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Abstract

In the field of emergency logistics involving hazardous materials (hazmat), the

optimization of emergency facility locations and risk mitigation is paramount. Prior

research primarily focused on emergency planning with deterministic travel times.

However, real-world emergency responses encounter diverse factors leading to un-

certainties in travel duration. This study addresses the hazmat emergency facility

location and allocation problem by considering stochastic emergency response times.

The proposed distributionally robust optimization model aims to minimize emer-

gency facility construction costs while concurrently mitigating potential system risk

under the worst-case distribution of response time within an ambiguity set. Given

limited distribution data derived from historical records, two methodologies are em-

ployed to convert this data into tractable ambiguity sets. Experimental assessments

conducted using a hypothetical and a real-world case study in China showcase the

superior efficacy and efficiency of the proposed approach. Furthermore, sensitivity

analyses of parameters shed light on the various factors influencing the system, il-

lustrating the interplay between cost minimization and risk mitigation objectives,

and offering optimal solutions for different parameter configurations. These findings

yield invaluable insights for decision-makers involved in hazmat emergency response

operations.
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Chapter 1

Introduction

Hazardous materials (hazmat) represent a critical product of modern industry, com-

merce, and daily life. These materials, while essential for various economic activities,

pose substantial risks when accidents occur. Hazmat incidents, which include chemi-

cal spills, fires, transportation accidents, and industrial mishaps involving hazardous

materials, can have severe consequences, including threats to human health, envi-

ronmental degradation, and property damage. Consequently, regulatory bodies both

nationally and internationally mandate proper handling, transportation, and dis-

posal of hazmat to avert harm. Nevertheless, as the usage of hazmat continues to

surge, so do hazmat incidents and associated risks. For instance, in 2020, the deto-

nation of about 2,750 tonnes of stored ammonium nitrate caused a massive explosion

at the Port of Beirut in Lebanon, resulting in at least 218 deaths, 7,000 injuries, and

approximately 15 billion US Dollars in property damage (Cookman, 2020). Also, in
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February 2023, a 38-car train derailment in Ohio led to widespread exposure to car-

cinogenic compounds, termed “an ecological and human health disaster” by experts

(Rance, 2023). Recently, a hazmat cargo truck transporting anhydrous ammonia

crashed in Illinois in September 2023, resulting in at least 5 deaths and the evacua-

tion of approximately 490 Teutopolis residents around the 7,500-gallon spill (NYT,

2023). These instances, like many others worldwide, underscore the diversity of haz-

mat incidents occurring across industrial sites, transportation networks, and even

residential areas.

Effective preparedness, mitigation, and response strategies are paramount in min-

imizing human suffering and loss during such disasters (Gao and Cao, 2020). Hence,

emergency management necessitates the establishment of specialized facilities and

the allocation of resources to address various aspects of the incident (Hamouda et al.,

2004). These resources may include trained personnel, specialized equipment, decon-

tamination facilities, and protective gear which play a pivotal role in ensuring efficient

response during an incident. Consequently, various researchers have attempted to

solve the hazmat emergency facility location problem, which addresses the spatial

and resource allocation aspects of hazmat emergency management, with the goal of

optimizing these processes for better preparedness and emergency response. Notably,

the timely and effective response to hazmat incidents requires adequate emergency

facilities that are reliable and strategically located to minimize response times and

maximize the potential for successful outcomes (Ke, 2022).
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Current guidelines for hazmat emergency response planning acknowledge the crit-

ical importance of well-placed hazmat teams (Hamouda et al., 2004), moreover, re-

sponse time plays a crucial role in hazmat emergency response. The proactive inter-

vention of an emergency response unit can significantly mitigate the consequences

of a hazmat accident on the population and surrounding environment. For instance,

Portland Fire and Rescue (2008) in their emergency response coverage standards,

specified that any delay of one minute in defibrillation in an emergency could lead

to a 10% reduction in survival rate. Moreover, their report emphasizes that hazmat

response units can arrive at 90% of hazmat accidents within 18 minutes in urban

areas while maintaining an acceptable level of response. It is crucial to note that

any response delay beyond a certain defined threshold can significantly escalate the

consequences of a hazmat incident.

However, in real-world scenarios, a recurring challenge in emergency response

involves the variability associated with traveling times from an emergency facility to

incident locations due to diverse factors such as weather and road conditions, lack

of coordination, traffic congestion, and so on. Specifically, the uncertainty about

the response timing, as well as its impacts, poses serious challenges to emergency

preparedness and mitigation (Salman and Yücel, 2015). For instance, using historical

fire data from 2010, Fig. 1.1 shows travel time statistics to six different places in Hefei,

China (residence, business, dormitory, restaurant, warehouse, and plant). The data

shown illustrates the diversity in fire rescue times, making it challenging to precisely
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Figure 1.1: 1-year data of random fire response times among six different fire incidents
(Ming et al., 2022)

forecast travel times beforehand (Ming et al., 2022). Furthermore, Chang et al. (2024)

showed how unforeseen delays from road closures and road damages hinder access

to emergency services and medical assistance in a disaster response, exacerbating

human suffering and environmental impact (Chang et al., 2024).

Nevertheless, in addressing the hazmat emergency, researchers and practition-

ers have primarily overlooked the uncertainty of response time, assuming complete

knowledge of travel factors and the precise nature of hazmat response in their mod-

els. These traditional models, while valuable in many optimization contexts, may

be less suitable for hazmat emergency management due to the high level of uncer-

tainty and variability associated with hazmat response. These variations, coupled

with the unpredictability of human errors challenge the underlying assumption of
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deterministic response time. Recognizing the limitations of this assumption in ac-

counting for uncertainties, particularly in emergency response, this research opts for

a Distributionally Robust Optimization (DRO) framework. While several reliable

methodologies exist for handling uncertainties in the literature, precisely defining

the variability and uncertainty present in response time estimation presents a chal-

lenge. This justifies our selection of DRO, due to its intricate nature of capturing and

modeling the distribution of the variable parameters in uncertain scenarios. Hence,

DRO represents an innovative approach that combines the elements of stochastic

programming and robust optimization, offering a distinct advantage by leveraging

partial knowledge of probability distribution information (Wang et al., 2022). The

method is able to handle various uncertainties, encompassing challenges such as am-

biguous probability distributions, limited availability of data, and complexities in

accurately delineating random parameter distributions (Zhang et al., 2023a).

In this work, we apply a time-based risk approach considering uncertainty in

travel time between emergency facilities and incident sites (response time) acknowl-

edging the importance of timely response in emergency incidents. Like Taslimi et al.

(2017), the response time is directly incorporated into the objective function, signi-

fying that the expected risk within the system increases proportionally as response

time increases. The significance of the present research lies in the following key

contributions that distinguish it from existing literature. First, this work presents

a single-level DRO model integrating chance constraints, capable of accommodating
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the stochastic nature of hazmat emergency response by incorporating uncertainty in

response times - a crucial situation often overlooked in previous studies. Thus, we

strategically optimize the positioning of hazmat emergency facilities, acknowledging

that the risk associated with hazmat transportation can be substantially reduced by

thoughtfully situating emergency response units for their prompt response to inci-

dents. Secondly, we employ a real-world hazmat emergency network as a case study,

providing valuable insights for stakeholders involved in hazmat emergency logistics,

aiding in the construction and management of a timely, high-performance response

system.

The subsequent chapters in this thesis are organized as follows. Chapter 2 pro-

vides a comprehensive literature review of hazmat emergency logistics, hazmat emer-

gency logistics with uncertainties, and DRO, setting the groundwork for our research.

Chapter 3 presents the deterministic model of the hazmat emergency problem, en-

compassing the problem statement and the general assumptions. The DRO counter-

part of the problem is presented in Chapter 4, as well as methodologies for solving the

DRO model. Chapter 5 presents computational results from a hypothetical problem

as well as a real-world transportation network for the proposed model. Chapter 6

summarizes our findings and outlines potential avenues for future research in hazmat

emergency management.
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Chapter 2

Literature Review

In this chapter, we present a thorough review focusing on critical areas within emer-

gency logistics. Specifically, we delve into hazmat emergency logistics and emergency

logistics in general, exploring the vital aspects of response planning, response opti-

mization strategies, uncertainty management, and methodologies aimed at efficiently

addressing hazmat incidents. Additionally, we highlight the emergence of Distribu-

tionally Robust Optimization (DRO) as a promising method for handling uncertain-

ties in emergency logistics, providing insights into its applications and advancements

in the field.
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2.1 Hazmat Emergency Logistics

Hazmat emergency response planning and optimization has garnered significant at-

tention in the literature, as it is crucial for ensuring effective and efficient response

to incidents involving hazardous materials due to their catastrophic consequences.

Appropriate resource allocation, rapid response times and the ability to deploy emer-

gency response teams to the incident location are essential factors for ensuring a

coordinated and efficient response. For this reason, important logistical planning,

allocation, and optimization decisions must be made to address various aspects of

the response (Hamouda et al., 2004). The first emergency logistics model was pro-

posed by Saccomanno and Allen (1988), assuming the availability of rescue teams at

all times and determining the optimal location of emergency facilities for respond-

ing to spill incidents. List (1993) followed with a multi-objective model to identify

hazmat emergency response team sites for transportation-related incidents. Further,

List and Turnquist (1998) formulated a route-siting model that integrated routing,

flow assignment, and response team location decisions while Hamouda et al. (2004)

introduced a risk-based optimization model to find the optimal hazmat response

team location, ensuring response times fell within specified thresholds. Addressing

arc-covering, Berman et al. (2007) developed a mathematical model for a highway

network incorporating a pre-set coverage distance. Zografos and Androutsopoulos

(2008) focused on location decisions optimizing response deployment for hazmat dis-

tribution routes based on evacuation time, risk, and cost. Maximizing service level,
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Jiahong and Bin (2010) employed a maximal arc-covering model considering time

and cost.

In real life scenarios, emergency response planning and optimization are complex

tasks that involve dealing with various uncertainties inherent in emergency inci-

dents, often characterized by limited historical data Li et al. (2011). These uncer-

tainties pose challenges to decision-makers in the allocation of resources for disaster

response. Scholars are increasingly focusing on addressing these uncertainties, such

as uncertain transportation time (Paul and Wang, 2019), uncertain demand (Liu

et al., 2019a; Boutilier and Chan, 2020), or uncertain allocation costs (Koca et al.,

2021), to mention a few. In managing hazmat emergencies specifically, Ehsan et al.

(2012) introduced a multi-objective hazmat emergency facility location model with

uncertain demand characterized in a fuzzy random environment. Also, Xu et al.

(2013) solved a bi-level programming model to address emergency response under

a complex fuzzy risk environment. Xin et al. (2013) presented a robust optimiza-

tion model for a hazardous materials transportation network design problem with

uncertain edge risk while Berglund and Kwon (2014) introduced a robust hazmat

facility location problem, taking into account the carrier’s routing decisions under

uncertain shipments and arcs. Sun et al. (2015), acknowledging risk uncertainty on

network links, incorporated worst-case risk measures with an uncertainty budget in a

robust optimization model for flexible decision-making. Ardjmand et al. (2015) uti-

lized random numbers from a predefined interval to generate different scenarios for
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transportation uncertainty, attributing equal probability to each scenario. In their

study, Taslimi et al. (2017) explored robust scenario-based planning in a bi-level risk

modeling problem that incorporated average response time, meanwhile Zhao and Ke

(2019) in their study focus on optimizing emergency logistics in hazmat incidents

through a novel two-level game theoretic model, which addresses the complexities of

multi-quality coverages in facility location and allocation. Later, Vaezi et al. (2021)

applied a two-stage stochastic programming model for response facility location and

allocation of equipment packages in the field of railway hazmat emergency. Ke (2022)

further examined facility and link disruptions within an emergency logistics frame-

work for hazmat using a two-stage robust methodology. Following Vaezi et al. (2021)

in response to railroad accidents, Wang et al. (2023b) proposed a rescue emergency

facility location model based on an ellipsoidal robust framework, incorporating un-

certain demand, service, and safety parameters. Recently, Ke and Bookbinder (2023)

presented a bi-objective robust model for resilient emergency logistics infrastructure,

incorporating uncertainties in demand and the potential unavailability of specific

links.

2.2 Emergency Logistics under Uncertainties

In the broad field of emergency logistics amidst uncertainties, researchers have for-

mulated different optimization models to address the issue of unpredictability. Three

methods have been extensively utilized in the literature as follows; Stochastic Pro-
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gramming, Fuzzy Methods and Robust Optimization.

Stochastic programming (SP) incorporates stochastic elements to make decisions

under uncertainty, treating uncertain parameters as random variables with known

distributions (Noyan, 2012). Rennemo et al. (2014) introduced a three-stage mixed-

integer stochastic programming model with the purpose of planning the location and

distribution of facilities encompassing unpredictable variables such as the availability

of transport vehicles, the state of the infrastructure, and the demand from potential

beneficiaries. Afterwards, a scenario-based stochastic mixed-integer non-linear pro-

gram (MINLP) model was developed by An et al. (2015) to solve an integrated facility

location problem. This study takes into account the potential consequences of facil-

ity outages, en-route traffic jams, and in-facility queuing delays. Wang et al. (2021a)

introduced a preparedness-response model in two stages, employing scenario-based

stochastic programming to optimize integrated facility pre-positioning and real-time

emergency response. Ghelichi et al. (2022) employed stochastic optimization for the

delivery of aid parcels to disaster-stricken regions using drones in uncertain demand

locations, aiming to minimize overall disutility or cost. On the other hand, Sanada

and Ishigaki (2023) accounted for unpredictability related to demand, road networks,

and processing status of building materials through a stochastic programming ap-

proach considering finite scenarios. Dukkanci et al. (2023) considered uncertainties

in demand fluctuations and road networks post-earthquake, formulating a relief dis-

tribution problem employing drones under uncertainty. This study presented formu-
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lations for a two-stage stochastic programming problem.

Fuzzy methods have also been widely adopted in emergency logistics management

and aim to handle uncertainties using fuzzy logic or fuzzy numbers. Bababeik et al.

(2018) applied a fuzzy logic technique along with the augmented e-constraint method

to solve a bi-level railway emergency facility location and allocation problem. Ren

and Tan (2022) proposed a collaborative optimization approach for locating and allo-

cating emergency distribution centers to minimize rescue time and maximize the rate

of demand satisfaction. Taking into account uncertainties, a triangular fuzzy number

method is adopted to estimate the emergency material demand and solved using a

plant growth simulation algorithm. Chobar et al. (2022) investigated reverse logistics

planning in earthquake scenarios, accounting for uncertainties through fuzzy meth-

ods in a multi-objective problem. Li (2023) utilized interval numbers to represent

uncertain emergency material demands and formulated a location-based optimization

model, converting interval uncertainty into specific values to address dual objectives

of rescue cost and time. Finally, Wan et al. (2023) developed a multi-period dynamic

emergency material distribution model using fuzzy numbers to depict uncertain de-

mands and transportation times, solved by a hybrid multi-objective algorithm.

Robust optimization (RO) restricts uncertain parameters to predefined sets, and

aims to address uncertainties in emergency logistics planning by creating resilient

solutions (Baron et al., 2011; Paul and Wang, 2019). Liu et al. (2019b) developed

an iterative ϵ–constraint-based model to maximize predicted survivals and minimize
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total operational expenses in order to optimize the allocation plan for temporary

medical services. They also presented an alternative robust optimization model.

Shu et al. (2021) suggested a nonlinear mixed-integer programming model that opti-

mises choices about the placement of facilities and the prepositioning of relief supplies

while ensuring robustness against demand uncertainties. Notably, Aliakbari et al.

(2022) introduced a scenario-based robust optimization model for relief logistics plan-

ning that encompasses pre- and post-disaster measures, addressing uncertain demand

and travel times. Akbari et al. (2022) presented a robust scenario-based optimization

model for various potential disaster scenarios aimed at minimizing unmet demands

and transportation expenses for relief vehicles within affected regions. In the same

vein, Sun et al. (2022) presented a novel scenario-based robust bi-objective opti-

mization model integrating casualty transportation, facility location, and relief com-

modity allocation while accounting for interruption risks, while Eshghi et al. (2022)

formulated a robust location-allocation planning framework for emergency relief, in-

corporating various logistics factors and uncertainties into a multi-objective model.

Recently, Zhang et al. (2023b) constructed a capacitated, multi-period, multi-echelon

deployment of facilities and resource allocation, aiming to bolster decision reliability.

To counteract the overly conservative nature of robust solutions amid an epidemic’s

progression, an adjustment strategy for uncertainty budgets was proposed. Du et al.

(2023) developed a multi-stage mixed-integer linear programming model focusing

on integrated strategies encompassing primary and secondary disaster management
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employing a multi-stage robust framework to address uncertainties.

Other methods have also been employed in the emergency literature. To solve

the problem of the location of emergency response facilities under different uncer-

tainties, Zhang et al. (2017) applied uncertainty programming in their model and

distinguished its application from fuzzy set theory. In the same vein, Li et al. (2017)

utilized uncertainty theory to create robust solutions for distributing medical sup-

plies during emergencies with uncertainties in demand and transportation duration.

Ding et al. (2022) introduced an emergency material scheduling model using grey in-

terval numbers, optimized through a genetic algorithm for robust decision-making in

emergency relief. Furthermore, for a thorough review of the literature in emergency

logistics, we direct readers to Wang et al. (2021b) and Kundu et al. (2022), which

highlight the impact, topics, and methodological reach of the journal in the area of

emergency facility location and general emergency logistics management respectively.

2.3 DRO in emergency logistics

From the literature, we see that different optimization techniques have been ex-

tensively explored in the field of emergency logistics to find optimal solutions for

problems involving uncertain data. While SP overlooks the limitations in obtain-

ing the exact distributions for variables due to limited data, RO introduces over-

conservatism, failing to fully utilize the potential information derivable from histor-

ical data (Wang et al., 2022).
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Distributionally Robust Optimization (DRO) offers an alternative paradigm that

combines elements of both stochastic programming and robust optimization, aiming

to overcome their deficiencies by utilizing only partial information about the distribu-

tion. This approach has gained attention, especially during the past decade, offering

a more flexible way to handle uncertainty, including but not limited to ambiguity

in probability distributions, limited data availability, and challenges in accurately

characterizing the distribution of random parameters (Zhang et al., 2023a). This

technique has been effectively applied to various research areas, including traffic plan-

ning and management (Sun et al., 2014), scheduling (Xia et al., 2023), emergency

response dispatch (Yang et al., 2019; Zhang et al., 2023c), inter-modal hinterland

transportation (Dai and Yang, 2020), energy management (Zhao et al., 2020; Yin

and Zhao, 2022) to name a few, but herein we focus our discussions on emergency

related applications.

Liu et al. (2019a) proposed a DRO model for optimizing a hub location problem

in an emergency medical service (EMS) system by minimizing the expected total

cost under uncertain demands. The model introduced joint chance constraints and

characterized the expected total cost by moment uncertainty based on a data-driven

approach. In another study, Zhang et al. (2020) presented a DRO model with mean

absolute semi-deviation for a humanitarian relief network design problem involving

resource reallocation after an uncertain disaster environment. With the successes

recorded in DRO, Ming et al. (2022) explored a DRO model for optimizing the loca-

15



tion of fire stations, the number of fire trucks, and demand assignment for long-term

planning in an emergency fire service system. In the same vein, Zhang et al. (2022)

addressed the challenge of designing an emergency rescue network in response to

uncertainties after disasters. They employ the mean absolute deviation (MAD) for

constructing the ambiguity set and introduce a linear decision rule to reformulate the

complex model. Following that, Shehadeh and Tucker (2022) proposed and analyzed

a disaster relief problem with a two-stage stochastic programming (SP) and DRO

model, assuming known and unknown (ambiguous) uncertainty distributions, while

Wang et al. (2022) introduced a modified version of the p-center problem (PCP) for

the location of high-speed railway emergency rescue stations under uncertain travel

time, and proposed a safe and tractable approximation method to transform the orig-

inal DRO model into mixed-integer second-order cone programs. Wang et al. (2023a)

introduced a comprehensive model integrating facility location, inventory manage-

ment, and multi-commodity network flow, considering partially known probability

distribution details regarding supply, demand, and road link capacity.

2.4 Literature Gap and Our Contribution

In recent years, the literature has seen a growing body of research dedicated to

various aspects of hazmat transportation. Hazmat risk assessment for instance has

seen significant evolution, progressing from models like the Traditional Risk (TR)

to more advanced approaches for quantifying and managing risks (Ke et al., 2024).

16



However, despite their advancements, a significant gap exists in capturing the im-

pact of random response times in emergency response, particularly as a result of

weather, road conditions, lack of coordination, traffic congestion, and other factors

within a transportation network. Also, existing studies in the domain of emergency

logistics lack dedicated methodologies tailored for hazmat emergency logistics. They

predominantly rely on Stochastic and Robust Optimization techniques, which tend

to over-constrain uncertainties and not fully leverage historical data.

Recognizing this gap in research considering emergency response effectiveness in

risk assessment, we integrate a measure of uncertain response time from hazmat re-

sponse units to the incident location. This inclusion better reflects the stochastic

behavior of risk, emphasizing the impact of faster response times in minimizing over-

all risk. We recognize that precise information cannot be known, thus to overcome

the limitations of Stochastic and Robust Optimization techniques, we assume that

only partial knowledge of the distribution of response time is known, and propose

an emergency DRO model that minimizes the risk of hazmat incidents and facil-

ity location costs concurrently. To the best of our knowledge, this work represents

the first time that the benefits of DRO methodology in handling real-world unpre-

dictability are extended to hazmat emergency literature, aiming to improve planning

efficiency and robustness in hazmat incident response. Finally, we demonstrate that

the proposed DRO model is efficient, as we test our model against a hypothetical case

study and also apply it to a real transportation network in China to evaluate their
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effectiveness in locating emergency facilities and assessing risk. We also compare the

computational efficiency and accuracy of the proposed solution methods.
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Chapter 3

Deterministic Model

3.1 Problem Statement

We address the location and allocation of emergency facilities and emergency units for

hazmat emergencies involving numerous potential emergency facilities and multiple

incident sites, illustrated through a bipartite graph structure as shown in Fig. 3.1.

Suppose the road network N (V , E) is composed of vertex set V and edge set E . We

have V = I∪J , where I and J represent the sets of emergency facility locations and

incident sites respectively. Multiple hazmat types k ∈ K, where K is the complete

set of hazmat types, may be stored at each incident site j ∈ J , and may exhibit

distinct spill probabilities and consequences following an incident. The emergency

requirement of hazmat k at incident site j during an incident is denoted as Wjk,

and the emergency facilities must satisfy the system emergency requirement. The
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allocation of emergency units xijk to incident sites depends on their availability, hence

each emergency facility i needs to maintain different types of emergency units to

handle incidents. Each emergency facility incurs a setup cost FCi and has a capacity

CFi, determining the maximum emergency units it can handle. Meanwhile, a variable

cost V Cik exists for maintaining each emergency unit of type k at facility i. Notably,

each emergency unit responds specifically to incidents caused by a single type of

hazmat. Given an available facility construction budget B and the set of potential

facility locations, we address the hazmat emergency location problem aiming to locate

emergency facilities and allocate emergency units to incident sites. The objective is

to minimize the total system risk while also minimizing overall costs, encompassing

both construction and maintenance expenses.

3.2 Response Time

This paper adopts the traditional risk definition proposed by Alp (1995). We define

the potential risk at incident site j caused by Hazmat k as follows:

Ejk = PRj ·REk · POjk (3.1)

Here, PRj represents the incident rate at incident site j, REk denotes the release

rate of Hazmat k if an incident occurs, and POjk quantifies the population exposed

due to an incident involving Hazmat k at incident site j.
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Figure 3.1: Bipartite network structure

A guide for evaluating emergency response requirements in hazmat incidents

(Board, 2011) highlighted a direct relationship between response time and risk. Tak-

ing this into consideration, we now express the overall system risk as follows.

∑
i∈I

∑
j∈J

∑
k∈K

TijEjkxijk (3.2)

Previously, Zhao and Ke (2019), Ke (2022), Ke and Bookbinder (2023) connected

the time with risk through a Response Time Factor (RTF). Differing from this, we
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incorporate the response time directly into the objective function, signifying that the

expected risk within the system increases proportionally as response response time

increases.

Equation (3.2) captures the total system risk associated with the response time

Tij for which an emergency unit travels from one facility i to an incident location j.

It calculates the overall system risk incurred as the time changes for a hazmat emer-

gency response. Moreover, the degree of uncertainty associated with the response

time due to weather, road conditions, lack of coordination, traffic congestion, and

other factors is an important challenge in the process of hazmat emergency response

(Zhang et al., 2023c). Taking these factors into consideration, this research applies

a time-based risk approach considering uncertainties in travel time between facility

locations and incident sites. For each pair of emergency facility i and incident site

j, Tij represents the response time from facility i to site j. Our linear relationship

between response time and Hazmat risk accounts for the time-sensitive nature of

emergency response since faster responses have the potential to reduce the severity

of emergency consequences.
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3.3 Assumptions and Notation

3.3.1 Assumptions

The following assumptions are made in this work. First, due to the urgency of

responses, this study operates under the foundational presumption that all available

links for emergency response within the network comply with government regulations.

This critical adherence ensures that these links are reliably accessible by hazmat

emergency units, aligning with the need for swift and timely responses in hazmat

emergencies.

Second, it is fundamental to this study’s framework that each incident caused by

hazmat type k necessitates a tailored response strategy. Accordingly, the assumption

is made that each incident caused by hazmat type k can only be responded to by the

corresponding emergency unit designated for handling the identified hazard type.

This assumption emphasizes the specialization and targeted expertise required in

hazmat emergency response scenarios.

Also, considering the complex network of emergency responses, this model adopts

the assumption that the shortest path between any given facility i ∈ I and destina-

tion j ∈ J serves as the response path.

Fourth, an integral aspect incorporated into the model involves the capacitated

nature of emergency facilities. It is assumed that these facilities possess finite ca-

pacity limits, allowing for only a predetermined number of emergency units to be
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operational at any given time. This assumption underscores the necessity for re-

source management and strategic allocation, considering the capacity limitations of

real-world facilities.

Lastly, acknowledging the real-world constraints faced by decision-makers, this

model considers budgetary limitations concerning the construction of emergency fa-

cilities. This assumption mirrors the practical challenges encountered by authorities

and decision-makers, emphasizing the need for judicious financial planning and allo-

cation in establishing effective emergency response infrastructure.

3.3.2 Notation

The notation for parameters and decision variables used throughout this chapter are

presented in Table 3.1.

3.4 Deterministic model

We consider that hazmat emergency facilities need to be located to respond to Haz-

mat emergencies at incident sites. We have a set of candidate facility locations, and

we want to determine the optimal number and locations for emergency facilities. We

present the cost formulations thus.

Cost of facility =
∑
i∈I

FCiyi
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Table 3.1: Mathematical notation

Sets

I Set of candidate emergency facility locations, indexed by i.

J Set of incident sites, indexed by j.

K Set of Hazmat types, indexed by k.

Parameters

θ Maximum allowable time for hazmat emergency response.

γ Risk coefficient evaluating the importance or cost of risk.

FCi Fixed cost of locating an emergency facility at node i.

V Cik Variable cost of maintaining one emergency unit for k at facility i.

CFi Capacity of facility i.

Wjk Emergency requirement for Hazmat type k at site j.

Ejk Potential risk at incident site j caused by Hazmat k.

Tij Response time from facility i to site j.

B Available budget for facility construction.

M A large positive integer.

Variables

yi 1 if emergency facility is located at facility i; 0 otherwise.

qik Number of emergency units for hazmat type k pre-positioned at facility i.

xijk Number of emergency units dispatched from facility i to incident site j
responding to hazmat type k.

lijk 1 if link from facility i to site j is used for emergency response for hazmat
type k; 0 otherwise.
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Cost of maintaining supplies =
∑
i∈I

∑
k∈K

V Cikqik

Next, we present the deterministic model of the problem as follows.

[DET]

min
∑
i∈I

FCiyi +
∑
i∈I

∑
k∈K

V Cikqik + γ ·
∑
i∈I

∑
j∈J

∑
k∈K

TijEjkxijk (3.3)

s.t.

∑
k∈K

qik ≤ CFiyi, ∀i ∈ I (3.4)

∑
j∈J

xijk ≤ qik, ∀i ∈ I,∀k ∈ K (3.5)

∑
i∈I

xijk ≥ Wjk, ∀j ∈ J ,∀k ∈ K (3.6)

Tijlijk ≤ θ, ∀i ∈ I,∀j ∈ J , ∀k ∈ K (3.7)

lijk ≤ xijk, ∀i ∈ I,∀j ∈ J , ∀k ∈ K (3.8)

xijk ≤ Mlijk, ∀i ∈ I,∀j ∈ J , ∀k ∈ K (3.9)∑
i∈I

FCiyi ≤ B (3.10)

yi ∈ {0, 1}, ∀i ∈ I (3.11)

lijk ∈ {0, 1}, ∀i ∈ I,∀j ∈ J , ∀k ∈ K (3.12)

qik ≥ 0, integer, ∀i ∈ I,∀k ∈ K (3.13)
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xijk ≥ 0, integer, ∀i ∈ I,∀j ∈ J , ∀k ∈ K (3.14)

The objective function (3.3) consists of multiple components that collectively

capture the cost and risk objectives of the hazmat emergency problem. In summary,

the objective function aims to minimize the costs associated with facility location,

maintenance, and total system risk. The coefficient γ acts as a weighting factor to

normalize and integrate the cost and risk into a single objective function, allowing

the decision maker to control the trade-off between minimizing costs and minimizing

risks. The normalization ensures that these differing components can be balanced

within the optimization model, which is a common practice in multi-objective op-

timization, in line with existing literature. The choice of γ is guided by sensitivity

analysis or empirical data, provided in Chapter 5. Hence, a higher value of γ will

emphasize the importance of risk reduction in the optimization and vise versa. Con-

straint (3.4) ensures that the total quantity of emergency relief groups pre-positioned

at a facility does not exceed its capacity if the facility is opened. Constraint (3.5)

imposes a limit on the number of emergency units dispatched from a facility based on

the pre-positioned emergency units. Constraint (3.6) requires that the total number

of dispatched emergency units serving an incident site for hazmat type k should meet

or exceed the emergency requirement. Constraint (3.7) restricts the response time for

any emergency response to be within a given threshold. Constraints (3.8) and (3.9)

link binary variable lijk with continuous variable xijk, reflecting the relationship be-
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tween link usage and dispatched emergency units. Constraint (3.10) limits the total

cost associated with facility construction to a maximum budget. Constraint (3.11)

and (3.12 specifies the binary decision variables for facility location and link usage

respectively. Constraint (3.13) sets the non-negativity and integer requirements for

variables related to the emergency relief groups. Constraint (3.14) specifies the char-

acteristics of the variable representing the amount of emergency requirement satisfied

by facilities.
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Chapter 4

Distributionally Robust

Optimization Model and Solution

The parameter θ in our deterministic model plays a crucial role in limiting the re-

sponse time Tij for hazmat emergency units from emergency facilities to incident

sites. While in a controlled setting, a strict pre-determined response time might

seem feasible, nevertheless, real-world scenarios present uncertainties due to uncon-

trollable factors like weather, road conditions, traffic, and vehicle specifications, mak-

ing the use of deterministic response times unrealistic. These unpredictable factors

could potentially extend the response time beyond the specified threshold. Conse-

quently, by adopting a flexible approach and treating Tij as a parameter subject to

variation, we acknowledge the practical constraints faced during hazmat emergency

response. This necessity for flexibility and adaptability leads us to employ DRO
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techniques to address uncertainties surrounding Tij, ensuring a more resilient and

effective emergency response strategy that considers the inherent unpredictabilities

in hazmat emergency scenarios. Thus, we present a DRO variant addressing this

uncertainty.

4.1 Formulation of the DRO

Considering the presence of incomplete information regarding the actual probability

distributions of the system response times as introduced above, we adopt the as-

sumption that the unpredictable response time is influenced by random deviations

resulting from incomplete historical data (Wang et al., 2022; Yin et al., 2019):

Tij = T̄ij + ζijT̂ij, ∀i ∈ I,∀j ∈ J

In this context, T̄ij represents the expected or average value, T̂ij signifies the normal

deviation of the uncertain variable, and ζij is a random variable with limited infor-

mation regarding its probability distribution, otherwise the perturbation variable.

With these specified uncertain perturbation parameters, we modify constraint (3.7)

to incorporate this response time uncertainty in the system as follows

(T̄ij + ζijT̂ij)lijk ≤ θ. (4.1)
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Furthermore, for ϵ ∈ (0, 1) representing a pre-determined small tolerance level,

the following chance constraint satisfies constraints (4.1) when the perturbation vari-

able ζij is random and has a probability distribution P :

Probζ∼P

{
T̄ijlijk + ζijT̂ijlijk ≤ θ

}
≥ 1− ϵ (4.2)

The choice of ϵ depends on the desired balance between robustness and optimality

by decision maker. Smaller ϵ values lead to more conservative solutions, ensuring

robustness under uncertainty, while larger values allow for more aggressive optimiza-

tion with potentially lower costs. Sensitivity analysis or empirical data should guide

the selection of ϵ, which we have provided in Chapter 5.

We utilize Probζ∼P ({·}) to indicate the likelihood of the event within the paren-

theses under the probability distribution P . However, accurately determining the

probability information about the random response time from one facility location

to a Hazmat emergency site is challenging due to the previously highlighted factors

such as weather conditions, road state, traffic congestion, emergency vehicle type,

speed, etc. As a result, when the probability distribution P of ζij belongs to a given

general ambiguity set P , we outline the ambiguous chance constraints as follows:

inf
P∈P

Probζ∼P

{
T̄ijlijk + ζijT̂ijlijk ≤ θ

}
≥ 1− ϵ (4.3)

In Equation (4.3), we employ infP∈P{·} to represent the most challenging or worst-
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case situation, which illustrates robustness. It is crucial to emphasize that we possess

only partial information about the probability distribution in advance, specifically

regarding its support, mean, and variance.

Based on the chance constraint and the terminology introduced in the previous

sections, we present the following DRO model for the given problem:

[DRO]

min
∑
i∈I

FCiyi +
∑
i∈I

∑
k∈K

V Cikqik + γ ·
∑
i∈I

∑
j∈J

∑
k∈K

(T̄ij + ζijT̂ij)Ejkxijk (4.4)

S.t.

∑
k∈K

qik ≤ CFiyi, ∀i ∈ I (4.5)

∑
j∈J

xijk ≤ qik, ∀i ∈ I,∀k ∈ K (4.6)

∑
i∈I

xijk ≥ Wjk, ∀j ∈ J ,∀k ∈ K (4.7)

lijk ≤ xijk, ∀i ∈ I,∀j ∈ J ,∀k ∈ K (4.8)

xijk ≤ Mlijk, ∀i ∈ I,∀j ∈ J ,∀k ∈ K (4.9)∑
i∈I

FCiyi ≤ B (4.10)

inf
P∈P

Probζ∼P

{
T̄ijlijk + ζijT̂ijlijk ≤ θ

}
≥ 1− ϵ, ∀i, j ∈ V , ∀k ∈ K (4.11)

yi ∈ {0, 1}, ∀i ∈ I (4.12)
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lijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J ,∀k ∈ K (4.13)

qik ≥ 0, integer, ∀i ∈ I, ∀k ∈ K (4.14)

xijk ≥ 0, integer, ∀i ∈ I, ∀j ∈ J ,∀k ∈ K (4.15)

4.2 Solution Procedure

The performance of DRO solutions significantly depends on the construction of the

ambiguity set, which should contain the true distribution with high confidence while

avoiding over-conservativeness (Zhang et al., 2022). The DRO approach poses a

hard optimization problem that is computationally intractable, since the ambiguous

chance constraints cannot be turned into an equivalent deterministic model. To help

with this, constructed ambiguity sets facilitate the transition from the original model

to a tractable form (Zhang et al., 2023a). So far, different works have studied diverse

aspects of uncertainty and offer unique solutions to the respective problems, such as

considering both distributional forms and moment information, tractable approxi-

mation, Wasserstein distance-based ambiguity set, and many more (Delage and Ye,

2010; Xia et al., 2023). For the suggested model, we approach the problem using two

computable forms of ambiguity sets, consisting of possible distributions of the un-

certain response time and convert the original model into manageable counterparts

while working within predefined bounded and Gaussian perturbation ambiguous sets

as originally proposed by Ben-Tal et al. (2009); Yin et al. (2019).
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4.2.1 Solution under bounded zero-mean perturbations

This section focuses on creating a tractable convex approximation that remains safe

under bounded perturbations with zero mean. This involves approximating within

the feasible area, essentially remaining within the initial feasible region (Wang et al.,

2022). The objective here is to construct a tractable convex approximation for the

uncertain chance constraint. To achieve this goal, the assumptions listed below about

the ambiguity set P are adopted.

Assumptions. {ζij} are independent variables; support of the random variables

|ζij| ≤ 1; mean of the random variables M[ζij] = 0 (Yin et al., 2019).

Under these aforementioned assumptions, establishing a safe convex approxima-

tion for an uncertain chance constraint like our problem is facilitated. We proceed

to present a lemma that proves useful pertaining to the tractable reformulation of

the ambiguous chance constraint.

Lemma 4.2.1. Let T̂ij be deterministic coefficients and ζij = [−1, 1] be independent

random variables with zero mean. Then for any auxiliary variable Ψ ≥ 0, it holds

that

Prob

{
ζijT̂ijlijk > Ψ

√
(T̂ijlijk)2

}
≤ exp{−Ψ2/2},∀i ∈ I (4.16)

Proof. Suppose we define a variable Zij, where

Zij =
T̂ijlijk√
(T̂ijlijk)2
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By transforming the above formula, through normalization, we have

Z2
ij = 1.

We proceed to demonstrate that

Prob {Zijζij > Ψ} ≤ exp{−Ψ2/2}.

The goal is to relate the probability to an expectation using the exponential function.

We start with the Chebyshev’s inequality and rewrite the probability in terms of an

exponential

Prob {Zijζij > Ψ}

= Prob
{
exp {ZijζijΨ} > exp{Ψ2}

}
.

Using the definition of expectation, the exponential of the random variables is less

than or equal to the expectation of the exponential

≤ exp{−Ψ2}E [exp {ZijζijΨ}] .

Since ζij are independent, the expectation of the product of exponential becomes a

product of expectations. Hence

exp{−Ψ2}E [exp {ZijζijΨ}]
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= exp{−Ψ2}E [exp {ZijζijΨ}] .

Due to the symmetry of the distribution of ζij ∈ [−1, 1], considering the Taylor

series expansion for the expectation of the exponential term, it simplifies to a known

expression as

E [exp {ZijζijΨ}] =
∞∑
l=0

[
(ZijΨ)2l

(2l)!

]
≤ exp

{
Z2

ijΨ
2/2

}
.

Finally, using the Chernoff bound and manipulating the expectation of the exponen-

tial term, we establish the inequality for the probability in terms of the expectation.

Also, since Z2
ij = 1, we can prove that

Prob {Zijζij > Ψ} ≤ exp{−Ψ2} exp{Ψ2/2} = exp{−Ψ2/2}.

The proof is complete.

Theorem 4.2.1. If random variable T̂ij fulfills the criteria outlined in Lemma 4.2.1,

the robust counterpart of the uncertain inequality

T̄ijlijk + ζijT̂ijlijk ≤ θ

can be transformed into the form

T̄ijlijk +Ψ

√
(T̂ijlijk)2 ≤ θ (4.17)
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where

Ψ >
√

2 ln (1/ϵ) (4.18)

Proof. We will prove that Equations (4.17) and (4.18) are the sufficiency conditions

of Equation (4.11) under the assumptions made for the ambiguity sets P . Given the

ambiguous chance constraint (4.11), we seek to to transform the inequality into an

equivalent form. Rearranging constraint (4.11), we express the condition where the

probability of the sum exceeding θ is less than ϵ as

Prob
{
T̄ijlijk + ζijT̂ijlijk > θ

}
< ϵ. (4.19)

Hereafter, we need to prove that, for a given solution, if Eq. (4.17) and (4.18) hold,

it must have Eq. (4.19) with at least prob 1− exp{−Ψ2/2}. Given that

T̄ijlijk +Ψ

√
(T̂ijlijk)2 ≤ θ < T̄ijlijk + ζijT̂ijlijk

according to Lemma 1, it has been proven that if Equation (4.17) holds, the proba-
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bility of an expression being greater than θ is less than ϵ, hence we can obtain

Prob
{
T̄ijlijk + ζijT̂ijlijk > θ

}
≤ Prob

{
T̄ijlijk + ζijT̂ijlijk > T̄ijlijk +Ψ

√
(T̂ijlijk)2

}
= Prob

{
ζijT̂ijlijk > Ψ

√
(T̂ijlijk)2

}
≤ exp{−Ψ2/2}

< ϵ.

Therefore, the conditions (4.17) and (4.18) imply that the probability ϵ is not ex-

ceeded, providing an equivalent approximation of the ambiguous chance constraint

(4.11).

The proof is complete.

Equation (4.17) represents a tractable approximation of the ambiguous chance

constraint (4.11) which implies that any viable solution for inequality (4.17) and

(4.18) remains viable for the ambiguous chance constraint (4.11).

Thus, we express the DRO model under bounded zero-mean perturbations for

the ambiguity set as follows.

[Bounded]

min
∑
i∈I

FCiyi +
∑
i∈I

∑
k∈K

V Cikqik + γ ·
∑
i∈I

∑
j∈J

∑
k∈K

(T̄ij + ζijT̂ij)Ejkxijk

S.t.
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Constraints (4.5) to (4.10), (4.12) to (4.15), (4.17) and (4.18).

4.2.2 Solution under Gaussian perturbations

For this section, the ambiguity sets P consist of perturbations {ζij} that are Gaussian

random variables, each independent, with partially known mean expectations M[ζij]

and variancesV[ζij]. These variables are constrained within certain bounds: M[ζij] ∈[
µ−
ij, µ

+
ij

]
and V[ζij] ≤ σ2

ij. Within this uncertainty range, the following observation

is derived.

Theorem 4.2.2. Let M[ζij] ∈
[
µ−
ij, µ

+
ij

]
and V[ζij] ≤ σ2

ij where
[
µ−
ij, µ

+
ij

]
and σ2

ij are

known. Normalizing the ambiguous chance constraint results in:

T̄ijlijk +max
[
µ−
ijT̂ijlijk, µ

+
ijT̂ijlijk

]
+ Φ−1(1− ϵ)

√
(σijT̂ijlijk)2 ≤ θ (4.20)

where Φ−1(1− ϵ) represents the inverse parameter of the standard normal distribu-

tion.

Proof. We will establish the equivalence of Equation (4.20) with (4.11) within the

ambiguity sets P : Let µij and ν2
ij denote M[ζij] and V[ζij] respectively. Hence,

µij ∈
[
µ−
ij, µ

+
ij

]
and ν2

ij ≤ σ2
ij, ∀i, j ∈ V ,∀k ∈ K. Normalizing the chance constraint
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results in

inf
P∈P

Probζ∼P

 (ζij − µij)√
(νijT̂ijlijk)2

≤ θ − (T̄ijlijk + µijT̂ijlijk)√
(νijT̂ijlijk)2

 ≥ 1− ϵ.

Using the distribution function Φ(·) of the standard normal distribution, we obtain

Φ

θ − (T̄ijlijk + µijT̂ijlijk)√
(νijT̂ijlijk)2

 ≥ Φ−1(1− ϵ).

Subsequently, for ϵ ≤ 0.5, we derive:

θ − (T̄ijlijk + µijT̂ijlijk)√
(νijT̂ijlijk)2

≥ Φ−1(1− ϵ).

Rearranging the above expression to isolate θ leads to:

T̄ijlijk + µijT̂ijlijk + Φ−1(1− ϵ)

√
(νijT̂ijlijk)2 ≤ θ.

Considering µij ∈
[
µ−
ij, µ

+
ij

]
and ν2

ij ≤ σ2
ij, we find:

max
{
T̄ijlijk + µijT̂ijlijk

}
+ Φ−1(1− ϵ)

√
(νijT̂ijlijk)2 ≤ θ

=⇒ T̄ijlijk +max[µ−
ijT̂ijlijk, µ

+
ijT̂ijlijk] + Φ−1(1− ϵ)

√
(σijT̂ijlijk)2 ≤ θ.

This completes the proof.

40



Therefore, on the basis of Theorem 4.2.2, the original ambiguous chance con-

straint (4.11) transforms into (4.20). Hence, the optimal solution for our DRO model

can be obtained by solving the corresponding DRO model below.

[Gaussian]

min
∑
i∈I

FCiyi +
∑
i∈I

∑
k∈K

V Cikqik + γ ·
∑
i∈I

∑
j∈J

∑
k∈K

(T̄ij + ζijT̂ij)Ejkxijk

S.t.

Constraints (4.5) to (4.10), (4.12) to (4.15), and (4.20).
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Chapter 5

Results and Analysis

To showcase the efficiency of both algorithms from the previous chapter, we present

two solved cases of varying sizes in this section: a hypothetical case on a small

scale and a practical case on a larger scale. The optimization problems and the

suggested solution strategies are coded in Python, utilizing Gurobi for solving. The

computations are performed using a personal computer equipped with an Intel Core

i7 2.10GHz Quad-Core processor, 8GB RAM, and operating on a 64-bit Windows

10 system.

5.1 A Hypothetical Case

Consider a hypothetical emergency response situation involving 10 possible incident

sites, 4 candidate emergency facility locations, and 2 hazmat types. Because this
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problem is a small-scale model, we assume that fixed costs for emergency facility

placement range between $20,000 and $30,000, while variable costs for maintaining

emergency units fall within the range of $200 to $600. The capacities of the facilities

range between 20 and 40 units. Emergency requirements for each of the hazmat

types are between 0 and 10 units for each of the incident sites. The case also in-

cludes a budget of $105,000 which is designated for emergency facility construction.

Additionally, the emergency requirements at the incident sites as well as the poten-

tial risks associated with the different hazmat types are given in Table 5.1. This

case aims to optimize the deployment of emergency resources, considering various

costs, capacities, varying response times, and potential risks associated with different

hazmat types at distinct incident sites.

Response time from the pair of emergency facilities and incident sites is assumed

to range from 1 to 20 minutes. The assumed average vehicle speed stands at 0.5

kilometers per minute. For the sake of simplicity, we assume the distances between

nodes are Euclidean distances, hence the table presented in Table 5.2 portrays the

average response time T̄ij from each candidate emergency facility i to site j, while the

maximum allowable response time θ is set at 7 minutes. As a result of uncertainties

of response time within the system, we assume that the basic perturbation shift T̂ij

is 10% of the nominal value. In view of the situation, we assume that µ−
ij and µ+

ij take

values in [-1, 1], and σ takes values in [0, 0.1]. To compare the different ambiguity

sets, we assume that Ψ = 2 ln(1/ϵ) = 2.146, where ϵ = 0.1. For the inverse error
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Table 5.1: Values of Ejk and Wjk for j = 1 to 10

Incident site j Ej,1 Ej,2 Wj,1 Wj,2

site 1 986 280 7 0

site 2 681 505 7 2

site 3 345 943 1 8

site 4 847 389 0 8

site 5 875 628 9 8

site 6 782 156 4 5

site 7 161 747 4 9

site 8 5 568 1 8

site 9 534 659 2 0

site 10 823 595 7 2

Table 5.2: Average response time from candidate facility i to site j

T̄ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j=10

i = 1 9 1 6 7 4 9 8 3 2 4

i = 2 6 4 10 3 9 1 4 3 2 3

i = 3 1 6 5 4 8 5 3 1 9 4

i = 4 1 1 10 5 7 10 7 6 4 6

function Φ−1, we calculate the inverse of the cumulative distribution function for the

given probability value using a standard normal distribution Φ−1(1 − 0.1) = 1.282.

For the sake of this computation, we assume that the risk coefficient γ is 0.1.
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5.1.1 Basic Performance under Bounded zero-mean pertur-

bations

The optimization model was solved using the Gurobi Optimizer version 10.0.3, target-

ing hazmat emergency logistics management considering random travel times. The

optimization model comprises 574 rows, 253 columns, and 2025 nonzeros. The model

has 160 quadratic constraints, 81 continuous variables, and 172 integer variables (84

binary).

The achieved optimal objective value for this case was 149,196.82 with a gap

of 0.0000%. The Gurobi Optimizer took 0.05 seconds and 95 iterations to find

the optimal solution. The optimal objective value was dissected into total facility

cost ($100,793.0), the total cost of maintaining supplies ($30,601.0), and total risk

(178,028.2). Specific values for variables were determined in the optimal solution.

The solution suggests the establishment of all four facilities (nodes 1, 2, 3, 4),

the positioned emergency units for each hazmat type, and their emergency resource

allocation are also determined.

5.1.2 Basic Performance under Gaussian perturbations

In this computation, the optimization process navigated through the model with

653 rows, 252 columns and 2184 nonzeros using 1 node and 70 simplex iterations,

concluding in a computational time of 0.03 seconds. The model incorporated 80

quadratic constraints with variable types: 80 continuous variables and 172 integer
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variables (84 binary).

The solution yields valuable insights into various decision variables. The Phi-

inverse calculated during the process was 1.2816, resulting in an optimal objec-

tive value of 127,317.04. Further examination revealed the total facility cost of

$76,031.0, the total cost of maintaining supplies at $29,753.0, and evaluated total

risk of 215,330.4.

In this setting, the solution recommends the establishment of three facilities,

while suggesting distinctive emergency unit allocations for each of the hazmat types.

5.1.3 Model Comparison

From the numerical computation, it is evident that the Gaussian perturbation prob-

lem exhibits a larger model size in terms of both rows and non-zero elements in the

output, albeit with fewer quadratic constraints compared to the Bounded zero-mean

perturbations problem. Notably, as seen in Table (5.3), while the optimal objective

values are close, the result under the Gaussian perturbations is marginally better

than the corresponding value in Bounded zero-mean perturbations. This distinction

can be attributed to the fact that the model under Gaussian perturbations inte-

grates more partial probability distribution details by including additional variance

information as opposed to Bounded perturbation (Yin et al., 2019).

Additionally, Table 5.4 shows the number of units pre-positioned and maintained

at each of the established facilities. We notice that four facilities (nodes 1, 2, 3,
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4) and three facilities (nodes 2, 3, 4) were opened for the Bounded and Gaussian

solutions respectively. In the Bounded solution, emergency facility 1 maintains 9

emergency units, facility 2 maintains 18 units, facility 3 maintains 1 unit, and facility

4 maintains 14 units for hazmat type 1. For hazmat type 2, the Bounded solution

maintains 10 units at Facility 1, 0 units at Facility 2, 30 units at Facility 3, and 10

units at Facility 4. On the other hand, in the Gaussian solution, the quantities of

emergency units differ slightly for hazmat types 1 and 2 at some facilities. Facility 2

maintains 21 units for hazmat type 1, compared to 18 units in the Bounded solution.

Facility 3 maintains 1 unit for hazmat type 1, similar to the Bounded solution, while

it maintains 38 units for hazmat type 2, differing from the 30 units in the Bounded

solution. Moreover, Facility 4 maintains 20 units for hazmat type 1 and the same 10

units for hazmat type 2, differing from the Bounded solution by 6 units for hazmat

type 1. Notably, for the Bounded solution, the capacities of the facilities are not fully

maximized, because even though there are still unfilled capacities at the constructed

facilities, positioning emergency response units in these facilities is infeasible since

the incident sites are quite far away from them. As a result, more facilities are located

to ensure a response time lower than the maximum allowable time is utilized. The

difference observed between the quantities of emergency units maintained for the

Gaussian and Bounded solutions can be attributed to the Gaussian perturbation’s

inherent flexibility which allows the Gaussian perturbation to explore a wider range

of possibilities within the search space, potentially enabling the identification of
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Table 5.3: Comparison of Objective Function Values

Perturbation Objective Value Facility Cost Maintenance Cost Risk

Bounded 149,196.82 $100,793.0 $30,601.0 178,028.2

Gaussian 127,317.04 $76,031.0 $29,753.0 215,330.4

Table 5.4: Pre-positioned units at facility i for hazmat k

Node Facility Cost Capacity Hazmat type Bounded Gaussian

1 $24,762 21 hazmat 1 9 0

hazmat 2 10 0

2 $20,968 28 hazmat 1 18 21

hazmat 2 0 2

3 $28,865 39 hazmat 1 1 1

hazmat 2 30 38

4 $26,198 30 hazmat 1 14 20

hazmat 2 10 10

alternative, potentially more optimized response solutions.

5.1.4 Variation in tolerance levels

We conducted a sensitivity analysis by varying parameters within the models to

assess their impact. Table 5.5 illustrates the influence of different tolerance levels (ϵ)

on the models’ uncertainty scope. Increasing ϵ values from 0.001 to 0.30 exhibited a

notable sensitivity pattern, affecting both the auxiliary variable (Ψ) and the inverse

error function for the confidence level (Φ−1(1 − ϵ)). Specifically, as the tolerance
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Table 5.5: Parameter values for different tolerance levels

ϵ 0.001 0.01 0.05 0.1 0.15 0.2 0.25 0.3

Ψ 3.7169 3.0349 2.4477 2.1460 1.9479 1.7941 1.6651 1.5518

Φ−1(1− ϵ) 3.0902 2.3263 1.6449 1.2816 1.0364 0.8416 0.6745 0.5244

level increased, a consistent decreasing trend emerged for Ψ, declining from 3.72 to

1.55. Similarly, Φ−1(1− ϵ) experienced a reduction from 3.09 to 0.52. These changes

signify that higher tolerance levels correspond to decreased Ψ and Φ−1(1− ϵ) values,

indicating a broader ambiguity set and widening the set of potential values within

the confidence interval.

To further demonstrate the effect of tolerance level on the model solutions, we

solve the proposed models with varying values of ϵ. Regarding the Bounded Solution,

a negligible difference of 32.23 was observed between ϵ = 0.20 and 0.25 due to the

risk value change as shown in Table 5.6. On the other hand, the Gaussian Solution

maintained unchanging values across the different ϵ levels, showcasing stability and

reliability under varying tolerance levels. Thus, while the auxiliary variable and

the inverse error function of the standard normal distribution change with varying

tolerance levels, the actual objective values portray a consistent and reliable optimal

solution regardless of the confidence level considered.
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Table 5.6: Tolerance levels and corresponding objective values

Tolerance level

ϵ 0.001 0.01 0.10 0.20 0.25 0.30

Bounded Solution

O 149,196.82 149,196.82 149,196.82 149,196.82 149,164.59 149,164.59

F 100,793.00 100,793.00 100,793.00 100,793.00 100,793.00 100,793.00

V 30,601.00 30,601.00 30,601.00 30,601.00 30,567.00 30,567.00

R 178,028.20 178,028.20 178,028.20 178,028.20 178,045.90 178,045.90

Gaussian Solution

O 127,317.04 127,317.04 127,317.04 127,317.04 127,317.04 127,317.04

F 76,031.00 76,031.00 76,031.00 76,031.00 76,031.00 76,031.00

V 29,753.00 29,753.00 29,753.00 29,753.00 29,753.00 29,753.00

R 215,330.40 215,330.40 215,330.40 215,330.40 215,330.40 215,330.40

Where O: Objective Value, F: Facility Cost, V: Maintenance Cost, R: Risk

5.1.5 Variation in the Risk Coefficient

Considering the importance of risk reduction in the optimization problem and chang-

ing the risk coefficient γ from 0.1 to 2, we analyze the proposed models for ϵ = 0.1

and a specified θ of 7 minutes. The comparison between the Bounded and Gaus-

sian solutions produces the following optimization outcomes. As seen in Table 5.7,

the Bounded solution, despite providing better total risk values compared to the

Gaussian solution, still produces substantially higher emergency facility and main-

tenance costs (combined as cost) in comparison. This trend potentially indicates a
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Table 5.7: Results for different γ values

γ Bounded Gaussian

Cost Risk Cost Risk

0.1 131,394 178,028.20 105,784 215,330.36

0.5 133,808 169,810.76 107,493 204,909.14

1 136,571 165,841.34 136,394 165,867.54

2 137,810 164,668 137,633 164,694.20

more conservative approach taken by the Bounded solution, prioritizing risk miti-

gation strategies at the expense of the overall objective value. On the other hand,

the Gaussian solution, while yielding slightly higher risk values, showcases a more

cost-efficient approach, resulting in reduced costs. Hence, this incurred higher risk

suggests a comparatively greater tolerance for risk in the Gaussian solution, empha-

sizing potential trade-offs between cost reduction and risk management within the

optimization process. Interestingly, the Gaussian model still produced better solu-

tions overall for the analyzed results. The increase in cost with increasing γ suggests

that placing more importance on risk results in higher costs, possibly due to the

implementation of risk mitigation measures.

Furthermore, Fig. 5.1 illustrates the behavior of both models with the cost and

risk values compared for Bounded and Gaussian models. This analysis highlights the

inverse relationship between the risk objective and cost objective, with the Bounded

model consistently exhibiting higher costs and lower risks compared to the Gaussian

model.
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(a) Cost performance (b) Risk performance

Figure 5.1: Cost and Risk percentages for different γ values

5.1.6 Variation in the Maximum Response Time

For the models, we fix the tolerance level ϵ at 0.1, vary the value of θ from 6 to 10

minutes, and analyze the resulting solutions. Starting with the Bounded solution,

various values of θ lead to notable changes in the optimization results. At 6 minutes,

the solution is infeasible, indicating that there are no timely links below θ to sustain

the system. Increasing the value from 7 minutes to 8 minutes results in a minor

reduction in the optimal objective value while maintaining the number of facilities

constructed. However, a more significant impact is observed when transitioning

to maximum allowable time values of 9 minutes and 10 minutes, which leads to a

reduction in the optimal objective value and a subsequent decrease in both total

facility cost and total maintenance costs. Interestingly, this decrease is accompanied

by an increase in the total risk, suggesting that higher θ values might lead to the
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establishment of fewer facilities.

On the other hand, the Gaussian solution presents slight changes for the tested

values of θ, while maintaining better optimal solutions compared to its Gaussian

counterpart. Increasing the value from 6 to 7 minutes returned significant results,

reducing the objective value by over $21,000 as well as the number of constructed

facilities from 4 to 3. Varying the maximum time between 7 to 9 minutes resulted

in no reduction in the optimal objective value and configurations. However, a slight

impact was observed at a maximum allowable time of 10 minutes, which led to a

reduction in the optimal objective value with slight changes in both total facility cost

and total maintenance costs. Interestingly, these observations highlight the delicate

balance between the joint objectives in the problem setting. Thus the choice of θ

influences not only the achieved objective value but also the number of facilities to

construct and the trade-off between cost efficiency and risk mitigation. Table 5.8

presents the details.
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Table 5.8: Comparison of Bounded and Gaussian Solutions for different θ Values

Perturbation θ Obj Value Facility Cost Maintenance Risk Facilities

6 - - - - -

7 149,196.82 $100,793.0 $30,601.0 178,028.20 4

Bounded 8 149,164.59 $100,793.0 $30,567.0 178,045.90 4

9 127,317.04 $76,031.0 $29,753.0 215,330.40 3

10 127,317.04 $76,031.0 $29,753.0 215,330.40 3

6 149,164.60 $100,793.0 $30,567.0 178,046.00 4

7 127,317.04 $76,031.0 $29,753.0 215,330.40 3

Gaussian 8 127,317.04 $76,031.0 $29,753.0 215,330.40 3

9 127,317.04 $76,031.0 $29,753.0 215,330.40 3

10 127,137.37 $76,031.0 $29,354.0 217,523.70 3

5.2 A Real-world Case Study

To demonstrate the applicability of the previously discussed models in the context

of hazmat emergency response, we employ a real-world city network.

5.2.1 Network Data

Specifically, we employ the urban area of Daojiao in southeastern China for our case

study. The network’s data, originally sourced from Zhao and Ke (2019), Ke (2022)

and Ke and Bookbinder (2023) with necessary adjustments, covers approximately 54

square kilometers. Daojiao annually produces approximately 7,950 tons of hazardous

waste, necessitating an effective emergency response strategy. This analysis encom-
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Figure 5.2: Visualization of the Daojiao city network [Adapted from Ke (2022)]

passes 106 potential incident sites, including industrial factories, hospitals, schools,

residential areas, etc., which are categorized into 23 nodes based on travel time (5.2).

5.2.1.1 Risk

Within the above framework, the study considers three distinct hazmat types: used

oil, explosive waste, and waste organic solvent. Each hazmat type has an impact
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radius of 0.5 km, 0.8 km, and 1.6 km, respectively, defining the surrounding danger

zones. The average hazmat amounts generated at these sites total around 75 tons per

type, with a 50% variation, as indicated by Zhao and Ke (2019). These quantities are

then integrated into the 23 nodes, forming the basis for our comprehensive analysis.

The hazmat risk estimation for each node is calculated based on a worst-case scenario,

taking into account cumulative time-based population exposure within each zone.

This estimation considers zone size, population density, and hazmat quantity, while

the base risk coefficient γ is set at 0.01.

5.2.1.2 Cost

The determination of candidate emergency facility locations and their capacities

involves a meticulous analysis of required emergency resources and network connec-

tions. As a result, twelve potential locations are identified, comprising six small, four

medium, and two large facilities. Table 5.9 presents key cost and capacity details

for these candidate facilities. Construction cost estimates are derived from the Con-

struction and Development Guide recommended by the Chinese National Registered

Architect Management Committee (1995) and Ministry of Transport of the People’s

Republic of China (2018), adjusted for inflation in RMB1. Cost for maintaining a

single emergency unit at any emergency facility amounts to 25,000 RMB, while avail-

able budget for emergency facility construction is set to an initial value of 90 million

1RMB stands for Renminbi, the currency of the People’s Republic of China, worth about 0.19
of a Canadian dollar in August, 2024.
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Table 5.9: Candidate facility information in the Daojiao city network (Ke, 2022)

Facility Candidates # Capacity Fixed Cost (×104 RMB)

Small 6, 9, 15, 18, 20, 22 50 600

Medium 2, 8, 11, 12 70 800

Large 4, 14 100 1,000

RMB, which is sufficient for constructing the maximum number of facilities should

there be need. We set this value to allow the model enough flexibility to solve the

hazmat emergency problem even in scenarios of extreme uncertainty.

5.2.1.3 Response time

The average response time within a pair of nodes is determined by the time taken

to traverse Euclidean distances at a standardized speed of 0.5 km per minute. To

account for uncertainties in response time, a basic perturbation shift (T̂ij) of 20%

from the nominal value is assumed. The model incorporates these uncertainties by

considering mean expectation ranges (µ−
ij and µ+

ij) between -1 and 1, while σ takes

values in the interval [0, 0.5].

Computational simulations for this case study are executed on an Intel Core

i7 2.10GHz Quad-Core processor with 8GB RAM, running a 64-bit Windows 10

operating system.
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Table 5.10: Bounded model with different cases of ϵ and θ

Case ϵ θ No. of Cost (×104 RMB) Risk CPU

facilities Fixed Cost Maint Cost (×105) time (s)

B11 0.001 8 - - - - -

B12 9 9 6,200 927.5 4,199 0.31

B13 10 9 6,200 927.5 4,199 0.93

B14 12 8 5,600 927.5 5,538 1.42

B15 15 6 4,400 927.5 5,756 1.93

B16 20 5 4,200 927.5 4,813 2.45

B21 0.1 8 9 6,200 927.5 4,199 0.39

B22 9 8 5,600 927.5 5,538 0.94

B23 10 8 5,600 927.5 5,538 1.61

B24 12 6 4,400 927.5 5,756 2.09

B25 15 5 4,200 927.5 4,813 2.52

B26 20 5 4,200 927.5 4,806 3.36

B31 0.3 8 8 5,600 927.5 5,538 1.19

B32 9 8 5,600 927.5 5,538 1.26

B33 10 7 5,000 927.5 4,699 1.53

B34 12 5 4,200 927.5 5,791 1.55

B35 15 5 4,200 927.5 4,813 1.95

B36 20 5 4,200 927.5 4,580 2.31

5.2.2 Bounded model

We solve the Bounded model in several cases with different tolerance levels (ϵ =

0.0001, 0.1, 0.3) and distinct maximum allowable response times. The outcomes,

including the costs, risk, and computational durations are presented in Table 5.10.
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Examining the outcomes, it is evident that as the tolerance level increases, the

costs and risk values exhibit a unique pattern across cases with similar maximum

allowable response times. For instance, comparing cases B13, B23, and B33 for

the maximum allowable time of 10 minutes, we observe variations in the number of

facilities, costs, and risks. At a tight tolerance in case B13, the network produced

the worst fixed cost value of 6,200 ×104 RMB and a relatively high number of

facilities (9). As the tolerance value is increased from 0.001 towards 0.3, we observe

that cases B23 and B33 present better fixed cost results of 5,600 ×104 RMB and

5,000 ×104 RMB respectively for both cases, improving significantly. The number

of facilities also decrease to 8 and 7 respectively in both cases, indicating potential

cost optimization. The results underscore the need to construct more facilities as

the tolerance level is reduced. As a result of the low tolerance level, more facilities

are constructed to meet the confidence requirement. The computational duration

shows an increasing trend as the values of θ increase and indicate reasonably efficient

computational performance in handling our network size. In evaluating the variations

in the network performance based on the maximum allowable response time, we

observe the model’s behavior with different θ values for different tolerance situations.

Taking ϵ = 0.001 for instance, in analyzing cases B11 to B16, B11 returns no feasible

solution in th egiven tolerance level for the problem. Further, B12 presents the

worst performance at θ of 9 minutes, with 6,200 ×104 RMB fixed facility cost and 9

facilities. As the maximum allowable response time increases from 9 to 20, we observe
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the subsequent cases (B13 to B16) exhibit better improvements in their cost values.

Notably, the total cost of maintaining emergency units (Maint. cost) across all cases

stayed the same, signifying consistency in the total number of emergency groups

maintained for each solution, irrespective of the emergency facility and allocation

configurations. The unique interaction between cost and risk is also obvious, showing

risk increases in certain cases as a result of suppressed emergency facility construction

costs.

Furthermore, we evaluate the solutions in this model to understand the position-

ing of emergency units within the model. We highlight three cases B12, B22 and B32

from the solved cases, and present their outcome in below Table 5.112. To prove the

accuracy of the solutions, the total number of emergency units pre-positioned across

the cases tallied with the total emergency demand across the system (371 units),

with no redundancy.

5.2.3 Gaussian model

Similarly, the Gaussian model is applied to optimize the network under the three

cases of ϵ. Table 5.12 provides comprehensive insights into the model’s performance

across different optimization cases.

Solving the model for a given tolerance level across different maximum allowable

times results in varying fixed cost and risk values, as well as different number of

2we use “x” in our tables to show that an emergency facility is opened.
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Table 5.11: Bounded emergency response groups per facility (θ = 9)

Facility Facility Opened Hazmat type Total
Case candidates capacity facility 1 2 3
B12 1 50 x 15 12 13 40

2 70 x 19 13 24 56
4 100 x 31 11 17 59
8 70 x 31 21 10 62
9 50 x 25 3 22 50
11 70 - - - - -
12 70 - - - - -
14 100 - - - - -
15 50 x 10 12 9 31
18 50 x 3 0 7 10
20 50 x 1 0 12 13
22 50 x 21 19 10 50

371

B22 1 50 x 15 19 16 50
2 70 - - - - -
4 100 x 39 11 29 79
8 70 x 31 21 10 62
9 50 x 23 0 27 50
11 70 - - - - -
12 70 x 21 10 18 49
14 100 - - - - -
15 50 x 7 15 9 31
18 50 x 3 0 12 15
20 50 - - - - -
22 50 x 17 15 3 35

371

B32 1 50 x 15 19 16 50
2 70 - - - - -
4 100 x 39 11 29 79
8 70 x 31 21 10 62
9 50 x 23 0 27 50
11 70 - - - - -
12 70 x 21 10 18 49
14 100 - - - - -
15 50 x 7 15 9 31
18 50 x 3 0 12 15
20 50 - - - - -
22 50 x 17 15 3 35

371
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Table 5.12: Gaussian model with different cases of ϵ and θ

Case ϵ θ No. of Cost (×104 RMB) Risk CPU

facilities Fixed Cost Maint Cost (×105) time (s)

G11 0.001 8 7 5,400 927.5 6,339 0.94

G12 9 7 5,000 927.5 4,768 1.45

G13 10 6 4,400 927.5 5,745 1.42

G14 12 5 4,200 927.5 4,813 1.12

G15 15 5 4,200 927.5 4,813 1.68

G16 20 5 4,200 927.5 4,802 2.36

G21 0.1 8 7 5,000 927.5 6,923 0.96

G22 9 6 4,400 927.5 5,756 1.23

G23 10 6 4,400 927.5 5,531 1.59

G24 12 5 4,200 927.5 4,813 1.50

G25 15 5 4,200 927.5 4,813 2.02

G26 20 5 4,200 927.5 4,439 2.81

G31 0.3 8 7 5,000 927.5 4,699 1.12

G32 9 6 4,400 927.5 5,542 1.44

G33 10 6 4,400 927.5 5,531 1.58

G34 12 5 4,200 927.5 4,813 1.37

G35 15 5 4,200 927.5 4,813 2.92

G36 20 5 4,200 927.5 4,439 3.40

constructed facilities, improving in most cases as θ is increased. For instance, at

ϵ = 0.001, the results from cases G11 to G16 demonstrate the inherent trade-offs

between flexibility in response time, cost, and risk management, improving the fixed

costs across the θ values from 5,400 ×104 RMB to 4,200 ×104 RMB. Note that be-

tween the specified tolerance values of 0.1 and 0.3, the solutions of θ 15 to 20 minutes
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become consistent to denote that the tolerance value at these points may not signif-

icantly impact the network’s performance across each θ value. The computational

durations from our results range from 0.94 to 3.40 seconds, indicating a moderate

computational burden. On the other hand, in comparing the cases across different ϵ

values, it is evident that relaxing tolerance levels generally leads to better outcomes.

For instance, increasing ϵ along cases G12, G22 and, G32 yields improving objective

values and suggests the establishment of 7, 6 and, 6 facilities respectively. Similar

to the bounded model, the total cost of maintaining emergency units across all cases

remains constant.

To further understand the outcome of this solution with respect to the maintained

emergency units at each constructed emergency facility, we look at corresponding

solutions from cases G12, G22 and G32 and present their results in Table 5.133.

Obviously, the model suggests different configurations for the analysed cases, while

retaining accurate total emergency pre-positioned units (371 units) across the ana-

lyzed cases.

5.2.4 Variation in the Risk Coefficient

Our model’s combined objectives are cost and risk, which are linked by a risk coeffi-

cient γ enabling an interaction between both. To have a better view of this analysis,

we simplify our presentation of cost in this section by adding both the emergency

3we use “x” in our tables to show that an emergency facility is opened.
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Table 5.13: Gaussian emergency response groups per facility (θ = 9)

Facility Facility Opened Hazmat type Total
Case candidates capacity facility 1 2 3
G12 1 50 x 13 17 20 50

2 70 - - - - -
4 100 x 39 11 29 79
8 70 - - - - -
9 50 x 25 15 10 50
11 70 - - - - -
12 70 - - - - -
14 100 x 38 22 32 92
15 50 - - - - -
18 50 x 3 5 11 19
20 50 x 15 4 12 31
22 50 x 23 17 10 50

371

G22 1 50 x 14 9 27 50
2 70 - - - - -
4 100 x 41 13 29 83
8 70 - - - - -
9 50 x 24 15 11 50
11 70 - - - - -
12 70 - - - - -
14 100 x 38 22 31 91
15 50 - - - - -
18 50 x 16 15 16 47
20 50 - - - - -
22 50 x 23 17 10 50

371

G32 1 50 x 4 19 27 50
2 70 - - - - -
4 100 x 51 13 29 93
8 70 - - - - -
9 50 x 24 15 11 50
11 70 - - - - -
12 70 - - - - -
14 100 x 38 22 31 91
15 50 - - - - -
18 50 x 16 5 16 37
20 50 - - - - -
22 50 x 23 17 10 50

371
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Table 5.14: Variation in Risk Coefficient

Bounded Gaussian

γ Cost Risk # of Cost Risk # of

(×104 RMB) (×105) facilities (×104 RMB) (×105) facilities

0.01 6,527.5 5,538 8 5,327.5 5,756 6

0.1 7,727.5 1,908 9 5,727.5 3,440 6

0.25 7,727.5 1,908 9 7,127.5 2,075 8

0.5 8,327.5 1,722 10 8,327.5 1,722 10

0.75 9,727.5 1,573 11 9,727.5 1,573 11

1 9,727.5 1,500 12 9,727.5 1,500 12

facility cost and the emergency maintenance costs together. We then look at corre-

sponding solutions where θ is 9 minutes for different γ values with respect to both

Bounded and Gaussian models from cases B22 and G22 respectively. We present the

values associated with the cost and risk objectives in Table 5.14.

Notably, as γ rises, corresponding results from both models change at different

rates denoting their response to the varying risk weight. As the risk coefficient

increases, we see that a decision maker that values risk more highly, will spend more

to reduce risk. As a result, a higher number of selected facilities is recorded as well

to corroborate the optimization effort. For instance, at a low γ of 0.01 from the

Bounded model, the cost is 6,527.5 ×104 RMB, whereas, at γ = 0.1, the cost rises

to 7,727.5 ×104 RMB. On the other hand, the Gaussian model produces a better

total cost value of 5,327.5 ×104 RMB at γ = 0.01 which is consistent with our earlier
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Figure 5.3: Cost values with different γ values

results. However, we observe that as γ values rise, the difference between the two

models gets smaller and smaller until convergence is recorded with both models at

γ = 0.5. At γ = 1, all the candidate facilities within the network are selected and

any increase in γ above 1 will retain equilibrium in both models. Consistent with our

previous case, the Bounded model consistently exhibits higher costs and lower risks

compared to the Gaussian model, except at γ = 0.5 and above where both values

are the same. The details of the cost and risk outcomes are presented in Fig. 5.3 and

Fig. 5.4, respectively. Fig. 5.5 shows the number of facilities constructed as various

values of γ shifts the problem focus from the cost objective to the risk objective.
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Figure 5.4: Risk values with different γ values

Figure 5.5: Opened facilities with respect to γ
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5.2.5 Variation in Gaussian Variances

In this section, we perform sensitivity analysis on the Gaussian model to understand

how changes in σ impact the optimization results. Varying the range of σ will vary

the level of variability within the system. We select case G12 for this analysis and

present the results in Table 5.15. From the table, as we increase σ, we see that

the optimization model tends to produce more conservative solutions to account

for the increased variability in the uncertain parameter. For instance, as we set σ

to take random values within the range [0, 2], we see the total cost value rise to

7,127.5 ×104 RMB. This pattern aligns with the expectation that higher uncertainty

prompts the model to generate more conservative solutions, emphasizing robustness

at the expense of increased costs. Concurrently, the number of constructed emer-

gency facilities displays a noticeable increase with higher values of σ, indicating the

model’s response to elevated uncertainty. This behavior adheres to the principles

of our optimization model, where additional facilities are strategically positioned to

enhance the system’s resilience against a broader spectrum of potential perturba-

tions. The observed trade-off between robustness and cost management is apparent

in the results. Lower values of σ correspond to lower costs but potentially expose the

system to higher risk. In contrast, higher values of σ lead to more conservative solu-

tions, with increased costs and a higher number of facilities, bolstering the system’s

robustness against uncertainties.
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Table 5.15: Variation in Gaussian Variances (Case G13)

σ interval Cost Risk # No of

(×104 RMB) (×105) facilities

0 - 0.01 5,327.5 5,542 6

0 - 0.1 5,327.5 5,542 6

0 - 0.5 5,927.5 4,768 7

0 - 1 6,527.5 4,961 8

0 - 2 7,127.5 4,199 9

5.2.6 Comparison with Different Optimization Models

In this section, we compare the DRO method with the Deterministic (DET) and

Robust Optimization (RO) models to provide insights into their respective solutions.

We first present the deterministic model’s results, followed by an analysis of the ro-

bust optimization method. Finally, we discuss how uncertainties impact the system’s

performance under various scenarios.

5.2.6.1 Deterministic Model Development

The deterministic optimization model aims to optimize facility locations and resource

allocations under known conditions without considering uncertainties. We solve the

deterministic counterpart (Section 3.4) of the model computations presented in the

previous sections. The solution as shown in Table 5.18 showcases the model’s ability

to identify an exact optimal solution under ideal conditions. The establishment of

5 strategically positioned facilities is sufficient to cover all the network’s emergency
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Table 5.16: Deterministic emergency response groups per facility (θ = 9)

Facility Facility Opened Hazmat type Total
candidates capacity facility 1 2 3
1 50 - - - - -
2 70 x 27 15 28 70
4 100 x 46 13 25 84
8 70 - - - - -
9 50 - - - - -
11 70 - - - - -
12 70 x 29 23 18 70
14 100 x 38 22 37 97
15 50 - - - - -
18 50 - - - - -
20 50 x 16 18 16 50
22 50 - - - - -
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response requirements, as long as no disruption exists and all factors are known. We

also explore the positioning of emergency units and present the result in Table 5.16.

5.2.6.2 Robust Optimization Model Development

As outlined in the literature review, the Robust Optimization (RO) method is tai-

lored to handle uncertain parameters with known support, eliminating the need for

precise probability distribution information. That is, it accommodates a set of con-

ceivable uncertain scenarios within defined bounds, aiming to optimize solutions ro-

bust enough to perform well under the worst-case scenarios (Ben-Tal and Nemirovski,

2000). Thus, when the tolerance level (ϵ) is set to zero, a specific form of our ambigu-

ous chance constraint emerges which ensures that the left-hand terms involving the
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uncertain parameter ζ, under a given probability distribution P , remain less than or

equal to the allowable time threshold θ

Probζ∼P

{
T̄ijlijk + ζijT̂ijlijk ≤ θ

}
= 1. (5.1)

Consistent with traditional RO theory, the worst-case scenario involves considering

the perturbation variable at its maximum value within the defined support interval

(Yin et al., 2019). Consequently, an equivalent robust counterpart model can be

derived, and the optimal solution for the RO model can be obtained by solving the

inequality

max
ζ∼P

{
T̄ijlijk + ζijT̂ijlijk

}
≤ θ. (5.2)

The RO method produces an optimal solution categorized into facility cost: 6,200

×104 RMB, cost of maintaining supplies: 927.5 ×104 RMB, and total risk: 6,602

×105. As shown in Table 5.18, the model recommends the construction of 9 emer-

gency facilities which ensures the system is robust enough to perform well under the

worst-case scenario. We further explore the RO method to understand the position-

ing of emergency units within the model and present their outcome in Table 5.17.

5.2.6.3 Comparison with Robust Optimization model

In this section, we compare the DRO method with the RO method, comparing the

values obtained from both models to provide insights from their respective solutions,

71



Table 5.17: Robust emergency response groups per facility (θ = 9)

Facility Facility Opened Hazmat type Total
candidates capacity facility 1 2 3
1 50 x 15 12 13 40
2 70 x 19 13 24 56
4 100 x 31 11 17 59
8 70 x 31 21 10 62
9 50 x 25 3 22 50
11 70 - - - - -
12 70 - - - - -
14 100 - - - - -
15 50 x 10 12 9 31
18 50 x 3 0 7 10
20 50 x 1 0 12 13
22 50 x 21 19 10 50
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primarily in cost and risk behaviors as seen from Table 5.18. The Bounded model

presents a high cost value of 7,127.5 ×104 RMB for very tight tolerance while main-

taining consistent values of 6,527.5 ×104 RMB for ϵ = 0.1 and 0.3. In the Gaussian

model, the cost value returns 5,927.5 ×104 RMB for ϵ = 0.001, and 5,327.5 ×104

RMB for both ϵ = 0.1 and 0.3. As expected, the Robust model maintains a constant

cost value at 7,127.5 ×104 RMB, reinforcing a risk-averse approach in hazmat emer-

gency response planning. The analysis reveals that the optimal cost of the Bounded

model equals the robust optimization model only when the tolerance level ϵ is equal

to 0.001. In all other instances, DRO models yield lower system costs compared to

the RO model.

Turning our attention to risk considerations, the Bounded model displays an
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Table 5.18: System Development Under Different models (γ = 0.01)

ϵ Model Cost Risk # of Opened

(×104 RMB) (×105) facilities facilities

- DET 5,127.5 5,395 5 2, 4, 12, 14, 20

- Robust 7,127.5 6,602 9 1, 2, 4, 8, 9, 15, 18, 20, 22

0.001 Bounded 7,127.5 4,199 9 1, 2, 4, 8, 9, 15, 18, 20, 22

Gaussian 5,927.5 4,768 7 1, 4, 9, 14, 18, 20, 22

0.1 Bounded 6,527.5 5,538 8 1, 4, 8, 9, 15, 18, 20, 22

Gaussian 5,327.5 5,756 6 1, 4, 9, 14, 18, 22

0.3 Bounded 6,527.5 5,538 8 1, 4, 8, 9, 15, 18, 20, 22

Gaussian 5,327.5 5,542 6 1, 4, 9, 14, 18, 22

intriguing trend. The risk values increase from 4,199 ×105 to 5,538 ×105 as the

constructed facilities are decreased from 9 to 8. This indicates a trade-off between

constructing facilities and risk reduction as tolerance increases. In the Gaussian

model, risk values exhibit variability, increasing from 4,768 ×105 at ϵ = 0.001 to 5,756

×105 at ϵ = 0.1, followed by a decrease to 5,542 ×105 at ϵ = 0.3. This fluctuation in

risk values suggests a delicate balance in facility construction, attempting to offset

one facility from the suggested 7 at lower ϵ levels. Meanwhile, the Robust model

maintains higher risk values than both DRO models at 6,602 ×105, reinforcing a

risk-averse approach in hazmat emergency response planning.

Subsequently, we compare the optimal values obtained from the DRO models

and those from the RO model, presenting the objective function values and number

of constructed facilities for the different models under different levels of γ. When
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γ is set to 0.01 as shown in Table 5.19, the objective function values vary signifi-

cantly across different models. The DET model yields an objective function value

of 5,667 ×104. This model does not account for uncertainties, resulting in a lower

objective value compared to other models that incorporate risk factors. The RO

model has a higher objective function value of 7,788 ×104. This indicates that the

robust approach, which considers worst-case scenarios, leads to higher costs due to

the conservative nature of the model. The analysis reveals that in all ϵ instances,

DRO models yield lower values compared to the RO model. This finding aligns with

established conclusions, indicating that the DRO model steers clear of overly conser-

vative solutions due to the additional probabilistic information regarding uncertain

parameters. Furthermore, it achieves a lower cost, demonstrating its practical de-

sirability in problem-solving. To facilitate clear comparisons, we depict the optimal

values of the Bounded, Gaussian, and RO models in Figure 5.6.

Observing Table 5.20 for γ = 0.1, again the objective function values show clear

distinctions in performance. The DET model yields an objective function value of

8,788 ×104, while the RO model has a higher value of 10,683 ×104, reflecting its

conservative approach. Among the DRO models, the Bounded model shows higher

objective function values than the Gaussian model, despite lower risk (Figure 5.7).

The Gaussian model achieves lower construction costs and better optimal values

overall, demonstrating its efficiency in managing distributional ambiguity. Across all

the models, we observe lower risk values compared to the γ = 0.01, as a result of
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Table 5.19: Computational results of various models (γ = 0.01)

ϵ Model Cost Risk Objective function # of

(×104 RMB) (×105) (×104) facilities

- DET 5,127.5 5,395 5,667 5

- Robust 7,127.5 6,602 7,788 9

0.001 Bounded 7,127.5 4,199 7,547 9

Gaussian 5,927.5 4,768 6,404 7

0.1 Bounded 6,527.5 5,538 7,081 8

Gaussian 5,327.5 5,756 5,903 6

0.3 Bounded 6,527.5 5,538 7,081 8

Gaussian 5,327.5 5,542 5,882 6

0.4 Bounded 5,927.5 4,768 6,404 7

Gaussian 5,327.5 5,542 5,882 6

0.5 Bounded 5,927.5 4,768 6,404 7

Gaussian 5,327.5 5,542 5,882 6

increased focus towards the risk objective.

At γ = 1, the objective function values exhibit a slightly different result. The

DET model’s objective function value increases to 24,195 ×104 with all 12 facilities

constructed. This substantial rise reflects the heightened sensitivity to risk manage-

ment when γ is higher, which is consistent with our previous studies (Section 5.2.4).

Similarly, the robust model’s objective function value increases to 32,875 ×104 with

12 constructed facilities. Across all values of ϵ, both the Bounded and Gaussian

models have an identical objective function value of 24,723 ×104 with all facilities

constructed (Figure 5.8. In line with Section 5.2.4, this uniformity suggests that
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Figure 5.6: Computational results of various models (γ = 0.01)

Figure 5.7: Computational results of various models (γ = 0.1)

under high risk objective focus (high γ), the bounded and Gaussian models converge

to the same solution, indicating a threshold beyond which the specific handling of
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Table 5.20: Computational results of various models (γ = 0.1)

ϵ Model Cost Risk Objective function # of

(×104 RMB) (×105) (×104) facilities

- DET 6,527.5 2,260 8,788 7

- Robust 7,727.5 2,956 10,683 9

0.001 Bounded 7,727.5 1,908 9,635 9

Gaussian 7,127.5 2,075 9,203 8

0.1 Bounded 7,727.5 1,908 9,635 9

Gaussian 5,727.5 3,440 9,168 6

0.3 Bounded 7,727.5 1,908 9,635 9

Gaussian 5,727.5 3,440 9,168 6

0.4 Bounded 7,127.5 2,075 9,203 8

Gaussian 5,727.5 3,440 9,168 6

0.5 Bounded 7,127.5 2,075 9,203 8

Gaussian 5,727.5 3,440 9,168 6

risk becomes less distinct between the models.

5.2.6.4 System Performance Under Various Uncertain Scenarios

The presence of uncertainties in emergency hazmat network design introduces com-

plexities that traditional deterministic models may overlook. Hence, we concentrate

on system risk and conduct a thorough comparative analysis. We compare the per-

formance of our proposed DRO models with the deterministic and robust models

to assess the effects of uncertainties on system performance and resilience and shed

light on the effectiveness of the different modeling approaches in addressing these
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Table 5.21: Computational results of various models (γ = 1)

ϵ Model Cost Risk Objective function # of

(×104 RMB) (×105) (×104) facilities

- DET 9,727.5 1,447 24,195 12

- Robust 9,727.5 2,315 32,875 12

0.001 - 0.5 Bounded 9,727.5 1,500 24,723 12

Gaussian 9,727.5 1,500 24,723 12

0.1 Bounded 9,727.5 1,500 24,723 12

Gaussian 9,727.5 1,500 24,723 12

0.3 Bounded 9,727.5 1,500 24,723 12

Gaussian 9,727.5 1,500 24,723 12

0.4 Bounded 9,727.5 1,500 24,723 12

Gaussian 9,727.5 1,500 24,723 12

0.5 Bounded 9,727.5 1,500 24,723 12

Gaussian 9,727.5 1,500 24,723 12

challenges. To evaluate the models under real-world conditions, we use ϵ = 0.1

and construct 5 uncertainty scenarios from our original response time data to reflect

possible uncertain situations within the network.

The first scenario (U01) simulates a moderate a 10% increase in travel time, re-

flecting slightly adverse conditions. The second scenario (U02) simulates a 50% delay

in travel time, indicating significant delays in the transportation network during peak

hours. Scenario U03 illustrates a doubling of travel time, indicating disruptions such

as major road closures or accidents. The fourth scenario (U04) represents an extreme

scenario with triple the average travel time, indicating more severe disruptions. We
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Figure 5.8: Computational results of various models (γ = 1)

employ scenario U05 with five times the usual travel time as the worst-case scenario

to represent severe disruptions such as natural disasters or extreme weather events.

Consequently, the four distinct system designs: Deterministic, Robust, Bounded,

and Gaussian models, undergo analysis under these uncertainty scenarios. The test

demonstrates how different systems constructed using various models respond to the

various uncertainty situations to provide emergency services effectively. At this stage,

the facilities are fixed and we test our models to minimize risk in the event of the

uncertainty. To account for the unplanned uncertainties which have the potential to

overly violate the system requirements, we modify the model as follows.

min
∑
i∈I

∑
j∈J

∑
k∈K

TijEjkxijk + (Tij − θ)+Emaxxijk
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s.t.

∑
i∈I

xijk ≥ Wjk, ∀j ∈ J ,∀k ∈ K

∑
j∈J

xijk ≤ qik, ∀i ∈ I,∀k ∈ K

xijk ≥ 0, integer, ∀i ∈ I,∀j ∈ J ,∀k ∈ K

where Emax = maxEjk represents the maximum risk associated with all response

times exceeding θ (Tij − θ) over all incident sites to reflect the resulting high risk,

with

(Tij − θ)+ =


Tij − θ, if Tij − θ > 0

0, if Tij − θ ≤ 0.

The results provided in Figure 5.9 offer compelling insights into the comparative

risks associated with each model across varying uncertainty scenarios. Notably, while

the deterministic model demonstrates efficiency when there is certainty in the net-

work, it becomes highly vulnerable to risk escalation as uncertainties are introduced,

making it less suitable for handling real-world uncertainties. On the other hand, the

risk in the RO model remains the lowest irrespective of the uncertainty scenarios

outlined in this analysis. However, the RO model typically incurs the highest costs

compared to the other models under study for system design, leading to an overes-

timation of risks in anticipation of worst-case scenarios. Specifically, the RO model
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incurs approximately 39.01% more cost than the deterministic model. The DRO

models take into account the uncertainty distribution and aim to optimize solutions

that are robust against variations within the distribution while maintaining optimal

cost. Both the Bounded and Gaussian models demonstrate noteworthy capabilities

in mitigating risk. With uncertainties, the DRO models generally lag behind the RO

model in terms of risk performance as the uncertainty increases, but they perform

better in cost management by not over-preparing for uncertainties. Specifically, the

Bounded model produces 8.42% better cost efficiency than the RO model while de-

livering risk mitigation that is 7.3% behind the RO model. The Gaussian model also

achieves excellent cost efficiency compared to the RO model, even though its risk

mitigation output lags behind the RO model. Generally, both DRO models aim to

strike a balance between cost and risk objectives, with the Bounded model placing

more emphasis on risk minimization and the Gaussian model concentrating more on

cost optimization. Furthermore, we analyzed the average response time (Tij) and the

maximum response time across the five different uncertainty scenarios and present

the results in Table 5.22. Under the deterministic model, average response times

range from 4.20 to 18.15 units, while the DRO and RO models present better val-

ues. Comparably, the RO and DRO models demonstrate superior performance, with

reduced average response times across all uncertainty scenarios. However, when the

cost to design the RO and DRO models are considered, the DRO models appear

to have better overall performance. Ultimately, the choice between RO and DRO
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Figure 5.9: Comparison of uncertain risk for different models

hinges on various factors, such as the decision-makers’ risk preferences. While the

RO model prioritizes robustness under all possible scenarios with a high cost of ro-

bustness in its conservative approach, the DRO model offers advantages in overall

system performance by balancing robustness and cost-effectiveness.

5.2.6.5 Facility Utilization Across Models

This section analyzes the utilization of facilities constructed under each model and

summarized in Table 5.23. With the total allocated emergency units across the net-

work = 371 emergency units for all models, we determine the percentage of unused

capacity by finding the ratio of the allocated emergency units to the combined total
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Table 5.22: System Performance Under Different Scenarios

Model Function U1 U2 U3 U4 U5

DET Average Tij 4.20 5.44 7.26 10.89 18.15

Maximum Tij 10.34 13.5 18 27 45

Robust Average Tij 2.31 3.15 4.20 6.24 10.40

Maximum Tij 5.5 7.5 10 15 25

Bounded Average Tij 2.37 3.24 4.32 6.47 10.79

Maximum Tij 6.38 8.7 11.6 17.4 29

Gaussian Average Tij 3.45 4.71 6.28 9.72 16.22

Maximum Tij 8.8 12 16 27 45

capacity of all constructed facilities. Thus, the deterministic model shows high uti-

lization efficiency with only 4.87% unused capacity across its five constructed emer-

gency facilities. However, its vulnerability to risk escalation under uncertainty, as

discussed in our previous section, limits its practicality. The RO model maintains the

lowest risk across varying uncertainty scenarios but has a significant 31.30% of unused

capacity. This high network redundancy, coupled with the highest construction cost,

further indicates that the RO model overestimates required capacity while trying to

safeguard against worst-case uncertainty scenarios. In contrast, the Bounded model

balances resource utilization with 24.29% unused capacity. It achieves better cost

efficiency than the RO model while maintaining substantial risk mitigation across all

uncertainty scenarios. The Gaussian model exhibits 7.25% unused capacity, indicat-

ing precise resource allocation. While its risk mitigation is slightly less effective than
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Table 5.23: Facility Utilization Across Models

Model Total Constructed Capacity Percentage Unused Capacity

DET 390 4.87%

Robust 540 31.30%

Bounded 490 24.29%

Gaussian 400 7.25%

the Bounded model, it excels in cost management and resource utilization, avoid-

ing over-preparation for extreme cases. Comparing these models in terms of both

construction cost, redundant capacity and risk mitigation highlights the benefits of

DRO models. The DRO models demonstrate superior system utility by achieving

a balance between robustness and cost-effectiveness in managing hazmat emergency

logistics, making them more suitable for real-world applications where uncertainty

is a significant factor.

5.2.7 Variation in Distributional Ambiguity

In this section, we examine how variations in the ambiguity set parameters can

influence the DRO models’ outcomes in our previous experiments. To facilitate this

analysis, we introduce a parameter denoted as ∆ = T̂ij/T̄ij, representing the measure

of the normal deviation of the uncertain variable to the expected value, which reflects

the level of distributional ambiguity. We conduct experiments by solving both the

Bounded and Gaussian models at various values of ∆ and showcase the results in

Fig. 5.10. Clearly, the objective value of the Bounded model increases by over 33.60%
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Figure 5.10: Variation in distributional ambiguity

from 4,958 ×104 RMB to 6,624 ×104 RMB. On the other hand, the Gaussian model

demonstrates a more stable pattern across different levels of distributional ambiguity,

with only a small increase of 0.63% in the objective value from 4,958 ×104 RMB to

4,989 ×104 RMB as ∆ increases.

To further understand the model behaviors, we separately analyze the impact of

∆ on cost and risk, and present them in Fig. 5.11 and Fig. 5.12. For the Bounded

model, the number of facilities constructed increases as the distributional ambiguity

parameter rises. Specifically, low values of ∆ (from 0.01 to 0.05) result in high risk

levels, with the risk ranging from 5,576 ×105 to 5,620 ×105. To keep the construc-

tion costs low at 4,400 ×104 RMB, only 6 facilities are built. However, the high risk

indicates that this minimal investment in facilities is insufficient for effective risk
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mitigation. As ∆ increases from 0.06 to 0.1, the focus shifts towards reducing risk

more effectively. The number of facilities increases to 7, resulting in a noticeable

reduction in risk, with values dropping to approximately 4,589 to 4,620 ×105. This

improved risk management comes at an increased cost of 5,000 ×104 RMB, demon-

strating a trade-off where higher investment in facilities leads to lower risk. As ∆

ranges from 0.12 to 0.25, further investments are made to reduce risk. The number

of facilities increases to 8, leading to construction costs rising to 5,600 ×104 RMB.

Initially, risk decreases but then starts to increase again, peaking at 5,567 ×105 for

∆ = 0.25. At ∆ = 0.3, a conservative effort is made to mitigate risk by constructing

9 facilities. This results in a significant reduction in risk to 4,235 ×105, with the

highest construction cost of 6,200 ×104 RMB×104 RMB. This phase suggests that

substantial risk mitigation can be achieved with additional facilities, although at a

higher cost.

For the Gaussian model, the values of ∆ from 0.01 result in relatively high-risk

levels, with the risk starting at 5,576 ×105. To keep the construction costs low

at 4,400 ×104 RMB, only 6 facilities are built. as ∆ ranges from 0.01 to 0.3, the

risk increases gradually, peaking at 5,889 ×105. The number of facilities and the

construction cost remain unchanged at 6 and 4,400 ×104 RMB, respectively. This

phase demonstrates that the Gaussian model maintains the cost efficiency, but the

increasing ∆ values lead to higher risk levels, underscoring the distinct behavior of

both models in risk management.
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Figure 5.11: Variation in distributional ambiguity - Cost

Figure 5.12: Variation in distributional ambiguity - Risk

These findings suggest that the Bounded model exhibits more sensitivity as the

distributional ambiguity parameter ∆ increases, particularly towards risk mitigation.
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This indicates that as uncertainty in the parameters changes, the Bounded model

tends to be more conservative, constructing more facilities to manage the increased

ambiguity and mitigate risk. In contrast, the Gaussian model demonstrates smaller

changes across different levels of distributional ambiguity, which is consistent with

previous studies such as Wang et al. (2022). This resilience can be attributed to the

Gaussian model’s incorporation of a more extensive range of distributional informa-

tion into the ambiguity sets, equipping it with the capability to withstand changes

without substantial impact on its performance.
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Chapter 6

Summary and Conclusions

6.1 Overview

This thesis focuses on the intricate challenges of hazmat emergency facility loca-

tion problems, specifically dealing with optimizing facility location and allocation

to enhance preparedness and emergency response. The central objective involves a

dual approach: minimizing costs and timely mitigating risks. The proposed solution

is a Distributionally Robust Optimization (DRO) chance-constrained model that

considers uncertainty in emergency response times. This DRO model addresses mul-

tiple facets simultaneously, determining facility locations, constructions, hazardous

response unit placement, and emergency response unit allocation. Its overarching

goal is to minimize overall system risk associated with hazmat emergency response

and the associated construction/maintenance costs. Moreover, the increased avail-
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ability of emergency facilities is identified as a practical means of reducing overall

risk. A notable aspect in our thesis is the model’s capability to overcome limitations

of conventional robust optimization by incorporating partial probability distribution

information, avoiding overly conservative solutions. This approach effectively han-

dles uncertainty related to probability distribution, a consideration often overlooked

in stochastic optimization models with fixed probability distribution.

Two distinct ambiguity sets are introduced for the chance constraints, each re-

solved into computable forms for exact optimal solutions. The first set deals with dis-

tributions featuring bounded perturbations and zero mean, employing a safe tractable

approximation method. The second set involves Gaussian distributions with partial

knowledge of expectations and variances, addressed through an equivalent mixed-

integer second-order cone programming formulation. Both models demonstrate short

solution times, making them suitable for larger networks and presenting valuable ap-

proaches for hazmat emergency response optimization, each with unique advantages.

Practical computations are presented, focusing on solving hazmat emergency fa-

cility location problems to ensure a timely and effective response to hazmat inci-

dents. The models’ effectiveness is demonstrated through a hypothetical problem

and a real-world case study in Daojiao, China, showcasing their ability to handle

complex network configurations, uncertainties, and varying optimization objectives

when partial distribution information on uncertain response times is available. The

comparison between the Bounded and Gaussian models highlights distinct strengths
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and trade-offs, providing decision-makers with versatile tools for optimizing hazmat

emergency response strategies based on specific contextual needs and optimization

objectives. Insights from the Bounded model reveal sensitivity to tolerance levels,

leading to different outcomes in facility costs, risk, and the number of constructed fa-

cilities. As tolerance increases, reduced cost efficiency and risk management become

apparent, emphasizing the delicate balance between confidence in response time and

facility optimization. Additionally, a notable relationship surfaces between cost and

risk, indicating that stringent tolerance requirements may prioritize risk reduction,

potentially resulting in escalated facility construction costs. Similarly, the Gaussian

model exhibits sensitivity to tolerance levels, showing improved outcomes with re-

laxation of the tolerance. Its flexibility in managing uncertainties results in better

cost solutions as tolerance levels increase. The model’s response to uncertainty is

characterized by a trade-off between robustness and cost management, strategically

positioning additional facilities to enhance system resilience with increasing Gaussian

variances (σ). Comparisons under different risk coefficient values consistently illus-

trate the Gaussian model’s out-performance at lower risk coefficients, showcasing its

effectiveness in balancing cost and risk objectives. The computational results overall

establish the superiority of DRO models, particularly the Gaussian model, with com-

parative analyses against classical RO models supporting claims regarding solution

quality and optimal facility locations. In summary, while the Bounded model excels

in handling the risk objective with greater efficiency, the Gaussian model demon-
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strates superior cost management capabilities, offering a comprehensive perspective

on hazmat emergency response optimization.

6.2 Managerial Insights

Drawing from the thesis, the following managerial insights emerge.

In reality, when designing hazmat emergency networks, obtaining precise distri-

bution information on uncertain response times through historical data is challenging

due to various unpredictable factors. Relying on the optimal decision of the deter-

ministic and robust models can lead to significant losses and is therefore not advis-

able. In such scenarios, decision-makers can consider utilizing the hazmat emergency

DRO models proposed in this study. Hence, if the distribution information for un-

certain response time for an emergency response network falls within the ambiguity

set with bounded perturbations having zero means, decision-makers may opt for the

Bounded DRO model. Otherwise, if the distribution information aligns with Gaus-

sian perturbations characterized by partial knowledge of expectations and variances,

decision-makers may prefer the Gaussian DRO model.

From the thesis, we see the critical influence of tolerance level on optimal solu-

tions, serving as a key indicator of decision-makers’ risk preferences. This insight

prompts the recommendation for decision-makers to meticulously choose tolerance

levels aligned with their risk attitudes. Striking a strategic balance between response

time confidence and facility optimization emerges as a crucial factor for effective haz-
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mat emergency response.

The research reveals that the Bounded model demonstrates higher sensitivity to

tolerance levels, affecting outcomes in facility costs, risk, and the number of con-

structed facilities. This insight advises decision-makers to conduct a thorough eval-

uation of the trade-off between tolerance levels and their impact on cost efficiency

and risk management. Strategic assessment is recommended to determine the opti-

mal number of facilities necessary for effective hazmat emergency response based on

decision-makers’ risk tolerance.

The Gaussian model’s flexibility in managing cost and risk objectives, leading to

improved solutions with various tolerance levels is a noteworthy insight. Decision-

makers can leverage this flexibility by adapting a tolerance level based on the trade-

off between robustness and cost management. Such adaptability proves valuable in

diverse hazmat scenarios where uncertainties vary. Thus, the superior performance

of the Gaussian model can be harnessed to create comprehensive hazmat emergency

response strategies in an integrated decision framework to effectively balance both

cost and risk objectives.

Finally, it is imperative to account for uncertainties in emergency logistics plan-

ning. Estimating or predicting response times during hazmat emergency incidents

can be challenging due to various travel conditions and transportation delays. In

such case, the DRO model provides a reliable solution for long-term decisions, like

determining the location and capacity of emergency facilities, while accommodating
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short-term allocation adjustments amidst uncertainties. The selection between RO

and DRO must be made based on a thorough analysis of the decision-makers’ risk

preferences. While the RO model ensures robustness under all scenarios with a very

conservative approach, both the Bounded and Gaussian DRO models showcased in

this study exhibit significant risk mitigation capabilities, enhancing overall system

performance while offering a cost-effective approach for hazmat emergency logistics.

6.3 Future Plans

It is important to note that our research is in its initial and exploratory stage with

regard to studying uncertain response times in hazmat emergency facility location

problems. Future work should involve considering a more intricate background in

this field and incorporating additional factors into the model to better reflect the

real-world situation of hazmat emergency management. For instance, if emergency

facilities are constructed pre-disaster, ensuring the emergency system’s performance

post-disaster will be crucial, requiring a two-stage modeling approach. Also, the

establishment of an efficient emergency logistics system may require collaboration

from various entities, including government authorities and response management.

Future works can utilize game theory to explore the dynamics and potential conflicts

arising from the interactions among these stakeholders in this setting.

Additionally, while assuming random response times in our study to reflect real-

world circumstances, we acknowledge that uncertainties may arise from other param-
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eters such as demand and cost due to various factors. Future research could address

the incorporation of multiple uncertain parameters for more realistic industry appli-

cations.

Lastly, while the current models successfully solve the tested problem cases with

minimal computational time, the complexity from much larger problem instances

may incur substantial computation times. Therefore, there is a need to design and

test an efficient algorithm to handle larger-scale problems.

95



Bibliography

Foad Akbari, Jaber Valizadeh, and Ashkan Hafezalkotob. Robust cooperative

planning of relief logistics operations under demand uncertainty: A case study

on a possible earthquake in Tehran. International Journal of Systems Sci-

ence: Operations & Logistics, 9(3):405–428, July 2022. ISSN 2330-2674. doi:

10.1080/23302674.2021.1914767.

Abolfazl Aliakbari, Alireza Rashidi Komijan, Reza Tavakkoli-Moghaddam, and Es-

maeil Najafi. A new robust optimization model for relief logistics planning under

uncertainty: A real-case study. Soft Computing, 26(8):3883–3901, April 2022. ISSN

1433-7479. doi: 10.1007/s00500-022-06823-4.

Shi An, Na Cui, Yun Bai, Weijun Xie, Mingliu Chen, and Yanfeng Ouyang.

Reliable emergency service facility location under facility disruption, en-route

congestion and in-facility queuing. Transportation Research Part E: Logistics

and Transportation Review, 82:199–216, October 2015. ISSN 13665545. doi:

10.1016/j.tre.2015.07.006.

96



Ehsan Ardjmand, Gary Weckman, Namkyu Park, Pooya Taherkhani, and Manjeet

Singh. Applying genetic algorithm to a new location and routing model of haz-

ardous materials. International Journal of Production Research, 53(3):916–928,

February 2015. ISSN 0020-7543. doi: 10.1080/00207543.2014.942010.

Mostafa Bababeik, Navid Khademi, and Anthony Chen. Increasing the resilience

level of a vulnerable rail network: The strategy of location and allocation of emer-

gency relief trains. Transportation Research Part E: Logistics and Transportation

Review, 119:110–128, November 2018. ISSN 1366-5545. doi: 10.1016/j.tre.2018.

09.009.

Opher Baron, Joseph Milner, and Hussein Naseraldin. Facility Location: A Ro-

bust Optimization Approach. Production and Operations Management, 20(5):

772–785, September 2011. ISSN 1059-1478, 1937-5956. doi: 10.1111/j.1937-5956.

2010.01194.x.

Aharon Ben-Tal and Arkadi Nemirovski. Robust solutions of Linear Programming

problems contaminated with uncertain data. Mathematical Programming, 88(3):

411–424, September 2000. ISSN 0025-5610. doi: 10.1007/PL00011380.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Optimization,

volume 28. Princeton university press, 2009.

Paul G. Berglund and Changhyun Kwon. Robust Facility Location Problem for

97



Hazardous Waste Transportation. Networks and Spatial Economics, 14(1):91–116,

March 2014. ISSN 1572-9427. doi: 10.1007/s11067-013-9208-4.

Oded Berman, Vedat Verter, and Bahar Y. Kara. Designing emergency response net-

works for hazardous materials transportation. Computers & Operations Research,

34(5):1374–1388, May 2007. ISSN 0305-0548. doi: 10.1016/j.cor.2005.06.006.

Board. A Guide for Assessing Community Emergency Response Needs and Capabil-

ities for Hazardous Materials Releases. Transportation Research Board, 2011.

Justin J. Boutilier and Timothy C. Y. Chan. Ambulance Emergency Response Opti-

mization in Developing Countries. Operations Research, 68(5):1315–1334, Septem-

ber 2020. ISSN 0030-364X. doi: 10.1287/opre.2019.1969.

Kuo-Hao Chang, Yi-Chieh Chiang, and Tzu-Yin Chang. Simultaneous location and

vehicle fleet sizing of relief goods distribution centers and vehicle routing for post-

disaster logistics. Computers & Operations Research, 161:106404, January 2024.

ISSN 03050548. doi: 10.1016/j.cor.2023.106404.

Chinese National Registered Architect Management Committee. Architect Technical

Economy and Management (Trial Edition). Datu Xu, 1995.

Adel Pourghader Chobar, Majid Sabk Ara, Samaneh Moradi Pirbalouti, Mehdi Kha-

dem, and Saeed Bahrami. A Multi-Objective Location-Routing Problem Model for

Multi- Device Relief Logistics under Uncertainty Using Meta-Heuristic Algorithm.

Journal of Applied Research on Industrial Engineering, 9:354–373, 2022.

98



Liz Cookman. What caused the Beirut explosion? Everything we know

so far. https://www.thenationalnews.com/world/mena/what-caused-the-beirut-

explosion-everything-we-know-so-far-1.1059236, August 2020.

Qian Dai and Jiaqi Yang. A Distributionally Robust Chance-Constrained Approach

for Modeling Demand Uncertainty in Green Port-Hinterland Transportation Net-

work Optimization. Symmetry, 12(9):1492, September 2020. ISSN 2073-8994. doi:

10.3390/sym12091492.

Erick Delage and Yinyu Ye. Distributionally Robust Optimization Under Moment

Uncertainty with Application to Data-Driven Problems. Operations Research, 58

(3):595–612, June 2010. ISSN 0030-364X, 1526-5463. doi: 10.1287/opre.1090.0741.

Zhiming Ding, Xinrun Xu, Shan Jiang, Jin Yan, and Yanbo Han. Emergency logistics

scheduling with multiple supply-demand points based on grey interval. Journal

of Safety Science and Resilience, 3(2):179–188, June 2022. ISSN 26664496. doi:

10.1016/j.jnlssr.2022.01.001.

Jianhui Du, Peng Wu, Yiqing Wang, and Dan Yang. Multi-stage humanitarian

emergency logistics: Robust decisions in uncertain environment. Natural Hazards,

115(1):899–922, January 2023. ISSN 1573-0840. doi: 10.1007/s11069-022-05578-3.

Okan Dukkanci, Achim Koberstein, and Bahar Y. Kara. Drones for relief logistics

under uncertainty after an earthquake. European Journal of Operational Research,

310(1):117–132, October 2023. ISSN 0377-2217. doi: 10.1016/j.ejor.2023.02.038.

99



E. Ehsan, A. Makui, and K. Shahanaghi. Emergency response network design for

hazardous materials transportation with uncertain demand. International Journal

of Industrial Engineering Computations, 3(5):893–906, 2012.

A. A. Eshghi, R. Tavakkoli-Moghaddam, S. Ebrahimnejad, and V. R. Ghezavati.

Multi-objective robust mathematical modeling of emergency relief in disaster under

uncertainty. Scientia Iranica, 29(5):2670–2695, October 2022. ISSN 1026-3098. doi:

10.24200/sci.2020.54485.3770.

Xuehong Gao and Cejun Cao. Multi-commodity rebalancing and transportation

planning considering traffic congestion and uncertainties in disaster response. Com-

puters & Industrial Engineering, 149:106782, November 2020. ISSN 03608352. doi:

10.1016/j.cie.2020.106782.

Zabih Ghelichi, Monica Gentili, and Pitu B. Mirchandani. Drone logistics for un-

certain demand of disaster-impacted populations. Transportation Research Part

C: Emerging Technologies, 141:103735, August 2022. ISSN 0968-090X. doi:

10.1016/j.trc.2022.103735.

Ghada Hamouda, Frank Saccomanno, and Liping Fu. Quantitative Risk Assessment

Decision-Support Model for Locating Hazardous Materials Teams. Transporta-

tion Research Record: Journal of the Transportation Research Board, 1873(1):1–8,

January 2004. ISSN 0361-1981, 2169-4052. doi: 10.3141/1873-01.

Zhao Jiahong and Shuai Bin. A new multi-objective model of location-allocation

100



in emergency response network design for hazardous materials transportation. In

2010 IEEE International Conference on Emergency Management and Management

Sciences, pages 246–249, August 2010. doi: 10.1109/ICEMMS.2010.5563457.

Ginger Y. Ke. Managing reliable emergency logistics for hazardous materials: A

two-stage robust optimization approach. Computers & Operations Research, 138:

105557, February 2022. ISSN 03050548. doi: 10.1016/j.cor.2021.105557.

Ginger Y. Ke and James H. Bookbinder. Emergency Logistics Management for

Hazardous Materials with Demand Uncertainty and Link Unavailability. Journal

of Systems Science and Systems Engineering, 32(2):175–205, April 2023. ISSN

1004-3756, 1861-9576. doi: 10.1007/s11518-023-5554-z.

Ginger Y. Ke, Saeed Shakeri Nezhad, and David M. Tulett. Regulating hazardous

material transportation: A scenario-based network design approach with inte-

grated risk-mitigation mechanisms. International Journal of General Systems,

53(2):184–214, February 2024. ISSN 0308-1079. doi: 10.1080/03081079.2023.

2269469.

Esra Koca, Nilay Noyan, and Hande Yaman. Two-stage facility location problems

with restricted recourse. IISE Transactions, 53(12):1369–1381, December 2021.

ISSN 2472-5854. doi: 10.1080/24725854.2021.1910883.

Tanmoy Kundu, Jiuh-Biing Sheu, and Hsin-Tsz Kuo. Emergency logistics

management—Review and propositions for future research. Transportation Re-

101



search Part E: Logistics and Transportation Review, 164:102789, August 2022.

ISSN 1366-5545. doi: 10.1016/j.tre.2022.102789.

Hui Li, Jin Peng, Shengguo Li, and Chuang Su. Dispatching medical supplies in

emergency events via uncertain programming. Journal of Intelligent Manufactur-

ing, 28(3):549–558, March 2017. ISSN 1572-8145. doi: 10.1007/s10845-014-1008-2.

Qirong Li. Study on emergency logistics location-route problem under uncertain

demand. In Second International Conference on Algorithms, Microchips, and Net-

work Applications (AMNA 2023), volume 12635, pages 122–127. SPIE, May 2023.

doi: 10.1117/12.2679063.

Xueping Li, Zhaoxia Zhao, Xiaoyan Zhu, and Tami Wyatt. Covering models and

optimization techniques for emergency response facility location and planning: A

review. Mathematical Methods of Operations Research, 74(3):281–310, December

2011. ISSN 1432-2994, 1432-5217. doi: 10.1007/s00186-011-0363-4.

George F. List. Siting Emergency Response Teams: Tradeoffs Among Response

Time, Risk, Risk Equity and Cost. In Leon N. Moses and Dan Lindstrom,

editors, Transportation of Hazardous Materials, pages 117–133. Springer US,

Boston, MA, 1993. ISBN 978-1-4613-6415-3 978-1-4615-3222-4. doi: 10.1007/

978-1-4615-3222-4 9.

G.F. List and M.A. Turnquist. Routing and emergency-response-team siting for

102



high-level radioactive waste shipments. IEEE Transactions on Engineering Man-

agement, 45(2):141–152, May 1998. ISSN 1558-0040. doi: 10.1109/17.669759.

Kanglin Liu, Qiaofeng Li, and Zhi-Hai Zhang. Distributionally robust optimization

of an emergency medical service station location and sizing problem with joint

chance constraints. Transportation Research Part B: Methodological, 119:79–101,

January 2019a. ISSN 01912615. doi: 10.1016/j.trb.2018.11.012.

Yang Liu, Na Cui, and Jianghua Zhang. Integrated temporary facility location

and casualty allocation planning for post-disaster humanitarian medical service.

Transportation Research Part E: Logistics and Transportation Review, 128:1–16,

August 2019b. ISSN 13665545. doi: 10.1016/j.tre.2019.05.008.

Jinke Ming, Jean-Philippe P. Richard, Rongshui Qin, and Jiping Zhu. Distribution-

ally robust optimization for fire station location under uncertainties. Scientific Re-

ports, 12(1):5394, March 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-08887-6.

Ministry of Transport of the People’s Republic of China. Highway Engineering Es-

timation Index (JTG 3821-2018). Technical report, 2018.

Nilay Noyan. Risk-averse two-stage stochastic programming with an application to

disaster management. Computers & Operations Research, 39(3):541–559, March

2012. ISSN 03050548. doi: 10.1016/j.cor.2011.03.017.

NYT. Hazmat Crash in Teutopolis, Ill., Leaves 5 Dead - The New York

103



Times. https://www.nytimes.com/2023/09/30/us/illinois-truck-crash-ammonia-

leak.html, September 2023.

Jomon A. Paul and Xinfang (Jocelyn) Wang. Robust location-allocation network de-

sign for earthquake preparedness. Transportation Research Part B: Methodological,

119:139–155, January 2019. ISSN 01912615. doi: 10.1016/j.trb.2018.11.009.

Portland Fire and Rescue. Standard of Emergency Response Coverage. PF&R Ore-

gon, May 2008.

Logan Rance. Ohio Train Derailment: An Ecological and Human Health Disaster?

https://earth.org/ohio-trail-derailment/, February 2023.

Xiangyang Ren and Juan Tan. Location Allocation Collaborative Optimization of

Emergency Temporary Distribution Center under Uncertainties. Mathematical

Problems in Engineering, 2022:e6176756, March 2022. ISSN 1024-123X. doi: 10.

1155/2022/6176756.

Sigrid Johansen Rennemo, Kristina Fougner Rø, Lars Magnus Hvattum, and Gre-

gorio Tirado. A three-stage stochastic facility routing model for disaster response

planning. Transportation Research Part E: Logistics and Transportation Review,

62:116–135, February 2014. ISSN 13665545. doi: 10.1016/j.tre.2013.12.006.

F F Saccomanno and B Allen. Locating Emergency Response Capability for Dan-

gerous Goods Incidents on a Road Network. Transportation research record, 1193:

1–9, 1988.

104
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