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Abstract

Quantile regression is a natural extension to the traditional linear regression. Instead

of modeling the conditional mean of the response variable, quantile regression mod-

els the conditional quantiles of the response. With properly selected quantiles, the

quantile regression model provides a better understanding of the relationship between

the response and the covariates comparing with the traditional regression models Re-

cently this method is introduced to the area of survival analysis, where censoring is

a natural characteristic of the data. To address the challenges posed by censored

data, especially the specification issue at high quantiles, we propose a novel approach

that employs multiple imputations of censored observations using the Buckley-James

method, originally developed in the framework of classical quantile regression analysis.

Our method not only ensures consistent estimators of the model parameters, but also

achieves asymptotically normality when the sample size approaches infinity. Notably,

it overcomes the limitations of traditional censored quantile regression, particularly

in estimating extreme quantiles. Extensive simulation studies demonstrate the effi-

cacy of our approach. Additionally, we apply our method to a Health Maintenance

Organization (HMO) dataset as an illustration.
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Chapter 1

Introduction

Survival analysis comprises a collection of statistical theories and techniques for an-

alyzing data where the main response variable is the time until an event of interest

occurs. (Lawless, 2011). Time variable is also known as survival time, failure time

or lifetime. Typical event of interest include death, disease, relapse from remission,

recovery etc. The life time or survival time may be measured in days, months, years

or any designated experience of interest that may happen to an individual.

The main aspect which differentiates survival analysis from other areas in statistics is

that survival data are usually subject to censoring. Observations are called censored

when information about their survival times is incomplete. A censored observation is

defined as an observation with incomplete information about the “time-to-event”.

Censoring can be classified into three main categories, of which are right censoring,

left censoring and interval censoring. The most usually seen form of censoring is right

censoring. The lifetime of an individual is said to be right censored, when his/her

lifetime becomes incomplete at the right side of the starting point of follow-up period.

In left censoring, the event of interest occurs before a particular time point but the

exact time point of occurring the event of interest is unknown (Kalbfleisch & Prentice,

2011a). In case of interval censoring, individual’s event time is known to fall between

two specific time points.
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Let T be a non-negative random variable that represents the failure time of an indi-

vidual from a homogeneous population. The probability distribution of T can be de-

scribed in several useful ways in survival analysis. Three particularly useful functions

are the survivor function, the probability density function and the hazard function,

denoted by S(t), f(t) and λ(t), respectively. In the context of survival analysis, for

a continuous domain [0,∞) with probability density function f(t) and distribution

function F (t), the survivor function, S(t) is defined as the probability that an event

does not occur at or before time t. Mathematically, the survivor function S(t) can be

expressed as,

S(t) = P (T > t) = 1− F (t) =

∫︂ ∞

t

f(u)du, t > 0

The hazard function is defined as the instantaneous rate at which failures occur for

subjects that are surviving at time t (Lawless, 2011). The hazard function, λ(t) is

defined as follows.

λ(t) = lim
∆t→0

P [t < T ≤ t+∆t|T ≥ t]

∆t

= lim
∆t→0

P [t < T ≤ t+∆t, T ≥ t]

∆t

1

P (T ≥ t)

=
fT (t)

S(t)

= − d

dt
logS(t).

Many parametric, semiparametric and nonparametric approaches have been proposed

for estimating survival and hazard functions. In continuous-time framework, paramet-

ric models assume continuous parametric distributions, such as exponential, Weibull,

log normal, log logistic distributions. Survival analysis can also be performed without

considering any distributional assumption. Kaplan-Meier estimator (Kaplan & Meier,

1958) also known as product limit estimator is the most common nonparametric tech-

nique for estimating the survival function S(t). Let ni be the number of individuals

at risk at ti and di be the number of events at ti. The Kaplan-Meier estimator has
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been defined as,

Ŝ(t) =
∏︂
i|ti≤t

ni − di
ni

.

Another important concept in survival analysis is the cumulative hazard function

Λ(t), which is given by Λ(t) =
∫︁ t

0
λ(u)du, t > 0. The cumulative hazard function Λ(t)

is most naturally estimated using the Nelson-Aalen estimator (Nelson, 1972),

Λ̂(t) =
∑︂
ti≤t

di
ni

=
∑︂
ti≤t

λ̂i.

This estimator is a right-continuous step function, where the magnitude of increments

is calculated by the empirical hazard estimates. Often, its a matter of interest to de-

termine whether two or more samples originate from the same survivor function. One

commonly used method for this comparison is the log-rank test (Lawless, 2011). The

log-rank test is a non-parametric test that compares the survival distributions of two

or more groups. It is especially useful in clinical trials and medical research to com-

pare the efficacy of different treatments.

One of the primary goals of survival analysis is to examine relationship between fail-

ure time and explanatory variables under censoring. Since survival time takes non-

negative values, the classical linear regression models are not appropriate for modeling

survival time unless the restriction is removed by transforming these times in such

a way which takes all possible values from the real line. Two most popular survival

regression models are proportional hazards (PH) model and accelerated failure time

(AFT) model (Klein, Moeschberger, et al., 2003). The proportional hazards model

(Cox, 1972) is extensively utilized in survival analysis to assess the impact of explana-

tory variables on survival time by modeling the hazard function. Let h(t|X) be the

hazard function at time t conditional on the vector of covariatesX. The PH regression

model assumes the form

h(t|X) = h0(t)e
X′β,

where h0(t) is an arbitrary baseline hazard rate and β = (β1, β2, · · · , βp)′ is a (p× 1)

parameter vector. The PH model is a semi-parametric model because the baseline
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hazard rate is treated non-parametrically, while the multiplicative part eX
′β is para-

metric.

The natural logarithm of survival time is modeled under the AFT survival regression

model, which is widely used due to its ability to provide explicit interpretations of

the regression parameters. Let Ti (i = 1, 2, . . . , n) be the logarithm of failure time of

the ith subject and Xi be the (p× 1) vector of covariates. The AFT model with the

(p× 1) vector of regression parameters β is,

Ti = X ′
iβ + εi,

where the εi are independent and identically distributed (iid) random error variables

from a distribution function, F , such as normal distribution, extreme value distribu-

tion or log logistic distribution. The AFT model is called semi-parametric when the

distribution of errors is not specified.

Inference procedures for the AFT model have been extensively developed by various

researchers, including Prentice (1978), Buckley and James (1979), Tsiatis (1990), Ri-

tov (1990), and Wei, Ying, and Lin (1990), among others. These methodologies are

derived without specifying the distribution of F . However, they require the indepen-

dent error terms to be homogeneous. For further details, we refer to the works of Cox

and Oakes (2018), Kalbfleisch and Prentice (2011b), and Klein and Moeschberger

(2003). Both the AFT model and the Cox PH model assume that covariates influence

the location of the distribution of transformed survival times, not the shape. This

assumption can restrict the nature of the impact that covariates can have on the

survival times. In practice, there are numerous situations where the focus is on the

tail of the survival distribution. The paper entitled “Reappraising Medfly Longevity:

A Quantile Regression Survival Analysis” by Koenker and Geling (2001) monitored

that mortality rates of Mediterranean fruit flies declined at the oldest observed ages.

This medfly experiments contradict the traditional assumption of Gompertz form in

survival distribution that hazard is log-linear (Koenker & Geling, 2001). Censored

quantile regression (CQR) offers a flexible and robust semi-parametric approach which
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provides a comprehensive view by allowing the analysis of the effects of covariates

across the entire distribution of survival times, rather than at a single point.

Another approach to handling censored data is to treat them as a type of missing

observation and apply missing data mechanisms to them. There is an extensive body

of literature on methodologies for handling missing data outside the realm of survival

analysis. It is only in recent years that these techniques have begun to be imple-

mented to address missing event time information in censored observations in the

context of survival analysis. Multiple imputation (MI) (Rubin, 1978) is a widely

adopted method to analyze data subject to various missing data mechanisms. The

theoretical underpinnings of multiple imputation are rooted in Bayesian statistics. A

study conducted by Moghaddam et al. (2022) proposed a Bayesian imputation of

censored survival data, demonstrating an improved visualization and analysis of sur-

vival data by treating censored data as incomplete observations and imputing them

for a more comprehensive analysis. Another research considered nonparametric mul-

tiple imputation scheme in handling missing failure times in censored data (Taylor,

Murray, & Hsu, 2002).

In this thesis, we propose a non-Bayesian or model-based multiple imputation scheme

for analyzing survival data and construct quantile regression with the multiply im-

puted data sets. The purpose of this thesis is to provide some theoretical basis and

foundation for the use of quantile regression to multiply imputed data sets in survival

analysis. The scenarios we examine are relatively straightforward; nonetheless, our

results offer positive evidence. Specifically, for higher quantiles, CQR often fails to

yield results, whereas quantile regression using multiply imputed data successfully

provides outcomes.

The rest of this thesis proceeds as follows. In Chapter 2 we give an introduction to

quantile regression and CQR. Chapter 3 develops the proposed model-based multiple

imputation method in CQR. This chapter also includes consistency and asymptotic

properties of parameter estimators. In Chapter 4, we present the results of exten-

sive simulation studies and apply the method to Health Maintenance Organization
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(HMO) data to illustrate the performance of the proposed method. Finally, Chapter

5 portrays the conclusion of this thesis.
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Chapter 2

Introduction to Quantile

Regression

The classical linear regression model (CLRM) is focused on the conditional mean; that

is, the CLRM summarizes the relationship between the response and the predictors

by using conditional mean of the target for each fixed value of the predictors. Un-

doubtedly, CLRMs have some appealing properties. Under ideal circumstances, they

provide a detailed picture of the relationship between the response and the covariates.

A natural extension of linear regression model is quantile regression (QR). It is com-

monly used when the assumptions of the CLRM fail to meet, in particular, linearity,

homoscedasticity, independence, or normality). The QR approach was introduced

by Koenker and Bassett (1978) in their seminal paper titled “Regression Quantiles”,

which extends the traditional linear regression model to the conditional quantiles of

the response variable, in contrast to focusing solely on its conditional mean. QR does

not concentrate only on the conditional mean, instead, it can be used to estimate

the entire conditional distribution of a response variable for a given set of covariates.

Moreover, it offers valuable information hidden in tails. An interesting example of

QR is self-thinning of tropical plants in Chihuahuan desert of the south western US

(Cade & Guo, 2000), where the effects of increasing germination densities of seedlings
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Q0.8=0.7881

τ =0.8

Figure 2.1: A CDF for the standard normal distribution

on the decline in densities of final mature plants were best captured at the higher

plant densities associated with upper quantiles. Addressing issues like self-thinning

problem where extremes are important, QR plays a significant role in such situations.

These attractive features of the QR approach has led to its growing popularity in

various fields, such as econometrics (Machado & Mata, 2005), biostatistics (Y. Wei,

Pere, Koenker, & He, 2006), micro-array data analysis (Huang et al., 2008) and more.

2.1 Quantile and Quantile Function

Let a real-valued random variable X follow the standard normal distribution, char-

acterized by its (right-continuous) cumulative distribution function (CDF) F (x), as

shown in Figure 2.1. Whereas for any τ , where 0 < τ < 1, the τ th quantile of X is

defined as its inverse; that is,

Q(τ) = F−1(τ) = inf{x : F (x) ≥ τ}. (2.1)

The inverse function F−1(τ) is the minimum value of x for which F (x) = τ . The

plot in Figure in 2.1 shows that F (0.7881) = 0.8 and F−1(0.8) = Q(0.8) = 0.7881. It

implies that the τ th quantile of the distribution is the value of the inverse of CDF at
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Figure 2.2: Empirical CDF and QF of standard normal distribution

τ .

For a sample size n, the empirical distribution function of X, which is the distribution

function associated with the empirical measure of a sample, can be defined as

Fn(x) = n−1

n∑︂
i=1

I(Xi < x). (2.2)

Thus, for a given n, the τ th sample quantile can be represented by,

Q̂(τ) = F−1
n (τ) = inf{x : F (x) ≥ τ}. (2.3)

For illustration purposes, we independently generated n = 100 observation from the

standard normal distribution and plotted the empirical quantile function in Figure 2.2.

It is observed that both sample CDF and the sample quantile function are monotonic

non-decreasing functions.

It is widely known that the mean of a random variable X, defined as the center µ,

can be obtained by the following minimization problem

µ = argmin
α
E(X − α)2, (2.4)
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that is the minimization of the squared sum of deviations. The median, instead, mini-

mizes the mean absolute deviations about any point, say α. Therefore, the expression

becomes,

Me = argmin
α
E|X − α|. (2.5)

Presenting quantiles as specific centers of the distribution of X, the τ th quantile can

be obtained by minimizing the following absolute sum of deviations (Hao & Naiman,

2007), that is,

Q(τ) = argmin
α
E[ρτ (X − α)], (2.6)

where ρτ (·), called the check loss function, satisfies

ρτ (u) = (τ − I(u < 0))u,

= [τI(u > 0) + (1− τ)I(u < 0)]|u|, (2.7)

for some τ ∈ (0, 1). In 2.7, positive and negative deviations are weighted by τ and

(τ − 1), correspondingly. The loss function is illustrated in Figure 2.3. If τ = 0.5, the

check loss function ρτ (u) becomes the absolute value of u. That is,

ρ0.5(u) = (0.5− I(u < 0))u,

= 0.5

⎧⎪⎨⎪⎩u if u > 0,

−u if u < 0,

= 0.5|u|.

Under the loss function ρτ (·), we try to minimize

E[ρτ (X − α)] =

∫︂
x∈R

ρτ (t− α)dF (t),

= (τ − 1)

∫︂ α

−∞
(t− α)dF (t) + τ

∫︂ ∞

α

(t− α)dF (t).

(2.8)
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Figure 2.3: The check loss function ρτ (u) for a certain τ

Differentiating the expected loss in Equation 2.8 with respect to α and setting the

partial derivative equal to zero lead to solution of the minimization problem.

∂

∂α
E[ρτ (X − α)] =

∂

∂α
(τ − 1)

∫︂ α

−∞
(t− α)dF (t) +

∂

∂α
τ

∫︂ ∞

α

(t− α)dF (t),

= (1− τ)

∫︂ α

−∞
dF (t)− τ

∫︂ ∞

α

dF (t),

=

∫︂ α

−∞
dF (t)− τ [

∫︂ α

−∞
dF (t) +

∫︂ ∞

α

dF (t)],

= F (α)− τ

∫︂ ∞

−∞
dF (t),

= F (α)− τ,

= 0.

Because of the monotonicity, minimization can occur at any element of the set {x :

F (x) = τ}. If the solution is distinct, then α = F−1(τ). Otherwise, the smallest

element will be chosen from a set of τ quantiles. It is noticed that choosing τ = 0.5

yields the median quantile.

There is a close relation between sample quantiles and order statistics. Given a
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random sample of size n, x1, x2, ..., xn, the data values can be arranged in ascending

order of magnitude. Let x(1), x(2), ..., x(i), ..., x(n) denote the ordered observations,

where x(1) ≤ x(2), ...,≤ x(i), ...,≤ x(n) . For i = 1, 2, ..., n the notation x(i) is referred

to as the ith order statistic of the sample. In terms of sample quantile, the (k/n)th

sample quantile corresponds to the kth order statistic.

Let us consider a large sample, x1, x2, ..., xn drawn from a population with probability

density function f(x) and quantile function Q(·), the distribution of sample quantile

follows approximately normal with mean Q(τ) and finite variance
τ(1− τ)

n
· 1

f(Qτ )2

(Walker, 1968).

2.2 Quantile Regression Model

In order to set up a quantile regression model (QRM), it is reasonable to start with

classical linear regression model and make a comparison between them.

Given a (p× 1) vector of explanatory vectors, xTi = (xi1, ..., xip), the CLRM takes the

form,

Yi = XT
i β + εi, i = 1, 2, ..., n, (2.9)

where, βT = (β1, ..., βp) is a p-dimensional vector of unknown parameters and εi, i =

1, 2, ..., n is an error term defined as follows.

εi
iid∼ Fε with E(εi) = 0 and V ar(εi) = σ2

ε .

The CLRM focuses on the expectation of the target conditional distribution, that is,

E(Y |X = x) = Xβ. The Model 2.9 can be generalized to the matrix form as follows.

Let

Y = Xβ + ε,

be the CLRM, where Y T = (y1, y2, ..., yn) and εT = (ε1, ε2, ..., εn) be the (n × 1)

random vectors of response variables and corresponding residuals, respectively. The

(n × p) matrix X is called the design matrix where xTi is the covariate vector in the

12



ith row; that is,

X =

⎛⎜⎜⎜⎜⎜⎜⎝
xT1

xT2
...

xTn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...

xn1 xn2 · · · xnp

⎞⎟⎟⎟⎟⎟⎟⎠
Different that from CLRM, the QRM gives a global perspective on the relationships

between variables by enabling the analysis of the conditional distribution of Y on X

at various quantiles so that we can examine the effects of covariates on the response

variable at a certain quantile rather than focusing only on the mean effect. The

conditional quantile of a random variable Y can be defined as,

QY (τ |X = x) = inf{y : P (Y ≤ y|X = x) ≥ τ}, 0 < τ < 1.

Analogous to the CLRM, the linear quantile regression at τ th (0 < τ < 1) quantile

can be modeled as

Y = Xβ(τ) + ε(τ), (2.10)

where, εT (τ) = (ε1(τ), ..., εn(τ)) is a n × 1 vector of quantile errors. Under the

assumption that Qε(τ |X) = 0, Model 2.10 becomes,

QY (τ |X = x) = Xβ(τ),

where βT (τ) = (β1(τ), ..., βp(τ)) is a (p × 1) column vector of unknown quantile

coefficients at τ th quantile and may change with different values of τ .

2.3 Estimation of Parameters in Quantile Regres-

sion

In CLRM, estimation of regression coefficient β is evaluated by the minimization of

the function,

argmin
β

n∑︂
i=1

(yi − x
′

iβ)
2.
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In QRM, regression coefficient at τ th quantile, denoted by β(τ), can be estimated by

minimizing

argmin
β(τ)

n∑︂
i=1

ρτ (yi − x
′

iβ(τ)),

where ρτ is defined in 2.7. Thus, the objective function, R(β(τ)) =
∑︁n

i=1 ρτ (yi −

QY (τ |X = x)) is a weighted sum of absolute deviations. As shown by Koenker and

Bassett (1978), the following can be optimized to yield the parameter estimation of

the QRM:

β̂(τ) = argmin
β(τ)

l(τ) = argmin
β(τ)

(︄ ∑︂
yi≥x

′
iβ

τ(yi − x
′

iβ(τ))−
∑︂

yi<x
′
iβ

(1− τ)(yi − x
′

iβ(τ))

)︄
(2.11)

When τ in 2.11 is 0.5,

β̂(τ) = argmin
β(τ)

n∑︂
i=1

|yi − x
′

iβ(τ)|, (2.12)

which is known as the median regression (Koenker & Bassett Jr, 1978).

2.4 Quantile Based Approach for Censored Data

Censored quantile regression (CQR) is a useful addition to survival analysis, which

has been increasingly popular in econometric analysis, industrial life testing, and the

health sciences. CQR is not only robust to outliers but also to the misspecification of

error distribution, called the heteroscedasticity, as well as to scale transformations of

the response variables.

To assess the relationship between a survival outcome and a set of explanatory vari-

ables (or covariates), the accelerated failure time (AFT) model serves as a substitute

for linear regression in survival analysis. Let, Ti be the log of the survival time. For a

p-dimensional vector of covariates X, the AFT model is represented by the following

equation.

Ti = X
′

iβ + ϵi, i = 1, 2, ..., n,

14



where β is an unknown (p × 1) vector regression coefficient and the ϵi (i = 1, ..., n)

denote the error terms which are iid with the distribution function Fε.

To introduce CQR, Powell (1984, 1986) proposed least absolute deviations (LAD)

for the estimation of regression parameters β. In this approach, Powell considered

censored Tobit model with left censoring at zero. Let, Ci, i = 1, 2, ..., n, be the natural

logarithm of the left censored values which are observed and therefore fixed. For the

observed survival time, Yi = max(Ti, Ci), the CQR is defined by

QTi
(τ |Xi) = X

′

iβ(τ) + F−1(τ), 0 < τ < 1, (2.13)

and the quantile regression coefficients at τ can be estimated as,

β̂(τ) = argmin
β(τ)

n∑︂
i=1

ρτ (yi −max(Ci, x
′

iβ(τ))). (2.14)

Here, ρτ (·) is the check loss function defined in Equation 2.7. In Powell’s approach,

the censored least absolute deviation (CLAD), denoted by βn̂, is defined as,

β̂n = argminn−1

n∑︂
i=1

|yi −max(0, x
′

iβ)|

Honore, Khan, and Powell (2002) proposed a method for extending the CQR estima-

tor under fixed censoring to models with random censoring using the Kaplan-Meier

estimator. Later, this methodology was applied to Powell (1984, 1986) estimators.

In this thesis, we consider only the right censoring. The CQR with right censored data

can be similarly modeled by replacing max(Ci, X
′
iβ) with min(Ci, X

′
iβ) in Equation

(2.14). Let Ti and Ci be the corresponding log of failure time and log of censoring

time for the ith individual, i = 1, 2, ..., n, the random variable Yi= min(Ti, Ci),is the

observed time. Let δi be the censoring indicator; that is,

δi =

⎧⎪⎨⎪⎩1 , if Ti ≤ Ci

0 , if Ti > Ci

Thus, the CQR model for the τ th(0 < τ < 1) quantile is given by

QTi
(τ |Xi) = X

′

iβ(τ), 0 < τ < 1. (2.15)
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Then, for a given value of τ , an estimate of the CQR parameter, β(τ) can be obtained

as,

β̂(τ) = argmin
β(τ)

n∑︂
i=1

ρτ (yi −min(Ci, x
′

iβ(τ))). (2.16)

Several methods have been proposed on CQR to estimate the model parameters.

Portnoy (2003) introduced a recursively reweighted estimator, which is a direct gen-

eralization of the Kaplan–Meier estimator, to estimate regression quantile parameters

and established
√
n convergences of the proposed estimators. Peng and Huang (2008)

used counting processes and martingale theory to develop a CQR model based on

the Nelson-Aalen estimator. These three methods to estimate CQR were described

by Koenker (2008). The “quantreg” package in the statistical software R implements

these methods with options of choosing one of these three methods for the inference.

A simple three-step estimation procedure was suggested by Chernozhukov and Hong

(2002) for CQR models. In this approach, the authors illustrated this procedure

with an extramarital affair example. Wang and Wang (2009) experimented a lo-

cally weighted CQR approach, which relaxes the stringent assumptions of existing

literature, such as, unconditional independence of survival time and censored time,

global linearity etc. Further, the authors studied the proposed method via simula-

tions and illustrated it with an acute myocardial infarction dataset. For survival data

with random censoring, Yin, Zeng and Li (2014) proposed a varying-coefficient quan-

tile regression model. Chernozhukov, Fernandez-Val, and Kowalski (2015) created a

censored quantile instrumental variable (CQIV) estimator that integrates both the

model and endogenous variables. Wu and Yin (2013) proposed a multiple imputation

method to cure rate quantile regression for censored data with a survival fraction.

To handle higher dimensional variables, a semiparametric copula-based estimator

for conditional quantiles was investigated for both complete or right-censored data

(De Backer, El Ghouch, & Van Keilegom, 2017). For the estimation of linear quan-

tile regression with right censored responses, Backer et al (2019) avoided classical
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approaches on “check loss” function instead, they investigated a novel approach to

estimate quantile coefficients by minimizing an alternative measure of distance.
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Chapter 3

Non-Bayesian Multiple Imputation

in Censored Quantile Regression

3.1 Introduction

Allan and Wishart (1930) first developed a statistical method to replace a missing

value. However, their work became well-known following the publication of Little

and Rubin’s book in (1978), which introduced the term “imputation” to the world

of statistical literature. The earlier imputation methods impute a unique value for

each missing observation. This single imputation approach disregards the sampling

variability thus provides underestimated standard errors and wrong confidence inter-

vals. Multiple imputation (MI) was first proposed by Donald B. Rubin which creates

multiple (say, m) values for each missing value and reflects the uncertainty about

prediction of unknown missing values.

Censored survival data may be treated as a kind of missing data. Under the cir-

cumstance of censored observations, the term ”multiple imputation” refers to the

process of replacing a censored datum with several imputed values. Wei and Tanner

(1991) proposed two different data augmentation algorithms of multiple imputation

to the analysis of censored regression data. Taylor, Murray and Hsu (2002) proposed
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non-parametric schemes in multiple imputation to impute censored survival times.

Royston (2001) presented a simple method of imputation by substituting a censored

survival time with a randomly imputed value sampled from log-normal distribution.

MI is generally based on Bayesian framework. Thus, the methodology for MI involves

executing posterior distribution of censored data given the observed data. In this the-

sis, a non-Bayesian approach was proposed to impute censored survival times. The

key idea is to replace each censored time with an imputed time obtained by fitting a

suitable regression model, and then execute a quantile regression model.

3.2 Proposed Method

In this section, we introduce the proposed method developed to adjust censoring in

quantile regression model. We first review the accelerated failure time (AFT) model

and then the MI method in this section.

3.2.1 Accelerated Failure Time Model

Accelerated failure time (AFT) model has been a widely used method to investigate

the direct effects of covariates on mean survival times. Let Ti and Ci be the corre-

sponding logarithm of failure time and right censoring time for the ith(i = 1, 2, ..., n)

subject. Define the observed time Yi = Ti ∧ Ci and δi = I(Ti ≤ Ci), where ∧ is the

minimum operator and I(·) is the function used to indicate whether the event time

is right censored (δi = 0) or not (δi = 1). The observed data is a triplet (Yi, δi, Xi),

where Xi is a (p × 1) vector of covariates and p is the number of covariates. Under

the assumption that Ti is independent of Ci conditional on Xi, the AFT model can

be represented as

Ti = β0 +X ′
iβ + εi, i = 1, 2, ..., n,

where β0 is the intercept, β is a (p× 1) vector of coefficients corresponding to (1× p)

vector of covariates Xi, and εi is the independent and identically distributed (i.i.d)
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random error with mean zero and finite variance. We consider the semi-parametric

AFT model where the distribution of εi is not specified.

3.2.2 Buckley-James Estimation for AFT Model

Buckley-James (BJ) estimation approach, proposed by Buckley and James (1979),

simply relies on an iterative solution to the standard least squares normal equations

that have been modified to account for the censoring.

In the absence of censoring (δi = 1 for i = 1, 2, ..., n), the survival regression model

can be considered as classical linear regression model where least square estimation

plays a significant role in data analysis. The ordinary least square (OLS) estimators

of β0 and β can be obtained by minimizing the objective function,

1

n

n∑︂
i=1

(︁
Yi − β0 −X ′

iβ
)︁2
, (3.1)

with respect to intercept and regression parameters. The minimization of (2.1) yields

the following estimating equation for regression parameter.

n∑︂
i=1

Xi(Yi −X ′
iβ̂) = 0

n∑︂
i=1

XiYi =
n∑︂

i=1

XiX
′
iβ̂ (3.2)

The intercept β0 can be estimated by, β0̂ =
1
n

∑︁n
i=1 εi(β̂) where εi(β̂) = Yi −X ′

iβ̂.

In the presence of right censoring, Buckley and James (1979) proposed to replace

censored observation (Ci) with the conditional expectation E(Yi|Yi > Ci). Thus, the

BJ weighted response variable has the form,

Y ∗
i = δiYi + (1− δi)E(Yi|Yi > Ci, Xi, δi). (3.3)

Lemma 3.2.2.1. If Y ∗
i = δiYi+(1−δi)E(Yi|Yi > Ci, Xi, δi), then E(Y

∗
i ) = β0+X

′
iβ =

E(Yi).
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Proof:

E(Y ∗
i ) = E(E(Y ∗

i |δi))

= E(Y ∗
i |δi = 1).P (δi = 1) + E(Y ∗

i |δi = 0)P (δi = 0)

= E(Yi|δi = 1).P (δi = 1) + E(E(Yi|Yi > Ci)|δi = 0).P (δi = 0)

= E(Yi|δi = 1).P (δi = 1) + E(Yi|Yi > Ci).P (δi = 0)

= E(Yi|δi = 1).P (δi = 1) + E(Yi|δi = 0).P (δi = 0)

= E(Yi) = β0 +X ′
iβ

This completes the proof of Lemma 3.2.2.1.

Let, Yí = E(Yi|Yi > Ci, Xi, δi). Note that when δi = 0,

Yí = E(Yi|Yi > Ci, Xi, δi)

= β0 +X ′
iβ + E(εi|εi > Yi − (β0 +X ′

iβ))

= β0 +X ′
iβ +

∫︁∞
Yi−(β0+X′

iβ)
udFβ(u)

1− Fβ{Yi − (β0 +X ′
iβ)}

= β0 +X ′
iβ +

∫︁∞
εi
udFβ(u)

Sβ(ϵi)
(3.4)

where εi = Yi−β0−X ′
iβ, i = 1, 2, ..., n, are the error terms. Fβ(ε) and Sβ(ε) stand for

the distribution function and survival function of the error terms, respectively. Using

Kaplan-Meier estimator, the cdf Fβ̂(ε) can be obtained in a non-parametric way. This

approach gives the Kaplan-Meier estimator Sβ̂(ε) as follows.

Sβ̂(ε) = 1− Fβ̂(ε)

= 1−
[︃
1−

∏︂
εi≤ε

(︃
n− i

n− i+ 1

)︃δi]︃

=
∏︂
εi≤ε

(︃
n− i

n− i+ 1

)︃δi

.

In the above formula, Fβ̂(ε) will not tend to 1 if the largest residual is censored. The

convention in BJ method is to adopt the largest εi, denoted by ε(n), be uncensored

and thus F̂ β(ε(n)) = 1. Now, the Buckley-James estimator β̂ can be obtained after
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the modification in Equation (3.2) which satisfies,

β̂
BJ

=
n∑︂

i=1

(︁
XiX

′
i

)︁−1
n∑︂

i=1

(︁
XiY

∗
i

)︁
(3.5)

Computation of BJ estimators follow an iterative procedures which can be described

below

Step 1. Obtain a starting value of β, say, β 1̂

Step 2. Compute Y ∗
i (β̂

j
) in Equation (3.4) at jth iteration.

Step 3. Obtain β̂
j+1

using the result given in (3.5).

Step 4. Go back to Step 2 until convergence criterion |β̂
j+1

− βĵ| < 0.01 is met.

3.2.3 The Buckley-James Multiple Imputation Method in

Quantile Regression

Without loss of generality, let us assume that the observed failure times are yj for

j = 1, ..., n1, and the censored ones are for j = n1 + 1, ..., n1 + n0 where n1 + n0 = n.

Based on the available data set {(yj, xj, δj), j = 1, ..., n}, we can obtain the Buckley-

James estimators of regression coefficients β̂
BJ

0 , β̂
BJ

1 , ..., β̂
BJ

p . The predicted values of

the jth observation will be X ′
jβ̂

BJ
, j = 1, ..., n. Correspondingly, the residuals for the

n1 observed failure times can be calculated as, r̂j = yj −X ′
jβ̂

BJ
, j = 1, ..., n.

In this thesis, we propose to predict the censored failure times by

ỹj = x′jβ̂
BJ

+ r̂j − r̂(τ), j = 1, ...n,

where r̂j is a randomly selected (with replacement) residual from those available

observations, and r̂(τ) is the τ th sample quantile of those residuals. The ỹj are imputed

values of censored ones. Now let,

YJ =

⎧⎪⎨⎪⎩yj, if , j = 1, ..., n1

ỹj, j = n1 + 1, ..., n1 + n0

Now, {YJ , xj}, j = 1, ..., n becomes a data without censoring. Hence a quantile re-

gression model can be applied to fit this data.
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Note 1: One other option for this imputation is to utilize the value Ê(Yj|Yj >

Cj, Xj = xj) at convergence. Our proposed method is an approximation of those

quantities, plus the introduced residual terms. It is more straight forward to apply

our method. Furthermore, the added residual term could remedy possible overfitting,

caused by using Ê(Yj|Yj > Cj, Xj = xj).

Note 2: Using x′jβ̂
BJ

+ r̂j − r̂(τ) as an imputation leads to a simplified justification

for the model performance. This result will be seen when we prove the consistency

and asymptotic normality.

Note 3: Introducing randomly selected modified residuals enables us to obtain more

estimates of the quantile regression coefficients when applying different subsamples

of the residuals. By taking an average of these estimates, we could efficiently control

extra variability introduced by adding randomly selected residuals. To be specific, if

we select m subsamples of residuals (with replacement), and for the kth subsample,

we define,

ỹ
(k)
j = x′jβ̂

BJ
+ r̂

(k)
j − r̂(τ), k = 1, ...m,

and use it to replace the censoring. The kth augmented sample leads to an estimate

of quantile regression coefficient at the τ th level, β̂
(k)
(τ), k = 1, ...,m. Our multiple

imputation estimate then takes the form,

β̂
∗
(τ) =

1

m

m∑︂
k=1

β̂
(k)
(τ).
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3.3 Consistency and Asymptotic Normality

In this section, we establish the consistency and asymptotic normality of the kth(k =

1, 2, ...,m) estimator β̂
(k)
(τ) which can be obtained by minimizing

Rn(β(τ)) =

n1∑︂
i=1

ρτ (yi − x′iβ(τ)) +
n∑︂

j=n1+1

ρτ (yj̃ − x′jβ(τ)).

We can rewrite Rn(β(τ)) as,

Rn(β(τ)) =

n1∑︂
i=1

ρτ (yi − x′iβ(τ)) +
n∑︂

j=n1+1

ρτ (yj − x′jβ(τ))+

n∑︂
j=n1+1

ρτ (yj̃ − x′jβ(τ))−
n∑︂

j=n1+1

ρτ (yj − x′jβ(τ))

=
n∑︂

i=1

ρτ (yi − x′iβ(τ)) +

(︃ n∑︂
j=n1+1

ρτ (yj̃ − x′jβ(τ))−
n∑︂

j=n1+1

ρτ (yj − x′jβ(τ))

)︃
We next redefine ỹj to recover yj as follows,

ỹj = x′jβ̂
BJ

+ r̂j − r̂(τ),

= x′jβ + εj + x′j(β̂
BJ

− β) + (r̂j − r̂(τ)− εj),

= yj + x′j(β̂
BJ

− β) + (r̂j − r̂(τ)− εj).

From Buckley and James (1979), we get that (β̂
BJ

−β)
p→ 0 as n→ ∞. Utilizing the

identity given by Knight (1998), which states,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫︂ v

0

(I(u ≤ s)− I(u ≤ 0))ds

where ρτ (·) is the quantile regression check function defined before and ψτ (u) =

τ − I(u < 0) is the quantile influence function.

ρτ (yj − x′jβ(τ)− (r̂(τ) + εj − r̂j))−ρτ (yj − x′jβ(τ)) = −(r̂(τ) + εj − rĵ)ψτ (yj − x′jβ(τ))

+

∫︂ r̂(τ)+εj−rĵ

0

(︁
I(yj − x′jβ(τ) ≤ s)− I(yj − x′jβ(τ) ≤ 0)

)︁
which does not depend neither β nor β(τ) since yj−x′jβ(τ) = εj(τ). Thus, the second

term of the objective function,
n∑︂

j=n1+1

(︃
ρτ (yj − x′jβ(τ)− (r̂(τ) + εj − rĵ))− ρτ (yj − x′jβ(τ))

)︃
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can be considered as a remainder R(c), which is a constant as a function of β(τ).

Minimizing Rn(β(τ)) is equivalent to minimize

Rn(β(τ)) ≈
n∑︂

i=1

ρτ (yi − x′iβ(τ)) + n0R(c). (3.6)

To prove consistency and asymptotic normality, the following conditions are required.

A1. Let Yi be an independent random variables with continuous CDF Fi and con-

tinuous density fi(ε) uniformly bounded away from 0 and ∞ at points εi(τ),

i = 1, 2, ..., n.

A2. There exists positive definite matrices C0 and C1 such that

1. limn→∞
1
n

∑︁n
i=1 xix

′
i = C0

2. limn→∞
1
n

∑︁n
i=1 fi(εi(τ))xix

′
i = C1

3. supi||xi||√
n

→ 0

Theorem 3.3.1. Under regularity conditions A1− A2 listed above,

β̂
(k)
(τ)

p→ β0(τ).

Proof:

The first step in the proof is to calculate the probability limit of the minimand. It

is convenient to normalize the minimand Rn(β(τ)) by subtracting off its value at the

true parameter β0(τ), which clearly does not affect the minimizing value β̂
(k)
(τ). That

is,

β̂
(k)
(τ) = argmin

β(τ)

1

n

[︃
Rn(β(τ))−Rn(β0(τ))

]︃
= argmin

β(τ)

1

n

n∑︂
i=1

[︃
ρτ (yi − x′iβ(τ))− ρτ (yi − x′iβ0(τ))

]︃
= argmin

β(τ)

1

n

n∑︂
i=1

[︃
ρτ (yi − x′iβ0(τ) + x′iβ0(τ)− x′iβ(τ))− ρτ (yi − x′iβ0(τ))

]︃
= argmin

β(τ)

1

n

n∑︂
i=1

[︃
ρτ (εi(τ)− x′iδ(τ))− ρτ (εi(τ))

]︃
,
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where, δ(τ) = β(τ)− β0(τ).

But since

−||xi|| · ||δ(τ)|| ≤ |εi(τ)− x′iδ(τ)| − |εi(τ)| ≤ ||xi|| · ||δ(τ)||

by the triangle and Cauchy-Schwarz inequalities (Cauchy–Schwarz inequality, 2001),

the normalized minimand is a sample average of i.i.d. random variables with finite

first and second moments. So, according to Khintchine’s law of large number (Law of

large numbers, 2002),

Rn(β(τ))−Rn(β(τ0)) →pR̄(δ(τ))

=E
[︁
Rn(β(τ0))−Rn(β(τ0))

]︁
=E
[︁
ρτ (εi(τ)− x′iδ(τ))− ρτ (εi(τ))

]︁
=E
[︁
(εi(τ)− x′iδ(τ))sgnτ (εi(τ)− x′iδ(τ))− εi(τ)sgnτ (εi(τ))

]︁
=E
[︁
(εi(τ)− x′iδ(τ)){sgnτ (εi(τ)− x′iδ(τ))− sgnτ (εi(τ))}

]︁
=E

[︃ ∫︂ 0

x′
iδ(τ)

(ν − x′iδ(τ))f(ν|xi)dν
]︃

(3.7)

Here, ρτ (u) has been expressed in terms of τ weighted sign function (Fitzenberger,

1997). That is,

sgnτ (u) ≡ τI(u > 0)− (1− τ)I(u < 0).

The last four equalities use the fact that

E[(x′iδ(τ))sgnτ{ετi}] = E[E[(x′iδ(τ))sgnτ{ετi}|xi]] = 0.

The integral in Equation 3.7 is well-defined for both positive and negative values of

x′iβ(τ), under the standard convention
∫︁ b

a
dF = −

∫︁ a

b
dF . By inspection, R̄(δ(τ))

equals zero at δ(τ) = β(τ) − β0(τ) = 0, and is non-negative otherwise since the

sign of the integrand is same as the sign of the lower limit x′iδ(τ). Furthermore,

Rn(βτ ) − Rn(β0(τ)) is convex for all n (Hjort & Pollard, 1993), so is its probability

limit R̄(β(τ)− β0(τ)). Thus, if β(τ) = β0(τ) is a unique local minimizer, it is also a
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global minimizer, implying the consistency of β̂
(k)
(τ). But, by the Leibnitz’ rule

∂R̄(δ(τ))

∂δ(τ)
=− E[xi ·

∫︂ 0

x′
iδ(τ)

f(ν|xi)dν]

∂R̄(0)

∂δ(τ)
=0

and

∂2R̄(δ(τ))

∂δ(τ)∂δ(τ)′
=E[xix

′
i · f(x′iδ(τ)|xi)]

∂2R̄(δ(τ))

∂δ(τ)∂δ(τ)′
=E[xix

′
i · f(0|xi)] ≡ C

which is positive definite. So δ(τ) = 0 = β(τ) − β0(τ) is indeed a unique local (and

global) minimizer of R̄(δ(τ)) = R̄(β(τ)− β0(τ)), and thus

β̂
(k)
(τ)

p→ β0(τ)

We next study the theorems about the asymptotic notmality of the estimator pro-

posed in the previous section.

Theorem 3.3.2. From Koenker (2008), under regularity conditions A1− A2 listed

above,
√
n(β̂(τ)− β0(τ)) ∼ N

(︁
0, τ(1− τ)C−1

1 C0C
−1
1

)︁
.

Theorem 3.3.3. For fixed m→ ∞ and n→ ∞, the estimator β̂
∗
(τ) is defined as the

average of m such τ thquantile estimators. By the properties of the normal distribution

and the Central Limit Theorem, we can show that

√
n(β̂

∗
(τ)− β0(τ))

D→ N

(︃
0, τ(1− τ)C−1

1 C0C
−1
1

)︃
.

Note that, when n and m both are fixed, the averaged estimator β̂
∗
(τ) is more stable

than using just one imputation.
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Remarks:

• The sampling variance was estimated by,

V̂ ar(β̂
∗
(τ)) =

1

m

m∑︂
k=1

V̂ ar(β̂
(k)
(τ))+

1

m− 1

m∑︂
k=1

(β̂
(k)
(τ)− β̂

∗
(τ))2

=I + II

• if n→ ∞ and m→ ∞,

V̂ ar(β̂
∗
(τ))− V̂ ar(β̂

(k)
(τ))

p→ 0

Hence, term (I) dominates the variance estimation.
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Chapter 4

Numerical Studies

To evaluate the performance of the proposed method, especially for small sample

sizes, we conducted extensive simulation studies. This section compares and displays

the simulation results for the censored quantile method (CQR) proposed by Portnoy

(2003) and quantile regression estimation method with BJ multiple imputation given

in the previous Chapter.

4.1 Simulation setup

We consider two cases in our simulation studies.

Case 1

Let Ti and Ci be the logarithm of failure time and censoring time. A set of data

(xi, Ti, Ci, δi) was generated from the following model.

Ti = b0 + b1x1i + ei, i = 1, 2, ..., n,

where b0 = 2, b1 = −0.2, x1i ∼ U(0,5) and the ei are iid N(0,1). To introduce

right censoring, the censoring variable C1
i and C2

i were generated from the uniform

distribution on the interval (0,10) and (0,6) resulting in 15% and 26% censoring rates,
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respectively. The observed response variable is Yi =min(Ti,Ci). First, we created

a data frame of 10000 observations including (Ti, C
1
i , C

2
i , xi), i = 1, ...10000. We

conducted τ th quantile regression using the quantreg package in R. These estimates

are considered as true parameters of a specific value of τ .

For each censoring rate, we randomly selected 1000 random samples with n=100,200

and 500. The current research conducted Monte Carlo simulation in R programming

to compare the performance of the multiply imputed quantile regression (MIQR) with

that of Portnoy’s CQR. The R package quantreg (version 4.24), were used to get the

results of CQR. The existing crq function in quantreg package provided confidence

intervals with coverage probability (CP) below 1 − α < 0.95. To avert the situation

we executed crq bootstrapping. The mean of the bias was reported based on 1000

simulation runs and 250 bootstrap samples were taken for estimating the standard

error (SE) of the estimates and the calculation of the CP of a 95% confidence interval of

the model parameters. Table 4.1 summarizes simulation results at different quantiles

0.1,0.25, 0.5,0.75 and 0.9.

It can be seen that irrespective of sample size and censoring level, at τ =0.1,0.25 and

0.5 MIQR and CQR have quite similar performance in terms of bias and standard error

(SE). Moreover, the bootstrap confidence intervals of both methods have coverage

probabilities close to the nominal level 1-α= 0.95. It is also observed that for small

sample size, censored quantile regression (CQR) fails to provide estimates at higher

quantiles (τ=0.9) while multiply imputed QR provides quantile estimates with small

bias. Moreover, at higher censoring rate (0.26) CQR method produces NA.

30



Table 4.1: Bias, SE(standard error) and CP(coverage probability) to the estimators of

β0 and β1 using methods (CQR, MIQR) at different quantiles (τ=0.1,0.25,0.5,0.75,0.9)

for censoring rates (CR) 15% and 26%

β0 β1

τ CR n Method Bias SE CP Bias SE CP

0.1 15% 100 CQR -0.0150 0.3549 0.946 0.0026 0.1296 0.962

MIQR -0.0242 0.3872 0.953 0.0027 0.1413 0.968

200 CQR -0.0143 0.2511 0.949 0.0028 0.0884 0.963

MIQR -0.0283 0.2659 0.951 0.0030 0.0932 0.969

500 CQR -0.0149 0.1551 0.961 0.0017 0.0543 0.960

MIQR -0.0314 0.1650 0.965 0.0019 0.0573 0.964

26% 100 CQR -0.0240 0.3521 0.957 0.0105 0.1298 0.958

MIQR -0.0372 0.3875 0.965 0.0095 0.1422 0.963

200 CQR -0.0090 0.2550 0.966 0.0025 0.0894 0.966

MIQR -0.0358 0.2726 0.967 0.0031 0.0947 0.961

500 CQR -0.0075 0.1575 0.952 -0.0021 0.0546 0.950

MIQR -0.0355 0.1687 0.957 -0.0018 0.0578 0.953

0.25 15% 100 CQR 0.0121 0.2935 0.945 -0.0074 0.1083 0.960

MIQR -0.0408 0.3189 0.952 -0.0075 0.1165 0.958

200 CQR 0.0002 0.2106 0.952 -0.0038 0.0736 0.959

MIQR -0.0501 0.2217 0.941 -0.0042 0.0769 0.954

500 CQR -0.0017 0.1273 0.963 -0.0044 0.0440 0.955

MIQR -0.0487 0.1364 0.941 -0.0051 0.0469 0.950

26% 100 CQR -0.0123 0.3015 0.962 0.0046 0.1099 0.955

MIQR -0.0970 0.3292 0.941 0.0039 0.1188 0.960

200 CQR 0.0042 0.2115 0.951 -0.0038 0.0731 0.950

MIQR -0.0810 0.2277 0.943 -0.0038 0.0779 0.953
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τ CR n Method Bias SE CP Bias SE CP

500 CQR 0.0061 0.1315 0.948 -0.0062 0.0451 0.953

MIQR -0.0752 0.1433 0.907 -0.0070 0.0487 0.944

0.5 15% 100 CQR 0.0338 0.2821 0.956 -0.0049 0.1032 0.952

MIQR -0.0828 0.3068 0.936 -0.0025 0.1118 0.955

200 CQR 0.0264 0.1944 0.948 -0.0030 0.0681 0.952

MIQR -0.0921 0.2132 0.908 -0.0001 0.0739 0.955

500 CQR 0.0214 0.1218 0.948 -0.0042 0.0420 0.953

MIQR -0.0955 0.1316 0.864 -0.0003 0.045 0.942

26% 100 CQR 0.0199 0.2996 0.957 0.0016 0.1086 0.958

MIQR -0.1944 0.3289 0.890 0.0098 0.1180 0.950

200 CQR 0.0286 0.2060 0.958 -0.0051 0.0715 0.962

MIQR -0.1819 0.2270 0.868 0.0031 0.0780 0.951

500 CQR 0.0205 0.1278 0.954 -0.0024 0.0439 0.958

MIQR -0.1881 0.1402 0.711 0.0049 0.0478 0.948

0.75 15% 100 CQR 0.0256 0.3204 0.950 -0.0103 0.1175 0.948

MIQR -0.1162 0.3499 0.918 -0.0066 0.1270 0.946

200 CQR 0.0238 0.2267 0.945 -0.0078 0.0785 0.958

MIQR -0.1279 0.2421 0.909 -0.0017 0.0833 0.962

500 CQR 0.0098 0.1387 0.952 -0.0053 0.0479 0.963

MIQR -0.1356 0.1474 0.825 -0.0002 0.0505 0.955

26 % 100 CQR NA NA NA NA NA NA

MIQR -0.2774 0.3909 0.858 0.0122 0.1417 0.955

200 CQR 0.0222 0.2488 0.963 -0.0065 0.0856 0.958

MIQR -0.2698 0.2660 0.801 0.0081 0.0910 0.962

500 CQR 0.0100 0.1513 0.951 -0.0047 0.0515 0.955

MIQR -0.2810 0.1627 0.570 0.0110 0.0550 0.955

32



τ CR n Method Bias SE CP Bias SE CP

0.9 15% 100 CQR NA NA NA NA NA NA

MIQR -0.0704 0.6908 0.925 0.0010 0.2485 0.971

200 CQR NA NA NA NA NA NA

MIQR -0.1310 0.3204 0.899 0.0099 0.1117 0.954

500 CQR 0.0121 0.1784 0.956 0.0060 0.0618 0.962

MIQR -0.1422 0.1883 0.851 0.0109 0.0646 0.969

26% 100 CQR NA NA NA NA NA NA

MIQR -0.2044 0.8784 0.862 0.0224 0.3094 0.978

200 CQR NA NA NA NA NA NA

MIQR -0.2840 0.3892 0.809 0.0201 0.1311 0.974

500 CQR NA NA NA NA NA NA

MIQR -0.3115 0.2110 0.623 0.0252 0.0713 0.947

Case 2

To gain more insight, we further execute another simulation. In the second set of

simulations, the data were generated from similar setting as in the previous case, but

the number of covariates was increased. The failure times were generated from the

log-linear model,

Ti = b0 + b1x1i + b2x2i + ei i = 1, 2, ..., n

where, xixixi = (1, xi1, xi2)
T , x1x1x1 was simulated from Unif(0,5) and x2x2x2 from Bernoulli(0.5).

ϵi was generated fromN(0, 1). The initial quantile regression coefficients are (b0, b1, b2)

=(2,0.2,1.2). The censoring times were generated as Ci ∼ Uniform(0, θ). We take

θ=(20,12) to produce 15% and 26% of censoring. Similar to previous setup, at different

quantiles, with n=100,200 and 500, the results of CQR and MIQR were summarized

in Table 4.2. At higher quantile level (τ=0.75,0.9), the performance of the multiply

imputed quantile method is satisfactory with two covariates including one discrete
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and one continuous variates. From the simulation results, it is observed that for

τ=0.75, CQR produces NA for n=100 at 15% and 26% of censoring rates. It is also

depicted that for extreme quantile, such as τ = 0.9, Portnoy’s method fails to obtain

estimates even for small sample size (n = 100) at lower censoring rate (15%). Even if

we increased sample size (n=500) at the censoring rate (26%), CQR did not always

create estimates of the model parameters. But MIQR succeeded to obtain reasonable

estimates.
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Table 4.2: Bias, SE(standard error) and CP(coverage probability) to the esti-

mators of β0, β1 and β2 using methods (CQR, MIQR) at different quantiles

(τ=0.1,0.25,0.5,0.75,0.9) for censoring rates (CR) 15% and 26%

β0 β1 β2

τ CR n Method Bias SE CP Bias SE CP Bias SE CP

0.1 15% 100 CQR 0.0499 0.3981 0.953 -0.0065 0.1340 0.959 0.0014 0.3603 0.975

MIQR 0.0618 0.4249 0.955 -0.0009 0.1424 0.971 0.0355 0.3843 0.975

200 CQR 0.0588 0.2965 0.948 -0.0115 0.0928 0.971 -0.0077 0.2591 0.962

MIQR 0.0677 0.3095 0.959 -0.0058 0.0962 0.972 0.0258 0.2690 0.972

500 CQR 0.0647 0.1736 0.932 -0.0134 0.0564 0.950 -0.0169 0.1600 0.959

MIQR 0.0717 0.1805 0.933 -0.0078 0.0583 0.957 0.0192 0.1658 0.959

26% 100 CQR 0.0935 0.4019 0.946 -0.0110 0.1390 0.957 -0.0224 0.3678 0.964

MIQR 0.1082 0.4312 0.951 -0.0010 0.1475 0.969 0.0380 0.3927 0.970

200 CQR 0.0684 0.3075 0.940 -0.0121 0.0969 0.964 -0.0100 0.2675 0.962

MIQR 0.0768 0.3207 0.945 -0.0016 0.1001 0.967 0.0567 0.2778 0.962

500 CQR 0.0530 0.1775 0.930 -0.0100 0.0583 0.948 -0.0131 0.1654 0.963

MIQR 0.0601 0.1859 0.937 0.0006 0.0604 0.957 0.0512 0.1716 0.954

0.25 15% 100 CQR 0.0063 0.3335 0.959 0.0069 0.1141 0.971 -0.0329 0.3020 0.956

MIQR 0.0089 0.3377 0.961 0.0125 0.1137 0.975 -0.0009 0.3039 0.955

200 CQR 0.0111 0.2481 0.958 0.0052 0.0771 0.976 -0.0331 0.2152 0.959

MIQR 0.0124 0.2459 0.960 0.0108 0.0755 0.970 -0.0020 0.2123 0.963

500 CQR 0.0164 0.1419 0.950 0.0027 0.0457 0.965 -0.0390 0.1296 0.935

MIQR 0.0184 0.1429 0.954 0.0082 0.0456 0.957 -0.0070 0.1297 0.948

26% 100 CQR 0.0247 0.3395 0.969 0.0078 0.1187 0.960 -0.0487 0.3102 0.966

MIQR 0.0295 0.3367 0.959 0.0164 0.1152 0.959 0.0082 0.3054 0.963

200 CQR 0.0217 0.2554 0.960 0.0032 0.0797 0.967 -0.0319 0.2208 0.963

MIQR 0.0228 0.2485 0.950 0.0125 0.0763 0.958 0.0235 0.2133 0.954

500 CQR 0.0055 0.1461 0.926 0.0051 0.0477 0.940 -0.0291 0.1364 0.949

MIQR 0.0077 0.1452 0.930 0.0141 0.0467 0.942 0.0269 0.1329 0.935

0.5 15% 100 CQR 0.0116 0.3126 0.963 -0.0003 0.1074 0.970 -0.0213 0.2848 0.961

MIQR -0.0360 0.2960 0.948 -0.0009 0.0995 0.960 -0.0221 0.2669 0.948
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τ CR n Method Bias SE CP Bias SE CP Bias SE CP

200 CQR 0.0226 0.2269 0.951 -0.0010 0.0705 0.967 -0.0206 0.1954 0.963

MIQR -0.0266 0.2166 0.953 -0.0011 0.0664 0.962 -0.0219 0.1863 0.959

500 CQR 0.0269 0.1336 0.952 -0.0038 0.0432 0.976 -0.0239 0.1228 0.956

MIQR -0.0226 0.1280 0.966 -0.0040 0.0409 0.967 -0.0237 0.1162 0.950

26% 100 CQR 0.0276 0.3327 0.966 -0.0004 0.1152 0.967 -0.0250 0.3039 0.965

MIQR -0.0535 0.2963 0.966 -0.0007 0.0995 0.946 -0.0302 0.2679 0.949

200 CQR 0.0318 0.2366 0.960 -0.0048 0.0749 0.965 -0.0201 0.2070 0.964

MIQR -0.0530 0.2149 0.943 -0.0043 0.0662 0.949 -0.0196 0.1853 0.938

500 CQR 0.0147 0.1407 0.943 -0.0008 0.0459 0.956 -0.0143 0.1302 0.952

MIQR -0.0690 0.1271 0.914 -0.0008 0.0405 0.942 -0.0135 0.1150 0.933

0.75 15% 100 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.1221 0.3362 0.947 -0.0040 0.1135 0.964 -0.0491 0.3026 0.962

200 CQR -0.0002 0.2526 0.961 -0.0002 0.0779 0.967 -0.0177 0.2183 0.960

MIQR -0.1058 0.2411 0.937 -0.0064 0.0736 0.968 -0.0507 0.2071 0.946

500 CQR 0.0081 0.1490 0.961 -0.0035 0.0483 0.965 -0.0060 0.1364 0.960

MIQR -0.0992 0.1424 0.897 -0.0089 0.0457 0.958 -0.0418 0.1295 0.935

26% 100 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.1752 0.3321 0.923 -0.0145 0.1118 0.967 -0.0734 0.2984 0.953

200 CQR 0.0114 0.2724 0.963 -0.0041 0.0864 0.969 -0.0053 0.2395 0.970

MIQR -0.1784 0.2415 0.879 -0.0137 0.0743 0.954 -0.0723 0.2079 0.948

500 CQR 0.0012 0.1596 0.948 -0.0010 0.0523 0.955 0.0003 0.1494 0.963

MIQR -0.1844 0.1433 0.732 -0.0114 0.0458 0.941 -0.0643 0.1295 0.940

0.9 15% 100 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.0891 0.4272 0.945 -0.0128 0.1418 0.969 -0.1207 0.3860 0.958

200 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.0758 0.3121 0.950 -0.0126 0.0958 0.965 -0.1183 0.2692 0.960

500 CQR 0.0481 0.1897 0.955 -0.0088 0.0609 0.966 -0.0540 0.1733 0.944

MIQR -0.0708 0.1815 0.937 -0.0142 0.0581 0.958 -0.1005 0.1654 0.907

26% 100 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.1715 0.4296 0.942 -0.0222 0.1438 0.966 -0.1588 0.3903 0.958

200 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.1611 0.3148 0.917 -0.0236 0.0977 0.954 -0.1465 0.2711 0.935

500 CQR NA NA NA NA NA NA NA NA NA

MIQR -0.1605 0.1873 0.864 -0.0195 0.0599 0.950 -0.1459 0.1708 0.891
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4.2 An application: HMO-HIV data

As an illustration, we applied the proposed method to HMO-HIV data from Hosmer

and Lemeshow (Hosmer, Lemeshow, & May, 1999). A total of 100 patients were

chosen and followed till death due to AIDS or AIDS related complications, until the

end of the study or until the subject was lost to follow-up. The outcome variable of

interest is survival time (month) to death after a confirmed diagnosis of HIV. Two

covariates were considered: age (in years) at the start of follow-up and status of prior

IV drug use (1=yes, 0=no).

Table 4.3: Estimated parameters (EP), their standard errors (SE) and correspond-

ing 95% confidence intervals (CI) from fitting both the proposed quantile regres-

sion model (MIQR) and censored quantile regression (CQR) at three quartiles,

τ = 0.25, 0.5, and 0.75

MIQR CQR

τ Covariates EP SE CI EP SE CI

0.25 Intercept 4.369 0.919 (2.569, 6.170) 4.601 1.039 (2.564,6.637)

Age -0.077 0.025 (-0.126, -0.028) -0.081 0.028 (-0.136,-0.027)

Drug -0.717 0.441 (-1.581, 0.147) -0.780 0.457 (-1.675,0.115)

0.5 Intercept 5.071 0.641 ( 3.816, 6.327) 5.668 0.741 (4.215,7.120)

Age -0.079 0.017 ( -0.113, -0.046) -0.090 0.019 (-0.127,-0.053)

Drug -0.770 0.212 (-1.185, -0.354) -0.864 0.253 (-1.360,-0.368)

0.75 Intercept 5.566 0.508 (4.570, 6.562) NA NA NA

Age -0.075 0.014 (-0.102, -0.047) NA NA NA

Drug -1.143 0.250 (-1.632, -0.654) NA NA NA

0.9 Intercept 5.430 0.643 (4.169,6.691) NA NA NA

Age -0.056 0.020 (-0.095,-0.017) NA NA NA

Drug -1.43 0.262 (-1.949,-0.919) NA NA NA
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Estimators:           MIQR                CQR

Figure 4.1: Estimators for the covariate effects in HMO data and dashed lines represnt

the 95% CI for corresponding estimates

Of the subjects who were alive at the end of study or lost to follow-up, we only

got partial or incomplete observation of survival time. In survival analysis, these

incomplete data are referred as censored and HMO-HIV data included 20% of these

type. A total of 250 bootstrap samples were performed for both methods (Portnoy’s

CQR and proposed MIQR). Table 4.3 displays the estimated quantile regression coef-

ficients under Portnoy’s CQR method and the proposed MIQR method, including the

variance estimates and the 95% pointwise confidence intervals. Figure 4.1 provides

an overall summary of the coefficient movements along with the 95% pointwise con-

fidence intervals across the quantile levels. The findings indicate that both age and

prior use of drugs are negatively related predictors, implying that increases in either

variable are associated with shorter survival times. In this application of our proposed

method, we can observe from Table 4.3 that Portnoy’s method fails to get estimates

of the covariates for some bootstrap samples for higher quantiles, such as τ = 0.75

and τ = 0.9. Our proposed method MIQR fulfilled the purpose to obtain estimates

with standard errors and 95% confidence intervals of covariates age and drug. The

two methods worked equally well for lower quantiles.
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Chapter 5

Conclusion

In the thesis, we introduced a novel approach that utilizes model-based multiple impu-

tations of censored observations through the Buckley-James estimation approach. Our

method ensures consistent estimators of model parameters and achieves asymptotic

normality when n → ∞. This advancement addresses and overcomes the limitations

of traditional censored quantile regression methods, particularly in estimating upper

quantiles.

Through extensive simulation studies, we demonstrated the efficacy of our approach.

The simulation studies reveals that our proposed method worked equally well with

the Portnoy’s CQR for cases with lower censoring rate. When the censoring rates are

high, τ = 0.75 or 0.9, our method outperforms the method of Portnoy. Additionally,

the application of our method to a Health Maintenance Organization (HMO) dataset

provided a practical illustration of its utility, further validating the theoretical find-

ings. In the future, we plan to extend the proposed method to multivariate failure

times by employing the copula method.
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Appendix

Table A.1: Bias, SE(standard error) and CP(coverage probability) to the estimators

of β0 and β1 using ei ∼ Gumbel(0, 1) at different quantiles (τ=0.1,0.25,0.5,0.75,0.9)

for censoring rates (CR) 16% and 28%

β0 β1

τ CR n Method Bias SE CP Bias SE CP

0.1 16% 100 CQR -0.0930 0.6423 0.944 0.0156 0.2385 0.945

MIQR -0.0801 0.6833 0.945 0.0174 0.2544 0.960

200 CQR -0.0481 0.4593 0.949 -0.0001 0.1637 0.963

MIQR -0.0456 0.4702 0.954 0.0013 0.1681 0.965

500 CQR -0.0546 0.2867 0.945 0.0058 0.1005 0.955

MIQR -0.0551 0.2944 0.960 0.0071 0.1032 0.960

28% 100 CQR -0.0743 0.6493 0.950 0.0018 0.2434 0.960

MIQR -0.0673 0.6868 0.958 0.0036 0.2593 0.966

200 CQR -0.0799 0.4685 0.951 0.0132 0.1648 0.959

MIQR -0.0828 0.4778 0.962 0.0153 0.1685 0.960

500 CQR -0.0631 0.2860 0.958 0.01165 0.0992 0.967

MIQR -0.0636 0.2913 0.967 0.0126 0.1016 0.965
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β0 β1

τ CR n Method Bias SE CP Bias SE CP

0.25 16% 100 CQR 0.0237 0.4245 0.954 -0.0101 0.1570 0.964

MIQR -0.0755 0.4270 0.958 -0.0012 0.1572 0.960

200 CQR 0.0435 0.2981 0.947 -0.0186 0.1061 0.956

MIQR -0.0531 0.2972 0.929 -0.0116 0.1054 0.940

500 CQR 0.0455 0.1843 0.930 -0.0171 0.0642 0.935

MIQR -0.0537 0.1874 0.939 -0.0091 0.0647 0.938

28% 100 CQR 0.03951 0.4301 0.944 -0.0153 0.1589 0.967

MIQR -0.1184 0.4196 0.937 -0.0023 0.1550 0.948

200 CQR 0.0563 0.3042 0.947 -0.0206 0.1063 0.957

MIQR -0.1116 0.2941 0.928 -0.0061 0.1022 0.943

500 CQR 0.0450 0.1864 0.942 -0.0145 0.0649 0.961

MIQR -0.1157 0.1823 0.907 -0.0023 0.0630 0.952

0.5 16% 100 CQR 0.0392 0.3262 0.954 -0.0144 0.1189 0.952

MIQR -0.2012 0.3640 0.901 0.0039 0.1312 0.941

200 CQR 0.0407 0.2213 0.941 -0.0164 0.0772 0.939

MIQR -0.1885 0.2509 0.868 -0.0009 0.0866 0.937

500 CQR 0.0470 0.1389 0.922 -0.0168 0.0480 0.934

MIQR -0.1795 0.1560 0.784 -0.0021 0.0532 0.935

28% 100 CQR 0.0343 0.3437 0.964 -0.0112 0.1248 0.965

MIQR -0.3882 0.3656 0.792 0.0179 0.1325 0.953

200 CQR 0.0626 0.2379 0.955 -0.0205 0.0824 0.963

MIQR -0.3701 0.2608 0.674 0.0108 0.0893 0.931

500 CQR 0.0512 0.1475 0.935 -0.0170 0.0499 0.950

MIQR -0.3858 0.1626 0.356 0.0177 0.0548 0.934
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β0 β1

τ CR n Method Bias SE CP Bias SE CP

0.75 16% 100 CQR NA NA NA NA NA NA

MIQR -0.2083 0.3424 0.898 0.0103 0.1232 0.954

200 CQR 0.0237 0.2102 0.960 -0.0082 0.0731 0.962

MIQR -0.1995 0.2384 0.857 0.0067 0.0821 0.959

500 CQR 0.0271 0.1300 0.934 -0.0085 0.0447 0.938

MIQR -0.1898 0.1462 0.728 0.0053 0.0494 0.943

28% 100 CQR NA NA NA NA NA NA

MIQR -0.4980 0.3980 0.728 0.03990 0.1408 0.949

200 CQR NA NA NA NA NA NA

MIQR -0.4686 0.2768 0.560 0.0341 0.0931 0.937

500 CQR 0.0298 0.1483 0.949 -0.0088 0.0499 0.963

MIQR -0.4718 0.1683 0.201 0.0347 0.0557 0.906

0.9 16% 100 CQR NA NA NA NA NA

MIQR -0.1651 0.4488 0.894 -0.0012 0.1606 0.974

200 CQR NA NA NA NA NA NA

MIQR -0.1762 0.2534 0.851 -0.0001 0.0874 0.960

500 CQR 0.01207 0.1423 0.937 -0.0104 0.0488 0.946

MIQR -0.1674 0.1527 0.788 -0.00020 0.0520 0.949

28% 100 CQR NA NA NA NA NA NA

MIQR -0.4318 0.5568 0.780 0.0295 0.1961 0.973

200 CQR NA NA NA NA NA NA

MIQR -0.4379 0.3101 0.629 0.0279 0.1041 0.952

500 CQR NA NA NA NA NA NA

MIQR -0.4470 0.1812 0.308 0.0296 0.0604 0.932
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