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ABSTRACT

Numerical simulation techniques are widely used to investigate the behavior of

submarines during the design stage. The accuracy of these techniques depend upon the

d ination of the hydrodynamic coefficients for the model.
The Marine Dynamic Test Facility (MDTF) is a new-six-degree-of-freedom forced

motion testing rig. The rig has the ability to test underwater vehicles in a manner that

makes it possible to d ine the hydrodynamic coefficients in the equations of motion.
Multi-variant linear regression is used to obtain the hydrodynamic coefficients from the
experimental data.

In this study a neural network technique to identify the hydrodynamic model from
experimental data is investigated. The technique uses the model trajectory (motion
history) to predict the hydrodynamic coefficients of the model. A single MDTF generated
maneuver was used to train the network. The trained network was then tested using

different and the k dictions were d to the actual MDTF

4 P

d forces and

Results obtained from the neural k technique indicate that the technique can be

used to predict the hydrodynamic model of underwater vehicles. The use of this

technique can dramatically cut the running costs to conduct experiments on new models.
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1. INTRODUCTION AND LITERATURE SURVEY

The motion of a ine is a very licated process that involves many factors such

as the submarine shape and depth of operation. In the early 1940's naval researchers
needed to predict the motion of naval submarines in the design stage to evaluate the

ad N i nal

vehicle's performance and ability to carry out a set of p

simulation techniques were widely used during that time.

Due to the development in naval submarine design, the shape of the vehicle became no
longer standard, in addition the type and shape of the hydroplanes that control the motion
of the boat changed dramatically from one type to another. These changes introduced
new challenges to the process of estimating the hydrodynamic coefficients.

Currently there are three major approaches to investigate the motion of a submarine.

These are the theoretical approach, the experimental h, and the p

L1y

identification approach. Parametric identification methods provide new tools that have
been used recently to solve a number of ship motion problems. In this research a new tool
for predicting the submarine motion, based on a parametric identification technique, is

presented.



1.1. THEORETICAL APPROACH.

ic coefficients of submarines can be found

studies to calculate the hydrody

in the literature. Bohlmann (1990) utilized the three dimensional flow theory to calculate

the hydrodynamic coefficients of a submarine in all six degrees of freedom. The study

solved the p ial flow problem using a singularity distribution and was not limited to
slender bodies. Watt (1988) developed an analytical method to estimate the value of the
added mass coefficients of the submarine. The method calculates the added mass of the

submarine by dividing the submarine into several geometrical components, e.g. sail, tail,

fins..., etc. The added mass was calculated for each p by calculating the added
mass for each representative ellipsoid.
Mackay (1988) developed a semi-empirical method for calculating the out-of-plane heave

force and pitch moment for a submarine. The method is based on potential flow theory

and a first order panel method. The method dicts the out-of-pl. due

P L

to the absence of the modeling of the cross flow separation in the after-body of the
submarine. Mackay and Conway (1990) modeled the cross flow separation by
introducing a single doublet sheet along an experimentally determined separation line.

Papoulias and Mckinley (1994) studied the stability of a submarine during its steady state
vertical ascent. They considered a free positive ascent case to investigate the response
with respect to the stem and the bow plane deflections, excess buoyancy, and relative
position between the center of gravity and the center of buoyancy. A nonlinear study of

the dynamic stability of a submarine in a dive maneuver was also presented by Papoulias

and Papadimitriou (1995). The h daf k to calculate the critical



speed of the vehicle in terms of its ic height, the |

dinal separation of the

center of gravity and center of buoyancy, and the dive plane angle.

1.2. Experimental Methods

Captive model tests are used to determine the coefficients in the equations of motion of a
model. The use of the rotating arm and planar motion mechanism (PMM) allowed the

of some nonlinear terms and time histories effects, see Feldman (1995) and

Kalske (1992). Multi-degree-of-freedom test rigs are being used at present to determine

these coefficients, see Williams et al. (1999). Experii | methods are expensive to use

and their results suffer from scale effects.
An alternative to the captive model tests is the wind tunnel test. Experiments on a deeply

submerged submarine model can be conducted. The ad ge of this procedure over

conventional captive model tests is that in the wind tunnel the duration of the test can be
extended to a much longer time than in the case of towing tank experiments. A wind
tunnel experiment can also be used for flow visualization and for studying the effects of

Ision on the submarine model hydrodynamics, see Wat et al. (1993).

PIOP

1.3. Parametric Identification Approach

Parametric identification techniques provide another way for determining the
hydrodynamic model of the submarine. Parametric identification approaches use the
relation between the input and the output to estimate the hydrodynamic forces and



moments while in the experimental approach these forces and moments are measured

directly. The method a certain for the mathematical model. The

coefficients of the mathematical model are then estimated such that the model produces
an output which matches the measured output. Artificial neural networks (ANN) have
been used for many surface ships as a parametric identifier of the vehicle’s
hydrodynamics.

Neural networks have been shown to yield robust models for ship motions. Haddara
(1995) used the technique to analyze the rolling motion of a ship at sea. He also used
neural networks to characterize the ship coupled heave and pitch motions, see Haddara
and Xu (1999), and to analyze the free roll decay curve, see Haddara and Hinchey (1995).
Hinchey also used this technique to fit ship resistance data for an R-Class icebreaker ship
model, see Hinchey (1994), and to predict the loads on sub-sea robots, Rivera and
Hinchey (1999). Haddara and Wang (1996) used this technique to identify the coupled

sway and yaw motion for a ship undergoing a series of standard Lainiotis and

Plataniotis (1994) used an adaptive neural network to predict the current as well as future
ship position as a space vector.

Multi-linear regression may not yield accurate estimates. The accuracy of the technique
decreases as the number of variables increases. Neural networks have been shown to
yield a robust result regardless of the number of variables in the functional relation.

However the classical division of force into which are functions of added

masses and damping coefficients is usually lost.



1.4. Scope and Objectives.

The objective of this study was to develop a parametric identification tool for predicting
the hydrodynamic forces acting on a submarine model using the model motion history.

The proposed tool uses a neural network technique to identify the hydrodynamic forces

and Data obtained from multi degree-of-freedom tests were used to train the
network.

The fully trained network was then used to generate more maneuvers with a limited
computational demand. This will reduce the cost associated with experimental testing of
submarine models since only a limited number of maneuvers have to be actually

performed to obtain the full hydrodynamic model of the submarine.

1.5. Methodology

A neural k model was developed. Digitally generated data and experimental data
were used to train and validate the model. The motion of a submarine undergoing a
coupled heave and pitch sinusoidal motion was numerically generated at different
frequencies using a Runge-Kutta algorithm. Experimental data were obtained from the
Marine Dynamic Test Facility (MDTF). The maneuvers considered were horizontal
circular arcs, and sway chirp maneuvers. A three-layer feedforward backpropagation
neural network was used for system identification. The network prediction was then
compared to a multiple linear regression estimate of the model hydrodynamic forces and

moments.



1.6.  THESIS OUTLINE

Chapter 2 gives background inf ion about neural ks and their archi it

also discusses some of the training algorithms. Chapter 3 describes the mathematical

formulation of the equations of moti the neural network algorithm, and the
multivariate linear regression. Chapter 4 describes the experimental setup and the neural
network approach used. Results obtained using experimental data as well as digitally
generated data are included in Chapter 5 while Chapter 6 outlines the conclusions. Some

recommendations for future work are stated in chapter 7.



2. NEURAL NETWORKS

Tasks that involve pattern recognition or intelligence are very difficult to automate; such
tasks are performed easily by animals in their daily activities. Understanding how the
biological neural system works allowed researchers to develop anificial systems that

mimic the biological brain in performing a variety of computations and intelligent tasks.

2.1. BioLoGICAL NEURAL SYSTEMS

A biological neural system consists of a number of neurons; each neuron is composed of
a cell body, a tubular axon, and a number of dendrites, see Figure 2.1. Data propagates
from the dendrites of one neuron to the other through a gap synapse. The magnitude of
the signal received by a neuron depends upon the strength “efficiency” of the synaptic
connection between that neuron and the one that is sending the signal. A neuron will fire
a signal if its excitation exceeds a critical amount, called the threshold. It will then send
that signal along its axon. A signal propagates down the axon and reaches the synapses,

sending signals of various strengths to other neurons.



Figure 2.1 Biological neuron
2.2. ARTIFICIAL NEURAL NETWORKS

An Arnificial Neural Network (ANN) consists of a number of processing elements

(nodes) equivalent to the neurons in biological systems. Synapses are modeled by links

between these nodes while the sy

ptic efficiencies are replaced by weights. Nodes at the

same level form a layer. Each ANN consists of an input layer, output layer, and a number

of hidden layers. Inputs to each node are summed up and the node then fires an output

q activation fi

ding to the assig;
All ANN models proposed so far are based on the following assumptions

1. The position of the node of the incoming connection is irrelevant.

2. Each node has a single output value, which is distributed to other nodes via
connections irrespective of their position.

3. All inputs to the same level come at the same time or remain active long enough for

putations to occur, Meh etal (1997).



2.3. ANN SQUASHING FUNCTIONS

Squashing functions can be classified into differentiable and non-differentiable functions.
Differentiable and non-differentiable functions can be defined according to the function

shape. A differentiable function has a smooth shape and it is needed for some adaptive

learning algorithms. A non-differentiable, di i function gives a true binary

output. Discontinuous functions can be used in classification networks.

23.1. STEP FUNCTIONS:

A step function is defined as

a if net<c
= 21
£met {b if ner> c}
This function is easy to impl The net threshold is rep d by c, see Figure 2.2,

and the function has only two states ON if net > ¢ and OFF otherwise.
The step function is used in class identification where the input belongs to a centain class

if its value is greater than a certain value.



n

f(net)
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Figure 2.2 Step Function

23.2. SIGMOID FUNCTIONS:

This is the most commonly used function, also called the S shaped function; the

activation of the node is as follows:

1
f(’lﬂ)=z+‘l+7.7_,—,, 23

A typical sigmoid function is shown in Figure 2.3. The advantage of such a function is its
smoothness.



f(ogt)

net’
Figure 2.1 Sigmoid Function
2.3.3. GAUSSIAN FUNCTIONS.

Another continuous function that is used in the ANN is known as the bell shaped

function, see Figure 2.2

Ll
f(net) 5oa € ? 24

T

4

Such a fi

prior ledge of certain statistical values such as the mean
and the variance of the input, which imposes some limits on its application. The bell
shaped function can be used in class identification depending on how close the input is to

the mean value p.
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Figure 2.2 Bell shaped function

24, Types of Neural Networks:

A single node neural network is insufficient for most practical problems and a multi-node
network is normally used. The way tbose nodes are connected to each other determines
how the computational tasks are performed by the network. Neural networks are
classified according to their architectural design. This section discusses some of the most

popular designs.



"

24.1. LAYERED NETWORK

This type of ANN, also called recurrent neural network, is partitioned into layers. There
is no connection between layer k to j if k > j, see Figure 2.3; connections between nodes

in the same layer exist except for the input layer.

Ouput
ayer

Lyecd Hidden Layers

Input layer
Figure 2.3 Layered neural network

24.2, ACYCLIC NETWORK

This is a subclass of the layered network with no intra-layer connections i.e. no
connections between nodes in the same layer. These are simpler nets than the recurrent
ones with less computational demands, which make them easy to implement. Figure 2.4

shows an acyclic neural network.



Out put
layer

Layer0
Input layer Fidden Layers

Figure 2.4 Acyclic neural network

24.3. FEEDFORWARD NETWORKS

Again this is another subclass of layered networks, where the only connections exist
between layer j and k if k = j +1. These are the most in-use networks and they are
described by the number of nodes in each layer. For example, Figure 2.5 shows 23.2.3.2
feedforward net. In general feedforward networks have one or two hidden layers.

From this point forward only feedforward neural networks with one hidden layer will be

considered.



Output
layer

Layer0 Hidden fayers
Input layer

Figure 2.5 Feedforward neural network

2.5. Backpropagation Training Algorithm

The objective of a supervised training algorithm such as the backpropagation algorithm is

to minimize the mean square error between the desired output and the network one. To

elaborate on this one can consider the fi X d by Meh etal. (1997).

The input pattern to the network is P. For each input vector xp there is a desired output
de=(dp,; dpas.........; dpy) 25
One would expect some error between the desired output and the network output. The
algorithm objective is to manipulate the weights so that this error would be minimal. If
the network output is:
0p=(Op,1 ; Op2;.........; OpK) 26

Then the network error is



»
Error = Z Err(op,dp 2.7

e

The function Err(op,dp) should be a nonnegative function. One way of puting this
function is to express

Err(op,dp =(£r.;)* where £r.;=[opi—du{

This function is a differentiable function. M it is easy to apply to the

backpropagation algorithm since the derivative of the resulting quadratic function is
linear and easy to compute.

To discuss the backpropagation in depth one can assume the following case for a three
layer network.

Each node receives an input vector of Xp; where ‘p’ represents the pattern number while
“i" represents the i node in the layer.

The input to the j*" node in the hidden layer isnet; =Y @i

The output of the j node xp; = §(net ;), where § is a sigmoid function.

The input to the k™ node in the output layer is net k=Z NCIVE Y

The output of the k™ node in the output layer is Opx = 8(net ).

One way to minimize the Mean Square Error (MSE) is to apply the gradient descent

method. Since the net output depends on the net weights, the MSE is also a function of
the weights w. According to the gradient descent the direction of the weights change is

the same as -55/5“,, see Widrow and Lehr (1990). Following this scenario the weight

change can be described as follows



Awr; «(-a%m’_) 28
sou=(-%5( ) 29

Since the change in the weights results in changing the net output, one can write

OE _ OE Jox Gnet:

L 2.10
0@+r.; Ook Onets OW. ;
Equation 2.10 can be simplified into
J0E

——— ==2(dk - 0x)d"(net 1)x;

. (di — 0)5" (net £)x; 211
Now let us consider the weights between the input and hidden layers.

OE < OE Qo Gnet: 8x; Onet;
0., & oo onets Gy et o0, 2

O0E & y .
—— =" {-2(di—01)5'(netr)r. 16 (net ;)xi} 213
owi.; o

The change of weight is then calculated for the weight between the output and hidden
layer using the actual error while the change of weight for the lower level is calculated
using the weighted sum of errors coming to the hidden node from the output node. The

error at a node is calculated in the di pposite to the propagation of the node

output. Applying this analogy to equations 2.11 and 2.13 one can write the change of

weight for network training using the p™ pattern as:

Ak, j = N6p.k Xp, 2.14

A, j = npp. j Xp.i 215



where

0 p.k = (dp.k — 0p,k) * 0p.k * (1 = 0p.5) 2.16

and

Ib.l=ZJr-iﬂ-/'Xhl.(l—Xp.l) 217
i

Training using equation 2.14 and 2.15 results in the manipulation of the network weights
to achieve the optimum weights that result in the minimum error. Weights can be updated
after each pattem (training per pattern) or after all the uammg patterns pass through the
net (training per epoch). The criteria for terminating the training and the choice of the

suitable training rate “n" depends on the user’s experience.

2.6. Momentum Update
Backpropagation leads the neural network error to a certain minimum. There is a chance
that this minimum is a local minimum different than the global minimum. The network
then will stick to this local condition and the algorithm will prevent the error from
decreasing further. One can prevent this by forcing the algorithm to update the weights
depending on the average gradient of the MSE of a small region rather than at a certain
point. Averaging a%w in a small region allows the algorithm to update the weights in

the general direction avoiding local minima.

Averages can be very expensive in calculation. Rumelhart et al. (1986) suggested a

shortcut using a momentum term as follows:

A@w [t +1) =70k xi + aA@r (1) 2.18



The term a is a momentum term yet its optimum value is not known. With the addition
of this term the weight change is influenced by the weight change from the previous step
as well as the change suggested by the gradient descent.

The effect of the use of a2 momentum term in a weight update depends upon the value

I

chosen for a. A well-ch value can si ly reduce the time needed for training

the network. A value of 0 implies that the past step does not affect the current update
while a value closer to | suggests that the current error does not affect the training. Since
the weight update in this algorithm depends upon the direction of the previous weight
update, the direction chosen in an early stage of the training procedure can strongly bias
future weight updates and can restrict the network to a certain region preventing the

algorithm from exploring other regions.



3. MATHEMATICAL FORMULATION

3.1. Equations of Motion

The equations describing submarine motion can be obtained using Newton’s second law.
MX=F 1A
where M is the mass matrix and X and F are the displacement and the force vectors
respectively.

One can expand on equation 3.1A to describe the motion of an underwater vehicle as:
(I+A)x =F(x)+ X(x)+S(x) 3.1B
where x is the extended state vector containing the vehicle’s translation and rotational

velocities, Euler angle displ! and control deflections, see Figure 3.1. Iis a matrix

representing the inertial properties of the vehicle, A is the added mass matrix, F is the

hydrodynamic force vector, X represents the force vector arising from axis rotation,

yancy, gravity, and, propulsion, and S other | force vectors.




For small amplitude motion of a submarine model attached to a forced motion testing rig

with port - starboard symmetry, and using the coordinate system shown in Figure 3.1,

| 3.1B can be exp d in a comp form as:
X3+ busxs + basks + c3sxs = Frsin(ax) 32
X5+ bsaxs + bssks + cssxs = Fuosin(ax) 33

where x; and Xs are the heave and pitch displacements respectively, % and % are the first
and second derivative of the displacement, F3, and Fs, are the heave force and pitch

moment amplitudes, o is the exciting frequency, and t is time.

Figure 3.1 Model coordinates system

The hydrodynamic coefficients by, where i, j = 3, 5, represent the submarine damping
coefficients. The coefficients c;; are the pitch restoring coefficients which act to return
the submarine to the position of vertical equilibrium. The right hand sides of equations
3.2 and 3.3 represent the heave force and pitch moment that are imposed on the
submarine model by the forced-motion apparatus as the submarine follows the path. For



the validation of the proposed technique a generic submarine with the following arbitrary

hydrodynamic coefficients was used to generate the numerical motion data.

b3 bss bss bsy Css C3s Fio Fso
0.234 0.158 0.222 0.58 30.78 0.238 3

Table 3.1 Numerical model coefficients
Equations 3.2 and 3.3 were solved numerically using a Runge-Kutta algorithm to obtain

(8]

the time series of the heave and pitch displ locities, and !

3.2. NEURAL NETWORK MODEL

The neural network model used in this study consists of an input layer, hidden layer, and
an output layer. Figure 3.2 shows the details of the neural network structure.

The input to the j* node in the hidden layer consists of the weighted sum of the i®
components in the input vector:

M= 3 ik 36

=]
where wj is the weight between the i® node in the input layer and the j* node in the
hidden layer, hy= %3, h;= %3, hy= s, he= s, hs= xs, and he= 1. The input to the j* node
in the hidden layer is transformed via a squashing function as:

1

G(M) =
(M) oo

3.7

M)



f(k) f(U

Figure 3.2 Neural network structure

The output of the k™ node in the output layer is given as:
Y= f‘,i.““ i G(M)

=

38

where k is either 3 or 5, and A™; is the network weight between the j® node in the hidden

layer and the k® node in the output layer.



3.3. LINEAR REGRESSION MODEL

Multiple linear regression is often called “model fitting". It depends upon the assumption
of a mathematical model that fits the data at hand. The adequacy of the technique

pends upon the y of the d model.

Considering the model described in Equation 3.9 there are k regressors and i is the
number of observations, i= 1,2,....n.

yi=Bo+ Puxa+ Prxa+ -+ Pixa + & 39

13
yi=Bo+t Y Bxi+e 3.10

el

One can express equation 3.10 in a matrix form as

y=Xp+¢ 311
where
»] 1 xu X2 - Xu Bo
y=y:‘ X=%x.n x:n *a| B=Bn
¥ | 1 X xe Xat A
(&
P
&

The least squares method determines the value of the parameters fy so that the sum of the

squares of the error is minimized. The least squares function is

L=F e’ =et=(y-X)(y - XB) 312

24



equation 3.12 can be rewritten as
L=yy-2Xy+pX'Xp ; 3.13
in order for the function L to be minimized with respect to f, the least squares estimator

I‘S must satisfy.

oL,

=-2X'y +2X'Xp =0 3.14
ap B p

From equation 3.14 the least squares estimator is
B=(XX)"XYy 3.15
Montgomery (1997) presented this framework of least squares as an unbiased estimator

of the parameter B in the linear regression model.
3.3.1. UNCOUPLED HEAVE MODEL

Given n points, the linear regression model for the uncoupled heave force estimate is.

F.= B+ Bk + Bk i=123...n 3.16

3.3.2. UNCOUPLED PITCH MODEL

Using the least squares method the pitch moment is assumed to follow the mathematical
model shown:

Fi= B+ Bixi+ Baki+ B =12...n 7



3.3.3. COUPLED HEAVE AND PITCH MODEL

The coupled heave and pitch digitally generated motion can be expressed in the following

linear equations:
F3i=Bo+ Buksi+ Buisi+ Buxsi+ Puks 3.18
Fsi=fos+ Baksi+ Baxsi+ Bksi+ Puks  i=12,...n 3.19

Rearranging equations 3.23 and 3.24 into matrix form yields:

F3=Xsps 320

Fs = Xsfs 321
where
B.
pil
B =| B 32
B
B
Min % xsi Zn]
MR o
\_l X X Xsno X
and
Min xa &an ¥a]
lin x2 X2 X
Xs=|, . . 324
L] %o Xse dsa Xsa




Results obtained from the neural network technique and the linear regression calculations

are shown in Chapter 5. Least squares calculations are shown in Appendix A.
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4. FRESH WATER TOWING TANK
EXPERIMENTS

4.1. MARINE DYNAMIC TEST FACILITY (MDTF)

The MDTF is a multi-degree-of-freedom forced-motion test rig. It has the capability of
forcing the test model in an arbitrary motion trajectory, within the rig and the towing tank
limits. The motion parameters as well as the forces acting on the model are measured.
The MDTF is part of the testing facilities at the Institute for Marine Dynamics (IMD).
The MDTF was commissioned in early 1999 after its performance had been evaluated
through a prototype rig (1993 to 1996).

During the period from October to Dx ber 1999 were conducted using a

standard submarine model. The MDTF description, experiment setup, and the maneuvers

performed will be briefly p d in the following

41.1.  MDTF SETUP

28



The general arrangement of the MDTF with the model mounted on it, is shown in Figure
4.1. The whole configuration is mounted on the carriage of the towing tank with the

model deeply submerged. The MDTF rig consists of two lateral railed carriages

pporting two vertical telescopic struts; a picture of the sub-carriage is shown in Figure
4.2. Two lateral servomotors, shown in Figure 4.3, drive the lateral struts sideways
parallel to the carriage transverse centerline while two other servomotors, Figure 4.4,
drive the telescopic struts in the vertical direction. A universal joint, see Figure 4.5,
connects the sting to the struts. The sting is connected to the model via a six component
internal balance. The six components of the reaction loads were measured at the model

balance-resolving center (BRC). For detailed information on the MDTF and its setup see

Williams et al. (1999).



Actuator motions are
shown thus: <——&

Figure 4.1 MDTF General Arrangement
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Fi

igure 4.3 Lateral Motor Arrangement
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Figure 4.4 Vertical Motor Arrangement

Figure 4.5 Forward Strut Universal Joint



4.1.2. EXPERIMENTAL SETUP

The model, IMD 497 Standard submarine model, was 4.445 m in length and 0.5 m in
diameter at the mid-body. The BRC is located 5.453 m from the aft strut. The forward
and afterward struts are 2 m apart. Model dimensions and coordinate system are shown in

Figure 4.1 to Figure 4.8. The model displ were calculated from the strut

displacements as shown in equations 4.1 to 4.4,

"""""""""" ---mg
----------------- doooncezit™]

l——1.54——

4213

Model BRC

Figure 4.1 DREA Standard submarine model dimensions
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Fwd Strut

i Strce Lie

Figure 4.7 Side view of the MDTF setup



Carnage Center Line

Toving Carrige

Figure 4.8 Top view of the MDTF setup



e

b
6= sin"([u-TIM])
Yare = Yo + ({a—:i][ym - YM]]

4.1

43
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The above equations are based on a “rigid” sting assumption and they describe the model

displacements relative to a set of axes which are fixed to the towing carriage but which

translate longitudinally relative to a fixed earth reference point.

4.2. MANEUVERS

The design of the MDTF allows the model to perf

The

maneuvers that have been conducted can be divided into four categories. These are

described as follows:



4.21. CIRCULAR ARC MANEUVERS.
In these maneuvers the model is forced to move in a series of arcs separated by transition
regions. The model has a constant speed, u. and a constant pitch rate. q. during the
vertical arc maneuvers and constant yaw rate, r. during the horizontal arc maneuvers.
Heave and sway displacements may have nonzero values. The arcs have a non-

dimensional turning rate, t'. defined as.

t'=L/R 4.5
where L is the model length. R is the turning radius. R =  in the horizontal plane and
r
=% in the vertical s. ' rep the non-dimensional tuming rate (¢’ in the
q

horizontal plane and q’ in the vertical plane). Figure 4.9 shows a plot of the aft strut
displacement, forward strut displacement, and model trajectory for an arc maneuver in

the horizontal plane.

4.2.2 LINEAR CHIRP MANEUVERS

Chirps are h i with amplitude and varying frequency. The
frequency ranged from 0.1 up to 0.5 Hz. These frequencies were swept in the form of

low-high-low sawtooth shape. Figure 4.10 shows a chirp maneuver in the vertical plane.



g &8 B
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Figure 4.9 Arc maneuver trajectory in the lateral plane r’ =0.2
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Figure 4.10 Pure heave chirp, frequencies 0.1 to 0.5 Hz



4.23. PURE HARMONICS

A series of harmonic runs were performed during the testing period. The frequency

ranged from 0.15 to 0.25 Hz with amplitude range of 0.07 to 0.4 m.

4.24. MULTI-DEGREE-OF-FREEDOM MANEUVERS

A limited number of maneuvers were tried with the model moving in three, four, and five
degrees of freedom; most of these were chirps. During the testing period a set of non-
conventional maneuvers such as cone helical maneuvers were also tried. More
information on these can be found in Williams et al (1999).

The above mentioned maneuvers were performed with four different configurations of
the submarine. These configurations, shown in Figure 4.11, were bare hull sub; hull and
sail; hull and tail; and hull sail and tail (full configuration). A list of all maneuvers

performed is given in Appendix C.



Figure 4.11 Model configurations
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4.3. Data Acquisition

Data from load cells, 1 and i were sampled at 50 poi

frequency. The GEDAP® software stored all measured time series in binary format. A

split routine was then used to split each run file into separate run channels and

preliminary statistical calculations and ions were performed. An export routine
was then applied to transfer the run at hand to ASCII format. The exported file had the

format shown in Table 4. 1.

4.3.1. TIME TARE AND COORDINATES
TRANSFORMATION

During testing, data collection started before the actual maneuver started, moreover the
maneuvers started some time before the carriage reached its constant speed. Time before
the steady speed is considered tare time and all data collected during that time segment
had to be removed.

The six force components were measured at the model BRC located at 5.453 m from the
aft strut. A simple transformation of the struts displacements, based on equations 4.1 to

4.4 and assuming a rigid sting, was needed to obtain the model linear and rotational
displacements at the BRC.
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Column # | GEDAP Channel # Variable Units
1 Implicit Variable Time sec
2 ch.031 Carriage speed m/s
3 ch-sname.001 Fx N
4 ch-sname.002 Fy N
5 ch-sname.003 Fz N
6 ch-sname.004 Mx N-m
7 ch-sname.005 My N-m
8 ch-sname.006 Mz N-m
9 ch.022 FV. Pos. m

10 ch.024 AV Pos. m
11 ch.026 FL Pos. m
12 ch.028 AL Pos. m
13 ch.007 Fwd. Ax g
14 ch.008 Fwd Ay g
15 ch.009 Fwd Az g
16 ch.010 Aft Ax g
17 ch.011 Aft Ay g
18 ch.012 Aft Az g

Table 4. 1 ASCII file format "HST_xxxxx. asc”

MDTF Prepshop is a Windows application written by the author to perform the above

d steps, tare | and di fi ion. It allows the user, through a
graphic interface, to select the ASCII run file, the time segment, and the output file name.
The program will then run the scenario mentioned earlier. The program also calculates
the model’s heave, pitch, yaw, and sway rates at the BRC. Prepshop was written in

Visual Basic® 6 and its code is shown in Appendix D.
4.4. Filtering

The data were then filtered using the Matlab® Wavelet toolbox. A wavelet filter allows

the use of a variable-sized windowing technique where a long time interval is used when
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we want more precise low frequency information and shorter interval where high

frequency information is needed.

44.1. WHAT IS A WAVELET ?

A wavelet is a waveform with a limited duration that has a zero average value. While
Fourier analysis breaks the signal into sine waves with different frequencies, wavelet
aqalysis breaks the signal into shifted and scaled versions of the original wavelet.

A continuous wavelet is the sum over time of the original signal multiplied by a scaled,

shifted version of the chosen wavelet function .
C(scale,shift) = ] f(t)p(scale,shift)dt 46

Equation 4.6 results in many wavelet coefficients C. These coefficients are a function of
the shift and scale of the function.

Matlab®decomposes the wavelet signal into two components, a high frequency and a low
frequency component, by removing the high frequency component. Each wavelet
performs a single level filtering. To obtain a smoother signal the filtering process can be
repeated a number of times on the low frequency component. This is called multilevel
decomposition. Matlab® includes a number of wavelet families, see the Wavelet Toolbox

user guide (1997).



44.2 FILTERING PROCEDURE

The wavelet used in these runs was a Daubechies ‘db5’ with a d position level 6.

This filter worked fairly well in eliminating most of the noise of the signal while
preserving the general form of the data. The filtering script, which is called clean.m, is a
Matlab M-file that reads all the channels from the Prepshop file; filters them, then exports
the output to a filename.flt file. The procedure is to split the file into individual channels
and perform the following steps.

1- Decompose the signal using Daubechies wavelets with six levels and calculate the
scale and position.

2- Determine the default values for de-noising the signal.

3- De-noise and compress the signal using a global positive threshold.

The filtering script clean.m as well as a number of selected runs with filtering are shown

in Appendix E.

4.5. Neural Network Approach

Tow different neural networks were used to describe the horizontal and the vertical

maneuvers. In the case of horizontal the input isted of the sway
velocity, %2, the sway displacement, x:, the yaw rate, Xs, and the yaw angle, xs. The
input to the j™ node in the hidden layer, M;, is given by:

M= 3 i 47
-l

where , hi= %2, lp=x2, b= %6, hy=xs, hs= 1.
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The output from the j*® node in the hidden layer, G (M;) is given by
tp i

G(M)) = j=12,...,17 4.8

L+e™

finally, the network output, F%¥, is given by.

L}
F®= 'z;. “,G(M;) k=234.56 49

i

In the vertical plane there would be no out of plane forces and moment. The reason for
that is the sub is symmetrical around the vertical axis and asymmetrical around the
horizontal axis. The presence of the sail in the horizontal plane, see Mackay (1988),
Mackay and Conway (1990 and 1991), while the sub is turning, produces a drift angle,
which results in a positive heave force on the after body of the sub and a positive pitch
moment at the nose which attempts to lift the nose up.

After some preliminary trials it has been found that a three-layer feedforward net with 15
hidden nodes would be sufficient in the case of predicting the forces in the arc maneuver.
On the other hand more hidden processing elements, namely 17 nodes, were needed to

obtain the relation in the case of chirp maneuvers.



5. RESULTS AND DISCUSSION

5.1.1. UNCOUPLED HEAVE MOTION GENERATION

The equation of uncoupled heave motion for the model can be written as follows.

X+ bunky = Faosin(wt) 5.1

Using this equation, 20 time histories were d at the freq ies: 0.5,0.6,0.7....,

2.4 Hz. The heave force is plotted as a function of the displacement, velocity, and

for different frequencies. The results are shown in Figure 5.1 to Figure 5.6
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Figure 5.2 Hydrodynamic force vs. velocity at 0.5 Hz uncoupled heave
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5.1.2. UNCOUPLED PITCH MOTION GENERATION

As in uncoupled heave, the equation of motion for a submarine model undergoing pitch
motion can be written as follows
Xsi+bssxsi+cssxsi = Fsosin(@ ti) 52

The model motions were d at frequencies of 0.5, 0.6, 0.7,..., 2.4 Hz. The pitch

moment is plotted as a function the motion. Plots are shown in Figure 5.7 Pitch moment

vs. acceleration at 0.5 Hz uncoupled pitch to Figure 5.12.
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Figure 5.7 Pitch vs. acceleration at 0.5 Hz pled pitch
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Figure 5.10 Pitch moment vs. acceleration at 1.5 Hz uncoupled pitch
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Figure 5.11 Pitch moment vs. velocity at 1.5 Hz uncoupled pitch
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5.1.3. COUPLED HEAVE AND PITCH MOTION

Uncoupled heave and pled pitch motions are th ical moti In this section

the more realistic coupled motion will be considered. The motion for the same generic
submarine model was generated undergoing regular coupled heave and pitch. The model
motion is described by equations 3.2 and 3.3.

As in the previous sections these equations can be solved using a Runge-Kutta method.
Simulated data were obtained for 0.5, 0.6......... » 2.0 Hz for the coupled motion. The
displacement, velocity, and acceleration time series were obtained at these frequencies.
To validate the proposed technique the numerically generated force was compared to the

predicted and least square estimated force.



5.1.4. EFFECTS OF RANDOM NOISE

Direct measured values, experimental values, often contain a noise component either from

| errors or hanical noise from the i | app In the following

P

section the coupled heave pitch motion is generated as in the previous section but with the

addition of a 20 % random noise term to the motion displ:

velocity and
The motion of the submarine was modeled using equations 3.2 and 3.3. Applying the same
procedures as before the numerically generated data were obtained for the same range of
frequencies. The random noise was then added to the time series.

The reason for adding the noise after the time series has been generated is that the noise
simulated here was due to instrumentation errors. Once again the generated hydrodynamic force

and force were d to the esti d force from the least squares method and the

P

predicted one using a neural network.

5.2. RESULTS FROM DIGITALLY GENERATED DATA

Figure 5.13 and Figure 5.14 show a comparison between a least squares estimate and a neural
network prediction for the heave force for the uncoupled heave case. Figure 5.15 shows a plot of

actual force vs. the neural predicted force (uncoupled heave at 0.7 Hz) while Figure 5.20 is a plot

of actual pitching moment vs. least squares estimated pitch ( pled pitch at 0.7 Hz).
Figure 5.17 and Figure 5.18 show the comparison between a least squares estimate and a neural
network prediction of the pitch moment for the uncoupled pitch motion. Figure 5.19 is a plot of

actual pitching moment vs. a neural predicted pitch moment (uncoupled pitch at 0.7 Hz). Figure
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5.20 is a plot of actual pitching moment vs. a least squares esti d pitch (i

pitch at 0.7 Hz).
Figure 5.21 and Figure 5.22 show a comparison between a least squares estimate and a neural
network prediction of the coupled heave-pitch motion. The effect of randomly generated noise on

the least squares and the neural prediction is show in Figure 5.23 and Figure 5.24.

Figure 5.13 Comparison b least square estimation and neural net prediction (uncoupled
heave at 0.6 Hz)
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Figure 5.14 Comparison between least square estimate and neural net prediction (uncoupled
heave at 1.5 Hz)

Figure 5.15 Plot of actual force vs. neural predicted force (uncoupled heave at 0.7 Hz)
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Figure 5.16 Plot of actual force vs. least squares estimated force (uncoupled heave at 0.7 Hz)

Figure 5.17 Comparison between least square estimation and neural network prediction
(uncoupled pitch at 0.7 Hz)
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Figure 5.18 Comparison between least square estimation and neural network prediction
(uncoupled pitch at 1.2 Hz)
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Figure 5.19 Plot of actual pitching vs. neural predicted pitch moment pled pitch
at0.7 Hz)
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Figure 5.20 Plot of actual pitching moment vs. least squares estimated pitch moment (uncoupled
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Figure 5.21 Comparison between least squares estimation and neural rk predicti
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Figure 5.22 Comparison between least squares estimation and neural network prediction
(coupled heave-pitch at 0.5 Hz)

Figure 5.23 Comparison b least squares estimate and neural prediction (coupled heave

and pitch at 0.4 Hz with noise)
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Figure 5.24 Comparison b least squares esti and neural predicti pled heave
and pitch at 0.4 Hz with noise)

5.3. RESULTS FROM EXPERIMENTAL DATA

A number of neural networks were trained to identify the hydrodynamic forces acting on the

submarine model during different types of Two of the categories described in section

4.2 and the model in its full confi ion were idered. The two were the

horizontal circular arc and sway chirp maneuver.

A single run from each maneuver was used in training. The number of data points used in the
training process was enormous. 2501 x 4 data points were used in training the chirp networks
and 1920 x 4 data points were used in training the circular arc networks. After a number of

preliminary trials the author found that training the k in a modul; hi gives

better resuits. Each module has three layers and 15 hidden nodes in the case of the arc maneuvers



and 17 hidden nodes in the chirp maneuvers. Figure 5.25 shows the proposed network

hi The X ists of small modules each module was trained separately
then the final net was then assembled.
Figure 5.26 to Figure 5.30 show plots of the hydrodynamic loads computed by the net vs.
the actual component measured for the training data set. The deviation around the
diagonal line represents the network error. Figure 5.31 to Figure 5.35 show the same
results in a different way. In these set of plots the neural network training and the actual
force were plotted vs. time. The network was trained with the horizontal circular arc ¢ =
0.2, and p=0.0 file name “HST_SV2000H_001.DAC; 1",
Figure 5.36 through Figure 5.45 show the same results described above for the trained
network applied to a new data file. The run chosen to apply the net to was a horizontal
circular arc r' = 0.1, and $=0.0 file name “HST_SVA1000H_001.DAC; I".
The sway chirp network was trained using sway run “ HST_F1t3V500S_001.DAC;1"
where the sway frequency ranged from 0.1 to 0.3 Hz with strut velocity 500 mm/sec and
sway amplitude of 1.85 m. Figure 5.46 to Figure 5.50 show plots of the neural training
verses the actual hydrodynamic loads on the model while Figure 5.51 to Figure 5.55
show the same training results and actual hydrodynamic loads plotted in a time series
format.
Figure 5.57 to Figure 5.73 show a comparison between results obtained by neural

networks and multi-linear regression for the circular arc maneuvers.
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Figure 5.26 Plot of sway force vs. training (horizontal circular arc r’ =0.2)
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Figure 5.27 Plot of yaw moment vs. training (horizontal circular arc r’ =0.2)
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Figure 5.28 Plot of roll moment vs. training (horizontal circular arc r’ =0.2)
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Figure 5.29 Plot of pitch vs. training (hori circular arc ' =0.2)




s00

Neural Network Training (N}

-100 -
Actusl Heave Force (N}

Figure 5.30 Plot of heave force vs. training (horizontal circular arc r’ = 0.2)
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Figure 5.31 Neural network training of the sway force (horizontal circular arc ' = 0.2)
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Figure 5.33 Neural network training of the roll moment (horizontal circular arc r’ =0.2)
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Figure 5.34 Neural network training of the pitch moment (horizontal circular arc ' = 0.2)
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Figure 5.35 Neural network training of the heave force (horizontal circular arc r’ =0.2)
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Figure 5.36 Plot of sway force vs. prediction (horizontal circular arc r’ = 0.1)
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Figure 5.37 Plot of yaw moment vs. prediction (horizontal circular arc r’ =0.1)
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Figure 5.39 Plot of pitch moment vs. prediction (horizontal circular arc r’ = 0.1)
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Figure 5.41 Neural network prediction of the sway force (horizontal circular arc r’ = 0.1)



1200

— Actual Yaw Moment

1000 « Neurai Network Prediction
200

800

Yaw Momoaent {N-m)

o

Time (sec)
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Figure 5.43 Neural network prediction of the roll moment (horizontal circular arc r’ =
0.1)
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Figure 5.45 Neural network prediction of the heave force (horizontal circular arc r” = 0.1)
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Figure 5.47 Plot of yaw moment vs. training (sway chirp F=0.1 to 0.3 Hz, V= 500 mm/s)
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Figure 5.48 Plot of roll moment vs. training (sway chirp F= 0.1 to 0.3 Hz, V= 500 mmvs)

Figure 5.49 Plot of pitch moment vs. training (sway chirp F= 0.1 to 0.3 Hz, V=500
mnvs)
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Figure 5.51 Neural network training of the sway force (sway chirp F=0.1t0 0.3 Hz, V=
500 mm/s)
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Figure 5.53 Neural network training of the roll moment (sway chirp F=0.1t0 0.3 Hz, V=
500 mm/s)
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Figure 5.54 Neural network training of the pitch moment (sway chirp F= 0.1 t0 0.3 Hz,
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Figure 5.55 Neural network training of the heave force (sway chirp F=0.1 t0 0.3 Hz, V=
500 mm/s)
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Figure 5.57 Plot of yaw moment vs. prediction (sway chirp F= 0.1 to 0.3 Hz, V=250
mmy/s)
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Figure 5.58 Plot of roll moment vs. prediction (sway chirp F= 0.1 to 0.3 Hz, V=250
mm/s)

Neural Network Prediclion (N-m)

*.200

250
Actual Piich Moment (N-m)

Figure 5.59 Plot of pitch moment vs. prediction (sway chirp F= 0.1 t0 0.3 Hz, V=250
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Figure 5.61 Neural network prediction of the sway force (sway chirp F=0.1100.3 Hz V=
250 mm/s)
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Figure 5.62 Neural network prediction of the yaw moment (sway chirp F=0.1 10 0.3 Hz
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Figure 5.64 Neural network prediction of the pitch (sway chirp F=0.1100.3 Hz
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Figure 5.65 Neural network prediction of the heave force (sway chirp F= 0.1 10 0.3 Hz
V=250 mm/s)
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Figure 5. 66 Comparison between neural network training and least squares estimate of
the sway force (horizontal circular arc r' =0.2)

Figure 5. 67 Comparison between neural network prediction and least squares estimate of
the sway force (horizontal circular arc r* = 0.1)
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Figure 5. 69 Comparison b neural k prediction and least squares estimate of
the yaw moment (horizontal circular arc r’ = 0.1)
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Figure 5. 71 Comparison b neural k prediction and least squares estimate of
the roll moment (horizontal circular arc r’ =0.1)
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Figure 5. 73 Comparison between neural network prediction and least squares estimate of
the pitch moment (horizontal circular arc r’ = 0.1)



5.4. Discussion

The horizontal arc network consisted of five modules. Table 5.1 shows the training

criteria for the network.

Module Heave Sway Yaw Roll Pitch
Training events 240768 | 403788 87780 | 135432 393756
Training epochs 95 160 34 53 156
Training time, min. 89 154 132 50 148

Table 5. | Training criteria for horizontal circular arc network

From Figures 5.31 and 5.41 it can been seen that the neural network prediction for the
sway force work fairly well. Moreover the network prediction from the steady state
segment of the arc is shown to be of a constant value which agrees with the fact that the
model is turning with a constant yaw rate. On the other hand the fluctuation on the actual
(measured by MDTF) force is due to model vibration and rocking. The same discussion
is valid for the rest of the hydrodynamics components. In the case of out of plane force
and moment, Figures 5.43, 5.44 and 5.45, the network slightly over-predicts the steady
state force.

The sway chirp maneuvers network has the same architecture as the horizontal arc
network. The training criteria for the sway network are shown in Table 5.2. The

prediction of the “ in plane “ components was good but once again the network slightly

predicts the out-of-pl p It is notable to say at this point that the-out-of
plane components were very small in this case since it is a pure sway maneuver. The
author feels that the presence of these forces, heave and pitch, in the sway chirp

maneuver was mainly due to the flexibility of the sting and resulting model vibration. A



closer look at the strut displacements showed that there was a 0.2 t0 0.5 degree yaw angle

which might have been enlarged by the sting flexibility and resulted in the shown forces.

Changing the archi of the net reduced the training time significantly. Moreover the

o

net can be disassembled and one of the can be ined and bled into the

net. This gives a great advantage to this architecture.

Module Heave Sway Yaw Roll Pitch
Training events 14385189 | 5622810 | 5802900 | 2187093 | 11515755
Training epochs 7188 2809 2899 1092 5754
Training time, min. 104 40 42 19 87

Table 5. 2 Training criteria for sway chirp network

Ne hell® 2, a al soft jlable from Ward Inc., was used in building

the modules. The k was then exported to Visual Basic code and a Windows®

version of the net was assembled together. A C ™ code can also be exported to be
included with some other code that can be run in any environment (i.e. Unix, VAX,

Windows).



6. CONCLUSIONS

In this work a new tool for predicting the hydrodynamic model for a submarine was

presented. A neural network technique was used to predict the hydrodynamic forces

154,

acting on the submarine. The h was d using digitally d data for

PP

coupled heave and pitch motions as well as experil I, see Figures 5.12 to Figure 5.24,

data for circular arc maneuvers and sway chirp maneuvers, Figures 5.31 to Figure 5.65.

The motion time series was numerically generated and both neural network predictions

btained d to the actual force. Resuits

and least squares esti were and

P

indicate that both the least squares method and the neural technique can provide accurate

predicti for the hydrodynamic forces and moments as long as the data are not
contaminated with noise. The neural network approach is shown to be superior to the
least squares method when there is noise in the data. The network maximum error when
applied to the noisy data was 2.67 % while the least squares produced 8.067 % error.

In section 5.3, the tool was used to predict the hydrodynamics of a submarine model

1

certain The idered were
and sway chirp maneuvers. A single run from each maneuver was used to train the
network. The fully trained networks were then used to predict the hydrodynamic forces

acting on the model at different conditions. For both maneuvers the force and moment
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prediction agree fairly well with the original measurement although there were some
cases where the network over predicted the force. During the experimental tests visual
observation showed that there were some vibrations in the model as it followed the

desired trajectory and in some cases the vibrati ded the MDTF limitation and the

maneuvers were terminated by the control loop. We feel that this vibration affected the
measured forces and since the motion history used for training the network were taken
from the MDTF struts motion, the relation between the force and the motion changed to

some extent. Filtering was used to eliminate the effect of noise on the data.

A comparison b the neural rk and the least squares estimate is also shown in
Section 5.3. The comparison showed that the neural network approach is more superior
than the classical technique.

Vertical arc maneuvers and vertical chirp maneuvers were limited in number and they

were not considered within this study.

The combination b the proposed tool and the MDTF represents a new and reliable

way 1o i igate the hydrodynamics of a submarine. With the new technique only a

limited number of maneuvers have to actually be performed to train the network. The
network can then be used to generate the force and moment for the remaining needed
maneuvers. By doing this we combined the capabilities of multi-degrees-of-freedom

testing with the affordability and i of ional techni

P q




7. RECOMMENDATIONS

Future work should include that were not idered within this study due to
the lack of time and the limited number of tests conducted. Maneuvers such as vertical
arcs, combined chirps, and five-degree-of freedom maneuvers such as cork-screw
maneuvers should also be investigated.

As stated in the conclusions due to model vibration the use of the rig struts displacements
introduces some uncertainty to the relation obtained by the network. Further work should

use the estimate of the actual motion obtained from the onboard accelerometers.
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APPENDIX A NUMERICAL RESULTS

The following are the calculations for the multiple linear regression in the case of

pled heave, pled pitch and coupled heave and pitch as well as the effect of
random noise.
Uncoupled Heave.

The mathematical model for the heave force can be expressed as

Fi=B+ Bk + B2k Al

Using the least squares method one can obtain the coefficients in the equation as follows:
229 64 -15

X'X=| 64 29605 7 A2
-1.5 7 871.3
0.0215
X'F =|699.791 A3
872.975
0.0044 0 0
X'X)"'=[ 0 00003 0 A4

0 0  0.00011



00044 0 0 7Jro02157 [ 00
B=| 0 00003 0 |[699.791|=|0.234
0 0  0.00011]/872.975]| | 1.0

so the expected heave force would be

Fi=0.0+0.234%+1.0%

the actual Heave force was

Fi=0.0+0.234% +1.0%:

Uncoupled Pitch

Using the least squares method the pitch is d to follow the math,

model shown in equation A.7
F.= B+ Biuxi+ P+ Bk

The coefficients are estimated as follows

[ 58 00014 -0. -0.0007
XTxo| 00014 1291 0001 -0761
"l -01 0001 0776 0.0001
|-00007 -0.761 00001 0.569
[0.0109
XTF | 389769
0.1756
| -22.8582




00017 0 0.0002 0

0 36537 -000l11 4.8836
XTX)" = A.10
XX = 50002 -00011 1.2887 -0.0016

0 4.8836 -0.0016 8.2836

0.0017 0 0.0002 0 0.0109
0 3.6537 -0.0011 4.8836 |[38.9769

B= 00002 -0.0011 12887 -00016[0.1756 |~
0 4.8836 -0.0016 8.2836 | -22.8582 All
0 .
30.7804
0.2222
1.0005
So the expected pitch moment would be
F.=0.00+30.7804 x; +0.2222 x +1.0005 AlL2

the actual pitch moment is

Fi=0.00+30.78x:+0.222x: +1.0%:

Coupled Heave-Pitch

Applying the least squares method one can obtain the following

0465 00137 -0.0033 -0.0033 -0.0001
00137 45464 00136 -0.0633 -0.0407
X'Xo=10>%{-00033 00136 18516 00408 -0.0261 Al3
-00033 -00633 0.0408 0.0018 0
-0.0001 -00407 -00261 O 0.0008



[ 0466 00106 -0.0002 -0.0001 0.0001
00106 45558 =-00635 -0.0409 -0.0259
X Xs=10>*| -00002 -00635 00018 00 -00008
-0.0001 -00409 00 00008 0

| 00001 00259 -00008 0 0.0004

[-0.0002
1.0559
Xo'Fs=10° *| 1.8604
00265
| -00355
0.0091
703.506
Xo'Fs=|17.643
-23.6649
-8.8516
00 00
0.2340 0.5801
Bs={ 1.0001 and fis=|30.7843
02355 02247
0.1581 1.0044

So the expected heave force and pitch moment would be
F5=00 +0.2343 + 1.000Lix +0.2355Xs: + 0.158 Lis

F5=00+0.580Ltx +30.7843xs + 0.2247 ks + 1.0044 s:

the actual heave and pitch moment were

Al4

Al

A.l6

1.17

All8

Al9



F3i=0.0+0.234.3 +1.000 L% + 0.238xsi +0.158 Lxsi
Fsi=0.0+0.58x%3 + 30.78xsi + 0.222 xsi +1.0%si



APPENDIX B VISUAL BASIC PROGRAM

“SIMULATION”

The following Visual Basic program was written to generate the sub motion time series

used in the validation of the method.

Dim delta As Double, omega As Double, k(4) As Double, t As Double

Dim L(4) As Double, a3(4000), a5(4000), M(4) As Double, N(4) As Double, v3(4000)
As Double, v5(4000) As Double

Dim x3(4000) As Double, x5(4000) As Double, F1(4000) As Double, F2(4000) As
Double

Dim B33, ¢33, B35, ¢35, BS3, ¢53, BSS, ¢55

Dimi As Integer, j As Integer, f30 As Integer, f50 As Integer

Dim G1 As Double, G2 As Double, ne As Integer, Nois As Double

Dim workfile As String

Private Sub Command1_Click()
' reading data from input form
Dim Counter As Integer
Counter =0
ProgressBar].Min = Counter
ProgressBarl.Max = 14001
ProgressBarl.Visible = True

‘Set the Progress's Value to Min.

ProgressBarl.Value = ProgressBarl Min
ProgressBarl.Value = Counter
B33 =bl11(0).Text
B35 =b21(1).Text
BS5 =b31(2).Text
B53 =b41(3).Text
¢33 =Me_c33(4).Text
¢35 = Me_c35(5).Text
€55 = Me_c55(6).Text



¢53 =Me_c53(7).Text

£30 = Me_f30(8).Text

£50 = Me_f50(9).Text

omega = Me_omeg(10).Text

ne = Noise.Value

Nois = Noise_value(0).Text
ProgressBarl.Value = Counter

' creating a temp. working file

Open "c:\simulation\temp" For Output As #1
Print #1, B33, B35, BSS, BS3
Print #1, ¢33, ¢35, ¢55, ¢53

Print #1, f30, f50, omega, ne, Nois
Close #1

delta=0.1

x3(1)=0

v3(1)=0

x5(1)=0

v5(1)=0

t=0

* the following generates the heave and pitch force

Fori =1 To 3000

Counter = Counter + 1

F1(i) = f30 * Sin(omega * 1)
F2(i) = £50 * Sin(omega * 1)

t=t+delta
ProgressBarl.Value = Counter
Nexti
‘Numerical integration of the ship's eqt of motion
Fori = 1 To 3000

Counter = Counter + 1

Call equation(B33, ¢33, B35, ¢35, BS3, ¢53, B55, ¢55, x3(i), x5(i), v3(i), v5(i))
k(1) = delta * (v3(i))

L(1) = delta * (F1(i) - G1)

M(1) = delta * (v5(i))

N(1) = delta * (F2(i) - G2)

Call equation(B33, ¢33, B35, ¢35, B53, ¢53, BS5, ¢55, x3(i) + 0.5 * k(1), x5() + 0.5 *
M(1), v3(i) +0.5 * L(1), v5(i) + 0.5 * N(1))

k(2) = delta * (v3(i) + 0.5 * L(1))

L{2) = deita * ((F1(i) + FI(i + 1))/ 2) - G1)

M(2) = delta * (v5(i) + 0.5 * N(1))



N(2) = delta * (((F2(i) + F2(i + 1))/ 2) - G2)

Call equation(B33, ¢33, B35, ¢35, B53, ¢53, BSS, ¢55, x3(i) + 0.5 * k(2), x5(i) + 0.5 *
M(2), v3(i) + 0.5 * L(2), v5(i) + 0.5 * N(2))

k(3) = delta * (v3(i) + 0.5 * L(2))

L(3) =delta * (F1(i) + F1(i + 1))/ 2) - G1)

M(3) = delta * (v5(i) + 0.5 * N(2))

N(3) = delta * (((F2(i) + F2(i + 1))/ 2) - G2)

Call equation(B33, ¢33, B35, ¢35, BS3, ¢53, BSS, ¢55, x3(i) + k(3), x5(i) + M(3), v3(i) +
L(3), v5(i) + N(3))

k(4) = delta * (v3(i) + L(3))

L(4) =delta * (F1(i + 1) - G1)

M(4) = delta * (v5(i) + N(3))

N(4) =delta* (F2(i + 1) - G2)

x3Gi + 1) =x3(i) + ((k(1) + 2 * k(2) + 2 * k(3) + k(4)) / 6)

X5(i + 1) = x5(1) + (M(1) + 2 * M(2) + 2 * M(3) + M(4))/ 6)

v3(i+1)=v3({) +(L(1)+2*L(2)+2*L(3)+L{4))/6)

v5(@i + 1) = v5(i) + (N(1) + 2 * N(2) + 2 * N(3) + N(4)) / 6)
ProgressBarl.Value = Counter

Nexti

Fori=1To 3000

Counter = Counter + 1

Call equation(B33, ¢33, B35, ¢35, B53, 53, BSS, ¢55, x3(i), x5(i), v3(i), v5(i))
a3(i) =Fl1(i) - Gl

a5(i) = F2(i) - G2

ProgressBarl.Value = Counter

Nexti

Fori=1To 3000

Counter = Counter + |

x3(i) = x3(i) + (x3(i) * Rnd * Nois * ne)
x5(i) = x5(i) + (x5(i) * Rnd * Nois * ne)
v3(i) = v3(i) + (v3(i) * Rnd * Nois * ne)
v5(i) = v5(i) + (v5(i) * Rnd * Nois * ne)
a3(i) = a3(i) + (a3(i) * Rnd * Nois * ne)
a5(i) = a5(i) + (a5(i) * Rnd * Nois * ne)
ProgressBarl.Value = Counter
Next i
t=100

* Writing out the resuits

file = CStr(omega)

file = Trim(file)

Open "c:\simulation\hevpitch™ + file + ".out” For Output As #4

Pring #4, "t" " "x3"; "% "v3% "% "a3% % "FI0% " "KS" "% "VE"; . "as": " %
"f50"




For j = 1000 To 3000

Counter = Counter + |

Print #4, t; ","; x3G); "." v3G); ", a3(): " F1G): "."; x5G): "."; v5Q); ™" a5(): "™
F2()

t=t+delta

ProgressBarl.Value = Counter

Next j

Close #4

TimerL.Interval = 2000

End Sub

Public Sub equation(B33, ¢33, B35, ¢35, B53, ¢53, BSS, ¢35, x3 As Double, x5 As
Double, v3 As Double, v5 As Double)

Gl = (B33 * v3) +(c33 * x3) + (B35 * v5) + (¢35 * x5)

G2 =(B53 * v3) +(c53 * x3) + (B55 * v5) + (c55 * x5)

End Sub

Private Sub Command2_Click()

‘recalling the previous inputs

Open "c:\simulation\temp™ For Input As #1
Input #1, B33, B35, BS5, BS3
Input #1, ¢33, ¢35, ¢55, ¢53

Input #1, 30, f50, omega, ne, Nois
Close #1

b11(0).Text = B33

b21(1).Text = B35

b31(2).Text = BSS

b41(3).Text = BS3
Me_c33(4).Text = ¢33
Me_c35(5).Text = ¢35
Me_c55(6).Text = ¢S5
Me_c53(7).Text = ¢53
Me_f30(8).Text = 30
Me_f50(9).Text = {50
Me_omeg(10).Text = omega
Noise_value(0).Text = Nois

If ne = 1 Then Noise.Value = 1
End Sub

Private Sub Command3_Click()
Unload Me
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=
s
]
4
of
¥
=
= 8
ES
[}
£
&

End Sub

.ﬁ, .u, g
A




APPENDIX C LIST OF RUNS



DREA

OTDACT

V) 002 DACT
[HST"SVAGS10H4 001 DAG:T
SVATOGBH 001 DAG.T

tandard_sub_runs_130ct_1o_17nov.xis
- Mohamad, C.0.Willams, 23 Dec 98 -

raveed 19 Jan 2000

Dyramic runs or DREA standard st
VS | e | Tiws
£=0

085 550

£y

Tize iEEE)

Tor

o Tisest

i 22245
T

LYoy

st 5 80sec

Sipcossts 0135 sec

TSser

Sucescii ESE

Sucesshi CarT
=

ey

Hll+ Sail s Tal

Ty LT
Succoasht 0150 sec
iccessiur 75150 sec
Succossir 726190 sec
uccessiur e
Successiur 10 sec
Successiu S5 130 sec
Successiut & iz5sec
) i e
Seccosshs AR
Sumcossha e
Seccousiis - 2oeec

! HiITHHAe
I '; ‘. i




FIT3V2508 00T DAGT
[HS-FIT3V5005 001 DAG.T
s T DAC;
S FiT: 002DAC:T

T T

125 Gymamic e for e DREA standard 3

il +
Sway CipoT FCRILIT T
s: 0inod Succosshul 5140 s0c T
Gbo! 46106 soc
oo P
01io03 Succossiut 50105 sec
0.1 003k i —
Yaw Ghrp0.1 003} Successh 40108 s0c
Vaw Chip0 11005 He Sopcossi 5014 300
Yaw Gip 0.1 103 HE 105 sec
Combined Yaw & Successhi 75 130 88
Combned Vaw & B0 Tidsec
‘Combined Vaw & T
4 s 5
[ETEL T T
0iw03: Er—) % 0sec
(ACTEL TiGsec
Simas = 5 % sec
= Tormiror]
FECTELT Sucesshi 75 S sec
Yeu Gap 0.1 BES Successis CRETT
Yau 01 E5HL T e
Yau G0 10 E3HE ) 8 Ta0sec
Combmed vaw
Corbred Yo T} & e
Cambred van & Siccessis o e
“Comosd Vaw. T e
“00r Tt 75 =
Combnes van —
Srow aneuwer Soceshs 76 25 sec
Scew Froten Ta0: e
I




DREA_STD_SUB_DYNAMIC_RUNS_APR_%9
L . C.0.Wiiams, 10 Sop 99, Revised 20 January 1999

P RGSEIAPRGS AAW]| Blocks | woaured
T ST BACT i3 i

001 DAC.T 7% 52820
1001 DACT 004 5310
T 52 NLEA0)
V320 oot §27) e
V3 HASES 1015 001 DAG.T | 806 =)
V3 s o oACT | 6s ) RETY
VA 51 DA —| 40— T
Xz I 2 1 eos I 15
V3 ooTDACT | 676 [+ Sats

15 007 DACT | 740 Ve8|
[REFVs Skao0-S752s 001 DACT— a0 iamye] S7.63




DREA_STD_SUB_DYNAMIC_RUNS_NOV_€
1. Mohamed; C.0 Wi, 10 Sop 99, Revised 20 Janusry 1999

T e
[ pe | Ty

[ T VW5 T Dae | Tme |
O TOW{TEST PURBSSSAAW] Hlocks | svpred | saured | [ S [T segranta|_Cs_[Froquoncy Al Fomaris
Hull + Sail + Tail

o SRS OCACT T JosNowaer vezas | Dyrankc | Famor v Sicgessiul TO-Sse [0
VoHEAVET

638 o6 Now-8] T501:15 | Dynamic | _Harmonic Heave 108000 (37]
T

) HEAVETEST 00
o mzmc A s Ac [ 2sa0 JosNowsol 710 | Dy |
[Vo_HEAVETEST 603 DAGT |

—

B0- 140300

10_SR314 SF 1 5
nsmu iy oo oncd m T 555201 Cynahe T et S
[Vo_SRa00_SFT5 00T DA | [ Harmone Sway |

0
T3-62se |0
20700

T —I:mnm
vn S R A e I

Actusor ot shows that amplluda s 0.3

IO 5 55| Birane 0 i
ov ol st
Vo-S525- i 502 ORGH —|—ovi—osiorsal 046401 Bimame | Cambines ey v

Totalof 0 s



APPENDIX D VISUAL BASIC PROGRAM

“PREPSHOP”’

This appendix contains the code for the MDTF Prepshop transformation of axis. It reads
the MDTF exported file and perform the steps described in chapter 4

Private Sub Form_Load()
Timemin.Caption = HScroll1(0).Value
Timemax.Caption = HScroll2(1).Value
End Sub

Private Sub HScrolll_Change(Index As Integer)
Timemin.Caption = HScroll1(0).Value
End Sub

Private Sub HScroll2_Change(Index As Integer)
Timemax.Caption = HScroll2(1).Value
End Sub

Private Sub OK_Click()
t3 = HScroll1(0). Value
t4 = HScroll2(1).Value
Timefrm.Hide

End Sub

Private Sub Command1_Click()
Sting_length = HScroll1.Value / 1000
stnig.Hide

End Sub

Private Sub Form,
Stinglen.Caption = HScroll1.Value / 1000
End Sub

Private Sub HScrolll_Change()
Stinglen.Caption = HScroll1.Value / 1000
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End Sub

Dim t() As Double, c() As Doubie, Fx() As Double, Fy() As Double, Fz() As Double,
Mx() As Double, My() As Double, Mz() As Double, FV() As Double, Av() As Double,
FI() As Double, Al() As Double

Dim fax, fay, faz, aax, aay, aaz As Variant

Dim Sway() As Double, Heave() As Double, Yaw() As Double, Pitch() As Double

Dim Sway_vel() As Double, Heave_vel() As Double, Yaw_vel() As Double, Pitch_vel()
As Double

Dim i As Integer, y As Double, Sting_length As Double, t3 As Integer, t4 As Integer
Dim X As Single, pi As Double, Lower_value As Single, Upper_value As Single

Dim File_name As String, SaveFile As String, File_out As String

Private Sub Picture]_Click()
CommonDialog!.CancelError = True

On Error GoTo ErrHandler
CommonDialog].Filter = "Ascii(*.asc){*.asc|Prepshop (*.pmd)|*.pmd|All Files (*.*)[*.*|"
CommonDialog!.ShowOpen
File_name = CommonDialog].filename
FileCharNo = InStr(File_name, ".")
If FileCharNo = Len(File_name) Then
SaveFile = (File_name)
Else
SaveFile = Left(File_name, FileCharNo - 1)
End If
ErrHandler:
Exit Sub
End Sub

Private Sub Picture2_Click()
stnig.Show
End Sub

Private Sub Picture3_Click()
Timefrm.Show
End Sub

Private Sub Picture5_Click()

Static garb As Double

Open File_name For Input As #1

pi =3.141592654

y=1

StatusBar!.SimpleText = "Loading File " + File_name
Sting_length = stnig.HScroll1.Value / 1000

3 = Timefrm.HScroll1(0). Value
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t4 = Timefrm.HScroll2(1). Value
Do While Not EOF(1)

Input #1, garb

y=y+l1

Loop
Close #1
i=y/18
j=i
ProgressBarl Min =0
ProgressBarl . Max =
ProgressBarl.Visible = True
ProgressBarl.Value = Min
ReDim 1(j), (), Fx(j), Fy(j), Fz(j), Mx(j), My(), Mz(), FV(j), Av(j), Fi(), AlG)
ReDim Sway(j) As Double, Heave(j) As Double, Yaw(j) As Double, Pitch(j) As Double
ReDim Sway_vel(j) As Double, Heave_vel(j) As Double, Yaw_vel(j) As Double,
Pitch_vel(j) As Double
Open File_name For Input As #1
Fori=1Toj-1
arl.Value =i
Input #1, 1(i), c(i), Fx(i), Fy(), Fz(i), Mx(i), My(i), Mz(i), FV(i), Av(i), FI(i), Al(i), fax,
fay, faz, aax, aay, aaz
Nexti
Close #1
ProgressBarl.Visible = False
StatusBar! .SimpleText = "computing motion at BRC"
Fori=1Toj
Sway(i) = Al(i) + ((Sting_length / Sting_length - 2) * (FI(i) - Al(i)))
X =(F() - AlG)) /2
Yaw(i) = Atn(X/ Sqr(-X * X + 1))
Yaw(i) = Yaw(i) * 180/ pi
Heave(i) = Av(i) - ((Sting_length / Sting_length - 2) * (Av(i) - FV(i)))
X=(Av(i))-FV())/2
Pitch(i) = Am(X / Sqr(-X * X + 1))
Pitch(i) = Pitch(i) * 180/ pi
Nexti
Prep.Refresh
StatusBar].SimpleText = "Differentiating motions to obtain velocities at BRC"
h=13)-42)
Fori=3Toj-3
Sway_vel(i) = (1/ (12 * h)) * (Sway(i - 2) - 8 * Sway(i - 1) + 8 * Sway(i + 1) - Sway(i +
2))
Heave_vel(i) = (1/ (12 * h)) * (Heave(i - 2) - 8 * Heave(i - 1) + 8 * Heave(i + 1) -
Heave(i + 1))
Yaw_vel(i) = (1/(12 * h)) * (Yaw(i - 2) - 8 * Yaw(i - 1) + 8 * Yaw(i + 1) - Yaw(i +2))
Pitch_vei(i) = (1 /(12 * h)) * (Pitch(i - 2) - 8 * Pitch(i - 1) + 8 * Pitchi + 1) - Pitch(i +
2))
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Nexti

StatusBarl.SimpleText = "Organizing time history for selected time segment”
Lower_value=t3/h

Upper_value=t4/h

If Upper_value > i Then Upper_value =i

StatusBarl.SimpleText = "Done”

End Sub

Private Sub Pictured_Click()
CommonDialog!.CancelError = True

On Error GoTo ErrHandler2
CommonDialog1 filename = SaveFile + ".pmd”
CommonDialogl.ShowSave
CommeonDialog! Filter = "PrepShop(* .pmd)|*.pmd|"
CommonDialog!.DefaultExt = txt
File_out = CommonDialog!.filename
StatusBarl.SimpleText = "Writing Output file " + File_out
ProgressBarl Min =0
ProgressBarl.Max = Upper_value
ProgressBarl.Value = 0
ProgressBarl.Visible = True

Open File_out For Output As #2

Prep.Refresh

‘Write #2, "Time", "Carriage Speed”, "Heave", "Pich", "Sway", "Yaw", "Heave vel.”,
"Pitch vel.”, "Sway vel.”, "Yaw vel.”, "Fx", "Fy", "Fz", "Mx", "My", "Mz2"

For i = Lower_value To Upper_value

ProgressBarl.Value =i

Print #2, t(i), c(i), Heave(i), Pitch(i), Sway(i), Yaw(i), Heave_vel(i), Pitch_vel(i),
Sway_vel(i), Yaw_vel(i), Fx(i), Fy(i), Fz(i), Mx(i); My(i), Mz(i)

Nexti

Close #2

StatusBarl.SimpleText = "Finished”

ProgressBarl.Visible = False

ErmrHandler2:

End Sub

Option Explicit

Private Sub Form_KeyPress(KeyAscii As Integer)
Prep.Show
Unload Me
End Sub
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Private Sub Form_Load()

IblVersion.Caption = "Version " & App.Major & "." & App.Minor & "." &
App.Revision

IblProductName.Caption = App.Title

Timerl.Interval = 3000
End Sub

Private Sub Framel_Click()
Prep.Show

Unload Me
End Sub

Private Sub Timerl_Timer()
Prep.Show

Unload Me

End Sub
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APPENDIX E MATLAB FILTERING SCRIPT

The following is the MatLab script used for filtering followed by a
number of plots for filtered data vs. noisy data for a selected number
of rums.

pl=input('enter file name without extension pmd >' ,'s'):
file_load= (pl,'.pmd'];
eval(('load ',file_load]);

eval(('(s,col=size(',pl,');']);
ti=eval((pl,'(:,1)']);
%figure(l)

ch=eval((pl,'(:,7)']);

[e,1l]=wavedec (ch,10, 'sym8') ;

[thr, sorh, keepapp] =ddencmp( 'den’, 'wv',ch);
ch_c7=wdencmp('gbl',c,1, 'sym8',10, thr, sorh, keepapp) ;
subplot(4,1,1);plot(ti,ch);title('Heave Velocity');ylabel(' m/s')
subplot(4,1,2);plot(ti,ch_c7);title('Filtered Heave Velocity
‘).ylabel('m/s')

%figure(2)

chl=eval({pl,'(:.8)']);

(c,1l]=wavedec(ch,10, 'sym8"');

(thr, sorh, keepapp] =ddencmp('den’, 'wv',chl) ;
ch_c8=wdencmp('gbl’,c,1, 'sym8’, 10, thr, sorh, keepapp) ;

subplot(4,1,3);plot(ti,chl);title('Pitch Velocity'):ylabel(' deg/s')
subplot(4,1,4);plot(ti,ch_c8);title('Filtered Pich Velocity

'), ;ylabel('deg/s') ;xlabel('Time sec')

text(-2,-2,pl)

orient landscape

eval(['print ',pl,'l -dps'])

fpause

figure(3)

ch=eval((pl,'(:.9)']);

{c.1]=wavedec(ch,10, 'sym8');

(thr, sorh, keepapp] =ddencmp(‘den’, 'wv',ch) ;
ch_c9=wdencmp('gbl',c,1, 'sym8', 10, thr, sorh, keepapp) ;
subplot(4,1,1);plot(ti,ch);title('Sway Velocity');ylabel(' m/s')
subplot(4,1,2);plot(ti,ch_c9);title('Filtered Sway Velocity ');ylabel('
m/s')

tfigure(4)
chlzeval((pl,'(:,10)']):
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[c,l]=wavedec(chl, 10, 'sym8");

[thr, sorh, keepapp) =ddencmp( 'den’, 'wv',chl);
ch_cl0=wdencmp('gbl',c,1, ‘sym8',10, thr, sorh, keepapp) ;
subplot(4.1,3);plot(ti,chl);ticle('Yaw Velocity');ylabel('deg/s')

subplot(4,1,4);plot(ti,ch_cl0);title('Filtered Yaw Velocity '):ylabel(’
deg/s') ;xlabel('Time sec')

texc(0,0,pl)

orient landscape

eval(['print ',pl,'2 -dps'])

$pause

ch=eval({pl,'(:,11)']);

[c,1]=wavedec(ch,10, 'sym8');

[thr, sorh, keepapp] =ddencmp( 'den', 'wv',ch) ;
ch_cll=wdencmp('gbl',c,1, 'sym8',10, thr, sorh, keepapp) ;
subplot(4,1,1);plot(ti,ch);title('Fx’');ylabel(' N')

subplot(4,1,2);plot(ti,ch_cll);title('Filtered Fx ');ylabel(' N')

chl=eval((pl,'(:,14)']);

(c,l]=wavedec(chl, 10, 'sym8');

(thr, sorh, keepapp] =ddencmp('den’, 'wv',chl);
ch_cl4=wdencmp('gbl’',c,1, 'sym8"',10, thr, sorh, keepapp) ;
subplot(4,1,3);plot(ti,chl);citle('Mx');ylabel("' N-m')
subplot(4,1,4);plot(ti,ch_cld);title('Filtered Mx ');ylabel(' N-
m') ;xlabel('Time sec')

text(0,0,p1)

orient landscape

eval(('print ',pl,'3 -dps'])

$pause

ch=eval((pl,'(:,12)']);

(¢, 1]=wavedec(ch,10, 'sym8');

(thr, sorh, keepapp] =ddencmp ( 'den’, 'wv',ch) ;
ch_cl2=wdencmp('gbl',c,1, ‘sym8', 10, thr, sorh, keepapp) ;
subplot(4.1,1);plot(ti,ch);title('Fy');ylabel('N')
subplot(4.1,2);plot(ti,ch_cl2);title('Filtered Fy ');ylabel(' N')

chl=eval([pl,'(:,16)']);

{c.1l]=wavedec(chl,10, ‘sym8');

(thr, sorh, keepapp] =ddencmp( 'den’, 'wv',chl) ;
ch_clé=wdencmp('gbl’,c,l, 'sym8',10, thr, sorh, keepapp) ;
subplot(4,1,3);plot(ti,chl);title('Mz");ylabel(’' N-m')

subplot(4,1,4);plot(ti,ch_cl6);title('Filtered Mz');ylabel(' N-
m') ;xlabel('Time sec')

text(1l,1,pl)
orient landscape
eval(('print ',pl,'4 -dps'])

ch=eval([pl,'(:,13)']);
(c.1]=wavedec(ch,10, 'sym8'):



(thr, sorh, keepapp] =ddencmp(‘den’, 'wv',ch);
ch_cl3i=wdencmp('gbl'.c.l, 'sym8',10,chr, sorh, keepapp) ;
subplot(4,1,1):plot(ti,ch);title('Fz');ylabel('N")
subplot(4,1,2);plot(ti,ch_cl13);title('Filtered Fz');ylabel(' N')

chl=eval([pl,'(:,15)']);

[c.1l]=wavedec(chl,10, 'sym8');

(thr, sorh, keepapp] =ddencmp(‘den', 'wv',chl);
ch_clS=wdencmp('gbl’'.c,1, 'sym8",10, thr, sorh, keepapp) ;
subplot(4.1,3);plot(ti,chl);title('My');ylabel (' N-m')

subplot (4, plot(ti,ch_cl5);title('Filtered My');ylabel(' N-
m') ;xlabel('Time sec')

text(l,1,pl)

orient landscape
eval(('print ',pl,'S -dps'])
$%pause

ch=eval((pl,'(:,2)']);

[c.1l]=wavedec(ch,10, ‘sym8');

[thr, sorh, keepapp] =ddencmp(‘den', 'wv',ch);
ch_c2=wdencmp('gbl',c,1, 'sym8', 10, thr, sorh, keepapp) ;

%3pause
ch_cl=eval((pl,'(:,1)']);
ch3=eval([pl,'(:,3)'});

[e,1]=wavedec(ch3, 10, ‘sym8"');
[thr, sorh, keepapp] =ddencmp(‘den’, ‘wv',ch3);
ch_c3=wdencmp('gbl’',c,1, ‘sym8', 10, thr, sorh, keepapp) ;

ch3=eval((pl,'(:.4)']);

[e.l]swavedec(ch3, 10, ‘sym8');

(thr, sorh, keepapp] =ddencmp('den’, 'wv',ch3);

ch_c4=wdencmp('gbl*,c, 1, 'sym8"', 10, thr, sorh, keepapp) ;
chl=eval((pl,'(:,5)']1);

(c,1l)=wavedec(ch3, 10, 'sym8');

(thr, sorh, keepapp] =ddencmp ( 'den’, 'wv',ch3) ;

ch_cS=wdencmp('gbl',c,1, 'sym8',10, thr, sorh, keepapp) ;
ch3=eval((pl,'(:,6)']);

[c.1l]=wavedec(ch3,10, 'sym8');

[thr, sorh, keepapp] =ddencmp ('den’, ‘wv',ch3);

ch_c6é=wdencmp('gbl'.c,1, 'sym8",10, thr, sorh, keepapp) ;
subplot(2,2,1);plotiti,ch_c3);title('Heave Disp.');ylabel('Heave m')
subplot(2,2,3);plot(ti,ch_cd);title('Pitch Displ.');ylabel('Pitch deg')
subplot(2,2,2);plot(ti,ch_c5);title('Sway Disp.');ylabel('Sway m')
subplot(2,2,4);plot(ti,ch_c6);title('Yaw Displ.');ylabel ('Yaw

deg') ;xlabel('Time sec')

text(l,.5,pl)

orient 1

eval(['print ',pl,'6 -dps'])

Filesave=(pl,'.flt'];

matrix={pl,'a']

eval((matrix,'=(ch_cl ch_c2 ch_c3 ch_cd ch_c5 ch_c6 ch_c7 ch_c8 ch_c9
ch_c10 ch_cl1 ©12 ch_c13 ch_c14 ch _c15S ch_c16];:'1);

eval(['save ', Filesave,' ', matrix,' -ascii -double -tabs ;']):
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