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Abstract

Mathematical models of poroelasticity, the study of the behaviour of fluid-saturated
porous media, present complex challenges in numerical simulation due to their inher-
ent coupling between fluid and solid phases. In this study, we propose higher-order
discretization techniques for poroelasticity problems, that we couple with monolithic
multigrid methods to enable efficient high-fidelity simulations. These discretizations
are based on higher-order finite elements in space (including reduced quadrature tech-
niques to effectively model nearly incompressible solid phases) and implicit Runge-
Kutta methods in time, to ensure robustness and stability in the time-stepping proce-
dure. The monolithic multigrid approach leverages recent work extending Vanka-style
relaxation to incompressible flow models, that we adapt to the equations of poroelas-
ticity. Through numerical experiments and comparisons, we demonstrate the effec-
tiveness of our proposed approach in accurately capturing the behaviour of poroelastic

models while maintaining computational efficiency.
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Lay summary

Understanding and modeling real-world phenomena often requires sophisticated math-
ematical approaches. However, exact solutions are often unattainable, prompting the
use of numerical methods to generate accurate approximations. This thesis tackles
the complexities of poroelasticity, a field concerned with the behavior of materials
that simultaneously deform and allow fluid flow through their pores. By leveraging
the power of numerical methods, particularly higher-order discretizations, the aim
is to develop accurate approximations of poroelastic phenomena. The primary fo-
cus is on the implementation of a monolithic multigrid framework, which optimizes
computational efficiency. This involves combining various numerical schemes and in-
tegrating specific discretization techniques tailored to the intricacies of poroelastic
materials. Through rigorous testing and optimization, the goal is to create a robust
numerical solver capable of handling both spatial and temporal discretizations with
higher-order accuracy. This solver is crucial for understanding and predicting the
behavior of poroelastic materials in diverse real-world scenarios, from geotechnical

engineering to biomedical applications.
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Chapter 1
Introduction

Poroelasticity, a field delving into the mechanical behavior of fluid-saturated porous
media, traces its roots to Biot’s theory of consolidation, initiated to address chal-
lenges in soil consolidation. Early contributions by Terzaghi [34], alongside subse-
quent advancements by Biot [7], laid the groundwork for comprehending the intricate

interactions between solid and fluid constituents within porous structures.

Biot’s pioneering work expanded the scope of the field by considering both com-
pressible solid and fluid phases, introducing variables such as fluid content. Addi-
tionally, he extended the theory to encompass anisotropic elasticity and dynamic
responses. In the realm of fluid-infiltrated porous media, comprising a solid skeleton
and fluid occupying porous spaces, the material undergoes quasi-static deformations,
considering compressibility in both solid and fluid phases. Despite its applicability
for high degrees of liquid saturation, researchers have extended the theory to lower

saturation levels under specific assumptions.

Central to describing porous media’s mechanical behavior is the principle of ef-
fective stress, delineating the transmission of internal stresses to the solid skeleton
and pore fluid. This principle, coupled with the conservation of mass and Darcy’s
law governing viscous fluid flow, forms the basis for understanding fluid flow and

deformations in poroelastic materials.

Poroelasticity holds paramount importance across diverse scientific and engineer-
ing disciplines. In geoscience, the understanding of poroelastic phenomena is essential

for deciphering processes like groundwater flow, oil reservoir behavior, and seismic



responses in subsurface formations. Biomedical science benefits from poroelasticity
in advancing medical diagnostics and enhancing our understanding of biomechanics,
particularly in studying the behavior of biological tissues. In engineering, applica-
tions span from geotechnical engineering to the development of biomimetic materials,
where poroelastic considerations significantly influence the design and performance of

structures [4].

The study of poroelasticity is not without its challenges. The coupled, multi-
physics nature of these systems introduces inherent complexities that demand sophis-
ticated computational methodologies and a nuanced understanding of material behav-
ior. Theoretical modeling must navigate the delicate balance between the mechanical
response of the solid matrix and the fluid flow dynamics within porous structures.
Numerical simulations face difficulties in accurately capturing these complex inter-
actions, often encountering challenges such as spurious oscillations and variations in
physical parameters. Spurious oscillations are numerical artifacts that arise due to dis-
cretization errors, particularly in simulations involving sharp gradients or interfaces,
leading to unphysical fluctuations in the computed solution. Variations in physical
parameters, on the other hand, pertain to the sensitivity of the model’s behavior to
changes in material properties or boundary conditions, which can significantly affect
the accuracy and stability of the simulation. These challenges highlight the need for
advanced methodologies that can comprehensively model and simulate the intricate
behaviors associated with poroelastic materials, underscoring the complexity and dif-
ficulty inherent in the study of poroelasticity. Robust numerical methods, such as
those discussed in [5] and [19], have been developed to address some of these issues,
focusing on enhancing the stability and accuracy of simulations through improved

discretization techniques and preconditioners.

The nexus between flow, fluid, and poroelasticity is intricately woven in the si-
multaneous interactions of fluids within porous media and the resulting deformations
of the solid matrix. Poroelasticity, as governed by Biot’s theory, encapsulates the
interdependence of fluid flow and the deformation of the solid matrix in porous struc-
tures. Fluids, whether water, air, or other substances, traverse through interconnected
voids within the porous media, inducing deformations in the solid framework. Biot’s
equations, considering parameters like porosity, pore fluid pressure, and solid matrix
deformations, elucidate this coupled behavior. The principle of effective stress further

delineates how internal stresses are distributed between the solid skeleton and pore



fluid, influencing both deformations and fluid flow. Robust mathematical models and
numerical methods, such as those developed in [5], play a critical role in analyzing

and solving these complex interactions.

Poroelasticity, born out of the necessity to understand soil consolidation, has
evolved into a critical field influencing various scientific and engineering domains. Its
importance lies in unraveling the complexities of fluid-saturated porous media, while
its challenges highlight the need for continuous advancements in theoretical modeling
and numerical simulations. As we delve into the depths of poroelasticity, we unlock
the potential to address real-world problems and pave the way for innovative solutions

in an array of applications.

This thesis is structured as follows. In Chapter 2, we include the background
information summarizing key theories, models, and prior research related to our topic.
In Chapter 3, we present the stabilized finite-element discretization for the three-
field formulation of Biot’s model. Additionally, we introduce the reduced-quadrature
discretization, providing proofs of well-posedness and error estimates and monolithic
multigrid, focusing on the choice of Vanka relaxation scheme for solving the implicit
Runge-Kutta discretized system and the use of divergence-preserving interpolation
operators to ensure robustness in nearly incompressible cases. Chapter 4 is dedicated
to presenting numerical results that demonstrate the efficiency of the proposed solvers.
Finally, Chapter 5 concludes the thesis, offering remarks and reflections on the findings

and their implications.



Chapter 2
Background

In this chapter, we present important theories, models, and prior work that are rele-
vant to this thesis. This background covers three fundamental areas: the finite element
method (FEM), the multigrid method, and time integration techniques. The finite
element method is a powerful numerical technique used for approximating solutions
to complex problems in engineering and physical sciences, particularly in the field of
poroelasticity. It allows for the discretization of continuous domains into finite ele-
ments, making it possible to solve differential equations that describe the behavior
of poroelastic materials. The multigrid method is an efficient algorithm designed to
solve large-scale linear systems of equations, which often arise in the discretization of
partial differential equations using FEM. By employing a hierarchy of discretizations,
the multigrid method accelerates the convergence of solutions, significantly reducing
computational time and resources. This is particularly important for higher-order dis-
cretizations, where the computational cost can become prohibitively high. Time inte-
gration techniques are essential for solving time-dependent problems in poroelasticity,
where the behavior of materials evolves over time due to fluid flow and mechanical
deformation. Accurate and stable time integration methods ensure that the numerical
solutions remain reliable and physically meaningful throughout the simulation. To-
gether, these foundational concepts provide the necessary framework for developing
and analyzing monolithic multigrid methods for higher-order discretizations of poroe-
lasticity. Understanding these theories and models is crucial for advancing the state

of the art in this field and achieving efficient and accurate numerical solutions.



2.1 Finite-element method

In this section, we discuss the finite-element method (FEM), a powerful numerical
technique widely employed in engineering and scientific simulations that discretizes
complex continuous systems into simpler, finite elements, allowing for the approxima-
tion of solutions to partial differential equations [2, 9, 10, 13, 20]. In the context of
poroelasticity, FEM plays a pivotal role in modeling the coupled behavior of the solid
and fluid phases within porous media [4, 31].

2.1.1 Finite-element method for the Poisson equation

Finite-element approximation is a robust computational approach for generating nu-
merical approximations of solutions to differential equations. In this section, we offer

an initial exploration of the finite-element method as applied to the Poisson equation,
—Au=f, (2.1)

an elementary and well-known elliptic partial differential equation that serves as a
fundamental mathematical model. The source or load function, denoted as f, is
defined over a domain 2 in two or three dimensions. A solution u satisfying (2.1)

should also satisfy given boundary conditions on the boundary, 0S2, of €2 ; for example

au + B% =g on 09, (2.2)

where o n - Vu = g signifies the directional derivative along the outward normal
directionnto the boundary 0f2. The coefficients, o and 3, can be constant or variable.
The combination of Equations (2.1) and (2.2) collectively forms a boundary value
problem. When the constant § in (2.2) takes on a value of zero, the associated
boundary condition is of Dirichlet type, and the resulting boundary value problem
is identified as the Dirichlet problem for the Poisson equation. Conversely, when the
constant « is zero, we encounter a Neumann boundary condition, thereby constitut-
ing a Neumann problem. A third scenario arises when Dirichlet conditions apply to
a specific part of the boundary 0€2p, while Neumann conditions are satisfied on the

remaining portion 92 \ 0Qp. Applying a constant value of g = 0 with 8 = 0 across



the entire boundary is termed homogeneous Dirichlet boundary conditions. When
non-zero u = g(x,y) is imposed along the entire boundary, it is termed an inhomoge-
neous Dirichlet boundary condition. Alternatively, it is feasible to specify the value
of the solution, u = ¢, for constant value ¢, or u = g(z,y), along a (continuous)
segment of the boundary. On the remaining part of the boundary, flux variation can
be specified using Neumann boundary conditions, referred to as mixed boundary con-
ditions. Neumann boundary conditions define the directional derivative of u along a
normal vector, denoted as 8_u The function g = g(z,y) is provided and, ultimately,
we have known values of u gn some (continuous) portion of the boundary and the
directional derivative on another. The Dirichlet boundary condition becomes an es-
sential boundary condition, imposed directly on the function space for u, while the
Neumann boundary condition becomes a natural boundary condition, accounted for
in the following weak form (2.5).

We next consider how to choose the function space, V. For more details, see [9, 10, 2].

Definition 1 LP spaces are defined as follows for 1 < p < oo :
LP(Q) = {u | u is real and measurable and / |ul? dz < oo} .
Q

The following LP-norm defines a norm on this space:

Il = ( |u<x>|ﬁdx)l/p.

In the case of p = 2, we define the space as

12(9) = {u : /Q u(z)? dz < oo} |

Definition 2 Sobolev Spaces H™(S)). Given an integer number m > 1, standard

Sobolev spaces read
H™(Q) ={ve L*Q): D € L*(Q), |a] < m},

with the H™ norm of a function v is defined as:



1/2

lelln = | 3 /Q|D%|2dx

laj<m

where

olel

Do =
8?1832 P 82571’

lal =1 +as+ -+ .

We can also consider subspaces of these Sobolev spaces that include boundary condi-

tions.
Definition 3 Hj(Q) ={u € H(Q) : u=0 on 9Q}.

Definition 4 Product Space. So far, we have been thinking of spaces of scalar
functions, u : Q@ — R. However, we can also consider vector-valued functions u :
Q — RY. We will denote a space of vector-valued functions with vector notation, i.e.,

H(Q), or we may use (H'(2))? to explicitly indicate the dimension.

The H* (and Hk) spaces concern a function and all of its partial derivatives.
Howewver, for vector-valued functions, we might want to only take divergences or curls.

Thus, H(div,Q) and H (curl, Q) can be defined as

H(div,Q) = {u € L*(Q)|V -u € L*(Q)},
H(curl, Q) = {u € L*(Q)|V x u € L*(Q)},

with corresponding norms,

el g, = ll® + 1V -

el = ull® + IV x wf”.

For simplicity, we first consider a model problem of the form [2],

-V -Vu+u=f 1in (),

with u = 0 on 99 , and with f € L?(2). The weak form is to find u € V = H} ()



such that

/Vu-Vv—l—/uv = / fvdx for all v e V. (2.3)
Q Q Q

We define a bilinear form, a(-,-), and a linear functional, g(-), as follows:

a(u,v) = (Vu, Vou) + (u,v),

where u and v are in the function space V = HJ (), V represents the gradient, and
(-,-) denotes the L?(f2) inner product.

Theorem 1 Riesz representation theorem [14]. LetV be a Hilbert space with
inner product {-,-)y. Let g be a bounded linear functional on V—i.e., g € V*. Then,

there exists a unique u € V such that

g(v) = (u,v)y foralve.

For the model problem described by Equation (2.3), the bilinear form is equivalent to
the natural inner product in H'(Q):

a(u,v) = (Vu, Vo) + (u,v) = (u,v);

Therefore, the weak formulation of the problem in (2.3) secks to find u € H}(Q) such
that
a(u,v) = g(v), Vv € Hy(Q),

where Hj () is chosen to accommodate the Dirichlet boundary conditions. By the
Riesz representation theorem, there exists a unique u € HJ(Q) that satisfies this

equation. For more general equations, we require a generalized approach.

Definition 5 FEllipticity. Given a Hilbert Space, V, consider a bilinear form:

a(+,-): YV xV =R



The form a(-,-) is coercive if there exists a constant ¢y > 0 such that
collull? < alu,u)  for allu € V;
and a(-,-) is continuous if there exists a constant ¢y > 0 such that
la(u,v)| < allully||vlly  for all u,v € V.

If a(-,-) is both coercive and continuous on V, then a(-,-) is said to be V-elliptic.

We next consider the boundary-value problem,

—Au=f in Q (2.4a)
u=0 on ON. (2.4b)

The problem defined in Equation (2.3) is called the strong formulation of the par-
tial differential equation (PDE). The weak formulation serves as a rephrasing of the
original (strong form) PDE, and it is through this reformulation that the final finite-
element (FE) approach takes shape. To derive the weak form of the PDE, we multiply
both sides of (2.4a) by an arbitrary function, commonly referred to as a test function,
denoted as v. If we let v be a smooth function with v = 0 on 0f), we can define the

bilinear form, a(u,v), and the weak formulation given by finding u € V such that

a(u,v) = / Vu - VodQ, (2.5a)
Q
= — / Au-vdQ) + @v ds, (2.5b)
Q a0 On
= / fvdQ  for all v e V. (2.5¢)
Q

With this, we turn to a key theoretical result, called the Lax-Milgram theorem.

Theorem 2 Lax-Milgram theorem [14]. Let V be a Hilbert space with inner
product (-,-)y. Assume that a(-,-) is a bilinear form that is coercive and continuous
on V. In addition, assume that g(-) is a bounded linear functional on V. Then, there

exists a unique u € V such that

a(u,v) = g(v) forallv e V.
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The Lax-Milgram theorem stands as a key in the analysis of finite element methods,
and we utilize it to establish the existence and uniqueness of a solution. Again consider
the weak formulation in (2.5) to find u € V such that

a(u,v) = (f,v), Yve,

where V = H}(Q) is chosen to accommodate the Dirichlet boundary conditions. Here,
a(u,v) = [, Vu-VodQ is the bilinear form, and (f,v) = [, fvdQ is a bounded linear
functional on V. By the Lax-Milgram theorem, if a(-,-) is a continuous and coercive
bilinear form on V and (f,-) is a bounded linear functional on V, then there exists
a unique solution u € V that satisfies the weak formulation. The continuity of a(-,-)
follows from the Cauchy-Schwarz inequality, ensuring that |a(u,v)| < Cl|u||g||v|| g
for some constant C'. The coercivity of a(-, ) is established by the Poincaré inequality
2], implying that a(u,u) > «||ul|3; for some a > 0. Thus, the conditions of the
Lax-Milgram theorem are satisfied, guaranteeing the existence and uniqueness of the
solution to the weak form.

Next, we will discuss the Ritz-Galerkin approximation. This method is a way to
approximate the solution of a continuous problem with a finite-dimensional problem

that is easier to solve computationally.

Definition 6 Ritz-Galerkin approximation. Let a : V xV — R be a bilinear
form, and let V" be a finite-dimensional subspace of V. Consider the weak form
restricted to V": Find u" € V" such that

a(u,v) = (f,v) Yoe V" (2.6)

h

Here, u" is called the Ritz-Galerkin approximation of the weak solution u € V.

Let u represent the solution to the variational problem, while u" denotes the solution
to the Galerkin approximation problem. Our aim is to evaluate the error ||u — u”||y.

This estimation is facilitated by the following lemma:

Lemma 1 Céa’s Lemma. LetV C H be a closed subspace of the Hilbert space H.
Let a(-,-) be a coercive and continuous bilinear form on V. In addition, for a bounded

linear functional g(-) on V, let u € V satisfy

a(u,v) = g(v) forallv e V.
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Consider a finite-dimensional subspace V' C V and u € V" that satisfies
a(ul o™y = g(™)  for all " € V.
Then,
=l < = min flu— "
| Z heph \Z
where ¢y and ¢y are the coercivity and continuity constants for a(-,-) , respectively.

Remark 1 Céa’s Lemma establishes that u" is quasi-optimal, indicating that the er-

ror ||u — uP||y is close to the best approzimation within the subspace V™.

Definition 7 Polynomial spaces. Let T' be any triangle, k > 0. Let Py(T') denote

the set of all polynomials in two variables of degree < k on T, and
Po(Q") = {u e C°(Q") : u(x)|r € Pu(T),VT € Q"},

where Q" = {T'} is a set of triangles.

In general, there are three factors that significantly influence the accuracy of the
approximation. Firstly, the regularity of the solution, as better approximations are
achievable when the solution possesses higher degrees of smoothness. Secondly, the
mesh quality, which is assessed based on the element size and shape quality. Lastly,
the choice of approximation space itself also plays a crucial role. Explaining the
quality of Ritz-Galerkin approximations involves complex theory [10], which we briefly

summarize here.

Definition 8 Diameter of a Set. Given a set S C R", the diameter is given by
diam(S) = sup, yes [z — .-

Definition 9 For any T € Q", let By be the largest ball contained in T such that
for any x € T, the closed convex hull of {x} U Br is contained in T. We say that
T is star-shaped with respect to By. A family of subdivisions, {Q"}, is said to be
non-degenerate or reqular if there exists p > 0 such that for all T € €, and for all
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h € (0,1],

diam Bp > p diam T. (2.7)

Proving Theorem 3 requires concepts like reference elements, affine equivalent ele-
ments, and certain theorems outlined in [10], which play a crucial role in deepening

our comprehension of this area.

Theorem 3 Accuracy of P,(Q"). Let {Q"},0 < h < 1, be a non-degenerate family
of subdivisions of a polyhedral domain Q in R". Let V" = P,(Q") with k+1—% >0
and a suitable choice of nodes for the degrees of freedom of Py(2"). Let I" be such that
I"v € V" is the interpolant of v € C°(Q). Then, there exists a constant C' depending
on the choice of nodes, n, k, and p such that if u € H**1(Q), then

1/p
(Z lu — IhuHZ’;Wg,(T)> < CH 0 lulyr () for 0<s <k+1

TeQy,

2.1.2 Mixed Poisson finite-element method

In this section, we introduce finite-element methods for the “mixed Poisson equation”.
Consider the alternative formulation of the Poisson equation (2.1) given by introducing
an additional vector (variable), namely the (negative) flux: o = Vu. With this

definition of o, we can rewrite the original PDE as,

oc—Vu=0 1in(, (2.8a)
—V.o=f in Q, (2.8b)

We have at present two unknowns, v and o, and must determine suitable finite-
element spaces for each of them. Given that the space for & must consist of vector-
valued functions, it is reasonable to assume that the two unknowns occupy different
spaces. We write u € V and & € W and multiply Equation (2.8) by test functions

w € W and v € V and integrate over the domain to obtain a weak formulation, to
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find & € W and v € V such that

(o —Vu,w)=0 YweWw, (2.9a)
(=V.o,v)=(fv) Yve, (2.9b)

Now, consider the more general boundary conditions for the Poisson problem, with

U = Ug on FD,

o-n=g on [y.

where n is the outward unit normal vector to the boundary 02 = I'p UT'y, where I'p
and 'y are disjoint segments on which we impose Dirichlet and Neumann boundary
conditions for u, respectively. Now consider the term (Vu,w) in Equation (2.9a) and

integrate by parts on it to obtain

—(Vu, w) /Vu wdx

——/ uw - ndS+/uV-'wdx

0 Q

——/ uow-ndS—/ uw-ndS+/uV-wdx
I'p I'nv Q

:—/ uow-ndS+/uV~wdx,
I'p Q

where we restrict w-mn =0 on ['y. Using the above integration-by-parts, rewrite

Equation (2.9) as the first-order system

(o, w) + (u, V- w) = —/ uw -ndS YweW, (2.10a)
I'p

(=V -o,v) =(f,v) Yve, (2.10b)

In [2], it is observed that when a homogeneous boundary condition of uy = 0 is
adopted, the right-hand side term of Equation (2.10a) becomes zero. From Equation
(2.10), we can deduce that the left-hand side can be expressed in terms of two bilinear
forms, defined as follows: a(o,w) = (o, w) and b(w,u) = (u,V - w). To ensure

symmetry, the second equation was multiplied by —1. Consequently, the symmetric
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saddle point problem can be formulated as finding o € W, u € V such that

a(lo,w)+b(w,u) =0 Ywe W, (2.11a)
blo,v)=—(f,v) Yvel. (2.11b)

Next, we will discuss continuous inf-sup conditions, highlighting how important it is
to have both weak coercivity and continuity in the product space WW x V . Thus,
let us consider a slightly more general mixed formulation than in Equation (2.11) of
finding o € W, u € V such that

2
Q
g
_l_
N
E
S
I

g(w) Yw e W, (2.12a)
bo,v) = f(v) YveV, (2.12b)

where g and f are bounded linear functions on W and V), respectively, and VYW and V
are Hilbert spaces. The first step in any well-posedness result is always to demonstrate
the continuity (or boundedness) of the bilinear forms in (2.12), as defined in Definition

6, that there exist constants ¢, > 0 and ¢, > 0 such that

la(o, w)|| < calloflwlwlw, Vo eW,weW,
1b(e, V)| < cllellwlvlly, Vo eW,veV.

We next discuss coercivity. To keep things simple, we first consider the scenario f = 0.
Finding solutions to (2.12a) with o € W = {w e W :blw,v) =0 Yv € V} is the
main idea behind the existence and uniqueness results for mixed systems. It should
be noted that W is a closed linear subspace of WW. Selecting the test function for
(2.12a) from the limited space, w € W, results in finding & € W such that

alo,w) = g(w) Yw e W. (2.13)

This simplifies the saddle-point system given in Equation (2.12) to a single (vector)
equation as given in Equation (2.13). Consequently, if a(-,-) exhibits coercivity on

1//\\7, it fulfills the requirements of the Lax-Milgram Theorem. Hence, there exists a
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unique solution, denoted as o* € l//\V, to this modified problem,

a(o,w) = g(w) forall w e W, (2.14)
blo,v)=0 forallveV, (2.15)

provided that g(w) is a bounded linear functional on W (or )//\V) The remaining task
is to ascertain whether there exists a unique v that satisfies the original system. To
accomplish this, we rewrite the first equation of Equation (2.12), with the value of &

set to the solution o* obtained from Equation (2.14), yielding
b(w,u) = g(w) —a(e™,w) for all w e W.

Assuming that g is a bounded linear functional and identifying that a(eg*,-) is also a
bounded linear functional on W for a fixed o*, g(-) — a(o*, ) qualifies as a bounded
linear functional as well. By leveraging this insight along with the continuity of b(-, -)
on W x V), we establish the existence and uniqueness of u through a demonstration

of weak coercivity.

Definition 10 Generalized Weak Coercivity. A bilinear form, b(w,v), is weakly

coercive on YW x V if there exists a constant co > 0 such that

inf sup blw, v)

_— Co-
vevwew [[wlwllv]ly

After discussing generalized weak coercivity, it is important to highlight the signifi-
cance of the inf-sup condition, which is crucial for determining the uniqueness of the
solution u. The inf-sup condition, also known as the Ladyzhenskaya-Babuska-Brezzi
(LBB) condition or the stability condition, is a crucial requirement in the context of
mixed finite-element methods. It plays a pivotal role in ensuring stability, avoiding
numerical issues, and providing accurate and reliable solutions. The inf-sup condition
is essential for proving the well-posedness of the mixed Poisson problem. Without the
inf-sup condition, the problem might be ill-posed, leading to numerical solutions that
lack accuracy and reliability. The inf-sup condition can be understood by representing
the bilinear form b as an operator B : W — V* and its adjoint B : V — W?*. The
kernel of B is denoted as W, and the inf-sup condition imposes a coercivity assump-

tion on this kernel. Essentially, the inf-sup condition ensures that for any v € )V, there
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exists a nonzero w € W such that b(w,v) > c|lw||w||v]ly. Notably, such w cannot
belong to W, as b(w,v) = 0 for w € W, violating the inequality. Furthermore, op-
timal choices of w must be orthogonal to W to maximize b(w, v) without increasing
|w||ly. This property of B implies that if b(w, v) satisfies the inf-sup condition, then
B is an isomorphism from the orthogonal complement of W onto V*. The inf-sup

1
ve > co|lw|yw for w € W and

condition can be equivalently expressed as ||Bw)|
| B'o|lw+ > collv|ly for v € V. This coercivity relation ensures the uniqueness of
u as the solution to b(w,u) = g(w) — a(e*, w) for w € Wl. Furthermore, when
f # 0, the inf-sup condition guarantees the existence of a unique o € WL such that

Boy = f, leading to the final result given in Theorem 4.

Theorem 4 Well-Posedness of Mixed Formulation. Let W and V be Hilbert
spaces. Suppose that a(-,-) : W X W — R and b(-,-) : W xV — R are bounded
bilinear functionals, and that g and f are bounded linear functionals on YW and V,
respectively. If a is coercive on W 1= {w e W | b(w,v) =0 for allv € V} and
b satisfies the inf-sup condition in Definition 15, then there exists a unique solution,
(o,u) € W x V), that solves Equation (2.12).

After discussing the well-posedness of the continuum mixed formulation for the mixed
Poisson problem, we now turn our attention to the discrete inf-sup condition, a crucial
aspect in ensuring the stability and reliability of numerical solutions. The discrete
inf-sup condition, also known as the discrete Ladyzhenskaya-Babuska-Brezzi (LBB)
condition, for the mixed Poisson problem ensures the stability of the numerical dis-
cretization. In the context of finite element methods, the inf-sup condition is often

expressed in terms of discrete spaces.

Let W), C W and V), C V be finite-dimensional subspaces (finite-element spaces)
defined on some triangulation of the domain with mesh parameter h. Then, we
discretize Equation (2.12) as finding o}, € W), uy, € V,, such that

ap(on, wy) + bp(wp, up) = g(w,) Yw € Wy, (2.16a)
bh(O'h,?)h) = f(Uh) Yv € Vh. (216b)

Definition 11 Discrete inf-sup condition. A family of finite-element spaces

(Wh, Vi) satisfies the discrete inf-sup condition if the bilinear form b(wp, vy,) is weakly
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coercive on Wy, X W, i.e., if there exists a constant ¢y > 0, independent of h, such

that
b(wh, ’Uh)

Uh|

inf  sup > .

VR EVR wpEWY Hwh HWh

Vi,

Coercivity of the bilinear form a(-,-) at the continuous level implies that it remains
coercive at the discrete level when V;, C V. This preservation of coercivity is crucial
for ensuring the stability and well-posedness of the discrete problem. Proving the
discrete inf-sup condition becomes the additional requirement for establishing the
well-posedness of the discrete mixed problem. This condition ensures stability and

convergence of the numerical solution.

In the following, we provide an example of finite-element spaces for the Mixed-
Poisson problem: RTy— Py. Let {2"};,50 be a regular family of triangulations of 2 by
triangles T in R? or tetrahedra in R?® with diameter hy. For each T € Q") let RTy(T)

denote the local Raviart-Thomas space of lowest order,
RTH(T) == [P(T)]" & Py(T),

where x := (21, ...,z,)7 is a generic vector in R™, and P,(T') is the space of constant
functions on T. We define RT,(2") by requiring that restriction of w; € RTy(Q")
to any triangle, T', be in RTy(T), and that functions in RTy(Q2") have continuous
normal components between cells. In the context of infinite-dimensional spaces WW =
H(div,Q) and V = L*(Q), finite element spaces on mesh Q" are naturally chosen
as low-order spaces. These are represented as W), = RTy(Q") c H(div,Q) and
Py(Q") C L*(). The RTy — P, finite element pair, utilized for solving the mixed
Poisson problem, plays a pivotal role in ensuring the stability and convergence of the
numerical solution. To demonstrate the satisfaction of the discrete inf-sup condition,

it is essential to verify the existence of a constant 5 > 0 such that:

sup (V- wp, vp)

> Bllonll, Ven € Vi
wpEW), ||wh||div

The proof of well-posedness is omitted here; for complete details, see [2]. There-
fore, the RTH(Q") — Py(Q") mixed finite element pair satisfies the discrete inf-sup
condition, ensuring stability and convergence of the numerical solution for the mixed
Poisson problem. Moreover, it can be observed that b(wy, v,) exhibits weak coerciv-

ity over RTp(Q") x Py(2"). Consequently, the mixed formulation remains well-posed
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within these function spaces. Furthermore, these arguments extend seamlessly to
higher-order variations of the Raviart-Thomas spaces. The Raviart-Thomas element
is defined in [2] by RTy(T) = [P.(T)]" @ Px(T)x. This generalization relies on the
broader principle that div RT,(Q") C P, (Q"), coupled with a consistently defined
projection operator. In this context, P, (") denotes the space of piecewise polyno-
mials on A, where continuity between elements is not necessarily preserved, a concept

often referred to as the discontinuous Lagrange finite-element space.

2.1.3 Finite-element method for Stokes.

Let us consider the Stokes equations with Dirichlet boundary conditions for the veloc-
ity variable [9, 11, 22, 2]. The problem aims to find the velocity, u, and the pressure,

p, of a viscous fluid within specific function spaces satisfying

—Au+Vp=f in(Q, (2.17a)
~V.u=0 in Q (2.17b)
u=0 on 0, (2.17¢)

where f represents a known forcing term. Under these boundary conditions, the

pressure only enters the Stokes equation inside a gradient.

Remark 2 Let V = L§(Q) = {p € L*(Q)]| [,pdx = 0}. A suitable choice for the
pressure space is L*(). It’s important to note that [, divvds = [,,v-ndS =0 due
to the boundary conditions. Consequently, the divergence operator maps H}(Q) to the
subspace LE(Q), where the pressure solving the Stokes equations is unique. However,

in L*(Q), it is only unique up to a constant.

Consequently, solving these equations for p may result in an indeterminate solution
up to an additive constant. To address this, under these boundary conditions, we

impose the additional condition that

/pda::().
Q

As above, we use the mathematical framework of multiplying by a test function
v €W = H}Q) in Equation (2.17a) and ¢ € L(©2) = V in Equation (2.17b).
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Subsequently, we integrate by parts in Equation (2.17a) to obtain the following weak
variational formulation: Find w € W and p € V such that

(Vu,Vv) — /

a9
(=V-u,q) =0 VYgqeV.

(Vu)n-vds—(p,v-v>+/ pv-nds=(f,v) YveWw,
20

This leads to the following discrete linear system:

Fu+Bp=Ff, Blu=0 (2.18)

where F' is the discrete Laplacian (stiffness matrix) arising from the term (Vu, Vo) —
Joq(Vu)n - vds , and B is the discrete divergence operator matrix arising from the
term (—p,V -v) + [, pv - nds.

By choosing u € W = H;(2) we derive the mixed formulation of the Stokes equa-
tions: to find w € H () and p € LZ(Q) such that

(Vu,Vv) — (p,V-v) = (f,v) YvoeW, (2.19a)
(=V-u,q) =0 VYqge. (2.19Db)

We can express this in the generalized saddle-point form by defining the bilinear and

linear forms as follows:

a(u,v) = (Vu, Vo) for u,v € W,
—V-u,q) forueW,qeV,
= (f,v) forveV,

flg) =0 forqeV.

Remark 3 In a similar approach, for Stokes equations with non-homogeneous Dirich-
let boundary conditions ulsq = g, the data g must follow satisfy the compatibility
condition [,,g-ndS = [,, divudr = 0.

The authors in [2] establish the well-posedness of the weak variational formulation of
the mixed formulation of the Stokes equations in H}(Q) x LZ(€). Once more, given
the nature of a(-,+), coercivity on the discrete level is inherent. Therefore, our focus

shifts solely to verifying the discrete inf-sup conditions for Stokes within each space
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pairing.

The pair P(Q,) X Pr_1(Q4) is stable for Stokes problems when k > 2. The simplest
and most popular case is k = 2, where the pair (P, P;) is used. This configuration
is preferred over (Pp, Fy), which is unstable, as (P, P;) provides a stable solution
with one order higher approximation. While (Ps, P;) uses fewer degrees of freedom
compared to the stable pair (P, ), it still delivers a higher-order approximation,

making it a favored choice for many applications.

For the (P,, Py) space, P, elements are used for velocity, placing nodes at both
vertices and midpoints of each element, resulting in (2n 4+ 1) x (2n + 1) nodes per
velocity component. Pressure is represented with P elements, which have nodes only
at the vertices, leading to (n + 1) x (n + 1) pressure nodes. In contrast, the (P, )
space also employs P elements for velocity but uses P, elements for pressure, with a
single node at the center of each element, resulting in 2n x n pressure nodes. Thus
the (P, Fy) space has more pressure degrees of freedom when n > 2 resulting in a

greater number of variables to solve and potentially increased computational effort.

2.1.4 Finite-element method for Poroelasticity

Poroelastic models serve as crucial tools for understanding mechanical deformation
and fluid flow in porous media, with applications spanning various fields including
medicine, biophysics, and geosciences. These models find utility in computations
related to intracranial pressure, trabecular bone stiffness, reservoir simulation, and
waste repository performance, among others [5, 6, 17, 19, 23, 25, 29, 31, 35, 30]. Con-
structing stable finite-element schemes for poroelastic models often involves selecting
discrete spaces that adhere to appropriate inf-sup (or LBB) conditions or employing
stabilization techniques to mitigate instabilities in finite-element pairs. In the realm
of two-field formulations like Biot’s problem, classical Taylor-Hood elements represent
one approach, while recent work has explored stabilized discretizations using linear
finite elements for both displacements and pressure [6, 23, 29, 31]. For three-field
formulations incorporating the Darcy velocity, various conforming and nonconform-
ing discretizations leveraging Stokes-stable finite-element spaces have been proposed.
Notably, recent studies have introduced stable finite-element methods utilizing piece-
wise constants for pressure and parameter-robust three-field finite-element schemes,

accompanied by a general theory for error analysis [6, 23, 31].



21

A classical and widely used model, introduced by Biot [8], is based on the following

assumptions [23]:

1. The porous medium is saturated with fluid and maintains a constant tempera-

ture.
2. The fluid within the porous medium exhibits near-incompressibility.

3. The solid skeleton or matrix is comprised of an elastic material, with deforma-

tions and strains being relatively minor.

4. Fluid flow adheres to Darcy’s law, suggesting laminar flow behavior.

Consider the quasi-static Biot model for soil consolidation. For a porous medium
characterized by linear elasticity, homogeneity, and isotropy, and saturated with an
incompressible Newtonian fluid, the consolidation process is described by the following
system of partial differential equations in a domain  C R?, d = 2, 3 with a sufficiently
smooth boundary I' = 992 [5, 6, 31]:

Equilibrium equation: — dive’ +aVp = pg in Q, (2.20)
Constitutive equation: o’ = 2ue(u) + Adiv(u)l in (2.21)
Compatibility condition: e(u) = %(Vu + Vu') in Q, (2.22)
Darcy’s law: w = —’uifK(Vp —prg) inQ, (2.23)

Continuity equation: % (%p + adivu) +divw = f in Q. (2.24)

Here, puy is the viscosity of the fluid, I is the identity tensor, M is the Biot modulus,
p and p; are the bulk density and fluid density, respectively, and @ = 1 — % is
the Biot-Willis constant, with Kj, and K, denoting the drained and the solid-phase
bulk moduli, respectively. The absolute permeability tensor is given by K which is
symmetric and positive definite. The unknown functions are the displacement vector
u, the pore pressure p, and the percolation velocity of the fluid, or Darcy velocity,

relative to the soil, w. The vector-valued function g represents the gravitational

E
——— and A\ = v are the Lamé coeflicients where v
2+ 2v (1—-2v)(1+v)

is the Poisson ratio and F is the Young’s modulus. As v — 0.5, we have A — oo, the

force. Finally, u =
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incompressible limit that causes difficulties in numerical simulations. The implications
of A — oo are significant. As the material approaches incompressibility, div(u) ~ 0
becomes a constraint, leading to numerical challenges such as locking in standard finite
element methods. To address these, specialized techniques like mixed formulations or
stabilization methods are employed. These simulations demonstrate the necessity for
advanced methods to handle the incompressible limit. The source term f represents
a forced fluid extraction or injection process. Finally, this system is often subject to

the following set of boundary conditions [5, 6, 31]:

p=0, forxzel,, o'n=0, forzely,
dp

=0, forzel, -—
u , forx o

=0, forxell,,

where n is the outward unit normal to the boundary, I' = I, U T, with I'; and
I, being open (with respect to I') subsets of I' with nonzero measure. Appropriate
initial conditions for the pressure and displacement (more precisely, for div(u)) are

also needed.
We consider a semi-discretized variational problem such that for each t € (0,77,
(u(t),p(t), w(t)) € ¥V x Q x W with
V={uecH (Q)|ulp, =0}, Q=L*Q),
W = {w € H(div, Q) | (w - n)|r, = 0}.

Using backward Euler as a time discretization on a time interval (0, 7] with constant
time-step size 7 , the fully discrete variational form for Biot’s three-field consolidation
model, (2.19) — (2.23), is written as: Find (u}*, pi*, w}*) € V), X Qn X W), such that

a(uy',vy) — (apy', divop) = (pg, vn), Yo, € Vp, (2.25)
(K ppw)l, m) — 7{p)t, divey) = 7(prg, ™), Vrn € Wy,  (2.26)

1 . m s m 7
—<Mp?f> qn) — (adivuy', qn) — T(divwy', qn) = (f,qn),  Van € Qn, (2.27)

where (-,-) denotes the standard L?(Q) inner product. Here, (u},p*,wh) is an

approximation to (w(-,t,,), p(-, tm), w(-, tm)), at time t,, = mr,m = 1,2, ..., (f,qn) =
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1
7(f, qn) + (MPZL_I, qn) + (adivu]™ g,), and a(u, v) = 2u(e(u), €(v)) + A(divu, dive)
is the usual weak form for linear elasticity. Note that (2.25) has been scaled by 7 and

(2.26) has been scaled by —1 to make the system symmetric.

Definition 12 [31] The triple of spaces (Vn, Wi, Qn) is Stokes-Biot stable if and

only if the following conditions are satisfied:

CL(’U,h,’Uh) S CVH'u/hHlH’UhHl; for all up € Vh, vy € Vh,'

a(up, up) > Oy ||lup|?, for all w, € Vi;

The pair of spaces (Wh, Q) is Poisson stable, i.e., it satisfies stability and con-

tinuity conditions required by the mixed discretization of the Poisson equation;

The pair of spaces (Vy, Qn) is Stokes stable, i.e., it satisfies the inf-sup stability

condition for the Stokes equations.

The authors in [31] suggest a parameter-robust stable scheme for Biot’s system, build-

ing upon the conditions mentioned earlier. Inspired by this approach, we now define

a norm on (Vp, W, Qn):

. 1/2
1| (wn, wn, pn)l| = [HuhI\A + 7wl Fe-,, + 72 [divwn[* + Ellpnll?|

where ( = (/A + 2 ¢ = ‘Z—j + a5 Il k-1, = (K~ ppr,r)'/?

Further, we associate a composite bilinear form on the space, (Vy, Wh, Qr),
B(wp, Wy, Pr; On, Thy qn) = a(ul, vy)—(api, divoy)+7 (K " ppwl, vy —7(pi, divey,) —
(P05 an) — (adivuy’, gu) — 7(divesy’, gr).

To ensure stability and convergence of the discretisation, the discrete subspace

(mixed element) has to be chosen such that the following theorem is fullfilled:

Theorem 5 [31]. If the triple (Vy, Wh, Qu) is Stokes-Biot stable, then: B(-,+,- ; - -, -)

is continuous with respect to |||-, -, -|||; and the following inf-sup condition holds:

B(Uh, Wh, Phs Uh, Th, Qh)
sup

> Bll(vn, Tas gn)lll
(Vh,Th,GR) EVRXWE X Qp ’H(uh’ whﬂph)m o

with a constant § > 0 independent of mesh size h, time step size 6, and the physical

parameters.
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The next section will cover multigrid methods, including their motivation, application

to the Poisson equation, and usage in solving systems of equations.

2.2 Multigrid methods

Consider the linear system Au = f, where A is a linear operator and w and f
are vectors. This equation represents a fundamental problem in linear algebra and
numerical analysis. The matrix A encodes the relationships between the elements
of the vector w and the vector f. Solving this system typically involves finding a
solution w that satisfies the equation for a given right-hand side vector f. Depending
on the properties of A and f, this problem may have unique solutions, infinitely
many solutions, or no solutions at all. Solutions to Au = f are crucial in various
scientific and engineering applications, including solving differential equations, image

processing, optimization problems, and data analysis.

In numerical analysis, the solution of Au = f often involves the use of efficient
algorithms tailored to exploit the structure of A. Sparse direct solvers are specialized
algorithms designed to efficiently solve linear systems where A is sparse, meaning it
contains mostly zero entries. These solvers exploit the sparsity of A to reduce com-
putational complexity and memory requirements, making them particularly suitable
for large-scale problems arising in scientific computing and engineering. Additionally,
multigrid methods provide another approach for solving Au = f, especially for prob-
lems arising from discretizations of partial differential equations. Multigrid methods
leverage a hierarchy of grids to accelerate convergence by effectively smoothing out er-
ror components at different spatial scales. This hierarchical approach makes multigrid
methods highly efficient for solving large linear systems arising from discretizations

of elliptic and parabolic partial differential equations.

Sparse direct solvers offer the capability to tackle exceptionally large problems
that conventional “dense” solvers cannot handle efficiently. Sparse matrices can be
broadly categorized into structured and unstructured types. Structured matrices ex-
hibit a regular pattern in their nonzero entries, often along a few diagonals or in blocks
of the same size forming a regular pattern, typically along a few (block) diagonals.

Conversely, matrices with irregularly located entries are termed irregularly structured.
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In practice, many finite-element or finite-volume methods applied to intricate geome-
tries result in irregularly structured matrices [2, 32]. Many sparse direct methods aim
to reduce computational cost by minimizing “fill-ins”, which are non-zero elements
introduced during the matrix’s LU factorization process from initially zero positions.
A common approach for solving sparse matrices involves four main steps. Firstly,
preordering techniques such as minimum degree (MD) or nested dissection (ND) or-
dering are applied to minimize fill-in. Secondly, a symbolic factorization is conducted,
where the factorization is computed without numerical values. Thirdly, the numer-
ical factorization takes place, resulting in the formation of the actual factors L and
U. Lastly, forward and backward triangular sweeps are performed for each individ-
ual right-hand side. The MD algorithm is widely recognized as the go-to approach
for minimizing fill-in during sparse Gaussian elimination, especially for symmetric
positive definite (SPD) matrices. In each step of the Gaussian elimination process,
this algorithm chooses the node with the lowest degree as the next pivot row. This

systematic selection helps in decreasing the amount of fill-in that occurs.

Definition 13 /2, 32] Let m be a permutation of {1,2,...,n} and define the permu-

tation matrix, P, such that

1 if j=m(i),

0 otherwise.

Dij =

Since P is an orthogonal matrix, with P~! = PT| solving Au = f is equivalent to
solving (PTAP)PTu = PT f. The reordered matrix PT AP is a transformed version

of the original system.

The nested dissection (ND) algorithm operates by identifying a separator in a
graph, which is a set of nodes that, when removed, divides the graph into two or
more disconnected parts. The ordering of nodes in the permutation is based on a
sequence of separators selected in the graph. To achieve a target cost of O(N?) on an
N x N mesh, it is aimed to utilize O(NN) separator nodes. This allows dense Gaussian
elimination on a matrix involving this set to have an O(N?) cost for factorization.
For instance, the “central cross” in the graph serves as a separator for a regular 7 x 7
mesh, comprising the nodes adjacent to the red edges in Figure 2.1. These nodes

are ordered last, in lexicographic order, in the permutation. The algorithm is then
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recursively applied to the four smaller 3 x 3 meshes, each with its central cross defined
(nodes adjacent to the green edges), resulting in four subproblems on 1 x 1 meshes,
or single nodes. In this process, each 3 x 3 separator is ordered immediately after the
nodes in its four subproblems. To analyze the factorization complexity based on this
reordering, the partial problem after the first reordering is examined. Assuming N

is odd, as in the given example, the central cross consists of 2N — 1 nodes, and each

N-1
2

disjoint, the reordered system matrix was represented in [2] as:

of the four subproblems has a size of % X . As these subproblems are entirely

Ay 0 0 0 A

)

0 A272 0 O AQ s

)

PTAP == 0 0 A373 0 Ags

)

0 0 0 Ay Ay,

)

As,l As,? As,3 A5,4 As,s

where A;;, 1 < i < 4, correspond to the matrix restricted to each of the disjoint
subdomains, while A4;, and Ay, for 1 < ¢ < 4 contain the connections from each
subdomain to/from the separator (the central cross). Similarly, A; s contains the con-
nections in the original matrix between nodes in the separator. The cost of factoring
the matrix in this reordering can easily be accounted for by summing the costs of
factoring each of the A;; plus those associated with the separator. As above, we
assume the cost of accounting for the separator is O(N?), equal to that of dense
Gaussian Elimination on A;,. The proof considers scenarios where N = 2k — 1 so
that recursively-defined subproblems are also one less than a power of two. Let §(N)
represent the cost of factoring the reordered matrix PTAP for an N x N mesh. The
basic recursion is §(N) = 40(%-1) + O(N?). Writing 6, = 6(2" — 1), this recurrence
relation becomes 0;, = 46),_, + c8" for some constant §. Further analysis yields the
relation 6,1 — 120, + 320,_, = 0, which, using the ansatz that ;, = s*, leads to the
quadratic form s? — 12s + 32 = 0. Solving this gives s = 4 and s = 8, leading to
the general solution 0}, = ;4 + 8" = O((2F — 1)3). A detailed calculation confirms
O(N) = O(N?), with a constant approximately 10. Unfortunately, the method de-
scribed above does not easily extend to general cases. Additionally, separators can
be identified in linear time, leading to similar bounds on factorization costs for cer-
tain types of two-dimensional discretizations. For regular N x N x N grids in three

dimensions, using geometric separators similar to “central crosses” in two dimensions
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Figure 2.1: ND ordering

yields an O(N?) factorization cost. While this is a significant improvement over the
O(NT) cost of factorization using banded Gaussian elimination in lexicographical or-
der, it remains impractical for even moderate values of N. Generalizing this result
to unstructured meshes in three-dimensional geometries is challenging, prompting ex-
ploration of alternative approaches.

Consider again a sparse linear system, Au = f, and let e, = u — uy represent the
error in an approximation, uy, This error is generally unknown and not computable,
as it requires knowledge of the exact solution, w. We focus on iterative methods of

the general form as in [2, 32]
Up+1 = Ug + p0Uy,

for a scalar a; and a vector du,. The ideal choice for the update would satisfy
apdu, = eg. Therefore, we typically seek to approximate this ideal relation. One
common approach is to employ the residual, r, = f — Auy, as an approximation for
er. This proves effective when A is close to the identity matrix in some sense, since

ry = f — Aup = Au — Auy = Aey; thus, if A = I, then r, = e;. Considering an
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initial approximation or guess, ug, we iterate to arrive at
w, = up—1 + o (f — Aug_q).

To examine the convergence behavior of this iteration, we study the evolution of the
error. By subtracting both sides of the preceding expression that defines uy from the

true solution, u, we obtain:

u—up=u—up 1 — ap(f — Auy_1)
e, = ey — apAep_
€ = (I — O./kA>6k_1

e, = (H([ - al-A)> €.

=1

We frequently denote the matrix in the final expression as pi(A) = Hle(f — w;A),
recognizing this as a degree-k polynomial in the matrix A. It possesses the additional
property that py(0) = I, where I denotes the identity matrix and the all-zero ma-
trix is represented by 0. We can combine polynomial methods with the concept of

preconditioning, as illustrated by the equation
MAuw = Mf (left preconditioning)

or

AM(M'u) = f (right preconditioning),

where the preconditioning matrix (or preconditioner), M, is an invertible matrix cho-
sen to accelerate convergence. If we (left) precondition the system and iterate as

above, then the iteration becomes

U = Up_1 + o M(f — Aug_q)
€ = (I — akMA)ek_l
= pk(MA)eO

Combining polynomial methods with preconditioning further improves solver perfor-

mance by leveraging the benefits of both approaches. Preconditioning improves the
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conditioning of the system matrix, which accelerates convergence rates. The choice of
preconditioner is crucial and depends on its ability to modify the spectral properties
of the matrix. Common strategies include diagonal scaling, incomplete factorizations,
and multigrid methods. By selecting and designing preconditioners tailored to specific
problem characteristics, significant improvements in solver efficiency and robustness
can be achieved. Overall, integrating polynomial methods with preconditioning rep-
resents an effective strategy for solving large-scale linear systems efficiently in various

scientific and engineering applications [32].

One approach to developing iterative methods is through a “matrix splitting”,
writing A = M~! — N. Then, Au = f is equivalent to M~'u = Nu + f, which

extends to an iteration of the form
M 'uy, = Nuy_q + f
which further leads to

up, = MNup_+ Mf
= up_1 + M(f — Auy_)

We equate this iteration with a preconditioned polynomial method with all weights
equal, a; = 1, and with preconditioner M — this is termed a stationary iterative
method.

The Jacobi method is an iterative technique used to solve linear systems of equa-
tions. In this method, the system matrix is split into diagonal and off-diagonal com-
ponents. Iterative updates are then applied using only the diagonal elements of the
system matrix. Each iteration involves solving a set of one-dimensional equations.
The Gauss-Seidel method is a similar iterative technique used to solve systems of
linear equations, particularly when the coefficient matrix is diagonally dominant or
symmetric and positive definite. Numerous classical methods prioritize achieving in-
vertibility without necessarily emphasizing convergence. In this context, we align
with this tradition and explore classical iterations where computing w; is computa-
tionally feasible. Subsequently, we investigate the conditions required on matrix A
to ensure rapid convergence of the iteration. To facilitate our analysis, we utilize the

notation A = D — L — U, where D represents a diagonal matrix, and L and U denote
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strictly lower and upper-triangular matrices, respectively. Within this framework, two

standards options for matrix splittings emerge:

e Jacobi: M~ ' =D

e Gauss-Seidel: M~'=D — L
In iteration forms, these yield

e Jacobi: up =up_ 1+ D Hf — Aup_1) = D' (L + U)ug_1 + f)

e Gauss-Seidel: u, = up_; + (D — L)' (f — Aup_1) = (D — L) *(Uuy_1 + f)

Iterative methods offer an attractive alternative to direct methods due to their optimal
cost per iteration, operating by refining an initial guess until convergence is reached.
They typically exhibit linear or near-linear computational complexity per iteration,
making them more scalable for large problems compared to sparse direct solvers.
However, iterative methods may converge slowly for certain PDEs or discretizations,
particularly for problems with highly oscillatory or rapidly varying solutions. This

slow convergence can offset their lower per-iteration cost.

Multigrid methods address these limitations by combining the scalability of iter-
ative methods with the effectiveness of direct methods for smoother components of
the solution. They exploit the multi-resolution nature of the problem to rapidly con-
verge to an accurate approximate solution by efficiently handling both low-frequency
and high-frequency components of the error. This makes them particularly well-
suited for problems like the Poisson equation or other elliptic PDEs. The multigrid
methods can serve as standalone iterative solvers or as effective preconditioners. By
combining coarse-grid correction with relaxation techniques, multigrid methods ac-
celerate convergence by damping high-frequency errors on fine grids while preserving
low-frequency errors. Additionally, they exploit grid hierarchies, allowing for efficient

information transfer between grids and systematic error correction across scales [11, 2.

2.2.1 Multigrid methods for Poisson

In the section about the multigrid method for solving the Poisson equation, we’ll cover

a few important topics. First, we’ll talk about how the weighted-Jacobi iteration helps
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to make our solutions better over time. Then, we’ll explain why it’s useful to correct
mistakes on a simpler version of the problem. After that, we’ll introduce two different
methods, called the two-grid and multigrid algorithms, and talk about different ways
to use them. Finally, we’ll look at how much it costs to use these methods and how

well they work, and we’ll also talk about a specific technique called the V-cycle.

Let’s consider the performance of the weighted Jacobi iteration for the one-dimensional
Poisson problem, discretized using finite differences on a uniform mesh, zg, 1, ..., z,,

with spacing h = 1/n. The discretization is then

1 .
(Au); = ﬁ(_ui—l +2u; —uyq) for 1<i<n-—1,
where we implicitly take uyg = u,, = 0. A direct calculation shows that the eigenvectors

v®) of A can be written as 'vl(k) = sin (%) for 1<k<n-1,as

(Av®); = (- sin —knr(z ) + 2sin ki) sin —/mr(@ +1)

h? n n n
1 (ki km\ . (km

=—|(2sin|{ — | —2cos| — |sin | —
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In [2], it is shown that v® is an eigenvector of matrix A with eigenvalue approximately
k272 for k < n. This corresponds to the convergence of discrete operator eigenvalues
to those of the continuous operator as n — oo. Furthermore, the error-propagation
operator for the weighted-Jacobi iteration is expressed as ey,; = (I — wD™ 1A)ey,
where D = %] . The convergence of the weighted-Jacobi iteration can be analyzed
for 0 < w < 1, showing that while there’s no single w value leading to significant
error reduction for small &£ while maintaining convergence, optimization strategies
can be employed. Specifically, selecting w = 2/3 ensures consistent performance
across a range of values of k£ not too close to zero, with the resulting bound estab-
lished as |ap(I —wDtA)] < £ for 2 < k < n. After thorough examination, it
becomes evident that the weighted Jacobi method serves as a highly efficient station-
ary iteration technique for reducing errors within the upper spectrum of matrix A,

regardless of the problem size. This effectiveness extends to methods like Gauss-Seidel
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[2, 32]. Similar favorable outcomes are observed across various problem types, includ-
ing two- and three-dimensional Poisson problems employing both finite-difference and
finite-element discretizations. When initiating with a typical error pattern compris-
ing numerous frequencies (eigenfunctions), the application of such iterative methods
necessarily results in the dominance of “smooth” modes (those with small k) in the
remaining error. After several iterations of the Jacobi method, the error becomes
notably smoother. Consequently, these iterative techniques are often referred to as

“smoothers” or “relaxation methods”.

Multigrid methods operate on two key insights: high-frequency errors are effec-
tively reduced by smoothing techniques, while low-frequency errors can be accurately
approximated on a coarser grid. It’s important to note that some low-frequency er-
rors on a fine grid translate into high-frequency errors on a coarser grid. By applying
smoothing and leveraging the scale differences recursively, the classical multigrid for-
mulation is achieved. In one-dimensional grids, linear interpolation serves as a natural
operator to transfer corrections between grids. This interpolation assigns values from
coarse-grid nodes to corresponding points on the fine grid. For points on the fine
grid located between coarse-grid nodes, a linear interpolation of coarse-grid values
determines the fine-grid values. This process defines a linear operator, denoted as
P, mapping coarse-grid vectors to fine-grid vectors. Considering a uniform fine grid
with mesh points zf' 2% ... 2" (where n is even) and mesh spacing h = %, and a
corresponding coarse grid with mesh points 22", ... ,a:i% with spacing 2h, the action
of P on a given coarse-level vector vy, can be described away from the boundaries as
follows:

(Pv?h)y; = 02",

(Pv*")gi1 = (0" + vil)/2,

where 7 is a coarse level index. This is depicted in Figure 2.2. Careful consideration
is required for boundary conditions. For example, with Neumann or Robin boundary
conditions on both endpoints and n being even, the described method is applicable
to all fine grid points. However, with Dirichlet boundary conditions, degrees of free-
dom such as vy on both grids are typically eliminated. In such cases, adjustments

are made to ensure corrections assume a zero error at the boundary, often yielding
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Figure 2.2: Interpolation pattern for one-dimensional grids with Neumann or Robin
boundary conditions (from [2]).

(Pv?"); = v?/2. On tensor-product grids in two dimensions, tensor-product in-
terpolation operators are commonly employed, particularly near boundaries such as

pictured in Figure 2.3.

With an interpolation operator P mapping vectors from grid 2h to grid h, a specific
correction to an approximation u! is proposed for the solution of the grid h problem
Au" = f" taking the form Pu?". Assuming u! is derived from applying a few
smoothing iteration steps to another vector, the corrected approximation is given by
ul + Pu®', aiming for the best possible approximation of this form. As is typical,
the use of the term “best” implies a metric that can be utilized to determine one
corrected approximation as superior to another. In our context, we interpret this to
be some matrix norm, ||y||3, = y* My, where M is a symmetric and positive-definite

matrix, resulting in the optimization problem in [2] as:
min |Ju" — ul + Pu®||,;.
u2h

In the specific case where M = 1, the optimization focuses on finding the best ap-
proximation in the Euclidean ly-norm. Conversely, when M = AT A, the objective
is to minimize the residual after correction. To find the minimum, the derivative is
computed and set equal to zero, a process facilitated by first squaring the quantity to

be minimized for convenience. Then,

" — (uf + Pu) [} = (ef — Pu™)" M(ef ~ Pu™)

= (ef)" Mef; — 2(u*")" P"Mefy + (u*")" P" M Pu’".
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Figure 2.3: Interpolation pattern for two-dimensional tensor product grids with a
coarse cell at left and its uniform refinement at right (from [2]).

Differentiating this with respect to u?" and equating the resulting derivative to zero

reveals that the optimal correction is defined by the solution, denoted as u?", of
PTMPu* = P Mel = PP M(u" — uf). (2.28)

Although this method looks good mathematically, it presents a practical problem be-
cause the right-hand side might be hard to calculate since it depends on the unknown
solution, u”". However, when A is symmetric and positive definite, choosing M = A
gives us a particularly nice coarse-grid problem. This choice results in the minimizer

satisfying the equation:
PTAPu*" = PT(f — Au)). (2.29)

We term the update Pu?" as a Galerkin coarse-grid correction, while the coarse grid
operator A° = PT AP is denoted as a Galerkin coarse-grid operator. The two-grid it-
eration arises from combining the aforementioned components: a smoothing iteration
and the coarse-grid correction process. Given A and f resulting from a discretization
process on grid h, along with an initial guess ug on grid h, a typical two-grid iteration is
expressed as outlined in Algorithm 1. In this context, we define v; pre-smoothing and
vy post-smoothing iterations specified by matrices M; and Ms; frequently, M; = M,
or My = (M,)T, although this choice depends on the specific problem. Typically,
very small values of 11 and vy are chosen, with optimal performance often observed
for v1 + v, = 2 or 3. However, the two-grid cycle proves inefficient as the grid 2h
problem is not substantially smaller than the fine grid problem on grid h. Hence, we

must explore methods to enhance the algorithm’s efficiency without compromising its
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Figure 2.4: Ideal two-grid error-reduction when relaxation and coarse-grid correction
are perfectly orthogonal (from [2]).

effectiveness.
Input : A, linear system matrix
f, linear system right-hand side
U, initial guess
R, restriction matrix
P, interpolation matrix
M, o, pre, post-relaxation matrix
V1,2, number of pre, post-relaxation sweeps
Output: u, approximation after one cycle
U — Ug;
fori=1to v; do
‘ u < u—+ M (f — Au) ; // Pre-relaxation
end
f <« R(f — Au) ; // Restrict residual of current approximation w
Solve RAPu?" = f2h (or A%hu®' = f?"): // Solve coarse-level problem
for u?
u + u + Pu®h ; // Coarse-grid correction
for i =1 to 1, do
u < u+ My(f — Au); // Post-relaxation
end
Algorithm 1: Two-grid algorithm
The main computational challenge in Algorithm 1 arises from the solution of the

linear system on grid 2h. In the case of a one-dimensional problem on a uniform mesh,
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Figure 2.5: Typical two-grid error-reduction when relaxation and coarse-grid correc-
tion are not perfectly orthogonal (from [2]).

with a factor of two coarsening, A%" is reduced to half the size of the original problem
on grid h. Similarly, in two dimensions, it decreases to one-fourth the size, and in
three dimensions, it decreases to one-eighth the size. To alleviate this computational

cost, two options can be considered:

e Grid 2h is not revisited at every iteration.

e The grid 2h problem is not solved exactly.

While feasible in certain scenarios, implementing the first option generally proves
challenging. This difficulty stems from the presence of a small discrepancy between
the error spaces reduced by fine-scale relaxation and coarse-grid correction. If these
error spaces were orthogonal, as sketched in Figure 2.4, handling error on the coarse
grid once and complementing it with relaxation sweeps would be feasible. However,
in most cases, these error spaces are not perfectly orthogonal, as illustrated in Figure
2.5. Consequently, subsequent relaxation reintroduces errors in spaces that can only
be rectified by further coarse-grid correction. This lack of orthogonality necessitates
revisiting the coarse-grid problem at each iteration step to eliminate errors within
the interpolation range reintroduced by relaxation. Therefore, an efficient approach
to approximately solve the grid 2h problem is required. The fundamental concept
is to recognize the similarity between the grid 2h problem and the 2h version of
the grid h problem, enabling a recursive approach. Specifically, the grid 2h version

of Algorithm 1 is utilized to address the grid 2h problem. This recursion involves
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addressing a grid 4h problem, which is tackled using the grid 4h version of the two-
grid algorithm outlined in Algorithm 1. This recursive process continues until a grid
size is reached that can be efficiently solved directly. Notationally, A is employed for
the grid h, and A° or A?" for the grid 2h in defining the two-grid algorithm. In a
multilevel algorithm, an index is employed to denote the level. For this purpose, A is
utilized, where ¢ = 0 represents the fine-level grid-h matrix A", and ¢,,,, designates
the coarsest level. With this notation, A represents the operator on level ¢ with a
grid size of 2°h (assuming a factor-of-two coarsening in the grids). Typical choices in
Algorithm 2 are p = 1, referred to as the multigrid V-cycle, and p = 2, known as the
W-cycle. The parameter p specifies the number of times the coarse-grid correction
step is applied at each level of the multigrid hierarchy. In the V-cycle (u = 1), the
algorithm progresses down the grid hierarchy, performing smoothing operations and
coarse-grid corrections, and then returns up the hierarchy, smoothing at each level
again. In the W-cycle (u = 2), the algorithm makes two recursive visits to the coarser
grids, allowing for additional corrections and potentially improved convergence rates,

albeit with increased computational cost [2].

The Multigrid V-cycle is an iterative method for efficiently solving discretized
partial differential equations. It combines smoothing operations with coarse-grid cor-
rections to converge to the solution rapidly. Starting at the finest grid level, multiple
relaxation sweeps smooth out high-frequency errors. The solution is then restricted to
coarser grids, where smoothing is applied iteratively until reaching a tractable level.
A direct solver or other relaxation scheme is used at this coarse level. After solving
on the coarsest grid, the solution is interpolated back to finer grids, and correction
updates refine the solution iteratively. This recursive smoothing and correcting on

different grid levels resemble the shape of the letter “V,” hence the name V-cycle.
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Input: A, level-¢ operator

u, f, initial approximation, level-¢ right-hand side

R, P, level-¢ restriction and interpolation matrices

M, 2, V1.9, level-£ pre, post-relaxation matrix and number of sweeps
¢, current grid level

Output: u, approximation after one u-cycle on level ¢

for i =1 to v, do

‘ u < u+ M (f— Au) ; // Pre-relaxation
end
' R(f — Au) ; // Restrict level-{ residual
if ¢=1¢,, —1then
‘ wbmax ¢ (Abmax)~1 flmax 