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Abstract

Mathematical models of poroelasticity, the study of the behaviour of fluid-saturated

porous media, present complex challenges in numerical simulation due to their inher-

ent coupling between fluid and solid phases. In this study, we propose higher-order

discretization techniques for poroelasticity problems, that we couple with monolithic

multigrid methods to enable efficient high-fidelity simulations. These discretizations

are based on higher-order finite elements in space (including reduced quadrature tech-

niques to effectively model nearly incompressible solid phases) and implicit Runge-

Kutta methods in time, to ensure robustness and stability in the time-stepping proce-

dure. The monolithic multigrid approach leverages recent work extending Vanka-style

relaxation to incompressible flow models, that we adapt to the equations of poroelas-

ticity. Through numerical experiments and comparisons, we demonstrate the effec-

tiveness of our proposed approach in accurately capturing the behaviour of poroelastic

models while maintaining computational efficiency.
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Lay summary

Understanding and modeling real-world phenomena often requires sophisticated math-

ematical approaches. However, exact solutions are often unattainable, prompting the

use of numerical methods to generate accurate approximations. This thesis tackles

the complexities of poroelasticity, a field concerned with the behavior of materials

that simultaneously deform and allow fluid flow through their pores. By leveraging

the power of numerical methods, particularly higher-order discretizations, the aim

is to develop accurate approximations of poroelastic phenomena. The primary fo-

cus is on the implementation of a monolithic multigrid framework, which optimizes

computational efficiency. This involves combining various numerical schemes and in-

tegrating specific discretization techniques tailored to the intricacies of poroelastic

materials. Through rigorous testing and optimization, the goal is to create a robust

numerical solver capable of handling both spatial and temporal discretizations with

higher-order accuracy. This solver is crucial for understanding and predicting the

behavior of poroelastic materials in diverse real-world scenarios, from geotechnical

engineering to biomedical applications.
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Chapter 1

Introduction

Poroelasticity, a field delving into the mechanical behavior of fluid-saturated porous

media, traces its roots to Biot’s theory of consolidation, initiated to address chal-

lenges in soil consolidation. Early contributions by Terzaghi [34], alongside subse-

quent advancements by Biot [7], laid the groundwork for comprehending the intricate

interactions between solid and fluid constituents within porous structures.

Biot’s pioneering work expanded the scope of the field by considering both com-

pressible solid and fluid phases, introducing variables such as fluid content. Addi-

tionally, he extended the theory to encompass anisotropic elasticity and dynamic

responses. In the realm of fluid-infiltrated porous media, comprising a solid skeleton

and fluid occupying porous spaces, the material undergoes quasi-static deformations,

considering compressibility in both solid and fluid phases. Despite its applicability

for high degrees of liquid saturation, researchers have extended the theory to lower

saturation levels under specific assumptions.

Central to describing porous media’s mechanical behavior is the principle of ef-

fective stress, delineating the transmission of internal stresses to the solid skeleton

and pore fluid. This principle, coupled with the conservation of mass and Darcy’s

law governing viscous fluid flow, forms the basis for understanding fluid flow and

deformations in poroelastic materials.

Poroelasticity holds paramount importance across diverse scientific and engineer-

ing disciplines. In geoscience, the understanding of poroelastic phenomena is essential

for deciphering processes like groundwater flow, oil reservoir behavior, and seismic
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responses in subsurface formations. Biomedical science benefits from poroelasticity

in advancing medical diagnostics and enhancing our understanding of biomechanics,

particularly in studying the behavior of biological tissues. In engineering, applica-

tions span from geotechnical engineering to the development of biomimetic materials,

where poroelastic considerations significantly influence the design and performance of

structures [4].

The study of poroelasticity is not without its challenges. The coupled, multi-

physics nature of these systems introduces inherent complexities that demand sophis-

ticated computational methodologies and a nuanced understanding of material behav-

ior. Theoretical modeling must navigate the delicate balance between the mechanical

response of the solid matrix and the fluid flow dynamics within porous structures.

Numerical simulations face difficulties in accurately capturing these complex inter-

actions, often encountering challenges such as spurious oscillations and variations in

physical parameters. Spurious oscillations are numerical artifacts that arise due to dis-

cretization errors, particularly in simulations involving sharp gradients or interfaces,

leading to unphysical fluctuations in the computed solution. Variations in physical

parameters, on the other hand, pertain to the sensitivity of the model’s behavior to

changes in material properties or boundary conditions, which can significantly affect

the accuracy and stability of the simulation. These challenges highlight the need for

advanced methodologies that can comprehensively model and simulate the intricate

behaviors associated with poroelastic materials, underscoring the complexity and dif-

ficulty inherent in the study of poroelasticity. Robust numerical methods, such as

those discussed in [5] and [19], have been developed to address some of these issues,

focusing on enhancing the stability and accuracy of simulations through improved

discretization techniques and preconditioners.

The nexus between flow, fluid, and poroelasticity is intricately woven in the si-

multaneous interactions of fluids within porous media and the resulting deformations

of the solid matrix. Poroelasticity, as governed by Biot’s theory, encapsulates the

interdependence of fluid flow and the deformation of the solid matrix in porous struc-

tures. Fluids, whether water, air, or other substances, traverse through interconnected

voids within the porous media, inducing deformations in the solid framework. Biot’s

equations, considering parameters like porosity, pore fluid pressure, and solid matrix

deformations, elucidate this coupled behavior. The principle of effective stress further

delineates how internal stresses are distributed between the solid skeleton and pore
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fluid, influencing both deformations and fluid flow. Robust mathematical models and

numerical methods, such as those developed in [5], play a critical role in analyzing

and solving these complex interactions.

Poroelasticity, born out of the necessity to understand soil consolidation, has

evolved into a critical field influencing various scientific and engineering domains. Its

importance lies in unraveling the complexities of fluid-saturated porous media, while

its challenges highlight the need for continuous advancements in theoretical modeling

and numerical simulations. As we delve into the depths of poroelasticity, we unlock

the potential to address real-world problems and pave the way for innovative solutions

in an array of applications.

This thesis is structured as follows. In Chapter 2, we include the background

information summarizing key theories, models, and prior research related to our topic.

In Chapter 3, we present the stabilized finite-element discretization for the three-

field formulation of Biot’s model. Additionally, we introduce the reduced-quadrature

discretization, providing proofs of well-posedness and error estimates and monolithic

multigrid, focusing on the choice of Vanka relaxation scheme for solving the implicit

Runge-Kutta discretized system and the use of divergence-preserving interpolation

operators to ensure robustness in nearly incompressible cases. Chapter 4 is dedicated

to presenting numerical results that demonstrate the efficiency of the proposed solvers.

Finally, Chapter 5 concludes the thesis, offering remarks and reflections on the findings

and their implications.



Chapter 2

Background

In this chapter, we present important theories, models, and prior work that are rele-

vant to this thesis. This background covers three fundamental areas: the finite element

method (FEM), the multigrid method, and time integration techniques. The finite

element method is a powerful numerical technique used for approximating solutions

to complex problems in engineering and physical sciences, particularly in the field of

poroelasticity. It allows for the discretization of continuous domains into finite ele-

ments, making it possible to solve differential equations that describe the behavior

of poroelastic materials. The multigrid method is an efficient algorithm designed to

solve large-scale linear systems of equations, which often arise in the discretization of

partial differential equations using FEM. By employing a hierarchy of discretizations,

the multigrid method accelerates the convergence of solutions, significantly reducing

computational time and resources. This is particularly important for higher-order dis-

cretizations, where the computational cost can become prohibitively high. Time inte-

gration techniques are essential for solving time-dependent problems in poroelasticity,

where the behavior of materials evolves over time due to fluid flow and mechanical

deformation. Accurate and stable time integration methods ensure that the numerical

solutions remain reliable and physically meaningful throughout the simulation. To-

gether, these foundational concepts provide the necessary framework for developing

and analyzing monolithic multigrid methods for higher-order discretizations of poroe-

lasticity. Understanding these theories and models is crucial for advancing the state

of the art in this field and achieving efficient and accurate numerical solutions.
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2.1 Finite-element method

In this section, we discuss the finite-element method (FEM), a powerful numerical

technique widely employed in engineering and scientific simulations that discretizes

complex continuous systems into simpler, finite elements, allowing for the approxima-

tion of solutions to partial differential equations [2, 9, 10, 13, 20]. In the context of

poroelasticity, FEM plays a pivotal role in modeling the coupled behavior of the solid

and fluid phases within porous media [4, 31].

2.1.1 Finite-element method for the Poisson equation

Finite-element approximation is a robust computational approach for generating nu-

merical approximations of solutions to differential equations. In this section, we offer

an initial exploration of the finite-element method as applied to the Poisson equation,

−∆u = f, (2.1)

an elementary and well-known elliptic partial differential equation that serves as a

fundamental mathematical model. The source or load function, denoted as f , is

defined over a domain Ω in two or three dimensions. A solution u satisfying (2.1)

should also satisfy given boundary conditions on the boundary, ∂Ω, of Ω ; for example

αu+ β
∂u

∂n
= g on ∂Ω, (2.2)

where
∂u

∂n
= n · ∇u = g signifies the directional derivative along the outward normal

direction to the boundary ∂Ω. The coefficients, α and β, can be constant or variable.

The combination of Equations (2.1) and (2.2) collectively forms a boundary value

problem. When the constant β in (2.2) takes on a value of zero, the associated

boundary condition is of Dirichlet type, and the resulting boundary value problem

is identified as the Dirichlet problem for the Poisson equation. Conversely, when the

constant α is zero, we encounter a Neumann boundary condition, thereby constitut-

ing a Neumann problem. A third scenario arises when Dirichlet conditions apply to

a specific part of the boundary ∂ΩD, while Neumann conditions are satisfied on the

remaining portion ∂Ω \ ∂ΩD. Applying a constant value of g = 0 with β = 0 across
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the entire boundary is termed homogeneous Dirichlet boundary conditions. When

non-zero u = g(x, y) is imposed along the entire boundary, it is termed an inhomoge-

neous Dirichlet boundary condition. Alternatively, it is feasible to specify the value

of the solution, u = c, for constant value c, or u = g(x, y), along a (continuous)

segment of the boundary. On the remaining part of the boundary, flux variation can

be specified using Neumann boundary conditions, referred to as mixed boundary con-

ditions. Neumann boundary conditions define the directional derivative of u along a

normal vector, denoted as
∂u

∂n
. The function g = g(x, y) is provided and, ultimately,

we have known values of u on some (continuous) portion of the boundary and the

directional derivative on another. The Dirichlet boundary condition becomes an es-

sential boundary condition, imposed directly on the function space for u, while the

Neumann boundary condition becomes a natural boundary condition, accounted for

in the following weak form (2.5).

We next consider how to choose the function space, V . For more details, see [9, 10, 2].

Definition 1 Lp spaces are defined as follows for 1 ≤ p <∞ :

Lp(Ω) =

{
u |u is real and measurable and

∫
Ω

|u|p dx <∞
}
.

The following Lp-norm defines a norm on this space:

||u||p =

(∫
Ω

|u(x)|p dx
)1/p

.

In the case of p = 2, we define the space as

L2(Ω) =

{
u :

∫
Ω

|u(x)|2 dx <∞
}
.

Definition 2 Sobolev Spaces Hm(Ω). Given an integer number m ≥ 1, standard

Sobolev spaces read

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ m},

with the Hm norm of a function v is defined as:
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‖v‖Hm =

∑
|α|≤m

∫
Ω

|Dαv|2 dx

1/2

where

Dα =
∂|α|

∂α1
1 ∂α2

2 · · · ∂αn
n

, |α| = α1 + α2 + · · ·+ αn.

We can also consider subspaces of these Sobolev spaces that include boundary condi-

tions.

Definition 3 H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.

Definition 4 Product Space. So far, we have been thinking of spaces of scalar

functions, u : Ω → R. However, we can also consider vector-valued functions u :

Ω→ Rd. We will denote a space of vector-valued functions with vector notation, i.e.,

H1(Ω), or we may use (H1(Ω))d to explicitly indicate the dimension.

The Hk (and Hk) spaces concern a function and all of its partial derivatives.

However, for vector-valued functions, we might want to only take divergences or curls.

Thus, H(div,Ω) and H(curl,Ω) can be defined as

H(div,Ω) = {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)},

H(curl,Ω) = {u ∈ L2(Ω)|∇ × u ∈ L2(Ω)},

with corresponding norms,

‖u‖2
div = ‖u‖2 + ‖∇ · u‖2;

‖u‖2
curl = ‖u‖2 + ‖∇ × u‖2.

For simplicity, we first consider a model problem of the form [2],

−∇ · ∇u+ u = f in Ω,

with u = 0 on ∂Ω , and with f ∈ L2(Ω). The weak form is to find u ∈ V = H1
0 (Ω)
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such that ∫
Ω

∇u · ∇v +

∫
Ω

uv =

∫
Ω

fvdx for all v ∈ V . (2.3)

We define a bilinear form, a(·, ·), and a linear functional, g(·), as follows:

a(u, v) = 〈∇u,∇v〉+ 〈u, v〉,

g(v) = 〈f, v〉,

where u and v are in the function space V = H1
0 (Ω), ∇ represents the gradient, and

〈·, ·〉 denotes the L2(Ω) inner product.

Theorem 1 Riesz representation theorem [14]. Let V be a Hilbert space with

inner product 〈·, ·〉V . Let g be a bounded linear functional on V—i.e., g ∈ V∗. Then,

there exists a unique u ∈ V such that

g(v) = 〈u, v〉V for all v ∈ V .

For the model problem described by Equation (2.3), the bilinear form is equivalent to

the natural inner product in H1(Ω):

a(u, v) = 〈∇u,∇v〉+ 〈u, v〉 = 〈u, v〉1

Therefore, the weak formulation of the problem in (2.3) seeks to find u ∈ H1
0 (Ω) such

that

a(u, v) = g(v), ∀v ∈ H1
0 (Ω),

where H1
0 (Ω) is chosen to accommodate the Dirichlet boundary conditions. By the

Riesz representation theorem, there exists a unique u ∈ H1
0 (Ω) that satisfies this

equation. For more general equations, we require a generalized approach.

Definition 5 Ellipticity. Given a Hilbert Space, V, consider a bilinear form:

a(·, ·) : V × V → R.
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The form a(·, ·) is coercive if there exists a constant c0 > 0 such that

c0‖u‖2
V ≤ a(u, u) for all u ∈ V ;

and a(·, ·) is continuous if there exists a constant c1 > 0 such that

|a(u, v)| ≤ c1‖u‖V‖v‖V for all u, v ∈ V .

If a(·, ·) is both coercive and continuous on V, then a(·, ·) is said to be V-elliptic.

We next consider the boundary-value problem,

−∆u = f in Ω, (2.4a)

u = 0 on ∂Ω. (2.4b)

The problem defined in Equation (2.3) is called the strong formulation of the par-

tial differential equation (PDE). The weak formulation serves as a rephrasing of the

original (strong form) PDE, and it is through this reformulation that the final finite-

element (FE) approach takes shape. To derive the weak form of the PDE, we multiply

both sides of (2.4a) by an arbitrary function, commonly referred to as a test function,

denoted as v. If we let v be a smooth function with v = 0 on ∂Ω, we can define the

bilinear form, a(u, v), and the weak formulation given by finding u ∈ V such that

a(u, v) =

∫
Ω

∇u · ∇v dΩ, (2.5a)

= −
∫

Ω

∆u · v dΩ +

∫
∂Ω

∂u

∂n
v dS, (2.5b)

=

∫
Ω

fv dΩ for all v ∈ V . (2.5c)

With this, we turn to a key theoretical result, called the Lax-Milgram theorem.

Theorem 2 Lax-Milgram theorem [14]. Let V be a Hilbert space with inner

product 〈·, ·〉V . Assume that a(·, ·) is a bilinear form that is coercive and continuous

on V. In addition, assume that g(·) is a bounded linear functional on V. Then, there

exists a unique u ∈ V such that

a(u, v) = g(v) for all v ∈ V .
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The Lax-Milgram theorem stands as a key in the analysis of finite element methods,

and we utilize it to establish the existence and uniqueness of a solution. Again consider

the weak formulation in (2.5) to find u ∈ V such that

a(u, v) = 〈f, v〉, ∀v ∈ V ,

where V = H1
0 (Ω) is chosen to accommodate the Dirichlet boundary conditions. Here,

a(u, v) =
∫

Ω
∇u ·∇v dΩ is the bilinear form, and 〈f, v〉 =

∫
Ω
fv dΩ is a bounded linear

functional on V . By the Lax-Milgram theorem, if a(·, ·) is a continuous and coercive

bilinear form on V and 〈f, ·〉 is a bounded linear functional on V , then there exists

a unique solution u ∈ V that satisfies the weak formulation. The continuity of a(·, ·)
follows from the Cauchy-Schwarz inequality, ensuring that |a(u, v)| ≤ C‖u‖H1‖v‖H1

for some constant C. The coercivity of a(·, ·) is established by the Poincaré inequality

[2], implying that a(u, u) ≥ α‖u‖2
H1 for some α > 0. Thus, the conditions of the

Lax-Milgram theorem are satisfied, guaranteeing the existence and uniqueness of the

solution to the weak form.

Next, we will discuss the Ritz-Galerkin approximation. This method is a way to

approximate the solution of a continuous problem with a finite-dimensional problem

that is easier to solve computationally.

Definition 6 Ritz-Galerkin approximation. Let a : V × V → R be a bilinear

form, and let Vh be a finite-dimensional subspace of V. Consider the weak form

restricted to Vh: Find uh ∈ Vh such that

a(uh, v) = 〈f, v〉 ∀v ∈ Vh. (2.6)

Here, uh is called the Ritz-Galerkin approximation of the weak solution u ∈ V.

Let u represent the solution to the variational problem, while uh denotes the solution

to the Galerkin approximation problem. Our aim is to evaluate the error ‖u− uh‖V .

This estimation is facilitated by the following lemma:

Lemma 1 Céa’s Lemma. Let V ⊆ H be a closed subspace of the Hilbert space H.

Let a(·, ·) be a coercive and continuous bilinear form on V. In addition, for a bounded

linear functional g(·) on V, let u ∈ V satisfy

a(u, v) = g(v) for all v ∈ V .
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Consider a finite-dimensional subspace Vh ⊂ V and uh ∈ Vh that satisfies

a(uh, vh) = g(vh) for all vh ∈ Vh.

Then,

‖u− uh‖V ≤
c1

c0

min
vh∈Vh

‖u− vh‖V ,

where c0 and c1 are the coercivity and continuity constants for a(·, ·) , respectively.

Remark 1 Céa’s Lemma establishes that uh is quasi-optimal, indicating that the er-

ror ‖u− uh‖V is close to the best approximation within the subspace Vh.

Definition 7 Polynomial spaces. Let T be any triangle, k > 0. Let Pk(T ) denote

the set of all polynomials in two variables of degree ≤ k on T , and

Pk(Ω
h) = {u ∈ C0(Ωh) : u(x)|T ∈ Pk(T ),∀T ∈ Ωh},

where Ωh = {T} is a set of triangles.

In general, there are three factors that significantly influence the accuracy of the

approximation. Firstly, the regularity of the solution, as better approximations are

achievable when the solution possesses higher degrees of smoothness. Secondly, the

mesh quality, which is assessed based on the element size and shape quality. Lastly,

the choice of approximation space itself also plays a crucial role. Explaining the

quality of Ritz-Galerkin approximations involves complex theory [10], which we briefly

summarize here.

Definition 8 Diameter of a Set. Given a set S ⊆ Rn, the diameter is given by

diam(S) = supx,y∈S ‖x− y‖.

Definition 9 For any T ∈ Ωh, let BT be the largest ball contained in T such that

for any x ∈ T , the closed convex hull of {x} ∪ BT is contained in T . We say that

T is star-shaped with respect to BT . A family of subdivisions, {Ωh}, is said to be

non-degenerate or regular if there exists ρ > 0 such that for all T ∈ Ωh and for all
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h ∈ (0, 1],

diam BT ≥ ρ diam T. (2.7)

Proving Theorem 3 requires concepts like reference elements, affine equivalent ele-

ments, and certain theorems outlined in [10], which play a crucial role in deepening

our comprehension of this area.

Theorem 3 Accuracy of Pk(Ω
h). Let {Ωh}, 0 < h ≤ 1, be a non-degenerate family

of subdivisions of a polyhedral domain Ω in Rn. Let Vh = Pk(Ω
h) with k + 1− n

2
> 0

and a suitable choice of nodes for the degrees of freedom of Pk(Ω
h). Let Ih be such that

Ihv ∈ Vh is the interpolant of v ∈ C0(Ω). Then, there exists a constant C depending

on the choice of nodes, n, k, and ρ such that if u ∈ Hk+1(Ω), then(∑
T∈Ωh

‖u− Ihu‖p
p,W p

s (T )

)1/p

≤ Chk+1−s|u|W p
k+1(Ω), for 0 ≤ s ≤ k + 1

2.1.2 Mixed Poisson finite-element method

In this section, we introduce finite-element methods for the “mixed Poisson equation”.

Consider the alternative formulation of the Poisson equation (2.1) given by introducing

an additional vector (variable), namely the (negative) flux: σ = ∇u. With this

definition of σ, we can rewrite the original PDE as,

σ −∇u = 0 in Ω, (2.8a)

−∇ · σ = f in Ω, (2.8b)

We have at present two unknowns, u and σ, and must determine suitable finite-

element spaces for each of them. Given that the space for σ must consist of vector-

valued functions, it is reasonable to assume that the two unknowns occupy different

spaces. We write u ∈ V and σ ∈ W and multiply Equation (2.8) by test functions

w ∈W and v ∈ V and integrate over the domain to obtain a weak formulation, to
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find σ ∈W and u ∈ V such that

〈σ −∇u,w〉 = 0 ∀w ∈W , (2.9a)

〈−∇ · σ, v〉 = 〈f, v〉 ∀v ∈ V , (2.9b)

Now, consider the more general boundary conditions for the Poisson problem, with

u = u0 on ΓD,

σ · n = g on ΓN .

where n is the outward unit normal vector to the boundary ∂Ω = ΓD ∪ΓN , where ΓD

and ΓN are disjoint segments on which we impose Dirichlet and Neumann boundary

conditions for u, respectively. Now consider the term 〈∇u,w〉 in Equation (2.9a) and

integrate by parts on it to obtain

−〈∇u,w〉 = −
∫

Ω

∇u ·w dx

= −
∫
∂Ω

uw · n dS +

∫
Ω

u∇ ·w dx

= −
∫

ΓD

u0w · n dS −
∫

ΓN

uw · n dS +

∫
Ω

u∇ ·w dx

= −
∫

ΓD

u0w · n dS +

∫
Ω

u∇ ·w dx,

where we restrict w · n = 0 on ΓN . Using the above integration-by-parts, rewrite

Equation (2.9) as the first-order system

〈σ,w〉+ 〈u,∇ ·w〉 = −
∫

ΓD

u0w · n dS ∀w ∈W , (2.10a)

〈−∇ · σ, v〉 = 〈f, v〉 ∀v ∈ V , (2.10b)

In [2], it is observed that when a homogeneous boundary condition of u0 = 0 is

adopted, the right-hand side term of Equation (2.10a) becomes zero. From Equation

(2.10), we can deduce that the left-hand side can be expressed in terms of two bilinear

forms, defined as follows: a(σ,w) = 〈σ,w〉 and b(w, u) = 〈u,∇ · w〉. To ensure

symmetry, the second equation was multiplied by −1. Consequently, the symmetric
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saddle point problem can be formulated as finding σ ∈W , u ∈ V such that

a(σ,w) + b(w, u) = 0 ∀w ∈W , (2.11a)

b(σ, v) = −〈f, v〉 ∀v ∈ V . (2.11b)

Next, we will discuss continuous inf-sup conditions, highlighting how important it is

to have both weak coercivity and continuity in the product space W × V . Thus,

let us consider a slightly more general mixed formulation than in Equation (2.11) of

finding σ ∈W , u ∈ V such that

a(σ,w) + b(w, u) = g(w) ∀w ∈W , (2.12a)

b(σ, v) = f(v) ∀v ∈ V , (2.12b)

where g and f are bounded linear functions on W and V , respectively, and W and V
are Hilbert spaces. The first step in any well-posedness result is always to demonstrate

the continuity (or boundedness) of the bilinear forms in (2.12), as defined in Definition

6, that there exist constants ca > 0 and cb > 0 such that

‖a(σ,w)‖ ≤ ca‖σ‖W‖w‖W , ∀σ ∈ W ,w ∈W ,

‖b(σ, v)‖ ≤ cb‖σ‖W‖v‖V , ∀σ ∈ W , v ∈ V .

We next discuss coercivity. To keep things simple, we first consider the scenario f = 0.

Finding solutions to (2.12a) with σ ∈ Ŵ = {w ∈ W : b(w, v) = 0 ∀v ∈ V} is the

main idea behind the existence and uniqueness results for mixed systems. It should

be noted that Ŵ is a closed linear subspace of W . Selecting the test function for

(2.12a) from the limited space, w ∈ Ŵ , results in finding σ ∈ Ŵ such that

a(σ,w) = g(w) ∀w ∈ Ŵ . (2.13)

This simplifies the saddle-point system given in Equation (2.12) to a single (vector)

equation as given in Equation (2.13). Consequently, if a(·, ·) exhibits coercivity on

Ŵ , it fulfills the requirements of the Lax-Milgram Theorem. Hence, there exists a
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unique solution, denoted as σ∗ ∈ Ŵ , to this modified problem,

a(σ,w) = g(w) for all w ∈ Ŵ , (2.14)

b(σ, v) = 0 for all v ∈ V , (2.15)

provided that g(w) is a bounded linear functional on W (or Ŵ). The remaining task

is to ascertain whether there exists a unique u that satisfies the original system. To

accomplish this, we rewrite the first equation of Equation (2.12), with the value of σ

set to the solution σ∗ obtained from Equation (2.14), yielding

b(w, u) = g(w)− a(σ∗,w) for all w ∈W .

Assuming that g is a bounded linear functional and identifying that a(σ∗, ·) is also a

bounded linear functional on W for a fixed σ∗, g(·)− a(σ∗, ·) qualifies as a bounded

linear functional as well. By leveraging this insight along with the continuity of b(·, ·)
on W × V , we establish the existence and uniqueness of u through a demonstration

of weak coercivity.

Definition 10 Generalized Weak Coercivity. A bilinear form, b(w, v), is weakly

coercive on W × V if there exists a constant c0 > 0 such that

inf
v∈V

sup
w∈W

b(w, v)

‖w‖W‖v‖V
≥ c0.

After discussing generalized weak coercivity, it is important to highlight the signifi-

cance of the inf-sup condition, which is crucial for determining the uniqueness of the

solution u. The inf-sup condition, also known as the Ladyzhenskaya-Babuska-Brezzi

(LBB) condition or the stability condition, is a crucial requirement in the context of

mixed finite-element methods. It plays a pivotal role in ensuring stability, avoiding

numerical issues, and providing accurate and reliable solutions. The inf-sup condition

is essential for proving the well-posedness of the mixed Poisson problem. Without the

inf-sup condition, the problem might be ill-posed, leading to numerical solutions that

lack accuracy and reliability. The inf-sup condition can be understood by representing

the bilinear form b as an operator B : W → V∗ and its adjoint Bt : V →W∗. The

kernel of B is denoted as Ŵ , and the inf-sup condition imposes a coercivity assump-

tion on this kernel. Essentially, the inf-sup condition ensures that for any v ∈ V , there
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exists a nonzero w ∈W such that b(w, v) ≥ c0‖w‖W‖v‖V . Notably, such w cannot

belong to Ŵ , as b(w, v) = 0 for w ∈W , violating the inequality. Furthermore, op-

timal choices of w must be orthogonal to Ŵ to maximize b(w, v) without increasing

‖w‖W . This property of B implies that if b(w, v) satisfies the inf-sup condition, then

B is an isomorphism from the orthogonal complement of Ŵ onto V∗. The inf-sup

condition can be equivalently expressed as ‖Bw‖V∗ ≥ c0‖w‖W for w ∈ Ŵ
⊥

and

‖Btv‖W∗ ≥ c0‖v‖V for v ∈ V . This coercivity relation ensures the uniqueness of

u as the solution to b(w, u) = g(w) − a(σ∗,w) for w ∈ Ŵ
⊥

. Furthermore, when

f 6= 0, the inf-sup condition guarantees the existence of a unique σ0 ∈ Ŵ
⊥

such that

Bσ0 = f , leading to the final result given in Theorem 4.

Theorem 4 Well-Posedness of Mixed Formulation. Let W and V be Hilbert

spaces. Suppose that a(·, ·) : W ×W → R and b(·, ·) : W × V → R are bounded

bilinear functionals, and that g and f are bounded linear functionals on W and V,

respectively. If a is coercive on Ŵ := {w ∈ W | b(w, v) = 0 for all v ∈ V} and

b satisfies the inf-sup condition in Definition 15, then there exists a unique solution,

(σ, u) ∈W × V, that solves Equation (2.12).

After discussing the well-posedness of the continuum mixed formulation for the mixed

Poisson problem, we now turn our attention to the discrete inf-sup condition, a crucial

aspect in ensuring the stability and reliability of numerical solutions. The discrete

inf-sup condition, also known as the discrete Ladyzhenskaya-Babuska-Brezzi (LBB)

condition, for the mixed Poisson problem ensures the stability of the numerical dis-

cretization. In the context of finite element methods, the inf-sup condition is often

expressed in terms of discrete spaces.

Let Wh ⊂W and Vh ⊂ V be finite-dimensional subspaces (finite-element spaces)

defined on some triangulation of the domain with mesh parameter h. Then, we

discretize Equation (2.12) as finding σh ∈Wh, uh ∈ Vh such that

ah(σh,wh) + bh(wh, uh) = g(wh) ∀w ∈Wh, (2.16a)

bh(σh, vh) = f(vh) ∀v ∈ Vh. (2.16b)

Definition 11 Discrete inf-sup condition. A family of finite-element spaces

(Wh,Vh) satisfies the discrete inf-sup condition if the bilinear form b(wh, vh) is weakly
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coercive on Wh × Vh, i.e., if there exists a constant ĉ0 > 0, independent of h, such

that

inf
vh∈Vh

sup
wh∈Wh

b(wh, vh)

‖wh‖Wh
‖vh‖Vh

≥ ĉ0.

Coercivity of the bilinear form a(·, ·) at the continuous level implies that it remains

coercive at the discrete level when Vh ⊂ V . This preservation of coercivity is crucial

for ensuring the stability and well-posedness of the discrete problem. Proving the

discrete inf-sup condition becomes the additional requirement for establishing the

well-posedness of the discrete mixed problem. This condition ensures stability and

convergence of the numerical solution.

In the following, we provide an example of finite-element spaces for the Mixed-

Poisson problem: RT0−P0. Let {Ωh}h>0 be a regular family of triangulations of Ω by

triangles T in R2 or tetrahedra in R3 with diameter hT . For each T ∈ Ωh, let RT0(T )

denote the local Raviart-Thomas space of lowest order,

RT0(T ) := [P0(T )]n ⊕ P0(T )x,

where x := (x1, ..., xn)T is a generic vector in Rn, and P0(T ) is the space of constant

functions on T . We define RT0(Ωh) by requiring that restriction of wh ∈ RT0(Ωh)

to any triangle, T , be in RT0(T ), and that functions in RT0(Ωh) have continuous

normal components between cells. In the context of infinite-dimensional spaces W =

H(div,Ω) and V = L2(Ω), finite element spaces on mesh Ωh are naturally chosen

as low-order spaces. These are represented as Wh = RT0(Ωh) ⊂ H(div,Ω) and

P0(Ωh) ⊂ L2(Ω). The RT0 − P0 finite element pair, utilized for solving the mixed

Poisson problem, plays a pivotal role in ensuring the stability and convergence of the

numerical solution. To demonstrate the satisfaction of the discrete inf-sup condition,

it is essential to verify the existence of a constant β > 0 such that:

sup
wh∈Wh

〈∇ ·wh, vh〉
‖wh‖div

≥ β‖vh‖Vh ∀vh ∈ Vh,

The proof of well-posedness is omitted here; for complete details, see [2]. There-

fore, the RT0(Ωh) − P0(Ωh) mixed finite element pair satisfies the discrete inf-sup

condition, ensuring stability and convergence of the numerical solution for the mixed

Poisson problem. Moreover, it can be observed that b(wh, vh) exhibits weak coerciv-

ity over RT0(Ωh)× P0(Ωh). Consequently, the mixed formulation remains well-posed
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within these function spaces. Furthermore, these arguments extend seamlessly to

higher-order variations of the Raviart-Thomas spaces. The Raviart-Thomas element

is defined in [2] by RTk(T ) = [Pk(T )]n ⊗ Pk(T )x. This generalization relies on the

broader principle that divRTk(Ω
h) ⊆ P−k (Ωh), coupled with a consistently defined

projection operator. In this context, P−k (Ωh) denotes the space of piecewise polyno-

mials on h, where continuity between elements is not necessarily preserved, a concept

often referred to as the discontinuous Lagrange finite-element space.

2.1.3 Finite-element method for Stokes.

Let us consider the Stokes equations with Dirichlet boundary conditions for the veloc-

ity variable [9, 11, 22, 2]. The problem aims to find the velocity, u, and the pressure,

p, of a viscous fluid within specific function spaces satisfying

−∆u+∇p = f in Ω, (2.17a)

−∇ · u = 0 in Ω, (2.17b)

u = 0 on ∂Ω, (2.17c)

where f represents a known forcing term. Under these boundary conditions, the

pressure only enters the Stokes equation inside a gradient.

Remark 2 Let V = L2
0(Ω) = {p ∈ L2(Ω) |

∫
Ω
p dx = 0}. A suitable choice for the

pressure space is L2(Ω). It’s important to note that
∫

Ω
divv dx =

∫
∂Ω
v ·n dS = 0 due

to the boundary conditions. Consequently, the divergence operator maps H1
0 (Ω) to the

subspace L2
0(Ω), where the pressure solving the Stokes equations is unique. However,

in L2(Ω), it is only unique up to a constant.

Consequently, solving these equations for p may result in an indeterminate solution

up to an additive constant. To address this, under these boundary conditions, we

impose the additional condition that∫
Ω

p dx = 0.

As above, we use the mathematical framework of multiplying by a test function

v ∈ W = H1
0 (Ω) in Equation (2.17a) and q ∈ L2

0(Ω) = V in Equation (2.17b).
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Subsequently, we integrate by parts in Equation (2.17a) to obtain the following weak

variational formulation: Find u ∈W and p ∈ V such that

〈∇u,∇v〉 −
∫
∂Ω

(∇u)n · v ds− 〈p,∇ · v〉+

∫
∂Ω

pv · n ds = 〈f ,v〉 ∀v ∈W ,

〈−∇ · u, q〉 = 0 ∀q ∈ V .

This leads to the following discrete linear system:

Fu+Bp = f , BTu = 0 (2.18)

where F is the discrete Laplacian (stiffness matrix) arising from the term 〈∇u,∇v〉−∫
∂Ω

(∇u)n · v ds , and B is the discrete divergence operator matrix arising from the

term 〈−p,∇ · v〉+
∫
∂Ω
pv · n ds.

By choosing u ∈W = H1
0 (Ω) we derive the mixed formulation of the Stokes equa-

tions: to find u ∈H1
0 (Ω) and p ∈ L2

0(Ω) such that

〈∇u,∇v〉 − 〈p,∇ · v〉 = 〈f ,v〉 ∀v ∈W , (2.19a)

〈−∇ · u, q〉 = 0 ∀q ∈ V . (2.19b)

We can express this in the generalized saddle-point form by defining the bilinear and

linear forms as follows:

a(u,v) = 〈∇u,∇v〉 for u,v ∈W ,

b(u, q) = 〈−∇ · u, q〉 for u ∈W , q ∈ V ,

g(v) = 〈f ,v〉 for v ∈ V ,

f(q) = 0 for q ∈ V .

Remark 3 In a similar approach, for Stokes equations with non-homogeneous Dirich-

let boundary conditions u|∂Ω = g, the data g must follow satisfy the compatibility

condition
∫
∂Ω
g · n dS =

∫
∂Ω

divu dx = 0.

The authors in [2] establish the well-posedness of the weak variational formulation of

the mixed formulation of the Stokes equations in H1
0 (Ω)× L2

0(Ω). Once more, given

the nature of a(·, ·), coercivity on the discrete level is inherent. Therefore, our focus

shifts solely to verifying the discrete inf-sup conditions for Stokes within each space
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pairing.

The pair Pk(Ωh)× Pk−1(Ωh) is stable for Stokes problems when k ≥ 2. The simplest

and most popular case is k = 2, where the pair (P2, P1) is used. This configuration

is preferred over (P1, P0), which is unstable, as (P2, P1) provides a stable solution

with one order higher approximation. While (P2, P1) uses fewer degrees of freedom

compared to the stable pair (P2, P0), it still delivers a higher-order approximation,

making it a favored choice for many applications.

For the (P2, P1) space, P2 elements are used for velocity, placing nodes at both

vertices and midpoints of each element, resulting in (2n + 1) × (2n + 1) nodes per

velocity component. Pressure is represented with P1 elements, which have nodes only

at the vertices, leading to (n + 1)× (n + 1) pressure nodes. In contrast, the (P2, P0)

space also employs P2 elements for velocity but uses P0 elements for pressure, with a

single node at the center of each element, resulting in 2n × n pressure nodes. Thus

the (P2, P0) space has more pressure degrees of freedom when n > 2 resulting in a

greater number of variables to solve and potentially increased computational effort.

2.1.4 Finite-element method for Poroelasticity

Poroelastic models serve as crucial tools for understanding mechanical deformation

and fluid flow in porous media, with applications spanning various fields including

medicine, biophysics, and geosciences. These models find utility in computations

related to intracranial pressure, trabecular bone stiffness, reservoir simulation, and

waste repository performance, among others [5, 6, 17, 19, 23, 25, 29, 31, 35, 30]. Con-

structing stable finite-element schemes for poroelastic models often involves selecting

discrete spaces that adhere to appropriate inf-sup (or LBB) conditions or employing

stabilization techniques to mitigate instabilities in finite-element pairs. In the realm

of two-field formulations like Biot’s problem, classical Taylor-Hood elements represent

one approach, while recent work has explored stabilized discretizations using linear

finite elements for both displacements and pressure [6, 23, 29, 31]. For three-field

formulations incorporating the Darcy velocity, various conforming and nonconform-

ing discretizations leveraging Stokes-stable finite-element spaces have been proposed.

Notably, recent studies have introduced stable finite-element methods utilizing piece-

wise constants for pressure and parameter-robust three-field finite-element schemes,

accompanied by a general theory for error analysis [6, 23, 31].
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A classical and widely used model, introduced by Biot [8], is based on the following

assumptions [23]:

1. The porous medium is saturated with fluid and maintains a constant tempera-

ture.

2. The fluid within the porous medium exhibits near-incompressibility.

3. The solid skeleton or matrix is comprised of an elastic material, with deforma-

tions and strains being relatively minor.

4. Fluid flow adheres to Darcy’s law, suggesting laminar flow behavior.

Consider the quasi-static Biot model for soil consolidation. For a porous medium

characterized by linear elasticity, homogeneity, and isotropy, and saturated with an

incompressible Newtonian fluid, the consolidation process is described by the following

system of partial differential equations in a domain Ω ⊂ Rd, d = 2, 3 with a sufficiently

smooth boundary Γ = ∂Ω [5, 6, 31]:

Equilibrium equation: − divσ′ + α∇p = ρg in Ω, (2.20)

Constitutive equation: σ′ = 2µε(u) + λdiv(u)I in Ω, (2.21)

Compatibility condition: ε(u) =
1

2
(∇u+∇ut) in Ω, (2.22)

Darcy’s law: w = − 1

µf
K(∇p− ρfg) in Ω, (2.23)

Continuity equation:
∂

∂t

(
1

M
p+ αdivu

)
+ divw = f in Ω. (2.24)

Here, µf is the viscosity of the fluid, I is the identity tensor, M is the Biot modulus,

ρ and ρf are the bulk density and fluid density, respectively, and α = 1 − Kb

Ks

is

the Biot-Willis constant, with Kb and Ks denoting the drained and the solid-phase

bulk moduli, respectively. The absolute permeability tensor is given by K which is

symmetric and positive definite. The unknown functions are the displacement vector

u, the pore pressure p, and the percolation velocity of the fluid, or Darcy velocity,

relative to the soil, w. The vector-valued function g represents the gravitational

force. Finally, µ =
E

2 + 2ν
and λ =

Eν

(1− 2ν)(1 + ν)
are the Lamé coefficients where ν

is the Poisson ratio and E is the Young’s modulus. As ν → 0.5, we have λ→∞, the
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incompressible limit that causes difficulties in numerical simulations. The implications

of λ → ∞ are significant. As the material approaches incompressibility, div(u) ≈ 0

becomes a constraint, leading to numerical challenges such as locking in standard finite

element methods. To address these, specialized techniques like mixed formulations or

stabilization methods are employed. These simulations demonstrate the necessity for

advanced methods to handle the incompressible limit. The source term f represents

a forced fluid extraction or injection process. Finally, this system is often subject to

the following set of boundary conditions [5, 6, 31]:

p = 0, for x ∈ Γ̄t, σ′n = 0, for x ∈ Γt,

u = 0, for x ∈ Γ̄c,
∂p

∂n
= 0, for x ∈ Γc,

where n is the outward unit normal to the boundary, Γ̄ = Γ̄t ∪ Γ̄c, with Γt and

Γc being open (with respect to Γ) subsets of Γ with nonzero measure. Appropriate

initial conditions for the pressure and displacement (more precisely, for div(u)) are

also needed.

We consider a semi-discretized variational problem such that for each t ∈ (0, T ],

(u(t), p(t),w(t)) ∈ V ×Q×W with

V = {u ∈ H1(Ω) |u|Γ̄c
= 0}, Q = L2(Ω),

W = {w ∈ H(div,Ω) | (w · n)|Γc = 0}.

Using backward Euler as a time discretization on a time interval (0, T ] with constant

time-step size τ , the fully discrete variational form for Biot’s three-field consolidation

model, (2.19)− (2.23), is written as: Find (umh , p
m
h ,w

m
h ) ∈ Vh ×Qh ×Wh such that

a(umh ,vh)− 〈αpmh , divvh〉 = 〈ρg,vh〉, ∀vh ∈ Vh, (2.25)

τ〈K−1µfw
m
h , rh〉 − τ〈pmh , divrh〉 = τ〈ρfg, rh〉, ∀rh ∈Wh, (2.26)

−〈 1

M
pmh , qh〉 − 〈αdivumh , qh〉 − τ〈divwm

h , qh〉 = 〈f̂ , qh〉, ∀qh ∈ Qh, (2.27)

where 〈·, ·〉 denotes the standard L2(Ω) inner product. Here, (umh , p
m
h ,w

h
m) is an

approximation to (u(·, tm), p(·, tm),w(·, tm)), at time tm = mτ,m = 1, 2, ...., 〈f̂ , qh〉 =
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τ〈f, qh〉+ 〈
1

M
pm−1
h , qh〉+ 〈αdivum−1

h , qh〉, and a(u,v) = 2µ(ε(u), ε(v))+λ(divu, divv)

is the usual weak form for linear elasticity. Note that (2.25) has been scaled by τ and

(2.26) has been scaled by −1 to make the system symmetric.

Definition 12 [31] The triple of spaces (Vh,Wh, Qh) is Stokes-Biot stable if and

only if the following conditions are satisfied:

• a(uh,vh) ≤ CV ‖uh‖1‖vh‖1, for all uh ∈ Vh, vh ∈ Vh;

• a(uh,uh) ≥ θV ‖uh‖2
1, for all uh ∈ Vh;

• The pair of spaces (Wh, Qh) is Poisson stable, i.e., it satisfies stability and con-

tinuity conditions required by the mixed discretization of the Poisson equation;

• The pair of spaces (Vh, Qh) is Stokes stable, i.e., it satisfies the inf-sup stability

condition for the Stokes equations.

The authors in [31] suggest a parameter-robust stable scheme for Biot’s system, build-

ing upon the conditions mentioned earlier. Inspired by this approach, we now define

a norm on (Vh,Wh, Qh):

‖|(uh,wh, ph)|| :=
[
‖uh‖A + τ‖wh‖2

K−1µf
+ τ 2ξ−1‖divwh‖2 + ξ‖ph‖2

]1/2

,

where ζ =
√
λ+ 2µ

d
, ξ = α2

ζ2
+ 1

M
, ‖r‖K−1µf = (K−1µfr, r)

1/2
.

Further, we associate a composite bilinear form on the space, (Vh,Wh, Qh),

B(uh,wh, ph;vh, rh, qh) = a(umh ,vh)−〈αpmh , divvh〉+τ〈K−1µfw
m
h , rh〉−τ〈pmh , divrh〉−

〈 1

M
pmh , qh〉 − 〈αdivumh , qh〉 − τ〈divwm

h , qh〉.

To ensure stability and convergence of the discretisation, the discrete subspace

(mixed element) has to be chosen such that the following theorem is fullfilled:

Theorem 5 [31]. If the triple (Vh,Wh, Qh) is Stokes-Biot stable, then: B(·, ·, · ; ·, ·, ·)
is continuous with respect to |||·, ·, ·|||; and the following inf-sup condition holds:

sup
(vh,rh,qh)∈Vh×Wh×Qh

B(uh,wh, ph;vh, rh, qh)

|||(uh,wh, ph)|||
≥ β|||(vh, rh, qh)|||

with a constant β > 0 independent of mesh size h, time step size δ, and the physical

parameters.
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The next section will cover multigrid methods, including their motivation, application

to the Poisson equation, and usage in solving systems of equations.

2.2 Multigrid methods

Consider the linear system Au = f , where A is a linear operator and u and f

are vectors. This equation represents a fundamental problem in linear algebra and

numerical analysis. The matrix A encodes the relationships between the elements

of the vector u and the vector f . Solving this system typically involves finding a

solution u that satisfies the equation for a given right-hand side vector f . Depending

on the properties of A and f , this problem may have unique solutions, infinitely

many solutions, or no solutions at all. Solutions to Au = f are crucial in various

scientific and engineering applications, including solving differential equations, image

processing, optimization problems, and data analysis.

In numerical analysis, the solution of Au = f often involves the use of efficient

algorithms tailored to exploit the structure of A. Sparse direct solvers are specialized

algorithms designed to efficiently solve linear systems where A is sparse, meaning it

contains mostly zero entries. These solvers exploit the sparsity of A to reduce com-

putational complexity and memory requirements, making them particularly suitable

for large-scale problems arising in scientific computing and engineering. Additionally,

multigrid methods provide another approach for solving Au = f , especially for prob-

lems arising from discretizations of partial differential equations. Multigrid methods

leverage a hierarchy of grids to accelerate convergence by effectively smoothing out er-

ror components at different spatial scales. This hierarchical approach makes multigrid

methods highly efficient for solving large linear systems arising from discretizations

of elliptic and parabolic partial differential equations.

Sparse direct solvers offer the capability to tackle exceptionally large problems

that conventional “dense” solvers cannot handle efficiently. Sparse matrices can be

broadly categorized into structured and unstructured types. Structured matrices ex-

hibit a regular pattern in their nonzero entries, often along a few diagonals or in blocks

of the same size forming a regular pattern, typically along a few (block) diagonals.

Conversely, matrices with irregularly located entries are termed irregularly structured.
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In practice, many finite-element or finite-volume methods applied to intricate geome-

tries result in irregularly structured matrices [2, 32]. Many sparse direct methods aim

to reduce computational cost by minimizing “fill-ins”, which are non-zero elements

introduced during the matrix’s LU factorization process from initially zero positions.

A common approach for solving sparse matrices involves four main steps. Firstly,

preordering techniques such as minimum degree (MD) or nested dissection (ND) or-

dering are applied to minimize fill-in. Secondly, a symbolic factorization is conducted,

where the factorization is computed without numerical values. Thirdly, the numer-

ical factorization takes place, resulting in the formation of the actual factors L and

U . Lastly, forward and backward triangular sweeps are performed for each individ-

ual right-hand side. The MD algorithm is widely recognized as the go-to approach

for minimizing fill-in during sparse Gaussian elimination, especially for symmetric

positive definite (SPD) matrices. In each step of the Gaussian elimination process,

this algorithm chooses the node with the lowest degree as the next pivot row. This

systematic selection helps in decreasing the amount of fill-in that occurs.

Definition 13 [2, 32] Let π be a permutation of {1, 2, . . . , n} and define the permu-

tation matrix, P , such that

pi,j =

1 if j = π(i),

0 otherwise.

Since P is an orthogonal matrix, with P−1 = P T , solving Au = f is equivalent to

solving (P TAP )P Tu = P Tf . The reordered matrix P TAP is a transformed version

of the original system.

The nested dissection (ND) algorithm operates by identifying a separator in a

graph, which is a set of nodes that, when removed, divides the graph into two or

more disconnected parts. The ordering of nodes in the permutation is based on a

sequence of separators selected in the graph. To achieve a target cost of O(N3) on an

N ×N mesh, it is aimed to utilize O(N) separator nodes. This allows dense Gaussian

elimination on a matrix involving this set to have an O(N3) cost for factorization.

For instance, the “central cross” in the graph serves as a separator for a regular 7× 7

mesh, comprising the nodes adjacent to the red edges in Figure 2.1. These nodes

are ordered last, in lexicographic order, in the permutation. The algorithm is then



26

recursively applied to the four smaller 3×3 meshes, each with its central cross defined

(nodes adjacent to the green edges), resulting in four subproblems on 1 × 1 meshes,

or single nodes. In this process, each 3× 3 separator is ordered immediately after the

nodes in its four subproblems. To analyze the factorization complexity based on this

reordering, the partial problem after the first reordering is examined. Assuming N

is odd, as in the given example, the central cross consists of 2N − 1 nodes, and each

of the four subproblems has a size of N−1
2
× N−1

2
. As these subproblems are entirely

disjoint, the reordered system matrix was represented in [2] as:

P TAP =


A1,1 0 0 0 A1,s

0 A2,2 0 0 A2,s

0 0 A3,3 0 A3,s

0 0 0 A4,4 A4,s

As,1 As,2 As,3 As,4 As,s


where Ai,i, 1 ≤ i ≤ 4, correspond to the matrix restricted to each of the disjoint

subdomains, while Ai,s and As,i for 1 ≤ i ≤ 4 contain the connections from each

subdomain to/from the separator (the central cross). Similarly, As,s contains the con-

nections in the original matrix between nodes in the separator. The cost of factoring

the matrix in this reordering can easily be accounted for by summing the costs of

factoring each of the Ai,i plus those associated with the separator. As above, we

assume the cost of accounting for the separator is O(N3), equal to that of dense

Gaussian Elimination on As,s. The proof considers scenarios where N = 2k − 1 so

that recursively-defined subproblems are also one less than a power of two. Let θ(N)

represent the cost of factoring the reordered matrix P TAP for an N ×N mesh. The

basic recursion is θ(N) = 4θ(N−1
2

) + O(N3). Writing θk = θ(2k − 1), this recurrence

relation becomes θk = 4θk−1 + c8k for some constant θ. Further analysis yields the

relation θk+1 − 12θk + 32θk−1 = 0, which, using the ansatz that θk = sk, leads to the

quadratic form s2 − 12s + 32 = 0. Solving this gives s = 4 and s = 8, leading to

the general solution θk = c14k + c28k = O((2k − 1)3). A detailed calculation confirms

θ(N) = O(N3), with a constant approximately 10. Unfortunately, the method de-

scribed above does not easily extend to general cases. Additionally, separators can

be identified in linear time, leading to similar bounds on factorization costs for cer-

tain types of two-dimensional discretizations. For regular N ×N × N grids in three

dimensions, using geometric separators similar to “central crosses” in two dimensions
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Figure 2.1: ND ordering

yields an O(N5) factorization cost. While this is a significant improvement over the

O(N7) cost of factorization using banded Gaussian elimination in lexicographical or-

der, it remains impractical for even moderate values of N . Generalizing this result

to unstructured meshes in three-dimensional geometries is challenging, prompting ex-

ploration of alternative approaches.

Consider again a sparse linear system, Au = f , and let ek = u − uk represent the

error in an approximation, uk, This error is generally unknown and not computable,

as it requires knowledge of the exact solution, u. We focus on iterative methods of

the general form as in [2, 32]

uk+1 = uk + αkδuk,

for a scalar αk and a vector δuk. The ideal choice for the update would satisfy

αkδuk = ek. Therefore, we typically seek to approximate this ideal relation. One

common approach is to employ the residual, rk = f − Auk, as an approximation for

ek. This proves effective when A is close to the identity matrix in some sense, since

rk = f − Auk = Au − Auk = Aek; thus, if A ≈ I, then rk ≈ ek. Considering an
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initial approximation or guess, u0, we iterate to arrive at

uk = uk−1 + αk(f − Auk−1).

To examine the convergence behavior of this iteration, we study the evolution of the

error. By subtracting both sides of the preceding expression that defines uk from the

true solution, u, we obtain:

u− uk = u− uk−1 − αk(f − Auk−1)

ek = ek−1 − αkAek−1

ek = (I − αkA)ek−1

ek =

(
k∏
i=1

(I − αiA)

)
e0.

We frequently denote the matrix in the final expression as pk(A) =
∏k

i=1(I − αiA),

recognizing this as a degree-k polynomial in the matrix A. It possesses the additional

property that pk(0) = I, where I denotes the identity matrix and the all-zero ma-

trix is represented by 0. We can combine polynomial methods with the concept of

preconditioning, as illustrated by the equation

MAu = Mf (left preconditioning)

or

AM(M−1u) = f (right preconditioning),

where the preconditioning matrix (or preconditioner), M , is an invertible matrix cho-

sen to accelerate convergence. If we (left) precondition the system and iterate as

above, then the iteration becomes

uk = uk−1 + αkM(f − Auk−1)

ek = (I − αkMA)ek−1

= pk(MA)e0.

Combining polynomial methods with preconditioning further improves solver perfor-

mance by leveraging the benefits of both approaches. Preconditioning improves the
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conditioning of the system matrix, which accelerates convergence rates. The choice of

preconditioner is crucial and depends on its ability to modify the spectral properties

of the matrix. Common strategies include diagonal scaling, incomplete factorizations,

and multigrid methods. By selecting and designing preconditioners tailored to specific

problem characteristics, significant improvements in solver efficiency and robustness

can be achieved. Overall, integrating polynomial methods with preconditioning rep-

resents an effective strategy for solving large-scale linear systems efficiently in various

scientific and engineering applications [32].

One approach to developing iterative methods is through a “matrix splitting”,

writing A = M−1 − N . Then, Au = f is equivalent to M−1u = Nu + f , which

extends to an iteration of the form

M−1uk = Nuk−1 + f

which further leads to

uk = MNuk−1 +Mf

= uk−1 +M(f − Auk−1)

We equate this iteration with a preconditioned polynomial method with all weights

equal, αi = 1, and with preconditioner M — this is termed a stationary iterative

method.

The Jacobi method is an iterative technique used to solve linear systems of equa-

tions. In this method, the system matrix is split into diagonal and off-diagonal com-

ponents. Iterative updates are then applied using only the diagonal elements of the

system matrix. Each iteration involves solving a set of one-dimensional equations.

The Gauss-Seidel method is a similar iterative technique used to solve systems of

linear equations, particularly when the coefficient matrix is diagonally dominant or

symmetric and positive definite. Numerous classical methods prioritize achieving in-

vertibility without necessarily emphasizing convergence. In this context, we align

with this tradition and explore classical iterations where computing uk is computa-

tionally feasible. Subsequently, we investigate the conditions required on matrix A

to ensure rapid convergence of the iteration. To facilitate our analysis, we utilize the

notation A = D−L−U , where D represents a diagonal matrix, and L and U denote
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strictly lower and upper-triangular matrices, respectively. Within this framework, two

standards options for matrix splittings emerge:

• Jacobi: M−1 = D

• Gauss-Seidel: M−1 = D − L

In iteration forms, these yield

• Jacobi: uk = uk−1 +D−1(f − Auk−1) = D−1((L+ U)uk−1 + f)

• Gauss-Seidel: uk = uk−1 + (D − L)−1(f − Auk−1) = (D − L)−1(Uuk−1 + f)

Iterative methods offer an attractive alternative to direct methods due to their optimal

cost per iteration, operating by refining an initial guess until convergence is reached.

They typically exhibit linear or near-linear computational complexity per iteration,

making them more scalable for large problems compared to sparse direct solvers.

However, iterative methods may converge slowly for certain PDEs or discretizations,

particularly for problems with highly oscillatory or rapidly varying solutions. This

slow convergence can offset their lower per-iteration cost.

Multigrid methods address these limitations by combining the scalability of iter-

ative methods with the effectiveness of direct methods for smoother components of

the solution. They exploit the multi-resolution nature of the problem to rapidly con-

verge to an accurate approximate solution by efficiently handling both low-frequency

and high-frequency components of the error. This makes them particularly well-

suited for problems like the Poisson equation or other elliptic PDEs. The multigrid

methods can serve as standalone iterative solvers or as effective preconditioners. By

combining coarse-grid correction with relaxation techniques, multigrid methods ac-

celerate convergence by damping high-frequency errors on fine grids while preserving

low-frequency errors. Additionally, they exploit grid hierarchies, allowing for efficient

information transfer between grids and systematic error correction across scales [11, 2].

2.2.1 Multigrid methods for Poisson

In the section about the multigrid method for solving the Poisson equation, we’ll cover

a few important topics. First, we’ll talk about how the weighted-Jacobi iteration helps
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to make our solutions better over time. Then, we’ll explain why it’s useful to correct

mistakes on a simpler version of the problem. After that, we’ll introduce two different

methods, called the two-grid and multigrid algorithms, and talk about different ways

to use them. Finally, we’ll look at how much it costs to use these methods and how

well they work, and we’ll also talk about a specific technique called the V-cycle.

Let’s consider the performance of the weighted Jacobi iteration for the one-dimensional

Poisson problem, discretized using finite differences on a uniform mesh, x0, x1, . . . , xn,

with spacing h = 1/n. The discretization is then

(Au)i =
1

h2
(−ui−1 + 2ui − ui+1) for 1 ≤ i ≤ n− 1,

where we implicitly take u0 = un = 0. A direct calculation shows that the eigenvectors

v(k) of A can be written as v
(k)
i = sin

(
kπi
n

)
for 1 ≤ k ≤ n− 1, as

(Av(k))i =
1

h2

(
− sin

(
kπ(i− 1)

n

)
+ 2 sin

(
kπi

n

)
− sin

(
kπ(i+ 1)

n

))
=

1

h2

(
2 sin

(
kπi

n

)
− 2 cos

(
kπ

n

)
sin

(
kπi

n

))
=

4

h2
sin2

(
kπ

2n

)
sin

(
kπi

n

)
=

4

h2
sin2

(
kπ

2n

)
v

(k)
i .

In [2], it is shown that v(k) is an eigenvector of matrix A with eigenvalue approximately

k2π2 for k ≤ n. This corresponds to the convergence of discrete operator eigenvalues

to those of the continuous operator as n → ∞. Furthermore, the error-propagation

operator for the weighted-Jacobi iteration is expressed as ek+1 = (I − ωD−1A)ek,

where D = 2
h2
I. The convergence of the weighted-Jacobi iteration can be analyzed

for 0 < ω ≤ 1, showing that while there’s no single ω value leading to significant

error reduction for small k while maintaining convergence, optimization strategies

can be employed. Specifically, selecting ω = 2/3 ensures consistent performance

across a range of values of k not too close to zero, with the resulting bound estab-

lished as |αk(I − ωD−1A)| ≤ 1
3

for n
2
≤ k < n. After thorough examination, it

becomes evident that the weighted Jacobi method serves as a highly efficient station-

ary iteration technique for reducing errors within the upper spectrum of matrix A,

regardless of the problem size. This effectiveness extends to methods like Gauss-Seidel
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[2, 32]. Similar favorable outcomes are observed across various problem types, includ-

ing two- and three-dimensional Poisson problems employing both finite-difference and

finite-element discretizations. When initiating with a typical error pattern compris-

ing numerous frequencies (eigenfunctions), the application of such iterative methods

necessarily results in the dominance of “smooth” modes (those with small k) in the

remaining error. After several iterations of the Jacobi method, the error becomes

notably smoother. Consequently, these iterative techniques are often referred to as

“smoothers” or “relaxation methods”.

Multigrid methods operate on two key insights: high-frequency errors are effec-

tively reduced by smoothing techniques, while low-frequency errors can be accurately

approximated on a coarser grid. It’s important to note that some low-frequency er-

rors on a fine grid translate into high-frequency errors on a coarser grid. By applying

smoothing and leveraging the scale differences recursively, the classical multigrid for-

mulation is achieved. In one-dimensional grids, linear interpolation serves as a natural

operator to transfer corrections between grids. This interpolation assigns values from

coarse-grid nodes to corresponding points on the fine grid. For points on the fine

grid located between coarse-grid nodes, a linear interpolation of coarse-grid values

determines the fine-grid values. This process defines a linear operator, denoted as

P , mapping coarse-grid vectors to fine-grid vectors. Considering a uniform fine grid

with mesh points xh0 , x
h
1 , . . . , x

h
n (where n is even) and mesh spacing h = 1

n
, and a

corresponding coarse grid with mesh points x2h
0 , . . . , x

2h
n/2 with spacing 2h, the action

of P on a given coarse-level vector v2h can be described away from the boundaries as

follows:

(Pv2h)2i = v2h
i ,

(Pv2h)2i+1 = (v2h
i + v2h

i+1)/2,

where i is a coarse level index. This is depicted in Figure 2.2. Careful consideration

is required for boundary conditions. For example, with Neumann or Robin boundary

conditions on both endpoints and n being even, the described method is applicable

to all fine grid points. However, with Dirichlet boundary conditions, degrees of free-

dom such as v0 on both grids are typically eliminated. In such cases, adjustments

are made to ensure corrections assume a zero error at the boundary, often yielding
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Figure 2.2: Interpolation pattern for one-dimensional grids with Neumann or Robin
boundary conditions (from [2]).

(Pv2h)1 = v2h
1 /2. On tensor-product grids in two dimensions, tensor-product in-

terpolation operators are commonly employed, particularly near boundaries such as

pictured in Figure 2.3.

With an interpolation operator P mapping vectors from grid 2h to grid h, a specific

correction to an approximation uh0 is proposed for the solution of the grid h problem

Auh = fh, taking the form Pu2h. Assuming uh0 is derived from applying a few

smoothing iteration steps to another vector, the corrected approximation is given by

uh0 + Pu2h, aiming for the best possible approximation of this form. As is typical,

the use of the term “best” implies a metric that can be utilized to determine one

corrected approximation as superior to another. In our context, we interpret this to

be some matrix norm, ‖y‖2
M = yTMy, where M is a symmetric and positive-definite

matrix, resulting in the optimization problem in [2] as:

min
u2h
‖uh − uh0 + Pu2h‖M .

In the specific case where M = 1, the optimization focuses on finding the best ap-

proximation in the Euclidean l2-norm. Conversely, when M = ATA, the objective

is to minimize the residual after correction. To find the minimum, the derivative is

computed and set equal to zero, a process facilitated by first squaring the quantity to

be minimized for convenience. Then,

‖uh − (uh0 + Pu2h)‖2
M = (eh0 − Pu2h)TM(eh0 − Pu2h)

= (eh0)TMeh0 − 2(u2h)TP TMeh0 + (u2h)TP TMPu2h.
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Figure 2.3: Interpolation pattern for two-dimensional tensor product grids with a
coarse cell at left and its uniform refinement at right (from [2]).

Differentiating this with respect to u2h and equating the resulting derivative to zero

reveals that the optimal correction is defined by the solution, denoted as u2h, of

P TMPu2h = P TMeh0 = P TM(uh − uh0). (2.28)

Although this method looks good mathematically, it presents a practical problem be-

cause the right-hand side might be hard to calculate since it depends on the unknown

solution, uh. However, when A is symmetric and positive definite, choosing M = A

gives us a particularly nice coarse-grid problem. This choice results in the minimizer

satisfying the equation:

P TAPu2h = P T (f − Auh0). (2.29)

We term the update Pu2h as a Galerkin coarse-grid correction, while the coarse grid

operator Ac = P TAP is denoted as a Galerkin coarse-grid operator. The two-grid it-

eration arises from combining the aforementioned components: a smoothing iteration

and the coarse-grid correction process. Given A and f resulting from a discretization

process on grid h, along with an initial guess u0 on grid h, a typical two-grid iteration is

expressed as outlined in Algorithm 1. In this context, we define ν1 pre-smoothing and

ν2 post-smoothing iterations specified by matrices M1 and M2; frequently, M1 = M2

or M1 = (M2)T , although this choice depends on the specific problem. Typically,

very small values of ν1 and ν2 are chosen, with optimal performance often observed

for ν1 + ν2 = 2 or 3. However, the two-grid cycle proves inefficient as the grid 2h

problem is not substantially smaller than the fine grid problem on grid h. Hence, we

must explore methods to enhance the algorithm’s efficiency without compromising its
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smooth error

oscillatory error
~eh0

relax

CGC

relax

Figure 2.4: Ideal two-grid error-reduction when relaxation and coarse-grid correction
are perfectly orthogonal (from [2]).

effectiveness.

Input : A, linear system matrix

f , linear system right-hand side

u0, initial guess

R, restriction matrix

P , interpolation matrix

M1,2, pre, post-relaxation matrix

ν1,2, number of pre, post-relaxation sweeps

Output: u, approximation after one cycle

u← u0;

for i = 1 to ν1 do

u← u+M1(f − Au) ; // Pre-relaxation

end

f 2h ← R(f − Au) ; // Restrict residual of current approximation u

Solve RAPu2h = f 2h (or A2hu2h = f 2h) ; // Solve coarse-level problem

for u2h

u← u+ Pu2h ; // Coarse-grid correction

for i = 1 to ν2 do

u← u+M2(f − Au); // Post-relaxation

end
Algorithm 1: Two-grid algorithm

The main computational challenge in Algorithm 1 arises from the solution of the

linear system on grid 2h. In the case of a one-dimensional problem on a uniform mesh,
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Figure 2.5: Typical two-grid error-reduction when relaxation and coarse-grid correc-
tion are not perfectly orthogonal (from [2]).

with a factor of two coarsening, A2h is reduced to half the size of the original problem

on grid h. Similarly, in two dimensions, it decreases to one-fourth the size, and in

three dimensions, it decreases to one-eighth the size. To alleviate this computational

cost, two options can be considered:

• Grid 2h is not revisited at every iteration.

• The grid 2h problem is not solved exactly.

While feasible in certain scenarios, implementing the first option generally proves

challenging. This difficulty stems from the presence of a small discrepancy between

the error spaces reduced by fine-scale relaxation and coarse-grid correction. If these

error spaces were orthogonal, as sketched in Figure 2.4, handling error on the coarse

grid once and complementing it with relaxation sweeps would be feasible. However,

in most cases, these error spaces are not perfectly orthogonal, as illustrated in Figure

2.5. Consequently, subsequent relaxation reintroduces errors in spaces that can only

be rectified by further coarse-grid correction. This lack of orthogonality necessitates

revisiting the coarse-grid problem at each iteration step to eliminate errors within

the interpolation range reintroduced by relaxation. Therefore, an efficient approach

to approximately solve the grid 2h problem is required. The fundamental concept

is to recognize the similarity between the grid 2h problem and the 2h version of

the grid h problem, enabling a recursive approach. Specifically, the grid 2h version

of Algorithm 1 is utilized to address the grid 2h problem. This recursion involves
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addressing a grid 4h problem, which is tackled using the grid 4h version of the two-

grid algorithm outlined in Algorithm 1. This recursive process continues until a grid

size is reached that can be efficiently solved directly. Notationally, A is employed for

the grid h, and Ac or A2h for the grid 2h in defining the two-grid algorithm. In a

multilevel algorithm, an index is employed to denote the level. For this purpose, A` is

utilized, where ` = 0 represents the fine-level grid-h matrix Ah, and `max designates

the coarsest level. With this notation, A` represents the operator on level ` with a

grid size of 2`h (assuming a factor-of-two coarsening in the grids). Typical choices in

Algorithm 2 are µ = 1, referred to as the multigrid V-cycle, and µ = 2, known as the

W-cycle. The parameter µ specifies the number of times the coarse-grid correction

step is applied at each level of the multigrid hierarchy. In the V-cycle (µ = 1), the

algorithm progresses down the grid hierarchy, performing smoothing operations and

coarse-grid corrections, and then returns up the hierarchy, smoothing at each level

again. In the W-cycle (µ = 2), the algorithm makes two recursive visits to the coarser

grids, allowing for additional corrections and potentially improved convergence rates,

albeit with increased computational cost [2].

The Multigrid V-cycle is an iterative method for efficiently solving discretized

partial differential equations. It combines smoothing operations with coarse-grid cor-

rections to converge to the solution rapidly. Starting at the finest grid level, multiple

relaxation sweeps smooth out high-frequency errors. The solution is then restricted to

coarser grids, where smoothing is applied iteratively until reaching a tractable level.

A direct solver or other relaxation scheme is used at this coarse level. After solving

on the coarsest grid, the solution is interpolated back to finer grids, and correction

updates refine the solution iteratively. This recursive smoothing and correcting on

different grid levels resemble the shape of the letter “V,” hence the name V-cycle.
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Input: A, level-` operator

u, f , initial approximation, level-` right-hand side

R,P , level-` restriction and interpolation matrices

M1,2, ν1;2, level-` pre, post-relaxation matrix and number of sweeps

`, current grid level

Output: u, approximation after one µ-cycle on level `

for i = 1 to ν1 do

u← u+M1(f − Au) ; // Pre-relaxation

end

f `+1 ← R(f − Au) ; // Restrict level-` residual

if ` = `max − 1 then

u`max ← (A`max)−1f `max ; // Exact solve on coarsest grid

end

else

u`+1 ← 0 ; // Initialize coarse level correction as zero

for i = 1 to µ do

u`+1 ←MU(A`+1,u`+1,f `+1, . . . , `+ 1) ; // Recursive call to a

µ-cycle

end

u← u+ Pu`+1 ; // Coarse-grid correction

end

for i = 1 to ν2 do

u← u+M2(f − Au) ; // Post-relaxation

end

Algorithm 2: The multigrid µ-cycle: u = MU(·)

2.2.2 Multigrid for systems

Considering the Stokes equations, we typically discretize Equation (2.17), leading to

linear systems (2.18) described in [3, 11, 2] as follows:(
F B

BT 0

)(
u

p

)
=

(
f

0

)
(2.30)
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The matrix F represents discretization of the bilinear form a(u,v), or the discrete

representation of the divergence of the strain rate tensor ε(u). The matrix BT repre-

sents the discrete divergence operator, while its adjoint B corresponds to the discrete

gradient operator. To tackle this saddle-point problem, we opt for a preconditioned

Krylov subspace method. We explore two types of preconditioners: block-factorization

methods and monolithic multigrid methods.

A common type of preconditioner relies on the block factorization of the system

matrix, (
F B

BT 0

)
=

(
F 0

BT −BTF−1B

)(
I F−1B

0 I

)
, (2.31)

=

(
I 0

BTF−1 I

)(
F 0

0 −BTF−1B

)(
I F−1B

0 I

)
. (2.32)

From this, we consider two preconditioners, block diagonal,

Md =

[
F 0

0 −BTF−1B

]
(2.33)

and block triangular,

Mt =

[
F 0

BT −BTF−1B

]
. (2.34)

One effective approach to enhance convergence rates in solving coupled systems like

Equation (2.30) is to approximate the Schur complement by a mass matrix and con-

struct a provably good preconditioner [12]. This involves utilizing block-factorization

preconditioners derived from the block LU factorization of the system matrix. Two

common preconditioners are the block-diagonal (Md) and block-triangular (Mt) pre-

conditioners. These exploit the sparsity and structure of the system matrix to effi-

ciently approximate its inverse. To further improve preconditioning, multigrid meth-

ods can be integrated. By applying a multigrid cycle to approximate the inverse of

the system matrix F , along with a simple preconditioner for the mass matrix approx-

imation of the Schur complement, the overall preconditioner’s performance can be

enhanced. Multigrid methods provide an effective means to approximate the inverse

of F .
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An alternative to block-factorization preconditioners is to employ monolithic multi-

grid methods for the coupled system in Equation (2.30). In contrast to block precondi-

tioners, where multigrid may be applied only to the subsystem involving F or smaller

sub-blocks of F , monolithic approaches maintain coupling between u and p at all

hierarchy levels. A common technique for monolithic geometric multigrid is to re-

fine the underlying mesh similarly to an uncoupled problem, resulting in a grid 2h

problem with the same degrees of freedom structure as the original grid h problem.

Interpolation from grid 2h to grid h involves independently interpolating each system

component, resulting in a composite interpolation operator of the form in [11] as,

P =

[
Pu 0

0 PP

]

where Pu denotes the velocity interpolation operator, and Pp represents the pressure

interpolation operator. While the Galerkin and rediscretization coarse-grid operators

align when utilizing the canonical finite-element operators for all fields, in accordance

with the geometric multigrid structure, we opt for the rediscretization operators over

Galerkin. This choice is primarily made for the seamless extension from efficient

two-level solvers to the multilevel scenario.

It is widely acknowledged that conventional relaxation methods, like Jacobi or

Gauss-Seidel, are often ineffective for many saddle-point problems. Instead, researchers

have proposed and investigated several families of relaxation methods specifically tai-

lored to this context. In this discussion, we concentrate on four categories of such

techniques: Braess-Sarazin, Uzawa, Vanka, and distributed relaxation. See [2] for

more details.

First we discuss Braess-Sarazin relaxation schemes. Braess-Sarazin-type algo-

rithms were originally proposed as relaxation schemes for the Stokes’ equations, em-

ploying an approximate block factorization as an approximation to the original system.

Braess-Sarazin approaches make use of the block factorization described in Equation

(2.31), understanding that affordable approximations to solving with F and BTF−1B

can lead to effective relaxation methods. In a typical Braess-Sarazin relaxation, we

employ the stationary iteration(
u

p

)
=

(
u

p

)
+

(
ωC B

BT 0

)−1((
f

0

)
−

(
F B

BT 0

)(
u

p

))
,
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as a relaxation scheme. Instead of using F , we employ the approximation C, where

C is often chosen as a diagonal matrix, such as the identity matrix or the diagonal

of F , and ω is a suitably selected relaxation parameter. It is important to note that,

in this scenario, we need to both assemble and solve a linear system involving the

approximate Schur complement, −ω−1BTC−1B. While assembling this approximate

Schur complement is efficient when C is diagonal, its inversion remains computation-

ally intensive and can be suitably approximated [28]. Although the proper selection

of relaxation parameter(s) is crucial for achieving optimal multigrid performance,

Braess-Sarazin methods have demonstrated successful application across various con-

texts. Uzawa methods only approximate the inverse of the block L factor. This leads

to a stationary iteration of the form(
u

p

)
=

(
u

p

)
+

(
ωC 0

BT −Ŝ

)−1((
f

0

)
−

(
F B

BT 0

)(
u

p

))
.

In this context, C is a simple version of F that’s easy to invert. Now, Ŝ is another

simple-to-invert approximation, either to BTF−1B or BTC−1B. Uzawa iterations are

less computationally demanding than Braess-Sarazin iterations, but they’re usually

not as effective. Whether Uzawa relaxation is a good choice depends on the specific

problem, its discretization, and how well the relaxation parameters are set. However,

it’s often found that inexact Braess-Sarazin methods, since they are a bit more flexible,

provide better performance relative to their cost compared to Uzawa methods [2].

Distributed relaxation methods are founded upon approximating the continuum

relationship ∆∇ = ∇∆ at the discrete level, distinguishing between the vector Lapla-

cian on the left and the scalar Laplacian on the right. This discrete representation

is often symbolized as FB ≈ BFp, where Fp represents the discretization of the

Laplacian operator on the pressure space (pertaining to Stokes equations). If this

approximation remains valid, it offers an alternative block LU factorization (distinct

from the unit U factor) compared to the one depicted in Equation (2.31),

(
F B

BT 0

)(
I B

0 −Fp

)
=

(
F 0

BT BTB

)
.
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Distributive relaxation approaches thus consist of a stationary iteration given by(
u

p

)
=

(
u

p

)
+

(
I B

−Fp

)
×

(
ωC 0

BT B̂TB

)−1((
f

0

)
−

(
F B

BT 0

)(
u

p

))
.

In the context of finite-difference discretizations of Stokes equations, where the dis-

crete relationship FB ≈ BFp holds away from boundaries, distributed relaxation was

initially proposed. However, it has not seen significant success in finite-element dis-

cretizations, except within the domain of Maxwell’s equations. The effectiveness of

distributed relaxation in the context of Maxwell’s equations is attributed to the use

of discrete exact sequences [2].

Vanka relaxation methods, in contrast to the aforementioned approaches, are

grounded in domain decomposition concepts rather than block factorizations. In

this scheme, the decomposition must align with the structure of the discretization.

An algebraic Vanka approach can be naturally established by describing subdomains,

denoted in [2] as Ωi, where

Ωi = {j | bj,i 6= 0} :

This signifies that the ith subdomain consists of the sets of degrees of freedom asso-

ciated with nonzero entries in the ith row of BT . Notably, this naturally introduces

overlap in standard discretizations of the Stokes equations, where a single velocity

degree of freedom is linked to multiple pressure degrees of freedom. Alternatively,

a geometric Vanka methodology can be adopted, wherein the subdomains are con-

structed based on mesh connectivity. For the Taylor-Hood discretization of the Stokes

equations, this results in subdomains comprising a single (nodal) pressure degree of

freedom and all velocity degrees of freedom on elements adjacent to the node. De-

pending on how coincidental zeros in the discrete gradient operator are handled, this

definition may align with the algebraic definition mentioned earlier. In recent years,

Vanka relaxation techniques have found successful application in various scenarios,

making them widely employed in numerous applications [2].
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2.3 Time integration

In the context of numerical methods for solving partial differential equations (PDEs),

ensuring the accuracy and stability of the solution is paramount. Previously, we

discussed multigrid methods, which are effective for efficiently solving large-scale linear

systems arising from the spatial discretization of PDEs. However, to fully resolve the

temporal dynamics of the system, we must also focus on the integration of the resulting

ordinary differential equations (ODEs) that arise from this discretization.

Time integration methods are crucial for advancing the solution in time while

maintaining the desired properties imposed by the spatial discretization. Effective

time integration techniques are necessary to handle the stiff and non-stiff ODEs result-

ing from the semi-discretization of PDEs. These methods ensure that the numerical

solution remains stable and accurate over time, allowing for the realistic simulation of

dynamic systems. By combining multigrid methods for spatial discretization with ro-

bust time integration schemes, we can achieve a comprehensive and reliable numerical

approach for solving PDEs. This synergy allows for efficient and stable simulations,

making it possible to accurately capture both the spatial and temporal aspects of

complex physical phenomena.

We first consider a system of ordinary differential equations (ODEs) that governs

the evolution of a dynamical system. These ODEs describe the rate of change of

the system’s state variables with respect to time. We are primarily interested in the

case where the ODEs arise through semi-discretization, discretizing the spatial do-

main of a PDE while leaving the temporal domain continuous, resulting in a set of

coupled ordinary differential equations in time, which can be solved numerically using

time-stepping methods such as the explicit or implicit Euler methods, Runge-Kutta

methods, or other advanced techniques. The semi-discretization allows for efficient nu-

merical simulations while capturing the essential dynamics of the continuous system.

Let’s consider a system of ODEs represented as:

y′(t) =
dy(t)

dt
= f(t,y(t)), (2.35)

where y is the state vector and f is a vector function describing the rate of change of

y with respect to time t. We seek a numerical method to approximate the solution
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to

y′(t) = f(t,y(t)) a < t < b, (2.36a)

y(a) = y0. (2.36b)

Consider trying to approximate y(t) at points ti = a + iht for 0 ≤ i ≤ N , where

ht =
b− a
N

is the step size. Denote the approximate solution for y(ti) by yi. If we knew

y(ti) at these points, we could approximate y′(ti) =
y(ti+1)− y(ti)

ht
− ht

2
y′′(ξi). From

the ODE, we know that y′(ti) = f(ti,y(ti)), so y(ti+1) = y(ti) + hty
′(ti) +

h2
t

2
y′′(ξi).

Dropping truncation error terms and approximating yi ≈ y(ti) we obtain the forward

Euler method (explicit Euler formula) yi+1 = yi + htf(ti,yi).

We could also use backward differences, y′(ti+1) =
y(ti+1)− y(ti)

ht
− ht

2
y′′(ζi) with

y′(ti+1) = f(ti+1,y(ti+1)) to get y(ti+1) = hty
′(ti+1) + y(ti)−

h2
t

2
y′′(ζi). Again drop-

ping truncation error terms and approximating yi ≈ y(ti), we obtain the backward

Euler method (implicit Euler formula) yi+1 = yi + htf(ti+1,yi+1).

Definition 14 Local truncation error. The local truncation error, di, is the resid-

ual of the approximation to y′ = f(t,y) from a numerical method when yi and yi+1 are

replaced by y(ti) and y(ti+1) for a sufficiently smooth solution, y(t), of the boundary

value problem.

Definition 15 Order of accuracy. The order of accuracy, q, is the largest positive

integer such that maxi |di| = O(hqt ) as ht → 0 for a sufficiently smooth solution, y(t),

to the boundary value problem.

For Explicit Euler: di =
h

2
y′′(ξ) for some ξ ∈ (ti, ti+1)

For Implicit Euler: di = −h
2
y′′(η) for some η ∈ (ti, ti+1)

These estimates are valid so long as y′′(t) is a continuous function, y ∈ C2([a, b]). Both

implicit and explicit Euler have order of accuracy equal to 1, with maxi |di| ≤
Mh

2
where |y′′(t)| ≤M,a ≤ t ≤ b.

Definition 16 Global error. The global error of the method is ei = y(ti)− yi, for

i = 0, 1, 2, . . . , N
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Theorem 6 Let f(t,y) be Lipschitz in y and let the solution to the BVP (boundary

value problem) satisfy y ∈ C2([a, b]) with |y′′(t)| ≤ M for a ≤ t ≤ b. Let yi be the

explicit Euler approximation to y(ti), then |ei| = Mh
2L

(eL(ti−a)−1) for i = 0, 1, 2, . . . , N .

The general approach for computing global error bounds is similar for both implicit

and explicit Euler methods when considering a fixed time window a ≤ t ≤ b and

letting ht → 0. As h approaches zero, both methods converge to the solution of the

boundary value problem (BVP). In this scenario, the global error for each method,

denoted by |ei|, is typically of the order O(ht).

Definition 17 Convergence [21]. The method is said to converge if the maximum

global error tends to 0 as h tends to 0, provided the exact solution exists and is rea-

sonably smooth.

Now consider the test equation:

y′ = λy t > 0, (2.37a)

y(0) = y0. (2.37b)

We know the solution of (2.37) is y(t) = y0e
λt, and that if λ ≤ 0, y(ti+1) ≤ y(ti) for

0 ≤ i ≤ N − 1.

For this problem, the explicit Euler discretization becomes

yi+1 = yi + htf(ti,yi)

= (1 + htλ)yi

= (1 + htλ)2yi−1 = (1 + htλ)i+1y0

When λ ≤ 0, |1 + λht| ≤ 1 if and only if ht ≤
2

|λ|
.
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The implicit Euler discretization for this problem becomes

yi+1 = yi + htf(ti+1,yi+1)

yi = (1− htλ)yi+1

yi+1 =

(
1

1− htλ

)
yi

=

(
1

1− htλ

)2

yi−1 =

(
1

1− htλ

)i+1

y0

Note that

∣∣∣∣ 1

1− htλ

∣∣∣∣ ≤ 1 for any ht ≥ 0 and all λ ≤ 0. We refer to a method

as conditionally stable if solutions to Equation (2.37) do not grow for λ < 0 only

under some condition on ht. Consequently, the explicit Euler method is conditionally

stable, whereas the implicit Euler method is unconditionally stable. This is the main

advantage provided by implicit schemes: they are more expensive per iteration than

explicit schemes but are often unconditionally stable. When using implicit schemes,

the primary consideration is determining the value of ht based on accuracy constraints.

In contrast, for explicit schemes, both accuracy and stability conditions need to be

satisfied. We can improve upon first-order accuracy using the following approaches:

1. Introduce an approximation at the midpoint of [ti, ti+1].

(a) Explicit midpoint method: Use explicit Euler to predict yi+1/2 = yi +
ht
2
f(ti,yi), then compute

yi+1 = yi + htf
(
ti+1/2,yi+1/2

)
= yi + htf

(
ti+1/2,yi +

ht
2
f(ti,yi)

)
for ti+1/2 =

(ti + ti+1)

2
.

(b) Implicit midpoint method: Approximate yi+1/2 =
(yi + yi+1)

2
, then

solve yi+1 = yi + htf(ti+1/2,yi+1/2). So the implicit midpoint method is

given by yi+1 = yi + htf

(
ti+1/2,

(yi + yi+1)

2

)
.

2. Trapezoidal rule

(a) Use explicit Euler to predict Y = yi + htf(ti,yi), then compute
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yi+1 = yi +
ht
2

(f(ti,yi) + f(ti+1,Y )). The explicit trapezoidal rule is

yi+1 = yi +
ht
2

(f(ti,yi) + f(ti+1,yi + htf(ti,yi))).

(b) Explicit Euler linearizes at ti with slope y′(ti). Instead, take the average of

y′(ti) and y′(ti+1) and approximate y′(ti) ≈ 1
2
[f(ti,y(ti))+f(ti+1,y(ti+1))].

This gives the implicit trapezoidal rule:

yi+1 = yi +
ht
2

[f(ti,yi) + f(ti+1,yi+1)]

These four schemes are all instances of Runge-Kutta methods, which necessitate the

evaluation of f(t,y) at points beyond (ti,yi). The concept of “stages” introduces

additional evaluation points in (t,y) space to compute f(t,y). Specifically, the im-

plicit midpoint method constitutes a single-stage scheme, whereas the remaining three

methods involve two-stage computations. We consider s-stage implicit RK methods

in standard form,

yi+1 = yi + ht

s∑
j=1

bjf(ti + cjht,Yj),

with Yj = yi + ht

s∑
k=1

ajkf(ti + ckht,Yk), j = 1, 2, . . . , s.

(2.38)

We need
∑s

k=1 bk = 1 in order for the method to possibly be convergent. Typically,

we take
∑s

k=1 ajk = cj, but this is not required. The coefficients of these methods are

often represented in a Butcher tableau,

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

.

When ajk = 0 for all k ≥ j, the Runge-Kutta method is explicit, allowing each stage

value, Yj, to be computed directly from previous stage values, requiring only evalua-

tions of the function f(t,y). In contrast, when some ajk 6= 0 for k ≥ j, the method

becomes implicit, necessitating the solution of a coupled system to determine the stage

values. While RK methods are versatile and widely used, they can be computationally
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expensive. Specifically, an s-stage explicit function demands s function evaluations.

To achieve an error of O(hpt ) with an explicit RK method, it is imperative that s ≥ p.

For higher orders (p ≥ 5), s ≥ p + 1 is required. Implicit methods involve solving a

coupled system of s equations for all stages simultaneously [21].

When y ∈ Rm, as is often the case in spatially discretized partial differential equa-

tions, Equation (2.38) represents a coupled nonlinear system of size sm×sm. Solving

this nonlinear system can be prohibitively costly, particularly when m is large. This

cost can be mitigated with smaller ht values or by using effective preconditioners for

some linearization of the system. Consequently, diagonally implicit RK (DIRK) meth-

ods, where ajk = 0 if k > j, are often employed to reduce computational expenses.

Concerning stability for IRK methods, define the s × s matrices A = [ajk] and

I as the identity matrix, and column vectors of s entries b = [b1, . . . , bs]
T and e =

[1, 1, . . . , 1]T where the superscript T stands for transpose. Then, for any IRK method,

its stability function φ can be calculated as:

φ(z) = 1 + zbT (I − zA)−1e

Definition 18 A-Stable [21]. Runge–Kutta methods applied to the test equation

y′ = λy take the form yi+1 = φ(htλ)yi, and, by induction, yi = (φ(htλ))i · y0.

The function φ is called the stability function. Thus, the condition that yi → 0 as

i → ∞ is equivalent to |φ(htλ)| < 1. This motivates the definition of the region of

absolute stability (sometimes referred to simply as stability region), which is the set

{z ∈ C : |φ(z)| < 1}. The method is A-stable if the region of absolute stability contains

the set {z ∈ C : Re(z) ≤ 0} that is, the left half plane.

Practically, A-stability means that the numerical method remains stable for all sizes

of time steps when applied to stiff problems. Stiffness is characterized by equations

where certain components of the solution decay much faster than others, and in such

cases, using a method that is not A-stable can lead to numerical solutions that grow

without bound, even when the true solution does not. A-stable methods ensure that

the numerical solution accurately follows the behavior of the true solution without

requiring excessively small time steps. This property is crucial in simulations where

stability and efficiency are both desired, such as in the modeling of poroelastic mate-

rials, where rapid fluid flow and slow solid deformation must be accurately captured.
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L-stability is an even stronger form of stability that extends the concept of A-stability.

L-stable methods not only remain stable for all sizes of time steps in stiff problems but

also ensure that the numerical approximation to rapidly decaying modes diminishes as

quickly as possible, preventing any lingering numerical artifacts. This is particularly

beneficial in poroelastic simulations where the rapid dissipation of pressure or stress

waves is essential.

Definition 19 [21]. A method is L-stable if it is A-stable and φ(z) → 0 as z → ∞,

where φ is the stability function of the method. L-stable methods are, in general, very

good at integrating stiff equations.

Seeking higher-order accuracy to improve efficiency does not guarantee convergence.

In fact, it can sometimes hinder convergence by compromising stability. This holds

true even for implicit methods, meaning they do not always possess stability properties

superior to those of explicit methods. For s > 6, the backward difference methods,

BDF(s), are implicit multistep methods with arbitrarily high formal accuracy, yet

they are not even stable. Multistep strategies are sometimes attractive because they

have lower cost than high-order RK methods. For many problems in PDEs, however,

employing an A-stable time stepper is strongly favored. Linear multistep methods

with order more than 2 generally lack A-stability. Conversely, many implicit RK

methods exhibit such stability. There are many families of implicit Runge-Kutta

methods. Radau methods are fully implicit methods, that achieve an order of 2s− 1

for s stages, and are A-stable. The first-order Radau method bears similarity to the

backward Euler method [21]. Consider the Butcher tableaux of two stage RadauIIA

and three stage RadauIIA,

Two stage RadauIIA:

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

Three stage RadauIIA:

2
5
−
√

6
10

11
45
− 7

√
6

360
37
225
− 169

√
6

1800
− 2

225
+
√

6
75

2
5

+
√

6
10

37
225

+ 169
√

6
1800

11
45

+ 7
√

6
360

− 2
225
−
√

6
75

1 4
9
−
√

6
36

4
9

+
√

6
36

1
9

4
9
−
√

6
36

4
9

+
√

6
36

1
9
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There are also three main families of Lobatto methods, denoted as IIIA, IIIB, and

IIIC. All of them are implicit RK schemes with an order of 2s − 2, where s is the

number of stages. Notably, they all have c1 = 0 and cs = 1. Unlike explicit methods,

it’s possible for these methods to achieve an order greater than the number of stages.

The second-order Lobatto IIIC method is given by [21]:

0 1/2 −1/2

1 1/2 1/2

1/2 1/2

The fourth-order Lobatto IIIC method is given by [21]:

0 1/6 −1/3 1/6

1/2 1/6 5/12 −1/12

1 1/6 2/3 1/6

1/6 2/3 1/6

They are L-stable. In this work we will use the RadauIIA schemes.

Now consider the system of differentiation algebraic equations:

y′ = f(y, z), y(t0) = y0, (2.39a)

g(y, z) = 0, z(t0) = z0. (2.39b)

Suppose the initial values y0 and z0 adhere to the condition of consistency, indicated

by their satisfaction of algebraic equation (2.39b). The differential index of system

(2.39) signifies the minimal number of analytical differentiations necessary to convert

this system into an explicit set of ordinary differential equations (ODEs) through

algebraic manipulations. In systems with higher indices, such as two or above, the

matrix
∂g

∂z
becomes singular. As a consequence, the algebraic subsystem (2.39b)

cannot be directly solved for the vector z. Therefore, a simultaneous solution of

algebraic and differential equations is facilitated through the application of an implicit

method.

Implicit stiffly accurate methods, where asi = bi for i = 1, 2, . . . , s, are highly

advantageous for solving stiff and differential algebraic equations. While diagonally

implicit RK schemes can be applied to DAEs, they are generally found to produce
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low-order accuracy. Despite classical theory suggesting that the global error of the nu-

merical solution of an ODE behaves as O(hpt ) for sufficiently small step size ht (where

p is the order of the method), order reduction phenomena are observed, particularly

for DIRK schemes when solving DAEs, especially for systems of higher indices.

We distinguish between the order pd of the differential components and the order

pa of the algebraic ones. Suppose that system (2.39) is integrated on a given interval

with a constant step size. Then, the above orders imply that the global errors of the

corresponding components admit the estimates:

y(tn)− yn = O(hpdt )

z(tn)− zn = O(hpat ),

where y(tn), z(tn) is the exact solution at the right endpoint, while yn, zn is the

corresponding numerical solution.

While higher-order global error is appealing, especially for both stiff Differential

Equations (DEs) and systems of Differential-Algebraic Equations, the so-called stage

order of a Runge-Kutta method holds greater significance. Here, in addition to con-

sidering truncation error, the accuracy of a scheme is determined by bounding the

approximation of stage j to y(ti + cjht) by some constant (dependent on f(t,y) and

y(t)) times hq+1
t , thereby defining the stage order as min(q, p). For index-2 DAEs, the

accuracy of a scheme is constrained by its stage order due to perturbation bounds on

the solution of the constrained system. This limitation significantly narrows down the

selection of schemes that allow higher-order accuracy. Although Diagonally Implicit

Runge-Kutta (DIRK) methods can achieve reasonable global order, their stage order

is typically restricted to 1. In contrast, the stage order of fully Implicit Runge-Kutta

(IRK) schemes can be as large as the number of stages, making them the preferred

schemes for integrating DAEs. Higher-order optimal Runge–Kutta methods often ex-

hibit a significant disparity between their classical and stage order, potentially leading

to a reduction in the actual order achieved. Radau IIA methods, characterized by

their classical order equal to 2s− 1, and stage order equal to s, stand out as optimal

among stiffly accurate and L-stable methods [21, 33].

In this thesis, we propose a monolithic multigrid framework for solving the linear

systems of equations resulting from employing higher-order Implicit Runge-Kutta

(IRK) discretizations for poroelasticity.



Chapter 3

Mathematical Methods

In this section, we present the main contributions of this thesis. In Section 3.1, we

will present Biot’s three field formulation and its spatial discretization. Following

that, Section 3.2 will focus on the spatiotemporal IRK discretization. Finally, we

will discuss the monolithic multigrid framework in Section 3.3. Addressing the mul-

tifaceted challenges inherent in poroelasticity modeling involves several key consider-

ations. Firstly, accurately capturing the intricate interplay between solid and fluid

phases within heterogeneous porous media is paramount. This necessitates models

capable of representing complex interactions and fluid-solid coupling phenomena ef-

fectively. Moreover, poroelastic materials exhibit nonlinear behavior under diverse

loading conditions, requiring sophisticated numerical techniques to accurately simu-

late their response. Efficiently managing higher-order discretizations is another crucial

aspect, ensuring that computational resources are utilized optimally while maintain-

ing accuracy. Additionally, developing robust numerical methods capable of handling

large-scale simulations with evolving geometries and boundary conditions is essential

for practical applications, enabling reliable predictions of complex real-world phenom-

ena. Addressing these challenges collectively contributes to advancing the state-of-

the-art in poroelasticity modeling and simulation.
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3.1 Biot’s Three-Field Formulation and its Discretiza-

tion

Poroelasticity theory, initially proposed by Maurice A. Biot in 1941, describes porous

media as composed of two interdependent phases. This framework allows simultaneous

modeling of medium deformation and fluid flow, integrating them through continuity

and momentum conservation equations for each phase. Within this model, quanti-

ties such as stresses are considered “partial”, indicating their dependence on phase

fraction. In our work, we delve into Biot’s linear poroelastic model [3], a coupled mul-

tiphysics system of partial differential equations (PDEs). The formulation involves

three primary variables: displacement, pore pressure, and Darcy velocity (fluid flow).

It accounts for the interaction between these variables and their impact on the overall

mechanical response of the material. Discretizing Biot’s Three-Field Formulation in-

volves approximating these variables using finite element methods, where the domain

is discretized into smaller elements, and numerical techniques are applied to solve the

resulting system of equations. The discretization aims to accurately represent the

physical phenomena while ensuring computational efficiency and stability.

3.1.1 Biot’s Three-Field Formulation

In our work, we chose appropriate Dirichlet boundary conditions for the mathematical

model of the three-field formulation of the consolidation process which is given in

Section 2.1.4, as follows:

u(0) = u0, for x ∈ Γ̄c,

where Γc is an open (with respect to Γ) subset of Γ with nonzero measure. These

boundary conditions are crucial for ensuring the accuracy and stability of numerical

simulations in the context of the three-field formulation of the consolidation process.

Additionally, specifying appropriate initial conditions for u is essential for maintaining

mass conservation, ensuring numerical stability and convergence, and enhancing the

physical realism of poroelasticity simulations. Now we consider the weak formulation

of Biot’s three field consolidation model in [31]:
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For each t ∈ (0, T ], find (u(t),w(t), p(t)) ∈ V ×W ×Q such that

a(u,v)− 〈αp, divv〉 = 〈ρg,v〉, ∀v ∈ V (3.1)

〈K−1µfw, r〉 − 〈p, divr〉 = 〈ρfg, r〉, ∀r ∈W (3.2)

〈 1

M

∂p

∂t
, q〉+ 〈αdiv

∂u

∂t
, q〉+ 〈divw, q〉 = 〈f, q〉, ∀q ∈ Q (3.3)

where a(u,v) = 2µ〈ε(u), ε(v)〉+λ〈divu, divv〉 is the weak of the linear elasticity. The

variational formulation employs specific function spaces, which are

V = {u ∈ H1(Ω) |u|Γ̄c
= 0},

W = {w ∈ H(div,Ω)},

Q = L2(Ω),

where H1(Ω) is the space of square integrable vector-valued functions whose first

derivatives are also square integrable, and H(div,Ω) contains the square integrable

vector-valued functions with square integrable divergences. Next, we turn our atten-

tion to finite-element discretizations of Biot’s model.

3.1.2 Finite-Element Discretization.

Various discretization methods are available for different formulations of Biot’s model.

For instance, in the three-dimensional Biot poroelastic system, a finite-volume method

on a staggered grid is outlined in [30]. Stable Taylor-Hood elements are used in the

two-field formulation, as discussed in [25]. Another approach introduced in [5] uti-

lizes a MINI element and a stabilized P1-P1 finite-element discretization, incorpo-

rating a stabilization term to eliminate nonphysical oscillations. A weak Galerkin

finite-element method proposed in [24] demonstrates robustness on general polytopal

meshes.

In the context of three-field formulations, [18] explores a nonconforming finite-

element approach, utilizing Crouzeix-Raviart finite elements for displacements and

lowest-order Raviart-Thomas-Nedelec elements for the Darcy velocity. Extensions to

general cases are discussed in [36], introducing a mass-lumping technique to reduce

computational costs. Hybridization schemes are developed in [27], while [36] outlines

stable discretizations for a four-field formulation. The effect of the incompressibility
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constraint associated with the elasticity block of the coupled system on the con-

vergence of the proposed multigrid algorithm is addressed in [6]. Specifically, it is

demonstrated that the concepts of reduced-quadrature discretization and divergence-

free interpolation, initially proposed and analyzed for the incompressible elasticity

subproblem, can be extended to the fully-coupled Biot model. The study shows that

the modified discretization remains well-posed, and a robust monolithic multigrid

approach for the resulting three-field formulation is developed.

Initially, we divide the domain Ω into n-dimensional simplices, creating a partition

denoted as Ωh. Each element of this partition, Ωh, is associated with a triple of piece-

wise polynomial, finite-dimensional spaces: Vh ⊂ V , Wh ⊂W , and Qh ⊂ Q. Con-

tinuous function space Vh (H1 space) comprises continuous functions and is primarily

employed to approximate fields like displacement (uh). In practical implementations

within the finite element method, Vh is often realized using continuous Lagrange el-

ements. These elements ensure that the basis functions are continuous within each

element, facilitating the approximation of functions with continuous derivatives. Wh

(H(div) space) is utilized for vector fields that possess divergence-free properties, such

as fluid velocity fields. In finite-element discretizations, this space can be realized us-

ing Raviart-Thomas (RT) elements. These elements are designed to accurately repre-

sent vector fields while ensuring divergence compatibility across element boundaries.

Discontinuous function space Qh (L2 space) represents scalar fields and is typically

used to discretize quantities such as pressure (p). In finite-element simulations, Qh

is often implemented using discontinuous Lagrange elements. These elements allow

for discontinuities in the basis functions across element boundaries, facilitating the

approximation of scalar fields with square-integrable properties.

The spatial finite-element discretization is formulated in the weak form with

rescaled variables. We introduce a semi-discretized variational problem. In Equa-

tion (3.3), we rescale p to M1/2p and multiply the third equation by M1/2 to improve

the error bound that follows. This results in the variational form for Biot’s three-field

consolidation model, encompassing Equations (3.1), (3.2) and (3.3). It is expressed as

follows:
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Find (uh,wh, ph) ∈ Vh ×Wh ×Qh such that

a(uh,vh)− 〈αM1/2ph, divvh〉 = 〈ρg,vh〉, ∀vh ∈ Vh (3.4)

〈K−1µfwh, rh〉 − 〈M1/2ph, divrh〉 = 〈ρfg, rh〉, ∀rh ∈Wh (3.5)

−〈∂ph
∂t

, qh〉 −M1/2〈αdiv
∂uh

∂t
, qh〉 −M1/2〈divwh, qh〉 = −M1/2〈f, qh〉, ∀qh ∈ Qh

(3.6)

where 〈·, ·〉 represents the standard L2(Ω) inner product. Here, (uh, ph,wh) is an

approximation to (u(·, t), p(·, t),w(·, t)). Note that (3.6) is scaled by −1 to retain

some symmetry of the system. The vector function space Vh serves as the domain

for the trial functions representing the displacement field uh. It is constructed using

continuous Lagrange elements of degree k + 1 for each component of the displace-

ment. Wh represents the function space for the Darcy velocity wh. Constructed with

Raviart-Thomas elements of degree k (where the lowest-order RT space has degree

1), Wh approximates vector fields in the H(div) space. The pressure field ph resides

in the function space Qh, constructed with discontinuous Lagrange elements of degree

k− 1. Together, these function spaces provide the necessary discretization framework

to accurately represent the displacement, Darcy velocity, and pressure fields, essential

for solving the problem under consideration.

Using implicit Euler approximations for the time derivatives and rescaling Equa-

tion (3.5) byτ for symmetry, the discrete variational problem, (3.4), (3.5) and (3.6)

can be defined in block matrix form as:

A

uw
p

 = b

with

A =

 Au 0 αM1/2BT
u

0 τMw τM1/2BT
w

αM1/2Bu τM1/2Bw −Mp





57

where the blocks in the matrix A correspond to the following bilinear forms:

a(uh,vh)→ Au,−〈divuh, qh〉 → Bu,

−〈divwh, qh〉 → Bw,

〈K−1µfwh, rh〉 →Mw, 〈ph, qh〉 →Mp.

The bilinear form for the reduced-quadrature discretization is defined in [6] as

aRQ(u,v) := 2µ〈ε(u), ε(v)〉+ λ〈PQh
divu, PQh

divv〉. (3.7)

As discussed in [6], the non-local nature of the basis for divergence-free spaces stems

from the direct evaluation of the term (div u, div v) in the weak form. This arises

because the discrete divergence of the displacement space does not inherently align

with the piecewise constant pressure space used there. To address this issue, a reduced

integration approach is implemented. Instead of evaluating (div u, div v) directly, it

is replaced with (PQh
div u, PQh

div v), where PQh
represents the L2-projection from

Q onto Qh, which is the space of piecewise constant functions. By employing this

reduced integration approach, a basis for the space of divergence-free functions can

be constructed with local support. This allows for the effective use of local relaxation

schemes for divergence-free components. The above variational problem possesses a

unique solution and establishes an invertible operator whose inverse remains bounded,

regardless of the mesh size h. We also adopt a reduced quadrature approach in this

work, using L2 projection into the degree k discontinuous Lagrange pressure space,

Qh.

Using the Equation (3.7), the poroelastic system with Euler time discretization is

then written as

ARQ =

 ARQu 0 αM1/2BT
u

0 τMw τM1/2BT
w

αM1/2Bu τM1/2Bw −Mp

 ,

where aRQ(uh,vh) → ARQu . Next we will prove the coercivity and continuity for the

rescaled variational formulation using the following lemma.

Lemma 2 [6] : Let the pair of finite-element spaces Vh×Qh be Stokes-stable, i.e.,satisfy
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the inf-sup condition,

sup
v∈Vh

〈div(v), p〉
‖v‖1

≤ γ0
B‖p‖, ∀p ∈ Qh,

where γ0
B > 0 is a constant that does not depend on the mesh size. Then, for any

p ∈ Qh:

sup
v∈Vh

〈div(v), p〉
‖v‖ARQ

u

≤ γ0
B√
dζ
‖p‖ =:

γB
ζ
‖p‖, (3.8)

where ‖v‖2
ARQ

u
:= aRQ(v,v), d is the dimension, and ζ :=

√
λ+ 2µ/d.

Now we will prove the following theorem, building on Definition 12 in Chapter 2 on

the finite-element method for poroelasticity.

Theorem 7 Let X h = (Vh,Wh, Qh) be Stokes-Biot stable, that is,

• ∃CV > 0 such that a(u,v) ≤ CV ‖u‖1‖v‖1 for all u,v ∈ Vh;

• ∃αV > 0 such that a(u,u) ≥ αV ‖u‖2
1 for all u ∈ Vh;

• (Wh, Qh) is Poisson-stable, satisfying the necessary stability and continuity condi-

tions for the mixed formulation of Poisson’s equation; and

• The pair of spaces (Vh, Qh) is Stokes-stable,i.e., it satisfies stability for the Stokes

equations.

For x = (u,w, p) ∈ X h and y = (v,w, p) ∈ X h, define:

B(x,y) = aRQ(u,v)− 〈αM1/2p, divv〉+ τ〈K−1µfw, r〉 − τ〈M1/2p, divr〉

− 〈p, q〉 − 〈M1/2αdivu, q〉 − τM1/2〈divw, q〉, (3.9)

‖x‖2
DRQ = ‖u‖2

ARQ
u

+ ‖p‖2 + τ‖w‖2
Mw

+ cp‖divw‖2, (3.10)
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where ‖w‖2
Mw

= 〈K−1µfw,w〉 and cp =
(

1 + α2

ζ2τ2

)−1

. Then,

sup
06=x∈Xh

sup
0 6=y∈Xh

B(x,y)

‖x‖DRQ ‖y‖DRQ

≤ ζ̄ , (3.11)

inf
06=y∈Xh

sup
06=x∈Xh

B(x,y)

‖x‖DRQ ‖y‖DRQ

≥ γ̄, (3.12)

where the constants ζ̄ and γ̄ are independent of the physical and discretization param-

eters.

Proof : Using Lemma 3, we know that for a given p ∈ Qh , there exists z ∈ Vh, such

that ‖z‖ARQ
u

= ‖p‖. Let v = u, r = w, and q = −p − ψ1τM
1/2divw for constant ψ1

that will be specified later. Then, by the Cauchy-Schwarz and Young’s inequality,

B(x,y) = aRQ(u,u)− 〈αM1/2p, divu〉+ τ〈K−1µfw,w〉 − τ〈M1/2p, divw〉

− 〈p,−p− ψ1τM
1/2divw〉 − 〈M1/2αdivu,−p− ψ1τM

1/2divw〉

− τM1/2〈divw,−p− ψ1τM
1/2divw〉,

B(x,y) = aRQ(u,u) + τ‖w‖2
Mw

+ τ 2Mψ1‖divw‖2 +M1/2τψ1〈p, divw〉+ ‖p‖2

+Mατψ1〈PQh
divu, divw〉

≥ ‖u‖2
ARQ

u
− 1

2
‖u‖2

ARQ
u

+ τ‖w‖2
Mw

+ τ 2Mψ1‖divw‖2 + ‖p‖2 − 3

4
ψ1‖p‖2 − 1

3
ψ1τ

2M‖divw‖2

− 1

2
ψ1τ

2M‖divw‖2 − 1

2
ψ1α

2M‖PQh
divu‖2.

Using the properties of projection operators, we have that ‖PQh
divv‖ ≤ ‖divv‖,

and by the Young’s inequality we have that 〈divu, divu〉 ≤ d〈ε(u), ε(u)〉. This implies

that,

1

d
〈PQh

divu, PQh
divu〉 ≤ 1

d
〈divu, divu〉 ≤ 〈ε(u), ε(u)〉.

Then, by direct calculation and the definition of ARQu , we have

‖PQh
divu‖ ≤ 1

ζ
‖u‖ARQ

u
. (3.13)
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Combining terms and applying (3.13) gives

B(x,y) ≥
(

1

2
− Mψ1α

2

2ζ2

)
‖u‖2

ARQ
u

+ τ‖w‖2
Mw

+

(
1− 3

4
ψ1

)
‖p‖2 +

1

6
ψ1τ

2M‖divw‖2.

Choosing ψ1 =
1

2M

(
τ 2 +

α2

ζ2

)−1

, then gives

B(x,y) ≥
(

1

2
− 1

4

)
‖u‖2

ARQ
u

+ τ‖w‖2
Mw

+

[
1− 3

8Mτ 2
cp

]
‖p‖2 +

1

12
cp‖divw‖2,

≥ 1

4
‖u‖2

ARQ
u

+ τ‖w‖2
Mw

+

[
1− 3

8Mτ 2
cp

]
‖p‖2 +

1

12
cp‖divw‖2,

≥ γ̄‖(u,w, p)‖2
DRQ ,

where γ̄ = min{1
4
, 1

12
}. Then, by the triangle inequality,

‖y‖2
DRQ = ‖v‖2

ARQ
u

+ ‖q‖2 + τ‖r‖2
Mw

+ cp‖divr‖2 ≤ γ∗‖x‖2
DRQ where γ∗ = max{2, 1

4
}.

Thus, the bilinear form B(x,y) defined in (3.9) satisfies (3.12). For the continuty,

using Cauchy-Schwarz and (3.13), we have,

B(x,y) = aRQ(u,v)− 〈αM1/2p, divv〉+ τ〈K−1µfw, r〉 − τ〈M1/2p, divr〉

− 〈p, q〉 − 〈M1/2αdivu, q〉 − τM1/2〈divw, q〉,

≤ ‖u‖ARQ
u
‖v‖ARQ

u
+ τM1/2c−1/2

p ‖p‖ (ζ‖divu‖)

+ τ〈K−1/2µ
−1/2
f w〉〈K−1/2µ

−1/2
f r〉+ τM1/2c−1/2

p ‖p‖ (c1/2
p ‖divr‖)

+ ‖p‖ ‖q‖+ τM1/2c−1/2
p (ζ‖divu‖) ‖q‖+ τM1/2c−1/2

p (c1/2
p ‖divw‖) ‖q‖,

≤ (2 + τ + 4τM1/2c−1/2
p )‖x‖DRQ‖y‖DRQ .

which completes the proof.

In [6], a similar result is shown, but with parameter cp defined as cp =
(

1
M

+ α2

ζ2

)−1

.

When M is large, the term 1
M

becomes very small. Consequently, cp is approximately

cp ≈
(
α2

ζ2

)−1

, meaning that (cp)
−1 is approximately α2

ζ2
, which can be quite small if

ζ is also large, as it is in the incompressible limit. This results in the pressure term

(cp)
−1‖p‖2 being underrepresented the overall norm ‖x‖2

DRQ , which can potentially

lead to numerical instability and less accurate pressure approximation. In contrast, the

new approach defines cp as
(

1 + α2

ζ2τ2

)−1

. This formulation ties cp to the discretization
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parameter τ rather than M . This avoids the problem of (cp)
−1 becoming excessively

small and provides a more stable and balanced treatment of the pressure term in the

norm. By reducing the dependency on large values of M and controlling cp through

τ , the new approach gives better balance in the product norm.

To gain deeper insights into the selection of the weighted norm (3.10), let’s examine

two extreme scenarios. As λ approaches infinity, B(x,y) becomes dominated by

ζ〈PQh
divu, PQh

divv〉, highlighting the significance of the term λ‖PQh
div u‖2 in the

weighted norm. Conversely, as τ tends to zero, B(x,y) simplifies to aRQ(u;v) −
M1/2α〈p, divv〉 − M1/2α〈divu, q〉 − 〈p, q〉, resembling a problem relative to Stokes

flow. In this scenario, the weighted norm (3.10) reduces to ‖u‖2
ARQ

u
+ ‖p‖2, making

it an appropriate choice for Stokes-type problems. Thus, the weighted norm (3.10)

proves to be well-suited for handling these limiting cases.

3.2 Spatiotemporal IRK discretization

In this section, we present the application of Implicit Runge-Kutta (IRK) methods to

Biot’s model. Here, we rewrite the time-dependent problem:

−div(2µε(u))− λ∇(divu) + α∇p = ρg in Ω× (0, Tfinal), (3.14a)

K−1µfw +∇p = ρfg in Ω× (0, Tfinal), (3.14b)

∂

∂t

(
1

M
p+ αdivu

)
+ divw = f in Ω× (0, Tfinal). (3.14c)

which we endow with appropriate initial data:

u(0) = u0, in Ω× {t = 0}.

The presence of algebraic constraints, such as the divergence-free condition in Biot’s

model, poses challenges for time integration. IRK methods are particularly well-suited

for handling such constraints, as they can handle both differential and algebraic equa-

tions simultaneously. The choice of IRK method and its order affect the accuracy and

stability of the numerical solution. Higher-order IRK methods allow for more accu-

rate approximations but may require more degrees of freedom to maintain stability,

especially in the presence of stiff constraints.
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We rewrite a rescaled semi-discretized weak form for Biot’s three-field consol-

idation model of (3.14a) − (3.14c). For each t ∈ (0, T ], find (u(t),w(t), p(t)) ∈
Vh ×Wh ×Qh such that

a(u,v)− αM1/2〈p, divv〉 = 〈ρg,v〉, ∀v ∈ V (3.15a)

〈K−1µfw, r〉 −M1/2〈p, divr〉 = 〈ρfg, r〉, ∀r ∈W (3.15b)

−〈∂p
∂t
, q〉 − αM1/2〈div

∂u

∂t
, q〉 −M1/2〈divw, q〉 = −M1/2〈f, q〉, ∀q ∈ Q. (3.15c)

Now denoting ũ(t), w̃(t) and p̃(t) as the time-dependent coefficients of u(x, t),w(x, t)

and p(x, t) in the finite-element basis, we can write this as a linear system of DAEs

as

 0 0 0

0 0 0

αM1/2Bu 0 −Mp



∂ũ

∂t
∂w̃

∂t
∂p̃

∂t

+

A
RQ
u 0 αM1/2BT

u

0 Mw M1/2BT
w

0 M1/2Bw 0


ũw̃
p̃

 =

f̃1

f̃2

f̃3

 ,

(3.16)

where f̃1 = ρg̃, f̃2 = ρf g̃ and f̃3 = −M1/2f̃ . Next we consider using an s-stage

implicit Runge-Kutta method applied to a system of ordinary differential equations

u′(t) = f(u(t), t), given by

ki = f

(
un + ∆t

s∑
j=1

aijkj, t
n + ci∆t

)
, for i = 1, 2, . . . , s,

un+1 = un + ∆t
s∑
j=1

bjkj.

(3.17)

The coefficients in the scheme are the stage times (or nodes) ci, the weights bj, and

the Runge-Kutta matrix A = [aij]. The s stage values are represented by the set

{ki}si=1, and the approximation at time tn = t0 + n∆t is denoted by un. Since

the system in (3.16) comprises differential-algebraic equations rather than ordinary

differential equations, we employ the DAE analogue of the standard Runge-Kutta

scheme replacing time derivative by stage derivative approximations and function
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values by their stage value approximations,

ARQu ũni + αM1/2BT
u p̃

n
i = f̃1

n

i ,

w̃n
i +M1/2BT

wp̃
n
i = f̃2

n

i ,

αM1/2Buk̃
(u)
i −Mpk̃

(p)
i +M1/2Bww̃i

n = f̃3
n

i .

This involves updating the solution vectors ũni , w̃
n
i and p̃ni using the scheme’s coeffi-

cients and the terms in (3.16),

ũni = ũn + ∆t
s∑
j=1

aij k̃
(u)
j ,

w̃n
i = w̃n + ∆t

s∑
j=1

aij k̃
(w)
j

p̃ni = p̃n + ∆t
s∑
j=1

aij k̃
(p)
j .

The next time step is computed using the updated values ũn+1, w̃n+1 and p̃n+1,

ũn+1 = ũn + ∆t
s∑
j=1

bj k̃
(u)
j ,

w̃n+1 = w̃n + ∆t
s∑
j=1

bj k̃
(w)
j ,

p̃n+1 = p̃n + ∆t
s∑
j=1

bj k̃
(p)
j .

Where f̃ni represents the basis coefficient representation of f in Vh at time tn + ci∆t,

ũni , w̃
n
i and p̃ni denote the approximations of ũ, w̃ and p̃ at time tn+ci∆t, and k̃

(u)
i , k̃

(w)
i

and k̃
(p)
i denote the RK stages for which we solve. The equations for k̃

(u)
i , k̃

(w)
i and
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k̃
(p)
i can be rewritten as follows:

ARQu

(
ũn + ∆t

s∑
j=1

aij k̃
(u)
j

)
+ αM1/2BT

u

(
p̃n + ∆t

s∑
j=1

aij k̃
(p)
j

)
= f̃1

n

i (3.18a)

Mw

(
w̃n + ∆t

s∑
j=1

aij k̃
(w)
j

)
+M1/2BT

w

(
p̃n + ∆t

s∑
j=1

aij k̃
(p)
j

)
= f̃2

n

i (3.18b)

αM1/2Buk̃
(u)
i +M1/2Bw

(
w̃n + ∆t

s∑
j=1

aij k̃
(w)
j

)
−Mpk̃

(p)
i n = f̃3

n

i (3.18c)

for 1 ≤ i ≤ s.

3.3 Monolithic Multigrid

Monolithic Multigrid for higher-order IRK discretizations of poroelasticity is an effi-

cient numerical technique. It combines multigrid methods with implicit Runge-Kutta

schemes, optimizing computational performance for solving poroelasticity problems.

This approach ensures rapid convergence and scalability, making it suitable for han-

dling complex, large-scale simulations in poroelasticity with higher-order accuracy.

3.3.1 Divergence-Preserving Interpolation

An essential aspect of developing robust solvers for elasticity, particularly in scenarios

where the material approaches incompressibility (i.e., for large values of λ), is the

interpolation of divergence-free functions from the coarse mesh to the fine mesh. This

process ensures that if uH represents a divergence-free function on the coarse grid,

then, according to the divergence theorem∫
∂T

nTuH ds = 0 for all T ∈ ΩH .

In the equation above, the subscript H denotes the coarse grid, with its elements

forming the set ΩH . Ensuring that the prolongation of uH to the fine grid remains
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divergence-free leads to the requirement that:∫
∂T

nT (PHuH) ds = 0 for all T ∈ Ωh (3.19)

where P represents the prolongation operator from the coarse to the fine grid. The

standard finite-element interpolation operator used on the displacement space fails to

meet this requirement. In the realm of developing robust solvers for poroelasticity

using monolithic multigrid with higher-order implicit Runge-Kutta discretization, a

pivotal concern lies in conserving the divergence-free properties during the interpo-

lation phase from coarse to fine grids, especially as the material approaches incom-

pressibility. To achieve this, during the interpolation process to the fine grid using

the prolongation operator PH , it is imperative to preserve the divergence-free na-

ture of uH . This entails modifying fine-grid functions within coarse-grid macro cells

to eliminate any divergence introduced during interpolation. We define a subspace

Ṽh comprising functions that vanish on macro cell boundaries, addressing divergence

introduced by interpolation within cell boundaries. Then, by solving for a modified

function ũh within Ṽh, the divergence is properly accounted for and eliminated within

coarse-grid macro cells. The modified prolongation operator P̃H is finally defined as

the difference between the interpolated function PHuH and the corrected function

ũh, ensuring that the fine-grid solution maintains divergence-free properties critical

for precise poroelasticity simulations [16]. This comprehensive approach enhances the

robustness and accuracy of the solver by preserving the divergence-free nature of the

velocity field throughout the interpolation process.

3.3.2 Vanka relaxation

Vanka relaxation is a technique commonly employed within the realm of multigrid

methods for efficiently solving saddle-point problems. It has been successfully adapted

for various discretization schemes and applied to a wide range of saddle-point problems

[26, 27].

Again consider the bilinear form for the reduced-quadrature discretization is

aRQ(u,v) := 2µ(ε(u), ε(v)) + λ(PQhdivu, PQhdivv).
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The implicit Euler discretization of the poroelastic system is written in [6] as

ARQ =

 ARQu 0 αM1/2BT
u

0 Mw M1/2BT
w

αM1/2Bu M1/2Bw −Mp


Given a decomposition of the set of DoFs into L (overlapping) blocks, a standard

Schwarz method is most easily defined by defining the restriction operator, V`, from

global vectors to local vectors on block `. Then, given a current residual, r(j) =

b−ARQx(j), we can solve the projected system

V`ARQV T
` x̂` = V`r

(j)

on each block. The weighted additive form of the relaxation is then

x(j+1) = x(j) + ω
∑
`

V T
` D

−1
` x̂`

where ω is a damping parameter and D` is a diagonal weight matrix chosen to account

for the fact that different (global) degrees of freedom (DoFs) appear in different num-

bers of patches. In this context, D` is defined based on the “natural weights” derived

from the overlapping block decomposition. Each diagonal entry of D` is determined

by the inverse of the number of patches containing the respective Degree of Freedom

(DoF).

To apply monolithic multigrid methods to the higher-order implicit Runge-Kutta

(IRK) discretization, the selection of blocks in Equation (3.22) is critical. Following

the approach outlined in [1], we form blocks using the vertex star construction detailed

in [15]. This construction couples the degrees of freedom from all IRK stages at all

gridpoints in the patch. Reference [15] provides essential details on implementing

these methods, ensuring robust and efficient multigrid relaxation in poroelasticity

simulations.



Chapter 4

Numerical Results

In this chapter, we present the numerical results obtained from simulations aimed

at analyzing the performance of implicit Euler discretization, implicit Runge-Kutta

(IRK) discretization, and monolithic multigrid preconditioners coupled with a Vanka

relaxation scheme for achieving higher-order spatial discretization. All numerical

experiments were conducted on a workstation with two 8-core 1.7GHz Intel Xeon

Bronze 3106 CPUs and 384 GB of RAM, and the results are presented in terms of

computational efficiency and accuracy.

4.1 Time steady Problem

We first consider the following example: in this case, the right-hand side functions

are chosen so that the exact solution is given by:

u(x, y, t) = curlφ =

 ∂φ

∂y

−∂φ
∂x

 , φ(x, y) = [xy(1− x)(1− y)]2,

p(x, y, t) = 1, w(x, y, t) = 0.

To verify the accuracy of the reduced quadrature formulation in approximating the

problem, we conduct a convergence analysis of the finite-element discretization con-

cerning the mesh size, denoted by h = 1
N

, where N represents the number of vertices

in each dimension. For this analysis, we choose τ = 1.0 and K = 10−6 as illustrative
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Figure 4.1: Convergence study for steady state problem, using implicit Euler scheme
with Vanka relaxation scheme. Left: H1-seminorm error for displacement vs. mesh
size. Right: L2-error for pressure vs. mesh size.

parameters. The results are depicted in Figure 4.1 for ν = 0.4 and ν = 0.499, with de-

grees 1 and 2. The displacement with degree k = 1 exhibits second-order convergence

with respect to the H1 seminorm, while the pressure demonstrates superconvergence.

In the left-hand figure, differences in errors between ν = 0.4 and ν = 0.499 are ob-

served. Comparing this with the right-hand figure, major variations in error values

are noticed. Notably, at degree 2, there is rapid convergence, followed by a rise in er-

ror after N = 65. Here, enhanced convergence occurs due to the inherent smoothness

of the solution (constant pressure) and the use of a uniform mesh, achieving machine

precision with degree 2.

4.2 Time-Dependent Model Problem

We next consider a slightly more realistic test problem, now with a time-dependent

smooth solution taken from [6, 19], The manufactured solution is defined on Ω =

[0, 1]2, as

u(x, y, t) = e−t

sin(πy)(− cos(πx) +
1

µ+ λ
sin(πx))

sin(πx)(cos(πy) +
1

µ+ λ
sin(πy))

 ,

p(x, y, t) = e−t sin(πx) sin(πy),

w(x, y, t) = −K∇p.
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with right-hand sides chosen appropriately. We consider Dirichlet boundary condi-

tions on all sides for displacement and pressure. The physical parameters are µf = 1,

M = 106, K = 10−6 and E = 3× 104. Given our primary focus on the incompressible

limit, we restrict our analysis to Poisson ratios above 0.4. Figure 4.2 illustrates the

convergence study for a steady-state smooth test problem employing an implicit Euler

scheme with monolithic multigrid solver using Poisson ratios of 0.4 and 0.499. Notably,

we observe a decrease in error for both Poisson ratios in degree 1, with a particularly

significant reduction noted for ν = 0.4. However, there is minimal discrepancy in

error values across different ν values, consistent with observations in degrees 3 and

4. On the right-hand side, no significant changes are observed in error values from

degree 1 to degree 4 with varying ν. Nonetheless, both displacement and pressure

exhibit convergence. This indicates that accuracy is limited by the time-stepper, so,

we will use higher order IRK method for more accuracy.
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Figure 4.2: Convergence study for steady state problem, using implicit Euler scheme
with monolithic multigrid. Left: H1-seminorm error for displacement vs. mesh size.
Right: L2-error for pressure vs. mesh size.
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Figure 4.3: Convergence study for time varying problem, using implicit RK scheme
in time with monolithic multigrid solver using ν = 0.49.

4.3 Implicit higher order RK scheme

We again consider the time-dependent test problem to analyse the performance of

the IRK discretization. In Figure 4.3, a convergence study for a transient problem

is presented. The study employs the implicit Runge-Kutta (IRK) scheme for time

discretization, coupled with the monolithic multigrid scheme using ν = 0.49. The

displacement exhibits second-order convergence with respect to the H1-seminorm,

consistent with expectations. Moreover, the pressure demonstrates second-order con-

vergence, even as ν approaches 0.5. Comparison of this data, using degree k = 2 for

the spatial discretization and a second-order, three-stage IRK scheme, exhibits en-

hanced accuracy and second-order convergence faster than the implicit Euler scheme,

as seen in the results in Figure 4.2.

4.4 Monolithic multigrid for higher order IRK scheme

In this section, we explore the application of a monolithic multigrid method combined

with Vanka relaxation to solve systems using the higher-order implicit Runge-Kutta

(IRK) discretization. Through numerical experiments and analysis, we evaluate the

performance and scalability of the monolithic multigrid solver with Vanka relaxation

for different degrees of IRK schemes and mesh sizes. The results provide insights into

the effectiveness of the proposed approach in handling stiff systems efficiently and

accurately.

Analyzing the results from Table 4.1, we focus on the case where ν = 0.45. In
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Stage 1 Mesh size Velocity Error Pressure Error Iterations

Degree 1
16 2.827× 10−2 1.219× 104 4
32 8.561× 10−3 6.089× 103 5
64 2.912× 10−3 3.040× 103 4

Degree 2
16 6.797× 10−3 1.224× 104 4
32 3.379× 10−3 6.095× 103 4
64 1.686× 10−3 3.041× 103 5

Degree 3
16 6.773× 10−3 1.224× 104 4
32 3.379× 10−3 6.095× 103 4
64 1.686× 10−3 3.041× 103 5

Stage 2 Mesh size Velocity Error Pressure Error Iterations

Degree 1
16 2.312× 10−2 9.326× 101 5
32 5.828× 10−3 2.381× 101 5
64 1.461× 10−3 5.999× 100 5

Degree 2
16 3.317× 10−4 1.173× 101 4
32 4.190× 10−5 1.744× 100 5
64 5.259× 10−6 2.498× 10−1 5

Degree 3
16 8.805× 10−6 1.240× 101 4
32 6.505× 10−7 1.790× 100 4
64 5.755× 10−8 2.522× 10−1 4

Stage 3 Mesh size Velocity Error Pressure Error Iterations

Degree 1
16 2.312× 10−2 9.337× 101 5
32 5.282× 10−3 2.38× 101 5
64 1.461× 10−3 5.996× 100 5

Degree 2
16 3.318× 10−4 7.574× 10−1 5
32 4.190× 10−5 4.603× 10−2 5
64 5.260× 10−6 3.037× 10−3 5

Table 4.1: Velocity error, pressure error, and iterations for ν = 0.45 at different stages
s with different mesh sizes.
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comparing the velocity and pressure errors as well as the number of iterations across

different stages and degrees of the IRK scheme, several observations emerge. Firstly,

regarding the convergence behavior, we note distinct trends across the various stages.

For Stage 1, both the velocity and pressure errors decrease as the mesh size increases

for all degrees of the IRK scheme. Interestingly, the number of iterations remains

relatively stable even as the mesh size increases, suggesting consistent convergence

behavior. Comparing different degrees of the IRK scheme, we find that Degree 1

generally exhibits higher errors compared to higher degrees (2 and 3). This trend

holds across all stages and mesh sizes, indicating the superior convergence properties

of higher degrees. Specifically, higher degrees tend to converge to lower errors with

fewer iterations, particularly evident with smaller mesh sizes. Considering the best

performing stage, it appears that Stage 3 offers the most promising results for ν = 0.45.

This conclusion is drawn from its consistent achievement of lower errors compared

to Stage 1 and Stage 2 across all degrees of the IRK scheme. Additionally, the

number of iterations required for convergence in Stage 3 is comparable to other stages,

suggesting efficient convergence behavior. For ν = 0.45, Stage 3 coupled with higher

degrees of the IRK scheme provides the optimal combination of low errors and efficient

convergence. In Table 4.2, focusing on ν = 0.49, we evaluate velocity and pressure

errors alongside iteration counts across different mesh sizes and degrees. In Stage 1,

for Degree 2, at mesh size 16, the velocity error is 1.742× 10−3 with a pressure error

of 1.758× 101 and 7 iterations, improving to 2.214× 10−4 velocity error, 2.437× 100

pressure error, and 6 iterations at mesh size 32. In contrast, for Degree 3, mesh size 16

yields a higher velocity error of 1.754×10−2 with a substantially greater pressure error

of 1.076× 104 and 37 iterations, decreasing to 2.237× 10−3 velocity error, 5.318× 103

pressure error, and 55 iterations at mesh size 32. Comparing Degree 2 and Degree

3 at mesh size 32, Degree 2 exhibits lower errors and iteration counts, indicating

superior convergence. Therefore, for Stage 1 with ν = 0.49, the Degree 2 IRK scheme

is preferable. Moving on to Stage 2 and Stage 3, similar comparisons can be made

between different degrees and mesh sizes to identify the optimal configuration based

on error convergence and iteration counts. After comprehensive analysis, the optimal

combination of stage and degree for the higher-order IRK scheme with monolithic

multigrid, under ν = 0.49, reveals that Stage 3 with Degree 2 consistently exhibits the

lowest errors and iteration counts across diverse mesh sizes. This configuration yields

the most promising convergence behavior, ensuring both accuracy and computational
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Stage 1 Mesh size Velocity Error Pressure Error Iterations

Degree 2
16 1.742× 10−3 1.758× 101 7
32 2.214× 10−4 2.437× 100 6

Degree 3
16 1.754× 10−2 1.076× 104 37
32 2.237× 10−3 5.318× 103 55

Stage 2 Mesh size Velocity Error Pressure Error Iterations

Degree 1
16 1.289× 10−1 1.187× 102 5
32 3.254× 10−2 3.036× 101 5
64 8.162× 10−3 7.656× 100 6

Degree 2
16 1.742× 10−3 1.758× 101 7
32 2.214× 10−3 2.437× 100 6
64 2.786× 10−4 3.269× 10−1 7

Degree 3
16 4.457× 10−5 1.790× 101 8
32 2.799× 10−6 2.463× 100 7
64 1.765× 10−7 3.289× 10−1 9

Stage 3 Mesh size Velocity Error Pressure Error Iterations

Degree 1
16 1.289× 10−1 1.188× 102 6
32 3.254× 10−2 3.034× 101 6
64 8.162× 10−3 7.653× 100 6

Degree 2
16 1.743× 10−3 3.668× 10−1 7
32 2.214× 10−4 3.17× 10−2 7
64 2.786× 10−5 2.437× 10−3 6

Table 4.2: Velocity error, pressure error, and iterations for ν = 0.49 at different stages
s with different mesh sizes.
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efficiency. Moreover, the term M1/2 appears in multiple equations and significantly

impacts the pressure term p. When M1/2 is large, it scales the pressure contributions

in the equations, which can amplify any numerical inaccuracies or instabilities, leading

to higher pressure errors. We can see this effect in the above tables.



Chapter 5

Conclusion

Our study successfully integrates higher-order discretization techniques with mono-

lithic multigrid methods, demonstrating their efficacy in solving poroelasticity prob-

lems. By employing higher-order finite elements and implicit Runge-Kutta methods,

we achieve both accuracy and stability in simulating complex poroelastic phenomena.

We extend Vanka-style relaxation techniques to poroelastic equations, enhancing the

efficiency and robustness of our numerical approach. Our results demonstrate the

effectiveness of our approach in accurately capturing poroelastic behavior while main-

taining computational efficiency, paving the way for further advancements in poroe-

lasticity modeling and simulation. Moving forward, future work will focus on further

investigation into the scalability of our method for large-scale poroelastic simulations

particularly in 3D, exploration of adaptive mesh refinement strategies, development

of parallel and distributed computing techniques, enhancing the efficiency and robust-

ness of our numerical approach.
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