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Sensing Coastal Erosion 

Who should read this paper?
This paper is of interest for those involved with remote sensing applications in 
marine/coastal science. The study explores the utilization of Landsat satellite 
imagery and machine algorithm to examine coastal erosion.
   
Why is it important?
The study utilizes an advanced remote sensing technology to analyze coastal 
erosion. The proposed method can be applied to various locations in a cost-
effective and safer manner than field surveys. The results can be implemented 
for data collection and examination in various locations. The ocean community 
may benefit from the efficiency and cost-effectiveness of the machine algorithm 
and remote sensing applications.
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ABSTRACT

Erosion of coastal dunes and embankments has been an ongoing issue of the smallest Canadian 
province (i.e., P.E.I.) because it is largely composed of easily damaged sandstone. As more coast 
is eroded every year, more buildings, homes, environmental habitat, and provincial roads are at 
risk of being lost. This study is focused on the use of optical imagery acquired by Landsat-5 and 
Landsat-8, captured in September 1985 and June 2020, respectively, to determine the magnitude 
of coastal erosion on Robinson Island, P.E.I., Canada. The Support Vector Machine (SVM) 
algorithm, along with several ArcGIS software tools, were employed to map and interpret the 
erosion in this coastal area. The classification results, with Overall Accuracies (OA) of 97.86% 
and 98.46% respectively in 1985 and 2020, indicated that approximately 50.37% (i.e., from 1.35 
km2 to 0.68 km2) coastal area was eroded. The results of this study are important to understand the 
magnitude of the erosion and adjust the required policies and mitigation actions for adaption to 
avoid possible environmental hazards.
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INTRODUCTION

Coastal zones are dynamic environments, 
which provide diverse ecosystem services, 
including storm buffering, pollution removal, 
and nutrient cycling [Ferreira et al., 2017]. 
These areas are continuously interacting with 
sea and ocean waters, and as a result, are 
prone to substantial land dynamics [Ahmed 
et al., 2018; Amani et al., 2021]. Additionally, 
the sea level rise and other catastrophic 
natural events (i.e., hurricanes, storms, and 
tsunamis) adversely affect these dynamic 
environments [Carrasco et al., 2016; Amani et 
al., 2021]. In fact, natural phenomena, climate 
change, alteration of sediment supplies, and 
anthropogenic activities resulted in severe 
coastal erosion and parallel accretion. This has 
drawn the attention of the scientific community 
and also policy-makers to extract reliable and 
instant information about the coastal area 
changes linked to erosion and accretion.

Field surveys and static ground stations provide 
the most accurate information to address coastal 
erosion/accretion [Ghosh et al., 2015]. However, 
these approaches are resource-intensive and 
also provide limited observation along the coast. 
Consequently, remote sensing data has been 
identified as a beneficial approach to study 
and monitor coastal variabilities [Ghosh et al., 
2015; Amani et al., 2021]. Additionally, the 
availability of remote sensing historical data 
permits the quantification of coastal erosion/
accretion through time. Meanwhile, machine 
learning (ML) algorithms and Geospatial 
Information System (GIS) software allow 
the extraction of concerned information from 
remote sensing data in a more automatic and 
sophisticated manner [Maxwell et al., 2018].

Many studies have been dedicated to 
investigating the coastal variability integrating 
different types of remote sensing datasets. For 
instance, Ahmed et al. [2018] employed two 
Landsat-5 images, acquired in 1985 and 1995, 
and two Landsat-7 images, acquired in 2005 
and 2015, to measure the erosion and accretion 
of the entire coastal areas of Bangladesh. In 
this regard, through the investigation of the 
spectral responses, a thresholding analysis 
step was applied to the near infrared (NIR) 
band of each image to distinguish coastal areas 
from water, followed by manual digitization. 
Their results suggested that the study area 
experienced 1,576 km2 and 1,813 km2 erosion 
and accretion, respectively, leading to a final 
gain of 237 km2. Moreover, Valderrama-
Landeros and Flores-de-Santiago [2019] 
utilized air photos, Landsat, and SPOT-5 
images to assess the coastal variations of San 
Pedro and Santiago along the Pacific coast of 
Mexico between 1970 and 2015. The extracted 
coastal boundaries, using thresholding and 
visual inspection steps, were injected into 
Digital Shoreline Analysis System [Thieler 
and Danforth, 1994] to determine the rate 
of changes. The results revealed a total of 
6.69 km2 erosion and 3.79 km2 accretion 
in Santiago and San Pedro, respectively. 
Likewise, multispectral remote sensing data 
of Landsat-2, Landsat-5, Landsat-7, and 
Sentinel-2 were employed to assess the coastal 
erosion and accretion of Cua Dai estuary, 
Vietnam [Cham et al., 2020]. A hierarchical 
thresholding step was used to extract shoreline 
boundaries, followed by a tidal correction 
analysis using digital elevation model data. 
The trend analyses indicated average erosion/
accretion rates of approximately 8.8/4.2 
metres per year, resulting in a total loss of 
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about 2.82 km2 coastal area. Finally, Duru 
[2017] employed Landsat-7 and Landsat-8 
images between 1975 and 2016 to measure the 
shoreline changes of Lake Sapanca, Turkey. 
In this regard, after several preprocessing 
steps, two spectral indices of the Normalized 
Difference Water Index (NDWI) and Modified 
NDWI were ingested into a maximum 
likelihood classifier to delineate the shoreline 
boundary. It was reported that the maximum 
erosion/accretion rates were 0.6/11.9 metres 
per year between 1975 and 2016. 

Considering the long-term effect of different 
natural and anthropogenic phenomena on 
coastal dynamics, the objective of this study 
is to use ML techniques along with satellite 
imagery to assess the coastal erosion in 
Robinson Island and nearby areas in Prince 
Edward Island (P.E.I.). To this end, two 

Landsat-5 and Landsat-8 satellite imagery, 
respectively acquired in 1985 and 2020, were 
employed. Moreover, very high-resolution 
Google Earth imagery was used to assess the 
erosion zones visually.

STUDY AREA AND DATA

Study Area
The study area is Robinson Island and 
nearby areas in P.E.I., Canada. This area was 
selected because it is located along the north 
shore of P.E.I. and is open to the Atlantic 
Ocean wave action and heavy tourism during 
the summer. The area is also an important 
nesting ground habitat for seabirds, such 
as terns and the endangered piping plover. 
Figure 1 shows the geographical location 
of Robinson Island along with the reference 
samples. In this study, no in-situ data 

Figure 1: The geographical location of the study area, along with the distribution of the reference samples collected through precise visual 
interpretation of satellite images.
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was used. However, reference samples in 
three classes of Sand, Land, and Water 
were collected through precise visual 
interpretation of satellite images. For this, a 
false-colour composite of satellite imagery 
was used to distinguish suitable samples for 
each class. These reference samples were 
later used to train the ML algorithm and 
validate the results.

Satellite Data
Two Landsat-5 and Landsat-8 satellite 
images, respectively acquired on September 
14, 1985, and June 10, 2020, were employed 
to analyze and quantify coastal erosion in the 
study area (Figure 2).

Landsat-5 was launched in 1984, orbiting 
the Earth in a sun-synchronous motion at the 
altitude of 705 km with a repeat cycle of 16 
days and carried the multispectral scanner and 
the thematic mapper (TM) instruments. The TM 
data, which was in this study, were captured in 
seven spectral bands, including three visible, 

two NIR, one middle infrared, and one thermal. 
It is worth noting that only optical bands with 
a spatial resolution of 30 m were employed to 
delineate the coastal area in 1985.

Landsat-8 is the most recently launched 
satellite of the Landsat Data Continuity 
Mission (i.e., 2013) and carries the 
operational land imager (OLI) and the thermal 
infrared sensor (TIRS) instruments. Here, the 
optical data acquired by the OLI instrument 
in seven spectral bands (i.e., visible, NIR, and 
shortwave infrared) with a spatial resolution 
of 30 m were employed to extract the coastal 
area in 2020 for further processing.

METHODOLOGY

The implemented workflow includes three steps 
of (1) satellite data preprocessing, (2) coastal 
area delineation using SVM ML algorithm, and 
(3) manual refinements of the classification 
results and coastal erosion assessment, which 
are separately described below.

Figure 2: (a) RGB colour composite of Landsat-5 image acquired in 1985 and (b) RGB colour composite image of Landsat-8 acquired in 2020.
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In the first step, after downloading the Landsat 
satellite images from https://earthexplorer.
usgs.gov/, several preprocessing steps, 
including radiometric calibration (i.e., 
converting digital number values to the 
top of atmosphere radiances), atmospheric 
correction (i.e., reducing the atmospheric 
effects and converting radiances to the surface 
reflectance values), and masking of the study 
area, were applied to each satellite image for 
further processing. Second, the preprocessed 
images were injected into the SVM classifier 
with the linear kernel function to produce the 
classified maps. It should be mentioned that a 
linear kernel function was implemented since 
the considered classes (i.e., Sand, Land, and 
Water) were reasonably linearly separable 
using hyperplanes [Kavzoglu and Colkesen, 
2009]. Meanwhile, the reference samples were 
randomly split into two independent groups of 
training (50%) and test (50%) samples. Training 
samples were used to train the SVM classifier, 
whereas the test samples were employed to 
statistically validate the classification results 

through computation of the confusion matrix 
and other accuracy metrics (i.e., Overall 
Accuracy (OA), Kappa Coefficient (KC), 
producer and user accuracies, commission 
and omission errors) to ensure their reliability 
[Foody, 2002]. Third, the classification maps 
were converted to polygon vectors, and manual 
refinements, especially in the coastal area, 
were performed to enhance the classification 
results. This step was applied to reduce possible 
errors in the classification results and making 
the results more accurate for further analysis. 
Finally, the boundaries of sandy coastal areas 
were extracted from both maps and were 
compared to evaluate the amount of erosion 
from 1985 to 2020.

RESULTS AND DISCUSSIONS

Figure 3 illustrates the two maps with 
three classes (i.e., Sand, Land, and Water) 
resulted from the SVM classifier. Visually, 
both maps are clear and provide satisfactory 
representations of the study area. Comparing 
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the classification results of 1985 (Figure 3 
(a)) and 2020 (Figure 3 (b)), it is evident that 
the coastal area (i.e., Sand pixels among the 
Water) became shortened in length and smaller 
in area. Furthermore, to evaluate the reliability 
of the classification results using the SVM 
ML algorithm, test samples were employed to 
calculate the confusion matrices and the other 
derived validation criteria, where the results 
are provided in Tables 1 and 2. The validation 
step confirmed that both maps in 1985 and 
2020 had high OAs of 97.86% and 98.46%, 
respectively. Moreover, the producer and user 
accuracies varied between 96% and 100%, 
suggesting the reliability of the classification 
results to provide a precise representation of 
the coastal change in Robinson Island.

As mentioned earlier, finally, the classification 
results were manually refined before coastal 
boundary extraction to decrease possible 
uncertainties associated with the classification 
step. Afterward, the enhanced classification 
results were converted into vector polygons, 

and the interested areas were delineated 
from both maps. The extracted boundaries 
of the coastal area (i.e., Sand regions in the 
classification map) of interest in both 1985 
and 2020, superimposed on the Landsat-8 
image, are shown in Figure 4. Based on 
the results, the areas of the coastal zones in 
1985 and 2020 were approximately 1.35 km2 
and 0.68 km2, respectively, indicating about 
50.37% decline in coastal area. The extracted 
results suggest that the sandy coastal zone 
of Robinson Island was severely declined in 
the past 35 years. This may be rooted in the 
fact that this area is potentially vulnerable to 
erosion causes, such as wave action, wind, 
run-off, and human activity, which are out of 
the scope of this study. 

This study only revealed the amount of 
change between 1985 and 2020, and further 
investigations are required to manifest the 
causes of such coastal decline. In fact, more 
analyses are necessary to determine whether 
this amount of decline in coastal area is entirely 
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Figure 3: Classification results of the study area using the Support 
Vector Machine (SVM) machine learning (ML) algorithm and Landsat 
satellite images, captured in (a) 1985 and (b) 2020.

Table 2: The confusion matrix of the classified map in 2020 (Figure 3 (b)).

Table 1: The confusion matrix of the classified map in 1985 (Figure 3 (a)).
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Figure 4: The boundary of coastal sand areas that was extracted based on the maps from Landsat imagery in 1985 and 2020.

associated with coastal erosion due to natural 
processes or anthropogenic activities, such as 
sand mining or drainage, in the last 35 years. 
For instance, Mujabar and Chandrasekar 
[2013] employed six different geospatial data 
for coastal area monitoring and reported a 
complex interaction of human-induced (e.g., 
manipulation of hydrological cycles, sand 
mining, and facility construction) and natural 
processes (e.g., sea level alterations, waves and 
current, and tectonics and storms events) as the 
reasons of coastal erosion. Additionally, in this 
study, the overall erosion was only investigated 
using two images acquired in 1985 and 2020 
and, therefore, the rate of the change was not 
reported. Future studies should use a time-series 
of satellite images (e.g., one image per year) to 
investigate the erosion rate in more detail. 

The implemented method has the advantage 
of the utilization of open access satellite 
imagery. The satellites easily collect data from 

all over the globe regularly and, due to their 
simplicity of processing, have attracted many 
scholars. The results of such studies are of 
significant importance to other coastal-related 
disciplines, including coastal management 
and conservation [Cruz-García et al., 2015], 
coastal vulnerability [Tahri et al., 2017], 
and sea level rise investigations [Dean and 
Houston, 2016]. The implemented approach 
can be employed along with other geospatial 
data, such as geomorphology, coastal slope, 
sea level variations, wave intensity variation, 
and anthropogenic footprints, to provide a 
comprehensive overview of the change of 
coastal area and to allow the determination of 
most contributing factors of erosion.

Like any other research study, this study 
includes several limitations, which can be 
further enhanced in future studies. The lack of 
collecting reference samples for classification 
through field surveys, especially in recent 
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years (i.e., 2020), was a limiting factor that 
could slightly increase the uncertainties of 
the classification step. However, it should be 
noted that the precise visual interpretation 
of satellite images for reference samples 
collection, as well as the use of the SVM 
ML algorithm, resulted in accurate maps. 
Additionally, the very high-resolution satellite 
images in Google Earth were used to visually 
assess the results. However, the possibility of 
conducting field surveys to measure the sandy 
coastal area would definitely increase the 
robustness of the validation step. 

To extend the obtained results and achieve 
comprehensive information about the erosion 
rate in P.E.I., it is recommended to consider 
other locations around P.E.I. for further 
investigations. Moreover, annual time-series 
Landsat imagery available from 1985 to 
the present along with other resources can 
be employed to quantify the rate of erosion 
of coastal areas in Robinson Island. In this 
case, the annual rate allows better monitoring 
of the amount of erosion and also can 
possibly provide the required information to 
investigate the causing of coastal erosion.

CONCLUSION

This study investigated the coastal erosion 
of Robinson Island in P.E.I., Canada. In this 
regard, the two Landsat satellite images in 
1985 and 2020 were employed to quantify the 
amount of erosion. The SVM ML algorithm 
was used to classify the study area, and further 
post-processing steps were applied to enhance 
the classification results and to extract the 
coastline boundaries. The results revealed that 
the coastal area of interest experienced 0.67 

km2 erosion from 1985 to 2020. The use of 
free optical satellite data allows determining 
the coastal erosion in other parts of P.E.I. in a 
cost-effective manner. This can increase the 
understanding of coastal variation throughout 
P.E.I., and the achieved information will 
elucidate the operational path for other users 
and policy-makers for coastal management.
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