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ABSTRACT

Numerical simulation techniques are widely used to investigate the behavior of

submarines during the design stage. The accuracy of these techniques depend upon the

accurate detennination of the hydrodynamic coefficients for the model.

The Marine Dynamic Test Facility (MOTF) is a new-six-degree-of-freedom foroed

motion testing rig. The rig has the ability to test underwater vehicles in a manner that

makes it possible to determine the hydrodynamic coefficients in the equations of motion.

Multi-variant linear regression is used to obtain the hydrodynamic coefficients from the

experimental data.

In this study a neural nerwork technique to identify the hydrodynamic model from

experimental data is investigated. The technique uses the model trajectory (motion

history) to predict the hydrodynamic coefficients of the model. A single MDTF generated

maneuver was used to train the nerwork. The trained nerwork was then tested using

different maneuvers and the nerwork predictions were compared to the aetuaI MDTF

measured foroes and moments.

Results obtained from the neural network technique indicate that the technique can be

used to predict the hydrodynamic model of underwaler vehicles. The use of this

technique can dramatically cut the running costs to conduct experiments on new models.
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1. INTRODUCTION AND LITERATURE SURVEY

The motion of a submarine is a very complicated process thaI involves many factors such

as the submarine shape .nd depth of operation. In the early 1940's naval researchers

needed to predict the motion of naval submarines in the design stage 10 evaluate the

vehicle's performance and ability to cany out a set of prescribed maneuvers. Numerical

simulation techniques wm widely used during that time.

Due to the development in naval submarine. design, the shape of the vehicle became no

longer standard. in addition the Iype and shape of the hydroplanes thaI conlIOl the motion

of the boat changed dramatically from one type 10 anolher. These changes inllOduced

new challenges 10 the process of estimating the hydrodynamic coefficients.

Cunendy there are three major approaches to investigare the motion of • submarine.

These are the theoretical approach, the experimental approach, and the parametric

identification approach. Parametric identification methods provide new tools thaI have

been used ...endy to solve a number of ship motion problems. In dOs research a new tool

for predicting the submarine motion. based on a parametric identification lechnique, is

presented.



1.1. THEORETICAL ApPROACH.

Numerous studies to calculale the hydrodynamic coefficients of submarines can be found

in the literature. Bohlmann (1990) utilized tbe three dimensional flow theory to calculale

the hydrodynamic coefficients of a submarine in an six degrees of freedom. The study

solved the po.ential flow problem using a singularity distribution and was nOl limited to

slender bodies. Wall (1988) developed an analytical method to estimale the value of the

added mass coefficients of the submarine. The method calculares the added mass of the

submarine by dividing the submarine into several 8eometrical components. e.g. sail, toil.

fins.... elC. The added mass was calculated for each component by calculating the added

mass for each representative ellipsoid.

Mackay (1988) developed a semi~mpirical method for calculating the out-of-plane heave

fo",e and pitch mOment for a submarine. The method is based on polentiaJ flow theory

and a first order panel method. The method over-predicts the out-of-plane component due

to the absence of the modeling of the cross flow separation in the after-body of the

submarine. Mackay and Conway (1990) modeled the cross flow separation by

introducing a single doublet sheet along an experimentally delenllined separation line.

Papoulias and Mckinley (1994) studied the stability of a submarine during its sleady stale

vertical ascent. They considered a free positive ascent case to investigale the response

with respect to the stetn and the bow plane deflections, excess buoyancy, and re\alive

position between the center of gravity and the center of buoyancy. A nonlinear study of

the dynamic stability of a submarine in a dive maneuver was also presented by Papou\ias

and Papadimitriou (1995). The """"""hers presented a framework to cak:ularc the critical



speed of the vehicle in tenns of its metacentric heigh~ the longitudinal separation of the

center ofgravity and center of buoyancy. and the dive plane angle.

1.2. Experimental Methods

Captive model tests are used to determine the coefficients in the equations of motion ofa

model. The use of the rotating arm and planar motion mechanism (PMM) allowed the

incorporation of some nonlinear tenns and time histories effects, see Feldman (1995) and

Kalske (1992). Multi-degree-of·freedom test rigs are being used at present to determine

these coefficients. see WiUiams et al. (1m). Experimental methods are expensive to use

and their results suffer from scale effects.

An alternative to the captive model tests is the wind nmnel test. Experiments on a deeply

submerged submarine model can be conducted. The advantage of this procedure over

conventional captive model tests is lhat in the wind nmnel the duration of the test can be

extended to a much longer time than in the case of towing tank experiments. A wind

nmnel experiment can also be used for flow visualization and for studying the effects of

propulsion on the submarine model hydrodynamics, see Wan et al. (1993).

1.3. Parametric Identification Approach

Parametric identification techniques provide another way for determining the

hydrodynamic model of the submarine. Parametric identification approaches use the

relation between the input and the output to estimate the hydrodynamic forces and



moments while in the experimental approach these forces and moments are measured

dire<:tly. The method assumes a certain structure for the mathematical model. The

coefficients of the mathematical model are then estimated sucb that the model produces

an output whicb matcbes the measured OUtpUL Artificial neural networks (ANN) bave

been used for many surface sbips as a parametric identifier of the vebicle's

bydrodynamics.

Neural networks bave been sbown to yield robust models for ship motions. Haddara

(1995) used the technique to analyze the rolling motion of a ship at sea. He also used

neural networks to characterize the ship coupled beave and pitcb motions, see Haddara

and Xu (1999), and to analyze the free roll decay curve, see Haddara and Hinchey (1995).

Hincbey also used this technique to fit ship resistance data for an R-Class icebreaker ship

model, see Hincbey (1994), and to pmlict the loads on sub-sea robots, Rivera and

Hincbey (1999). Haddam and Wang (1996) used this technique to identify the coupled

sway and yaw motion for a ship undergoing a series of standard maneuvers. Lainiotis and

Plataniotis (1994) used an adaptive neural network to predict the cumnt as well as future

ship position as a space vector.

Multi-linear regression may not yield accurate estimates. The aecuracy of the technique

decreases as the number of variables in........ Neural networks bave been sbown to

yield a robust resuJt regardless of the number of variables in the functional "'lation.

However the classical division of force into components whicb are functions of added

masses and damping coefficients is usually lost.



1.4. Scope and Objectives.

The objective of this study was to develop a parametric identification 1001 for predicting

the hydrodynamic forces aCling on a submarine model using the model motion history.

The proposed tool uses a neural network. rechnique to identify the hydrodynamic forces

and moments. DolO oblained from mulli degree-of·freedom tests were used to tr:Iin the

network..

The fully trained network. was then used to generale more maneuvers with a limited

compulOlionai demand. This will reduce the cost associated with experimental testing of

submarine models since only a limited number of maneuvers have to be actually

performed to obtain the full hydrodynamic model of the submarine.

1.5. Methodology

A neural network. model was developed. Digitally generated dolO and experimental dolO

were used to tr:Iin and validate the model. The motion of a submarine undergoing a

coupled beave and pilch sinusoidal motion was numerically generated at different

frequencies using a Runge·KuRa algorithm. Experimental dolO were oblained from the

Marine Dynamic Test Facility (MOTF). The maneuvers considered were horizontal

circular arcs, and sway chirp maneuvers. A t!Jree..layer feedforward backpropagation

neural network. was used for system identification. The network. prediction was then

compared to a multiple linear regression estimate ofthe model hydrodynamic forces and

moments.



1.6. THESIS OunlNE

Chapler 2 gives background information about neural networks and their archi,ectun:; it

also discusses some of the training algorithms. ChapleT 3 describes the mathematical

formulation of the equations of motions. the neural network algorithm. and the

multivariate linear n:gn:ssion. Chapler 4 describes tbe experimental setup and the neural

ne'work approach used. Results obtained using experimental data as well as digitally

generated data are included in Chap,er 5 while ChapleT 6 outlines the conclusions. Some

recommendations for future work are stated in chapler 7.



2. NEURAL NETWORKS

Tasks that involve pattem recognition or intelligence are very difficult to automale; such

tasks are performed easily by animals in their daily activities. Understanding how the

biological neural system works allowed rese:m:hers to develop anificial systems thaI

mimic the biological brain in performing a variety of computalions and intelligent tasks.

2.1. BIOLOGICAL NEURAL SYSTEMS

A biological neural syslem consists of a number of neurons; each neuron is composed of

a cell body, a lubular axon, and a number of dendrites, see Figure 2. J. Data propagates

from the dendrites of one neuron to the Olher through a gap synapse. The magnitude of

the signal received by a neuron depends upon the SllCIlgt/l -efficiency" of the synaptic

connection between that neuron and the one that is sending the signal. A neuron will fire

a signal if its excitation exceeds a critical amount, called the threshold. It will then send

that signal along its axon. A signal propagates down the axon and reaches the synapses,

sending signals of various strengths 10 Olher neurons.



-
Figure 2.1 Biological neuron

2.2. ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) consists of a number of processing elements

(nod..) equivalent to the neurons in biological SYSlCms. Synapses"", modeled by links

between these nodes while the synaplic efficiencies "'" replaced by weights. Nodes at the

same level fonn a layer. Each ANN consists of an inpullayer, output layer, and a number

of hidden layers. Inputs to each node "'" sUlIllllCd up and the node then fires an outpUt

according to the assigned activation function.

All ANN models proposed so far "'" based on the following assumptions

I. The position of the node of the incoming connection is imolcvanl.

2. Each node has a single OUtpul value, which is <IiS1ributed to other nodes vill

connections im:spec1ive of their position.

3. All inputs to the same level come at the same time or remain active long enough for

computations 10 occur, Mcluotra el al (1997).



2.3. ANN SQUASHING FUNCTIONS

Squashing functions can be classified into differentiable and non-differentiable functions.

Differentiable and non-<lifferentiable functions can be defined according to the function

shape. A differentiable function has a smoolh shape and it is needed for some adaptive

learning algorithms. A non-<lifferentiable, discontinuous, function gives a true binary

OUtput Discontinuous functions can be used in classification netWorks.

2.3.1. STEP FUNCTIONS:

A slep function is defined as

f(ntr) ={: if ntt <c}
if rut' >c

2.1

This function is easy to implement The net threshold is represented by c, see Figure 2.2,

and the function has only two slates ON if net> c and OFF otherwise.

The step function is used in class identification where the inpul belongs to a cenain class

if its value is greater than a cenain value.



............................................

Figu", 2.2 Step Function

2.3.2. SIGMOID FUNCTIONS:

This is the IllOSl cOlMlOllly used function. also called the S shaped function; the

activation of the node is as follows:

1
f(net) =Z +1 -o("'l+b

+e
2.3

A typical sigmoid function is shown in Fig"", 2.3. The advantage of such a function is its

smoothness.

10
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I
~

Fig= 2.1 Sigmoid Function

2.3.3. GAUSSIAN FUNCTIONS.

Another continuous function that is used in the ANN is known as the bell shaped

function, see Figure 2.2

I If.'-')'
f(net)= ~ e-R-;

.;2tru

nil

2.4

Such a function requires prior knowledge of certain S1atistical values such as the mean

and the variance of the input, which imposes some limits on its application. The bell

shaped function can be used in class identification depending on how close the input is to

the mean value lL

II



Figure 2.2 Bell shaped function

2.4. Types of Neural Networks:

A single node neural network is insufficient for most practical problems and • multi-node

network is normally used. The way those nodes are connected to eacb other determines

how the computational tasks are performed by the network. Neural networks are

classified according to their architecruraI design. This section discusses some of the most

popular designs.

12



2.4.1. LAYERED NETWORK

This type of ANN, also called ,.cwrenl neural network, is panitioned into layers. The,.

is no connection between layer k to j if k > j, see Figure 2.3; connections between nodes

in the same layer exist except for the input layer.

,.,,,,....- ""...........
Figure 2.3 Layered neural network

2.4.2. Acycuc NETWORK

\
\

This is a subclass of the layered network with no intra-layer connections i.e. no

connections bctwccn nodes in the same layer. These are simpler nelS than the recwrenl

ones with less computational demands, which make them easy to implcmcnL Figure 2.4

shows an acyclic ncural network.

I]



Lay.rO
Inputlaytr

2.4.3.

HiddenLaym

Figure 2.4 Acyclic neural network

FEEDFORWARD NETWORKS

Again this is another subclass of layered networks, where the only COMCCtiOns exisl

between layer j and k if k = j +l. These are the most in-use networks and they are

described by the number of nodes in each layer. For example. Figure 2.5 shows a 3.2.3.2

feedforward net In general feedforward networks have one or two hidden layers.

From this point forward only feedforward neural networks with one hidden layer will be

considered.

14



Lay., 0
lnputlay.r

Hidd.nlay."

Figure 25 Feedforward neural network

2.5. Backpropagation Training Algorithm

The objective of a supervised training algorithm such as the backpropagation algorithm is

to minimize the mean square error between the desired output and the network one. To

elaborate on this one can consider the framework proposed by Mehrotta el al. (1997).

The inpul pattern to the network is P. For each inpul veclorx, there is a desired OUtpUI

2.5

One would expecl some error between the desired OUtpUI and the network outpUL The

algorithm objective is to manipulate the weights so that this error would be minimal. If

the nerwork output is:

2.6

Then the oetworIc error is

IS



,
Error = LErr(0" d'l,-, 2.7

The function Err(..,dol should be a oonnegative function. One way of computing this

function is to express

This function is a differentiable funetion. Moreover it is easy to apply to the

backpropagation algorithm since the derivative of the resulting quadratic function is

linear and easy to compute.

To discuss the backpropagation in depth one can assume the following case for a three

layer network.

Each node receives an input vector of:CPJ where 'p' represents the pattern number while

'i' represents the jib node in the layer.

The input to the/II node in the hidden layer is net j = L;..oQ) i.i x,. I

The output ofthej~ node XPj = 1)(net j), where ais a sigmoid function.

The input to the k.t11 node in the output layer is net It= LJ"" •. J %,.)

The output of the k~ node in the output layer is Op~=1)(net ,).

One way to minimize the Mean SqWIR Error (MSE) is to apply the gradient descent

method. Since the net output depends on the net ~ights, the MSE is also a function of

the weights w. According to the gradient descent the direction of the weights change is

the same as - ao/aw' see Widrow and Lehr (1990). Following this scenario the weight

change can be described as follows

16



Sin<:e the change in the weights =ults in changing the net output, one can write

oE oE fJo. onel.
aah,j = 00" antI i ooJt,j

Equation 2.10 can be simplified into

Now let us consider the weights between the input and hidden layers.

~ = t {-2(d. -oo)c'(net.ja)'.iC'(net i)Xi}
aOJi.j 1.1

2.8

2.9

2.10

2.11

2.12

2.13

The change of weight is then calculated for the weight between the output and hiddeo

layer using the actual error while the change of weight for the lower level is calculated

using the weighted sum of errors coming to the hiddeo node from the output node. The

error at a node is calculated in the direction opposite to the propagation of the node

ou!pUL Applying this analogy to equations 2.11 and 2.13 one can write the change of

weight for network training using the p" pattern as:

AaJt.i =T'/o".u,./

ACtJi./ =T'/1Jp./X,.i

2.14

2.15

17



where

0,.' = (d,.' -0,.,)· 0,.• ·(1-0,.•)

and

"',1= L6',llfA,j· X,,/·(l-X',I)
•

2.16

2.17

Training using equation 2.14 and 2.15 results in the manipulation of the network weights

to achieve the optimum weights that result in the minimum error. Weights can be updated

after each pattern (training per pattern) or after all the training patterns pass through the

net (training per epoch). The criteria for terminating the training and the choice of the

suilable training rate "~" depends on the user's experience.

2.6. Momentum Update

Backpropagation leads the neural network error to a certain minimum. There is a chance

that this minimum is a local minimum different than the global minimum. The network

then will stick to this local condition and the algorithm will prevent the error from

decreasing further. One can prevent this by forcing the algorithm to update the weights

depending on the average gradient of the MSE of a smaJl region rather than at a certain

point. Averaging Co/aw in a small region allows the algorithm to update the weights in

the general direction avoiding local minima.

Averages can be very expensive in calculation. Rumelhart et al. (19g6) suggested a

shortcut using a momentum term as follows:

2.18
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The tenn a is a momentum tenn yet its optimum value is not knO\\u. With the addition

of this term the weight change is influenced by the weight change from the previous step

as well as the change suggested by the gradient descent

The effect of the use of a momentum term in a weight update depends upon the value

chosen for a. A well-chosen value can significantly reduce the time needed for training

the network. A value of 0 implies that the past step does not affect the current update

while a value closer to I suggests that the current error does not affect the training. Since

the weigh! update in this algorithm depends upon the direction of the previous weight

update. the direction chosen in an early stage of the training procedure can strongly bias

future weight updates and can restrict the network to a certain region preventing the

algorithm from exploring other regions.
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3. MATHEMATICAL FORMULATION

3.1. Equations of Motion

The equations describing submarine motion can be obtained using Newton's second law.

MX=F J.IA

where M is the mass matrix and X and F are the displacement and the fOrte veelors

respectively.

One can expand on equation J.lA to describe the motion ofan underwater vehicle as:

(I + Ali =F(x)+X(x)+S(x) J.lB

where J. is the extended state vector containing the vehicle's translation and rotational

velocities, Euler angle displacements, and control deflections, see Figure J.l. I is a matrix

representing the inenial properties of the vehicle, A is the added mass matrix, F is the

hydrodynamic fotee vector, X represents the forte veetor arising from axis rotation,

buoyancy, gravity, and, propulsion, and S represents other external forte veelon.



For small amplitude motion of a submarine model attached to a forced motion testing rig

with pon • slarboard ~etry, and using the coordinate system shown in Figure 3.1,

equation 3.1 B can be expressed in a component fonn as:

56 +b"x, + b"x, +c"x, = F,.sin(llX)

x, +b"x, + b"x, +c"x, =F,.sin(llX)

3.2

3.3

where XJ and x, are the heave and pitch displacements respectively, %; and XI are the first

and second derivative of the displacemen~ Flo and Flo are the heave force and pitch

moment amplitudes, OJ is the exciting frequency, and t is time.

G
~x.

X,- t X, ~XI
X,

Figure 3.1 Model coordinates system

The hydrodynamic coefficients bij, where i ,j ~ 3, 5, represent the submarine damping

coefficients. The coefficients cij are the pilch restoring coefficients which act to return

the submarine to the position of venical equilibrium. The right hand sides of equations

3.2 and 3.3 represent the heave force and pilcb moment that lie imposed on the

submarine model by the forced-motion apparatus as the submariDe foDows the path. For

21



the validalion of the proposed technique a generic submarine with the following arbitrary

hydrodynamic coefficients was used to generate the numerical motion data.

Table 3.1 Numerical model coefficients

Equations 3.2 and 3.3 were solved numerically using a Runge·Kulla algorithm 10 obtain

the time series of the heave and pitch displacements, velocities, and accelerations.

3.2. NEURAL NETWORK MOOEL

The neural network model used in this study consists of an input layer, hidden layer, and

an oUlpullayer. Fig"", 3.2 shows the details of the neural network structure.

The input to the l' node in the hidden layer consists of the weighted sum of the i'"

components in the input vector:

•
Mi= LwJr;

i_I
3.6

where wij is the weight between the i" node in the input layer and the i'" node in the

in the hidden layer is transformed via a squashing function as:

3.7



Figure 3.2 Neural network stnlC~

The OUtplll of tile klO node in tile oUtpUllaycr is given as:

1''' =fA.lK
' I G(M)

J~

3.8

where k is either 3 or S. and A"'j is tile network weight between the jlO node in tile hidden

layer and tile klO node in tile oulpUtlayer.

2J



3.3. LINEAR REGRESSION MODEL

Multiple linear regression is oflCn called "model fitting". It depends upon the assumption

of a mathematical model lIlal fits the data aI hand. The adequacy of the technique

depends upon lIle accuracy of the assumed model.

Considering lIle model described in Equation 3.9 there arc k regressors and i is lIle

number of observations. i= 1.2.....n.

y, =fJo +±,6X4+E,,.,

One can express equation 3.10 in a matrix fann as

y=Xp+t
where

y=[~:]. X=[~ ::::~ :;:]. p=[~:]
y. 1 x., x., ... ..... p.

~"[f]

3.9

3.10

3.11

The Icast squares mclhocl dclctmincs !he value of !he parameterS Ilt so lIlat !he sum of !he

squares of !he error is minimized. The Icast squares timcliOll is

L=tel =t't =(y - XjI)'(y - XjI)... 3.12

24



equation 3.12 can be rewritten as

L = y'y - 2P'X'y +p'X'XP 3.13

in order for the function L to be minimized with respect to jI, the least squares estimator

~ must satisfy.

~ , ",'ajlJp =-2X Y+ 2X AP =0

From equation 3.14 the least squares estimator is

~=(x'XrIX'y

3.14

3.15

Montgomery (1997) presented this framework of least squares as an unbiased estimator

of the parameter II in the linear regression model.

3.3.1. UNCOUPLED HEAVE MODEL

Given n points, the linear regression model for the uncoupled heave fon:e estimate is.

i:I.2.3.....n 3.16

3.3.2. UNCOUPLED PITCH MODEL

Using the least squares method the pilCh moment is assumed to follow the malhematical

model shown:

i=1.2.....n 3.17
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3.3.3. COUPLED HEAVE AND PITCH MODEL

The coupled heave and pitch digitally generated motion can beex~ in the following

linear equations:

3.18

3.19

Rearranging equations 3.23 and 3.24 into matrix fonn yields:

3.20

3.21

where

fl·
Ih

~. = {J"
{Ji]

{J ••

[" i,l x"

''']Ix" j,:: x" x"X,= ..

Ix,. x,. x,. x,,,

and

[I ,,, x" i,.

"']Ix" Xn
x,= ..

Xn Xn

Ix,. x,. i,. i,.

3.22

3.23

3.24

26



Results obtained from the neural network technique and the IinCOlr regression calculations

are shown in Ch.pter S. LellSl squares calculations are shown in Appendi. A.
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4. FRESH WATER TOWING TANK

EXPERIMENTS

4.1. MARINE DYNAMIC TEST FACILITY (MDTF)

The MDTF is a multi-degree-of·freedom forced-motion lest rig. It has the capability of

forcing !he test model in an arllitraly motion trajectory. within !he rig and !he towing tank

limits. The mOlion panmete" as well as !he forces acting on !he model are measured.

The MDTF is pan of !he testing facilities at !he InstitUle for Marine Dynamics (IMD).

The MDTF was commissioned in early 1999 after its performance had been evaluated

through a prototype rig (1993 10 1996).

During !he period from October 10 December 1999 maneuve" were conducted using a

standard SlIbmarine model. The MDTF description. experiment serup. and !he maneuver>

performed will be briefly presented in the following sections.

4.1.1. MDTFSETUP

28



The general arrangement of the MDTF with the model mounted on it. is shown in Figure

4.1. The whole configuralion is mounted on the curiage of the lowing tank wilh Ihe

model deeply submerged. The MDTF rig consists of IWO lateral railed curiagos

supporting two vertical lelescopic struts; a picture of lhe sub-curiage is shown in Figure

4.2. Two lateral servomotors. shown in Figure 4.3. drive lhe laleral struts sideways

paraUcl 10 the curiago transverse centerline while two other servomotors. Figure 4.4.

drive the telescopic SllUts in lhe vertical direction. A universal joint. see Figure 4.5.

connects the sting 10 !he SllUts. The sting is connected to the model via a six component

inlernal balance. The six components of !he reaction loads were measured al the model

balance·resolving cenler (BRC). For detailed information on the MDTF and its setup see

Williams et al. (1999).

29



Actuator motions are

shown thus: <i---i>

Figure 4.1 MDTF General Arrangement

30



Figure 4.2 MDTF Sub-Carriage

Figure 4.3 Lateral Motor Arrangement

31



Figure 4.4 Vertical Motor Arrangement

Figure 4.5 Forward Strut Universal Joint
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4.1.2. EXPERIMENTAL SETUP

The model, lMD 497 StlIIldard submarine model, was 4.445 m in length and 0.5 m in

diameter at the mid·body. The BRC is located 5.453 m from the aft sWI. The forward

and afterward Stnlts are 2 m span. Model dimensions and coordinate system are shown in

Figure 4.1 to Figure 4.8. The model displacements were calculated from the sWt

displacements as sbown in equations 4.1 to 4.4.

§<:::::<::s:?::::::J~
Ba9~ L-1S=

----4213 -.J

.-----1.979 -----,

Model BRC

Figure 4.1 DREA Standard submarine model dimensions
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Fwd S1rul
All Stn.t

....r-,-- .

b

Figwe 4.7 Side view of the MDTf setup
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I Carnage Certer Line ~
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Figure 4.8 Top view of !he MDTF setup
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9 . _,([z",-z,..,l)
=510 ---

b

. -,((y""-y,,,J)
1/f=510 --

b

4.1

4.2

4.3

4.4

The above equations are based on a "rigid" sting assumption and they describe the model

displa<:emcnlS relative to a set of axes which are Ii.cd to the towing caniage but which

Iranslate longitudinally relative to a Ii.ed earth reference point.

4.2. MANEUVERS

The design of the MDTF allows the model to perform non-conventional maneuvers. The

maneuvers that have been conducted can be divided into four categories. These are

described as follows:

36



4.2.1. CIRCULAR ARC MANEUVERS.

In these maneuvers the model is forced to move in a series of arcs separated by transition

~ions. The model has a constant speed. u. and a constant pitch rate. q. during the

vertical arc maneuvers and constant yaw rate. r. during the: horizontal arc maneuvers.

Heave and sway displacements may have nonzero values. The: arcs have a non·

dimensional turning rate, I'. defined as.

1'=LlR 4.5

where L is the model length. R is the turning radius. R = ~ in the horizontal plane and
r

R= ~ in the vertical maneuvers. t'represents me non-dimensional turning rate (r' in the
q

horizontal plane and q' in the vertical plane). Figure 4.9 shows a plot of the aft StNt

displacement. forward StNt displacement. and model trajectory for an arc maneuver in

the horizontal plane.

4.2.2. LINEAR CHIRP MANEUVERS

Chilps "'" harmonic maneuvers with constant amplitude and varying frequency. The

frequency ranged from 0.1 up to 0.5 Hz. These frequencies were swept in the fonn of

low-high-Iow sawtooth shape. Figure 4.10 shows a chirp maneuver in the vertical plane.
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Figu.. 4.9 An: maneuver trajectory in the lateral plane r' =0.2
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Figure 4.10 Pure heave chirp, ftequencies 0.1 to 0.5 Hz
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4.2.3. PURE HARMONICS

A series of harmonic runs were perfonned during !he testing period. The frequency

ranged from 0.15 to 0.25 Hz wi!h amplitude range of 0.07 to 0.4 m.

4.2.4. MULT1-DEGREEoOF-FREEDOM MANEUVERS

A limited number of maneuvers were tried wi!h !he model moving in !hree. four. and five

degrees of freedom; most of !hose were chirps. During !he testing period a set of non·

conventional maneuvers such as cone helical maneuvers were also tried. More

information on !hose can be found in Williams el al (1999).

The above mentioned maneuvm were performed wi!h four different configurations of

!he submarine. These configurations. shown in Figure 4.11. were bare hull sub; hull and

sail; hull and tail; and hull sail and tail (full configuration). A list of all maneuvers

performed is given in Appendix C.



FiSU'" 4.11 Model configurations
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4.3. Data Acquisition

Dala from load cells, accelerometers, and potentiometers were sampled at 50 points/sec

frequency. The GEDAPe software stored all measured time series in binary format. A

split routine was then used to split each run file into separate run channels and

preliminary slatistical calculations and corrections were performed. An export routine

was then applied to ttansfer the run at hand to ASCII format. The exported file had the

fOrmal shown in Table 4. I.

4.3.1. TIME TARE AND COORDINATES

TRANSFORMATION

During testing, data collection slarted before the actual maneuver slarted, moreover the

maneuvers slarted some time before the catriage reached its constant speed. Time before

the steady speed is considered IalC time and all dala collected during that lime segment

had to be removed.

The six foree components were measured at the model BRC loc:aled at 5.453 m from the

aft strut. A simple ttansformation of the struts displacements. based on equations 4.1 to

4.4 and assuming a rigid sting. was needed to oblain the model linear and rolational

displacements at the BRC.
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Column # GEDAP Channel # Variable Units
I Implicit Variable Time sec
2 ch.03l Carriage speed mls
3 ch-sname.OO I Fx N
4 ch-sname.OO2 Fy N
5 ch-sname.OO3 Fz N
6 ch-sname.OO4 Mx N-m
7 ch-sname.OOS My N-m
8 ch-sname.OO6 Mz N-m
9 ch.On FV.Pos. m
10 ch.024 AV Pos. m
II ch.026 FL Pos. m
12 ch.028 ALPos. m
13 ch.OO7 Fwd. Ax 8
14 ch.OOS FwdAy g
IS ch.009 FwdAz g
16 ch.OIO All Ax g
17 ch.Oll AllAy g
IS ch.012 AllAz g

Table 4. 1 ASCII file Connat "HST_xxxxx. asc"

MDTF Prcpshop is a Windows application written by the author to perform the above

mentioned steps, tare removal and coordinatelranSfonnation. It allows the user, through a

grapbic interface, to select the ASCII run file, the time segment, and the output file name.

The program will then run the scenario mentioned earlier. The program also calculates

the model's heave, pitch, yaw, and sway rates at the BRC. Prepshop was wrincn in

Visual Basic· 6 and its code is shown in Appendix D.

4.4. Filtering

The data were then filtered usinS the Matlabe Waveletloolbox. A wavelet filter allows

the usc of a variable-sized windowing teclmiquc where a long time interval is used when



we want more precise low frequency infonnation and shaner interval where high

frequency information is needed.

4.4.1. WHAT IS A WAVELET?

A wavelet is a waveform with a limited duration that has a zero average value. While

Fourier analysis breaks the signal into sine waves with different frequencies, wavelet

analysis breaks the signal into shifted and scaled versions of the original wavelet.

A continuous wavelet is the sum over time of the original signal multiplied by a scaled.

shifted version of the chosen wavelet function cpo

C(scale, shift) = ff(t)cp(scale,shift)dt 4.6

Equation 4.6 results in many wavelet coefficients C. These coefficients are a function of

the shift and scale of the function.

Madabedecomposes the wavelet signal into two components. a high frequency and a low

frequency componen~ by removing the high frequency component. Each wavelet

performs a single level fillering. To obtain a smoother signal the filtering process can be

repeated a number of times on the low frequency componenL This is called multilevel

decomposition. Mat\abe includes a number of wavelet families, see the Wavelet Toolbox

user guide (1997).



4.4.2. FILTERING PROCEDURE

The wavelet used in these runs was a Daubechies 'dbS' with a decomposition level 6.

This filter worked fairly well in eliminating most of the noise of the signal while

presetVing the general form of the data. The filtering script, which is called clean.m, is a

Matlab M-file that reads all the channels from the Prcpsbop file; filters them, then exports

the output to afilename.flt file. The procedure is to split the file into individual channels

and perform the following steps.

I- Decompose the signal using Daubechies wavelets with six levels and calculate the

scale and position.

2- Determine the default values for de-noising the signal.

3- De-noise and compress the signal using a global positive threshold.

The filtering script clean.m as well as a number of selected runs with filtering arc shown

in Appendix E.

4.5. Neural Network Approach

Tow different neural networks were used to describe the horizontal and the vertical

maneuvers. In the case of horizontal maneuvcrs the input consisted of the sway

velocity, Xl, the sway displacement, Xl. the yaw rate, X" and the yaw angle, Xi. The

input 10 the j" node in the hidden layer, Mj, is given by:

4.7
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The output from lhe j" node in the hidden layer. G (Mj) is given by

G(M;) =_1_
l+e-M/

j= 1.2•...•17 4.8

finally, the network outpu~ 1"", is given by.

"FIll =L" "',G(M;),., k=2,3.4,S,6 4.9

In the vertical plane there would be no out of plane forces and moment. The reason for

that is the sub is symmetrical around the vertical axis and asymmetrical around the

horizontal axis. The presence of the sail in the horizontal plane, see Mackay (1988).

Mackay and Conway (1990 and 1991), while the sub is lIIming. produces a drift angle.

which resullS in a positive heave force on the after body of the sub and a positive pitch

moment at the nose which attempts to lift the nose up.

After some preliminary trials it has been found that a three·layer feedforward net with 15

hidden nodes would be sufficient in the case of predicting the forces in the an: maneuver.

On the other hand more hidden processing elemenlS. namely 17 nodes, were neede<l10

oblain the relation in the case of chirp maneuvers.



5. RESULTS AND DISCUSSION

5.1.1. UNCOUPLED HEAVE MOTION GENERATION

The equalion of uncoupled heave motion for the model can be wrill<n as follows.

.tli + b3lXli = FJOsin(ox.) 5.1

Using this equalion, 20 lime histories wm generaled al the ftequeneies: 0.5, 0.6, 0.7,....

2.4 Hz. The heave force is piooed as a function of !he displacement, velocity, and

acceleration for different ftequencies. The results are shown in Figure 5.1 to Figure 5.6
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FiguR 5.2 Hydrodynamic force vs. velocity at 0.5 Hz uncoupled heave
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Figure 5.3 Hydrodynamic fon:e vs. displacement at 0.5 Hz uncoupled heave
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Figure 5.4 Hydrodynamic forte vs. acceleration at 1.5 Hz ullCoupled heave
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Figure 5.6 Hydrodynamic force vs. displacement at 1.5 Hz IIlICOUpIed heave



5.1.2. UNCOUPLED PITCH MOTION GENERATION

As in uncoupled heave, !he equation of motion for a submarine model undergoing pitch

motion can be written as follows

i'j+b".t'j+C"X'j = F$dsin(wfl) 5.2

The model motions were generated at I'mjuencies of 0.5, 0.6, 0.7..... 2.4 Hz. The pitch

moment is plotted as afunction the motion. Plots are shown in Figure 5.7 Pitch moment

vs. acceleration at 0.5 Hz uncoupled pilCh to Figure 5.12.
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Figure 5.7 PilCh momenl YS. acceleration al 0.5 Hz uncoupled pilCh
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Figure 5.8 Pitch moment vs. velocity at 0.5 Hz uncoupled pilCh
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Figure 5.9 Pitch momenl vs. displacement at 0.5 Hz uncoupled pitch
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Figure 5.10 Pilch moment vs. acceler.1tion at 1.5 Hz uncoupled pitch
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FiguIC 5.11 PilCh moment vs. velocity at 1.5 Hz lIIICouplcd pilCh
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Figu", 5.12 PilCh moment vs. displacement at 1.5 Hz uncoupled pitch

5.1.3. COUPLED HEAVE AND PITCH MOnON

Uncoupled heave and uncoupled pitch motions "'" the~tical motions. In Ihis section

the mo", ."a)istic coupled motion will be considered. The motion for the same generic

submarine model was genmted undergoing ",gular coupled heave and pilCh. The model

motion is described by equations 3.2 and 3.3.

As in the p"'vious sections these equations can be solved using a Runge-KUlla method.

Simuilled data w.... obcained for 0.5. 0.6•........,2.0 Hz for the coupled motion. The

displacemen~ velocity. and acceleration time series w.... obIained at these fJequencies.

To validate the proposed technique the numerically generated force was compared to the

pmlietecl and least sq.- estimated force.



5.1.4. EFFECTS OF RANDOM NOISE

Direct measured values. experimental values, often contain a noise component eichcr from

instrumental errors or mechanical noise from the experimental apparatus. In the following

section the coupled heave pitch motion is genenlled as in the previous seClion but with the

addition of a 20 % random noise term to the motion displacement. velocity and acceleration.

The lIlOlion of the submarine was modeled using equations 3.2 and 3.3. Applying the same

proced= as before the numerically generated data were obtained for the same range of

frequencies. The random noise was then added to the time series.

The reason for adding the noise after the time series has been generated is that lhe noise

simulated here was due 10 instrumentation errors. Onee again the generated hydrodynamic force

and moment foree were compared to the estimated force from the leasl squares method and the

predicted one using a neural network.

5.2. RESULTS FROM DIGITALLYGENERATED DATA

Figure 5.l3 and Figure 5.14 show a comparison between aleasl squares estimate and a neural

network prediction for the heave force for the uncoupled heave case. Figure 5.15 shows a plot of

actual force .... the ncural predicted force (uncoupled heave at 0.7 Hz) while Figure 5.20 iJ a plot

of actual pitching momenl vs. least squares estimated pitch momenl (uncoupled pitch at 0.7 Hz).

Figure 5.17 and Figure 5.18 show thccomparison between a least squares estimate and a neural

network prediction of the pitch momenl for the uncoupIcd pitch motion. Figure 5.19 is a plOl of

aetual pitching momenl vs. a neural predicted pilCh momenl (uncoupled pilCh al 0.7 Hz). Figure
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5.20 is a plot of actual pitching moment vs. a least squares estimated pitch moment (uncoupled

pitch at 0.7 Hz).

Figure 5.21 and Figure 5.22 show a comparison between a least squares estimate and a neural

network prediction of the coupled heave·pilCh motion. The effect of randomly generated noise on

the least squares and the neural prediction is show in Figure 5.23 and Figure 5.24.
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Figure 5.13 Comparison between least square esblllOlion and neural net prediction (uncoupled
he..e at 0.6 Hz)
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Figure 5.14 Comparison between least square estimate and neural net prediction (uncoupled

heave at 1.5 Hz)
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Figure 5.15 PICK of ar:tuaI force vs. newai predicted force (UIICOUplcd heave at 0.7 Hz)
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Figure 5.16 Plot of actual force vs.le.., squares estimated force (uncoupled heave at 0.7 Hz)
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Figun: 5.17 Comparison between least square estimation and neural network pt<diction

(uncoupled pilCh at 0.7 Hz)
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Figure 5.18 Comparison between least square estimation and neural network prediction
(uncoupled pitch at 1.2 Hz)
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Figure 5.19 Plot of acllla1 pill:hing mornent V$. neural predie:ttd pill:h moment (lDlCoupled pill:h

otO.7 Hz)
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Figure 5.20 Pial of actual pitching momenl vs. least squares estimated pitch moment (uncoupled
pitch at 0.7 Hz)
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Figure 5.21 Comparison between least squara estimaliOll and neural networt. prediction
(coupled heave-pitoh at 0.5 Hz).
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Figure 5.22 Comparison between least squares estimation and neural network prediction

(coupled heave-pilch at O.S Hz)
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Figure S.23 Comparison between least squares estimate and neural prediction (coupled heave

and pilCh a1 0.4 Hz with noise)
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Figure 5.24 Comparison between least squares estimate and neUI21 prediction (coupled heave
ane! pilCh at 0.4 Hz with noise)

5.3. RESULTS FROM ExPERIMENTAL DATA

A number of neural networks were uained to identify the hydrodynamic forees acting on the

submarine model during different types of maneuvers. Two of the calegories described in section

4.2 and the model in its full configuration were considered. The two maneuvers were the

horizontal cireular an: and sway chirp maneuver.

A single nm from each maneuver was used in uaining. The number of dala points used in the

uaining precess was enormous. 2501 x 4 dala points were used in uaining the chirp networks

and 1920 x 4 dala points were used in uaining the eireuJar an: networks. After a number of

preliminary uiall the aulhor found that uaining the network in a modular an:hilectwe gives

better results. Each moduJe has lIuee layers and IS hidden nodes in the case of the an: maneuvers
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and 17 hidden nodes in the chirp maneuvers. Figure 5.25 shows the proposed network

architecture. The network consists of small modules each module was trained separately

then the final net was then assembled.

Figure 5.26 to Figure 5.30 show plots of the hydrodynamic loads computed by the net vs.

the actual component measured for the training data set. The deviation around the

diagonal line represents the network error. Figure 5.31 to Figure 5.35 show the same

results in a different way. In these set of plots the neural network training and the actual

force were planed vs. time. The network was trained with the borizontal circular arc r' =

0.2. and ~~O.O file name "HST_SV2000H_00I.DAC; 1".

Figure 5.36 through Figure 5.45 show the same results described above for the trained

network applied to a new data file. The run chosen to apply the net to was a horizontal

circular arc r' =0.1, and ~=O.O file name "HST_SVAIOOOH_OOI.DAC; 1".

The sway chirp network was trained using sway run" HST_FIt3V500S_00J.DAC;I"

where the sway frequency ranged from 0.1 to OJ Hz with stnIt velocity 500 nunlsec and

sway amplitude of US m. Figure 5.46 to Figure 5.50 show plots of the neural training

verses the actua1 hydrodynamic loads on the model while Figure 5.51 to Figure 5.55

show the same training results and actua1 hydrodynamic loads planed in a time series

fonnat.

Figure 5.57 to Figure 5.73 sbow a comparison between results obtained by neural

networks and multi-linear regression for the circular arc maneuvers.
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Figure 5.25 Modular neural network architecture
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Figure 5.26 Pial of sway fom: vs. training (horizontal circular arc r' =0.2)
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Figure 5.!7 Plot of yaw moment vs. training (horizontal cin:ular an: r' =02)
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Figure 5.28 Plot of ",II moment vs. training (horizontal circular arc " =0.2)
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Figure 5.29 Plot of pitch IIIOment vs. training (horizonta' circular arc r' =0.2)
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Figure 5.30 Pial of heave fOl'Ce \'S. training (horizontal cin:ular arc r' =0.2)
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Figure 5.31 Neuzal network training of the sway force (horizontal cin:ular arc r' =0.2)
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Figure 5.32 Neural network training of the yaw moment (horizontal ciltular arc " =0.2)
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Figure 5.33 Neural network training of the roIll11Oment (horizontal circular arc " =0.2)

61



100 101

T"'(_I

F'A(;I;,iI:fl ...--
t • H,,,,qIH,_r\T,,_.

02001- _..
Figure S.34 Neural network training of the pilCh moment (horizontal cirtular or<: r' =0.2)
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Figure S.3S NOIU21 network training of the heave fO!tC (horizontal circular or<: r' =0.2)
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Figure 5.36 Plot of sway forte .s. ~diction(horizontal cin:ular arc r' =0.1)
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Figure 5.37 Plot of yaw mo....,t ...~on (horizontal cin:ular arc r' =0.1)
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Figure 5.38 Plot of roil moment YS. prediction (horizontal tin:ular an:,' =0.1)
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Figure 5.39 PIOl of pirdl moment YS. prediction (horizontal cin:ular an: " =0.1)
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Figwe 5.40 PIOI of heave forte vs. prediction (horizontal circular arc " =0.1)
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Figure 5.41 NeUIal network prediction of the sway force (horizontal circular arc " =0.1)
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FigUlC 5.42 Neural network prediction of the yaw moment (horizontal circular arc r' =
0.1)
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Figure 5.43 Neural netWork prediction of the roll moment (horizontal circular arc r' =
0.1)
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Figure 5.44 Neural network prediction of the pitch moment (horizontal circular arc r' ;;;;
0.1)

Figure 5.45 Neural network prediction of the heave force (horizontal circular arc r' ;;;; 0.1)
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Figure 5.46 Piol of sway force vs. lraining (sway chirp F= 0.1 to 0.3 Hz. v= 500 mmls)
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Figure 5.47 PI'" of yaw momenl YO. troining (sway chirp F= 0.1 to 0.3 Hz. V= 500 mmls)
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Figure 5.4g Plot of rolllllOment vs. training (sway chirp 1'= 0.1'0 0.3 Hz. V= 500 mm1s)
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Figure 5.49 Plot of pilCh IIlOment vs. training (sway chirp 1'=0.110 0.3 Hz, V= 500
mmls)
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Figure S.SI Neural network lI1lining of the sway forte (sway chirp f= 0.1 to 0,3 Hz. V=
SOOnunls)
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Figure 5.52 Neural network training of the yaw moment (sway chirp F= 0.1 to 0.3 Hz.
V= SOOmmls)
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Figure 553 Neural network tnlinin: of tile mil momenl (sway chirp F= 0.1 to 0.3 Hz. v=
SOOmmls)
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Figure 5.54 Neural network training of the pitch moment (sway chirp F= 0.1 to 0.3 Hz.
V= SOOmmls)
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Figure 5.55 Neural llCIWort training of the heave force (sway chiql F=0.110 0.3 Hz, V=
5OOmmls)
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FigulC 5.58 Plot of roll moment vs. prediction (sway chirp F= 0.1 [0 0.3 Hz. v= 250
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Fi!UlC 5.59 Plot ofpiU:h moment vs. prediction (sway chirp F= 0.1 to 0.3 Hz. V= 2SO
mmls)
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Figure 5.60 Pia' of heave forte vs. pr<diction (sway chirp F= 0.1 to 0.3 Hz v= 250 mmls)
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Figure 5.61 Neural netWOrk pmlictiOll of the sway fon:c (sway chirp F= 0.1 to 0.3 Hz V=
25Ommls)
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Figure 5.62 Neural network prediction of the yaw moment (sway chirp F= 0.110 0.3 Hz
v= 250 mmls)
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Fig'.!,,, 5.63 Neural nelWori< prediction ofdle IOlllllOlllelll (sway chirp F= 0.110 0.3 Hz
v= 250 mmls)
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Figure 5.64 Neural network prediction of the pitch moment (sway chirp F= 0.1 to 0.3 Hz
V=2SOmmls)
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Figure 5.65 Neural network prediction oftbe heave fon:e (sway chirp F= 0.110 0.3 Hz
V=2S0mmls)



t
Il I_
I

., .. ..
Figure S. 66 Comparison between neural network training and least squares estimate of

the sway forte (horizontal circular arc r' =0.2)

,....

1---'NIurIII~~- - _. -lRtt-"'e-..

--....
FiguR S. 67 Comparison bclWeen neural network prediction and least squares estimate of
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Figure 5. 68 Comparison between neural network uaining and least squares estimate of
the yaw moment (horizontal cin:ular an: r' =0.2)
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Figure 5. 69 Comparison between neural network prediction and least squares estimate of

the yaw moment (horizontal circular an: r' =0.1)
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Figure S. 70 Comparison between neural network lraining and leas! squares estimate of
the rolllllOment (horizontal circular an: r' =0.2)
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Figure S. 71 Comparison between neural network prediction and least squares estiJlllle of
the roll moment (horizontal cin:uJar an: r' =0.1)
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Figure S. 72 Comparison between neun! networ!< training and least squares estimare of
the pitch momenl (horizontal circular arc " =0.2)
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Figure S. 73 Comparison between neural netWork prediction and least sq...... estinwe of
the pilCh moment (horizontal circular arc r' =0.1)
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5.4. Discussion

The horizontal arc network consisted of five modules. Table 5.\ shows the training

criteria for the network.

Module Heave Sway Vaw Roil Pitch
Training events 240768 403788 87780 135432 393756
Training epochs 95 160 34 53 156
Training time, min. 89 154 132 50 148

Table 5. I Training criteria for horizontal circular arc oetwork

From Figures 5.31 and 5.41 it can been seen that the neural network prediction for the

sway force work fairly well. Moreover the network prediction from the steady state

segment of the arc is shown 10 be of a constant value which agrees with the fact thar the

model is turning with a constant yaw rate. On the other hand the fluctuation on the actual

(measured by MOTF) force is due to model vibration and rocking. The same discussion

is valid for the rest of the hydrodynamics components. In the case of out of plane force

and momen~ Figures 5.43, 5.44 and 5.45, the network slightly over-predicts the steady

state force.

The sway chirp maneuvers network has the same architecture as the horizontal arc

network. The training criteria for the sway network are shown in Table 5.2. The

prediction of the .. in plaDe .. components was good but once again the network slightly

over-predicts the out-of-plaDe components. It is notable to say at this point thar the-out-of

plaDe components were very small in this case since it is a pure sway maneuver. The

author feels thar the presence of these forces, heave and pilCh, in the sway chirp

maneuver was mainly due to the flexibility of the sting and resulting model vibration. A
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closer look :u the strut displacements showed that there was a 0.2 to 0.5 degree yaw angle

which might have been enlarged by the sting n..ibility and resulted in the shown forces.

Changing the an:hiteeture of the net reduced the training time significantly. Moreover the

net can be disassembled and one of the modules can be retrained and assembled inlo the

nel. This gives a greal advantage to this an:hiteeture.

Module Heave Sway Yaw Roll Pilch

Training events 14385189 5622810 5802900 2187093 11515755

Training epochs 7188 2809 2899 1092 5754

Training time. min. 104 40 42 [9 87

Table 5. 2 Training criteria for sway chirp network

Neuroshell· 2 • a commercial software available from Ward Inc.• was used in building

the modules. The network was then ..ported to Visual Basic code and a Windows·

version of the nel was assembled logether. A C - code can also be ..poned to be

included with some other code thai: can be run in any environmenr (i.e. Unix. VAX.

Windows).
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6. CONCLUSIONS

[n this work a new tool for predicting the hydrodynamic model for a submarine was

presented. A neural network technique was used to predict the hydrodynamic fon:es

acting on the submarine. The approach was validated using digitally generated data for

coupled heave and pitch motions as well as experimental. see Figures 5.12 tn Figure 5.24,

data for cin:ular arc maneuvers and sway chirp maneuvers. Figures 5.31 to Figure 5.65.

The mOlion time series was numerically generated and both neural network predictions

and least squares estimates were obtained and compared to the actual force. Results

indicate that both the least squares method and the neural technique can provide accurate

predictions for the hydrodynamic fon:es and moments as long as the data are nOI

contaminated with noise. The neural network approach is shown to be superior to the

least squares method when there is noise in the data. The network ma'<imum mor when

applied to the noisy data was 2.67 % while the least squares produced 8.067 % error.

[n section 5.3. the tool was used to predict the hydrodynamics of a submarine model

undergoing cenain maneuvers. The maneuvers considered were horizontal arc maneuvers

and sway chirp maneuvers. A single run from each maneuver was used to train the

network. The fully trained networks were then used to predict the hydrodynamic fon:es

acting on the model :It dilf=t conditions. For both maneuvers the fun:e and lDOment
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prediction .gree fairly well wilil lhe original measurement .'liIough !here were some

cases where lhe network over predicted lhe folte. During liIe e.perimental tests visual

observ.tion showed liIat !here were some vibrations in the model as it followed the

desired trajectory and in some cases the vibration e.ceeded the MDTF limitation and the

maneuvers were lerminated by the control loop. We feel lhat liIis vibration affected Ihe

measured foltes and since lhe lIlOIion history used for training liIe network were taken

from liIe MDTF s\JUts lIlOIion, lhe relation between the folte and the lIlOIion changed to

some e.tent. Filtering was used to eliminate lhe effect of noise on the data.

A comparison between liIe neural network and the least squares estimate is .Iso shown in

Section 5.3. The comparison showed lhallhe neural network approach is more superior

liIan Ihe classical technique.

Vertical arc maneuvers and venical chirp rnaneuven were limited in number and they

were not consi~d wililin liIis study.

The combination between the proposed tool and the MDTF represents a new and reliable

way to investigate the hydrodynamics of a submarine. Wilil the new technique only a

limited number of maneuvers have 10 actually be pelfotmcd 10 train the network. The

network can then be used 10 generate lhe fon:e and moment for the remaining needed

maneuvers. By doing this we combined the capabilities of muJti~-freedom

testing wilil the affordabiliry and convenience of compotational techniques.
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7. RECOMMENDATIONS

Futu... work should include maneuv.rs thai w.... nOl considered within this study due to

the lack of time and the limited number of tests conducted. Maneuvers such as venic:>l

arcs, combin.d chirps, and five-degree-of freedom man.uvers such as cork-sc...w

maneuvers should also be investigared.

As stal.d in the conclusions due to model vibration the use of the rig struts displac.ments

introduces some uncetUinly to the ...lation oblained by the netWork, Further work should

use the estimate of the actual motion obtained from the onboard accelerometers.
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ApPENDIX A NUMERICAL RESULTS

The following an: the calculations for the multiple linear regression in the case of

uncoupled heave, uncoupled pilCh and coupled heave and pilCh as well as 'he effect of

random noise.

Uncoupled Heave.

The mathematical model for the heave force can be expressed as

A.l

Using the least squares method one can obtain the coefficients in the equation as follows:

[

229 6.4
XTX= 6.4 2960,5

-1.5 7

[

0,0215 ]
XTF = 699,791

872.975

A.2

A.3

[

0.0044

(XTX)-t = ~ °0.0003

° o,lJ A.4



• [0.0044
p= °

°
°0.0003

°
° ][ 0.0215] [0.0]° 699.791 =0.234

0.000 11 872.975 1.0

A.5

so the expected heave fon:e would be

Fi =0.0+0.234xi +1.0xi

the actual Heave fon:e was

Fi = 0.0 +0.234xi +1.0xi

Uncoupled Pitch

A.6

Using the leasl squares method the pilCh IIlOment is assumed to follow the mathematical

model shown in equation A.7

The coefficients are estimated as follows

A.7

[

586 0.0014

XTX = 0.0014 1.291
-0.1 0.001

-0.0007 -0.761

[

0,0109 ]
XT, = 3g.9769

0.1756

-22.8582

- 0.1 - 0,0007]
0.001 -0.761

0.TI6 0.0001

0.0001 0.569

A.8

A.9
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['ro"
0 0.0002 0

(XTxr' = 0
3.6537 -0.001l 4.8836

0.0002 -0.001l 1.2887 -0.0016

0 4.8836 -0.0016 8.2836

A.IO

[

0,0017

• 0
p= 0.0002

o

[

0 ]30.7804

0.2222

1.0005

o
3.6537

-0.001l

4.8836

0.0002 0 ][0,0109 ]- 0.00II 4.8836 38.9769 =

1.2887 -0.0016 0.1756

-0.0016 8.2836 - 22.8582
A.ll

So the expecled pilch moment would be

ti =0.00+ 30.7804x. + 0.2222X. + \.0005£

the actual pilCh moment is

F; =0.00 +30.78x, +0.222i, +\.0 x,

Coupled Heave-Pitch

Applying the least squateS method one can oblain the following

A.12

[

0.465 0.0137

0.0137 4.5464

X,'x, =103 • -0.0033 0.0136

- 0.0033 - 0.0633

- 0.0001 - 0.0407

-0.0033

0.0136

1.8516

0.0408

-0.0261

-0.0033

-0.0633

0.0408

0.0018

o

-0.0001

-0.0407

-0.0261

o
0.0008

A.13
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['~
0.0106 -0.0002 -0.0001 0.0001

0.0106 4.5558 -0.0635 -0.0409 -0.0259

X,' X, = t03 • - 0.0002 -0.0635 0.0018 0.0 - 0.0008

-0.0001 -0.0409 0.0 0.0008 0

0.0001 0.0259 -0.0008 0 0.0004

-0.0002

1.0559

x,'F,= 103. 1.8604

0.0265

-0.0355

0.0091

703.506

X,'F. = 17.643

-23.6649

-8.8516

A.14

A.IS

A.16

0.0

0.2340

~, = 1.0001

0.2355

0.1581

and

0.0

0.580t

~, = 30.7843

0.2247

1.0044

1.17

So the expected heave fon:e and pilCh IIlOIIlOnl would be

F. =0.0 +O.234x. + LoooiX" +0.2355:Cll +0.158Ix"

F" =0.0 + 0.580Lt. +3O.7843:c" +0.2247Xli + l.0044xlI

the aetua1 heave and pilCh moment wen:

A.18

A.19
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Fli =0.0+0.234.tJi +l.000LtJi +0.238x5i +0.158usi

FSi =0.0 +0.58xli + 30.78xSi + O.222Xsi + l.Oxs;
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ApPENDIX B VISUAL BASIC PROGRAM

"SIMULAnON"

The following Visual Basic program was written to generate the sub moIion time series

used in the validation of the method.

Dim delta As Double, omega As Double, k(4) As Double, t As Double
Dim L(4) As Double, 03(4000), 05(4000), M(4) As Double, N(4) As Double, v3(4000)
As Double, v5(4000) As Double
Dim <3(4000) As Double, x5(4000) As Double. FI(4000) As Double. F2(4000) As
Double
Dim B33. c33, B35. c35. B53. c53. B55. c55
Dim i As Integer,j As Integer. no As Integer, f50 As Integer
Dim 01 As Double. 02 As Double, no As Integer, Nois As Double
Dim worlcfile As String

Private Sub Commandl_ClickO
, reading data from input form
Dim Counter As Integer

Counter =0
ProgressBarl.Min = Counter

ProgressBarl.Mu = 14001
ProgressBarl.Visible = Tl1Ie

'Sel the Progress's Value to Min.

ProgressBarl.Value = ProgressBarl.Min
ProgressBarI.Value = Counter

B33 = bl I(O).Te"
B35 = b21(1).Text
B55 = b31(2).Text
B53 = b41(3).Te"
c33 = Me_c33(41.Te"
c35 = Me_c35(5).Text
c55 = Mc_cSS(6).Text
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e53 = Me_e53(7).Text
no = Me_00(8).Text
fSO = Me_f5O(9).Text
omega = Mc_omeg(IO).Text
ne = Noise.Value
Nols = Nolse_valuc(O).Text
Propw;Barl.Valuc = Counter

, creating a temp. working file

Open ·e:\Simulalionltcmp· For Output As III
Print III. B33. B35. B55. B53
Print III. e33. e35. e55. e53
Print III. 00. f50. omega. nco Nois
Close.l
dclta=O.1
x3(1) = 0
v3(1)=0
x5(1) =0
v5(1) = 0
t=O

, the following generates the heave and pilCh force

Fori = I To 3000
Counter = Counter + I
Fl(i) = 00 0 Sin(omega 0 t)
F2(I) = fSO 0Sin(omega 0 t)
t=t+delta
ProgrcssBarl.Valuc = Counter

Nexti

'Numerical integration of the ship's equations of moIion

Fori =I To 3000
Counter = Counter + I
Call equation(833. e33. B35. e3S. BS3. eS3. BSS. c55. x3(i). xS(I). v3(i). vS(i))
k(l) = delta 0 (v3(1))
1.(1) = delta 0 (PI(i)· GI)
M(I) = delta 0 (vS(i))
N(I) = delta 0 (F2(i). G2)
Call equatiOll(833. 033. B3S. 035. BS3. e53. B5S. eSS. x3(i) + 0.5 0 k(l). xS(i) + 0.5 0
M(I). v3(1) + 0.5 01.(1). vS(i) + 0.5 0 N(I))
k(2) = delta 0 (v3(l) +0.5 01.(1))
1.(2) = delta 0 «(Pl(i) + FI(I + I)) /2) • GI)
M(2) = delta 0 (o5(i) +0.5 0 N(l))
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N(2) =della' «(F2(i) + F2(; + I)) /2) - G2)
Call equatiOfl(B33. c33. B3S. c3S. BS3. cS3. BSS. cSS. x3(i) +0.5 • k(2). xS(i) + 0.5 •
M(2). v3(i) +0.5 • L(2). vS(i) +0.5 • N(2»
k(3) =delta' (v3(i) +0.5 • L(2))
L(3) =delta' «(Fl(i) + FI(i + I)) /2) - GI)
M(3) =delta' (vS(i) + 0.5 • N(2))
N(3) =delta' «(F2(i) + F2(i + I) /2)· G2)
Call equation(B33. c33. B3S. c3S. BS3. cS3. BSS. cSS. x3(i) + k(3). xS(i) + M(3). v3(i) +
L(3). vS(i) + N(3))
k(4) =delta' (v3(i) +L(3»
L(4) =delta' (FI(i + I). GI)
M(4) = delta' (vS(i) + N(3))
N(4) = delta' (F2(i + I) • G2)
x3(i + I) = x3(i) + «1<(1) + 2' k(2) +2' k(3) + k(4)) /6)
xS(i + I) = aSCi) + «M(I) + 2 • M(2) +2' M(3) + M(4)) /6)
v3(; + I) = v3(i) + «(1.(1) + 2' L(2) +2' L(3) +L(4)) /6)
vS(i + I) = vS(i) + «N(I) +2' N(2) + 2' N(3) + N(4» /6)
Progn:ssBarl.Value =Counter
Nexli
Fori= I To 3000
Counter = Counter + I
Call equatiOfl(B33, c33. B3S. c3S. BS3. cS3. BSS. cSS. x3(i). as(i). v3(i). vS(i))
a3(i) = Fl(i) • Gl
as(i) = F2(i) • G2
Progn:ssBarl.Value =Counter
Nexli

Fori = I To 3000
Counter = Counter + I
x3(i) = x3(i) + (x3(i) • Rnd • Nois • no)

as(i) =as(;) + (as(i) • Rnd • Nois • no)
v3(i) = v3(i) + (v3(i) • Rnd • Nois • no)
vS(i) = vS(i) + (vS(i) • Rnd • Nais • no)
a3(i) = a3(i) + (a3(i) • Rnd • Nail' no)
as(i) = as(i) + (as(i)' Rnd' Nail' no)
Progn:ssBarl.Value = Cowuer
Nexti
t= 100

•Writing out the results

file =CStt(omep)
file =Trim(file)
Open "c:lsimulaliOfllhevpilCh" + file + ",out" For Output As 114
Print #4. "to; ";; "x3"; ";; "v3"; ";; "03"; "..; "F3O"; "..; "xS"; "..; "vS"; "..; "as"; "::
"00"
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For j = 1000 To 3000
Councer =COIlncer + I
Prinlll4. t: ",": .3(j): ","; v3(j): ",": a3(j): ",": FI(j); ","; .5(j): ","; v5(j): ","; a5(j): ",";
F2(j)
l=t+dclta
ProgressBarl.Value = COIInler
NeXlj
Clo.. 114
Timcrl.lncerval = 2000
End Sub

._----_._------- ._--_._----
Public Sub oqualion(B33. c33. B35, c35. B53. c53. B5S, cSS, 0 As Double, .5 As
Double, v3 As Double. v5 As Double)
01 = (B33 • v3) + (c33 • 0) + (B3S • v5) + (c35 ••5)
02 = (BS3 • v3) + (c53 ••3) + (BSS • vS) + (cSS • 0)
End Sub

Private Sub Command2_ClickO

'recalling the previOllS inpulS

Open "c;\simulalionllcmp" For Inpul As .1
Inpul '1, B33. B3S. BSS. BS3
Input '1, c33. c3S, cSS. cS3
Inpulfl,DO. fSO, omega. nco Nois
Close.1
bII(O).Te'l = B33
b2I(l).TeXl = B3S
b31(2).TeXl = BSS
b41(3).Te'l = BS3
Mc_c33(4).Te'l = c33
Me_c3S(S).Te'l = c3S
Mc_c5S(6).Texl = cSS
Mc_cS3(1).Texl = <53
Mc_f3O(8).Te.1 =DO
Mc_fS0(9).Te'l =fSO
Mc_omeg(IO).Te'l = omega
Noise_value(O).Texl = Nois
Ifne =I Then Noise.Value =I
End Sub

Privale Sub CUIDIlWId3_ClickO
UnioadMc
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End Sub

Privale Sub Timerl_TimerO
ProgressBarl.Value = ProgressBarl.Min
End Sub
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ApPENDIX C LIST OF RUNS
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ApPENDIX D VISUAL BASIC PROGRAM

"PREpSuoP"

This appendix contains the code for the MDTF PrepshOP Iransformation of axis. It reads
the MDTF exported file and perform the steps described in chapter 4

Private Sub Fonn_LoadO
Timemin.Caption =HScroIlI(O).Value
Timemax.Caption =HScroIl2(l).Value
End Sub

Private Sub HScroll1_Change(lndex As Integer)
Timemin.Caption =HScrolll(O).Value
End Sub

Private Sub HScroll2_Change(lnclex As Integer)
Timemax.Caption =HScroIl2(1).Value
End Sub

Private Sub OK_ClickO
t3 =HScroIlI(O).Value
t4 =HScroIl2(1).Value
Timefrm.Hide
End Sub

Private Sub CommandI_C1ickO
StinLlcngth =HScrolll.Value 11000
smig.Hide
End Sub

PriVate Sub Form_Load()
Stinglen.Caption =HScrolll.Value 11000
End Sub

PriVate Sub HScroIII_Change()
Stinglen.Caption =HScroIII.Value 11000
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End Sub

---- ----------
Dim to As Double. cO As Double. FxO As Double. FyO As Double. FzO As Double.
MxO As Double. MyO As Double. MzO As Double. FVO As Double. AyO As Double.
AO As Double. AIO As Double
Dim fax. fay. faz. au. aay. aaz As Variant
Dim SwayO As Double. Heave() As Double. Yaw() As Double. PilChO As Double
Dim Sway_yelO As Double. Heave_yelO As Double. Yaw_yelO As Double. PilCh_velO
As Double
Dim i As Integer. y As Double. Stinr-Iength As Double. t3 As Integer. t4 As IDleger
Dim XAs Single. pi As Double. Lower_Yalue As Single. Upper_yalue As Single
Dim File_name As String. SayeFile As String. File_out As String

Priyate Sub Pieturel_OickO
CommonDialogl.CancelErro, =True

On Error GoTo ErrHandJer
CommonDialogl.Filter ="Ascii(".asc~".ascjPropshop (".pmd)I"·pmdlAIi Files ("·")1"·"1"
CommonDialogl.ShowOpen
File_name =CommonDialogl.fiIename
FileCharNo =InSlr(File_narne. ".")
If FileCharNo =l.en(File_name) Then
SayeFile =(File_name)
Else
SayeFile =l.eft(File_name. FiIeCharNo· I)
Endlf
ErrHandJer:
ExilSub
End Sub

Priyate Sub Pieture2_ClickO
Mig.Show
End Sub

Private Sub Pieture3_0ickO
Timefnn.Show
End Sub

Private Sub PietureS_OickO
Swic garb As Double
Open File_Dame For Input As .1
pi =3.14IS92654
y=1
SwusBarl.SimpleText ="Loading File "+ FtIe_Dame
StinLlength =stnig.HScnnIlI.Value/IOOO
t3 =Timefnn.HScrolll(O).Value
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t4 = Timefnn.HScro1l2(I).Value
Do While Not EOF(1)
Input -1, garb
y=y+1
Loop
Close_I
i=y/18
j=i
ProgressBarlMin = 0
ProgressBarl.Max = j
ProgressBarl.Visible = True
ProgressBarl.Value = Min
ReDim t(j), c(j), Fx(j), Fy(j), Fz(j), Mx(j), My(j), Mz(j), FY(j), Av(j), FI(j), AI(j)
ReDim Sway(j) As Double, Heave(j) As Double, Yaw(j) As Double, PilCh(j) As Double
ReDim Sway_vel(j) As Double, Heave_vel(j) As Double, Yaw_vel(j) As Double,
Pilch_vel(j) As Double
Open File_name For Input As_I
Fori = 1Toj-I
ProgressBarl.Value = i
Input_I,l(i), c(i), Fx(i), Fy(i), Fz(i), Mx(i), My(i), Mz(i), FY(i), Av(i), FI(i), AI(i), fax,
fay, faz. aax, aay, aaz
Nexti
Closdl
ProgressBarl.Visible = False
StatusBarl.SimpleText = "computing motion at BRC"
Fori = I Toj
Sway(i) = A1(i) + «Sting..Jength , Sting..Jength - 2) • (FI(i) - AI(i)))
X = (FI(i) - AI(i» 12
Yaw(i) = Atn(X I Sqr(-X' X + I»
Yaw(i)=Yaw(i)'180/pi
Heave(i) = Av(i) - «Sting..Jength I Stins-Iength - 2)' (Av(i) - FY(i»)
X = (Av(i) - FY(i» 12
PilCh(i) = Atn(X1 Sqr(-X • X+ I»
PilCh(i) = PilCh(i) • ISO I pi
Nexti
PRp.Reflesh
SWusBarl.SimpleText = "Diff=ntiating motions to oblain velocities at BRC"
h =1(3)-1(2)
Fori =3 Toj - 3
Sway_vel(i) = (1 , (12' h»' (Sway(i - 2) -8' Sway(i - I) + 8' Sway(i + I) - Sway(i +
2»
Heave_vel(i) = (I I (12' h»' (Heave(i - 2) - 8' Hcave(i -I) + 8' Heave(i + I)
Heave(i + I»
Yaw_vel(i) = (11 (12' h»' (Yaw(i - 2) - 8' Yaw(i - I) + 8' Yaw(i + I) - Yaw(i + 2»
PilCh_veI(i) = (II (12' h»' (Pilch(i - 2) - S' Pilch(i -I) + 8' PilCh(i + I) - Pitch(i +
2»
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Nexti
SlatusBarl.SimpleText ="Organizing time history for selected time segment"
Lower_value =13/ h
Upper_value =t4/ h
If Upper_value > i Then Upper_value =i
SWusBarl.SimpleTex! ="Done"
End Sub

PriVale Sub PiClU",4_C1ickO
CommonDialogl.CancelError =True

On Error GaTo ErrHandler2
CommonDialog I.filename =SaveFile + ".pmd"
CommonDialog I.ShowSave
CommonDialogl.Filrer ="PrepShop('.pmd)l··pmdi"
CommonDialogl.OefaultExl =txt
File_out = CommonDialogl.filenarne
SwusBarl.SimpleText = "Writing Output file" + File_ou!
ProgressBarl.Min =0
ProgressBarlMax = Upper_value
ProgressBarl.Value =0
ProgressBarl.Visible =True

Open File_out For Output As 112
Prep.Refnosh
Wrile 112, "Time", "Carriage Speed", "Heave", "Pich", "Sway", "Yaw", "Heave vel:,
"Pitch vel:, "Sway vel:, "Yaw vel:, "Fx", "Fy", "!'z", "Mx", "My", "Mz"
For i =Lower_value To Upper_value
ProgressBarl.Value =i
Print 112, t(i), c(i), Heave(i), Pirch(i), Sway(i), Yaw(i), Heave_vel(i), Pitch_vel(i),
Sway_vel(i), Yaw_vel(i). Fx(i). Fy(i). Fz(i), Mx(i); My(i). Mz(i)
Nexti
Close 112
SwusBarl.SimpleText ="Finished"
ProgressBarl.Visible =False
ErrHandler2:

End Sub

Opcion Explicit

PriVale Sub Fonn_K<:yPress(KeyAscii As Integer)
Prep.Show

Unload Me
End Sub
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Private Sub Fonn_LoadO
IblVersion.Caplion : "Version "&r. App.Major&r."." &r. App.Minor&r."." &r.

App.Revision
IblProductName.Caplion : App.Title
Timerl.lnterVal : 3000

End Sub

Private Sub Framel_ClickO
Prep.Show

Unload Me
End Sub

Private Sub Timerl_Timer()
Prep.Show
UnJoadMe
End Sub
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ApPENDIX E MATLAB FILTERING SCRIPT

The following is the Matwb script used for filtering follo'oted by a
nwnber of plots for filtered data VI. noisy data for a selected number
of runs.

pl:tinput (' enter file name without extension pmd >' .' s'):
file_load= [pl.' .pmd' I:
eval ((' load '. file_loadll;
eval ((' (s,col:tsiu(' ,pl. 'J:' 11;
ti=eval ((pl. ' (: ,11 '1);
\figure!l)
ch=eval( (pl.' 1:.7)' I);
[c.ll -wavedec Ich.lO •. sym8' J :
(ehr. sorh. keepappl =ddenc:mpl 'den' , 'wv'. en);
ch_c7=wencmp( 'gbl' ,e, 1. 'sym8 '.10. thr.sorh. keepappl;
subplot (4.1.1) ;plot(ti,chl ;titlel' Heave Velocity'} ;yla.bell' m/s')
subplot(4,l.2) ;plot(ti.ch_c71 ;titlet 'Filtered Heave Velocity
'l.ylabelC 'm/s')

Uigure(2)
chl=""all [pl. '1 •• 81' J':
(c , 11 :waveclec Ich.IO. 'symI');
(thr.sorh,keepappj-ddencmpl 'den'. 'VII' .chl);
ch_c8swdenemp( 'gbl' ,c. 1. I sym8' .10 .chr. sorh. keepapPI;

subploC(4.1. 31 ;plot (ti-chl); citle (' Piteh Velocity' 1;ylabe1 (' deq/s')
subp1ot(4, 1. 41 ;p1ot(ti. en-c81; tit18( I Filtered Pich Velocity
') • ;y1abel ('deq/s' 1;xla.bel ('Time lee')
text(-2,-2.pll
orient landscape
evall! 'print '.pl. '1 -dpo' J I
'pause

Uigure(31
eh=eval( (pl. 'I: .9)')1:
(c.1J_vedeclcb.10, 'symI'):
lthr.sorh.keepapp] sc1c:lencq)( 'den'. 'w' .ctll;
ch.-c9=Wenanp( 'gb1' .c.1. 'sym8' .10, thr.sorh. keepappl;
subp1otI4.1, 11 ;p1ot lti. chl ;tit1e(' Sway VeloeiI:Y') ;y1a.be1 (' m/s'l
subp1ot(4.1. 21 ;p101:1I:i. ch_c9) ;tie.18(' Filtered Sway Velocie.y ') ;y1abe1('
IIl/s'l

\figure(4)
chl=evall [pl,' 1•• 101 'J':
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[c. II =wavedec (chl.lO, 'sym8');
[chr. sorb.. keepapp) =dd.encmp ( 'den' • ''tN' ,chI I :
ch_cIO-wdencmp( 'gbl' •c.l. 'sym8' ,10. thr. sorh. keepapp);
subploc 14.1. 3) ;ploc(ci, eMI ;ticle( 'Yaw Velocity' I ;ylabell'de;/s')

subplot 14.1. 4) ;plot (ti. en-el01; title(' Filtered Yaw Velocity 'I :ylabell'
deg'/s'I;x.label('Time see'l
tuc(O,O.pll
orient landscape
eval(['print '.pl,'2 -<!ps')

'pause

eh-eval ( [pl. ' ( : • 11) , I) ;
[e.ll-wavedec (ch.lO. 'Iyme') :
(thr, sorb, keepapp) =ddenr::np( 'den'. ''tN' ,ch) ;
ch_c11::<wc:l.encmp t 'gbl' ,e.1. 'symB' .10. thr, sorh. keepappl;
subplot (4 ,1.1) ;plot (ti. ch); title t' Fx' I ;yla.bel (' N')

subplotI4.1,2);plotlti,en-cll);title('Filtered Fx 'I;ylabel(' N')

chl=eval({pl.' 1:.14)' J);

(c.lJ =wavedec(chl.lO. 'symS');
[thr.sorb.keepapp} ..cidenanpl 'den'. 'wv' .chl);
cn-c14aWencmpl ';bl' •c,l. 'symB' .10. thr. sorh.keepappi :
subploc(4.1.31 ;plot (ti,chl) ;ticlel'Kx' I :ylabel(' N-II1')
subploc(4.1.41 ;plot(ti.en-c14) ;titlel 'Filtered !'Ix 'I ;ylabell' N
Ift'l ;xlabel( 'Ti. sec')
textI0.0.p1)
orient lanciscape
evall ('print' .pl. '3 -dps' J)
'pause

ch'.vall (pl, ' I , , 12) , 11 ,
[c. I) =wav.dec (ch.lO, '.YUl8') i

(thr, sorh.keepapp}-ddencmp( 'den', ''tN' .eh) :
ch_c12=wdenanp( 'gbl' .e.l. 'symS' .10, thr. sorh, keepappl;
subplot 14.1.1) ;plot(ti.ch); title! 'Fy' I ;ylabel ('H')
subiplot(4.l.2);plot(ci.ch-c:12):title('Filtered Fy ');ylabel(' N')

ch1=eval ((pl. ' I' .161 'II:
(c. ll."avedeelchl. 10. 'sylD8'I;
(thr,sorh,keepapp)-c:lclenaap( 'den', 'w' .chll:
ch_c16zwdenClllll( 'Obl' .c.l. 'sylD8' .10. <hr. sorh. keepappl ;
subplot (4. 1, 3) ;plot lci,chi) ;title( 'Mz') iylabel(' N-s')

subplot (4.1.4) :plot(ti. ch_cU) ;title(' Filtered K%') :ylabell' N
Ia') ;xlabel 1'Time sec')

text(l,l.pl)
orient landscape
ev.l«('print '.pl,'4 -eSp,'J)

eh.eval{ (pl.' (: ,131')):
[c.ll_ve<!eclch.10. 'sym8'};
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(ehr.sorh.keepapp]=ddencmpl'cen'. ''flY' ,ch);
eh_clJ=wdencmp( 'gbl' .e.l, 'sym.8' .10, th:'. sorh. keepaPPI ;
subplot 14.1.1) ;ploe Iti.eh) ; citle ('Fz.' I ;ylabel ('N')
subploc 14. 1, 2) ;plot Iti.eh_cIJI ;title ('Filtered Fz') ;ylabel (, N')

chl=evall {pl.' (: .1SI' II;
(c.ll =wavedeelchl.10. 'symS');
(thr. sorh. keepapp) =ddencmpl'den'. ''flY' .chl):
ch._clS=vd.encmpl'gbl'. c.l, 'sym8' .10. thr .sorh.keepappl;
su.bpIotI4.l. 3) ;plot (ti. chl); title( 'My') ,ylabel I' N-m')
subplotI4.1.4) :plot(ti.ch-clSI ;title( 'Filtered Ky'l ;ylabell' N
m'l ;xlabell 'Time sec')

text(l.l.pl)
orient landscape
eval({'print '.pl.'S 4dps'J)
"pause

ch=eval( {pl.' (: .21'] I;
(c,lI :o'Wavedec(ch.lO, , sym8' I ;
[thr.sorh.keepappJ cddencmp( 'den'. ''flY' .ch);
ch_c2=wdencmp( 'gbl' .e, 1, 'sYlft8' .10. thr, sorb. keepaPPI ;
"pause
eh_cl-.vall (pl.' (: .1)' 1);
ch3:oevall [pl. ' (:.3) '11:
[c.lJ:o'Wavedec (chJ ,10. 'sym8') ;
(thr.sorh.keepappI=dden<::lP1 'den'. ''flY' .ch31;
ch_c3=wden«:mp( 'gobl' .c.l. 'sY1ft8' .10, thr. sorh. keepapp);

ch3=eval( (pl.' I: .4)' 1);

(c.ll a\lavedec Ich3 .10. 'symS' 1;
(thr. sorh. keepapp) 31ddenC'lllPI 'den'. ''flY'. ch31 ;
ch.-c4&'Wdenc:mp1 'gbl' .c.l. 'sym8' .10. ehr .sorh. keepapp);
ch3"eval( (pl.' I: .S) ');
[c. 113lwavedeclch3. 10. 'symB'l;
(ehr. sorh. keepapp J=ddenCZllP I 'den' • 'wv' •ch31 ;
ch_cS-wenc:mp t 'gbl' ,c. 1. 'sym8' .10. thr. sorh. keepappl;
ch3=eval( [pl.' (: .6)' J I;
(c. 11 ovavedeclcl13. 10. 'sym8');
(thr.sorh.keepappJ=ddenaap( 'den'. 'wv' .ch3);
ch_c6-wdencql( 'gbl' .c.l. 'syIi8' .10. thr. sorh.keepappl;
subplot (2.2.1) :ploc(ci.dLe3); tidel 'Heave Diap. ') ;ylabel(' Heave El')

subplot 12.2. 31 :plot Iti.clL(4) ;titlel' Pitch Displ.') ;yl4bel ("itch deq')
subplotI2.2. 21 ;plot It.i.ch-,c51 ; title(' sway Disp.') ;ylabel I' sway Ill')
subplot 12.2. 41 :plot Iti,eh..-c61 ;tiele( 'Ya'W Ciapl.') :ylabel I 'Yaw
deq' I ; xlabel ( 'Time sec')
eext(l •. S.pll
orient landscape
evall('print '.pl.'6 -<!ps'])

File..ve=[pl.' .Ut '):
IIoIltrixz{pl. 'a' J
eval I {lZloI.crix. ':s (ch-,cl eh-,c2 ch-,c3 ctLc4 ch..-cS c:h-c6 cb.....c7 c!Le8 ch..-c9
=-:::'0 ::"~_::ll ch_::12. :::~e13 cl:.-e14 e!l.-::lS ~::161:'!):

evall['save '.Filesave.' '.lMtrix.' -a.cii -double -tabs :'J):
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