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Abstract

Survival analysis is essential for modelling time-to-event data, particularly in medical

research. Mixture cure models are widely used methods to study patients’ latency

and incidence components. This research focuses on mixture model properties in the

semi-parametric estimation of the Cox proportional hazard models in the presence of

the multicollinearity problem, where the explanatory variables are linearly dependent

so that the input design matrix is ill-conditioned. In the mixture of cure models, the

multicollinearity issue can happen in both latency and incidence components, where

the commonly used least squares (LS) method may lead to unreliable estimates for

the coefficients of the underlying model. To address this issue, we propose shrinkage

methods to estimate the coefficient of the underlying model. To do so, we developed

new expectation-maximization (EM) algorithms to incorporate the shrinkage methods

for both components.

Through various simulations, we show that the proposed shrinkage methods cope

with the multicollinearity problem in latency and incidence components and lead to

more reliable estimates in semi-parametric settings. Our findings indicate that Ridge

and Liu-type (LT) shrinkage methods provide more reliable parameter estimates and

outperform the LS estimation method in scenarios with high multicollinearity.

The developed methods are finally applied to a dataset on breast cancer, analyzing

the disease prognosis and survival rates of patients with 10 or more positive lymph

nodes. The results consistently show that the Ridge and LT methods offer better

estimation and survival results compared to the LS method. Our numerical studies

show the practical advantages of our proposed shrinkage methods in medical research.

Keywords: Semi-parametric models, Mixture Cure Models, Cox Proportional Haz-

ard Model, Multicollinearity, Shrinkage Estimators, EM algorithm
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Chapter 1

Introduction

This thesis centers on mixture cure models, flexible statistical tools in survival anal-

ysis that can distinguish between individuals likely to be affected by an event of

interest and those who are cured or unaffected by it. Our focus lies particularly in the

semi-parametric proportional hazards mixture cure model, which is a mixture of two

components, including logistic and Cox proportional hazards (PH) regression models.

Multicollinearity is a common issue in datasets characterized by high correlations

among predictor variables. The unknown parameters in the semi-parametric mixture

cure models are commonly estimated through an expectation–maximization (EM)

algorithm that maximizes their likelihood function. However, these estimates may

appear considerably unreliable when multicollinearity is present. In this research, we

proposed shrinkage methods into the EM algorithm for mixture cure models, aiming

to tackle the challenges caused by multicollinearity in parameter estimation within

these models. By developing and implementing shrinkage Ridge and Liu-type (LT)

methods, we aim to refine the estimation process, thereby improving the reliability

and accuracy of model parameters. Through a series of simulations and analyses using

real-world data, we demonstrate that the LT estimators surpass both the Ridge and

the original method in accurately estimating the parameters of mixture cure models.

In order to implement the shrinkage estimators into the mixture cure models, we

first need to implement them into the mixture cure models’ components: Logistic and

Cox PH regression models. Logistic regression is a special regression case with binary

responses that distinguish between the cured and the uncured individuals. Therefore,

in Section 1.1, we start by introducing linear regression to familiarize ourselves with
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the simplest form of regression. After this foundational understanding, we move on

to logistic and Cox PH regressions, which will also be discussed further in Chapter

2. Section 1.2 examines multicollinearity and its implications in survival analysis,

proposing shrinkage estimators as a solution. To incorporate shrinkage estimators

into the logistic and Cox PH models, we first implement them in the linear regression

model in Section 1.3, and then incorporate them into mixture cure models and their

components in Chapter 3. Finally, Section 1.4 discusses the mixture cure models.

1.1 Regression Models

In this section, we discuss regression models. Regression modelling is a fundamental

statistical tool that gives insights into the relationships between variables, enabling

the investigation of factors such as exposures or risk factors on outcomes like mor-

tality or cancer. Regression analysis helps in understanding and predicting outcomes

based on input variables. Regression methods offer a universal approach to exploring

relationships between dependent (response) and independent (explanatory) variables,

also known as covariates. Simple regression involves one explanatory variable, while

multiple regression incorporates several.

First, we discuss linear regression, a longtime topic used to model the relationship

between a dependent variable and one or more independent variables. In its simplest

form, linear regression aims to find the best-fitting linear relationship between the

predictors and the response variable; it is formulated as

yi = x>i β + εi, (1.1)

where yi is the response variable of the i-th observation (i = 1, ..., n), β is the vector of

p unknown coefficients, and xi = (xi1, xi2, . . . , xip)
> represents the predictor variables

for the i-th observation. The design matrix X = (x>1 , ...,x
>
n )> is a (n×p) matrix where

p < n, and ε = (ε1, ..., εn) is the vector of independent and identically distributed error

terms that follow a standard normal distribution. The most common method for

estimating linear regression coefficients is the Least Squares (LS) method [28]. This

method’s goal is to minimize the sum of the squared errors, namely ε. Mathematically,
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it is written as

min
β

n∑
i=1

(yi − x>i β)2, (1.2)

where n is the number of observations. Solving (1.2) gives the LS estimates of the

coefficients β, denoted as β̂

β̂ = (X>X)−1X>Y,

where X is the design matrix of predictors, Y is the vector of observed responses, X>

denotes the transpose of X, and (X>X)−1 denotes the inverse of the matrix X>X.

This unbiased linear estimation method works well when X>X is not a singu-

lar matrix, meaning that its determinant is not equal to zero [24]. Least squares

estimation can produce high-variance estimates of the coefficients when there is mul-

ticollinearity among the predictors. To address this issue, shrinkage methods were

introduced. Shrinkage methods work by shrinking the estimated coefficients towards

zero, effectively reducing their variance by adding a small value to the diagonal of the

X>X matrix. By using shrinkage methods, we make a balance between bias and vari-

ance in the coefficient estimates, hopefully leading to more reliable estimates, smaller

variances, and smaller mean square errors [24].

In the following sections, we outline the core features of logistic regression (1.1.1)

for binary outcomes and Cox proportional hazard regression (1.1.2) for time-to-event

data and provide insights into model construction. In Chapter 2, we will discuss these

models further.

1.1.1 Logistic Regression

Logistic regression is a powerful statistical tool utilized in medical research to un-

derstand the effect of predictor variables on categorical outcomes. These outcomes

are binary, such as the presence or absence of a disease. When exploring multiple

predictors, the logistic regression model becomes a multivariable model, allowing for

the simultaneous analysis of various factors. This method is widely used in medical

research because it can handle complex relationships between predictors and out-

comes [4]. In medical research, logistic regression models have many applications,

going even beyond epidemiology and public health. These models are useful in un-

covering the complicated connections between risk factors and disease occurrence.
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Other than logistic regression, statistical techniques like the Cox proportional hazards

model, which will be discussed in Subsection 1.1.2, also hold significance in medical

research [41, 56].

In finance, a common method for forecasting bankruptcy involves enhancing re-

search findings to identify numerous potential predictive financial and non-financial

variables. This process requires filtering through a vast array of variables, subse-

quently narrowing down the selection through traditional mathematical analysis to

construct a bankruptcy prediction model [12]. Within this framework, logistic regres-

sion, among other traditional classification techniques, emerges as a prominent tool

for predicting financial distress, particularly leveraging financial ratios [7].

Unlike linear least squares, which allows for a direct calculation of parameters

through a closed-form solution, logistic regression lacks such a straightforward closed-

form solution due to the non-linear nature of the logistic function. As a result, the

maximum likelihood estimator of the logistic regression parameters is typically ob-

tained using iterative methods such as the Newton-Raphson method. The formula

and explanation of logistic regression, along with the parameter estimation technique,

are provided in Section 2.1, allowing for a deeper understanding of logistic regression

application.

1.1.2 Cox Proportional Hazard Regression

Survival analysis is known as an area focused on modelling and analyzing data, the

primary objective of which is to determine the time until the incidence of a partic-

ular event [2]. A fundamental challenge in this field lies in scenarios where specific

event outcomes become unobservable beyond a certain time threshold or where some

individuals do not encounter the event of interest within the observation period. This

scenario, known as censoring, causes a significant challenge, which can be effectively

addressed by applying survival analysis methodologies [50].

In survival analysis, the time to the event of interest is only available for individuals

where the event occurs within the observation period. However, only censored time is

available for the remaining individuals due to loss of follow-up during observation or

because their time to the event exceeds the observation period. Censored individuals

are those where data collection ends, individuals withdraw, or tracking is lost [60].
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In cancer research, particularly in our study of breast cancer data, a key focus

lies in assessing the duration from diagnosis until death or recurrence, termed ”sur-

vival time.” Survival data rarely follow a normal distribution; instead, they tend to

show skewness commonly with early events and fewer occurrences later on. These

characteristics of the data necessitate the utilization of specialized techniques such as

survival analysis [8].

In survival analysis, data are typically characterized and analyzed through two in-

terconnected key concepts: survival and hazard probabilities. The survival function,

denoted as S(t), represents the likelihood of an individual surviving from a defined

starting point, such as a cancer diagnosis, up to a specified future time t. This func-

tion is fundamental in understanding the probability of an individual remaining in

a particular state over time. Complementing the survival function are two essen-

tial functions associated with the continuous random variable T, which represents the

duration spent in a specific state, such as an individual’s health condition. These func-

tions are the cumulative distribution function (cdf), denoted as F (t), which quantifies

the probability of the event occurring before or at time t, and the probability density

function (pdf), denoted as f(t), which provides the likelihood of the event occurring

at time t. The F (t) is commonly referred to as the failure function, while the survival

function, S(t), is defined as the complementary function of F (t), where t represents

the time that has passed since entering the state at the defined starting point. Ad-

ditionally, the survival function decreases steadily as t increases, starting at 1 when

t = 0. This signifies that all observed individuals survive at the beginning of the

observation period, indicating that none of the events of interest have occurred [29].

The failure function is obtained by

F (t) = P (T ≤ t), (1.3)

that implies the survival function to be given as

S(t) = P (T > t) = 1− F (t). (1.4)

The analysis of survival data is enhanced by the hazard function. The hazard

function, often denoted as h(t), explains an event’s occurrence rate at time t, given

that no event has occurred before t. The hazard function assumes the individual has
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survived up to that moment. Understanding the concept of the hazard function is

important because it shows how the risk of an event evolves over time. The hazard

function is defined by the relationship between the probability density function and

the survival function as given

h(t) =
f(t)

S(t)
. (1.5)

The differential form of the hazard function is given by

h(t) = − d

dt
log S(t). (1.6)

Furthermore, we can rewrite the survival function (1.4) as

S(t) = exp(−H(t)), (1.7)

where H(t) =
∫ t
0
h(u) du indicates the cumulative hazard function [33, 40].

Three primary approaches exist for estimating survival functions: non-parametric,

semi-parametric, and parametric methods. These methods include, for example,

Kaplan-Meier (KM) and Nelson-Aalen estimator (NA), which are mainly suitable

when no underlying distribution is assumed for event times. The Cox model relies

on proportional hazards assumption and partial likelihood estimation. Each method

offers distinct advantages based on data characteristics and research objectives [60].

In studies, individuals are often observed for different periods, resulting in time-

to-event data, also known as survival or failure time data. In time-to-event data, the

time until an event occurs is the focus instead of binary outcomes. The distribution of

time-to-event data is typically characterized by the survival distribution function (1.4),

often estimated using a method named the Kaplan-Meier method to assess the impact

of one variable. However, for multiple variables, potentially continuous explanatory

variables with the response variable necessitate a multiple regression model [4].

David R. Cox was the first to introduce the Cox proportional hazard regression as

an approach to analyze time-to-event data [10]. This model is a primary choice and

stands as one of the most commonly applied statistical models in survival analysis.

Cox regression models defined in Section 2.2 have become widely popular because

they do not necessitate the assumption of a specific survival distribution for the data.

Instead, these models rely on a hazard function [33].
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The Cox model maintains proportional hazards across predictor values, regardless

of changes in the underlying hazard over time. This allows it to be defined as a linear

combination of risk factors in a parametric manner. The hazard function consists of

two elements: Firstly, a parametric portion influenced by risk factors, which linearly

affects survival duration. Incorporating risk factors through an exponential function

ensures their effects are proportional. Secondly, the baseline hazard represents in-

herent risk. The non-parametric baseline function indicates the hazard when no risk

factor exists without presuming any specific form or relationship with time. These

characteristics underscore why the Cox model is regarded as a semi-parametric model,

where parameters are uniquely dedicated to describing how predictors influence the

outcome. [18, 34].

Renowned for its flexibility, the Cox semi-parametric proportional hazards model

is a prominent choice in both medical and business failure prediction fields. In the Cox

proportional hazards model, accurate prediction models for business failure hold great

value across various industries, notably in financial investment and lending sectors.

Referred to by different names like bankruptcy prediction, firm failure prediction,

and financial stress prediction, the field of business failure prediction treats the phe-

nomenon as a timeline, picturing businesses through their lifetime distributions. In

this approach, regression-based survival analysis models typically estimate the hazard

rate, from which the survival rate is derived as needed [19].

1.2 Multicollinearity

Collinearity, in regression analysis, refers to the linear relationships among indepen-

dent variables. When two explanatory variables closely resemble perfect linear com-

binations of each other, meaning that one variable ultimately determines the other,

it’s termed collinearity. If this relationship extends to more than two explanatory

variables, it is referred to as multicollinearity. This can lead to unreliable parameter

estimates and standard errors, making it harder to understand how each predictor

affects the response variable [21]. Multicollinearity also leads to an increase in the

standard error of some of the coefficients, resulting in certain variables becoming

statistically non-significant despite their true values, potentially leading to incorrect

conclusions drawn from the model. Fundamentally, having high correlations among
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predictors will prevent the researcher from capturing some predictors for inclusion in

the model [54].

Detecting multicollinearity relies mainly on correlation coefficient, tolerance, and

the variance inflation factor (VIF). When the correlation coefficient between variables

is high, it suggests the potential presence of collinearity. Tolerance represents the pro-

portion of a predictor’s variance that remains unexplained by other predictors, while

VIF indicates the extent to which multicollinearity inflates the variance of coefficient

estimates. Unlike tolerance, there isn’t a specific threshold for VIF to ascertain mul-

ticollinearity. Typically, VIF values surpassing 10 are commonly seen as indicative

of multicollinearity. When correlation is present among the predictors, the standard

errors of their coefficients increase, leading to inflation in the variance of predictor

coefficients. VIF serves as a tool to measure this inflation in variance [53, 54]. While

diagnosing multicollinearity does not provide a direct solution to the issue, recog-

nizing its potential impact on regression analysis findings enables a more cautious

interpretation of the data [59].

Multicollinearity can significantly impact the regression parameter estimation tech-

niques, such as the maximum likelihood (ML) estimator, leading to serious conse-

quences. This issue is widely known across various regression models. In Section 1.3,

we describe the Ridge and Liu-type (LT) shrinkage estimation methods in terms of

the linear regression method for the sake of completeness following [37]. In Chapter 4,

we develop shrinkage methods for logistic and Cox PH regression models and discuss

how they deal with the multicollinearity problem in the underlying semi-parametric

mixture cure model. These shrinkage techniques have been known to provide a reliable

strategy for tackling multicollinearity issues [21].

1.3 Shrinkage Estimators

As noted in Section 1.2, multicollinearity increases the standard error estimate of re-

gression coefficients, resulting in wider confidence intervals and a higher likelihood of

rejecting significant test statistics. Consequently, it causes unreliable estimates of re-

gression coefficients, displaying incorrect signs and exaggerated importance for certain

predictors due to their effects becoming intertwined [20, 64]. Shrinkage estimators are

the most popular methods to overcome multicollinearity. Shrinkage estimators utilize
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data from the entire model to create better estimations of regression parameters. This

involves adjusting the estimates derived from the full model towards those of a chosen

candidate submodel. Although this process introduces some bias in the estimation,

it effectively decreases the overall estimation error, thereby making up for the impact

of the bias [1].

The following sections discuss Ridge and Liu-type (LT) shrinkage methods uti-

lized in linear regression. These methods are employed to address collinearity issues

effectively. We begin with linear regression to familiarize ourselves with implementing

shrinkage methods. This approach is important because these methods are essential

for later applying shrinkage methods to logistic regression and Cox PH regression in

Chapter 3, which are generalizations of the linear regression model.

1.3.1 Ridge Shrinkage Estimator

Ridge regression is a popular shrinkage method used to reduce collinearity in linear

regression models [24]. It addresses collinearity by adding a penalty term to the

mentioned least squares (LS) method. After adding the Ridge penalty to (1.2), we’ll

minimize the Ridge penalized sum of the squared errors as [21]

min
β

n∑
i=1

(yi − x>i β)2 + λβ>β/2,

and the ridge regression estimator of β will be

β̂R = (X>X + λI)−1X>Y, (1.8)

where λ > 0. Choosing a small λ is preferable because as it increases, the gap between

λ
1
2β and 0 gets larger. Consequently, incorporating the ridge penalty into the linear

regression equation leads to increased bias in ridge regression. The collinearity can

be measured through the condition number that is defined as

κ =
(λmax
λmin

)1/2
,

where λmax and λmin are maximum and minimum eigenvalues of X>X, respectively.

A large condition number tells us that X>X is ill-conditioned. Therefore, in cases of
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high multicollinearity, a large λ can decrease the multicollinearity, so the shrinkage

parameter chosen by the current method for ridge regression may not sufficiently solve

the issue of ill-conditioning. In addition, we introduce a two-parameter estimator

named Liu-type (LT) estimator to address this challenge [37].

1.3.2 Liu-Type Shrinkage Estimator

Liu-type (LT) shrinkage estimator offers an alternative approach to address collinear-

ity in regression models. Liu suggested replacing the left part of the ridge penalty

0 = λ
1
2β + ε, by

(
−d/λ1/2

)
β̂, where β̂ could be any estimate of β [37]. Now λ is

free to be chosen a large number, and we can adjust the new parameter d for a good

result.

If the LT penalty
(
−d/λ1/2

)
β̂ = λ

1
2β + ε is augmented into the linear regression

formula (1.1), the penalized sum of squared errors is minimized as [21]

min
β

n∑
i=1

(yi − x>i β)2 +
[(
−d/λ1/2

)
β̂ − λ

1
2β
]> [(

−d/λ1/2
)
β̂ − λ

1
2β
]
.

Consequently, the LT regression estimator of β will be

β̂Liu = (X>X + λI)−1(X>Y − dβ̂), (1.9)

where λ > 0, and −∞ < d <∞.

In the calculated Liu-type estimator for linear regression (1.9), we use the λ param-

eter to control how well the X>X + λI matrix is structured. Some bias unavoidably

occurs when we reduce the condition number of X>X + λI to the desired level. This

bias can be controlled by the second parameter d, making our model a better fit and

effectively dealing with the ill-conditioning problem [37].

1.4 Mixture Models

Finite Mixture models (FMM) are statistical tools used to represent complex popula-

tions made up of multiple subgroups or components. They assume that the observed

data arises from a combination of different probability distributions, each representing



11

a different subgroup within the population. Each component in a FMM is associated

with its own probability distribution, and the model parameters include the parame-

ters of these distributions as well as the mixing proportions [38].

On the other hand, mixture cure models are a specialized form of mixture mod-

els used in survival analysis, where the population is divided into subpopulations

with different probabilities of being ”cured” or experiencing the event of interest [17].

These models specifically account for the possibility of individuals remaining perma-

nently unaffected by the event of interest. Mixture cure models combine elements of

mixture modelling with survival analysis, providing a powerful tool for analyzing and

characterizing complex survival data, particularly in medical research [36].

Similar to regression models, multicollinearity creates challenges in mixture mod-

els, especially when the covariates present a high correlation. This issue leads to

less dependable maximum likelihood estimates for all coefficients within the mixture

model. To cope with the multicollinearity issue, the proposed shrinkage ridge and

LT methods are employed to estimate the model coefficients more accurately in the

multicollinearity [26, 37].

In this thesis, we introduce our developed ridge and LT shrinkage techniques to

address multicollinearity within mixture cure models. Through comprehensive sim-

ulations and Breast Cancer data analyses, we demonstrate these methods’ enhanced

reliability in estimating mixture model coefficients. We concentrate exclusively on

scenarios featuring multicollinearity, given the nature of LT and ridge techniques as

shrinkage methods specifically designed to address the multicollinearity concerns.

The thesis is outlined as follows: Chapter 2 introduces semi-parametric mixture

cure models and discusses parameter estimation. In Chapter 3, we develop shrinkage

estimators for our semi-parametric mixture cure model. Chapter 4 describes the

application of our developed methods through extensive simulation and breast cancer

data studies. Finally, Chapter 5 provides a summary and outlines potential future

research directions.



Chapter 2

Semi-parametric Mixture Cure

Models

An important area of research in medical studies is the time until an event occurs

(failure, death, etc.). Survival analysis is a statistical time-to-event data analysis

method in which the outcome variable shows the time until an event occurs. The

time variable shows the time that the individuals became at risk of the event of

interest. It is worthwhile to mention that the event does not necessarily always occur.

Even in the case of a study where an event may not happen for sure by the end of

the study, we encounter some data in our studies as ”censored” data.

Survival models that include a component accounting for individuals who are

cured are referred to as cure models. Cure models are widely used in modelling

survival data [46]. One of the most popular cure models is the mixture cure model,

which defines the study population as a mixture of cured and uncured subjects. The

mixture of cure models enables us to study whether the event occurs and when it will

occur separately. Hence, the mixture of the cure model consists of two component

models, including the proportion of cured subjects (incidence model) and the survival

function of uncured subjects (latency model) to handle heterogeneity in the time-

to-event population. Furthermore, we desire to allow the risk of being uncured in

our model. In that case, the model will turn into a semi-parametric mixture cure

model developed through an EM algorithm. The proportional hazards (PH) model

is a popular model in survival analysis, and if the survival model is specified using
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the Cox proportional hazard regression, the mixture cure model is called the Semi-

parametric proportional hazards mixture cure (PHMC) model.

This chapter discusses the logistic regression in Section 2.1 and the Cox propor-

tional hazard regression in Section 2.2, and the methods that estimate their coef-

ficients. We introduce the cure models in Section 2.3 and then construct the mix-

ture of cure models in Subsection 2.3.1. Finally, Section 2.3.2 investigates the semi-

parametric mixture of cure model and its latency and incidence models.

2.1 Logistic Regression

The logistic regression model is one of the most popular statistics models for analyz-

ing binary events. Logistic regression is defined as a binary classification predictive

model and is used in many fields, such as medical studies and machine learning. For

example, logistic regression can be used to prognose a patient’s disease status based

on their symptoms and the disease risk factors [58]. Based on a set of explanatory

variables, logistic regression will predict the results through binary response variables

that consist of only two possible outcomes such as: success/failure or true/false. The

logistic regression is given by:

P (yi = 1 | zi) = π(zi) =
1

1 + e−(b0+b1zi1+b1zi2+...+bqziq)
, (2.1)

where y = (y1, ..., yn) is the vector of response variables, b = (b0, b1, ..., bq) is the

vector of the unknown coefficients, and Z = (z1, ..., zq) represents the (n × q) design

matrix of q explanatory variables of the logistic regression. Furthermore, while the

logistic response y can only take 0 and 1 values, π(zi) can take any value in the [0,1]

interval. In logistic regression, the logit link (also called the log of odds) is utilized

as a transformation for the dependent variable. Rather than directly modelling the

binary response variable Y, logistic regression employs the logit function. The logit

transformation is defined by:

g(zi) =
π(zi)

1− π(zi)
. (2.2)

The logit function is commonly used to transform the probabilities from the unit

interval [0,1] to real numbers[26]. One of the popular methods to estimate the b
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parameters is the maximum likelihood estimation.

2.1.1 Maximum Likelihhood Estimation

Maximum likelihood (ML) is among the most common methods to estimate the coeffi-

cients of a logistic regression model. In this context, the maximum likelihood finds the

coefficients’ estimates, henceforth called maximum likelihood estimate (MLE), that

makes the observed data most probable by maximizing its likelihood function. The

likelihood function represents the probability of observing the binary set of outcomes

given the coefficients and is typically expressed using the Bernoulli distribution. As-

sume that Yi is the i-th binary response variable, where Yi
iid∼ Binomial (1, π(zi));

i = 1, · · · , n. The likelihood function of b (assuming independent observations) is the

product of the individual likelihoods given by

L (b) =
n∏
i=1

πyii (1− πi)1−yi .

Since the logarithm of the likelihood function is a monotonically increasing function,

maximizing the log-likelihood is equivalent to maximizing the likelihood, and it is a

much easier procedure. Accordingly, the log-likelihood can be obtained by

`(b) =
n∑
i=1

{yi · log(πi) + (1− yi) · log(1− πi)} .

If we use the exponent form of π, the log-likelihood is given by

`(b) =
n∑
i=1

{
yiz
>
i b− log

(
1 + exp(z>i b)

)}
. (2.3)

Our goal is to find the parameter b that maximizes the log-likelihood function.

Unfortunately, there is not a closed-form solution for the MLE of the parameter b

in logistic regression. Consequently, we use the Newton-Raphson (NR) technique to

find the MLE of the coefficients of the logistic regression. The NR is an iterative

optimization method which is commonly used to compute the coefficients in logistic

regression. This method iteratively finds the parameter estimates by leveraging the



15

first and second derivatives of the log-likelihood function. The process involves up-

dating the parameter values to maximize the log-likelihood, ultimately converging to

the optimal solution. The NR is utilized for its efficiency in estimating logistic regres-

sion coefficients when a closed-form solution is unavailable. The algorithm iteratively

estimates b as follows

b̂(m+1) = b̂(m) −H−1
(
b̂(m)

)
.∇b`

(
b̂(m)

)
, (2.4)

where b̂(m) is the estimate updated from the m-th iteration, and ∇b`
(
b̂(m)

)
and

H−1
(
b̂(m)

)
represent the gradient and Hessian matrix evaluated at b̂(m), respectively.

To obtain the gradient and Hessian matrix, we need to calculate the first and second

derivatives of the log-likelihood function. The gradient is obtained by taking the first

derivative from (2.3) with respect to bl as follows

∂` (b)

∂bl
=

n∑
i=1

{
yizil −

(
ez

>
i b

1 + ez
>
i b

)
zil

}

=
n∑
i=1

(yi − pi) zil, (2.5)

where

pi =
ez

>
i b

1 + ez
>
i b
. (2.6)

We can express the gradient, which is a vector of partial derivatives as given in (2.5),

in matrix form as

∇b` (b) = Z> (y − p) . (2.7)

We next need to obtain the Hessian matrix through the second derivative of (2.3)

with respect to bl and bk

∂2` (b)

∂bk∂bl
=

n∑
i=1

{
−zikzil

(
1

1 + e−z
>
i b

)2

e−z
>
i b

}

= −
n∑
i=1

zilzikpi (1− pi) (2.8)

where pi is given by (2.6). The Hessian matrix is the inner product of the weighted
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matrix and is calculated by

H (`) = −Z>DZ, (2.9)

where D is a diagonal matrix with Dii = pi (1− pi) ; i = 1, · · · , n.

We can estimate the logistic regression coefficients by incorporating the gradient

(2.7) and the Hessian matrix (2.9) into the NR equation (2.4) to get the following

term

b̂(m+1) = b̂(m) + (Z>DZ)−1Z> (y − p) . (2.10)

2.1.2 IRWLS Method For Logistic Regression

One can reformulate the NR method (2.10) as an iteratively re-weighted least squares

(IRWLS) algorithm [11]. This method enables us to take advantage of the weighted

least squares structure in estimating the logistic regression coefficients.

We can re-write the gradient (2.7) and Hessian (2.9) in matrix form by

∂`

∂b
= Z>

(
y − g−1 (z; b)

)
, (2.11)

and
∂2`

∂b∂b>
= −Z>WZ, (2.12)

where g−1(z; b) is defined as g−1 (z; b) = [g−1 (z1; b) , ..., g−1 (zn; b)]
>

and W is a

(n× n) diagonal matrix with entries

Wii =
e−z

>
i b̂(

1 + e−z
>
i b̂
)2 , i = 1, ..., n. (2.13)

Accordingly, the NR equation (2.4) can be updated as below

b̂(m+1) = b̂(m) +
(
Z>WZ

)−1
Z>
[
y − g−1

(
z, b̂(m)

)]
=
(
Z>WZ

)−1
Z>W

{
Zb̂(m) + W−1

[
y − g−1

(
z, b̂(m)

)]}
=
(
Z>WZ

)−1
Z>WQl, (2.14)
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where

Ql =
{

Zb̂(m) + W−1
[
y − g−1

(
z, b̂(m)

)]}
.

The above NR update represents the solution to the weighted least square problem

that was originally introduced to estimate the coefficients of the logistic regression

model. In each iteration, the updated response Ql is regressed on the covariates,

including z.

Finally, one can use the Iterative re-weighted least squares (IRWLS) algorithm

(2.14) to obtain the LS estimate, b̂LS, for the unknown coefficients of the logistic

regression model.

2.2 Cox Proportional Hazard Regression

Cox Proportional Hazard (Cox PH) Regression is a statistical method widely used in

survival analysis to analyze right censored data. It models the relationship between

the time until an event, such as death or failure occurs, and some predictor variables.

Cox Proportional hazard regression is widely used in many fields, such as medical

research and epidemiology, to analyze survival data. This model enables us to study

the effects of covariates on failure rate, and it can also work with censored data.

The Cox proportional hazard regression is written in terms of the hazard model

formula as

λ(t|xi) = λ0(t) exp(x>i β), (2.15)

where t is the survival time, λ0(t) is the baseline hazard function, β = (β1, β2, . . . , βp)

is the vector of unknown coefficients corresponding to the covariates in the (n × p)
design matrix X = (x1, . . . , xp), and ex

>
i β is called the hazard ratio. The response

variable of the model is the hazard function λ(t), that is the probability that the event

of interest occurred before time t, or a patient’s “risk” of failure at time t [10]. The

Cox model is semi-parametric when the baseline hazard function is not specified [60].

The commonly used method to estimate the β coefficients is the maximum partial

likelihood estimation, which is presented in the following.
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2.2.1 Maximum Partial Likelihood Estimation

In the Cox PH model, we break down the likelihood function into two parts as

L(β, λ0) = L1(β)L2(β, λ0),

where L1(β) is the function of β and L2(β, λ0) is a function of β and λ0. Cox’s idea was

to focus on maximizing only L1(β) for better inference and ignore L2(β, λ0) because

it does not contain much valuable information about β [10]. Therefore, we will refer

to L1(β) as L(β) henceforth while keeping in mind that L(β) represents the partial

likelihood. Thus, the partial likelihood of the Cox PH regression is

L(β) =
n∏
j=1

(
exp(x>j β)∑

k∈R(tj)
exp(x>k β)

)δj

,

where tj is the time of the j-th event, R(tj) is the set of individuals at risk just before

time tj, and δj is an independent censoring variable where it is 0 if the patient is

censored and 1 otherwise. The latent variable δj in the expression makes sure that

only the individuals who experience an event of interest contribute to the likelihood.

The Cox partial log-likelihood is then written by

`(β) =
n∑
j=1

δj

x>j β − log

 ∑
k∈R(tj)

exp(x>k β)

 . (2.16)

The partial log-likelihood (2.16) can be simplified if we let uj = exp(x>j β) and Uj =∑
k∈R(tj)

uk, indicating uj is the hazard ratio (i.e. probability of failure), and Uj is the

total hazard overall failure times. We can also identify πij = Yi(tj)
ui
Uj

as the probability

of failure for the i-th individual. Thus, we can re-write the partial log-likelihood (2.16)

by

`(β) =
∑
j

δj log(uj)−
∑
j

δj log(Uj). (2.17)

Similar to Section 2.1.1 for logistic regression, we apply the Newton-Raphson (NR)
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technique for the Cox proportional hazard regression. The algorithm iteratively esti-

mate β as follows

β̂(m+1) = β̂(m) −H−1
(
β̂(m)

)
.∇β`

(
β̂(m)

)
, (2.18)

where β̂(m) is the estimate updated from the m-th iteration, and ∇β`
(
β̂(m)

)
and

H−1
(
β̂(m)

)
represent the gradient and Hessian matrix evaluated at β̂(m), respectively.

To obtain the gradient, we take the first derivative from (2.17) with respect to log(uk)

as follows

∂` (β)

∂ log(uk)
= δk −

∑
j

πkjδj,

where πkj represents an individual’s relative risk (probability of failure) at time j. If

the observations are ordered based on time, for an individual’s likelihood calculation

at a specific time point, only individuals at risk up to that time point contribute to

the likelihood. Once an event occurs or an individual gets censored, they no longer

contribute to the likelihood calculation for subsequent times. Thus, the result matrix

of partial likelihood will be in a lower triangle structure, where all the elements above

the diagonal are zero. So P will be a lower triangle matrix where Pij = πij. Now we’ll

calculate the real gradient with respect to β

∂`

∂β
=
∂ log(uk)

∂β
· ∂`(β)

∂ log(uk)

= X>(c−Pc),

(2.19)

where ∂ log(uk)
∂β

=
∂x>

k β

∂β
= x>k , and c is a vector of censoring elements (δj’s).

In the next step, we need to calculate the Hessian matrix. To do so, based on the

second derivative of (2.17), we first obtain

∂2` (β)

∂ log(uk)∂ log(ul)
= −

∑
j

δjπkjπlj, (2.20)

∂2` (β)

∂2 log(uk)
= −

∑
j

δjπkj(1− πkj). (2.21)
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Now we need to apply the chain rule to calculate the Hessian matrix with respect to

β, so we first need to calculate the term below

∂ log(uk)∂ log(ul)

∂βk∂β>l
=
∂(x>k βk)∂(xlβ

>
l )

∂βk∂β>l
= x>k xl. (2.22)

Hence, the Hessian matrix is equal to

H(β) = −X>WX, (2.23)

where W is calculated from (2.20) and (2.21). We can estimate the Cox PH regression

coefficients by replacing by incorporating the gradient (2.19) and the Hessian matrix

(2.23) into the NR equation (2.18) to get the following term

β̂(m+1) = β̂(m) + (X>WX)−1X> (c−Pc) . (2.24)

2.2.2 IRWLS Method For Cox PH Regression

Similar to subsection 2.1.2, we can re-formulated the NR algorithm (2.24) to an iter-

atively re-weighted least squares (IRWLS) algorithm in estimating the coefficients of

the Cox PH regression. The NR equation (2.24) is re-formulated as

β̂(m+1) = β̂(m) +
(
X>WX

)−1
X> (c−Pc)

=
(
X>WX

)−1
X>W

{
Xβ̂(m) + W−1(c−Pc)

}
=
(
X>WX

)−1
X>WQc, (2.25)

where

Qc =
{

Xβ̂(m) + W−1(c−Pc)
}
.

The above NR update represents the solution to the weighted least square problem

for estimating the coefficients of the Cox PH model. In each iteration, the updated

response Qc is regressed on the covariates, including X. Therefore, the LS estimator of

the coefficients of the Cox PH is obtained by (2.25). Finally, one can use the Iterative

re-weighted least squares (IRWLS) algorithm (2.25) to obtain the LS estimate, β̂LS,

for the unknown coefficients of the Cox PH regression model.
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2.3 Cure Models

Cure models are popular tools in censored survival analysis for situations where the

individuals will never experience the event of interest, no matter how long they are

studied. These individuals are commonly called “cured subjects” or “long-term sur-

vivors” [45]. Cure models are widely used in clinical and medical studies. Analyzing

survival data for individuals who may be cured brings on a challenge in dealing with

censored data. Censoring occurs when an individual is either cured or uncured but

hasn’t been followed up long enough for the event of interest to happen. To analyze

cured and uncured individuals simultaneously, it is recommended that a threshold

time be set. Individuals are considered cured if their censored time exceeds this

threshold and uncured if they have not yet reached the threshold time [10]. The most

popular cure model is the mixture cure model, which consists of both the cured and

uncured groups. We describe this model in the next section.

2.3.1 Mixture Cure Models

The mixture cure model is a type of survival analysis model that is used worldwide

and has attracted a lot of attention in medical applications. It is important that some

individuals may never experience the event of interest, and the mixture cure model

takes this into account. As mentioned before, the mixture cure model studies the

population as a mixture of two components, including cured and uncured individuals.

We can detect the covariates associated with each component by studying them in

two different models: incidence and latency models.

To build the mixture cure model, suppose that U = 1 if an individual is uncured

and U = 0 otherwise. T is defined as the failure time, T (u) is the failure time of the

uncured individuals, and C is the censoring variable. Then, the incidence model and

latency model can be defined as

Incidence model: P (U = 1|z) = π(z),

Latency model: P (T (u) > t|x, U = 1) = Su(t|x),

where z = (z1, . . . , zq) and x = (x1, . . . , xp) are the covariates of the incidence and

latency models, respectively. Normally, there is an overlap between x and z to some



22

extent, and they might be nearly identical, with the only difference of an intercept

term in z. The proportional hazard mixture cure (PHMC) model assumes that the

incidence model is defined by a logit link (2.1), and the latency model is specified by

using the Cox proportional hazard model (2.15). The mixture cure model combines

these components to provide the survival function S(t|x, z) for the event T > t as

P (T > t|x, z) = S(t|x, z) = 1− π(z) + π(z)Su(t|x), (2.26)

where S(t|x, z) is the survival function of all the individuals involved in the population,

π(z) is the probability of being uncured, and Su(t|x) is the survival function of uncured

proportion [45, 46].

The specification of Su(t|x) can be parametric, semi-parametric, or non-parametric,

which will create different mixture models [44]. The parametric approach proposes

that both the incidence and latency parts are fully parametric models. A model for

this approach is logistic regression, and the latency part is modelled by an exponen-

tial distribution [14]. The parametric models, however, show little flexibility because

of the parametric assumptions in the incidence and latency distributions. The non-

parametric approach implements both the incidence and latency components in a

non-parametric approach, achieving the maximum flexibility of the models. A non-

parametric method for estimating the cure rate and examining the effects of the

covariates on the cure rate has been studied [43, 63]. The semi-parametric approach

proposes enhanced flexibility in the aforementioned parametric method. The majority

of these models concentrate on increasing the flexibility of the latency aspect while

maintaining the logistic regression format for the incidence [2]. In this research, we

aim to study the semi-parametric mixture cure model in Subsection 2.3.2, assuming

the Cox proportional hazard regression to model the latency part of the mixture cure

model.

2.3.2 Semi-parametric Mixture Cure Model

The specific type of semi-parametric mixture cure model may vary based on the

assumptions regarding the latency part. In the latency part, if the proportional hazard

(PH) assumption is used to describe the effect of x on the uncured individuals, and
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Su(t|x) is defined by

Su(t|x) = Su0(t)
exp(xjβ),

where Su0(t) is the baseline survival function that is not defined parametrically, we

will be dealing with a semi-parametric proportional hazard latency model [46, 47].

The mixture cure model (2.26) is identifiable if exp(xjβ) ∈ IR, meaning that the

hazard ratio is a real number. Also, the x covariates should lie within a finite number

interval for identifiability [35].

To estimate the unknown parameters of the mixture cure model (2.26), we need

to maximize the log-likelihood function by developing an EM algorithm. First, the

incomplete log-likelihood function is obtained by

`(θ) = log
n∏
i=1

{
[π(zi)fu(ti|xi)]δi [1− π(zi) + π(zi)Su(ti|xi)]1−δi

}
,

where the density function of Su(t|x) is represented by fu(ti|xi), δi is a censoring in-

dicator with δi=1 for uncensored observation and δi=0 otherwise. The θ = (b, β, Su0)

is the vector of the unknown parameters in the mixture cure model, where b and β

are the unknown coefficients of the incidence and latency models, respectively [47].

To obtain the complete log-likelihood function, since the status of y = (y1, ..., yn) is

unknown, we introduce the latent variable yi, where yi represents the membership for

individual i. Consequently, yi equals 1 when δi=1, and it typically remains unknown

when δi=0. The ambiguity surrounding the status of yi arises because a subject

undergoes censorship either when cured or when not cured but with the failure time

T exceeding the censoring time C. Given (y1, ..., yn), the complete likelihood function

corresponding to the complete data (ti, δi, xi, zi, yi) for i = 1, . . . , n is given by

Lc(θ) =
n∏
i=1

fu(Ti | yi = 1)I(yi=1) · fu(Ti | yi = 0)I(yi=0)

=
n∏
i=1

fu(Ti | yi = 1)yi · fu(Ti | yi = 0)1−yi . (2.27)

We need to suppose two cases of yi = 0, and yi = 1 for calculating (2.27); First we

consider yi = 0 which means that we have a censored observations and δi = 0, T =∞,
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thus

fu(Ti | yi = 0) = P (T = ti|yi = 0)δi + P (T > ti|yi = 0)1−δi = 1. (2.28)

Then, for yi = 1, we have

fu(Ti | yi = 1) = P (T = ti|yi = 1)δi + P (T > ti|yi = 1)1−δi

= fu(ti | xi)δi · Su(ti | xi)1−δi . (2.29)

From (2.27)-(2.29), the complete log-likelihood function is given by

`c(θ) = log
n∏
i=1

[
π(zi)

yi · [1− π(zi)]
1−yi
]

+ log
n∏
i=1

[
fu(ti | xi)yiδiSu(ti | xi)yi(1−δi)

]
= l1(b | y) + l2(β, Su0 | y), (2.30)

where θ = (b, β, Su0) represents the collection of all the unknown parameters, fu is

the probability density function, and Su is the survival function.

The expectation–maximization (EM) algorithm is an iterative approach for ob-

taining the maximum likelihood estimates when dealing with latent data. The EM

algorithm starts with an initialization step, where initial model parameters are chosen.

It then proceeds with two main steps: Expectation (E) and Maximization (M). In the

E-step, the algorithm imputes missing data based on the current parameter estimates.

The M-step updates the parameters by maximizing the expected log-likelihood com-

puted using the imputed data. This process alternates between the E-step and M-step

until convergence. Let θ(r) = (b(r), β(r), S
(r)
u0 ) represent the estimate for the (r)-th it-

eration of the EM algorithm, and let w
(r+1)
i denote the conditional expectation of yi

from the (r + 1)-th iteration. Thus, w
(r+1)
i is computed by

w
(r+1)
i = E(yi | b(r), β(r), S

(r)
u0 )

= δi + (1− δi) ·
π(r)(zi)S

(r)
u (ti | xi)

1− π(r)(zi) + π(r)(zi)S
(r)
u (ti | xi)

. (2.31)

In the M-step, the EM algorithm maximizes the conditional expectation of the
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complete log-likelihood l1(b | w(r)
i ) and l2(β, Su0 | w(r)

i ) as defined in (2.30) in the

(r + 1)-th iteration to update θ(r+1) = (b(r+1), β(r+1), S
(r+1)
u0 ). The EM algorithm

iterates until it reaches convergence, at which point the final LS estimates of θ are

obtained [47].

According to Subsection 2.1.1, b(r+1) is updated via the logistic regression log-

likelihood function (2.3) from the introduced IRWLS method in (2.14). From Subsec-

tion 2.2.1, β(r+1) is updated via Cox’s partial log-likelihood function (2.16) obtained

by implementing the IRWLS (2.25) iteratively in the M-step of the EM algorithm.

Finally, the baseline survival function, S
(r+1)
u0 , is updated through a Nelson–Aalen

cumulative hazard estimator [47]

Ŝ
(r+1)
u0 (t) = exp

−∑
j:τj<t

dj∑
i∈Rj

exp
(

logw
(r)
i + β̂′

(r+1)
xi

)
 , (2.32)

where τj is the upper time limit, Rj is the risk set at time τj, and dj is the number

of observations experiencing the event of interest at time τj [2, 6]. The Nelson–Aalen

estimator accounts for the likelihood contribution of a patient who experiences the

event at τj and from a censored patient at time t, leading to a baseline distribution

with probability mass focused on the uncensored observations [44].



Chapter 3

Shrinkage Estimators for Mixture

Cure Models

In regression analysis, shrinkage methods are used to address multicollinearity, reduc-

ing variance and improving model reliability [21]. Ridge and Liu-type (LT) shrinkage

estimators are proposed by researchers to offer solutions by introducing regularization

penalties to combat collinearity [37, 51]. In this chapter, we investigate how ridge and

LT shrinkage methods help in overcoming the collinearity problem in the logistic re-

gression method, discussed in Subsection 3.1, and Cox proportional hazard regression

method, discussed in Subsection 3.2.

3.1 Shrinkage Estimators for Logistic Regression

Multicollinearity among explanatory variables in logistic regression is known to in-

crease the variances of the maximum likelihood estimator. While the iteratively re-

weighted least squares (IRWLS) method explained in Subsection 2.1.2 is commonly

used to estimate logistic regression parameters, it faces significant issues when its

covariates are linearly dependent. This problem can be addressed by the ridge esti-

mation approach explained in Subsection 3.1.1. However, because the ridge estimator

is not fully capable of addressing the ill-conditioning problem, the LT estimator is

introduced later in Subsection 3.1.2 to enhance the performance of estimation [26].
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3.1.1 Ridge Estimator for Logistic Regression

The ridge estimate is obtained by maximizing the ridge penalized log-likelihood func-

tion of logistic regression models. By augmenting the equation 0 = λ
1
2 b + ξ, to the

logistic regression equation, we can obtain the ridge penalized log-likelihood func-

tion [37, 51]

`R(b) = `(b)− 1

2
λb>b, (3.1)

where `(b) is the logistic log-likelihood function (2.3), and λ is the tuning ridge

parameter. Many researchers have introduced methods to estimate λ, such as Lawless

and Wang [30] and Khalaf and Shukur [31]. Cross-validation is also a method to

estimate the tuning parameter λ [39]. However, following [26, 37], we have chosen to

use the commonly used technique to estimate the ridge parameter proposed by Hoerl

and Kennard [24]. This method calculates λ as λ = (1 + p)/b̂>LSb̂LS, where p is the

length of the unknown vector of coefficients, and b̂LS is derived from (2.14) using the

IRWLS method. Therefore, b̂LS is considered optimal for constructing the tuning

ridge parameter since it roughly minimizes the Weighted Sum of Squared Errors [51].

Similar to the LS estimation in Subsection 2.1.2, we apply the Newton-Raphson

method to iteratively estimate the ridge logistic regression parameters as

b(m+1) = b(m) −H−1(`R
(
b(m)

)
).∇b`R

(
b(m)

)
. (3.2)

For estimating the gradient ∇b`R
(
b(m)

)
and the Hessian matrix H−1(`R

(
b(m)

)
)

estimated at b(m) in (3.2), we calculate the first and second derivatives of the ridge

penalized log-likelihood function (3.1). The gradient with respect to bl is given by

∂`R (b)

∂bl
=
∂` (b)

∂bl
− λb. (3.3)

According to (2.11), we can write the gradient (3.3) in a matrix form as

∇b`R (b) = Z>
(
y − g−1 (z,b)

)
− λb. (3.4)

Similarly, we can obtain the second derivative of ridge penalized log-likelihood function
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(3.1) by

∂2`R (b)

∂bk∂bl
=
∂2` (b)

∂bk∂bl
− λIp.

Thus, according to (2.12), the Hessian matrix is obtained by

H (`R(b)) = −Z>WZ− λIp = −V, (3.5)

where Ip is the identity matrix with size (p× p), and V = Z>WZ + λIp. Now similar

to what we did to obtain (2.14), with (3.4) and (3.5) in hand, we can re-formulate the

NR equation (3.2) as an IRWLS algorithm

b̂newR = b̂oldR + V−1
{

Z>
[
y − g−1

(
z, b̂oldR

)]
− λb̂oldR

}
= V−1V b̂oldR −V−1λb̂oldR + V−1Z>WW−1

{(
y − g−1

(
z, b̂oldR

))}
= V−1Z>W

{
Z b̂oldR + W−1

[
y − g−1

(
z, b̂oldR

)]}
=
(
Z>WZ + λIp

)−1
Z>WQl, (3.6)

where Ql =
{

Zb̂oldR + W−1
[
y − g−1

(
z, b̂oldR

)]}
. This method is used to update b̂newR

until convergence is reached, and we get the ridge logistic b̂R estimate.

By taking a close look at (2.14), we can write the ridge logistic estimator (3.6) as

b̂R =
(
Z>WZ + λIp

)−1
Z>WZb̂LS, (3.7)

where b̂LS is the LS estimation of b (2.14).

In instances of severe multicollinearity, a larger regularization parameter λ is cho-

sen to reduce multicollinearity. Nevertheless, the drawback is that a large λ brings

about increased bias in the ridge logistic estimator, preventing it from completely

resolving the issues associated with the ill-conditioning problem. That’s where the

alternative LT shrinkage method is introduced [26, 24].
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3.1.2 Liu-type Estimator for Logistic Regression

Liu-type (LT) estimator is a method offered in the case of high multicollinearity,

and Liu proved that the LT estimator outperforms ridge regression in terms of mean

squared error (MSE) [37]. As mentioned earlier, ridge estimation uses a small shrink-

age parameter λ for multicollinearity, but when the issue is severe, a small λ is inad-

equate. On the flip side, a large λ introduces noticeable biases to the estimates. The

LT two-parameter estimator was suggested as a substitute for the ridge regression es-

timator. If the left part of the ridge penalty 0 = λ
1
2 b+ ξ, is replaced by

(
−dl/λ1/2

)
b̂,

where b̂ could be any estimate of b, we’ll end up with the LT penalty

(
dl/λ

1/2
)

b̂ = λ1/2b + ξ′. (3.8)

It is proved that the parameter λ is employed solely to manage the conditioning

of Z>WZ + λIp. Once the condition number reaches the desired level, any bias

introduced by λ can be rectified using a second parameter, known as the bias correction

parameter, denoted as dl [26, 37].

If we extend this new penalty (3.8) to the logistic regression log-likelihood equation

(2.3), we’ll obtain

`LT (b) = `(b)− 1

2
ξ>ξ, (3.9)

where `(b) is the logistic log-likelihood function, and ξ =
(
dl/λ

1/2
)

b̂ − λ1/2b is the

LT penalty. Afterwards, the Newton-Raphson (NR) technique needs to be applied to

get the desired LT estimates as

b(m+1) = b(m) −H−1(`LT
(
b(m)

)
).∇b`LT

(
b(m)

)
. (3.10)

We need to calculate the gradient and Hessian matrix to replace in the above equation;

therefore, the first derivative of (3.9) is obtained by

∂`LT (b)

∂bl
=
∂` (b)

∂bl
− dlb̂− λb.

According to (2.11), this equation can be written in a matrix form by

∇b`LT (b) = Z>
[
y − g−1 (z,b)

]
− dlb̂− λb. (3.11)
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In the next step, the second derivative is calculated as

∂2`LT (b)

∂bk∂bl
=
∂` (b)

∂bl
− λIp,

From (2.12), we can write this in matrix form as

H(`LT (b)) = −Z>WZ− λIp. (3.12)

Afterwards, with the replacement of the calculated gradient and Hessian matrices

in the NR equation (3.10), the new NR equation will be

b(m+1) = b(m) + (Z>WZ + λIp)−1 ·
[
Z>
(
y − g−1

(
z,b(m)

))
− dlb̂− λb(m)

]
where b̂ can represent any of the b̂LS or b̂R estimators. Let V = Z>WZ + λIp.

Subsequently, by applying the IRWLS method, a new LT estimator can be calculated

as

b̂new
LT = b̂old

LT + V−1
{

Z>
[
y − g−1

(
z, b̂old

LT

)]
− dlb̂− λb̂old

LT

}
= V−1V b̂old

LT + V−1Z>WW−1
{

y − g−1
(
z, b̂old

LT

)}
−V−1dlb̂−V−1λb̂old

LT

= V−1Z>W
{

Z b̂old
LT + W−1

[
y − g−1

(
z, b̂old

LT

)]}
−V−1dlb̂

=
(
Z>WZ + λIp

)−1
(Z>WQl − dlb̂), (3.13)

where Ql =
{

Zb̂oldLT + W−1
[
y − g−1

(
z, b̂oldLT

)]}
.

If we consider b̂ representing the LS estimator b̂LS, the LT estimator is given by

b̂LT =
(
Z>WZ + λIp

)−1 (
Z>WZ− dlIp

)
b̂LS, (3.14)

where 0 < λ, −∞ < dl <∞.

So, as mentioned, the LT estimator, with its two tuning parameters, effectively

handles severe multicollinearity. It has two advantages over the ridge method: the

ability to handle large λ and a smaller MSE. The MSE of the LT estimator from



31

(3.14) is obtained by

MSE
(
b̂LT

)
= tr[Var(b̂LT )] +

∥∥∥E(b̂LT − b)
∥∥∥2

= tr
[(

ZTWZ + λIp
)−1 (

ZTWZ− dlIp
) (

ZTWZ
)−1

(
ZTWZ− dlIp

) (
ZTWZ + λIp

)−1]
+
∥∥∥(Z>WZ + λIp

)−1 (
Z>WZ− dlIp

) (
Z>WZ

)−1
Z>Wp (zi,b)− b

∥∥2 .
(3.15)

The norm ‖.‖2 is used here to express the importance of the bias, ensuring that both

positive and negative differences between the estimated and true coefficients are con-

sidered equally, thereby providing a comprehensive measure of the overall estimation

error. Determining the optimal dl value to minimize the MSE in (3.15) is done through

the iterated estimation of dl [25]. Thus, using the recommended dl, the LT estimator

always has an MSE that is the same or smaller than the ridge estimator’s MSE. At

last, the presented LT estimator fully addresses the ill-conditioning problem [26, 37].

3.2 Shrinkage Estimators for Cox Proportional Haz-

ard Regression

In survival analysis, the Cox proportional hazard regression model is fundamental, of-

fering crucial insights into how covariates influence the hazard function. Commonly,

the maximum partial likelihood (MPL), followed by the iteratively re-weighted least

squares (IRWLS) method explained in Subsection 2.2.2, is used to estimate the Cox

proportional hazard model parameters. Yet, although effective, the IRWLS estimation

method encounters challenges such as unstable estimates when there is multicollinear-

ity among covariates. Shrinkage estimators present a solution to these challenges by

introducing a penalty term into the estimation process.

In this section, we thoroughly discuss the application of shrinkage estimators in the

context of Cox proportional hazard regression. The ridge estimator explained in Sub-

section 3.2.1 is a widely used shrinkage technique that is adapted to Cox PH models to

counter multicollinearity issues. Unlike LS estimators, ridge estimators offer improved
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stability, making them advantageous in survival analysis. However, high collinearity

remains a challenge for complete resolution. LT estimator explained in Subsection

3.2.2 is introduced as an alternative method, particularly useful in the presence of se-

vere multicollinearity. LT estimators surpass ridge estimators by exhibiting a smaller

MSE and effectively addressing the ill-conditioning problem. By examining ridge and

LT estimators in subsequent sections, we aim to provide a good understanding of their

roles and applications in Cox proportional hazard regression [27].

3.2.1 Ridge Estimator for Cox PH Model

To obtain the Cox PH ridge estimate, we ought to maximize the ridge penalized

partial log-likelihood function of the Cox regression model. By augmenting the ridge

penalty 0 = k
1
2β + ε, to the Cox partial log-likelihood equation, the ridge penalized

log-likelihood function can be obtained

`R(β) = `(β)− 1

2
k · β>β, (3.16)

where `(β) is the Cox partial log-likelihood function (2.16), and k is the ridge pa-

rameter. Selecting the value of k is challenging because it manages the bias of the

regression towards the dependent variable’s mean [16]. Many methods for estimating

k are discussed in the literature [27, 39, 55]. We estimate the ridge parameter as

k = 1/β̂>LSβ̂LS following Hoerl and Kennard’s proposal [24], where β̂LS is obtained

from (2.25) using the IRWLS method. Thus, β̂LS is considered optimal for deter-

mining the ridge tuning parameter as it can minimize the Weighted Sum of Squared

Errors [51].

To calculate the ridge Cox estimators βR, we need to apply the Newton-Raphson

(NR) technique similar to the LS estimation in (2.18)

β(m+1) = β(m) −H−1(`R
(
β(m)

)
)∇β`R

(
β(m)

)
. (3.17)

In the above equation, the gradient∇β`R
(
β(m)

)
and the Hessian matrixH−1(`R

(
β(m)

)
)

are estimated by calculating the first and second derivatives of the ridge penalized
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log-likelihood function (3.16). The gradient with respect to βl is equal to

∂`R (β)

∂βl
=
∂` (β)

∂βl
− kβ. (3.18)

According to (2.19), we can find the matrix form of (3.18) by

∇β`R (β) = X>(c−Pc)− kβ. (3.19)

The second derivative of ridge penalized partial log-likelihood function (3.16) is ob-

tained by

∂2`R (β)

∂βk∂βl
=
∂2` (β)

∂βk∂βl
− kIp.

So in line with (2.23), the Hessian matrix is written as

H (`R(β)) = −X>WX− kIp = −V, (3.20)

where Ip is the identity matrix with size (p × p), and V = X>WX + kIp. Now

by replacing (3.19) and (3.20) terms into the NR equation (3.17) we’ll obtain the

following term

β
(m+1)
R = β̂

(m)
R + V−1

{
X> (c−Pc)− kβ̂(m)

R

}
. (3.21)

We can reformulate (3.21) to an IRWLS algorithm by

β̂newR = β̂oldR + V−1
{

X> (c−Pc)− kβ̂oldR
}

= V−1V β̂oldR − kV−1β̂oldR + V−1X>WW−1 {(c−Pc)}

= V−1X>W
{

X β̂oldR + W−1 (c−Pc)
}

=
(
X>WX + kIp

)−1
X>WQc, (3.22)

where Qc =
{

Xβ̂old + W−1(c−Pc)
}

. From (2.25), we can write the ridge estimator

for the Cox PH Model as

β̂R =
(
X>WX + kIp

)−1
X>WXβ̂LS, (3.23)

where β̂LS =
(
X>WX

)−1
X>WQc.
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As it can be seen, ridge regression addresses the issue of collinearity by augmenting

a small constant k to the diagonal of X>WX to improve the condition number that

is defined as

κ =
(λmax
λmin

)1/2
,

where λmax and λmin are maximum and minimum eigenvalues of X>WX, respectively.

In general, a condition number below 10 signifies no significant collinearity issues.

Condition numbers between 30 and 100 indicate moderate to strong collinearity, while

a value exceeding 100 suggests severe collinearity [3]. In practical applications, the

shrinkage parameter k in ridge regression is typically small. Notably, the condition

number of V is a decreasing function of k because the ridge parameter k affects the

condition number by increasing the minimum eigenvalue of the matrix, thus reducing

the condition number. Thus, to maintain a low condition number for V, we should

choose a larger k. When X>WX is highly ill-conditioned, the chosen small k may

not be sufficient to address the ill-conditioning problem. If the condition number of

V indicates strong collinearity, it implies that the underlying issue persists, leaving

ridge regression unstable. However, introducing a larger k brings more bias to the

ridge regression. Due to these challenges, the LT penalty is suggested in the next

section, providing a solution to overcome the issues associated with severe collinearity

in ridge Cox regression [27].

3.2.2 Liu-Type Estimator for Cox PH Model

The Liu-type (LT) estimator was initially introduced as a remedy for the mentioned

bias generated by the shrinkage parameter in the ridge estimator. Similar to subsec-

tion 3.1.2, the LT penalty gets augmented into the Cox partial log-likelihood equation,

as shown below

`LT (β) = `(β)− 1

2
ε>ε, (3.24)

where `(β) is the Cox partial log-likelihood function (2.16), and ε =
(
dc/k

1/2
)
β̂−k1/2β

is the LT penalty. Similar to the LS and ridge estimations, for obtaining the LT Cox

estimators, the Newton-Raphson method is applied as

β(m+1) = β(m) −H−1(`LT
(
β(m)

)
).∇β`LT

(
β(m)

)
, (3.25)
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For obtaining the gradient, we’ll take the derivative of (3.24) with respect to βl

∂`LT (β)

∂βl
=
∂` (β)

∂βl
− dcβ̂ − kβ, (3.26)

Using (2.19), we can write the gradient (3.26) in a matrix form by

∇β`LT (β) = X>(c−Pc)− dcβ̂ − kβ. (3.27)

This time, we’ll take the second derivative of (3.24) for obtaining the Hessian matrix

∂2`Liu (β)

∂βk∂βl
=
∂2` (β)

∂βk∂βl
− kIp. (3.28)

Thus, from (2.23), the Hessian matrix of LT Cox regression is given by

H(`LT (β)) = −X>WX− kIp. (3.29)

We have now both the gradient (3.27) and the Hessian matrix (3.29); therefore, the

estimates of the LT Cox proportional hazard regression coefficients can be obtained

by replacing these terms into (3.25) to get the following term

β(m+1) = β(m) + (X>WX + kIp)
−1 · [X>(c−Pc)− dcβ̂ − kβ],

where β̂ can represent any of the β̂LS or β̂R estimators. Assuming V = X>WX+kIp,

this term can be reformulated as an IRWLS algorithm

β̂newLT = β̂oldLT + V−1
{

X> (c−Pc)− dcβ̂ − kβ̂oldLT
}

= V−1V β̂oldLT + V−1X>WW−1 {(c−Pc)} −V−1dcβ̂ −V−1kβ̂oldLT

= V−1X>W
{

X β̂oldLT + W−1 (c−Pc)
}
−V−1dcβ̂

=
(
X>WX + kIp

)−1
(X>WQc − dcβ̂), (3.30)

where Qc =
{

Xβ̂old + W−1(c−Pc)
}

. As mentioned, β̂ can represent any of the β̂LS

or β̂R estimators, so based on (2.25), and (3.23), we can obtain

β̂LT =
(
X>WX + kIp

)−1
(X>WX− dcI)β̂LS, (3.31)
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β̂LT =
(
X>WX + kIp

)−1
(X>WX + kIp − dcI)β̂R. (3.32)

The proposed LT estimator can handle severe multicollinearity now. One of the

reasons for its superiority over the ridge method is having a smaller MSE. If we

consider that β̂ = β̂R, k can be considered as k = (1 + p)/β̂>LSβ̂LS, following the

estimation of the bias correction parameters dc by maximizing the mean square errors

of β̂LT [26]. It is simple to show that the MSE of the LT estimator for the Cox PH

regression model is equal to

MSE
(
β̂LT

)
= tr[Var(β̂LT )] +

∥∥∥E(β̂LT − β)
∥∥∥2

= tr
[(

XTWX + kIp
)−1 (

XTWX + kIp − dcIp
)

(
XTWX + kIp

)−1
(XTWX)

(
XTWX + kIp

)−1(
XTWX + kIp − dcIp)(XTWX + kIp

)−1]
+
∥∥∥(X>WX + kIp

)−1 (
X>WX + kIp − dcIp

)
(
X>WX + kIp

)−1
X>WE (Qc)− β

∥∥∥2
(3.33)

where E(Qc) is replaced by Q̂c. The calculated MSE of the LT estimator (3.33) is

always the same or smaller than the ridge estimator’s MSE because the bias correction

parameter dc is optimized to minimize the MSE, so it naturally adjusts the bias and

variance to ensure that the total MSE is always the same or smaller than that of

the ridge estimator, which proves the LT estimator can address the ill-conditioning

problem to a good extent [27].

3.3 Shrinkage Estimators for Semi-parametric Mix-

ture Cure Models

As mentioned in chapter 2, the semi-parametric mixture cure model is defined as

(2.26), where the incidence model is defined by a logit link (2.1), and the latency model

is specified by using the Cox proportional hazard model (2.15). The estimates of the

parameters in the semi-parametric mixture cure models are developed through an EM

algorithm that maximizes their likelihood function as mentioned in Subsection 2.3.2.
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However, this usual way of LS method can run into problems, like giving unreliable

results when there’s multicollinearity among the factors being considered. To address

this issue, we propose shrinkage ridge and LT methods to estimate the coefficients of

the underlying model. To do so, we developed new EM algorithms to incorporate the

shrinkage methods for both components.

We have discussed the ridge and LT shrinkage estimators for logistic regression

(3.1) and Cox PH regression (3.2) in previous sections. In this section, we will study

the application of these shrinkage estimators in the semi-parametric mixture cure

model that consists of both the logistic and Cox PH regression. The ridge estimator

is first incorporated into the mixture cure model to improve our model estimates to a

large extent. Then, the LT estimator is proposed to enhance the effectiveness of ridge

regression even further.

3.3.1 Ridge Estimator for Semi-parametric Mixture Cure Mod-

els

While the EM algorithm method is commonly used for estimating parameters in

mixture cure models, it becomes significantly impacted by multicollinearity when the

covariates are linearly dependent. The ridge penalized EM estimation can be offered

as a solution to this problem. As mentioned in Subsection 2.3.2, the complete log-

likelihood semi-parametric mixture cure model (2.30) is composed of the logistic and

Cox PH regression models; thus, adding the ridge penalty to each of these terms will

result in the ridge penalized complete log-likelihood function:

`R(θ) = l1(b | y)− 1

2
λ · b>b

+ l2(β, Su0 | y)− 1

2
k · β>β,

where `c(θ) = l1(b | y) + l2(β, Su0 | y) is the complete log-likelihood semi-parametric

mixture cure model (2.30), θ represents the unknown (b, β, Su0) parameters, and λ, k

are the ridge parameters calculated as: λ = (1 + p)/b̂>LSb̂LS and k = 1/β̂>LSβ̂LS [27].

The other new method to estimate the ridge parameters is using the cross-validation

method. In that method, the performance of the tuning parameters can be evaluated

by their prediction error, and the λ, k parameters get chosen that minimize the θ
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estimates [39].

Expanding the EM algorithm with ridge regularization enhances the model. This

variation, called the ridge EM algorithm, adds the ridge penalty to the original EM

framework. Here, the iterative procedure remains unchanged, and the algorithm al-

ternates between imputing missing data in the E-step and updating parameters in

the M-step. However, in the ridge EM approach, each step is modified to include the

ridge penalty term in the parameter estimation process. During the E-step, missing

data is filled in using current parameter estimates, taking into account the influence

of the ridge penalty. Then, in the M-step, parameters are adjusted to maximize the

expected log-likelihood while considering the regularization effect of the ridge penalty.

This integration of ridge regularization within the EM framework improves parameter

estimation by encouraging more reliable solutions and reducing the impact of mul-

ticollinearity. This, in turn, enhances the model’s ability to predict accurately and

maintain stability.

Accordingly, the ridge E-step in ridge EM for the semi-parametric mixture of cure

model is given by

w̃
(r+1)
i = E(yi | b(r), β(r), S

(r)
u0 )

= δi + (1− δi) ·
π(r)(zi)S

(r)
u (ti | xi)

1− π(r)(zi) + π(r)(zi)S
(r)
u (ti | xi)

, (3.34)

where w̃
(r+1)
i represents the updated conditional expectation of yi incorporating ridge

regularization. The subsequent M-step involves maximizing the expected log-likelihood

while considering the ridge penalty term to update the parameters b(r+1) based on

ridge logistic estimator (3.7), and β(r+1) based on ridge estimator for the Cox PH

(3.23), and S
(r+1)
u0 based on the Nelson–Aalen cumulative hazard estimator (2.32).

We will then end up having the updated θ̂(r+1) = (b̂(r+1), β̂(r+1), Ŝu0
(r+1)

). Iterations

between the E-step and M-step continue until the change in parameter estimates be-

tween iterations falls below our 1 × 10−7 threshold, indicating when convergence is

achieved, providing final estimates for the θ parameters.

The final estimators obtained through the ridge EM algorithm generally outper-

form those from the original method without ridge regularization. This improvement

results in smoother solutions. Additionally, by employing the LT shrinkage estimator

instead of the ridge estimator, we can effectively address the ill-conditioning problem,
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further enhancing the model’s performance. Therefore, recognizing the potential for

further improvement, we proceed to enhance the model in the subsequent section by

incorporating the LT shrinkage estimator.

3.3.2 Liu-type Estimator for Semi-parametric Mixture Cure

Models

The LT shrinkage estimator offers a better approach to regularization, allowing for

precise control over parameter shrinkage. This capability enables the model to adapt

more flexibly to the data, effectively resolving issues related to multicollinearity and

improving the stability of parameter estimation.

We introduce the LT EM algorithm that incorporates the LT penalty into the core

EM framework. Similar to the ridge EM algorithm, this process involves augmenting

the original function with the LT penalty term. By incorporating the LT penalty to

both the logistic and Cox PH regression parts of the complete log-likelihood semi-

parametric mixture cure model, the LT penalized complete log-likelihood function is

obtained by

`LT (θ) = l1(b | y)− 1

2
ξ′ξ

+ l2(β, Su0 | y)− 1

2
ε′ε,

where `c(θ) = l1(b | y) + l2(β, Su0 | y) is the complete log-likelihood semi-parametric

mixture cure model (2.30), θ represents the unknown (b, β, Su0) parameters, ξ =(
dl/λ

1/2
)

b̂−λ1/2b is the LT penalty for logistic regression, ε =
(
dc/k

1/2
)
β̂− k1/2β is

the LT penalty for Cox PH regression, λ, k are the tuning ridge parameters and dl, dc

are the bias correction parameters calculated with the help of logistic MSE (3.15),

and Cox PH MSE (3.33).

The LT E-step is done similarly to the ridge E-step (3.34); however, the M-step

is different in how the unknown parameters are updated. The b(r+1) parameter is

updated based on LT logistic estimator (3.14), β(r+1) is updated based on LT estimator

for the Cox PH (3.31), and S
(r+1)
u0 based on the Nelson–Aalen cumulative hazard

estimator (2.32).

The LT penalty is favoured here due to its tendency to outperform the ridge
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penalty. The LT penalty offers advantages such as improved model stability and

better handling of multicollinearity. Thus, by incorporating the LT penalty into the

EM algorithm, we anticipate achieving superior optimization results compared to the

ridge counterpart.

In the upcoming chapter, we will put our developed LS, ridge, and LT methods to

the test. Through simulated and real-life data examples, we aim to demonstrate the

effectiveness of these methods and clarify their comparative strengths in providing

accurate and reliable estimates for the parameters of the semi-parametric mixture

cure model.



Chapter 4

Numerical Studies

In this chapter, we present the results of our numerical studies on semi-parametric

mixture cure models in the presence of multicollinearity, comparing the three different

estimation methods, including Least Squares (LS), Ridge, and Liu-type (LT) method

discussed in Subsections 2.3.2, 3.3.1, and 3.3.2, respectively.

This chapter is organized as follows. In Section 4.1, we provide various simulation

studies to evaluate the performance of the three methods under various scenarios.

Subsequently, these methods are implemented on a Breast Cancer dataset in Section

4.2 to showcase their effectiveness in real-world medical settings. Analyzing real data

enables us to assess the methods’ performance on actual datasets and provide insights

into their practical applicability.

4.1 Simulation Studies

This section compares the performance of the LS, Ridge, and LT methods in estimat-

ing the parameters of semi-parametric mixture cure models when faced with multi-

collinearity. We examine how variations in sample size and levels of multicollinearity

within the mixture of cure models impact the performance of the proposed estimation

techniques.

We begin by generating the design matrix with four covariates X = (x1, . . . ,x4).

In this study, we follow [26] to incorporate multicollinearity into the design matrix

through two parameters φ and ρ that represent the levels of correlation between the
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first and last two predictors in the mixture model. Initially, we generated random

numbers {wij, i = 1, . . . , n; j = 1, . . . , 5} from the standard normal distribution and

then simulated the correlated covariates as

xi,j1 = (1− φ2)wi,j1 + φwi,5, j1 = 1, 2,

xi,j2 = (1− ρ2)wi,j2 + ρwi,5, j2 = 3, 4,

where we choose φ = {0.85, 0.9, 0.95} and ρ = {0.85, 0.9, 0.95} to represent three sets

of different multicollinearities in the mixture of cure models. Next, we generated the

response variables from the mixture of cure model in a similar way to [22], where

survival data is generated based on cure and censoring rates. Accordingly, responses

are provided for the mixture cure model’s desired incidence and latency parts. The

incidence part is derived from a logistic regression function, and the patient’s cure

status is determined as a Bernoulli random variable with a failure probability given

by the logistic model. Survival time-to-event responses (referred to as Time) are

obtained from a Weibull-Cox PH model for those not cured. Following [22], we set

the Weibull shape parameter to be 1.45 and the Weibull scale parameter to be 0.25.

We designated the censoring indicator (referred to as Event) to follow an exponential

distribution with a rate of 0.16. We set the true values of the model parameters as

β0 = (0.4, 0.2,−0.5, 0.2) for the Cox regression part, and b0 = (1, 0.4, 0.2,−0.5, 0.2)

for the logistic regression part. The true parameter values are kept constant across

all methods (LS, Ridge, and LT) to ensure that data from the same population are

simulated throughout the entire simulation. We replicated the above data collection

process 1000 times and then applied the LS, Ridge, and LT estimation methods as

described in Chapters 2 and 3 in each replicate. We selected the sample size n =

{20, 40, 80}; we opted for smaller sample sizes relative to the number of covariates,

as collinearity is known to have a greater impact on parameter estimation in such

cases [27].

To investigate the estimation performance of (β̂, b̂), we computed the square root

of the mean of squared errors (
√

MSE) formulas given by

√
MSE(β̂) =

√√√√ 1

n

n∑
i=1

(β̂ − β0)>(β̂ − β0) , (4.1)
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and √
MSE(b̂) =

√√√√ 1

n

n∑
i=1

(b̂− b0)>(b̂− b0) . (4.2)

Then, we computed the 2.5%, 50%, and 97.5% percentiles of the
√

MSE and demon-

strated the median (M), lower (L), and upper (U) bounds of the estimation intervals

to show detailed results.

One of the goals of the mixture of cure models is to predict whether each individual

will end up cured or uncured. Using logistic regression, we utilize the incidence part

of the mixture cure model to predict whether patients will be cured or uncured. First,

using training datasets of sizes n = {20, 40, 80}, we used vectors of all zeros for b and β

values to initialize the LS, Ridge, and LT EM algorithms. These algorithms iteratively

updated the parameters until the difference between successive estimates was less than

1×10−7, thus reaching the final estimates. We then created a validation test set of 50

samples using the mixture cure model, independent of the training data. Finally, we

used the estimated parameters from the training dataset to predict the binary response

for the validation dataset through the incidence part. We need the prediction criteria,

including Error, Sensitivity, and Specificity, to evaluate the classification performance

of the methods. We computed

Error =
FP + FN

TP + TN + FP + FN
, Sensitivity =

TP

TP + FN
, Specificity =

TN

TN + FP
,

where FP, FN, TP, and TN denote false positives, false negatives, true positives, and

true negatives in the confusion matrix, respectively. To study the effect of sample size

and multicollinearity, we repeated this process 1000 times for different sample sizes

and levels of multicollinearity using LS, ridge, and LT methods and computed median

and 95% confidence intervals for our evaluation measures.

Tables 4.1-4.9 show the simulation study results. The presented tables examine

the impact of collinearity and sample size on the performance of different estimation

methods. One notable finding is the noticeable effect of collinearity on smaller sample

sizes, where results indicate superior performance with a sample size of 20 compared

to larger sample sizes. This suggests that as the sample size decreases, the influence

of collinearity becomes more notable, affecting estimation methods’ accuracy. As the

sample size increases, more population information is incorporated into the estimation
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methods so that even the LS method can estimate the parameters adequately.

The ridge and LT methods, designed to address multicollinearity, show better per-

formance with a lower square root of MSE and better overall results. These shrinkage

methods introduce a bias into the estimation process to improve the estimation of

model coefficients in the presence of multicollinearity. Multicollinearity significantly

affects the LS estimates, making the coefficient estimates unreliable. In contrast to

LS estimates, the ridge and LT estimates offer more accurate insights into the model’s

coefficients as they have significantly lower
√

MSE. Among the shrinkage methods,

the LT method shows better reliability than the ridge method in dealing with multi-

collinearity. The Error, Specificity, and Sensitivity classification performances across

the three methods are close; however, the ridge and LT classification rates are, on

average, slightly better than the LS method. While a significant reduction in
√

MSE

is observed in ridge and LT estimates in almost all cases, no significant difference

is observed in the classification performance between the shrinkage methods and the

benchmark LS estimation method. It is worth noting that our findings align with

[26, 21], who indicated that multicollinearity severely impacts the estimation accu-

racy of the methods, while prediction performance remains mainly unchanged.

Table 4.1: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.85 and n = 20.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 3.20 0.86 14.05

b 9.74 1.80 37.35 0.56 0.36 0.66 0.42 0.31 0.64 0.50 0.36 0.64
Ridge β 2.25 0.51 9.58

b 2.89 0.80 14.14 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.71
LT β 1.38 0.41 8.90

b 1.40 0.56 7.31 0.46 0.34 0.62 0.53 0.39 0.69 0.50 0.29 0.79
0.9 LS β 3.86 1.01 16.13

b 10.92 1.80 39.68 0.56 0.36 0.66 0.42 0.33 0.64 0.50 0.36 0.64
Ridge β 2.69 0.59 12.10

b 2.95 0.81 13.56 0.46 0.34 0.60 0.56 0.39 0.67 0.50 0.29 0.71
LT β 1.67 0.49 12.18

b 1.33 0.60 6.58 0.48 0.34 0.62 0.53 0.36 0.69 0.50 0.29 0.79
0.95 LS β 5.41 1.09 26.10

b 11.36 1.80 43.34 0.56 0.38 0.64 0.42 0.33 0.64 0.50 0.36 0.64
Ridge β 3.42 0.64 19.71

b 3.05 0.81 16.77 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.71
LT β 2.02 0.56 18.06

b 1.35 0.58 8.02 0.46 0.34 0.62 0.53 0.36 0.69 0.50 0.29 0.71
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Table 4.2: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.9 and n = 20.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 3.75 1.03 18.44

b 12.04 1.80 53.73 0.56 0.38 0.66 0.42 0.31 0.64 0.50 0.36 0.64
Ridge β 2.67 0.53 11.48

b 3.33 0.82 19.79 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.71
LT β 1.61 0.43 11.81

b 1.42 0.57 10.45 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.71
0.9 LS β 4.83 1.17 17.89

b 12.55 1.80 52.20 0.56 0.36 0.66 0.42 0.33 0.64 0.50 0.36 0.64
Ridge β 3.51 0.59 12.96

b 3.47 0.79 18.79 0.46 0.34 0.60 0.56 0.39 0.67 0.50 0.29 0.79
LT β 2.11 0.49 12.07

b 1.42 0.62 8.44 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79
0.95 LS β 6.54 1.57 27.49

b 14.16 1.80 56.94 0.56 0.38 0.64 0.42 0.33 0.64 0.50 0.36 0.64
Ridge β 4.34 0.75 20.90

b 3.75 0.85 19.30 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.79
LT β 2.66 0.61 21.55

b 1.44 0.60 9.69 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.71

Table 4.3: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.95 and n = 20.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 5.56 1.43 31.29

b 15.15 1.80 68.03 0.56 0.38 0.66 0.42 0.31 0.64 0.50 0.36 0.64
Ridge β 3.52 0.58 20.13

b 3.95 0.76 23.95 0.46 0.34 0.60 0.56 0.39 0.67 0.50 0.29 0.79
LT β 2.29 0.43 20.04

b 1.55 0.62 10.87 0.46 0.34 0.58 0.56 0.39 0.67 0.50 0.29 0.79
0.9 LS β 6.64 1.61 26.73

b 16.98 1.80 87.22 0.56 0.38 0.66 0.42 0.33 0.64 0.50 0.36 0.64
Ridge β 4.40 0.71 20.41

b 4.28 0.71 27.83 0.46 0.34 0.60 0.56 0.39 0.67 0.57 0.36 0.71
LT β 2.64 0.53 19.64

b 1.49 0.62 13.32 0.46 0.34 0.60 0.54 0.39 0.67 0.50 0.29 0.79
0.95 LS β 9.27 1.92 37.54

b 20.82 1.80 89.28 0.56 0.36 0.64 0.44 0.33 0.64 0.50 0.36 0.71
Ridge β 6.42 0.77 28.22

b 5.09 0.79 28.32 0.46 0.34 0.60 0.56 0.39 0.67 0.50 0.29 0.71
LT β 3.71 0.54 27.59

b 1.60 0.60 12.96 0.46 0.36 0.60 0.56 0.39 0.67 0.50 0.29 0.71
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Table 4.4: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.85 and n = 40.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 1.65 0.51 4.09

b 7.86 1.80 14.87 0.56 0.38 0.66 0.42 0.31 0.64 0.50 0.36 0.64
Ridge β 1.25 0.33 3.40

b 2.20 0.67 6.16 0.46 0.34 0.58 0.56 0.39 0.69 0.54 0.29 0.72
LT β 0.81 0.31 2.90

b 1.25 0.54 4.11 0.46 0.34 0.60 0.53 0.39 0.67 0.50 0.29 0.79
0.9 LS β 1.98 0.55 4.79

b 8.17 1.80 17.88 0.56 0.40 0.64 0.42 0.33 0.61 0.50 0.36 0.57
Ridge β 1.42 0.38 4.29

b 2.21 0.72 6.53 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.71
LT β 0.88 0.36 3.79

b 1.22 0.53 4.86 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.79
0.95 LS β 2.90 0.78 8.18

b 8.75 1.80 19.38 0.56 0.42 0.60 0.42 0.36 0.61 0.50 0.43 0.57
Ridge β 1.77 0.52 6.93

b 2.25 0.73 6.68 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.29 0.79
LT β 1.13 0.50 6.52

b 1.22 0.56 4.12 0.46 0.34 0.60 0.53 0.39 0.67 0.50 0.29 0.72

Table 4.5: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.9 and n = 40.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 1.97 0.55 5.00

b 8.55 1.80 19.84 0.56 0.38 0.66 0.42 0.31 0.64 0.50 0.36 0.64
Ridge β 1.39 0.35 4.31

b 2.32 0.71 7.41 0.46 0.34 0.58 0.53 0.39 0.67 0.50 0.29 0.71
LT β 0.82 0.34 3.63

b 1.23 0.56 5.13 0.46 0.34 0.60 0.53 0.39 0.67 0.50 0.29 0.79
0.9 LS β 2.25 0.67 5.85

b 9.34 1.80 20.48 0.56 0.38 0.62 0.42 0.36 0.61 0.50 0.43 0.64
Ridge β 1.60 0.41 4.90

b 2.50 0.76 7.10 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.36 0.71
LT β 0.90 0.39 4.44

b 1.25 0.55 4.56 0.46 0.34 0.60 0.53 0.39 0.67 0.50 0.29 0.71
0.95 LS β 3.35 0.90 9.23

b 9.98 1.80 22.28 0.56 0.40 0.64 0.42 0.31 0.61 0.50 0.36 0.64
Ridge β 2.25 0.54 7.57

b 2.43 0.78 7.54 0.46 0.34 0.58 0.53 0.39 0.67 0.50 0.29 0.71
LT β 1.28 0.51 6.96

b 1.25 0.58 4.27 0.46 0.34 0.58 0.53 0.39 0.69 0.57 0.36 0.72
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Table 4.6: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.95 and n = 40.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 2.85 0.69 10.12

b 10.32 1.80 30.54 0.56 0.40 0.64 0.42 0.31 0.61 0.50 0.36 0.64
Ridge β 1.76 0.36 8.15

b 2.59 0.71 10.18 0.46 0.34 0.58 0.53 0.39 0.67 0.50 0.29 0.71
LT β 1.10 0.32 7.76

b 1.29 0.56 6.18 0.46 0.34 0.58 0.53 0.39 0.69 0.57 0.36 0.72
0.9 LS β 3.38 0.88 8.91

b 11.70 1.80 29.43 0.56 0.40 0.64 0.42 0.33 0.61 0.50 0.36 0.57
Ridge β 2.17 0.49 7.37

b 2.86 0.75 9.14 0.46 0.34 0.58 0.56 0.39 0.67 0.57 0.36 0.71
LT β 1.24 0.35 6.65

b 1.29 0.57 4.71 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.72
0.95 LS β 4.67 1.39 12.35

b 13.72 1.80 36.58 0.56 0.40 0.62 0.42 0.36 0.61 0.50 0.43 0.57
Ridge β 3.16 0.62 10.83

b 3.18 0.78 13.09 0.46 0.34 0.58 0.56 0.39 0.67 0.57 0.36 0.79
LT β 1.63 0.44 9.86

b 1.32 0.60 8.28 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79

Table 4.7: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.85 and n = 80.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 1.00 0.33 2.20

b 7.15 1.97 11.00 0.56 0.44 0.64 0.42 0.33 0.61 0.50 0.43 0.57
Ridge β 0.76 0.25 1.95

b 1.81 0.52 3.78 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.36 0.71
LT β 0.66 0.27 1.72

b 1.21 0.49 3.14 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79
0.9 LS β 1.23 0.39 2.65

b 7.46 1.88 11.76 0.56 0.46 0.62 0.42 0.36 0.56 0.50 0.43 0.57
Ridge β 0.89 0.26 2.44

b 1.92 0.62 4.11 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.29 0.71
LT β 0.70 0.27 2.17

b 1.22 0.51 3.44 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79
0.95 LS β 1.73 0.46 4.51

b 7.78 1.88 12.23 0.56 0.42 0.60 0.42 0.36 0.58 0.50 0.43 0.57
Ridge β 1.10 0.36 4.10

b 1.90 0.56 4.18 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.29 0.79
LT β 0.79 0.43 3.88

b 1.24 0.55 3.11 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79
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Table 4.8: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.9 and n = 80.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 1.22 0.35 2.82

b 7.83 1.85 12.31 0.56 0.42 0.64 0.42 0.33 0.61 0.50 0.43 0.57
Ridge β 0.89 0.30 2.33

b 1.99 0.66 4.42 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.29 0.71
LT β 0.67 0.23 2.02

b 1.25 0.47 3.15 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.72
0.9 LS β 1.49 0.43 3.37

b 8.29 1.88 13.66 0.56 0.42 0.62 0.42 0.36 0.61 0.50 0.43 0.57
Ridge β 1.06 0.35 2.75

b 2.06 0.66 4.79 0.46 0.34 0.58 0.56 0.39 0.69 0.50 0.29 0.71
LT β 0.71 0.30 2.32

b 1.24 0.51 3.24 0.46 0.34 0.60 0.56 0.39 0.69 0.50 0.29 0.79
0.95 LS β 2.01 0.62 5.07

b 8.67 1.80 14.66 0.56 0.42 0.60 0.42 0.39 0.58 0.50 0.43 0.57
Ridge β 1.36 0.40 4.29

b 2.07 0.66 5.38 0.46 0.34 0.58 0.53 0.39 0.69 0.50 0.29 0.71
LT β 0.86 0.44 3.75

b 1.20 0.58 3.65 0.46 0.34 0.60 0.53 0.39 0.69 0.50 0.29 0.79

Table 4.9: The median (M) and 95% CIs for the
√

MSE, Error, Sensitivity (Sen) and Specificity
(Spe) of the LS, Ridge, and LT methods in estimation and prediction of the mixture of cure models
when φ = 0.95 and n = 80.

√
MSE Error Sen Spe

ρ EM Ψ M L U M L U M L U M L U
0.85 LS β 1.69 0.48 4.47

b 9.04 1.97 17.92 0.56 0.42 0.64 0.42 0.33 0.58 0.50 0.43 0.57
Ridge β 1.08 0.26 3.71

b 2.19 0.69 6.07 0.46 0.34 0.58 0.53 0.39 0.67 0.57 0.36 0.79
LT β 0.72 0.25 3.56

b 1.25 0.46 3.80 0.46 0.34 0.60 0.53 0.39 0.67 0.57 0.29 0.72
0.9 LS β 2.10 0.53 5.05

b 9.64 1.80 20.15 0.56 0.42 0.62 0.42 0.33 0.58 0.50 0.43 0.57
Ridge β 1.41 0.35 4.20

b 2.28 0.68 6.41 0.46 0.34 0.58 0.56 0.39 0.69 0.57 0.36 0.79
LT β 0.85 0.28 3.76

b 1.25 0.51 3.90 0.46 0.34 0.58 0.53 0.39 0.69 0.57 0.29 0.79
0.95 LS β 2.90 0.85 6.31

b 10.97 1.88 22.54 0.56 0.42 0.60 0.42 0.36 0.61 0.50 0.43 0.57
Ridge β 2.00 0.50 5.59

b 2.54 0.78 7.77 0.46 0.34 0.58 0.56 0.39 0.67 0.50 0.29 0.79
LT β 1.00 0.37 4.84

b 1.27 0.58 4.14 0.46 0.34 0.58 0.53 0.39 0.69 0.50 0.29 0.79

The findings of Tables 4.1-4.9 suggest that in scenarios of high multicollinearity

and smaller sample sizes, the Ridge and LT shrinkage methods offer more reliable co-

efficient estimates than the traditional LS method. This underscores the importance
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of considering both sample size and collinearity when selecting an estimation method.

Table 4.3 represents the simulation with the results when the sample size is small. In

this table, when ρ = 0.95, the LS method shows the worst performance, with
√

MSE

values of 9.27 for β and 20.82 for b. The ridge method shows noticeable improvement

compared to LS, with
√

MSE values of 6.42 for β and 5.09 for b. However, the LT

method has the best performance in handling multicollinearity, with
√

MSE values of

3.71 for β and 1.60 for b, indicating more accurate and reliable coefficient estimates.

The lower and upper bounds of
√

MSE across the LS, Ridge, and LT methods show

how much estimation results can vary. The LS method has the widest range between

these bounds, indicating less reliable estimates. Ridge narrows this range, suggesting

more reliability in estimation regardless of multicollinearity. The LT method shows

the smallest range, indicating consistent and reliable estimates even under multi-

collinearity. These bounds reveal the reliability of estimation methods and emphasize

the benefits of shrinkage methods in improving the mixture cure model’s parameter

estimates in the presence of multicollinearity.

To represent the results through figures, we first sorted the
√

MSE of 1000 simula-

tions and computed the median (M), lower (L), and upper (U) bounds of
√

MSEs by

50%, 2.5%, and 97.5% percentiles. Figures 4.1-4.6 present the median (M), lower (L),

and upper (U) bounds of the 95% intervals for the
√

MSE of the LS, Ridge, and LT

methods in estimating the coefficients of the mixture of cure models. Three figures

represent different sample sizes for each parameter (β and b). These figures illustrate a

continuous range of collinearity levels, from φ = ρ = 0.85 to φ = ρ = 0.98. Specifically,

Figures 4.1-4.3 correspond to the estimation of β for sample sizes n = {20, 40, 80}, re-

spectively. Similarly, Figures 4.4-4.6 represent the estimation of b for the same sample

sizes and collinearity levels.

These plots visually provide intriguing insights into the impact of collinearity on

estimation methods across different sample sizes for the mixture of cure models. No-

tably, as collinearity increases, a noticeable trend emerges: the ridge and LT esti-

mators consistently outperform the LS method in terms of estimating β and b in

the mixture of cure models. These findings underscore the effectiveness of ridge and

LT estimators in reducing the poor effects of collinearity within our model. Their

enhanced performance in minimizing the root of MSE suggests a robustness that

surpasses traditional LS approaches, particularly under conditions of high collinear-

ity. These observations underscore these alternative estimation techniques’ usefulness
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Figure 4.1: The median (blue), upper (red), and lower bound (black) of

√
MSE(β̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 20.

Figure 4.2: The median (blue), upper (red), and lower bound (black) of

√
MSE(β̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 40.

Figure 4.3: The median (blue), upper (red), and lower bound (black) of

√
MSE(β̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 80.
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Figure 4.4: The median (green), upper (red), and lower bound (black) of

√
MSE(b̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 20.

Figure 4.5: The median (green), upper (red), and lower bound (black) of

√
MSE(b̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 40.

Figure 4.6: The median (green), upper (red), and lower bound (black) of

√
MSE(b̂) across

the three methods of estimation of coefficients of the mixture cure models when n = 80.
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and potential superiority in real-world applications where multicollinearity is more

frequent.

Moreover, it is worth noting that these differences are most prominent when the

sample size is low. Specifically in the estimation of β, when the sample size is 20,

as shown in Figure 4.1, by focusing on the y-axis, we observe notably superior per-

formance compared to Figures 4.2 and 4.3, where larger sample sizes are considered.

This difference underscores the significant impact of sample size on the performance

of estimators within our study. Similarly, in the estimation of b in Figure 4.4, where

n = 20, we observe a more major variation compared to Figures 4.5 and 4.6, highlight-

ing the sensitivity of estimator performance to sample size variations. These findings

further emphasize the impact of sample size in improving estimator accuracy for both

β and b estimations.

Furthermore, another objective of mixture cure models is to forecast the proba-

bility that a patient survives from the time of diagnosis until the time of interest;

that is called the survival probability of individuals across the latency component of

the model. Mixture cure models offer a good understanding of survival outcomes by

accounting for both cured and uncured populations, thereby providing insights into

the factors influencing survival beyond initial treatment. We aim to visualize these

survival probabilities through survival curves plotted against time.

The estimated survival curves are shown in Figures 4.7-4.9, where differences

among the methods’ results are observed. Notably, both Ridge and LT methods

show superior survival probabilities over the LS method, indicated by the blue (LS),

red (Ridge), and green (LT) lines, with the true survival probabilities represented by

the grey line. This suggests that the Ridge and LT methods provide better estimates

of survival probabilities, potentially due to their ability to handle multicollinearity

more effectively. The shrinkage Ridge and LT methods provide predictions closer to

the true observed survival outcomes; thus, we can better predict how long a patient

is likely to survive, which leads to an improved understanding of diseases and treat-

ments. As the sample size increases, the performance of the LS method improves in

predicting the survival probabilities. This indicates that the Ridge and LT methods

outperform the LS method significantly, mostly when the sample sizes are small, while

the LS method improves its performance when sample sizes are large. In this case,

the performances of the three methods become closer to the true survival curve (See
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Figure 4.9).

Figure 4.7: The predicted survival probabilities of the LS (blue), Ridge (red), and LT
(green) methods in case of different correlation levels ρ = φ = (0.85, 0.9, 0.95) in the esti-
mation of coefficients of the mixture of cure models when n = 20.

Figure 4.8: The predicted survival probabilities of the LS (blue), Ridge (red), and LT
(green) methods in case of different correlation levels ρ = φ = (0.85, 0.9, 0.95) in the esti-
mation of coefficients of the mixture of cure models when n = 40.

Additionally, there is a slight difference in the survival probabilities when multi-

collinearity increases over the sample sizes. As collinearity levels increase, the model
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Figure 4.9: The predicted survival probabilities of the LS (blue), Ridge (red), and LT
(green) methods in case of different correlation levels ρ = φ = (0.85, 0.9, 0.95) in the esti-
mation of coefficients of the mixture of cure models when n = 80.

survival probabilities get slightly further from the true ones. Despite this, the over-

all trends in survival probabilities remain relatively consistent across the different

methods, suggesting robustness in the estimation techniques employed.

4.2 Breast Cancer Data Analysis

Breast cancer remains one of the most common malignancies affecting women world-

wide, with significant variations in prognosis and treatment response among patients.

It is a globally dangerous illness that gets significant attention from medical profession-

als and statisticians due to its high fatality rates and unpredictable nature, influenced

by various prognostic factors [40]. Breast cancer develops from an inherited genetic

mutation, sparking irregular cell division within breast tissue. If left untreated, these

malignant cells can spread to other areas of the body, creating a grave health risk.

Symptoms may reveal themselves as breast swelling, skin irritation, or palpable lumps

within the breast. Tragically, breast cancer ranks as a leading cause of death among

women [42, 49]. In 2022, breast cancer affected 2.3 million women worldwide, leading

to 670,000 deaths. This disease knows no geographical bounds and can affect women

of any age post-puberty, with incidence rates rising with age [62].
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Many predictors of breast cancer prognosis have been widely acknowledged, in-

cluding various histological criteria utilized for different diagnostic and prognostic

purposes [48]. These factors provide valuable insights into patient prognosis, inde-

pendent of treatment modalities [23]. From July 1984 to December 1989, the German

Breast Cancer Study Group (GBSG) conducted a clinical trial involving 720 patients

diagnosed with primary node-positive breast cancer. Among these patients, 686 indi-

viduals with complete data on various standard prognostic factors were included in the

dataset used for analysis. Recurrence-free survival (RFS) time and status (0= alive

without recurrence, 1= recurrence or death) were the outcome measures. The dataset

documented outcomes for 299 patients who experienced recurrence events—the follow-

up period extended to 7 years. The prognostic factors assessed in the breast cancer

datasets included age at primary surgery (age, years), menopausal status (meno, 0

= premenopausal, 1 = postmenopausal), tumor size (size), tumour grade (grade),

number of positive lymph nodes (nodes), progesterone receptors (pgr, fmol/l), estro-

gen receptors (er, fmol/l), and hormonal therapy (hormon, 0 = no, 1 = yes). Grade

was omitted from the analysis due to variations in measurement protocols across the

datasets, and pgr did not exhibit significance at the 5% level and was also removed

from consideration [49].

Drawing upon prior research highlighting the critical role of the number of pos-

itive lymph nodes in breast cancer prognosis, we have elected to narrow our focus

exclusively to patients diagnosed with 10 or more positive lymph nodes [9]. Studies

have demonstrated that patients with a higher burden of positive lymph nodes often

face more aggressive disease courses and poorer prognoses compared to those with

fewer positive nodes [32, 57]. Patients with 10 or more positive lymph nodes face a

notable risk of recurrence, with event-free survival rates dropping significantly even

after five years. By specifically targeting this subgroup in our analysis, we aim to

provide deeper insights into the survival dynamics and treatment responses of these

patients [5, 52]. Our dataset consists of 103 patients with 10 or more positive lymph

nodes and 8 explanatory variables, including age, menopausal status, tumor size,

number of positive lymph nodes, estrogen receptors, and hormonal therapy. As we

expect, there is a high collinearity of 0.79 between the patient’s age and menopausal

status in our design matrix.

Semi-parametric mixture cure models are valuable for analyzing cancer survival

data, offering insights into the dynamics of disease progression and treatment response.
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These models are particularly adept at handling survival data where a considerable

proportion of patients may experience long-term survival without recurrence or death

while the remaining patients face the risk of disease recurrence or mortality. In our

analysis of breast cancer survival data, we leverage the strengths of semi-parametric

mixture cure models to uncover the complex interaction between patient characteris-

tics, treatment modalities, and long-term outcomes.

Firstly, model parameters are estimated using the real breast cancer dataset. To

show the estimation performance of (β̂, b̂), we compute

√
MSE(β̂) and

√
MSE(b̂) ac-

cording to equations (4.1) and (4.2), respectively. Subsequently, we utilize the logistic

component of the semi-parametric mixture cure model to predict the occurrence of

events, whether it be recurrence or death, among breast cancer patients. We apply

a 5-fold cross-validation method on our dataset to calculate the Error, Sensitivity,

and Specificity evaluation metrics for the LS, ridge, and LT methods. These met-

rics quantify the model’s performance in distinguishing cured from uncured patients.

Similar to Section 4.1, these evaluation metrics are used to assess the model’s perfor-

mance. Additionally, comparisons with alternative methodologies presented in Table

4.10 highlight both estimation and predictive performance. While the ridge and LT

models exhibit better parameter estimation performance than the LS approach, pre-

dictive performance remains consistent, mirroring our findings from the simulation

section. Our finding aligns with the studies by Inan and Erdogan [26] and Ghanem

et al. [20], which also reported that while multicollinearity significantly impacts the

estimation accuracy of the methods, it has little effect on the prediction performance.

Table 4.10: The median (M) and 95% CIs for the
√

MSE; and Error, Sensitivity (Sen),
and Specificity (Spe) of the LS, Ridge, and LT methods in estimation and prediction
of Breast Cancer fatality using 5-fold Cross Validation.

√
MSE

EM Ψ M L U Error Sen Spe

LS β 0.34 0.21 1.14
b 6.55 2.49 17.38 0.28 0.92 0.21

Ridge β 0.32 0.20 0.85
b 1.79 1.09 6.74 0.26 0.95 0.21

LT β 0.18 0.14 0.25
b 0.53 0.32 1.82 0.25 0.93 0.28

Moreover, similar to the survival curve Figures 4.7-4.9 in the simulation study, we
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employ the Cox PH regression component of the semi-parametric mixture cure model

to examine the survival probabilities of breast cancer patients over time. This allows

us to visualize the survival outcomes curve in Figure 4.10. We observe that the LS,

ridge, and LT techniques show almost identical survival probabilities, with LT and

ridge evolving over time. This similarity occurs because we have a relatively large

sample size. The simulation results show that the LS method tends to provide more

reliable results with larger sample sizes. Additionally, in the breast cancer data, we

have lower levels of collinearity compared to the simulation studies, which helps the

survival probabilities across the different methods to be more similar.

Figure 4.10: The Breast Cancer survival probabilities across the LS (blue), Ridge (red),
and LT (green) methods in estimation of coefficients of the mixture of cure models.

By incorporating the incidence and latency components within the semi-parametric

mixture cure models framework, we aim to provide a comprehensive understanding

of breast cancer prognosis and treatment response. Through precise statistical anal-

ysis and model interpretation, we aim to reveal actionable insights that can improve

clinical decision-making and patient survival.

In our analysis, we find that the LT method demonstrates greater reliability than

LS and ridge methods in estimating parameters under conditions of collinearity, as

evidenced by both simulation and real data studies. This suggests that, when faced

with multicollinearity, the LT approach may offer more robust parameter estimates.



Chapter 5

Summary and Conclusion

In this thesis, we deeply studied survival analysis, focusing specifically on utilizing

mixture cure models within medical research. Our primary concentration was to

tackle the challenge of multicollinearity within estimating the parameters of mixture

cure models. To address this issue, we developed shrinkage Ridge and LT methods

for mixture cure models. To do that, we customized appropriate missing data of EM

algorithms to incorporate the property of shrinkage methods in the E and M steps

for both the latency and incidence components of the mixture of cure models. This

chapter will summarize our research and its key findings and also draw conclusions

from our study.

In Chapter 2, we provided an in-depth analysis of the incidence and latency com-

ponents within the semi-parametric mixture cure models: logistic regression and Cox

proportional hazard regression models. We investigated the estimation of unknown

parameters in logistic and Cox regressions, explaining the process of parameter es-

timation in both models. Additionally, we discussed different types of cure models,

with a specific focus on semi-parametric mixture cure models. We then extended

our discussion to the estimation of unknown parameters within the semi-parametric

mixture cure model. This involved deriving the complete log-likelihood function and

implementing the EM algorithm to estimate the parameters effectively. Through this

comprehensive exploration, we set the foundation for our methods contributions in

Chapter 3, establishing a solid theoretical foundation for our advancements.

Mixture cure models have the potential to enhance the accuracy of survival esti-

mates for treatments associated with statistical cure. However, when multicollinearity
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is present, the reliability of the common LS approach for parameter estimation in mix-

ture cure models is in doubt. Therefore, in Chapter 3, we introduced Ridge and LT

shrinkage estimation methods into the mixture cure models to address this issue and

improve our model estimates. We first implemented the shrinkage models into logistic

and Cox regression separately, which laid the foundation for incorporating shrinkage

estimators into the semi-parametric mixture cure model. We explored the effective-

ness of ridge and LT shrinkage methods in estimating the unknown parameters of

mixture cure models, which are best suited for scenarios involving multicollinearity.

By undertaking these steps, we prepared the shrinkage estimators for semi-parametric

proportional hazards mixture cure models to be implemented on input data to derive

meaningful outcomes.

Our numerical studies in Chapter 4 revealed that when multicollinearity is present,

ridge and LT approaches show superior performance in handling multicollinearity, sur-

passing the LS method. Through simulation studies, we observed that as collinearity

rises, particularly in small sample sizes, the traditional LS estimation method’s accu-

racy worsens, whereas ridge and LT shrinkage methods yield more reliable estimates

of model coefficients. As a result of their inherent bias, shrinkage estimators are in-

tended to address the issues arising from poorly conditioned design matrices, even

though this may introduce bias into the estimation process. Therefore, they are rec-

ommended primarily for situations with high levels of multicollinearity.

Finally, we implemented our proposed methods to a dataset on breast cancer,

analyzing disease prognosis and survival rates of patients with 10 or more positive

lymph nodes. Our analysis consistently showed that ridge and LT techniques offer

better survival probabilities compared to the LS method. This is consistent with

the findings from Inan and Erdogan [26] that multicollinearity mainly affects the

estimation results while we can still present the prediction power with the commonly

used LS method. The prediction metrics remained consistent across all methods. This

real-data exploration not only validated the accuracy of our simulation studies but

also provided valuable insights into disease prognosis.
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5.1 Future Research

In future research, we aim to extend the methodologies developed for the Cox pro-

portional hazards (PH) model to the accelerated failure time (AFT) model [61]. The

PH model is used for analyzing covariate effects on survival time with constant haz-

ards, which is often violated in practice, leading to misinterpretation. Unlike the

PH model, the AFT model does not assume constant hazards and is an alternative

when this assumption is violated [15]. The research will involve adapting the same

techniques to the AFT framework, including the LS, Ridge, and LT shrinkage meth-

ods. The goal is to address similar challenges within the AFT model’s context, such

as multicollinearity and parameter estimation, thereby enhancing its robustness and

reliability in survival analysis.

Additionally, we plan to incorporate variable selection with the least absolute

shrinkage and selection operator (LASSO) into the mixture cure models and combine

it with the LT shrinkage method [13]. This approach will address multicollinearity in

high-dimensional datasets, improving the prediction accuracy and stability of param-

eter estimates. By integrating LASSO’s ability to perform variable selection with LT

shrinkage’s effectiveness in handling multicollinearity, we aim to create a more robust

and flexible tool for analyzing complex survival data.
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reweighted least squares minimization for sparse recovery. Communications on
Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences, 63(1):1–38, 2010.

[12] A. I. Dimitras, S. H. Zanakis, and C. Zopounidis. A survey of business failures
with an emphasis on prediction methods and industrial applications. European
journal of operational research, 90(3):487–513, 1996.

[13] F. Emmert-Streib and M. Dehmer. High-dimensional lasso-based computational
regression models: regularization, shrinkage, and selection. Machine Learning
and Knowledge Extraction, 1(1):359–383, 2019.

[14] V. T. Farewell. A model for a binary variable with time-censored observations.
Biometrika, 64(1):43–46, 1977.

[15] A. Faruk. The comparison of proportional hazards and accelerated failure time
models in analyzing the first birth interval survival data. In Journal of Physics:
Conference Series, volume 974, page 012008. IOP Publishing, 2018.

[16] T. S. Fayose and K. Ayinde. Different forms biasing parameter for general-
ized ridge regression estimator. International Journal of Computer Applications,
181(37):2–29, 2019.
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