar surfaces 

for various computer vision applications. However, to our knowledge, no approaches have been 

developed specifically for bounding surface removal, particularly in complex environments: 

environments that are cluttered, and where the placement of a depth sensor is not ideal. 

Additionally, existing segmentation approaches generally segment foreground points that belong 

to parametrically modeled objects of interest (e.g., planes, spheres, cones, cylinders, and cubes), 

rather than with the intention of removing background points belonging to the bounding surfaces. 

Therefore, existing approaches can easily remove critical foreground objects (or portions of 

foreground objects), significantly impacting the segmentation accuracy of semantic information. 

To overcome these limitations, we propose a method of removing background bounding surfaces 

(i.e., super-surfaces, such as walls, windows, curtains, and floor). Our novel method is particularly 

suited to more challenging and cluttered indoor environments, where differentiating between 

foreground and background points is complicated. Accordingly, our objective is to develop a 

robust background super-surface removal method that can support a wide range of sensor heights 

relative to the ground (i.e., support varied sensor perspectives) for organized and unorganized point 
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clouds. Additionally, our approach must ensure that foreground objects, and points belonging to 

those objects, are preserved during super-surface removal. 

Our method significantly reduces the search space, and it can considerably reduce the size 

of 3D datasets, depending on the number and size of the super-surfaces in each point cloud. 

Furthermore, when used as a preprocessing step, our approach can improve the results and the 

running time of different 3D computer vision methods such as object recognition and tracking 

algorithms. The remainder of this paper is organized as follows. In the next section, we describe 

our proposed 3D super-surface removal method. In Section 2.4, we provide our experimental 

results and the evaluation of our proposed method. In Section 2.5, we present our discussion and 

future work, followed by conclusions in Section 2.6. 

2.3 The Iterative Region-Based RANSAC 

Our Iterative Region-based RANSAC (IR-RANSAC) has five main steps, as illustrated in 

Fig. 2.1. We begin with two preprocessing techniques, first down-sampling the raw point cloud 

and then removing noisy or outlying points in the depth map. Second, we divide the point cloud 

space into four overlapped local regions based on the current view of the sensor. Third, we segment 

a base plane in each of the four local regions. Fourth, we implement an iterative plane removal 

technique to all four local regions, segmenting and removing the super-surfaces. Finally, we cluster 

the remaining point cloud using the geometric relationship between groups of points, resulting in 

a final point cloud comprised only of clustered objects of interest. 

2.3.1 Downsampling and Denoising 

Since input point clouds are generally large in size due to the significant number of 3D 

points and associated colour information, a downsampling method with low computational 
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complexity can significantly reduce the running time of point cloud processing algorithms. 

Downsampling is typically achieved using either a random downsample method [52] or a 

voxelized grid approach [53]. Although the former is more efficient, the latter preserves the shape 

of the point cloud better and exploits the geometric relationship of the underlying samples. Since 

we are predominantly concerned with preserving the underlying points that represent the true 

geometry of objects in the scene, we utilize a voxelized grid approach [53] that returns the centroid 

of all the points in each 3D voxel grid with a leaf size of 0.1cm. In this way, the downsampled 

point clouds will still reflect the structure and maintain the geometric properties of the original 

point cloud while reducing the total amount of points that will need to be processed and stored. 

 
Figure 2.1 The flowchart of IR-RANSAC 

Removing noisy points is a critical point cloud preprocessing task. Noisy or spurious points 

have two significant impacts on our approach. A noisy point cloud with false or spurious data 

points, including points outside of a scene's real boundaries (see Fig. 2.2 for example) can lead to 

a wrong measurement of the overall bounding box containing the point cloud, resulting in the 

definition of incorrect local regions in our subsequent processing steps. Furthermore, noisy points 
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within the point cloud itself will effectively skew or change the geometry of the true objects. We 

utilize a statistical outlier removal approach [54] by examining the k-nearest neighbours (𝐾𝐾 = 4) 

of each point, and removing all points with a distance (σ) of more than one standard deviation of 

the mean distance to the query point to remove outliers of each captured point cloud. If the average 

distance of a point to its k-nearest neighbours is above the threshold (σ), it is considered as an 

outlier. In this way, we remove points that are dissimilar from other points in their neighborhood. 

Together, these approaches decrease the number of points in the point cloud, reducing downstream 

processing time and increasing the accuracy of our process. 

 
Figure 2.2 A sample point cloud with false data points (surrounded by a red rectangle), detected 
as the noise outside the true boundaries of the room. These noise artifacts artificially expand 
the overall outer dimensions of the point cloud. 

2.3.2 Local Region Determination 

Dividing our captured point clouds into four local regions of interests, based on the 

properties of our indoor environments, reduces the possibility of detecting foreground planes, 
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increases computational efficiency, and leverages the likely spatial location of potential bounding 

surfaces. In this way, we exploit knowledge of the scene based on the known sensor perspective, 

while allowing for surface locations to vary relative to each other in different rooms. Further, these 

regions help ensure that foreground objects that may appear planar in composition (e.g., tables, 

beds) are preserved and differentiated from background bounding surfaces. 

We partition the point cloud space into four overlapped local regions based on the current 

view of the sensor. First, we find the bounding values of the downsampled and denoised point 

cloud, where the values 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 are the Euclidean extrema of the 

bounding box enclosing the point cloud, and �𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� = (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) −

(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) are the Euclidean dimensions of the bounding box. Using the ranges defined in 

Table 2.1, we then determine the four local regions (see Fig. 2.3 for a sample visualization of the 

local regions). We will use these four regions to identify, segment, and remove potential super-

surfaces in each region. 

Table 2.1 Ranges for each local region 

Region Range 
X-Axis Y-Axis Z-Axis 

Back (−∞,∞) (−∞,∞) �𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − �
𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

4 � , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚� 

Left �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − �
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

4 � , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚� (−∞,∞) (−∞,∞) 

Right �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

4 �� (−∞,∞) (−∞,∞) 

Bottom (−∞,∞) �𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

4 �� (−∞,∞) 

 

Since our approach must be independent of any prior knowledge about the geometry of the 

indoor environment and both the location and perspective of the sensor, the four initial local 

regions may not include all the points that are actually part of the super-surfaces (e.g., Fig. 2.3d, 

where parts of the floor are not included within the local region). 
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Figure 2.3 The boundaries of the four local regions highlighted in green: (a) the back, (b) left, (c) right, and 
(d) bottom regions. 

Selecting larger initial regions will increase the likelihood that all true points are within the 

regions but will also increase the likelihood of including points belonging to foreground objects 

near the super-surfaces (e.g., beds and sofas). To resolve this issue, we implement conservative 

local regions and extend these four regions after base plane segmentation (see Section 2.3.4). 

2.3.3 Base Plane Segmentation 

We utilize the RANSAC algorithm [32] to segment the largest planes with a specific 

orientation in each of the local regions. All segmented plane candidates with more points than a 
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learned value υ = 5% of the total number of points in the point cloud, are verified as base planes 

and stored for use in the next step (Section 2.3.4). Planes containing fewer than υ points may be 

associated with key objects or small bounding planes and are dealt with in subsequent processing 

steps. Furthermore, υ is set as a proportion of the total points such that it is adaptive to the size of 

the point cloud. 

The RANSAC algorithm iteratively and randomly samples three voxels, 𝐴𝐴,𝐵𝐵  and 𝐶𝐶 as a 

minimum subset to generate a hypothesis plane. These three points represent two vectors 𝐴𝐴𝐴𝐴�����⃗  and 

𝐴𝐴𝐴𝐴�����⃗ , and their cross product is the normal vector 𝑁𝑁��⃗ = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) to the plane 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0. 

Therefore, the three parameters of the plane (𝑎𝑎, 𝑏𝑏,𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐) are computed, and 𝑑𝑑 can be solved. In 

each iteration, the algorithm computes the distance 𝐷𝐷 =  | 𝑎𝑎𝑎𝑎+𝑏𝑏𝑏𝑏+𝑐𝑐𝑐𝑐+𝑑𝑑
√𝑎𝑎2+𝑏𝑏2+𝑐𝑐2

| between all the remaining 

data points and the plane and then counts the number of points within a distance threshold (δ =

4 cm) of the plane. Finally, RANSAC returns the plane with the highest percentage of inliers. 

We add an orientation constraint to the standard RANSAC (orientation-based RANSAC) 

so that we assign priority to segmented planes with the highest percentage of inliers that have an 

expected orientation relative to the local regions. To do this, we defined an initial reference vector 

for each of the local regions, aligned with the sensor axes as [0,0,−1], [−1,0,0], [1,0,0] and 

[0,1,0] for the back, left, right, and bottom regions, respectively (Fig. 2.4). Further, we define a 

maximum allowance angular variation (ω = 45 degrees) between the normal vector of the planes 

and our reference vectors to allow for sensor perspective variations. 

The maximum number of iterations 𝑇𝑇 required for convergence by the RANSAC algorithm 

can be approximated as (2.1) [55]. Convergence depends on the number of samples 𝑠𝑠 (𝑠𝑠 =  3 for 

the plane fitting), the target success probability 𝑝𝑝 (e.g., 𝑝𝑝 =  99%), and the outlier ratio 𝑒𝑒. 
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Considering there is no prior knowledge about the underlying outlier ratio, it is difficult to 

approximate the number of RANSAC iterations. Based on our experimental results and due to the 

iterative design of IR-RANSAC, the algorithm works appropriately with the number of trials 

adhering to 1% ≤ 𝑇𝑇 ≤ 2%  of the data points within each local region. In this study, we set 𝑇𝑇 to 

2% of the data points (e.g., if the back region contains 60,000 points, the maximum number of 

trials will be set to 1200). Increasing 𝑝𝑝 and 𝑇𝑇 improve the robustness of the output at the expense 

of additional computation: 

𝑇𝑇 =
log(1 − 𝑝𝑝)

log(1 − (1 − 𝑒𝑒)𝑠𝑠)
                                                            (2.1) 

 

Figure 2.4 The initial reference vectors 

2.3.4 Iterative Plane Removal 

In a complex indoor environment, bounding surfaces such as walls, windows, and curtains 

are difficult to fit to a single plane. Increasing the distance threshold (δ) includes more points near 
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the bounding planes, but simultaneously increases the chance of including data from important 

objects (e.g., the human body) within the extended threshold. Furthermore, the input point cloud 

can be unorganized, which means the nearest neighbour operations, such as region growing, are 

not very efficient for segmenting the rest of the super-surfaces. We introduce a novel iterative 

plane removal technique to segment and remove super-surfaces from a point cloud while 

minimizing the likelihood of including points that belong to foreground objects. 

First, we remove the verified base planes associated with each local region. Then, we 

expand the local regions according to the ranges in Table 2.2 to completely encompass the areas 

containing the super-surfaces. Next, we apply the orientation-based RANSAC in each of the 

extended regions iteratively. The number of iterations depends on the complexity of the indoor 

environment; based on our experimental results, three iterations are adequate for a challenging 

indoor environment. In each iteration, segmented planes must be parallel to the base plane of the 

current region. Hence, we utilize the normal vectors of the base planes as the reference vectors, 

and we set the maximum allowance angular variation (θ) to 5°. Finally, because employing the 

orientation-based RANSAC in a larger region increases the probability of a false segmentation, 

we validate the segmented planes in each iteration. 

Table 2.2 Extended ranges for each local region 

Region Range 
X-Axis Y-Axis Z-Axis 

Back (−∞,∞) (−∞,∞) �𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − �
𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × 3

4
� , 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚� 

Left �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − �
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 � , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚� (−∞,∞) (−∞,∞) 

Right �𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 �� (−∞,∞) (−∞,∞) 

Bottom (−∞,∞) �𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + �
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 �� (−∞,∞) 
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The segmented planes are validated based on their distances, D, from their base planes, 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 are parameters of the base plane, and 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 are coordinates of a point on 

the segmented plane. To make the technique robust to high levels of noise, we substitute the 

distance of a point to the base plane with the mean of all the segmented points’ distances from the 

base plane. 

If the distances are less than a threshold (e.g., α = 10 cm), those planes will be removed 

from their regions. Otherwise, they are not part of the super-surfaces and will be temporarily 

removed from the remaining point cloud. There are two advantages to temporarily removing a 

false segmented plane. First, it prevents RANSAC from segmenting the false plane once again. 

Second, it reduces the current region for the next iteration. Figure 2.5 illustrates the output of the 

iterative plane removal in each iteration when applied to the back region of a point cloud. The 

green planes are verified and eliminated from the back region, as shown in Fig. 2.5b, 2.5c, and 

2.5e. However, the segmented red plane is not verified and temporarily removed from the point 

cloud, as shown in Fig. 2.5d. 

2.3.5 Euclidean Clustering Removal 

In this step, we cluster the remaining point cloud based on Euclidean distance to remove 

the irrelevant small segments and keep the objects of interest. First, we compute the Euclidean 

distance between each point and its neighbours. Then, we group neighbouring points as a cluster 

if the distance between any point in an object and an adjacent point is less than a threshold ε = 5 

cm, finishing when all the clusters are determined. Finally, we remove all small clusters with fewer 

than a threshold μ = 500 points. Figure 2.6 illustrates an example of Euclidean clustering removal 

following the iterative plane removal. 
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Figure 2.5 The iterative plane removal of the back region: (a) the sample point cloud, (b) the verified base plane, (c, e) 
the verified segmented planes, (d) the invalid segmented plane, and (f) the remaining point cloud after the back wall 
removal. 

2.4 Experiments and Evaluation 

2.4.1 Experimental Setup 

We evaluated our method on three generated datasets representing three different complex 

indoor environments, Room-1, Room-2, and Room-3, as shown in Fig. 2.7a, 2.7c, and 2.7e 

respectively. Each dataset contains different objects, such as furniture, planar objects, and human 

bodies. To measure the performance of IR-RANSAC in our challenging environments, we 

acquired each point cloud from an arbitrary oblique-view location using the Microsoft Kinect V2 

sensor. The details of each dataset after the preprocessing steps are listed in Table 2.3. 
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Figure 2.6 Euclidean clustering on the sample point cloud (a) following the iterative plane removal (b) results in 
properly segmented foreground object clusters as well as residual clusters (c). Removing object clusters with fewer 
than μ points leaves only foreground objects (d) which can be visualized as coloured objects (e). 

To define the ground truth, we manually labeled the points belonging to each super-surface 

in every dataset by deploying the MATLAB Data tips tool based on their co-ordinates, colours, 

and the super-surface definition. We employed this lengthy and precise procedure by first using a 

semi-automated labeling approach using the orientation-based RANSAC and MATLAB Data tips 

tool. First, we segmented as many super-surface points as possible by running the orientation-

based RANSAC in manually selected local regions known to contain super-surfaces. Then, we 

modified and validated the previous labeled points resulting in our final manually labeled super-

surfaces shown in Fig. 2.7b, 2.7d, and 2.7f. 
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Table 2.3 Parameters of the datasets 

Description Width (m) Height (m) Depth (m) Number of Points 
Room-1 3.56 2.65 3.68 179,572 
Room-2 3.51 2.60 3.46 179,374 
Room-3 4.11 3.27 4.71 181,822 

 

We evaluated the efficiency of our IR-RANSAC and RANSAC (as a baseline) in terms of 

four pixel-based metrics, precision, recall, F1 score, and specificity. The first three parameters have 

been widely utilized for appraising the effectiveness of plane segmentation (e.g., [36], [51], and 

[56]). To compute these metrics, we defined true positive (TP) as bounding surface points correctly 

identified, true negative (TN) as foreground points correctly identified, false positive (FP) as 

foreground points incorrectly identified as bounding surface points, and false negative (FN) as 

bounding surface points incorrectly identified as foreground points. Precision, measured as 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , 

is the number of correctly removed points (i.e., true positives) with respect to the total number of 

removed points. Recall, measured as 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , is the fraction of true positive among the manually 

labeled points (ground truth). F1 score, measured as 2 ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 , or the harmonic mean 

of the precision and recall, represents the overall performance of our proposed method. The 

specificity, measured as 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , reflects the true negative rate of our algorithm, providing a 

measure of how well our method distinguishes between foreground points and bounding surface 

points. 

We computed the size reduction of IR-RANSAC as 1 − 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂
𝑆𝑆𝐼𝐼𝐼𝐼

 where 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑆𝑆𝐼𝐼𝐼𝐼 are the 

size (i.e., the number of points) of the output point cloud and the input point cloud, respectively. 

We implemented our proposed algorithm running MATLAB on an Intel i5-4300M CPU @ 2.60 
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GHz and with 6.00 GB RAM. The full parameters of IR-RANSAC, determined through 

experimentation, are listed in Table 2.4 and used for all our experiments. 

 

Figure 2.7 The generated datasets, Room-1 (a), Room-2 (c), and Room-3 (e), and their manually labeled 
super-surfaces in blue colour, (b), (d), and (f) respectively. 



58 
 

2.4.2 Experimental Results 

Figure 2.8 shows the output results of our algorithm and erroneously classified points for 

the three datasets. 

 

Figure 2.8 Output results of IR-RANSAC. The original point clouds, Room-1 (a), Room-2 (d), and Room-3 (g), are 
visualized with all super-surfaces removed (b), (e), and (h) respectively. The false positive (cyan) and false negative 
(magenta) points are highlighted over the original point clouds for the Room-1 (c), Room-2 (f) and Room-3 (i) 
datasets. 
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Table 2.4 Parameters of IR-RANSAC 

Procedure Descriptor Parameter Value 

Denoising algorithm 
Nearest neighbours K 4 
Outlier threshold σ 1 standard deviation 

Base plane segmentation 

RANSAC distance threshold δ 4 cm 
Maximum allowance angular variation ω 45° 

RANSAC maximum iterations T 2% of region points 

Verification threshold υ 5% of point cloud points 

Iterative plane removal 
Iterations I 3 

Maximum allowance angular variation θ 5° 
Distance threshold between two planes α 10 cm 

Euclidean clustering removal 
Euclidean clustering threshold μ 500 points 
Euclidean distance threshold ε 5 cm 

Incorrectly classified points are almost always associated with the points belonging to 

foreground objects that are contacting a super-surface (i.e., objects within the RANSAC distance 

threshold), such as the baseboard heater, the bed headboard, and the desk legs (Fig. 2.8c, 2.8f, and 

2.8i respectively). Notably, as a result of our local region definitions and bounding surface criteria, 

we successfully prevented consideration of foreground objects that could be misidentified as 

bounding surfaces (e.g., beds, desks). Furthermore, foreground objects comprised of fewer points 

than the Euclidean clustering threshold (μ = 500 points) were erroneously removed from the point 

cloud (e.g., the cyan portion of the lamp in Fig. 2.8c). 

Our IR-RANSAC method eliminated nearly all points belonging to the super-surfaces from 

the Room-1 and Room-3 datasets. However, IR-RANSAC failed to remove two small challenging 

regions belonging to the back and left super-surfaces of Room-2 (the magenta regions around the 

window and the bottom left corner of the point cloud in Fig. 2.8f). This is because the planes 

surrounding the window are perpendicular to the back super-surface, and the other small plane in 

the bottom left corner is smaller than the verification threshold (υ = 5% of the total number of 

points in the point cloud). Notably, both of these two miss-classified regions are greater than the 

Euclidean clustering threshold (μ = 500 points). Additionally, IR-RANSAC incorrectly assigned 
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a small number of points belonging to foreground objects to a bounding surface. In all cases, these 

incorrect assignment of foreground points to super-surfaces happened when clustered foreground 

objects physically contacted super-surfaces (e.g., bed headboard in Fig. 2.8f and desk legs in Fig. 

2.8i). 

Figure 2.9 shows the output results of the standard RANSAC plane removal for the three 

datasets. The cyan and magenta colours represent the incorrectly removed regions (i.e., false 

positive) and undetected regions (i.e., false negative), respectively. The standard RANSAC 

approach failed to remove many points belonging to the super-surfaces (e.g., the back and right 

walls of Room-1 and the floors of the other two datasets). Moreover, RANSAC erroneously 

removed some parts of the human body and the furniture (e.g., couch, bed, and desks). These false 

segmentations have three main reasons: RANSAC sensitivity to clutter and occlusion, the 

uncertainty of RANSAC in randomly sampling three points as a minimum subset, and the lack of 

an orientation constraint. 

Our experimental results suggest that IR-RANSAC supports varied sensor locations and 

removes background boundary surfaces more effectively without removing foreground data in 

complex 3D indoor environments. 

2.4.3 Evaluation 

Similar to RANSAC, our IR-RANSAC is stochastic, and accordingly its results can vary 

depending on the selection of the random subsample. To account for this stochasticity, we 

conducted 30 experiments on each dataset, similar to the work of Li et al. [39], and computed our 

four evaluation metrics for IR-RANSAC and standard RANSAC plane removal as a baseline 

comparator. We illustrate the evaluation results in Fig. 2.10, with the left column visualizing our 
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IR-RANSAC results and the right column representing our standard RANSAC plane removal 

results, and the rows corresponding to the three rooms. We implemented the standard RANSAC 

plane removal traditionally to segment and eliminate the four largest planes in each dataset. We 

set the parameters of our benchmark RANSAC method to be the same as those used in IR-

RANSAC. The mean (M) and standard deviation (SD) of both approaches are shown in Table 2.5 

for specificity, precision, recall, and F1 score, along with execution times. 

 

Figure 2.9 The output results of standard RANSAC plane removal and its false positives and false negatives in cyan 
and magenta, respectively: (a) the Room-1, (b) the Room-2, and (c) the Room-3. 
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Figure 2.10 The evaluation results of IR-RANSAC and the standard RANSAC plane removal for the three datasets: 
(a) and (b) the Room-1, (c) and (d) the Room-2, (e) and (f) the Room-3. 
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Given the original size of the point clouds (see Table 2.3), and the size of the output point 

clouds for Room-1 (55,705 points), Room-2 (69,044 points), and Room-3 (66,149 points), IR-

RANSAC yielded a size reduction of 0.68, 0.62, and 0.64 for Room-1, Room-2, and Room-3, 

respectively. 

Table 2.5 Execution times, mean (M), and standard deviation (SD) of IR-RANSAC and standard RANSAC for 
specificity, precision, recall, and F1 score. 

Dataset Method 
Specificity Precision Recall F1 Runtime (s) 

M (%) SD M (%) SD M (%) SD M (%) SD 

Room-1 
IR-RANSAC 92.60 0.0200 96.41 0.0097 97.42 0.0230 96.90 0.0142 8.83 

Standard RANSAC 85.47 0.1210 92.56 0.0612 87.60 0.0484 90.00 0.0538 3.20 

Room-2 
IR-RANSAC 98.38 0.0135 99.06 0.0074 90.52 0.0193 94.59 0.0101 7.50 

Standard RANSAC 42.37 0.0164 71.79 0.0067 78.10 0.0114 74.81 0.0077 2.80 

Room-3 
IR-RANSAC 97.39 0.0075 98.61 0.0038 97.47 0.0253 98.02 0.0126 6.37 

Standard RANSAC 33.91 0.0644 72.72 0.0278 92.78 0.0419 81.53 0.0333 2.40 

2.5 Discussion 

Our evaluation results achieved with IR-RANSAC (the first column of Fig. 2.10) are higher 

and much more consistent in all the four evaluation metrics than those obtained using standard 

RANSAC (the second column of Fig. 2.10). Additionally, almost all four scores have a lower 

standard deviation with IR-RANSAC compared to standard RANSAC. Overall, all of our 

evaluation results were statistically significantly better (𝑝𝑝 < 0.05) with IR-RANSAC than 

standard RANSAC using a two-sample t-test. Most notably, the F1 score, which represents the 

overall performance of the approaches, was statistically higher with IR-RANSAC than standard 

RANSAC. 

In all experiments, our proposed IR-RANSAC method obtained average values above 92% 

for specificity, 96% for precision, 90% for recall, and 94% for F1 score. Comparably, the standard 

RANSAC achieved average values between 33% and 85%, 71% and 92%, 78% and 92%, 74% 
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and 90% for specificity, precision, recall, and F1 score, respectively. As illustrated in the second 

column of Fig. 2.10, there are also many sharp fluctuations in the standard RANSAC evaluation 

results. The F1 score fluctuated from 82% to 95% and 76% to 86% for Room-1 and Room-3, 

respectively. However, it almost remained steady at 74% for the Room-2 dataset. The standard 

RANSAC approach demonstrated a very low specificity for Room-2 and Room-3, containing 

many planar furniture. 

IR-RANSAC takes about three times as long to execute when compared to the standard 

RANSAC approach on the same datasets. This is expected though, since our IR-RANSAC method 

invokes the RANSAC algorithm four times more than the standard RANSAC plane removal. 

Theoretically, a faster version of IR-RANSAC, which has only one iteration in each local region, 

can be implemented that would be faster than the standard RANSAC approach because it runs the 

RANSAC algorithm in smaller regions. 

Our evaluation results support that IR-RANSAC is a robust and reliable method for 

removing the bounding super-surfaces of a complex 3D indoor environment with better 

performance over traditional RANSAC in all ways except execution time. Our results suggest that 

IR-RANSAC removes background boundary surfaces effectively without removing foreground 

data, and can considerably reduce size of 3D point clouds. 

The subjects of future research are speeding up the IR-RANSAC algorithm and improving 

its results in much more complex 3D indoor environments. To improve our algorithm results, we 

need to reduce its reliance on the Euclidean clustering technique, eliminate the small challenging 

regions belonging to a super-surface but with a different normal vector (e.g., the highlighted 

regions around the window in Fig. 2.8f), and implement self-adaptive parameters to be robust to 

different indoor environments and sensor data. 



65 
 

2.6 Conclusions 

We have presented a 3D bounding surface removal technique, IR-RANSAC, that is 

particularly suited to more challenging and cluttered indoor environments. IR-RANSAC supports 

varied sensor perspectives for organized and unorganized point clouds, and it considerably reduces 

the size of 3D datasets. Moreover, IR-RANSAC can improve the results and the running time of 

different 3D computer vision methods by reducing their search space. After downsampling and 

denoising a point cloud captured from an oblique view, we divide the point cloud space into four 

overlapped local regions, exploiting knowledge of the current view of the sensor, and segment a 

base plane in each of the four regions. We then expand our search space around the base plane in 

each region, and iteratively segment and remove the remaining points belonging to each super-

surface. Finally, we cluster the remaining point cloud using the geometric relationship between 

groups of points, resulting in a final point cloud comprised only of clustered objects of interest. 

We evaluated the performance of IR-RANSAC in terms of four metrics: specificity, precision, 

recall, and F1 score, on the three generated datasets acquired from an arbitrary oblique-view 

location and representing different indoor environments. Our experiments demonstrated that our 

proposed method is a robust super-surface removal and size reduction technique for complex 3D 

indoor environments. Experimentally, IR-RANSAC outperformed traditional RANSAC 

segmentation in all categories, supporting our efforts to prioritize the inclusion of all bounding 

points in each super-surface, while minimizing inclusion of points that belong to foreground 

objects. 

Our intention was to develop a robust method of bounding surface segmentation, 

maximizing inclusion of bounding surface points and minimizing inclusion of foreground points. 

Our experimental data suggest that by conceptualizing bounding surfaces (e.g., walls and floor) as 
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unique and different than other large surfaces that belong to foreground objects, it is possible to 

improve on methods of segmenting and removing these unwanted bounding surfaces specifically. 

By removing these bounding surfaces and preserving foreground objects, we considerably reduce 

the size of the resulting dataset, substantially improving downstream storage and processing. 
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3.1 Abstract 

Indoor bounding surfaces (e.g., walls, windows, curtains, and floor) can decrease the performance 

of 3D computer vision algorithms (e.g., object segmentation and tracking) by cluttering their 

search space. Therefore, a robust removal technique for points that belong to surfaces at the outer 

boundaries of the data can significantly reduce the search space and improve downstream results. 

In this paper, we introduce an orientation-based bounding surface removal technique using the M-

estimator SAmple Consensus (MSAC) algorithm. Our method removes background bounding 

surfaces of challenging (i.e., cluttered and dynamic) real-world scenes while minimizing the 

inclusion of points that belong to foreground objects such as human bodies. We developed our 

method to work with unorganized data captured from commercial depth sensors with varied 

perspectives. First, we preprocess the input point cloud and divide it into four overlapped local 

regions based on the current view of the sensor. Then, we apply an orientation-based surface 

removal approach to all four regions to segment and remove the bounding surfaces. Next, we 

remove irrelevant small segments, keeping only objects of interest. Finally, we evaluate the 

performance of our proposed method using four conventional metrics: specificity, precision, recall, 

and F1 score, on three generated datasets representing different indoor environments. Our 

experimental results demonstrate that our proposed method robustly removes bounding surfaces 

for complex 3D indoor environments while scoring all the evaluation metrics above 93%.  

Keywords – MSAC, point cloud, bounding surface removal, wall removal, 3D background 

subtraction, 3D plane segmentation, 3D preprocessing technique, 3D size reduction 
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3.2 Introduction 

Background subtraction is widely used in object detection, and tracking approaches [1-3] 

with broad applications such as human tracking [4,5], face recognition [6], traffic management [7], 

and surveillance systems [8,9]. Established 2D background subtraction approaches are based on 

static background segmentation methods [10], adaptive Gaussian mixture models [11,12], real-

time codebook models [13,14], and independent component analysis-based techniques [15,16]. 

Although advanced 2D background subtraction techniques can handle gradual illumination 

changes and repetitive movements in the background, they perform poorly in the presence of 

shadows or foreground regions with colours similar to the background [17]. The release of 

commercially available and inexpensive depth sensors such as Microsoft Kinect opened new doors 

for improved background subtraction techniques because of the availability of additional depth 

data associated with each pixel of colour data. Depth sensor (RGB-D) systems are more robust for 

background detection problems compared to classic colour-based systems because depth data are 

largely invariant to colour, texture, shape, and lighting [18,19]. 

Background subtraction methods are generally used to analyze individual images and 

identify the foreground by first estimating a reference background that is developed from historical 

information obtained from videos or sequences of images. Therefore, the classic application of 2D 

background subtraction is separating dynamic or moving objects from a relatively static or slow-

changing background scene. However, RGB images only contain intensity information and spatial 

information that is largely restricted to the two dimensions of the image that are perpendicular to 

the camera's perspective. Accordingly, identifying the boundaries between objects, or conversely 

identifying object interactions or contact, is limited mainly to detectable intensity differences. In 
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applications that utilize RGB-D data, interactions or contact between objects and object spatial 

relationships can be more directly measured. 

Reliably identifying and removing static background components (e.g., roads and walls) 

before modeling the background can result in both improved background subtraction and improved 

foreground segmentation using both 2D and RGB-D data. Identifying static background 

components suffers from the same limitations as modeling the entire background using 2D data, 

suggesting that little benefit is afforded by first removing these background objects, then modeling 

the background. However, with RGB-D data, parametrically modeled objects (e.g., planes, 

spheres, cones, cylinders, and cubes) are far more reliably detectable. As a result, researchers have 

attempted to segment or remove large planar surfaces (e.g., walls, ceiling, and floor surfaces) as a 

preprocessing or fundamental step before all other algorithms (e.g., [20-22]). 

In general, large planar surfaces comprise a large percentage of points within each frame 

of RGB-D data captured in indoor environments. However, outside specific applications that seek 

to identify significant surfaces (e.g., ground plane detection), large planar surfaces are not often 

the objects of interest in 3D computer vision applications. Notably, smaller planar surfaces (e.g., 

tabletops, chair seats and backs, desks) are more likely to be of interest than larger surfaces at the 

boundaries of the scene. Furthermore, the large bounding surfaces can decrease the performance 

of 3D computer vision algorithms (e.g., object segmentation and tracking) by cluttering their 

search space. Therefore, a robust removal technique for points that belong to surfaces at the outer 

boundaries of the RGB-D data can significantly reduce the search space and bring three main 

benefits to the computer vision systems: improving downstream results, speeding up downstream 

processes, and reducing the overall size of the point clouds.  
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In our previous work [23], we proposed a robust bounding surface removal and size 

reduction technique, Iterative Region-based RANSAC (IR-RANSAC), for complex 3D indoor 

environments. In this paper, we extend our previous method and evaluate the performance of the 

extended version against IR-RANSAC. 

3.3 Methodology 

Our proposed method has four main steps. We begin with two preprocessing techniques, 

first downsampling the raw point cloud and then removing noisy or outlying points in the depth 

map. Second, we implement an MSAC based plane removal technique, segmenting and removing 

the bounding planes. Third, we introduce a distance-based point removal technique to remove the 

remaining parts of the bounding surfaces. Finally, we cluster the remaining point cloud using the 

geometric relationship between groups of points, resulting in a final point cloud comprised only 

of clustered objects of interest. 

3.3.1 Preprocessing 

Since input point clouds are generally large in size due to the significant number of 3D 

points and associated colour information, a downsampling method with low computational 

complexity can significantly reduce the running time of point cloud processing algorithms. We 

utilize a voxelized grid approach [24] that returns the centroid of all the points in each 3D voxel 

grid with a leaf size of 0.1cm. In this way, the downsampled point clouds will still reflect the 

structure and maintain the geometric properties of the original point cloud while reducing the total 

amount of points that will need to be processed and stored. 

Removing noisy points is a critical point cloud preprocessing task. Noisy or spurious points 

have two significant impacts on our approach. A noisy point cloud with false or spurious data 
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points, including points outside of a scene's real boundaries can lead to a wrong measurement of 

the overall bounding box containing the point cloud, resulting in the definition of incorrect local 

regions in our subsequent processing steps. Furthermore, noisy points within the point cloud itself 

will effectively skew or change the geometry of the true objects. We utilize a statistical outlier 

removal approach [25] by examining the k-nearest neighbours (K = 4) of each point, and removing 

all points with a distance (σ) of more than one standard deviation of the mean distance to the query 

point to remove outliers of each captured point cloud. If the average distance of a point to its k-

nearest neighbours is above the threshold (σ), it is considered as an outlier. In this way, we remove 

points that are dissimilar from other points in their neighborhood. Together, these approaches 

decrease the number of points in the point cloud, reducing downstream processing time and 

increasing the accuracy of our process. 

3.3.2 MSAC Plane Removal 

First, we employ our point cloud partitioning approach [23] to divide the point cloud space 

into four overlapped local regions based on the current view of the sensor. Dividing our captured 

point clouds into four local regions of interests, based on the properties of our indoor environments, 

reduces the possibility of detecting foreground planes, increases computational efficiency, and 

leverages the likely spatial location of potential bounding surfaces. In this way, we exploit 

knowledge of the scene based on the known sensor perspective, while allowing for surface 

locations to vary relative to each other in different rooms. Further, these regions help ensure that 

foreground objects that may appear planar in composition (e.g., tables, beds) are preserved and 

differentiated from background bounding surfaces.  

Then, we utilize the M-estimator SAmple Consensus (MSAC) algorithm [26], an improved 

variant of the RANdom SAmple Consensus (RANSAC) algorithm [27], to segment the largest 
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planes with a specific orientation in each of the local regions. We add an orientation constraint to 

the MSAC algorithm (orientation-based MSAC) so that we assign priority to segmented planes 

with the highest percentage of inliers that have an expected orientation relative to the local regions. 

To do this, we use our defined initial reference vectors [23] for each of the local regions, aligned 

with the sensor axes as [0,0,-1], [-1,0,0], [1,0,0] and [0,1,0] for the back, left, right, and bottom 

regions, respectively. Further, we define a maximum allowance angular variation (ω = 45 degrees) 

between the normal vector of the planes and our reference vectors to allow for sensor perspective 

variations. All segmented plane candidates with more points than a learned value (υ = 5% of the 

total number of points in the point cloud) are verified as integral parts of bounding surfaces and 

removed from the point cloud, as shown in Fig. 3.1b. Planes containing fewer than υ points may 

be associated with key objects or small bounding planes and are dealt with in a subsequent 

processing step (Euclidean clustering removal). Furthermore, υ is set as a proportion of the total 

points such that it is adaptive to the size of the point cloud. 

3.3.3 Distance-based Removal 

In a complex indoor environment, bounding surfaces such as walls, windows, and curtains 

are difficult to fit into a single plane. Furthermore, the input point cloud can be unorganized, which 

means the nearest neighbour operations, such as region growing, are not very efficient for 

segmenting the rest of the bounding surfaces. We introduce a distance-based point removal 

technique to segment and remove the remaining parts of the bounding surfaces from the input point 

cloud and minimize the likelihood of including points that belong to foreground objects. 

Since the verified segmented planes belong to the background surfaces at the outer 

boundaries of the point cloud, all points behind these planes are also associated with the 

background bounding surfaces and should be removed from the point cloud. To do this, we use 
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(3.1) to compute distance 𝐷𝐷 between all points (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of the point cloud and the verified planes 

(𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0) and remove any points associated with a negative distance. 

𝐷𝐷 =  
𝑎𝑎𝑎𝑎+ 𝑏𝑏𝑏𝑏+ 𝑐𝑐𝑐𝑐+ 𝑑𝑑
�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2

                                                          (3.1) 

Figure 3.1c illustrates the output of the distance-based removal following the MSAC plane 

removal when applied to the back region of a point cloud. 

 

Figure 3.1 The bounding surface segmentation: (a) the sample point cloud, (b) the verified segmented plane, and (c) 
the bounding surface of the back region highlighted in green. 

3.3.4 Euclidean Clustering Removal 

In this step, we cluster the remaining point cloud based on Euclidean distance to remove 

the irrelevant small segments and keep the objects of interest. First, we compute the Euclidean 

distance between each point and its neighbours. Then, we group neighbouring points as a cluster 

if the distance between any point in an object and an adjacent point is less than a threshold ε = 5 

cm, finishing when all the clusters are determined. Finally, we remove all small clusters with fewer 

than a threshold μ = 300 points, as shown in Fig 3.2.  
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Figure 3.2 Euclidean clustering removal: (a) the sample point cloud, (b) the remaining point cloud after applying the 
MSAC plane removal and the distance-based removal, (c) the foreground objects after employing the Euclidean 
clustering removal technique. 

3.4 Experiments and Evaluation 

We evaluated our method on three generated datasets [23] representing three different 

complex indoor environments, Room-1, Room-2, and Room-3, as shown in Fig. 3.3a, 3.3d, and 

3.3g, respectively. Each dataset contains different objects, such as furniture, planar objects, and 

human bodies, and is acquired from an arbitrary oblique-view location using the Microsoft Kinect 

V2 sensor. We implemented our proposed algorithm running MATLAB on an Intel i5-4300M 

CPU @ 2.60 GHz and with 6.00 GB RAM. 

3.4.1 Experimental Results 

Figures 3.3b, 3.3e, and 3.3h show the output results of our algorithm and erroneously 

classified points for the three datasets. The cyan and magenta colours represent the incorrectly 

removed regions (i.e., false positive) and undetected regions (i.e., false negative), respectively. 

Our method eliminated nearly all points belonging to the bounding surfaces of the three point 

clouds. Incorrectly classified points are almost always associated with the points belonging to 

foreground objects that are contacting a bounding surface, such as the baseboard heater, the bed 
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headboard, and the desk legs (Fig. 3.3c, 3.3f, and 3.3i, respectively). Notably, as a result of our 

local region definitions and bounding surface criteria, we successfully prevented consideration of 

foreground objects that could be misidentified as bounding surfaces (e.g., beds, desks).  

 
Figure 3.3 Output results of the proposed method. The original point clouds, Room-1 (a), Room-2 (d), and Room-3 
(g), are visualized with all bounding surfaces removed (b), (e), and (h), respectively. The false positive (cyan) and 
false negative (magenta) points are highlighted over the original point clouds for the Room-1 (c), Room-2 (f), and 
Room-3 (i) datasets. 
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Figure 3.4 shows the output results of IR- RANSAC for the three datasets. IR-RANSAC 

failed to remove two small challenging regions belonging to the back and left bounding surfaces 

of Room-2 (the magenta regions around the window and the bottom left corner of the point cloud 

in Fig. 3.4b). Furthermore, IR-RANSAC incorrectly removed foreground objects (e.g., the cyan 

portion of the lamp in Fig. 3.4a) comprised of fewer points than the Euclidean clustering threshold. 

 
Figure 3.4 The output results of IR-RANSAC and its false positives and false negatives in cyan and magenta, 
respectively: (a) the Room-1, (b) the Room-2, and (c) the Room-3. 

3.4.2 Evaluation 

We evaluated the efficiency of our proposed method and IR-RANSAC [23] in terms of 

four pixel-based metrics, precision, recall, F1 score, and specificity. Precision is the number of 

correctly removed points (i.e., true positives) with respect to the total number of removed points. 

Recall is the fraction of true positive among the ground truth points. F1 score is the harmonic mean 

of the precision and recall, and represents the overall performance of our proposed method. The 

specificity reflects the true negative rate of our algorithm, providing a measure of how well our 

method distinguishes between foreground points and bounding surface points. 
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Similar to MSAC, our algorithm is stochastic, and accordingly its results can vary 

depending on the selection of the random subsample. To account for this stochasticity, we 

conducted 30 experiments on each dataset, similar to the work of A. Ebrahimi and S. Czarnuch 

[23], and computed the four evaluation metrics for our proposed method (i.e., Orientation-based 

MSAC), and IR-RANSAC as a benchmark method. The mean (M) and standard deviation (SD) of 

both approaches are shown in Table 3.1 for specificity, precision, recall, and F1 score, along with 

execution times. 

We computed the size reduction of both methods as  1 − 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂
𝑆𝑆𝐼𝐼𝐼𝐼

  where 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 and 𝑆𝑆𝐼𝐼𝐼𝐼 are the 

size (i.e., the number of points) of the output point cloud and the input point cloud, respectively. 

Our proposed method yielded a size reduction of 0.70, 0.66, and 0.64, where IR-RANSAC yielded 

a size reduction of 0.68, 0.62, and 0.64 for Room-1, Room-2, and Room-3, respectively. 

3.5 Discussion and Conclusions 

Our experimental results suggest that our proposed method supports varied sensor locations 

and removes background boundary surfaces effectively without removing foreground data in 

complex 3D indoor environments. Unlike IR-RANSAC, our new method can eliminate the small 

challenging regions belonging to a bounding surface but with a different normal vector (e.g., the 

highlighted regions around the window in Fig. 3.4b). Furthermore, unlike IR-RANSAC, our 

proposed method does not remove foreground objects (e.g., the cyan portion of the lamp in Fig. 

3.4a). This is because we reduced the reliance of our new method on the Euclidean clustering 

technique (i.e., only using Euclidean clustering removal with a minimal threshold to remove the 

irrelevant small segments). 
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Table 3.1 Execution times, mean (M), and standard deviation (SD) of our proposed method (Orientation-based 
MSAC) and IR-RANSAC for specificity, precision, recall, and F1 score. 

Dataset Method 
Specificity Precision Recall F1 Runtime (s) 

M (%) SD M (%) SD M (%) SD M (%) SD 

Room-1 
Orientation-based MSAC 93.44 0.0154 96.87 0.0072 99.24 0.0088 98.03 0.0051 4.03 

IR-RANSAC 92.60 0.0200 96.41 0.0097 97.42 0.0230 96.90 0.0142 8.83 

Room-2 
Orientation-based MSAC 98.08 0.0168 98.97 0.0087 97.59 0.0051 98.27 0.0034 3.73 

IR-RANSAC 98.38 0.0135 99.06 0.0074 90.52 0.0193 94.59 0.0101 7.50 

Room-3 
Orientation-based MSAC 97.29 0.0089 98.59 0.0046 99.74 0.0045 99.16 0.0028 3.23 

IR-RANSAC 97.39 0.0075 98.61 0.0038 97.47 0.0253 98.02 0.0126 6.37 

In all experiments, our proposed method obtained average values above 93% for 

specificity, 97% for precision, 97% for recall, and 98% for F1 score. The evaluation results support 

that our bounding surface removal is a robust and reliable method for removing the background 

boundary surfaces of a complex 3D indoor environment. Our new method slightly outperformed 

IR-RANSAC in all four evaluation metrics, and is significantly faster than IR-RANSAC (i.e., 

almost twice as fast as IR-RANSAC). As shown in Table 3.1, almost all four scores have a lower 

standard deviation with our new approach compared to IR-RANSAC. 

We have presented a 3D bounding surface removal technique that is particularly suited to 

more challenging and cluttered indoor environments. Our method supports varied sensor 

perspectives for organized and unorganized point clouds, and it considerably reduces the size of 

3D datasets. Moreover, it can improve the results and the running time of different 3D computer 

vision methods by reducing their search space. In future work, we will further extend the method 

to simultaneously remove the background bounding surfaces and detect bounding surface types 

(e.g., ceiling and floor) in an entirely perspective-independent setup. 
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4.1 Abstract 

Ground plane detection and segmentation techniques can benefit and help improve the accuracy 

and robustness of a wide range of computer vision applications, from 3D object segmentation and 

autonomous navigation to mixed and augmented reality. Existing approaches often rely on 

restrictive assumptions to simplify the problem, such as the ground plane being the largest plane 

in the scene or the camera location or orientation being ideal. We present a ground plane 

segmentation technique for real-world 3D indoor scenes where the position and orientation of the 

sensor are unrestricted and unknown. Our method only requires one 3D point cloud of an indoor 

scene and assumes that the scene contains at least one surface parallel to the actual ground plane, 

which is generally true for 3D indoor scenes. We begin by utilizing a voxelized grid downsampling 

method to enhance the speed of the algorithm. Subsequently, we use K-medoids clustering and an 

angular-based zone determination technique to identify the ground zone. Next, we divide the 

ground zone into several clusters using the Euclidean clustering algorithm, and we employ the M-

estimator Sample Consensus (MSAC) algorithm to fit the largest plane in each cluster with a 

specific orientation. Finally, based on the geometric relationship between the fitted planes of the 

ground zone, we estimate the ground plane, verify it and segment all its associated points using a 

distance-based approach. We evaluated our method on public and self-generated datasets, in which 

we positioned a depth sensor at various locations, pitches, and yaws. Our experimental results 

demonstrate that our proposed method can robustly and efficiently detect and segment the ground 

plane of complex 3D indoor scenes and supports varied sensor locations and orientations. We 

evaluate the performance of our proposed method in terms of four conventional metrics: 

specificity, precision, recall, and F1 score, with average experimental results of 98.28, 95.48, 96.64, 

and 96.01, respectively. 
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Keywords – 3D ground plane detection, 3D ground surface segmentation, 3D ground labeling, 

Perspective-independent point cloud processing 

4.2 Introduction 

The release of commercially available depth sensors such as Microsoft Azure Kinect [1], 

mixed reality devices with integrated depth sensors like Microsoft HoloLens [2], and mobile 

devices with LiDAR or depth sensors like iPhone Pro [3] has enabled a more comprehensive 

understanding and accurate representation of spatial information in real-world environments. As a 

result, 3D data have become widely adopted in recent years and provide significant advantages in 

various applications, including but not limited to augmented reality [4], autonomous navigation 

[5], simulation [6], and gaming [7]. Many computer vision systems, such as transitional navigation 

techniques for AR scene interaction [8], robot navigation [9], and 3D object tracking [10], 

benefited from identifying the location of the ground surface. 

Most common conventional 2D methods for estimating the ground plane are homography-

based, such as [11],  [12], and [13]. These methods rely on certain assumptions; for example, the 

camera's field of view should be parallel to the ground, and the ground plane should dominate most 

of the field of view. Compared to conventional 2D methods, deep learning-based techniques such 

as [14], [15] and [16] can provide more accurate results; however, their ability to provide accurate 

depth estimation in unknown scenes is limited by the single-view scale ambiguity [17]. Due to the 

limitations imposed by these restrictive assumptions and the fact that 2D data are not sufficient to 

fully represent the spatial relationships between the ground plane and other objects in an indoor 

scene, many researchers have opted for 3D ground plane detection as a more effective solution for 

cluttered and dynamic indoor environments. 
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Many conventional 3D techniques for identifying the ground plane use one or more of the 

following: the Hough transform algorithm [18], the RANdom SAmple Consensus (RANSAC) 

algorithm [19], or normal vectors of the scene's surfaces. For instance, Borrmann et al. [20] utilized 

a 3D Hough transform and a ball-shaped accumulator for ground plane detection in 3D point 

clouds, while Zeineldin and El-Fishawy [21] proposed an enhanced RANSAC algorithm to 

identify the ground plane and obstacles for individuals with visual impairments. However, these 

model fitting-based methods can only work if the ground plane is the largest in the scene; 

additionally, the RANSAC algorithm is prone to detecting spurious planes in 3D complex indoor 

environments [22]. Holz et al. [23] proposed a normal-based plane segmentation method for 

mobile navigation in indoor environments. Although their approach can successfully identify the 

ground plane of indoor scenes, it is restricted to structured point clouds and only functions properly 

when the sensor's pitch angle is zero. To overcome these limitations, Zhang and Czarnuch [24] 

proposed a perspective-independent ground estimation method by processing a video sequence of 

RGB-D data. Their method can successfully detect the ground plane of dynamic indoor scenes 

regardless of ground plane size and camera orientation but requires at least one human body to be 

visible and moving in the RGB-D camera's field of view. 

Therefore, current 3D ground plane detection methods require one or more of these 

assumptions: the largest plane of the scene is the ground plane; one or multiped depth sensors are 

placed in specific orientations or positions; a video sequence of data is accessible; the input point 

cloud is organized; or foreground objects (e.g., a human body) are positioned vertically on the 

ground plane of the scene. To address these restrictive assumptions, we propose a perspective-

independent ground plane detection and segmentation (PiGPDS) that only requires a single point 
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cloud of an indoor scene and only assumes that the 3D scene contains one surface parallel to its 

actual ground plane, which is almost always valid for cluttered and complex indoor environments. 

4.3 Methodology  

Our PiGPDS has five major steps. First, we downsample the input point cloud using a 

voxelized grid approach. Second, we determine the ground zone of the downsampled point cloud 

based on its voxels' normal vectors. Third, we divide the ground zone into several parallel clusters 

based on the Euclidean distance between the zone's voxels. Fourth, we segment the largest plane 

with a specific orientation in every cluster using the M-estimator Sample Consensus (MSAC) 

algorithm [25]. Finally, using the geometric relationship between the segmented planes, we 

estimate the ground plane, verify it and segment all its associated voxels. 

4.3.1 Downsampling 

A widely adopted technique to speed up 3D computer vision algorithms is the 

downsampling of point clouds. Random downsampling [26] and voxelized grid [27] approaches 

are two commonly used techniques for reducing the size of point clouds. We conducted 

experiments on both techniques and discovered that the voxelized grid approach better maintains 

the shape of the input point cloud; however, it can be slightly slower than the random 

downsampling technique. Given that the indoor point clouds are relatively smaller in size 

compared to outdoor point clouds and our primary objective is to preserve the underlying points 

representing the true geometry of the ground plane in the scene, we opted for a voxelized grid 

approach that computes the centroid of all points in each 3D voxel grid with a leaf size of 0.2 cm. 

Based on our experiments, this approach offers a suitable balance between speed and accuracy and 

significantly reduces the running time of our PiGPDS. It should be noted that the downsampled 
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point cloud is used as the primary input for all of the algorithm's processing steps except for the 

final step (4.3.5.3 Distance-based Segmentation), which specifically targets the ground surface 

points in the original point cloud. 

4.3.2 Ground Zone Determination 

In this step, first, we utilize K-medoids clustering [28] to divide points of the downsampled 

point cloud into distinct zones with similar normal vectors. Then, we determine the ground zone 

of the point cloud by using an angular-based approach. 

4.3.2.1 K-medoids Clustering 

Using K-medoids clustering, we group the normal vectors of the point cloud's points into 

K clusters. Similar to the K-means clustering algorithm [29], the K-medoids algorithm clusters a 

set of observations into K subsets so that the subsets minimize the sum of distances between an 

observation and the center of the observation's cluster. Unlike the K-means algorithm, the center 

of each cluster in K-medoids clustering is always a member of the cluster itself, called a medoid. 

This difference is the main reason for using K-medoids clustering rather than K-means clustering 

in this work, such that we can also take advantage of the normal vector of each medoid as the 

reference vector of each zone. In addition, K-medoids clustering is more robust and less sensitive 

to noise and outliers than K-means [30]. 

The computation of a surface point's normal can be approximated by the problem of 

estimating its tangent plane's normal, which in turn becomes a least-square plane fitting estimation 

problem [31]. We estimate the normal vector of each point of the downsampled point cloud by 

using its neighbouring points to fit a local plane and determine its normal vector. Since the sign of 

a given point's surface normal cannot be solved mathematically [32], the orientations of the 
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estimated normals are initially vague and not consistently oriented over the entire point cloud. To 

solve this problem, we flip all normals with regard to the viewpoint (i.e., the sensor center).  

Prior to clustering the normal vectors, we need to estimate their optimal K within an 

unknown indoor environment. Various data properties, such as cluster size, density, and 

separability, can be analyzed to evaluate the optimal number of clusters. Generally, the goal of 

clustering analysis is to minimize the variance within clusters and maximize the separation 

between clusters. Using the MATLAB Evalclusters function [33], we could evaluate the optimal 

K for clustering the normal vectors of different point clouds by employing different validation 

techniques such as Calinski-Harabasz [34], Davis-Bouldin [35], and Silhouette [28][36]. Our 

initial experimentation showed that the Calinski-Harabasz technique works best for different types 

of indoor environments. Therefore, we evaluate the optimal number of clusters using the Calinski-

Harabasz validation technique in this study. Fig. 4.1b illustrates the result of K-medoids clustering 

for a sample point cloud using a 3D scatter plot. As shown in the 3D plot, K-medoids clustering 

split the normal vectors of the sample point cloud into three individual clusters. Each cluster 

represents one point cloud zone where every point has a similar normal vector (i.e., surfaces of 

each zone are parallel). 

4.3.2.2 Angular-based Zone Determination 

To identify which zone represents the ground zone of the point cloud, first, we compute 

the angle between each zone's reference vector (i.e., the normal vector of the zone's medoid) and 

our proposed ground reference vector. The ground reference vector is chosen to be perpendicular 

to the Z axis of a sensor placed ideally parallel to the ground plane of an indoor scene (i.e., 

reference vector =  [0,1,0]), as shown in Fig. 4.1c. 
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After computing the angles between each zone's reference vector and the ground reference 

vector, we choose the zone associated with the minimum angle as the ground zone; for instance, 

Fig. 4.1d shows the ground zone points of the sample point cloud highlighted in blue. By using 

this angular-based approach, we integrate the perspective-independent feature into our ground 

zone determination technique. The only assumption of our angular-based approach is that the input 

point cloud contains a section of the ground plane or at least a surface parallel to the ground plane 

(excluding the ceiling surface), which is almost always valid for 3D indoor point clouds. 

4.3.3 Euclidean Clustering 

In this step, we segment the ground zone into several clusters based on the Euclidean 

distance between the zone's points. As illustrated in Fig. 4.1d, the ground zone consists of several 

parallel surfaces (i.e., surfaces with the same normal vector) that are at different distances along 

the surface normal from each other. 

( a ) 
 

( b ) 
 

( c ) 
 

( d ) 
 

    

Figure 4.1 Ground zone determination, (a) the sample point cloud, (b) K-medoids clustering of the normal vectors of 
the sample point cloud represented as a 3D scatter plot, (c) the ground reference vector of a 3D indoor scene illustrated 
as a blue arrow, and (d) the ground zone points highlighted in blue over the sample point cloud. 

The primary motivation for dividing the ground zone into distinct individual clusters is 

facilitating the MSAC algorithm to efficiently segment the optimal plane of each of these clusters 

in the next step, Orientation-based MSAC. Moreover, cluster or cell-based RANSAC (the same 
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applied to cluster-based MSAC) can increase the accuracy of the algorithm by preventing the 

segmentation of spurious planes [22]. 

( a ) ( b ) 

 
 

Figure 4.2 Euclidean clustering, (a) the initial clusters and (b) the large clusters of the ground zone in Fig. 4.1d. 

To cluster the ground zone's points, first, we compute the Euclidean distance between every 

point and its neighbours. Then, we group  neighbouring  points  as a cluster if the distance between 

any point and an adjacent point is less than a threshold (𝜀𝜀 = 5 𝑐𝑐𝑐𝑐), finishing when all the clusters 

are determined. For example, the Euclidean clustering of the ground zone shown in Fig. 4.1d 

results in 37 distinct clusters, as illustrated in Fig. 4.2a. The tiny clusters in Fig. 4.2a usually belong 

to small foreground objects and may not have enough points for robustly fitting planes using the 

MSAC  algorithm in the next step. Therefore, we remove any cluster with fewer than a threshold, 

adaptive to the size of the point cloud (𝜇𝜇 = 0.1% of point cloud points).   

For example, by removing the tiny clusters in Fig. 4.2a, we could decrease the number of 

clusters from 37 to 5, as shown in Fig. 4.2b. In addition, eliminating these tiny clusters from the 

ground zone can speed up our PiGPDS algorithm by employing the MSAC algorithm in fewer 

clusters. 

4.3.4 Orientation-based MSAC 

In this step, we utilize the MSAC algorithm to segment the largest plane with a specific 

orientation in each of the clusters of the ground zone. The MSAC algorithm, an improved variant 
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of the RANSAC algorithm, generates a hypothesis plane by randomly and iteratively sampling 

three voxels as a minimum subset within each cluster. In each iteration, it computes the distance 

between the plane and the remaining voxels of the cluster and then counts the number of inliers 

within a distance threshold (δ = 2 cm) of the plane. Finally, it returns the plane with the highest 

percentage of inliers. 

Given that all the points within the ground zone have almost the same normal vector and 

points within a cluster nearly lie on a flat surface, the MSAC algorithm might be capable of 

segmenting the desirable planes of the ground zone. However, similar to the work in [37], we add 

an orientation-based approach to the MSAC to increase the accuracy of the fitted planes and ensure 

that all the segmented planes within the ground zone are parallel. The orientation-based MSAC 

prioritizes planes with the highest percentage of inliers with an expected orientation relative to the 

ground zone surfaces. To do this, we use the ground zone's reference vector (i.e., the normal vector 

of the ground zone's medoid) and assign a maximum allowable angular variation (𝛽𝛽 = 5°), defined 

as the angle between this reference vector and the normal vectors of the ground zone's fitted planes. 

For example, employing orientation-based MSAC in the ground zone's clusters (illustrated in Fig. 

4.2b) results in the segmented planes highlighted over the sample point cloud, as shown in Fig. 

4.3a. 

According to Förstner and Wrobel [38], the maximum number of iterations 𝐼𝐼 required for 

convergence by the RANSAC algorithm (the same applied to our orientation-based MSAC 

algorithm) depends on the number of samples 𝑠𝑠 (𝑠𝑠 =  3 for plane fitting), the target success 

probability 𝑝𝑝 (𝑝𝑝 =  99%), and the outlier ratio 𝜊𝜊 and can be approximated as (4.1). At the expense 

of additional computation, a higher success probability increases 𝐼𝐼 and can improve the robustness 

of the output. 
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𝐼𝐼 =
log(1 − 𝑝𝑝)

log(1 − (1 − 𝜊𝜊)𝑠𝑠)
                                                                                                                            (4.1)  

4.3.5 Ground Surface Detection and Segmentation 

In the final step of our PiGPDS algorithm, first, we estimate the ground plane based on 

the geometric relationship between the segmented planes of the ground zone, then verify it and 

segment all its associated points using a distance-based approach. 

4.3.5.1 Ground Plane Estimation 

To find the ground plane, we calculate and analyze the distances between all segmented 

planes of the ground zone. That is, first, we randomly initialize one of the planes as the ground 

plane (𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0), then we iterate through the other planes of the zone, and we find 

the distance 𝐷𝐷� between them and the initial ground plane. Since planes within the zone may not 

be completely parallel (i.e., two non-parallel planes intersect at some straight line in a 3D space), 

we compute the mean of distances between all points of each plane {(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖): 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 }  and 

the initial ground plane as (4.2), where 𝑛𝑛 is the number of points in each plane. In every iteration, 

if the computed distance is a negative number (i.e., the new plane is located underneath the initial 

ground plane), we update the initial ground plane with the new plane. 

( a ) 
 

( b ) 
 

( c ) 
 

   
Figure 4.3 All the segmented planes of the ground zone (a), the verified ground plane (b), and the segmented ground 
surface containing all the visible ground points (c) highlighted over the sample point cloud. 
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𝐷𝐷� =  
∑ 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑦𝑦𝑖𝑖 + 𝑐𝑐𝑧𝑧𝑖𝑖 + 𝑑𝑑

√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                             (4.2) 

4.3.5.2 Distance-based Verification 

When there is no visible ground plane in the input point cloud, the estimated ground plane 

does not reflect the actual ground plane of the point cloud. Therefore, we verify the estimated 

ground plane based on the simple fact that there are almost no data points beneath a true ground 

plane of a point cloud, as follows. First, we compute the distance D between the estimated ground 

plane (𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0) and all points of the downsampled point cloud (𝑥𝑥,𝑦𝑦, 𝑧𝑧), except 

points corresponding to the estimated ground plane itself, using (4.3). Then, we verify the plane 

as the actual ground plane if almost all computed distances are positive (i.e., less than negative of 

MSAC threshold, −𝛿𝛿, to exclude ground plane points not segmented by the MSAC algorithm). 

Even if the verified ground plane does not include all points of the visible ground surface of a point 

cloud (e.g., see the verified ground plane of the sample point cloud in Fig. 4.3b), its parametric 

plane model can still be used for various computer vision applications to represent the ground 

plane of the scene. 

𝐷𝐷 =  
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑
√𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2

                                                                                                                          (4.3) 

4.3.5.3 Distance-based Segmentation 

Since the verified ground plane is a part of the visible ground surface, it could be possible 

to segment all its associated points using nearest-neighbour operations, such as region-growing 

algorithms. However, these operations are inefficient when the point cloud is unorganized. In 

addition, they can lead to incorrect segmentation of the visible ground surface where a foreground 

object touches the surface, dividing the visible ground plane into multiple smaller but visible 
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planes. Hence, we use a distance-based technique to segment the remaining parts of the visible 

ground surface and then we refine the ground surface to minimize the likelihood of erroneously 

including points associated with foreground objects. 

First, we compute the distance 𝐷𝐷 between the verified plane and all points of the original 

point cloud (unlike the previous step, where the downsampled point cloud is used). In order to 

segment the ground plane points located in other clusters of the ground zone (e.g., see the green 

and red planes' points of the sample point cloud in Fig. 4.3a) and also ground plane points not 

segmented by the MSAC algorithm (e.g., see the non-highlighted ground plane points in Fig. 4.3a) 

that are slightly distanced further from the verified plane, we include any data points with a 

distance less than two times the MSAC threshold, 2𝛿𝛿. Then, we refine the ground surface by 

excluding segmented points whose normal vectors differ from the verified ground plane's normal 

vector, effectively eliminating points associated with foreground objects in contact with the ground 

surface. As shown in Fig. 4.3c, our PiGPDS algorithm can segment the entire ground surface 

visible in the original sample point cloud, as highlighted in green over the point cloud. 

4.4 Experiments 

We evaluated our method on our own generated dataset [39] and NYU depth dataset V2 

[40]. Our dataset includes scenes acquired using both the Microsoft Azure Kinect (i.e., Kinect V4) 

and Kinect V2 sensors by placing the sensors in several different locations with different pitches 

and yaws, while the NYU depth dataset V2 was acquired with the Kinect V2 sensor. The two 

datasets showcase unique indoor settings with a diverse array of objects, including furniture, pets, 

and human bodies, almost all in contact with the ground plane, as shown in Fig. 4.4 and Fig. 4.5. 
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We implemented our proposed algorithm running MATLAB on an Intel i7-12700H  CPU @ 2.30 

GHz and with 16 GB RAM. 

For our own dataset, where ground truth labels were unavailable, we relied on visual 

inspection (i.e., qualitative evaluation) as the primary means to assess the results. This approach 

not only allowed us to thoroughly examine and analyze the outcomes of our PiGPDS but also 

served as a way to evaluate the perspective independence of our approach. Furthermore, to quantify 

the performance of PiGPDS, we assessed its efficiency on NYU depth dataset V2 in terms of four 

pixel-based metrics, specificity, precision, recall, and F1 score. The last three parameters have been 

commonly used to assess the effectiveness of plane segmentation (e.g., [41], [42], [43]). To 

compute these metrics, we defined true positives (𝑇𝑇𝑇𝑇) as correctly identified ground points, true 

negatives (𝑇𝑇𝑇𝑇) as correctly identified non-ground points, false positives (𝐹𝐹𝐹𝐹) as non-ground points 

incorrectly identified as ground, and false negatives (𝐹𝐹𝐹𝐹) as ground points incorrectly identified 

as non-ground points. The specificity, measured as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹), assesses our method's ability 

to differentiate ground points from the non-ground points. Precision, measured as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 +

 𝐹𝐹𝐹𝐹), represents the number of correctly segmented points relative to the total number of 

segmented points. Recall, measured as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹), represents the ratio of true positives 

among the ground truth points. F1 score, the harmonic mean of the precision and recall, measured 

as 2 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)/(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), represents the overall performance of 

PiGPDS. 

Figure 4.4 demonstrates the output results of the PiGPDS algorithm for fifteen unorganized 

point clouds derived from our dataset (see Table 4.1 for point clouds' details). PiGPDS successfully 

detected the ground plane and segmented nearly all points associated with the ground surface in 

almost all point clouds (e.g., see the surfaces highlighted in green over the point clouds in Fig. 
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4.4). Notably, our PiGPDS correctly recognized the lack of a visible ground surface in point clouds 

if they contain at least a surface parallel to the actual ground plane, excluding the ceiling surface, 

(e.g., see the point cloud surrounded by a blue rectangle, Bedroom3_013_v4, in Fig. 4.4). The 

PiGPDS algorithm fails only when a point cloud contains no visible surface parallel to the ground 

plane (e.g., see the point cloud surrounded by a red rectangle, Bedroom3_018_v4, in Fig. 4.4). 

Figure 4.5 shows the output results of the PiGPDS algorithm and erroneously classified 

points for ten point clouds obtained from the public dataset, NYU depth dataset V2 (see Table 4.2 

for point clouds' details). PiGPDS accurately identified the ground plane and segmented almost all 

points related to the ground surface across all ten point clouds (see the green-highlighted surfaces 

in Fig. 4.5). The false positives, incorrectly segmented points, and the false negatives, undetected 

ground points are highlighted in blue and red, respectively, over the original point clouds in Fig. 

4.5. Undetected ground points (see the red-highlighted points in Fig. 4.5) are almost always 

associated with the noisy points close to the ground surface that are incorrectly labeled as the 

ground truth. These points have different normal vectors compared to the normal vector of the 

ground plane; as a result, the ground surface refiner (see 4.3.5.3 Distance-based Segmentation) 

removes them from the ground surface. Incorrectly segmented points (see the blue-highlighted 

areas or gaps between carpets in Fig. 4.5) are actually correctly identified by PiGPDS as the ground 

surface; however, they are not labeled as the ground truth. Note, since the NYU dataset only 

provides object labels, in cases where carpets are on the floor, we labeled the ground truth by 

combining the visible ground surface and the carpet surfaces. We could not include the gap areas 

in the ground truth because they are not labeled as objects in the NYU depth dataset. 

Table 4.2 presents the quantitative evaluation results of our PiGPDS on the NYU depth 

dataset V2 in terms of the four pixel-based metrics: specificity, precision, recall, and F1 score. 
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PiGPDS achieved a specificity above 97% for all point clouds, except for the 282_bedroom_0131 

point cloud, which scored 93.72%. The precision was above 93% for all point clouds, except for 

the 282_bedroom_0131 and 580_living_room_0081 point clouds, which scored 91.08% and 

88.20%, respectively. Additionally, the recall was above 94% for all point clouds, and the F1 score 

was above 94% for all point clouds, except for the 580_living_room_0081 point cloud, which 

scored 91.84%. Note, the lower scores are attributed to the incorrectly labeled ground truth of these 

two point clouds. 

Table 4.1 Details of point clouds derived from our generated dataset and PiGPDS execution time for each point cloud 

File name Points Runtime (s) File name Points Runtime (s) File name Points Runtime (s) 
Classroom1_001_v2 181893 2.8 Bedroom3_001_v2 179360 3.3 Bedroom3_015_v4 523011 4.0 
Bedroom1_001_v2 179759 2.9 Bedroom3_011_v4 538587 3.0 Bedroom3_016_v4 526919 3.8 
Bedroom2_001_v2 175026 3.0 Bedroom3_012_v4 515014 3.2 Bedroom3_017_v4 540567 3.6 
Bedroom2_011_v4 556635 4.5 Bedroom3_013_v4 530972 2.4 Bedroom3_018_v4 539761 3.6 
Bedroom2_012_v4 544473 4.6 Bedroom3_014_v4 499193 3.7 Bedroom3_019_v4 541507 3.9 

Table 4.2 Details of point clouds derived from NYU depth dataset V2, PiGPDS evaluation results and execution time for each point cloud 

Index File name Specificity 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Runtimes 
( ) 

Index File name Specificity 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Runtimes 
( ) 150 living_room_0004 99.41 96.70 94.40 95.58 3.6 580 living_room_0081 97.96 88.20 95.79 91.84 3.7 

151 living_room_0005 100 100 94.41 97.12 3.5 909 bedroom_0025 97.32 93.74 96.55 95.12 4.1 
282 bedroom_0131 93.72 91.08 98.83 94.80 3.3 1330 living_room_0075 98.20 95.31 97.37 96.33 3.1 
358 home_office_0001 99.85 99.45 94.81 97.08 4.6 1331 living_room_0075 98.43 97.21 96.67 96.94 4.8 
450 printer_room_0001 99.13 98.43 98.42 98.42 3.2 1435 dining_room_0033 98.74 94.70 99.10 96.85 2.5 

* All point clouds have 307200 points. 

4.5 Discussion and Conclusions  

In this paper, we proposed a robust ground plane detection and segmentation technique for 

unorganized point clouds. The existing methods for detecting the ground plane of a 3D indoor 

scene rely on one or more of the following: 2D RGB data processing, video sequence data 

processing, organized point clouds, or ideal locations and orientations of the sensor. Additionally, 

certain essential assumptions, such as the ground plane being the largest plane in the scene and 

being perpendicular to or touching visible foreground objects (such as a human body), are 
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generally required. However, our PiGPDS can robustly detect the ground plane and segment 

almost all voxels associated with the ground surface of both organized and unorganized point 

clouds without these restrictive assumptions. Moreover, PiGPDS supports varied sensor locations 

and only requires a single point cloud of an indoor scene. Notably, it does not rely on point cloud 

colour or 2D data (e.g., colour or texture). 

First, we utilize a voxelized grid downsampling approach to speed up the downstream 

processes of our algorithm. Next, we group the downsampled point cloud into different zones using 

the K-medoids clustering algorithm and identify the ground zone using our proposed angular-

based approach. Then, in order to improve the accuracy and efficiency of the subsequent plane 

fitting algorithm, we employ the Euclidean clustering algorithm to divide the ground zone into 

multiple parallel clusters. After that, using the Orientation-based MSAC algorithm, we fit the 

largest plane with a specific orientation within each cluster. Finally, we utilize a three-step ground 

surface segmentation technique consisting of ground plane estimation, distance-based verification, 

and distance-based segmentation to accurately detect the ground plane and segment all ground 

surface points of the original point cloud. 

We evaluated our PiGPDS algorithm on twenty-five point clouds derived from our 

generated dataset and the public NYU depth dataset V2. Our algorithm accurately identified the 

ground plane and segmented the visible ground surface of twenty-three of the point clouds. For 

the other two point clouds without the visible ground surface (surrounded by the blue and red 

rectangles in Fig. 4.4), PiGPDS correctly identified the absence of a visible ground surface in one 

of them (Bedroom3_013_v4) and failed to do the same for the other point cloud 

(Bedroom3_018_v4) that contains only the ceiling and two wall surfaces of the 3D scene. 

Therefore, it does not meet our only assumption that input point clouds should contain at least one  
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Figure 4.4 PiGPDS ground segmentation results on our dataset's point clouds; the segmented ground planes are 
highlighted in green over the original point clouds. The blue rectangle represents a point cloud without a visible ground 
surface, and the red rectangle shows an example of a point cloud without any visible surfaces parallel to the actual 
ground plane where PiGPDS fails to detect the ground plane correctly. 
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surface parallel to the actual ground plane, excluding the ceiling surface, even if the ground plane 

itself is not visible. As a result, the algorithm erroneously detected the ground zone, leading to 

incorrect segmentation of the window as the scene's ground plane. 

150_living_room_0004 151_living_room_0005 282_bedroom_0131 

 
  

358_home_office_0001 450_printer_room_0001 580_living_room_0081 

   

909_bedroom_0025 1330_ living_room_0075 1331_living_room_0075 1435_dining_room_0033 

  
 

 

Figure 4.5 PiGPDS ground segmentation results on the public NYU dataset; the segmented ground planes (green), 
the false positive (blue) and the false negative (red) points are highlighted over the original point clouds. 

Our experimental and evaluation results suggest that PiGPDS can successfully segment all 

points of the ground surface in 3D complex indoor scenes without erroneously including points 

associated with foreground objects in contact with the ground surface. For example, see human 
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feet, a pet body, and furniture legs in the point clouds represented in Fig. 4.4 and Fig. 4.5 that are 

in contact with the ground surfaces but are not segmented by PiGPDS. In addition, our results 

demonstrate that PiGPDS is a robust and perspective-independent ground plane detection, 

accurately segmenting ground surfaces of complex 3D indoor scenes acquired from different 

locations with varying pitches and yaws (e.g., see the segmented ground surfaces of point clouds 

derived from our generated challenging dataset shown in Fig. 4.4). Furthermore, based on our 

experimentation, PiGPDS is fast regarding execution times, as evidenced by the algorithm run 

times for both datasets listed in Tables 4.1 and 4.2. These all make our PiGPDS algorithm highly 

suitable for a wide range of real-world applications where fast and reliable ground plane detection 

or segmentation is critical such as augmented reality, 3D object segmentation, robot navigation,  

and accurately labeling ground surfaces of 3D point clouds, providing benefits to machine 

learning-based computer vision applications. 

In future work, we will expand our generated dataset by incorporating more complex 3D 

point clouds acquired from a diverse range of indoor environments to evaluate the robustness and 

accuracy of PiGPDS under more challenging scenarios and improve its applicability to real-world 

applications. We will also explore eliminating the only assumption of PiGPDS that at least one 

surface is parallel to the actual ground plane of a 3D scene. 
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Chapter 5. PiPCS: Perspective Independent Point Cloud 
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5.1 Abstract 

The emergence of commercially accessible depth sensors has driven the widespread adoption of 

3D data, offering substantial benefits across diverse applications, ranging from human activity 

recognition to augmented reality. However, indoor environments present significant challenges for 

3D computer vision applications, particularly in cluttered and dynamic scenes where background 

bounding surfaces hinder the detection and analysis of foreground objects. We introduce a novel 

perspective-independent point cloud simplifier (PiPCS) for complex 3D indoor scenes. PiPCS 

streamlines 3D computer vision workflows by contextually segmenting and subtracting 

background bounding surfaces and preserving segmented foreground objects within indoor scenes, 

effectively reducing the size of indoor point clouds and enhancing 3D indoor scene perception. 

Methodologically, we use estimated surface normals to intelligently divide an input point cloud  

into distinct zones, which are then split into multiple distinct parallel clusters. Next, we find the 

largest plane in each cluster and sort the fitted planes within each zone based on their distance 

along the zone's normal vector to identify the bounding surfaces. Finally, we segment the 3D 

background, simplify the point cloud by employing a voxel-based background subtraction 

technique, and segment 3D foreground objects via a cluster-based segmentation approach. We 

evaluated PiPCS on the Stanford S3DIS dataset and our own challenging dataset, achieving 

average values of 97.08% for specificity and 91.27% for F1 score on the S3DIS dataset and size 

reductions averaging 74.11% overall. Our experimental and evaluation results demonstrate that 

PiPCS robustly simplifies and reduces the size of unorganized indoor point clouds.  

Index Terms – 3D background subtraction, 3D foreground segmentation, 3D indoor scene 

perception, indoor point cloud simplification, indoor point cloud preprocessing, point cloud size 

reduction 
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5.2 Introduction  

Background subtraction in the domains of image processing and computer vision is of 

paramount significance. This essential preprocessing step simplifies scene information by isolating 

important foreground objects, enhancing the efficiency and accuracy of a wide range of computer 

vision applications, such as moving object detection [1], video surveillance [2], video conferencing 

[3], face recognition [4], and human tracking [5]. For instance, in video surveillance, background 

subtraction improves security threat detection by differentiating normal changes from the 

unauthorized presence of people. Similarly, in video conferencing, background identification can 

increase the privacy and focus of the participants by, for example, blurring or changing the 

background. 

Historically, RGB data has been highly valuable in background modeling due to its 

comprehensive colour information, capturing the diverse visual world. Algorithms for identifying 

the background and ultimately isolating foreground objects using RGB data often rely on  

analyzing colour variations, patterns, and contrasts, along with employing frame difference 

techniques. In addition, recent advancements in Artificial Intelligence (AI), fueled by the 

availability of large collections of 2D images, have made RGB-based methods even more effective 

for background modeling. These AI-powered approaches use deep learning and neural networks 

to understand RGB data better, helping them accurately identify and separate foreground objects 

in complex scenes. 

On the other hand, background modeling using 2D RGB data involves several challenges, 

such as bootstrapping, colour camouflage, illumination changes, intermittent motion, moving 

backgrounds, and foreground shadows, as elaborated in [6] and [7]. Bootstrapping is the task of 

learning a scene's background model even when there are no empty training frames. Colour 
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camouflage makes segmentation difficult when foreground objects closely match the background's 

colour. Illumination changes require adapting to varying lighting conditions (and as a result, 

varying colours and intensities) for accurate detection, while intermittent motion focuses on 

detecting objects that may stop or start moving. Moving backgrounds can be along a continuum 

from extreme (e.g., entire scene changes) to more subtle (e.g., waving trees), and foreground 

shadows can significantly impact both the background and foreground objects. 

Compared to RGB sensors, depth sensors, including stereo vision, structured light, time-

of-flight (ToF) and LiDAR, provide spatial information about the scene that holds the potential to 

address some of the aforementioned challenges. Stereo vision sensors (e.g., ZED X [8]) function 

by analyzing the disparities in perspective between images captured by a pair of cameras, enabling 

the estimation of depth information. Structured light sensors (e.g., Microsoft Kinect V1) operate 

by projecting a predefined infrared (IR) light pattern onto a scene. When this pattern interacts with 

the scene, the pattern becomes distorted. Subsequently, an infrared camera captures this distorted 

pattern, resulting in a depth map that represents the scene's 3D structure. ToF sensors (e.g., 

Microsoft Kinect V2, Microsoft Azure Kinect [9], and ToF sensor integrated in Microsoft 

HoloLens headset [10]) operate by emitting pulses of infrared light and measuring the time it takes 

for these pulses to travel to an object and bounce back to the camera's sensor. This timing 

information is then used to calculate the distance from the camera to various points on the object's 

surface, yielding improved accuracy and performance in depth sensing compared to structured 

light sensors. Similarly, LiDAR scanners, such as those integrated into devices like the Apple 

Vision Pro [11] and iPhone 15 Pro [12], also emit light pulses and measure the time it takes for 

these pulses to reflect off objects. However, LiDAR scanners use laser pulses, enabling them to 
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provide highly detailed 3D representations of the environment with increased precision and range 

compared to ToF sensors. 

Although depth data are less prone to the aforementioned challenging issues that impact 

RGB-based background modeling algorithms, relying solely on depth data can also introduce 

several challenges, as discussed in [7] and [13]: depth shadows, depth camouflage, sensor distance 

limitations, and specular surface reflections. Depth shadows occur when foreground objects 

obstruct the passage of the sensor's infrared light, whereas depth camouflage arises when 

foreground objects situated near the background share similar depth values. Sensor distance 

limitations, when objects are either too close or too far from the sensor, along with specular surface 

reflections common in shiny materials such as glass windows and mirrors, both contribute to depth 

measurement challenges.  

As elaborated in [14] regarding the state-of-the-art Azure Kinect sensor, the depth cameras 

may provide invalid values, typically represented as a depth value of 0, for some 3D pixels (i.e., 

voxels) in certain situations. The invalidated voxels typically result from oversaturated IR signals, 

insufficient IR signal strength for depth generation, and pixels containing mixed signals from both 

the foreground and background, particularly noticeable around object edges. Moreover, voxels 

may be invalidated when they receive signals from multiple objects within the scene. This 

phenomenon is often observed in corners due to IR light reflecting off one wall onto another, 

introducing uncertainty into depth measurements [14]. Notably, our experiments indicate that the 

Azure Kinect sensor demonstrates greater sensitivity in such scenarios compared to its predecessor 

(the Kinect V2 sensor), as noticeable in point clouds illustrated in Fig. 5.11 and Fig. 5.10, 

respectively. 
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Thus, many recent methods aim to leverage the complementary relationship between 

colour and depth data acquired from RGBD sensors. Typically, these approaches either extend 

existing background models initially designed for the RGB data or depth data or create two 

separate background models for the scene using one based on RGB data and the other based on 

the depth data, followed by the integration of results using various methods and criteria. 

RGBD sensors (e.g., the Microsoft Kinect lineup) combine RGB and depth data to create 

a 3D point cloud. These sensors capture colour through RGB cameras and simultaneously measure 

object distances using depth sensors. The registration of these data generates a detailed 3D 

representation of the environment, with each voxel in the point cloud containing both colour and 

3D coordinates. Point cloud data can be categorized into two main types: organized and 

unorganized datasets. Organized datasets are structured in a matrix-like format, allowing easy 

access to voxels based on their spatial or geometric relationships using indexing. In contrast, 

unorganized datasets lack such defined relationships between adjacent voxels, and the voxel 

coordinates are stored as an unordered one-dimensional array. 

Converting an organized point cloud to an unorganized one is a straightforward task, 

whereas the reverse conversion process is notably more intricate and resource-intensive. As spatial 

relationships between voxels are maintained in organized point clouds, point cloud processing 

becomes less challenging. Nevertheless, computer vision methods tailored for unorganized 

datasets are universal [15], meaning they can also be applied to organized datasets. Hence, a robust 

3D background modeling or foreground segmentation approach should be developed based on 

unorganized datasets without relying on the spatial relationships derived from the organized point 

clouds' indices. 
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While RGBD methods have demonstrated improved performance over depth-based 

techniques in certain contexts, they come with their own set of limitations. RGBD methods 

demand more computational resources due to two main factors: the fusion of depth and colour data 

to create a point cloud and the simultaneous processing of both colour and depth information. 

Additionally, RGBD-based methods are more error-prone in situations where colour information 

is limited or absent, such as dark indoor environments, compared to their depth-based counterparts. 

Furthermore, depth-based computer vision solutions, by design, promote privacy as they 

exclusively capture 3D coordinates of foreground objects (e.g., the human body) without reliance 

on more identifying colour data. This makes them suitable for applications like human tracking or 

pose estimation in private settings, such as monitoring patients or elderly individuals within the 

privacy of their homes. 

5.2.1 Related Work 

In the context of computer vision applications, various methods have been employed to 

subtract background or isolate foreground objects within 2D or 3D video sequences. These 

methods can be generally grouped into three categories based on the type of data they utilize: 

RGB-based, depth-based, and RGBD-based methods. Each of these categories comes with its own 

set of advantages and limitations. 

5.2.1.1 RGB-based Background Subtraction Methods 

RGB-based background subtraction methods have evolved significantly, integrating 

mathematical, signal processing, and machine learning principles. These methods encompass 

techniques that rely on both temporal changes in pixel values and colour information in the RGB 

colour space. 
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The most straightforward mathematical-based techniques for background modeling 

involve computing the temporal average, temporal median, or histogram over time. Despite their 

widespread adoption in earlier traffic surveillance systems, these methods are vulnerable to video 

surveillance challenges such as dynamic backgrounds and illumination changes [16]. 

In contrast, Wren et al. [17] introduced a statistical background subtraction model using 

the univariate Gaussian distribution. However, this method's reliance on a single Gaussian model 

limits its effectiveness to static backgrounds, leading to false detections in scenarios with moving 

elements like water fountains and swaying trees. In response, Stauffer and Grimson [18] presented 

a novel approach to background modeling, suggesting the representation of each pixel with an 

independent mixture model known as the Mixture of Gaussians (MOG). ViBe technique [19] is 

another noteworthy algorithm among statistical background subtraction methods. It creates and 

maintains a background model for each pixel by selecting a random subset of historical pixel 

values from the video frame. This model is continuously updated by comparing new pixel values 

with the stored historical data. When a pixel's value significantly deviates from the model, it is 

classified as part of the foreground, indicating potential motion or the presence of an object.  

Fuzzy theory was introduced to the field of background subtraction by researchers seeking 

to address inaccuracies in complex scenarios. El Baf et al. [20] proposed an algorithm to handle 

uncertainties from dynamic backgrounds, employing the Type-2 Fuzzy Mixture of Gaussians 

model (T2F-MOG). Furthermore, in their subsequent study [21], they utilized the T2F-MOG 

model to extract moving objects in infrared videos. Additionally, Azab et al. [22] introduced a new 

technique for background modeling and subtraction for motion detection in real-time videos, 

incorporating a combination of colour, texture, and edge features alongside fuzzy concepts. This 
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approach shows promise in effectively mitigating challenges arising from illumination variations 

and shadows. 

Background modeling techniques frequently employ signal processing filters such as the 

Wiener filter [23] and Kalman filter [24] to model the background, as proposed in methods [25] 

and [26], respectively. While these methods are robust in handling gradual illumination changes, 

they are susceptible to challenges posed by highly dynamic backgrounds. In another study utilizing 

signal processing principles, Tezuka and Nishitani [27] introduced a foreground segmentation 

technique, leveraging Gaussian mixture models (GMMs) across various block sizes with Walsh 

transform (WT), where the WT's spectral nature significantly reduces computational steps. Their 

method shows robustness in challenging conditions such as heavy snow and changes in global 

lighting. 

Background modeling using machine learning methods has been explored extensively, 

employing various techniques, including clustering, subspace learning, support vector machine 

(SVM), and neural network (NN) modeling. Several scholarly works have explored various 

clustering approaches for background modeling, such as employing k-means clustering, as detailed 

in [28] and the Codebook model, as discussed in [29]. These clustering-based models excel at 

producing accurate foreground objects, especially in scenarios with video noise and dynamic 

backgrounds. 

Grassmannian Robust Adaptive Subspace Tracking (GRASTA) [30] and Incremental 

Principal Component Pursuit (incPCP) [31] are acknowledged as two pioneering achievements in 

subspace learning methods for background modeling. GRASTA excels in foreground-background 

separation by employing an advanced algorithm within the Grassmannian space, dynamically 

tracking and updating the background subspace to ensure robustness and adaptability to temporal 
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changes. On the other hand, incPCP takes a unique approach to video background modeling by 

analyzing each frame individually, enabling real-time adaptation to background changes. This 

incremental approach not only makes incPCP ideal for streaming video applications but also 

minimizes memory usage and computational complexity. 

SVM-based methods have been introduced to enhance the robustness of background 

modeling, particularly in dynamic environments. These models can effectively learn and adapt to 

complex environmental variations, making them well-suited when background elements change 

over time. For instance, Han and Davis [32] introduced an SVM-based method for background 

modeling and subtraction in video sequences, integrating various features like colour, gradient, 

and Haar-like features. Their method combines generative background modeling with 

discriminative classification using SVMs, resulting in robustness against shadows, illumination 

changes, and spatial background variations. Similarly, Lin et al. [33] proposed an automatic 

background initialization method for visual tracking systems, employing probabilistic SVM to 

overcome the unrealistic assumption of an absence of moving objects during initialization. Their 

approach formulates the problem as an online classification task, potentially enabling real-time 

performance. It evaluates all elements of each image frame using SVM classification, with a 

particular emphasis on the optical flow value and inter-frame difference as the two most crucial 

features for SVM-based classification. 

One of the earliest approaches to use neural networks for background modeling and 

foreground detection was introduced by Schofield et al. [34] focusing on counting people in video 

images, employing a Random Access Memory (RAM) neural network. However, this method had 

two main limitations: it required the images to be highly representative of the scene's background 

and lacked a mechanism for background maintenance, as the information in the RAM-NN could 
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not be modified once trained with a single pass of background images. Subsequently, several 

researchers have proposed neural network-driven techniques for background modeling in 2D 

videos. In the following, we briefly discuss some of the most widely recognized methods and refer 

readers to two exhaustive and detailed surveys, [35] and [36], for further exploration. 

In 2008, Maddalena and Petrosino [37] proposed the Self Organizing Background 

Subtraction (SOBS) method, featuring a 2D self-organizing neural network architecture that 

preserves pixel spatial relations. This method automatically models the background through the 

network's neuron weights, initializing each pixel with a neural map consisting of n × n weight 

vectors using HSV colour values. New pixel information from subsequent video frames is then 

compared to the current model to determine whether the pixel corresponds to the background or 

foreground. In subsequent research, various enhancements and adaptations of the SOBS method 

have been developed, such as the Fuzzy and Coherence-based SOBS (SOBS_CF) algorithm [38], 

Spatially Coherent SOBS (SC-SOBS) algorithm [39], and Multi Independent-Layered Self-

Balanced SOBS (MILSBSOBS) algorithm [40], each offering unique advantages in specific 

scenarios. However, despite their effectiveness, a significant drawback of SOBS-based approaches 

is the requirement for manual adjustment of at least four parameters [41]. 

In 2016, Braham and Van Droogenbroeck [42] were the first to apply Convolutional Neural 

Networks (ConvNets) to the task of background subtraction. Their background subtraction 

algorithm, inspired by the architecture of the LeNet-5 model [43], comprises four main stages: 

extracting the background model, generating a specific-scene dataset, training the network, and 

performing a ConvNet-based background subtraction. The main drawback of this method is its 

limited applicability to specific scenes, requiring retraining for different video contexts. 
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In 2018, Lim and Keles [44] introduced two robust encoder-decoder neural networks, 

Foreground Segmentation Network with Multiple Inputs (FgSegNet_M) and Foreground 

Segmentation Network with Single Input (FgSegNet_S), tailored for moving object segmentation. 

FgSegNet_M adapts the first four blocks of the VGG-16 Net [45] and utilizes a triplet CNN 

alongside a Transposed Convolutional Neural Network (TCNN). On the other hand, FgSegNet_S 

employs a single-input CNN followed by a Feature Pooling Module (FPM) and the TCNN. In 

2020, the authors introduced an enhanced architecture known as FgSegNet-V2 [46]. FgSegNet-

based models achieved remarkable success by securing the top five positions on the CDnet2014 

[41] dataset, a benchmark widely used for evaluating moving object segmentation algorithms.  

In 2020, Zheng et al. [47] proposed a novel background subtraction algorithm based on 

parallel vision and Bayesian generative adversarial networks (GANs). The algorithm begins by 

employing the median filtering algorithm for background image extraction. Subsequently, it 

constructs the background subtraction model using Bayesian GANs to classify pixels into 

foreground and background, while leveraging parallel vision theory to enhance results in complex 

scenes. This method ranked sixth on the CDnet2014 dataset, whereas the author's initial 

background subtraction algorithm [48] using Bayesian GANs secured the eighth position. 

In 2021, Rahmon et al. [49] introduced MU-Net1 and MU-Net2, variants of Motion U-Net 

(MU-Net), a hybrid moving object detection system comprising a single-stream encoder module 

followed by a decoder module. MU-Net integrates motion, change, and appearance cues using an 

autoencoder deep convolutional neural network. MU-Net1 uses only a single RGB frame without 

temporal information, while MU-Net2 employs a three-channel input stream including grayscale, 

flux motion, and change cues. The encoder-generated feature maps are processed through the 
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decoder stage, resulting in a robust, multi-cue system for detecting moving objects. MU-Net2 and 

MU-Net1 achieved the seventh and ninth positions, respectively, on the CDnet2014 dataset. 

Machine learning-based methods, particularly those utilizing neural networks, have 

significantly advanced the detection of moving objects against static backgrounds, often 

outperforming traditional methods. Nevertheless, they face challenges such as sensitivity to 

dynamic backgrounds, camera jitter, and camouflage [35]. Furthermore, recent comparisons 

presented in [50] among several state-of-the-art background modeling methods have revealed that 

utilizing depth information leads to notably superior performance compared to relying solely on 

colour. In response, researchers have explored depth-based and RGBD-based background 

subtraction methods, leveraging depth information to enhance detection accuracy. 

5.2.1.2 Depth-based Background Subtraction Methods 

Depth-based background subtraction techniques center around exploiting the distinct 

spatial relationships between foreground objects and their surrounding backgrounds within the 

depth data. These methods often adopt well-known 2D background modeling techniques, 

including thresholding, single Gaussian [17], MoG [18], and frame difference, and are employed 

across a spectrum of 3D computer vision applications such as fall detection [51], human tracking 

[52] and gesture recognition [53]. 

Thresholding, a fundamental 2D segmentation technique, serves as a basic method for 

background subtraction in depth maps. For instance, Cinque et al. [54] employed Otsu 

thresholding to isolate foreground objects in the depth map and subsequently refined the 

segmented foregrounds by applying region growing and morphological operations. Czarnuch and 

Mihailidis [55] calculated the average historical value for each pixel and utilized a pixel-based 

threshold to segment the foreground image but required a sequence of background images.  
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The single Gaussian and MoG models have been widely utilized for depth-based 

background subtraction. For example, Rougier et al. [51] employed the single Gaussian model for 

fall detection among the elderly, and Zhang et al. [56] embraced it as a key initial step in object 

detection. Frick et al. [57] employed the MoG algorithm to isolate foreground regions from the 

background for creating 3D-TV content.  

The well-established frame difference method, initially developed for background 

subtraction of 2D videos, has demonstrated adaptability in scenarios where only depth information 

is available. This method has been employed in several 3D computer vision applications, including 

human tracking [52] and gesture recognition [53], to segment foreground objects such as human 

bodies. 

While the aforementioned depth-based background subtraction techniques can address 

certain limitations of 2D background modeling methods, such as challenges related to illumination 

changes, they still inherit some of the drawbacks associated with 2D background modeling 

techniques from which they are derived. For example, choosing the suitable depth threshold can 

still be challenging when the background itself is dynamic or contains moving objects, often 

requiring manual tuning based on the depth map's characteristics.  

To overcome some of these limitations, particularly in the context of indoor scenes with 

static backgrounds, Ebrahimi and Czarnuch [58] explored parametric modeling of the background 

surfaces (e.g., walls, windows, and floor) using the well-known plane segmentation algorithm 

RANdom SAmple Consensus (RANSAC) [59]. The proposed method isolates foreground objects 

by iteratively segmenting and removing large background surfaces within four local regions. 

However, it falls short in accurately segmenting all the surfaces that belong to a non-planar 

background, containing surfaces with differing normal vectors, such as those between a window 
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and a wall. Additionally, it is unsuitable for 3D scenes with more than four static background 

surfaces, such as when the point cloud includes the ceiling surface along with three walls and a 

floor, or when the indoor scenes contain more than four walls. 

5.2.1.3 RGBD-based Background Subtraction Methods 

Leveraging both RGB colour and depth information, RGBD-based background subtraction 

methods offer enhanced accuracy and robustness. By integrating colour data with valuable 3D 

spatial information, these techniques overcome the limitations of RGB or depth-based approaches, 

especially in challenging scenarios such as colour camouflage and depth camouflage. These 

methods typically involve either refining existing background models designed for RGB or depth 

data or alternatively, constructing two distinct background models for the scene, one relying on 

RGB data and the other on depth data, and subsequently integrating the results using various 

criteria. 

One of the early contributions to RGB-D background estimation is the method proposed 

by Gordon et al. [60]. This method, an adaptation of the MoG algorithm, integrates both colour 

and depth data captured using a stereo imaging system. It models each background pixel using a 

mixture of four-dimensional Gaussian distributions, with three components representing the colour 

data in the YUV colour space and the fourth component representing the depth data. The method 

treats colour and depth independently, adjusting colour-matching criteria based on the reliability 

of depth data. When depth data is reliable, decisions prioritize depth over colour, reducing colour 

camouflage errors. Conversely, an unreliable stereo-matching algorithm tightens colour-matching 

criteria to address issues like shadows or local illumination changes. Similarly, Clapés et al. [61] 

proposed a surveillance system employing a per-pixel background subtraction technique, utilizing 

a four-dimensional Gaussian distribution to integrate colour and depth information for object 
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recognition and user identification. However, unlike the method by Gordon et al., they used a 

single Gaussian distribution. 

Another noteworthy contribution to the RGB-D background modeling, leveraging the 

MoG model, is the research conducted by Camplani and Salgado [62]. They introduced an 

approach that combines two per-pixel statistical classifiers, one based on depth features and the 

other on colour features. The likelihood function of the background utilized in both classifiers 

relies on a mixture of Gaussians model. Additionally, the combination of classifiers relies on a 

weighted average, which dynamically adjusts each classifier's support within the ensemble by 

taking into account foreground detections in preceding frames, as well as depth and colour edges. 

The objective is to mitigate false detections resulting from challenging issues that individual 

classifiers cannot effectively address, such as shadows, illumination changes, colour camouflage, 

and depth camouflage.  

Several RGBD-based methods leverage the ViBe algorithm for background subtraction. 

Leens et al. [63] introduced a multi-camera setup for video segmentation, integrating colour and 

depth data from a low-resolution ToF camera. Their algorithm independently applies the ViBe 

algorithm to the colour and depth data, producing foreground masks that are subsequently 

combined using logical operations and post-processed with morphological operations. Ottonelli et 

al. [64] enhanced ViBe's colour segmentation by integrating a compensation factor derived from 

data captured by a stereo camera. Their method combines colour and depth information to improve 

foreground segmentation, leading to more accurate detection of human silhouettes. Similarly, 

Zhou et al. [65] constructed colour and depth models using the ViBe algorithm and fused them 

with a weighting system that accounts for the reliability of depth information. By assigning weights 
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to the depth data based on its uncertainty, their approach ensures robust segmentation across 

different scenes and lighting conditions. 

The capabilities of the 2D Codebook background model are enhanced by certain RGBD-

based methods, such as [66] and [67]. Fernandez-Sanchez et al. [66] employed the Codebook 

method for RGB-D based background modeling, utilizing data from Kinect cameras. They 

developed a Depth-Extended Codebook (DECB) approach, combining RGB and depth data 

directly into the model. Their findings demonstrate that their DECB method outperforms a four-

dimensional Codebook approach, where depth serves as an extra channel in the background model. 

Similarly, Murgia et al. [67] extended the Codebook model to address scenarios with varying 

illumination conditions. Their method involved integrating depth information into the Codebook 

model, facilitating RGB-D fusion during segmentation. Furthermore, they incorporated 

colorimetric invariants to ensure colour consistency across diverse lighting conditions. 

In recent years, there has been a surge in research focused on RGB-D background modeling 

and subtraction techniques. In the following, we spotlight some of the latest recognized methods 

and direct readers to a detailed survey [68] for further exploration. 

Moya-Alcover et al. [69] introduced the Generic Scene Modeling (GSM) approach, which 

integrates depth and colour information for scene modeling. They utilized Kernel Density 

Estimation (KDE) with a three-dimensional Gaussian Kernel to construct background models for 

each pixel. The model incorporates one dimension for depth information and two for normalized 

chromaticity coordinates. Through a probabilistic strategy, the method distinguishes between 

background and foreground objects and detects changes in background objects within frames 

based on pixel model distributions. Additionally, GSM incorporates a probabilistic depth data 

model to handle inaccuracies, improving foreground segmentation and ensuring robust 
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segmentation across different scenarios. However, one limitation of KDE-based approaches like 

GSM are their relatively high computational complexity, which poses challenges for real-time 

applications.  

Despite the inherent slowness of KDE-based methods, Trabelsi et al. [70] improved the 

computational efficiency of their proposed RGBD-KDE algorithm by adapting the Fast Gaussian 

Transform. Similar to GSM, their approach constructs a scene background model using KDE, 

albeit with a two-dimensional Gaussian kernel. Depth information is integrated into one kernel 

dimension, while intensity, calculated as the average of RGB components, is represented in the 

other dimension.  

Javed et al. [71] presented the Spatiotemporal Robust Principal Component Analysis 

(SRPCA) algorithm for detecting moving objects in RGBD videos. Their method comprises three 

primary stages: first, identifying dynamic images to create a dynamic input sequence by filtering 

out static video frames; second, computing spatiotemporal graph Laplacians; and finally, 

employing RPCA to integrate the previous two steps for separating background and foreground 

components. They evaluated their algorithm on the SBM-RGBD dataset [72] tailored for moving 

object detection, achieving a notable third-place ranking in performance. 

Maddalena and Petrosino introduced the RGB-D Self-Organizing Background Subtraction 

(RGBD-SOBS) method [73], which initially constructs separate background models for colour 

and depth data before merging them. Leveraging their previous work on RGB videos, specifically 

the SC-SOBS algorithm [39], they developed distinct background models for both colour and 

depth using a self-organizing neural background model. The resulting colour and depth detection 

masks are used to guide the selective model update process, which helps refine the background 

models and ultimately generates the final detection masks. Additionally, in their subsequent study 
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[50], they provided further insights into the RGBD-SOBS algorithm and extensively evaluated its 

robustness to various challenges in maintaining colour and depth backgrounds, offering 

comparisons with state-of-the-art methods. RGBD-SOBS and SC-SOBS (i.e., RGB-SOBS) 

demonstrated outstanding performance, securing the first and second positions on the SBM-RGBD 

dataset, respectively.  

Although RGBD-based background subtraction methods have shown better performance 

compared to colour-based and depth-based techniques in specific scenarios, they have inherent 

limitations. One common drawback is their computational complexity, particularly in real-time 

applications dealing with high-resolution videos. This complexity arises from the integration of 

depth and colour data to create a point cloud and the simultaneous processing of both types of 

information, requiring substantial computational resources. Furthermore, RGBD-based 

approaches are more prone to errors in environments with limited or absent colour information, 

such as dark indoor settings. Finally, almost all these methods are not well-suited for complex and 

cluttered 3D indoor environments or scenarios where the positions and orientations of sensors are 

not known or ideal. 

5.2.2 Contributions 

Our perspective-independent point cloud simplifier (PiPCS) expands the conventional 

concept of background subtraction to encompass the identification, segmentation, and removal of 

3D background bounding surfaces, such as walls, windows, curtains, ceilings, and floors, from 

indoor point clouds. Conventional background subtraction techniques are commonly used to 

identify foreground objects (e.g., moving objects in video or image sequences) without any 

particular consideration for specific background content. Our work leverages the unique 

opportunity to contextually segment and remove 3D background components and retain segmented 
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3D foreground objects within indoor point cloud scenes without relying on colour and historical 

information. This distinction makes it particularly well-suited to applications in complex indoor 

environments, where distinguishing between foreground and background points can be a 

challenging task. Our point cloud simplifier contributes to the field of 3D point cloud processing 

by offering four comprehensive solutions.  

1) PiPCS serves as an essential preprocessing step for a variety of 3D computer vision 

applications, including 3D object segmentation, human tracking, and human 

activity recognition. As a preprocessing step, PiPCS effectively narrows the search 

space for downstream processes by segmenting 3D background and foreground 

objects of indoor scenes, allowing for the easy elimination of only background 

objects in tasks requiring foreground identification, resulting in notable 

performance and accuracy improvements of these applications. 

2) PiPCS can significantly reduce the size of 3D indoor point clouds by eliminating 

their large background bounding surfaces, which are non-essential for the majority 

of 3D computer vision applications, thereby yielding a streamlined and compact 

dataset. This contribution addresses a critical challenge in the field, where large 

point cloud datasets can pose significant computational and storage burdens. In 

addition, PiPCS has the potential to optimize data transmission processes by first 

subtracting the unchanging and redundant 3D background from all point cloud 

frames and then transmitting one instance of the 3D background alongside the 3D 

foreground objects of each frame. This supplementary application can contribute to 

data transmission efficiency and resource optimization. 

3) PiPCS significantly advances 3D indoor scene perception by accurately segmenting 

and identifying all points associated with each boundary of the 3D background, 

including the ceiling, floor, and surrounding walls within an indoor scene. The 

specific emphasis is on accurately identifying the ground plane because once 

known, it inherently provides information about the ceiling and surrounding walls. 
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This approach enables a comprehensive understanding of the spatial relationships 

among 3D background elements and 3D foreground objects within indoor scenes. 

This capability is particularly beneficial in applications such as virtual reality, 

where achieving an accurate interpretation of 3D space is crucial for immersive 

experiences and precise scene representation. 

4) PiPCS can serve as a labeling or annotation tool by accurately segmenting both 3D 

background and 3D foreground objects within indoor point clouds, providing 

benefits to machine learning-based computer vision applications. 

Our PiPCS distinguishes itself through the following key advantages: 

• Perspective independence: PiPCS supports a wide range of sensor heights relative 

to the ground, along with different pitches and yaws, enabling it to adapt to almost 

all practical sensor perspectives. This is critical to ensure optimal system 

performance and consistent results in diverse and non-ideal sensor setups and data 

collection scenarios. 

• Privacy enhancement: Our approach prioritizes privacy by exclusively utilizing 3D 

coordinates of foreground objects, such as the human body, without the need for 

descriptive colour data. This characteristic makes it particularly well-suited for 

applications in sensitive environments, such as private healthcare settings where 

monitoring patients or elderly individuals requires privacy protection. 

• Universal sensor and data compatibility: PiPCS relies solely on the raw depth map 

from unorganized point clouds, confirming its adaptability to a range of sensor 

types. This key advantage enables its application across a wide range of 3D sensors, 

making it a versatile solution that seamlessly works with both organized and 

unorganized point clouds. 
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The subsequent sections of this paper are organized as follows. In the next section, we 

elaborate on our proposed point cloud simplifier. In section 5.4, we present the experimental and 

evaluation results of our proposed method. In section 5.5, we discuss our findings and future 

research directions, followed by conclusions in section 5.6. 

5.3 Point Cloud Simplifier 

Our perspective-independent point cloud simplifier (PiPCS) has four main steps, as 

illustrated in Fig 5.1 We begin with splitting the input point cloud into different zones based on 

the normal vectors of the point cloud voxels. Second, we segment each zone into several large 

plane-like clusters. Third, we find the largest plane in every cluster, and then we sort the planes 

within each zone by distance along the zone normal. Finally, following the segmentation of 3D 

background, we derive the simplified point cloud using a voxel-based background subtraction 

technique and segment 3D foreground objects via a cluster-based segmentation method. 

 
Figure 5.1 The flowchart of PiPCS 
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5.3.1 Zone Determination 

Dividing our captured point clouds into different zones based on the normal vectors of 

point cloud points, and processing each zone individually can significantly increase the efficiency 

and accuracy of the MSAC algorithm (see section 5.3.3.1) and, as a result, the accuracy of our 

point cloud simplifier. Since each zone has fewer points than the point cloud itself and all points 

in every zone have similar normal vectors (i.e., the number of outlier points of the MSAC 

algorithm dramatically decreases), the MSAC algorithm runs faster and more accurately. To 

identify zones automatically in a general point cloud captured from an arbitrary view perspective, 

we compute the normal vectors, estimate the optimal number of clusters, cluster the point cloud 

voxels, and refine the zones, producing point cloud subsets for each zone. 

5.3.1.1 Normal Vectors Estimation 

We can estimate the normal of a surface point by estimating the normal of its tangent plane, 

which can be achieved through a least-square plane fitting estimation problem [74]. We use the 

neighbouring points of each point in the input point cloud to fit a local plane and determine its 

normal vector. Due to the fact that the sign of a point's surface normal cannot be mathematically 

determined [75], the orientations of the estimated normals are initially vague and lack consistency 

across the entire point cloud, as shown in Fig. 5.2a. To tackle this issue, we flip the normals with 

respect to the point cloud's centroid, as shown in Fig. 5.2b. 

5.3.1.2 Optimal Cluster Size (k) Estimation 

Unsupervised partitioning algorithms like the k-means clustering algorithm [76] can be 

used to group data into a finite number of k distinct clusters. However, the outcomes of these 

algorithms can be different based on chosen parameters, particularly the value of k (i.e., the number 

of clusters). Therefore, before clustering the adjusted normal vectors (see section 5.3.1.3), it is 
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necessary to estimate the optimal number of clusters, k, that will represent all distinct normal 

clusters within an unknown indoor environment. 

To evaluate the optimal number of clusters, it is common to analyze data properties such 

as density, cluster size, and separability. Clustering analysis typically aims to minimize the 

variance within clusters while maximizing the separation between them. Several cluster validation 

techniques, such as well-known Calinski-Harabasz [77], Davis-Bouldin [78], and Silhouette 

[79][80] have been proposed to evaluate the optimal k. We employed the most common validation 

techniques to determine the optimal k for clustering the normal vectors of different indoor point 

clouds. Based on our experimentation, the Calinski-Harabasz technique is most effective across a 

range of indoor environments.  

5.3.1.3 K-medoids Clustering 

After estimating the optimal k of the input point cloud, we can more accurately group the 

adjusted normal vectors of the point cloud's points into k clusters. We use k-medoids clustering 

[80] to divide the point cloud points into distinctive zones with similar normal vectors. 

The k-medoids algorithm groups a set of observations into k subsets, minimizing the sum 

of distances between observations and the center of their respective clusters. However, unlike the 

k-means algorithm, k-medoids clustering always assigns a member of a cluster, known as a 

medoid, as the center of the cluster, which allows us to exploit the normal vector of each medoid 

as the reference vector for each zone in the next section, zones refinement, and in section 5.3.3.1, 

Orientation-based MSAC. Furthermore, in comparison to k-means, k-medoids clustering is known 

for its greater robustness to noise and outliers [81].  
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Figure 5.3a shows an indoor point cloud obtained using Microsoft Azure Kinect, and Fig. 

5.3b demonstrates the result of k-medoids clustering of the point cloud as a 3D scatter plot. The 

3D plot illustrates how k-medoids clustering groups the normal vectors of the sample point cloud 

into six clusters; each cluster corresponds to a specific zone of the point cloud where every point 

shares a similar normal vector, and all surfaces are almost parallel. Fig. 5.3c shows the point cloud 

zones highlighted over the sample point cloud. 

( a ) ( b ) 

  

   

 

Figure 5.2 Normal vectors estimation: (a) estimated normals, and (b) adjusted normals are shown over a sample 
point cloud. 

5.3.1.4 Zone Refinement 

Normal vectors located on the borders of two clusters (e.g., see Fig. 5.3b) may not be 

clustered accurately. These points usually connect surfaces at different angles in the original point 
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cloud (e.g., borders between adjacent surfaces highlighted with different colours in Fig. 5.3c), or 

belong to objects that do not have flat surfaces (e.g., cushions).   

To ensure all points within a point cloud zone have almost the same normal vectors, we 

refine each zone based on the angles of its normal vectors with the zone's reference vector (i.e., 

the normal vector of the zone's medoid). After computing the angles between each zone's reference 

vector and its normal vectors, we eliminate any point with an angle more than a threshold (𝛼𝛼 =

 20 degrees) from the point cloud zone. Fig. 5.3d demonstrates the result of the zone refinement 

for the sample point cloud, with points that were removed from zone clusters retaining their 

original colour (i.e., not being assigned the colour of the zone). 

Our zone refinement technique increases the accuracy of the downstream plane fitting 

approach (i.e., the MSAC algorithm) by preserving only the surface points with the same normal 

vectors in each zone while incurring minimal computational overhead due to its efficient 

implementation through vectorization techniques. 

5.3.2 Cluster Determination 

In this step, we segment each of the refined zones into multiple clusters based on the 

Euclidean distance between the zone's voxels. As shown in Fig. 5.3d, each refined zone is 

composed of various parallel surfaces that are situated at different distances along the zone's 

surface normal; for instance, see the green zone (the ground and other green surfaces parallel to 

the ground) in Fig. 5.3d. By dividing the refined zones into individual clusters, we enable the 

MSAC algorithm (see section 5.3.3.1) to efficiently fit the optimal plane within each cluster while 

preventing the segmentation of spurious planes [82]. 
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( c ) ( d ) 

  
Figure 5.3 k-medoids clustering and zone refinement: (a) the sample point cloud, (b) k-medoids clustering of the 
normal vectors of the sample point cloud represented as a 3D scatter plot, (c) the initial zones, and (d) the refined 
zones of the point cloud highlighted over the sample point cloud. Note, the sensor is located very close to the room 
ceiling and covers a portion of the ceiling highlighted with cyan colour over the sample point cloud. 

5.3.2.1 Euclidean Clustering 

To cluster each zone of the point cloud, we first calculate the Euclidean distance between 

each point and its neighbouring points. Then, we group adjacent points into a cluster if the distance 

between them is below a threshold (𝜀𝜀 = 5 cm). We repeat this process until all the clusters are 

determined. For instance, the Euclidean clustering of the green zone in Fig. 5.3d results in 20 

individual clusters, as demonstrated in Fig. 5.4a. 
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Figure 5.4 Euclidean clustering and small cluster removal: (a) the initial clusters and (b) the large clusters of the green 
zone in Fig. 5.3d. 

5.3.2.2 Small Cluster Removal 

As illustrated in Fig. 5.4a, some clusters can be very small, typically associated with small 

foreground objects or sensor noise. Since our point cloud simplifier aims to segment the 3D 

background of a point cloud (i.e., the large bounding surfaces) and remove them from the original 

point cloud, we can preserve potential background clusters by removing small clusters and only 

preserving the large clusters.  

 We accomplish this by removing clusters from each zone that are smaller than a threshold, 

adaptive to the size of the point cloud (𝜇𝜇 = 0.1% of point cloud points). For example, by removing 

the small clusters shown in Fig. 5.4a, we decrease the number of clusters from 20 to 10, as 

illustrated in Fig. 5.4b. Removing the zones' small clusters improves the speed of our PiPCS by 

preserving and analyzing only the large clusters (i.e., by employing the downstream plane fitting 

approach in fewer clusters). Moreover, small clusters may not contain sufficient points to fit planes 

robustly using the MSAC algorithm. 
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5.3.3 Plane Fitting and Sorting 

In this step, we use the M-estimator SAmple Consensus (MSAC) algorithm [83] to segment 

the largest plane with a predetermined orientation in each of the large clusters of every zone. Then, 

we sort the segmented planes in each zone based on a distance-based approach.  

5.3.3.1 Orientation-based MSAC 

The MSAC algorithm, an enhanced version of the RANSAC algorithm [59], iteratively 

selects three random voxels as a minimum subset within each cluster to generate a hypothesis 

plane. During each iteration, the algorithm computes the distance between the plane and the 

remaining voxels of the cluster and identifies the number of inliers within a predefined distance 

threshold (𝛿𝛿 = 2 cm). The algorithm ultimately returns the plane with the highest percentage of 

inliers. 

The main difference between RANSAC and MSAC is how they calculate the model's 

quality. RANSAC counts only the number of inliers within the threshold, regardless of how close 

they are to the model. However, MSAC uses the sum of all point-model distances as the quality 

measure. More specifically, as presented by Torr and Zisserman [83], RANSAC finds the 

minimum of a cost function 𝐶𝐶1, defined as (5.1), where MSAC minimizes a new cost function 𝐶𝐶2, 

defined as (5.2), where 𝜌𝜌1 and 𝜌𝜌2 can be calculated using (5.3) and (5.4), respectively, 𝛿𝛿 is the 

distance threshold, 𝑒𝑒𝑖𝑖 is the Maximum Likelihood Estimation (MLE) error [83] for the 𝑖𝑖𝑖𝑖ℎ point, 

and 𝜆𝜆 is a constant penalty. 

𝐶𝐶1 =  �𝜌𝜌1 (𝑒𝑒𝑖𝑖2)
𝑖𝑖

                                                                                                                                      (5.1) 

𝐶𝐶2 =  �𝜌𝜌2 (𝑒𝑒𝑖𝑖2)
𝑖𝑖

                                                                                                                                      (5.2) 
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Equation (5.1) conveys that, in RANSAC, each outlier scores a constant penalty, and inliers 

score nothing. Therefore, a significantly large distance threshold (𝛿𝛿) may cause a poor estimation. 

MSAC algorithm remedies this issue at no extra cost with a new cost function (5.2), where inliers 

are now scored on how well they fit the data, and outliers are still given a fixed penalty. 

𝜌𝜌1(𝑒𝑒2) = �0, 𝑒𝑒2 < 𝛿𝛿2
𝜆𝜆, 𝑒𝑒  ≥ 𝛿𝛿2

                                                                                                                      (5.3) 

𝜌𝜌2(𝑒𝑒2) = �𝑒𝑒
2, 𝑒𝑒2 < 𝛿𝛿2
𝛿𝛿2, 𝑒𝑒  ≥ 𝛿𝛿2

                                                                                                                    (5.4) 

Since the normal vectors of all points within a refined zone are nearly the same and the 

points within each large cluster are generally located on a flat surface, the MSAC algorithm is 

effective in segmenting the planes in each zone. To enhance the accuracy of the plane fitting 

process and guarantee that all planes within a zone are parallel, we integrate an orientation-based 

approach into the MSAC algorithm. Our orientation-based MSAC prioritizes planes with the 

highest percentage of inliers that have an expected orientation relative to the surfaces of each zone. 

To accomplish this, we utilize the normal vector of each zone's medoid (see section 5.3.1.3, K-

medoids Clustering) as the zone's reference vector and define a maximum allowable angular 

variation (𝛽𝛽 = 5°), the angle between the normal vectors of the zone's fitted planes and the 

reference vector. For instance, employing orientation-based MSAC in the large clusters of the 

green zone (shown in Fig. 5.4b) and the blue zone in Fig. 5.3d results in the segmented planes, as 

shown in Fig. 5.5a and Fig. 5.5b, respectively. 

According to Förstner and Wrobel [84], the RANSAC algorithm requires a maximum 

number of iterations 𝐼𝐼 to achieve convergence, and the same holds true for our orientation-based 

MSAC algorithm. The value of 𝐼𝐼 is dependent on three factors: the outlier ratio 𝜊𝜊, the target success 

probability (𝑝𝑝 =  99%), and the number of samples (𝑠𝑠 =  3 for plane fitting) and can be 
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approximated as (5.5). Increasing the success probability leads to a higher value of 𝐼𝐼, which results 

in greater computational costs but also improves the overall robustness of the output. 

𝐼𝐼 =
log(1 − 𝑝𝑝)

log(1 − (1 − 𝜊𝜊)𝑠𝑠)
                                                                                                                             (5.5) 

 

( a ) 
 

( b ) 
 

  
Figure 5.5 Orientation-based MSAC and distance-based plane sorter: the segmented planes of the green zone (a) and 
the blue zone (b) in Fig. 5.3d and their order numbers demonstrated over the sample point cloud. 

5.3.3.2 Distance-based Plane Sorter 

In this step, we sort the segmented planes in each zone based on their distances to the 

outermost plane of their own zone. To find the outermost plane of each zone, we iteratively 

compute and examine the distances between all the segmented planes of the zone. First, we 

randomly initialize one of the segmented planes of each zone as its outermost plane candidate, 

represented as (𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0). Then, we proceed by calculating the distance 𝐷𝐷� between 

the outermost plane candidate and the remaining planes of the zone. Given that the planes within 

a zone may not be entirely parallel and eventually intersect at some straight line in a 3D space, we 

calculate the average distance between the outermost plane candidate and all points belonging to 

each plane {�𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖�: 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} as (5.6), where 𝑛𝑛 represents the total number of points within 

each plane. During each iteration, if the calculated distance is negative (i.e., when the new plane 
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is situated behind the outermost plane candidate), we replace the current outermost plane candidate 

with the new plane. 

𝐷𝐷� =  
∑

𝑎𝑎𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑦𝑦𝑖𝑖 + 𝑐𝑐𝑧𝑧𝑖𝑖 + 𝑑𝑑
�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                                (5.6) 

After detecting the outermost plane of each zone, we can simply sort the remaining planes 

of every zone based on their distances to the outermost plane. For example, Fig. 5.5 shows the 

order of segmented planes of the green and blue zones in Fig. 5.3d, where the outermost planes 

are indicated as "1st", and the numbers of the other planes show how close they are to the outermost 

planes (e.g., the "2nd" planes are the closet ones to the outermost planes).   

5.3.4 3D Background Segmentation and Subtraction 

In this step, after denoising the input point cloud, we detect the seed plane of each zone (i.e., 

the zone's verified bounding plane closest to the center of the point cloud). Then, we segment the 

3D background of the point cloud using the detected seed planes and employing a distance-based 

segmentation method. After that, we acquire the simplified point cloud using a voxel-based 

background subtraction method. Finally, we segment foreground objects of the point cloud using 

a cluster-based segmentation technique.  

5.3.4.1 Cluster-based Denoising 

Removing noisy or false data points from the original point cloud is a critical preprocessing 

task for the next step, where we examine the outermost plane of each zone as candidates of the 

point cloud's bounding planes (see section 5.3.4.2). The spurious data points located outside of a 

scene's actual boundaries (see Fig. 5.6a, for example) can lead to incorrect detection of seed planes 

in the next section, resulting in erroneous segmentation of the point cloud's background. These 
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false data points usually occur because of the presence of reflective surfaces in indoor 

environments, such as glass windows or mirrors. 

One of the most common point cloud denoising approaches is to examine the k-nearest 

neighbours of all data points and remove any point whose average distance to its k-nearest 

neighbours is above a threshold (i.e., eliminating disparate points from each neighbourhood) [85]. 

However, it does not work when we have clusters of false points (e.g., spurious points enclosed 

by a red rectangle in Fig. 5.6a). Therefore, we utilize a cluster-based denoising technique to remove 

these clusters of false points. First, we group point cloud points into different clusters using the 

Euclidean clustering introduced in section 5.3.2.1 (as shown in Fig. 5.6b). Then, we remove any 

cluster smaller than the adaptive threshold 𝜇𝜇. Fig. 5.6c illustrates the result of the cluster-based 

denoising for a sample point cloud. 

5.3.4.2 Seed Plane Detection 

We use a three-step approach to detect the seed planes of the input point cloud's zones. The 

seed plane of a zone is its closest verified bounding plane to the center of the point cloud. First, 

we examine whether the outermost plane of a zone can be a bounding plane of the point cloud. 

Second, if the outermost plane is verified as a bounding plane, then we attempt to verify other 

bounding planes by examining the remaining zone's sorted planes. Finally, we select the closest 

bounding plane to the point cloud's center as the zone's seed plane.  

In the first step, we examine the outermost plane of each zone (for example, the "1st" plane 

of the sample point cloud shown in Fig. 5.5b) to verify it as a bounding plane at the extremes of 

its zone, associating but not limited to the scene's floor, walls, doors, windows, and curtains. The 

outermost plane of a zone can be verified as a bounding plane if its zone comprises some dataset 

points associated with any of the aforementioned bounding planes. Alternatively, an outermost 
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plane can be a bounding plane if no dataset points are behind it, otherwise could be a part of a 

foreground object. For example, if the sample point cloud shown in Fig. 5.5a does not cover the 

floor (the "1st" plane) of the room, then the zone's outermost plane (the "2nd" plane) is a piece of a 

foreground object (the nightstand).  

( a ) ( b ) ( c ) 

   
Figure 5.6 Cluster-based denoising: (a) a sample point cloud and its clusters of false points surrounded by a red 
rectangle, (b) the point cloud clusters highlighted with different colours over the point cloud, and (c) the denoised 
point cloud. 

As discussed in the previous section, a point cloud can consist of spurious data points 

outside of a scene's actual boundaries. Therefore, we use the denoised point cloud to verify the 

outermost planes as the bounding planes of the original point cloud. First, we compute the distance 

𝐷𝐷 between the outermost plane of each zone (𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0) and all points of the denoised 

point cloud (𝑥𝑥,𝑦𝑦, 𝑧𝑧) except points corresponding to the outermost plane itself as (5.7). Then, we 

verify any outermost plane as a bounding plane if almost all distances are greater than zero (i.e., 

less than negative of MSAC threshold, −𝛿𝛿, to exclude outer points of the bounding plane not 

segmented by the MSAC algorithm, see section 5.3.3.1). For example, Fig. 5.7a and Fig. 5.7b 

show the outermost planes and the verified bounding planes of a sample point cloud, respectively. 

Note that the tiny red outermost plane above the floor (i.e., green plane) in Fig. 5.7a is not verified 

as a bounding plane and is removed from Fig. 5.7b. 
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𝐷𝐷 =  
𝑎𝑎𝑎𝑎+ 𝑏𝑏𝑏𝑏+ 𝑐𝑐𝑐𝑐+ 𝑑𝑑
�𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2

                                                                                                                            (5.7) 

( a ) 
( b ) 

  

( c ) ( d ) 

  
Figure 5.7 Seed plane detection: (a) the outermost planes, (b) the verified outermost planes as the bounding planes, 
(c) all the bounding planes, and (d) the seed planes of the sample point cloud. 

In the second step, we aim to verify the bounding planes of more challenging indoor scenes 

where these planes are spread over the adjacent planes of the verified outermost planes, excluding 

the floor. To identify the floor, we utilize our perspective-independent ground plane detection 

method proposed in our previous work [86]. For example, as shown in Fig. 5.5b, the "2nd" plane 

(a section of the back wall), the "3rd" plane (a large picture on the back wall), and the "4th" plane 
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(the bed headboard on the back wall) could also be accepted as the bounding planes of the sample 

point cloud.  

If a zone's outermost plane is not verified as a bounding plane, the outermost plane should 

be associated with a foreground object (e.g., the tiny red outermost plane in Fig. 5.7a), and the 

zone does not contain any points associated with the 3D background of the point cloud (see the 

next section, 3D background segmentation). Otherwise, we continue to verify the successive sorted 

planes of the zone. In order to verify the next plane as a bounding plane, it should satisfy two 

conditions. First, its distance to the zone's outermost plane should be less than the maximum 

distance threshold (Δ). The maximum distance threshold between adjacent planes depends on the 

complexity and geometry of an indoor environment; based on our experimental results and due to 

the existence of the second condition, the algorithm works appropriately with 30 𝑐𝑐𝑐𝑐 ≤  Δ ≤

35 cm. Second, the plane should also be large enough compared to the sizes of the previously 

verified bounding planes of its zone (i.e., the number of its points should not be fewer than the 

average of total points forming the previously verified bounding planes of its zone) to be 

considered a bounding plane. These two conditions prevent the algorithm from verifying a plane 

associated with the foreground objects as a bounding plane. Fig. 5.7c illustrates all verified 

bounding planes of the sample point cloud. Note that some of the point cloud's zones (e.g., the 

blue and yellow zones in Fig. 5.7c) may have more than one verified bounding plane to be 

considered as the seed plane of their zones.  

In the last step, if a zone contains any bounding plane, we select the seed plane of the zone 

as follows:  if the zone contains more than one bounding plane, the furthest bounding plane from 

the outermost plane (i.e., the closest one to the point cloud's center) is the seed plane (e.g., the blue 
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and the yellow seed planes in Fig. 5.7d); otherwise, the outermost plane itself is the seed plane of 

the zone (e.g., cyan, magenta, and green seed planes in Fig. 5.7d). 

5.3.4.3 3D Background Segmentation 

The detected bounding planes of a complex indoor scene may not cover all the background 

surfaces at the outer boundaries of the point cloud, such as windows and curtains. In this section, 

we use the verified seed planes to segment the remaining points of the point cloud's background 

surfaces. Given that the seed planes constitute a significant part of the background surfaces, the 

nearest neighbour operations, such as region-growing algorithms, could be used to segment the 

remaining background surfaces. However, these methods may lead to incorrect segmentation of 

the 3D background when a foreground object touches one of the bounding surfaces. Additionally, 

these methods tend to be inefficient when applied to unorganized point clouds. Therefore, we 

introduce a distance-based segmentation technique to segment the remaining portions of the 

background surfaces associated with the seed planes from the input point cloud while minimizing 

the possibility of erroneously incorporating points that belong to foreground objects. 

First, we initialize the 3D background of the point cloud with all the seed planes' points, 

and then we extend the background surfaces by adding all points behind each of these seed planes. 

To do this, as explained in the previous section, we utilize (5.7) to find the distance between all 

points of the original point cloud (unlike the previous section, where we used the denoised point 

cloud) and each seed plane. After that, we add points with a negative distance (i.e., less than MSAC 

threshold, δ, to include inner bounding plane points not segmented by the MSAC algorithm) to the 

3D background.  The background points of each zone are highlighted over the sample point cloud, 

as shown in Fig. 5.8b. Note that the background points associated with the magenta zone in Fig. 
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5.8b are common to both magenta and yellow zones. The 3D background of the sample point cloud 

is demonstrated in Fig. 5.8c. 

( a ) ( b ) 

  
( c ) 

 
Figure 5.8 3D Background Segmentation: (a) the sample point cloud, (b) the zones' background points highlighted 
over the point cloud, and (c) the 3D background of the point cloud. 

5.3.4.4 3D Background Subtraction 

We can acquire the simplified point cloud (i.e., the 3D foreground of a point cloud), 

including only the foreground objects, such as humans, pets, and furniture, by subtracting the 

segmented 3D background from the original point cloud. Our 3D background subtraction is voxel-

based such that we find the set difference between point cloud voxels and 3D background voxels 
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to obtain the 3D foreground of the point cloud. The 3D foreground of the sample point cloud is 

shown in Fig. 5.9b. 

5.3.4.5 Cluster-based Segmentation 

One of the significant benefits of removing the 3D background from a point cloud is 

splitting groups of points associated with different foreground objects of the point cloud. Hence, 

we can individually segment foreground objects of a point cloud by clustering its 3D foreground 

utilizing the Euclidean clustering introduced in section 5.3.2.1. Fig. 5.9c demonstrates foreground 

objects of the sample point cloud, highlighted with different colours over the point cloud. 

( a ) ( b ) 

 

 

 

( c ) 

 
Figure 5.9 3D Background Subtraction and Cluster-based Segmentation: (a) the sample point cloud, (b) the 3D 
foreground of the point cloud, and (c) the foreground objects highlighted with different colours over the point cloud. 
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5.4 Experiments and Evaluation 

5.4.1 Experimental Setup 

We evaluated our PiPCS on our own generated dataset [87] and the Stanford large-scale 

3D Indoor Spaces dataset (S3DIS) [88]. Our dataset consists of scenes captured using the 

Microsoft Kinect V2 and Kinect V4 (i.e., Azure Kinect) sensors placed at different locations with 

varying pitches and yaws, while the S3DIS depth dataset was acquired with the Matterport Camera 

[89], a 360° camera consisting of three structured-light sensors at different pitches. The two 

datasets feature diverse indoor settings, encompassing a wide range of objects such as furniture, 

planar objects, and human bodies, which are in contact with one of the bounding surfaces such as 

the ground plane, ceiling, and walls, as shown in Fig. 5.10, 5.11, and 5.12. We implemented our 

proposed algorithm using MATLAB on a system consisting of an Intel i7-12700H CPU @ 2.30 

GHz, an NVIDIA GeForce RTX 3060 Laptop GPU, and 16 GB of RAM. 

To conduct a quantitative evaluation of PiPCS, we assessed its efficiency on the labeled 

S3DIS dataset using four conventional voxel-based metrics: specificity, precision, recall, and F1 

score. These metrics, especially the last three, have been commonly utilized to quantitatively 

assess the effectiveness of plane segmentation, as evidenced by previous studies (e.g., [90], [91], 

[92], and [93]). Additionally, all four metrics were used in the SBM-RGBD dataset and challenge 

[94] as performance metrics for foreground object detection from RGBD videos. To compute these 

metrics, we classified points as follows: true positives (𝑇𝑇𝑇𝑇) are foreground points correctly 

identified, true negatives (𝑇𝑇𝑇𝑇) are background points correctly identified, false positives (𝐹𝐹𝐹𝐹) are 

background points incorrectly identified as foreground, and false negatives (𝐹𝐹𝐹𝐹) are foreground 

points incorrectly identified as background. The specificity, calculated as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹), 
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measures our method's capability to differentiate the foreground points from the background 

points. Precision, calculated as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹), indicates the proportion of correctly segmented 

points compared to the total number of segmented points. Recall, calculated as 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹), 

signifies the proportion of true positives relative to the total number of ground truth points. The F1 

score measures the overall performance of PiPCS by taking into account both precision and recall, 

calculated as 2 ×  (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) / (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟).  

For our experiments, we extracted point clouds of different indoor spaces by disjointing 

them from each of the six large areas presented in the S3DIS dataset. Since the dataset is annotated 

with semantic labels such as foreground objects, walls, floor, and ceiling, we were able to 

accurately define the ground truth points for the evaluation of our method. 

Additionally, we conducted a qualitative evaluation of PiPCS on our challenging dataset, 

where the acquired point clouds vary significantly in sensor positions and orientations. In the 

absence of ground truth labels, we adopted visual inspection as the primary method to assess the 

PiPCS results on our dataset. This approach not only allowed us to examine the perspective 

independence of our PiPCS, but also enabled us to thoroughly evaluate the performance of our 

point cloud simplifier for complex 3D indoor scenes. 

We quantified the size reduction achieved by PiPCS as (5.8), where 𝑂𝑂𝑂𝑂𝑂𝑂_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 

𝑆𝑆𝑆𝑆𝑆𝑆_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represent the number of voxels of the Original Point Cloud and the Simplified Point 

Cloud, respectively. This metric allows us to evaluate the effectiveness of our PiPCS in reducing 

point cloud size through a voxel-based analysis. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑂𝑂𝑂𝑂𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐− 𝑆𝑆𝑆𝑆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑂𝑂𝑂𝑂𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                                                                                                   (5.8)   
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5.4.2 Experimental Results 

Figures 5.10 and 5.11 show the output results of PiPCS on our dataset's point clouds 

captured using Microsoft Kinect v2 and Azure Kinect, respectively (see Table 5.1 for point clouds' 

details). As shown in the second and third columns of Fig. 5.10 and 5.11, our method successfully 

segments the 3D background and 3D foreground (i.e., the simplified point cloud) of all ten point 

clouds. The fourth column of each figure demonstrates the 3D foreground objects, highlighted 

with different colours over each point cloud. 

Similarly, PiPCS correctly segmented nearly all points associated with the 3D background 

and 3D foreground of six different indoor scenes derived from the S3DIS dataset (see Table 5.2 

for point clouds' details), as shown in the second and third columns of Fig. 5.12, respectively. 

However, PiPCS failed to classify challenging L-shaped structures (i.e., unconventional ceiling-

wall intersections usually associated with a building's foundation) as the 3D background and 

misclassified them as foreground objects of the point clouds demonstrated in the first and fifth 

rows of Fig. 5.12 (see the two L-shaped structures surrounded by red rectangles in the third column 

of Fig. 5.12). The 3D foreground objects of each point cloud are individually segmented and 

highlighted with different colours over the original point cloud, as shown in the fourth column of 

Fig. 5.12.  

Our experimental results suggest that PiPCS effectively simplifies unorganized point 

clouds of complex 3D indoor scenes and supports varied sensor locations. In addition, PiPCS 

segments 3D foreground, 3D background (i.e., all bounding surfaces, such as ceiling, walls, and 

floor), and 3D foreground objects of indoor scenes without using the point cloud's 2D data, such 

as colour and texture.   
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Figure 5.10 PiPCS output results on our dataset's point clouds captured using Microsoft Kinect v2: the first column 
(a) displays the input point clouds, the second (b) and third (c) columns show the 3D backgrounds and the simplified 
point clouds, respectively, and the fourth column (d) illustrates the 3D foreground objects highlighted with different 
colours over the input point clouds. 
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Figure 5.11 PiPCS output results on our dataset's point clouds captured using Microsoft Azure Kinect: the first column 
(a) displays the input point clouds, the second (b) and third (c) columns show the 3D backgrounds and the simplified 
point clouds, respectively, and the fourth column (d) illustrates the 3D foreground objects highlighted with different 
colours over the input point clouds. 
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Figure 5.12 PiPCS output results on the S3DIS dataset's point clouds: the first column (a) displays the input point 
clouds, the second (b) and third (c) columns show the 3D backgrounds and the simplified point clouds, respectively, 
(misclassified L-shaped structures surrounded by red rectangles in column c),  and the fourth column (d) illustrates 
the 3D foreground objects highlighted with different colours. Note, we excluded points belonging to the ceilings of 
the first three point clouds to visualize the foreground objects within them. Additionally, this allows us to highlight 
the segmented 3D foreground objects over these three point clouds in column d. 
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5.4.3 Evaluation 

The size reduction results of PiPCS on our own dataset and the S3DIS dataset are listed in 

Table 5.1 and Table 5.2, respectively. We also included the original size of the point clouds 

alongside their corresponding simplified sizes, allowing for a comprehensive comparison of the 

reduction achieved by our method for both datasets. Furthermore, the execution times of the PiPCS 

algorithm for both datasets are presented in Tables 5.1 and 5.2. 

Table 5.1 PiPCS evaluation results on our dataset's point clouds 

Dataset Figure indices  File name Original size (Pts) Simplified size (Pts) Size reduction (%) Runtime (s) 

Kinect v2 
(Fig. 5.10) 

1 Bedroom1_001_v2 217088 55111 74.61 7.37 
2 Bedroom2_001_v2 217088 67210 69.04 7.79 
3 Bedroom2_004_v2 217088 65248 69.94 8.27 
4 Bedroom3_001_v2 217088 60737 72.02 7.54 
5 Classroom1_001_v2 217088 61536 71.65 6.52 

Azure Kinect 
(Fig. 5.11) 

1 Bedroom2_011_v4 556635 162800 70.75 13.38 
2 Bedroom2_012_v4 544473 214876 60.54 14.40 
3 Bedroom2_013_v4 522375 144318 72.37 12.87 
4 Bedroom3_015_v4 523011 88385 83.10 14.88 
5 Bedroom3_016_v4 526919 163986 68.88 16.45 

Table 5.2 PiPCS evaluation results on the S3DIS dataset's point clouds 

Area & file name Original size 
(Pts) 

Simplified size 
(Pts) 

Size reduction 
(%) 

Specificity 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Runtime 
(s) 

Area_1 
conferenceRoom_1 919573 262505 71.45 91.63 78.02 89.30 83.28 40.49 

Area_3 
lounge_1 792952 196484 75.22 99.89 99.69 90.86 95.07 31.05 

Area_4 
conferenceRoom_1 913148 195585 78.58 99.98 99.94 89.62 94.50 37.74 

Area_5 
hallway_4 1023041 55719 94.55 100 100 92.16 95.92 42.34 

Area_6 
lounge_1 1299627 343274 73.59 91.41 74.35 93.42 82.80 72.71 

Area_6 
openspace_1 1958651 403481 79.40 99.57 98.36 93.80 96.02 120.09 

The misclassified points of the PiPCS algorithm for the six point clouds acquired from the 

S3DIS dataset are depicted in Fig. 5.13. The incorrectly classified foreground points (false 

positives), and the incorrectly classified background points (false negatives) are highlighted in 
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cyan and magenta, respectively, over the original point clouds in Fig. 5.13. The evaluation results 

of the PiPCS algorithm, including specificity, precision, recall, and F1 score, for the S3DIS point 

clouds are presented in Table 5.2. 

   ( a )       ( b )     ( c ) 

   

   ( d )       ( e )     ( f ) 

 
 

 

Figure 5.13 PiPCS misclassified points for the S3DIS dataset's point clouds: the false positive (cyan) and false 
negative (magenta) points are highlighted over the original point clouds, (a) Area_1 conferenceRoom_1, (b) Area_3 
lounge_1, (c) Area_4 conferenceRoom_1, (d) Area_5 hallway_4, (e) Area_6 lounge_1, (f) Area_6 openspace_1. 

Our evaluation of PiPCS focuses on demonstrating its effectiveness and efficiency in 

simplifying challenging indoor point clouds. Notably, PiPCS is currently the only point cloud 

simplifier specifically designed for indoor environments available in the literature, making 

comparisons with other methods in this category unfeasible. Consequently, PiPCS stands out for 

its unique contribution and innovative approach to indoor point cloud simplification. 
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5.5 Discussion 

The incorrectly classified foreground points (the cyan-highlighted points in Fig. 5.13) are 

almost entirely associated with the L-shaped ceiling-wall structures of the two challenging S3DIS 

point clouds ('Area_1 conferenceRoom_1' and 'Area_6 lounge_1'). The reason for this 

misclassification is that the distance between the two surfaces of these L-shaped structures and 

their zone's outermost planes exceeds the maximum distance threshold (Δ), failing to satisfy the 

first of the two conditions required for verifying the successive sorted planes of each zone (see 

section 5.3.4.2, Seed Plane Detection). These two conditions serve as safeguards to prevent the 

verification of any planar foreground objects (e.g., cabinets or cupboards) adjacent to the 

outermost plane of a zone as the seed plane, which could otherwise lead to erroneous segmentation 

of any foreground objects under or behind these L-shaped structures as the 3D background of the 

point cloud (see section 5.3.4.3, 3D Background Segmentation). 

The incorrectly classified background points (the magenta-highlighted points in Fig. 5.13) 

are generally associated with the points of foreground objects that touch the background surfaces 

(e.g., see the magenta-highlighted points around furniture, pictures, and sconces touching walls or 

the ground surfaces in Fig. 5.13). Note, the magenta-highlighted door frames in Fig. 5.13C are 

actually correctly classified as 3D background by PiPCS; however, they are labeled as part of 

doors in the S3DIS dataset (i.e., open doors and their frames are inevitably included in the ground 

truth or the 3D foreground of the point cloud). 

In experiments on the S3DIS dataset, our proposed PiPCS method obtained average values 

of 97.08% for specificity, 91.73% for precision, 91.53% for recall, and 91.27% for F1 score. In 

more detail, aside from the two point clouds with L-shaped ceiling-wall structures, PiPCS 

demonstrated remarkable results across all metrics for the point clouds derived from the S3DIS 
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dataset, with specificity, precision, recall, and F1 score surpassing 99.57%, 98.36%, 89.62%, and 

94.50%, respectively. 

Our PiPCS algorithm demonstrated significant size reductions across both datasets, as 

shown in Tables 5.1 and 5.2. It achieved an average size reduction of 73.13% and 69.82% for our 

dataset's point clouds captured using Microsoft Kinect v2 and Microsoft Azure Kinect, 

respectively. Moreover, PiPCS yielded an average size reduction of 75.43% for the S3DIS dataset's 

point clouds. 

The efficiency of the PiPCS algorithm across point clouds of various sizes is evident from 

the runtimes presented in Tables 5.1 and 5.2. PiPCS resulted in an average runtimes of 6.95 and 

14.92 seconds for processing the point clouds captured using Microsoft Kinect v2 and Microsoft 

Azure Kinect, respectively. Furthermore, the algorithm resulted in average runtime of 56.60 

seconds for the S3DIS dataset's point clouds, excluding the very large 'Area_6 openspace_1' point 

cloud, which achieved a runtime of 120.09 seconds for processing nearly two million points. Given 

that the 3D background (i.e., 3D bounding surfaces, such as walls, ceiling, and floor) remains static 

in nearly all indoor scenes, and many 3D computer vision applications (e.g., human detection and 

tracking) only need to segment the 3D foreground objects in the first frame or periodically, PiPCS 

is well-suited for several real-time 3D computer vision applications. In other words, once the 3D 

background of an indoor scene is segmented, only the last two steps of PiPCS (i.e., 3D background 

subtraction and Cluster-based Segmentation), which are computationally inexpensive, need to be 

employed to accurately segment the 3D foreground objects. 

Our experimental and evaluation results substantiate PiPCS as a robust and reliable 

technique for both simplifying and reducing the size of unorganized indoor point clouds. 

Furthermore, our results indicate that PiPCS supports varied sensor positions and orientations, 
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accurately segmenting the 3D background and 3D foreground objects of complex 3D indoor scenes 

without relying on colour or historical information. 

 In future work, we will expand our dataset by incorporating a larger number of 3D point 

clouds from diverse indoor environments and label the 3D background elements and foreground 

objects of each point cloud using our PiPCS algorithm. Subsequently, we will publicly release this 

annotated dataset, facilitating advancements in 3D machine learning-based applications 

specifically designed for depth data, such as 3D object recognition and human detection within 

complex 3D indoor scenes. 

5.6 Conclusions 

In this paper, we proposed an innovative approach to simplify complex 3D indoor scenes 

by contextually segmenting and removing 3D background components while retaining segmented 

3D foreground objects within indoor point clouds. Our point cloud simplifier, PiPCS, 

revolutionizes 3D indoor point cloud processing by offering a multifaceted solution. As a 

preprocessing step, it effectively narrows the search space for downstream processes by 

segmenting 3D background and foreground objects of indoor scenes, resulting in notable 

performance and accuracy improvements of these applications. Additionally, it can significantly 

reduce the size of 3D indoor point clouds by eliminating their 3D background elements, addressing 

computational and storage burdens, and optimizing data transmission processes. Furthermore, it 

enhances 3D indoor scene perception by accurately identifying each boundary of the 3D 

background and segmenting the 3D foreground objects within complex indoor scenes. This 

functionality also makes it a suitable tool for labeling or annotating indoor point clouds, 

streamlining the data preparation process for machine learning-based computer vision 

applications. Finally, PiPCS stands out for its key advantages: perspective independence, privacy 
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enhancement, and universal sensor and data compatibility, making it an essential solution for a 

wide range of 3D point cloud processing tasks. Our experimental and evaluation results validate 

PiPCS as a robust and reliable method for both simplifying and reducing the size of unorganized 

indoor point clouds. Moreover, they demonstrate that PiPCS supports diverse sensor positions and 

orientations, accurately segmenting the 3D background and 3D foreground objects of complex 

indoor scenes without relying on the point cloud's 2D data or historical information. 
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Chapter 6. Summary 

This PhD thesis addresses the challenges faced by 3D computer vision systems in cluttered 

indoor environments through the implementation of perspective-independent point cloud 

processing techniques aimed to streamline 3D computer vision workflows and enhance 3D indoor 

scene perception. 

Two bounding surface segmentation and removal techniques, IR-RANSAC [1] and 

orientation-based MSAC [2], were presented in this research. These methods are particularly 

suited to more challenging and cluttered indoor environments and support varied sensor 

perspectives. They considerably reduce the size of 3D datasets and the search space of various 3D 

computer vision applications, resulting in enhanced performance and faster processing times. In 

all experiments IR-RANSAC obtained average values above 92% for specificity, 96% for 

precision, 90% for recall, and 94% for F1 score. In contrast, Orientation-based MSAC slightly 

outperformed IR-RANSAC across all evaluation metrics, showcasing average values exceeding 

93% for specificity, 97% for precision, 97% for recall, and 98% for the F1 score. Additionally, it 

demonstrates significantly faster computational speed than IR-RANSAC.  

Furthermore, PiGPDS [3], a perspective-independent ground plane detection and 

segmentation method, was introduced for complex 3D indoor scenes, where the position and 

orientation of the sensor are unrestricted and unknown. PiGPDS demonstrated excellent 

performance in terms of four evaluation metrics: specificity, precision, recall, and F1 score, with 

average experimental results of 98.28%, 95.48%, 96.64%, and 96.01%, respectively. The 

evaluation results demonstrate that PiGPDS is robust for perspective-independent ground plane 
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detection, accurately segmenting ground surfaces of complex 3D indoor scenes acquired from 

different locations with varying pitches and yaws. 

Finally, PiPCS [4], a Perspective-Independent Point Cloud Simplifier, was introduced as a 

significant advancement, building upon the foundational research laid out in earlier studies [1], 

[2], and [3]. PiPCS expands the conventional concept of background subtraction to encompass the 

identification, segmentation, and removal of 3D background bounding surfaces, such as walls, 

windows, curtains, ceilings, and floors, from indoor point clouds. Unlike conventional background 

subtraction techniques, PiPCS contextually segments and eliminates 3D background components, 

yielding precisely segmented 3D foreground objects without relying on colour or historical data. 

PiPCS demonstrated remarkable results across all metrics, with specificity, precision, recall, and 

F1 score yielding average experimental results of 97.08%, 91.73%, 91.53%, and 91.27%, 

respectively. Moreover, PiPCS showcased significant size reductions, achieving an average 

reduction of 74.11% across all dataset point clouds. PiPCS optimizes 3D computer vision systems 

by streamlining their workflows, enhancing indoor scene perception, reducing point cloud size, 

and enabling precise labeling within complex indoor environments. 

In future work, we will extend our dataset to include a larger number of 3D point clouds 

from diverse indoor environments. This expanded dataset will be meticulously labeled using our 

PiPCS and PiGPDS algorithms to annotate both background elements and foreground objects 

within each point cloud. Ultimately, our aim is to publicly release this annotated dataset, not only 

facilitating the development and evaluation of 3D machine learning-based computer vision 

applications and contributing to the academic community but also advancing our own research 

initiatives, including 3D object recognition and human activity recognition within complex indoor 

environments. 
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