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Abstract 

The production effect refers to the finding that words read aloud are better remembered than 

words read silently. This finding is typically attributed to the presence of additional sensorimotor 

features, appended to the memory trace by the act of reading aloud, which are not present for 

items read silently. Supporting this perspective, the production effect tends to be larger for 

singing than reading aloud (the singing superiority effect), possibly due to the inclusion of 

further sensorimotor features (e.g., more variable tone). However, the singing superiority effect 

has not always replicated. Across two experiments, I demonstrated robust production effects for 

both reading aloud and singing but observed a singing superiority effect only when items were 

tested in the same colour in which they were studied (with foils randomized to colour). A series 

of meta-analytic models revealed the singing superiority effect to be smaller than previously 

thought, and to emerge only when test items are presented in the same colour in which they were 

studied. This outcome is inconsistent with common distinctiveness-based theoretical accounts.  

Keywords: production, memory, singing, distinctiveness 

 

  



PRODUCTION AND SINGING 

iii 
 

General Summary 

People tend to exhibit better memory for words that they read aloud (i.e., produce) 

relative to words they read silently; this phenomenon is known as the production effect. This 

finding is thought to occur because the additional sensory processing that occurs when producing 

words (e.g., moving one’s mouth, hearing oneself say the word) renders the words distinctive in 

memory relative to those read silently. One piece of evidence supporting this hypothesis is the 

finding that singing words results in an especially large benefit to memory that is superior even 

to reading aloud. This singing superiority effect has been explained by some as occurring due to 

additional sensory processing that is unique to singing. However, the present thesis provides 

evidence that the relative superiority of singing over reading aloud has been overstated, and that 

the singing superiority effect is likely driven by idiosyncratic methodological factors rather than 

additional sensory processing. These findings pose a challenge to dominant, distinctiveness-

based theories of the production effect.  
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Chapter 1: Introduction 

Of the faculties possessed by the human mind, few are as remarkable or important as our 

capacity to remember. Without memory, we would be ill-equipped to function altogether; in fact, 

some researchers have gone as far as to suggest that our conceptions of self are constructed and 

defined by our memories (e.g., Robinson & Taylor, 2014). Given our reliance upon this faculty, it 

is unsurprising that there exists long-standing interest – academic and otherwise – in how we 

might improve our ability to remember information (e.g., James, 1890). Perhaps one of the oldest 

and most intuitive mnemonic strategies is the act of reading to-be-remembered information 

aloud. Historically, this strategy has been employed by ancient Greeks to aid memorization of 

poetry (e.g., Lentz, 1985) and by scholars in the Middle Ages as a means of committing religious 

texts to memory (e.g., Burke & Ornstein, 2018). In more recent contexts, college students 

commonly report reading lecture notes and textbook passages aloud as a method of learning 

course material and studying for examinations (e.g., Morehead et al., 2016). However, despite 

millennia of usage and intuitive wisdom favoring the benefits of reading information aloud, 

formal academic study of this strategy began only half a century ago (e.g., Crowder, 1970; 

Hopkins & Edwards, 1972; Kappel et al., 1973; Routh, 1970). Since the inception of this field of 

research, empirical findings have converged in support of the notion that information read aloud 

is remembered better than information read silently, a phenomenon that has since been termed 

the production effect (MacLeod et al., 2010).  

The earliest documentation of the production effect is commonly attributed to Hopkins 

and Edwards (1972), who demonstrated that participants remember words read aloud 

significantly better than those read silently using a mixed-list recognition paradigm.1 The 

 
1 Although Hopkins and Edwards (1972) were apparently the first to document the production effect using words as stimuli, earlier reports of 

mnemonic advantages for produced stimuli using digit span paradigms exist (e.g., Crowder, 1970; Routh, 1970).  
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phenomenon remained relatively obscure in the years that followed, although sporadic 

investigations during this period extended the production effect across modalities (e.g., writing, 

mouthing) and began to develop theoretical frameworks to explain the benefit (e.g., Conway & 

Gathercole, 1987; Dodson & Schacter, 2001; Gathercole & Conway, 1988; Greene & Crowder, 

1984; Kappel et al., 1973; MacDonald & MacLeod, 1998). Nearly four decades after the 

phenomenon was first documented, MacLeod et al. (2010) reignited academic interest in the 

production effect, widening its boundaries and generating new theoretical knowledge. The effect 

has since been shown to persist across a variety of production modalities, with benefits 

demonstrated for spelling, typing (Forrin et al., 2012), drawing (Namias et al., 2022; Wammes et 

al., 2016), signing (Taitelbaum-Swead et al., 2018) and even imagining the act of production 

(Jamieson & Spear, 2014). Further, whilst typical studies of the production effect tend to employ 

mixed-list, recognition paradigms, research has demonstrated the benefit to be robust across 

variations in experimental design (e.g., free recall; Lin & MacLeod, 2012; between-subjects or 

pure-list manipulations; Bodner et al., 2014; for a review, see Fawcett et al., 2023), stimuli (e.g., 

sentences; Ozubko et al., 2012a; pictures; Fawcett et al., 2012), and populations (e.g., older 

adults; Icht et al., 2022; Lin & MacLeod, 2012; young children; Icht & Mama, 2015; Pritchard et 

al., 2020). Finally, research in the applied domain has explored how the production effect might 

be leveraged to improve verbal learning in clinical populations (e.g., Icht et al., 2019; Mama & 

Icht, 2019) or as a study aid (e.g., Ozubko et al., 2012a). 

Although practical applications of the production effect show promise, the majority of 

research on the phenomenon has been theoretically – rather than practically – motivated. Early 

investigations speculated that a production-related benefit might arise due to deeper processing 

of produced items (e.g., Crowder, 1970), additional sensory information present at encoding 
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(e.g., Kappel et al., 1973), or impaired encoding of unproduced items (e.g., Hopkins & Edwards, 

1972; Routh, 1970). More recently, the latter two explanations have been refined into the 

distinctiveness account, which suggests that production (relative to reading) renders stimuli 

distinctive in memory, facilitating better retrieval at test (Conway & Gathercole, 1987; Dodson 

& Schacter, 2001; MacLeod et al., 2010). This framework has garnered a great deal of empirical 

support (e.g., MacLeod et al., 2010; Ozubko & MacLeod, 2010; Richler et al., 2013) and is 

generally accepted as the dominant theoretical account of the production effect (Fawcett, 2013; 

Fawcett et al., 2023; MacLeod & Bodner, 2017).  

However, other theorists have challenged explanations of the production effect that rely 

solely on distinctiveness, proposing instead roles for strength of encoding (e.g., Bodner et al., 

2016; Fawcett & Ozubko, 2016; Bodner & Taikh, 2012), differential retention of item-order 

information (e.g., Jonker et al., 2014; Lambert et al., 2016), and variation in attentional processes 

at encoding (e.g., Fawcett et al., 2022; Mama et al., 2018; Willoughby et al., 2019). One 

theoretical challenge to the distinctiveness account has arisen on the basis of findings that the 

magnitude of the production effect does not necessarily increase as the productive act becomes 

more distinctive (e.g., Hassall et al., 2016; Wakeham-Lewis et al., 2022; Whitridge, 2022). The 

present thesis explored this finding further by manipulating singing as a study modality in 

production tasks (Hassall et al., 2016; Quinlan & Taylor, 2013, 2019; see also, Forrin et al., 

2012). In the sections that follow, I review evidence pertaining to both the distinctiveness 

account and alternative theories of the production effect. Subsequently, I discuss potential 

theoretical bases of the production effect for singing in relation to distinctiveness frameworks.  
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1.1 Distinctiveness Accounts of the Production Effect  

Modern distinctiveness-based accounts of the production effect derive largely from two 

early assertions: (1) For produced items, additional sensory processing occurs at encoding, a 

record of which exists in memory and can be accessed later (Kappel et al., 1973); and (2) the 

benefit for produced items can occur only relative to unproduced items (Hopkins & Edwards, 

1972). In their present incarnation, distinctiveness-based accounts generally contend that 

producing an item appends additional cues (or features) to the memory trace associated with the 

item. These features represent a record of sensorimotor processing that occurs at encoding for 

produced (but not unproduced) items (e.g., auditory and motoric processing); the resulting 

association between produced items and processing records has been referred to by some as the 

production trace (Fawcett, 2013; Fawcett et al., 2012). At test, items associated with distinctive 

features are thought to stand out against the backdrop of unproduced items, yielding an 

advantage for the former (Forrin et al., 2012; MacLeod et al., 2010; see also Conway & 

Gathercole, 1987; Dodson & Schacter, 2001).  

There exists heterogeneity within distinctiveness-based accounts, with some variants 

contending that the production trace is leveraged consciously in the form of a distinctiveness 

heuristic: Participants are thought to scan their episodic memory for information about having 

produced an item at study and use this information to guide discrimination between old and new 

items on recognition tests (“I remember saying this item aloud, so I must have studied it;” 

Dodson & Schacter, 2001; MacLeod et al., 2010). On the other hand, frameworks derived from 

feature-based models of human memory (e.g., MINERVA 2; Hintzman, 1984) suggest that the 

presence of distinctive features might intrinsically render items more easily retrievable: If 

retrieval is dependent upon activation of features, items with a larger number of associated 



PRODUCTION AND SINGING 

14 
 

features (e.g., produced items) possess an inherent advantage, eliminating the need for 

distinctiveness to be employed strategically (for a detailed discussion, see Jamieson et al., 2016). 

Regardless of whether distinctiveness is leveraged consciously or otherwise, the 

framework has been well-supported empirically as an explanation for the production effect. One 

key piece of evidence for this account is the finding that manipulating the utility of 

distinctiveness can reduce or eliminate the production effect (e.g., Bodner et al., 2016; Icht et al., 

2014; MacLeod et al., 2010; Ozubko & MacLeod, 2010; Richler et al., 2013). For example, 

MacLeod et al. (2010, Experiment 4) had participants study a mixed list wherein “aloud” items 

were produced either by pressing a key or saying the word “yes” aloud; importantly, participants 

in a given condition produced each “aloud” item in the same manner. Under these conditions, the 

production effect was eliminated altogether, with similar recognition performance for produced 

and unproduced items. Although additional sensorimotor processing would be expected to occur 

at study for both keypresses (i.e., motoric processing) and “yes” responses (i.e., motoric and 

auditory processing), the record of processing was common across produced items in this 

paradigm, diminishing the utility of the production trace (see also, Castel et al., 2013).  

These findings were later replicated and extended by Richler et al. (2013) in a picture 

naming paradigm: Relative to silent naming, producing the full name of an object yielded a 

significant advantage in recognition memory, whereas using a non-distinct keypress to label an 

object did not.2 Richler et al. further observed that producing object names led to a benefit only 

when the names of objects were distinctive; labelling aloud object exemplars that belonged to a 

common category (e.g., chair, lamp, etc.) yielded no advantage in discrimination relative to 

 
2 Although Richler et al. (2013) has been accepted as evidence for the distinctiveness account (see, e.g., MacLeod & Bodner, 2017), it is likely 
that the influence of production in this study was confounded that of response generation, which may impact interpretation of the results (see 

Whitridge et al., submitted; Zormpa et al., 2019).  
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silent naming. Taken together, the findings of MacLeod et al. (2010) and Richler et al. (2013) 

suggest that the mere presence of additional sensorimotor information is not adequate to produce 

a mnemonic benefit for produced items. Rather, the production trace must be sufficiently item-

specific for a production effect to occur, as distinctiveness accounts predict.  

Similarly, decreasing the diagnostic value of the production trace appears to impede the 

production effect. Experiments by Ozubko and MacLeod (2010) utilized a source monitoring 

paradigm wherein participants studied two lists – a pure list (i.e., a list wherein all items are 

studied either aloud or silently) and a mixed list (i.e., a list wherein some items are studied aloud 

and some are studied silently) – and later completed a recognition test that required judgements 

as to which list each item originated from. The authors found that the production effect in source 

monitoring (see Ozubko et al., 2012b, 2014) was eliminated when participants studied the pure 

list aloud, but not silently. Because participants in the pure-aloud condition produced words from 

both lists, Ozubko and MacLeod (2010) suggested that participants’ records of having produced 

a word were not distinctive to either list; the production trace would thereby have possessed little 

diagnostic value in discriminating between sources. Conversely, when silent pure lists were 

studied, participants could successfully leverage distinctive information about having studied 

words aloud in only one of the lists, leading to the production benefit that is typically observed in 

source monitoring (e.g., Ozubko et al., 2012b, 2014). In support of a distinctiveness account, 

then, these results indicate that even an item-specific record of processing is not diagnostic 

unless distinctive information can be leveraged to guide discrimination. 

However, not all empirical evidence favors distinctiveness-based accounts. One early 

prediction made by this framework was that the production effect should be confined to mixed 

list (i.e., within-subject) designs and should not occur for pure list (i.e., between-subject) designs 
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(Hopkins & Edwards, 1972; MacLeod et al., 2010); according to Hunt (2006), distinctiveness is 

not absolute and can emerge only when some stimuli stand out relative to others. Although a 

number of early investigations failed to observe a benefit when production was manipulated 

between-subject (e.g., Dodson & Schacter, 2001; Hopkins & Edwards, 1972; MacLeod et al., 

2010), such an effect has since been observed in experimental studies (e.g., Bodner et al., 2014; 

Bodner et al., 2016; Forrin et al., 2016; Taikh & Bodner, 2016; see also, Gathercole & Conway, 

1988; Greene & Crowder, 1984; Kappel et al., 1973) and supported further by meta-analyses 

(Fawcett, 2013; Fawcett et al., 2023; see also, Bodner et al., 2014). Recent meta-analytic efforts 

by Fawcett et al. (2023) suggested the apparent unreliability of the between-subject production 

effect in previous investigations could be attributed largely to underpowered experiments: The 

benefit is smaller in between-subject designs and therefore requires larger samples to detect 

reliably.  

Initially, the between-subject production effect was thought to occur only in tests of 

recognition, with no reliable advantage being observed in recall (e.g., Jones and Pyc, 2014; but 

see Greene & Crowder, 1984; Kappel et al., 1973).3 However, recent experiments by Saint-

Aubin and colleagues (Cyr et al., 2022; Saint-Aubin et al., 2021; Gionet et al., 2022) have 

revealed that production interacts with serial position in between-subject recall paradigms: While 

a reliable production effect occurs for items in later serial positions, a reverse production effect 

(i.e., silent > aloud) occurs for early positions (see Fawcett et al., 2023 for a meta-analysis of this 

effect). These opposing effects seemingly “cancel out,” such that recall performance for whole 

lists of aloud items is similar to that of silent items; this mechanism may have obfuscated the 

between-subject production effect in recall paradigms that failed to observe such a benefit (e.g., 

 
3 Although production does not necessarily appear to benefit item memory in between-subject recall paradigms, recent meta-analytic efforts have 

demonstrated a reliable, production-related reduction in intrusions for such paradigms (Fawcett et al., 2023). 
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Jones & Pyc, 2014). This unusual pattern of results is believed to occur because producing items 

interferes with rehearsal. Typically, primacy effects in serial recall occur because early items 

benefit from rehearsal to a greater extent than later items (e.g., Marshall & Werder, 1972). In 

production paradigms, however, interference due to sensorimotor processing of subsequent items 

eliminates both the primacy advantage and the production effect for early items. On the other 

hand, the benefit of production persists for later items because they are not subject to the same 

degree of sensorimotor interference (i.e., because few or no additional items are produced prior 

to the test). Although the task-specific demands of recall paradigms result in a nuanced pattern of 

findings, these studies nonetheless demonstrate that the between-subject production effect – 

much like the within-subject effect – is robust to changes in experimental design. 

Considered in aggregate, evidence for a between-subject production effect poses a 

substantial theoretical challenge to distinctiveness-based frameworks of the effect. Interestingly, 

however, some authors suggest that the existence of a smaller between-subject production effect 

may in fact be compatible with distinctiveness accounts (e.g., Ozubko et al., 2020; see also, 

Jamieson et al., 2016): Evidence suggests that the larger within-subject production effect results 

from both a benefit to aloud items and a cost to silent items (e.g., Bodner & Taikh, 2012; Bodner 

et al., 2014; Forrin et al., 2012; Ozubko et al., 2020). For example, Bodner et al. (2014) 

compared sensitivity scores (d’) for items that were studied in either a pure or mixed list. 

Sensitivity for items produced at study was shown to be similar across designs, whereas 

performance for silent items was significantly worse for mixed designs. This finding was 

replicated and extended by Ozubko et al. (2020), who found that adding encoding conditions to 

the study phase further hindered performance for silent items in mixed-list designs (see also, 

Forrin et al., 2012). Heuristic-based distinctiveness accounts dictate that in recognition 
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paradigms, participants search for a record of having produced a given item (i.e., distinctive 

information about encoding) to determine whether the item had previously been studied (see 

also, Dodson & Schacter, 2001). Ozubko et al. (2020) suggested that when participants fail to 

retrieve such a record – as would be expected for unproduced items – they are more likely to 

decide that an item was not studied, leading to a decrement in performance for silent items. 

When additional modalities are added at study, participants will also search for distinctive 

information relating to these other encoding conditions; if these checks also fail, participants’ 

confidence in having studied silent items will decrease even further. Thus, a smaller between-

subject production effect is congruent with some interpretations of distinctiveness: Because there 

is no cost to silent items in between-subject designs, the benefit for aloud items is larger relative 

to within-subject designs. 

On the other hand, the existence of a smaller between-subject production effect also 

suggests that the benefit may not be explained by distinctiveness alone (Bodner et al., 2016; 

Fawcett & Ozubko, 2016). Key evidence for this assertion has been obtained from studies that 

have adapted production paradigms to test a dual process model (e.g., Fawcett & Ozubko, 2016). 

Generally, dual process models contend that performance on tests of memory is driven by two 

distinct processes: recollection and familiarity. Recollection is believed to involve a specific and 

vivid re-experiencing of the initial encoding episode, whereas familiarity is construed as more 

generalized and indirect feelings of having encountered the item before (for a review, see 

Yonelinas, 2002). Previous efforts that have tested the influence of production on each process 

by adding remember/know (i.e., recollect/familiar) judgements to the test phase in production 

paradigms have shown that production benefits both recollective and familiarity processes 

equivalently in within-subject designs (e.g., Ozubko et al., 2012b, 2014).  



PRODUCTION AND SINGING 

19 
 

However, experiments by Fawcett and Ozubko (2016) demonstrated a pattern of 

influence that differed across designs such that the within-subject effect was driven by both 

recollection and familiarity, whereas the between-subject effect was driven by familiarity alone. 

Critically, the authors suggested that distinctiveness in production is a recollective process, given 

that participants are thought to consciously check their memories for specific details about the 

encoding episode (e.g., Dodson & Schacter, 2001; Forrin et al., 2012; MacLeod et al., 2010). 

Accordingly, Fawcett and Ozubko (2016) hypothesized that the larger within-subject production 

effect results from both distinctive recollective processes and another yet-to-be identified 

mechanism that drives the benefit in familiarity; on the other hand, the between-subject effect 

must be driven predominantly by the latter process alone, leading to a smaller benefit relative to 

the within-subject effect.4 Although these findings suggest that distinctiveness does play a role in 

the within-subject benefit, they also imply that theoretical frameworks based solely upon 

encoding distinctiveness cannot account for the between-subject effect.  

Such a hypothesis has been supported further by experiments that have tested source 

memory in between-subject production paradigms (e.g., Bodner et al., 2020). Production has 

been shown to benefit source memory in within-subject designs (e.g., Ozubko et al., 2012b; 

2014), which is congruent with distinctiveness-based frameworks: Participants are thought to 

leverage distinctive information about the encoding episode (i.e., recollective processes) to guide 

memory for items, which should therefore translate to improved memory for details about the 

encoding episode (i.e., source). If the within- and between-subject production effects rely on the 

same type of distinctive processing at encoding, the benefit in source monitoring should persist 

 
4 Recent observations of a between-subject production effect in tests of recall (e.g., Cyr et al., 2021; Gionet et al., 2022; Saint-Aubin et al., 2021) 
– wherein test performance should depend predominantly upon recollective processes – suggest that the recollective component of the production 

effect may also involve processes beyond encoding distinctiveness. 
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regardless of experimental design. However, if the between-subject production effect relies 

instead on processing that is not recollective in nature – as suggested by Fawcett and Ozubko 

(2016) – production would not be expected to enhance source memory in these designs. A series 

of experiments by Bodner et al. (2020) confirmed the latter prediction, as production – when 

manipulated between-subject – did not enhance memory for item location, font size, or study 

modality.5,6  

Another recent theoretical challenge to distinctiveness-based frameworks is the finding 

that the production effect can sometimes persist even when participants cannot leverage the 

production trace to guide discrimination between items (Fawcett et al., 2022). Fawcett et al. 

(2022) utilized a production paradigm that required two-alternative forced choice judgements at 

test between target-lure pairs that were either homophones (e.g., band-banned, piece-peace, etc.) 

or unrelated. According to typical distinctiveness accounts (e.g., Forrin et al., 2012; MacLeod et 

al., 2010), the production effect should be eliminated for participants tested using homophone 

lures: The distinctive auditory and motoric representations that production is thought to append 

to the memory trace would be ineffective in guiding discrimination between homophone pairs 

because either word in the pair would encode identical sensorimotor representations. Contrary to 

these predictions, Fawcett et al. (2022) found that the production effect persisted for participants 

tested with homophone lures and was similar in size to that observed for unrelated lures. 

Although previous studies that have experimentally manipulated the utility of the production 

trace have successfully eliminated the benefit altogether (e.g., MacLeod et al., 2010; Ozubko & 

 
5 In a subsequent experiment, Bodner et al. (2020) observed a production effect for judgements of study modality when manipulations of 

modality were made particularly salient to participants. However, some theorists have argued that judgements of study modality constitute reality 

monitoring (see Johnson et al., 1993 for a detailed discussion) and elicit different types of cognitive processing relative to external (i.e., 
perceptual) source monitoring tasks (see, e.g., Riefer et al., 2007). Thus, it is unclear whether the production effect in reality monitoring (see also, 

Ozubko et al., 2012b, 2014) is directly comparable to the external source monitoring tests in Bodner et al. (2020).   
6 In contrast to the above, production does seem to enhance memory for details beyond the item itself in within-subject designs (e.g., Hourihan & 
Churchill, 2020). However, some recent work suggests that these benefits might be driven by processes related to response generation rather than 

solely production (Whitridge et al., submitted).  
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MacLeod, 2010), the findings of Fawcett et al. (2022) indicate that the production effect can 

remain intact even when key elements of distinctiveness are obviated. Considered in aggregate 

with other theoretical challenges to the distinctiveness account (e.g., Bodner et al., 2020; Fawcett 

& Ozubko, 2016), these results strongly suggest that distinctiveness alone cannot fully explain 

the production effect. In the section that follows, I describe alternative theoretical explanations of 

the production effect and empirical findings that have supported – or failed to support – these 

accounts.  

1.2 Alternative Accounts of the Production Effect 

If distinctiveness alone cannot fully account for the benefit of production, what other 

cognitive mechanisms might drive the effect? One possibility is that produced items are simply 

better encoded relative to unproduced items, a hypothesis known as the strength account: If 

producing words lead to the formation of stronger memory traces, produced items should be 

more easily retrieved relative to unproduced items (MacLeod et al., 2010; Ozubko & MacLeod, 

2010; Bodner & Taikh, 2012). Initially, this hypothesis was almost universally rejected by 

theorists because of failures to observe a significant between-subject production effect; strength 

accounts would predict production to benefit memory regardless of experimental design 

(MacLeod et al., 2010). Evidence for the between-subject effect, then, has renewed the viability 

of strength accounts (but see Jamieson et al., 2016), and a number of investigations have since 

provided evidence compatible with a role of encoding strength in facilitating production effects 

(e.g., Bodner et al., 2016, 2020; Fawcett & Ozubko, 2016; Icht et al., 2016; Mama & Icht, 2018; 

Taitelbaum-Swead et al., 2017).  

Some evidence for a strength account has been derived from findings that manipulating 

statistical distinctiveness does not impact the magnitude of the production effect (Bodner et al., 
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2016; cf. Icht et al., 2014; Zhou & MacLeod, 2021). In this context, statistical distinctiveness 

refers to the relative frequency with which a given type of item is processed (e.g., the percentage 

of aloud items in a mixed-list production paradigm) and can be distinguished from encoding 

distinctiveness, which refers to distinctive processing modalities employed at encoding (Huff et 

al., 2015; Gretz & Huff, 2020). Although distinctiveness accounts of the production effect 

typically refer – explicitly or otherwise – to encoding distinctiveness, the mixed-list advantage 

implies that statistical distinctiveness is also a factor (MacLeod et al., 2010; see also, Hopkins & 

Edwards, 1972). In a test of this account, experiments by Bodner et al. (2016) showed (1) that 

the size of the production effect did not differ across mixed and pure lists (but see Bodner et al., 

2014), and (2) was consistent regardless of whether aloud items occurred 20% or 80% of the 

time in a mixed list. Distinctiveness-based accounts would predict the relative frequency of items 

to modulate the size of the production effect: When aloud items occur less frequently in a mixed 

list, they should be more distinctive relative to the backdrop of unproduced items and thereby 

better remembered. Accordingly, the findings of Bodner et al. (2016) are congruent with a 

strength account, which would predict a consistent production effect across differing degrees of 

statistical distinctiveness.  

Further support for a strength account comes from findings that the production effect is 

augmented when production is more effortful (e.g., Icht et al., 2016; Mama & Icht, 2018; 

Taitelbaum-Swead et al., 2017). For example, Mama and Icht (2018) employed a paradigm 

wherein participants delayed their production of items until after the items had disappeared. 

Because the words were not visible at the time of production, participants had to retrieve items 

from working memory as a prerequisite to producing the items, increasing the amount of effort 

required to perform the task. Critically, Mama and Icht (2018) found that delaying production for 
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either one or three seconds resulted in a significantly larger benefit relative to immediate 

production. This finding cannot easily be accommodated by distinctiveness-based accounts: Both 

immediate and delayed production recruit the same distinctive encoding processes at study, and 

no additional sensorimotor processing that would be expected to give rise to a larger benefit 

occurs for delayed production. Moreover, some of the experiments conducted by Mama and Icht 

(2018) included only conditions wherein items were produced (rather than produced or read 

silently), eliminating any benefit that the relative distinctiveness of reading items aloud might 

afford.  

Similarly, Icht et al. (2019) and Taitelbaum-Swead et al. (2017) respectively 

demonstrated that the production effect is larger in dysarthric and hearing-impaired populations 

relative to healthy controls. Because these clinical populations are characterized by difficulties 

with speech and hearing, respectively, production-related sensorimotor processing would be 

expected to require more effort relative to healthy populations. Once again, distinctiveness 

accounts cannot explain the effect’s increase in magnitude under these circumstances, given that 

dysarthric and hearing-impaired participants would not be expected to recruit additional 

distinctive processing at encoding. However, the findings of Mama and Icht (2018; Icht et al., 

2019; Taitelbaum-Swead et al., 2017) fit neatly within a strength account: When participants 

expend additional effort at encoding, the resulting memory trace should benefit from stronger 

encoding and be more easily retrieved, leading to a larger benefit. 

Evidence for a strength account discussed thus far does not necessarily address the 

important questions of why produced items might be more strongly encoded. One candidate 

mechanism that has been identified in the literature is that the production effect might be driven 

by differential engagement with produced and unproduced items (e.g., Bailey et al., 2021; 
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Fawcett & Ozubko, 2016; Fawcett et al., 2022; MacDonald & MacLeod, 1998; Mama et al., 

2018; Varao Sousa et al., 2013; Willoughby et al., 2019). According to this framework, 

participants attend better to produced items at study; allocation of additional cognitive resources 

to these items leads to better-encoded memory traces that can be more easily retrieved at test. 

Anecdotally, participants report paying more attention during study trials wherein items are 

produced (Fawcett & Ozubko, 2016) and additionally, the majority of evidence in support of a 

strength account is compatible with an attentional framework (e.g., Icht et al., 2019; Mama & 

Icht, 2018; Taitelbaum-Swead et al., 2017). However, the aforementioned findings do not 

necessarily implicate attention as the proximate cognitive mechanism underlying strength. 

Other studies have provided more specific evidence for a role of attention in facilitating 

the production effect. For example, Varao Sousa et al. (2013) found that production appears to 

reduce distractibility. This study used a reading comprehension paradigm (see also, Ozubko et 

al., 2012a) with three conditions: Participants either read passages of text silently, aloud, or had 

the passages read to them. After studying the passages, participants self-reported instances of 

mind wandering that occurred during study. Importantly, the authors found that mind wandering 

was significantly lower when passages were read aloud relative to reading silently or passive 

listening. These results are incongruent with a distinctiveness account, given that there is no 

reason to expect that distinctive encodings at study would decrease distractibility. Instead, Varao 

Sousa et al. (2013) strongly supports an attentional framework: Participants allocate more 

attention to items during production and accordingly, fewer attentional resources are available to 

attend to distractions.  

Further evidence for an attentional hypothesis comes from findings that the production 

effect is reduced or eliminated when decrements to attention are present (e.g., Mama & Icht, 
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2019; Mama et al., 2018). For example, Mama and Icht (2019) compared the production effect in 

healthy controls to that observed in participants with attention-deficit hyperactivity disorder 

(ADHD), a clinical population that typically exhibits severe impairments to executive function 

and sustained attention (Woods et al., 2002). The authors found that while participants with 

ADHD did exhibit a production effect, the benefit for aloud items was significantly smaller than 

that of the healthy controls. This is congruent with an attentional hypothesis insofar as deficits to 

attention appear to hinder the production effect, although this finding alone does not rule out 

alternative mechanisms that might occur due to other cognitive deficits associated with ADHD 

(e.g., working memory impairments). However, Mama and Icht (2019) also established that 

administration of methylphenidate – a drug commonly prescribed to treat ADHD – increased the 

size of the production effect in participants with ADHD such that performance for produced 

items was nearly equivalent to healthy controls. Critically, methylphenidate is thought to 

improve symptoms of ADHD because it normalizes attentional processing in neural networks 

that are typically disrupted for individuals with the disorder (Shafritz et al., 2004). It appears, 

then, that abnormal attentional processing disrupts the production effect, but the benefit returns 

to near-normal levels when this processing is normalized. 

Similar findings have been obtained by experimentally manipulating attention in non-

clinical populations using background noise (Mama et al., 2018). Task-irrelevant background 

noise impacts performance on a variety of cognitive tasks and this impact varies depending on 

how distracting the noise is (see Banbury et al., 2001 for a review). Steady-state, consistent 

background noise can typically be ignored and has little impact on task performance, whereas 

fluctuating noise disrupts attention and impairs performance. To test an attentional hypothesis of 

the production effect, Mama et al. (2018) had participants complete a typical production task 
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while either steady-state or fluctuating background noise was present. The authors found that the 

production effect was eliminated altogether when participants were exposed to fluctuating noise. 

Importantly, however, the production effect was robust in the steady-state noise condition, 

suggesting that the decrement observed for fluctuating noise did not occur simply because 

background noise interfered with distinctive auditory processing. Mama et al. (2018) explained 

these findings with reference to an attentional account: Fluctuating noise interfered with the 

increase in attention that is typically allocated to produced items, whereas steady-state noise was 

easily ignored and therefore left the increase in attentional processing intact. This pattern of 

results is akin to that observed by Mama and Icht (2019) and provides direct evidence supporting 

a role of attention in facilitating the production effect. 

An attentional account of the production effect has also been investigated using 

neurocognitive production paradigms, which have provided mixed evidence supportive of a role 

for attention (e.g., Bailey et al., 2021; Hassall et al., 2016; Zhang et al., 2023). The first such 

investigation was conducted by Hassall et al. (2016), who used electroencephalography (EEG) to 

record neural activity during study trials in a three-condition production paradigm (i.e., read 

aloud, read silently, sing aloud). Activity was measured at 300-500 ms following presentation of 

the instruction to produce or silently read an item (i.e., during the preparatory phase of the 

productive act). In addition to a typical behavioral production effect (i.e., better recognition 

performance for produced versus unproduced items), the authors observed a pattern of 

psychophysiological results that mirrored the behavioral findings: Relative to trials for which 

items were read silently, production trials were associated with increases to the amplitude of the 

P300b (P3b) component of the event-related brain potential. Some studies have interpreted such 

a pattern in P3b amplitude as reflective of distinctive encoding. For example, Otten and Donchin 
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(2000) and Karis et al. (1984) demonstrated increases to the amplitude of the P3b for words 

presented in large (relative to small) font, a manipulation thought to render items more 

distinctive. Similarly, P3b amplitude has been shown to scale proportional to the statistical 

distinctiveness of a given type of item presented in a set (e.g., Donchin, 1981). Accordingly, 

Hassall et al. (2016) interpreted their findings as supportive of a distinctiveness hypothesis: 

Producing words elicits distinctive processing and thereby produces a larger P3b. 

However, other evidence suggests that the P3b can reflect increases in attentional 

allocation at encoding (see Kok, 2001, and Polich & Kok, 1995, for reviews). For example, the 

amplitude of the P3b can be increased by (1) manipulating task difficulty – and thereby the 

degree of attentional processing required for task performance – by introducing a second, 

distracting task (e.g., Isreal et al., 1980); and (2) increasing the salience of task-relevant (but not 

irrelevant) stimuli in divided attention paradigms (e.g., Kramer et al., 1983). Thus, the patterns of 

results reported by Hassall et al. (2016) is also compatible with an attentional account of the 

production effect. This hypothesis is favored by Zhang et al. (2023), who replicated the 

psychophysiological results of Hassall et al. (2016) using a similar paradigm. Zhang et al. (2023) 

were additionally able to rule out the notion that increases to the P3b might have resulted simply 

because participants had to respond vocally to aloud trials. This was accomplished through the 

inclusion of an aloud control condition, wherein participants responded to all items by producing 

the word “check” aloud; for these trials, there was neither a behavioral nor psychophysiological 

production effect (see also, MacLeod et al., 2010; Richler et al., 2013). Accordingly, increases to 

the P3b during the preparatory phase of production appear to reliably indicate a production-

related change in processing at encoding, but the matter of whether this change in processing 

reflects distinctiveness or attentional increases cannot yet be resolved (Zhang et al., 2023). 
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However, it should be noted that the P3b is generally interpreted as an index of attentional 

allocation rather than distinctive encoding (Kok, 2001; Polich & Kok, 1995).  

In addition to EEG paradigms, an investigation of the production effect using functional 

magnetic resonance imaging (fMRI) conducted by Bailey et al. (2021) showed patterns of neural 

activity compatible with an attentional hypothesis. In this study, participants completed a typical 

production task while situated within an MRI machine, and functional neural scans were 

obtained prior to and during the study and test phases; Bailey et al. (2021) also included an aloud 

control condition similar to that described in Zhang et al. (2023) to disentangle changes in 

activity that might occur when a response of any kind is made from changes specific to 

production of unique items. The authors found that producing items at study was associated with 

increased neural activation in areas associated with auditory and articulatory processing (e.g., 

auditory cortex, premotor cortex), which is congruent with suggestions that participants allocate 

additional attention to sensorimotor processes during production. However, Bailey et al. (2021) 

note that these findings are also consistent with distinctiveness-based hypotheses: Increased 

activation in regions relevant to sensorimotor processing might also reflect distinctive 

processing. Much like evidence derived from EEG studies of production, then, fMRI cannot yet 

adjudicate between theoretical accounts of the effect.  

Finally, one recent investigation used pupillometry as an indirect index of attentional 

allocation to explore the role that attention might play in facilitating the production effect 

(Willoughby, 2019). Cognitive pupillometric studies use eye-tracking devices to measure pupil 

dilation while participants perform cognitive tasks; evidence generally suggests that pupil 

dilation increases as participants expend more cognitive effort during task performance (see 

Beatty, 1982 for a review). If production increases attentional engagement, then, pupil dilation 
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would be expected to increase during the productive act. To test this hypothesis, Willoughby et 

al. (2019) had participants complete a typical production task (including an aloud control 

condition) while being monitored by an eye tracker. In line with an attentional account, the 

authors observed a significant increase in pupil dilation for aloud relative to silent trials. 

However, this benefit occurred in both the aloud and aloud control conditions; as such, increases 

in pupil dilation may have occurred simply due to the increased cognitive effort associated with 

responding to trials vocally. Because no behavioral production effect was observed in the aloud 

control condition, this increase in cognitive effort cannot be definitively linked to the benefit. 

However, Willoughby et al. (2019) also observed a decrease in pupil size during silent trials such 

that dilation dropped below baseline measures late in the trials. This finding may suggest that 

participants engage in less effortful processing during silent trials, which could potentially 

explain the cost to silent items observed in mixed list designs (e.g., Bodner et al., 2014; Ozubko 

et al., 2020) and favors a role for attentional processes in facilitating the production effect. Given 

the inconsistent findings for aloud trials, however, pupillometric evidence for an attentional 

account is mixed at present.  

 Considered in aggregate, the behavioral and neurocognitive evidence discussed thus far 

provides a solid basis for an attentional account of the production effect: Even in instances where 

an attentional account was not necessarily directly supported, the account certainly cannot be 

ruled out (e.g., Bailey et al., 2021; Willoughby et al., 2019). However, some discrepant evidence 

remains. For example, two experiments reported in MacDonald and MacLeod (1998) used a 

production paradigm wherein participants completed both direct (i.e., explicit) and indirect (i.e., 
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implicit) tests of memory, with no benefit of production being observed for the latter.7 For the 

implicit test, MacDonald and MacLeod (1998) used a rapid reading paradigm (MacLeod, 1996). 

In this task, words are presently rapidly at test and are intermixed with new distractor words (i.e., 

foils). Participants are instructed to read the words as quickly as possible at test, with the 

response latencies for previously studied items serving as a measure of implicit memory: Words 

that were previously learned should be primed in memory and should thereby result in lower 

response latencies relative to new items. Further, response latencies should decrease if some 

words were learned better than others. As such, distinctiveness accounts would not predict 

production to benefit performance on rapid reading tests: Because this paradigm relies on near-

automatic processing, application of a distinctiveness heuristic – which is explicit and time-

consuming – would serve no purpose (MacLeod et al., 2010). On the other hand, participants 

should respond faster to aloud items if they allocate more attention to these items at study (e.g., 

through stronger encoding and better priming).  

Contrary to predictions made by attentional accounts, MacDonald and MacLeod (1998) 

observed similar performance on the indirect memory test across the silent and aloud conditions, 

despite observing a typical production effect on the direct memory test. However, differences in 

attentional allocation at study do not consistently produce differences in performance on indirect 

tests of memory (e.g., Jacoby et al., 1989; Kellogg et al., 1996). To account for this 

inconsistency, Mulligan and Hartman (1996) suggested that manipulating attention at study 

impacts indirect test performance only when the test relies on conceptual – rather than perceptual 

– processing. Because MacDonald and MacLeod’s (1998) rapid reading test necessitated only 

 
7 MacDonald and MacLeod’s (1998) first experiment had participants read some words aloud and respond to others with “pass,” rather than silent 
reading. However, this manipulation typically results in a production effect (i.e., better performance for aloud relative to aloud control trials) 

despite the need for an aloud response on “pass” trials (e.g., Bailey et al., 2021; MacLeod et al., 2010; Willoughby, 2019; Zhang et al., 2023).  
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that participants visually process the word and quickly repeat it, this task is predominantly 

perceptual in nature (for detailed discussion of conceptual and perceptual processing in cognitive 

tasks, see Jacoby, 1983 and Mulligan, 2011). Accordingly, whether production-related 

differences in attentional allocation would actually be reflected in rapid reading performance is 

dubious. Nonetheless, the findings of MacDonald and MacLeod (1998) have been accepted as 

evidence against an attentional account (see MacLeod et al., 2010).  

Thus far, the evidence reviewed for various theoretical frameworks of the production 

effect is far from conclusive. Some studies support a role of distinctiveness (e.g., Forrin et al., 

2012; MacLeod et al., 2010; Ozubko & MacLeod, 2012; Richler et al., 2013), whereas others 

favor alternative explanations (e.g., Fawcett & Ozubko, 2016; Fawcett et al., 2023; Mama & 

Icht, 2019; Mama et al., 2018) or are compatible with multiple frameworks (e.g., Bailey et al., 

2021; Hassall et al., 2016; Zhang et al., 2023). An important point that has been raised in the 

literature is that these accounts are not necessarily mutually exclusive (e.g., Bodner et al., 2020; 

Fawcett, 2013; Fawcett & Ozubko, 2016; Fawcett et al., 2023; Jamieson et al., 2016). For 

example, items could be more strongly encoded because of distinctive processing, or distinctive 

encoding could result from increased attentional allocation to sensorimotor processing. Jamieson 

et al. (2016) noted the difficulties in computationally modelling a strength account of the 

production effect that differs qualitatively from a feature-based distinctiveness account: If one 

accepts that both distinctiveness and strength accounts benefit memory by appending additional 

features to the memory trace – features which are either more numerous or better encoded, 

respectively – then the mechanisms will prove difficult to disentangle experimentally.  

Nonetheless, the majority of empirical evidence presently available favors a 

distinctiveness account over other explanations. To summarize my earlier discussion, support for 
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the distinctiveness framework derives largely from three key points: first, that the production 

effect can be eliminated by obviating the diagnostic value of the production trace (e.g., Ozubko 

& MacLeod, 2010); second, that the production effect does not occur if participants employ a 

non-distinct response at study (e.g., MacLeod et al., 2010; Richler et al., 2013); and finally, that 

the production effect is less pronounced in pure-list designs (e.g., Fawcett, 2013; Fawcett et al., 

2023). Conversely, several key findings within the production literature instead argue against a 

predominant role for encoding distinctiveness, including evidence that the production effect can 

persist even when the production trace is rendered non-distinctive (e.g., Fawcett et al., 2022), and 

that the recollective component of the benefit is absent in pure list designs (e.g., Fawcett & 

Ozubko, 2016; see also, Bodner et al., 2020). Finally, although alternative theoretical 

perspectives of the production effect have not received a great deal of exclusive support, many 

investigations have produced evidence compatible with these frameworks: Studies have shown 

that the production effect can be reduced or eliminated by manipulating attention at encoding 

(e.g., Mama & Icht, 2019; Mama et al., 2018) and that production appears to elicit increases in 

preparatory processing (e.g., Hassall et al., 2016; Willoughby et al., 2019) and reductions in 

mind wandering (Varao-Sousa et al., 2013).  

1.3 Scaling Distinctiveness in the Production Effect  

The central purpose of the present thesis is to investigate one important prediction of the 

distinctiveness account, which I term the sensorimotor scaling hypothesis. Most models of 

distinctiveness contend that the presence of additional distinctive sensorimotor features 

associated with the production trace drives the production effect (e.g., MacLeod et al., 2010; see 

also, Kappel et al., 1973). Thus, a key corollary of this framework – which was first proposed by 

Forrin et al. (2012) and later adopted elsewhere (e.g., Fawcett et al., 2012; Hassall et al., 2016; 
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Jamieson et al., 2016; Kelly et al., 2022; Mama & Icht, 2016; Quinlan & Taylor, 2013, 2019) – is 

that the magnitude of the production effect should scale proportionate to the number of 

distinctive features encoded at study. Reading words aloud would be expected to enlist three 

distinct sensorimotor processes at study: visual processing of the item during reading, motoric 

processing that occurs when participants move their mouths to produce the item, and auditory 

processing occurring when participants hear themselves say a word. Silent reading, on the other 

hand, recruits only visual processing (see also, Forrin & MacLeod, 2018; Mama & Icht, 2016). 

According to the sensorimotor scaling hypothesis, then, the production effect should decrease in 

magnitude for tasks that reduce the number of distinctive features encoded at study. 

A number of investigations have provided empirical support for such a prediction (e.g., 

Conway & Gathercole, 1987; Forrin et al., 2012; Mama & Icht, 2016; Taitelbaum-Swead et al., 

2018). For example, Conway and Gathercole (1987) tested participants in a three-condition 

production paradigm wherein words at study were either read silently, mouthed or read aloud. 

According to the sensorimotor scaling hypothesis, mouthing would be expected to recruit only 

visual and motoric processing – rather than visual, motoric, and auditory processing – at study; 

as such, the production trace resulting from this modality should possess fewer distinctive 

features to guide retrieval at test relative to those produced by reading aloud. Congruent with the 

model proposed by Forrin et al. (2012), Conway and Gathercole (1987) observed production 

benefits for both reading aloud and mouthing but found the benefit for the former to be 

significantly larger than that for the latter. Later investigations by Forrin et al. (2012) replicated 

this finding and examined whether the result would extend to the production effect for writing; 

like mouthing, writing would be expected to recruit only visual and motoric processing at study, 

which should result in fewer distinctive features being appended to the production trace and 
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thereby a smaller production effect. Using a similar three-condition production paradigm (i.e., 

read silently, read aloud, write), Forrin et al. (2012) found that the production effect for writing 

was significantly smaller than that for reading aloud. It appears, then, that the size of the 

production effect is moderated by the number of distinctive features encoded by the production 

modality employed at study.  

Subsequent extensions of these findings have demonstrated that both input (i.e., 

presentation) and output (i.e., production) modality at study can impact the relative superiority of 

different modes of production (e.g., Mama & Icht, 2016; Taitelbaum-Swead et al., 2018). For 

example, Mama and Icht (2016) manipulated the modality through which items were presented 

(i.e., visually or auditorily) in a production paradigm that included both reading aloud and 

writing as output modalities. Although writing would be expected to recruit only visual and 

motoric processing in a typical (i.e., visual) paradigm (Forrin et al., 2012), auditory processing 

should also be recruited when words are presented auditorily. On the other hand, presenting 

words in this manner would eliminate the distinctive visual features that are usually encoded for 

words that are visually presented and vocally produced. For auditory presentation, then, vocal 

production should append a smaller number of distinctive features to the production trace (i.e., 

auditory and motoric features) relative to written production (i.e., auditory, motoric, and visual 

features). Accordingly, a scaling model of distinctiveness would predict a larger production effect 

for reading aloud when words are presented visually, but the production effect for writing should 

be superior when presentation is auditory. The results of Mama and Icht (2016) fully supported 

this prediction: The vocal production effect was significantly larger than that observed for 

writing when presentation was visual, but this pattern was reversed for auditory presentation.  
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Similar results were obtained by Taitelbaum-Swead et al. (2018), who investigated the 

production effect in hearing impaired users of sign language. At study, participants studied words 

that were presented either visually (i.e., written) or manually (i.e., using sign language) and 

produced the words via signing; the authors found that the production effect was significantly 

smaller for words presented manually. For both visual and manual presentation, words would be 

expected to benefit from visual processing necessitated by the input modality and motoric 

processing necessitated by the output modality. However, evidence suggests that signing – 

particularly for fluent users of the language – involves additional distinct forms of processing 

that are not solely visual nor motoric (e.g., Wilson & Emmory, 1997). Interpreting these results 

in light of a sensorimotor scaling hypothesis, Taitelbaum-Swead et al. (2018) concluded that 

manually presenting words at study reduced the advantage for produced items because the 

sensory processing specific to signing occurred on all trials; for visually presented words, on the 

other hand, these additional processes could still be leveraged to better discriminate between 

produced and unproduced items. This pattern mirrors that observed by Mama and Icht (2016): 

Manipulating the input modality such that certain distinctive sensorimotor features are encoded 

for both produced and unproduced items can moderate the production effect. Accordingly, 

evidence derived from manipulation of both output and input modalities converges in favor of 

the sensorimotor scaling hypothesis and, by extension, the distinctiveness account: As the 

number of distinctive features that can be leveraged to guide retrieval at test decreases, so too 

does the magnitude of the production effect.  

The sensorimotor scaling hypothesis would also predict the inverse of this pattern to 

occur: Adding distinctive features to the production trace by recruiting additional forms of 

sensory processing at study should increase the magnitude of the production effect (Fawcett et 
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al., 2012; Forrin et al., 2012). In an initial attempt to test this prediction, Fawcett et al. (2012) 

compared memory for produced and unproduced stimuli that were either words or pictures. 

Typically, participants exhibit a mnemonic advantage for pictures relative to words, a finding 

termed the picture superiority effect (Paivio, 1991). Much like the production effect, the 

advantage for pictorial stimuli has been explained by a distinctiveness heuristic, wherein 

participants leverage distinctive visual features associated with the memory trace to guide 

retrieval at test (Lloyd & Miller, 2011; Schacter et al., 1999). Accordingly, producing the names 

of pictures at study should encode additional distinctive features, resulting in a larger production 

effect than that observed for words. In line with a sensorimotor scaling hypothesis, Fawcett et al. 

(2012) observed an interaction between production and stimulus type across three experiments 

such that the production effect was consistently larger for pictures relative to words.  

However, subsequent attempts to replicate this pattern of results have produced 

inconsistent evidence. Experiments conducted by Zormpa et al. (2019) compared performance 

for words and pictures that were either produced or unproduced. In their first experiment, 

Zormpa et al. (2019) successfully replicated the interaction observed by Fawcett et al. (2012). 

However, the authors speculated that when pictorial stimuli are used at study, the benefit of 

production is confounded with that of response generation (e.g., Slamecka & Graf, 1978; see 

McCurdy et al., 2020 for a meta-analytic review of generation effects in memory): When 

pictures are presented without labels – as in Fawcett et al. (2012) – participants must generate the 

name of the picture in order to produce it. To disentangle these processes, Zormpa et al. (2019) 

manipulated the presence of labels with the pictorial stimuli in a subsequent experiment. The 

authors found that when the confounding influence of response generation was eliminated via the 

inclusion of labels, the critical interaction between production and picture superiority was not 
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observed. Furthermore, a recent study by MacLeod et al. (2022) found no such interaction even 

when unlabelled pictures were used at study. Accordingly, the support that Fawcett et al. (2012) 

provides for the sensorimotor scaling hypothesis is not necessarily reliable and may instead be 

attributable to artifacts related to response generation. 

Recently, Wakeham-Lewis et al. (2022) attempted to increase the distinctiveness of the 

production trace by having participants produce items using either unusual voices (e.g., character 

voices) or their own voice. The authors argued that because neuroimaging evidence suggests that 

voluntary modulation of one’s own voice recruits processing in neural regions that differ relative 

to normal speech (McGettigan et al., 2013), speaking in an unusual voice represents a distinct 

form of processing. Compared to normal speech, then, the memory trace resulting from 

producing items in an unusual voice should benefit from additional sensorimotor features; the 

production effect for this modality would therefore be expected to increase in magnitude relative 

to production using one’s own voice. Contrary to these predictions, however, Wakeham-Lewis et 

al. (2022) actually observed no benefit of production whatsoever when unusual voices were 

employed at study. However, whether this finding speaks directly against a sensorimotor scaling 

hypothesis is unclear at present. The authors suggested that the utility of the production trace 

might depend to some extent on reinstating study context (i.e., of having produced the item) at 

test; if producing items in an unusual voice interferes with this reinstatement, the benefit of 

production might be eliminated. Nonetheless, the results of Wakeham-Lewis et al. (2022) suggest 

that employing modalities expected to invoke additional distinctive processes at study will not 

necessarily translate to a larger production effect. 

Accordingly, the sensorimotor scaling hypothesis has largely been validated only insofar 

as the magnitude of the production effect can be reduced, whereas modalities that produce a 
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larger benefit remain scant. However, one notable exception to this pattern is the production 

effect for singing. Across multiple experiments, Quinlan and Taylor (2013) observed a benefit for 

singing that was significantly larger than that for reading words aloud; I refer to this hereafter as 

the singing superiority effect. The authors explained this finding with reference to the 

sensorimotor scaling hypothesis, speculating that singing appends additional sensorimotor 

features to the production trace in the form of processing related to pitch, tone, or rhythm.8 This 

finding has since been accepted as evidence for the distinctiveness account (e.g., Forrin & 

MacLeod, 2018; Mama & Icht, 2016) by virtue of apparently validating the sensorimotor scaling 

hypothesis proposed by Forrin et al. (2012).  

Further investigations by Quinlan and Taylor (2019) replicated the initial finding of a 

singing superiority effect and extended the result in attempts to rule out a number of alternative 

explanations beyond distinctiveness. First, the authors tested whether the additional benefit 

observed for singing might result from a bizarreness effect (see, e.g., Einstein et al., 1987) by 

recruiting a sample of experienced singers, for whom the authors reasoned singing words would 

not constitute an unusual task. The production effect for singing was found to be robust to this 

manipulation and remained significantly larger than the standard vocal production effect. In a 

subsequent experiment, Quinlan and Taylor (2019) determined that singing words at study is 

more time-consuming than reading aloud, potentially allowing participants additional time to 

better encode the words. However, the singing superiority effect was found to persist even when 

the processing time-related advantage was eliminated by having participants sing words quickly 

and read words aloud slowly. Finally, the authors investigated whether words sung at study might 

 
8 Importantly, however, features related to pitch, tone, and rhythm are not necessarily specific to singing and are also present for speech (e.g., 

Dolson, 1994; Xu, 2005). Thus, although the singing superiority effect has often been explained with reference to additional sensory processing 
related to pitch (e.g., Quinlan & Taylor, 2013, 2019), such a hypothesis may not actually provide a viable theoretical basis for the effect (see 

Section 5.3 of the present thesis for further discussion).   
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be better remembered due to strengthened encoding. To this end, Quinlan and Taylor (2019) 

manipulated production in a between-subject design; here, the authors did not observe a singing 

superiority effect, nor a production effect for either reading aloud or singing (but see Bodner et 

al., 2014; Fawcett, 2013; Fawcett & Ozubko, 2016; Fawcett et al., 2023). Having apparently 

ruled out all viable alternatives, Quinlan and Taylor (2019) reasoned that the relative superiority 

of singing over standard vocal production could only be explained by scaling distinctiveness.  

However, not all investigations into the production effect for singing have observed a 

singing superiority effect. One EEG study of the production effect by Hassall et al. (2016) 

included singing as a condition. In this case, however, the authors observed a behavioral 

production effect of singing on recognition memory that was similar in size to the benefit for 

reading aloud. Furthermore, the psychophysiological production effect reflected in increases to 

P3b amplitude conformed to the same pattern. Because the P3b has variably been used as index 

of attentional allocation (e.g., Kramer et al., 1983) and distinctive encoding (e.g., Otten and 

Donchin, 2000), these results suggest that items sung at study are neither better attended to nor 

more distinctive than those read aloud. However, the authors proposed that these findings did not 

necessarily contradict a distinctive account, proposing instead two alternative explanations: (1) 

that participants might have failed to follow task instructions (e.g., by lazily singing the items), 

or (2) that the temporal delay associated with pre-cueing production – which was necessitated by 

the EEG paradigm in order to reduce data contamination – might have reduced the 

distinctiveness of the production trace.  

Although the former explanation is plausible, participants in Hassall et al. (2016) were 

monitored by an experimenter throughout the study phase. Accordingly, it is unclear why the 

failure of participants to adequately follow task instructions would not have been noticed and 
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addressed prior to analysis of the data. Regarding a “temporal separation” explanation, the 

authors suggested that distinctive cues arise from processing that occurs during both the intention 

to perform the productive act and the act itself. The psychophysiological results of both Hassall 

et al. (2016) and Zhang et al. (2023) support the notion that participants engage in some form of 

preparatory processing prior to actually producing the item (see also, Willoughby et al., 2019). 

Further, these findings are compatible with the suggestion that this preparatory processing might 

reflect distinctive encoding (see Section 1.2 for further discussion). However, it is not clear why 

a small temporal separation (1800 – 2000 ms) between intention and action would reduce the 

distinctiveness of either component. Several studies have pre-cued production with similar 

temporal separations and observed typical production effects (e.g., Bailey et al., 2021; Ozubko et 

al., 2020; Zhang et al., 2023). Furthermore, Mama and Icht (2018) found that the magnitude of 

the production effect increased when the intention and act of production were separated by an 

even larger delay (i.e., 3000 ms). Finally, this apparent reduction in distinctiveness appeared to 

preferentially impact singing: The magnitude of the production effect for reading aloud that 

Hassall et al. (2016) – and other investigations that have pre-cued production at study (e.g., 

Bailey et al., 2021; Ozubko et al., 2020; Zhang et al., 2023) – observed was similar in size to 

those observed in typical studies (e.g., MacLeod et al., 2010). Given that the production effect 

for reading aloud is also thought to be driven by encoding distinctiveness, there is no obvious 

reason why a reduction in distinctiveness would not have also altered the magnitude of the effect 

for this modality. With these considerations in mind, the results of Hassall et al. (2016) appear to 

largely contradict those of Quinlan and Taylor (2013, 2019). 

More recent efforts to replicate the singing superiority effect have also proven 

unsuccessful. Whitridge (2022) conducted two conceptual replications of Quinlan and Taylor’s 
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(2013) paradigm wherein production was manipulated within-subject. Whitridge’s (2022) first 

experiment demonstrated a pattern of results akin to Hassall et al. (2016): The author observed a 

production effect for both singing and reading aloud but provided evidence against a difference 

between the two critical conditions. In a subsequent experiment, Whitridge (2022) attempted to 

rule out hidden moderators related to study design as a potential explanation for this pattern of 

results. At test, Quinlan and Taylor (2013, 2019; Hassall et al., 2016) presented studied items 

using the same color assignments as the study phase, with foil items randomly intermixed 

between color assignments; this foil matching procedure allows separate false alarm rates for 

each condition to be recorded in order to permit a complete signal detection analysis of the data 

(see Fawcett et al., 2012), but is atypical for production paradigms. Whitridge (2022) reasoned 

that participants might have leveraged familiar color assignments as contextual cues to guide 

retrieval of condition-specific distinctive information. When the presence of color matching was 

manipulated between-subject, however, the author again observed evidence against a singing 

superiority effect across groups. 

In an attempt to resolve this apparently discrepant pattern of results, Whitridge (2022) 

conducted a meta-analysis of all known studies to have evaluated the production effect for 

singing. The author found that the aggregate singing superiority effect was significant (albeit 

small) but also observed evidence of substantial heterogeneity amongst reported effects: The 

aggregate effect appeared to be driven primarily by underpowered studies that reported very 

large effect sizes. On the other hand, well-powered experiments reported effects that were 

typically small and sometimes non-significant; in some cases, larger studies actually reported 

negative effects (i.e., read aloud > sing). Based on this evidence, Whitridge et al. (2022) 

concluded that the singing superiority effect was unreliable and questioned whether there exists a 
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viable cognitive basis – pertaining to distinctiveness or otherwise – for the relative superiority of 

singing over reading aloud. In the following section, I review literature that has investigated the 

utility of singing as a mnemonic and discuss processing differences that might provide a 

theoretical basis for the singing superiority effect. 

1.4 Theoretical Bases of Singing as Mnemonic  

Although Quinlan and Taylor (2013) were the first to investigate singing in the context of 

the production effect, a great deal of earlier literature has explored the mnemonic benefit that 

song might afford (e.g., Anton, 1990; Gfeller, 1983; Prickett & Moore, 1991; Richards, 1969; 

Wallace, 1994). Within this area of research, one oft-cited finding is Wallace’s (1994) 

observation of better recall for words set to a melody relative to spoken words. In this study, 

Wallace (1994) had participants listen to an entire song that was either sung or spoken and then 

attempt to recall the song’s lyrics; this procedure was repeated five times, although recall 

performance was reported only for the first, second and fifth trials. At all time points, recall was 

superior for the sung condition relative to the spoken condition. Furthermore, Wallace (1994) 

found that this benefit persisted even after a substantial delay during which filler tasks were 

completed (see also, Good et al., 2015). The author hypothesized that this advantage may have 

occurred because participants used melodic information as a retrieval cue at test. This 

explanation is analogous to a distinctiveness account, in that Wallace (1994) suggests a record of 

distinctive sensory processing that occurred at encoding is accessed at test and leveraged to guide 

retrieval of items.  

However, subsequent investigations have largely failed to further support these findings 

(e.g., Kilgour et al., 2000; Rainey & Larsen, 2002; but see Salcedo, 2010). In an initial 

experiment, Kilgour et al. (2000) successfully replicated the advantage for listening to words that 
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were sung relative to spoken words. However, Kilgour et al. determined that the rate of 

presentation for words in the sung condition was much slower than that in the spoken condition, 

potentially allowing participants additional time to process and rehearse the information (see 

also, Quinlan & Taylor, 2019). In a second experiment that increased the speed of sung words to 

match that of the spoken words, the advantage for the former was eliminated. Furthermore, 

Rainey and Larsen (2002) tested memory in a similar paradigm, wherein participants heard novel 

words that were either spoken or sung to familiar melodies. Contrary to Wallace (1994), 

performance on an immediate serial recall task was no better for sung words in either of the two 

experiments conducted.9 It appears, then, that processing melodies at study may not inherently 

provide distinctive information that can be leveraged at test. Thus, the extent to which studies 

like Wallace (1994) can provide a theoretical basis for singing superiority effects in production 

paradigms is tenuous. 

Nonetheless, these studies differ critically from Quinlan and Taylor (2013, 2019; Hassall 

et al., 2016) insofar as participants passively listened to items rather than actively producing 

them. Although evidence suggests that input modality can be important to the production effect 

(e.g., Mama & Icht, 2016; Taitelbaum-Swead et al., 2018), the benefit is driven predominantly by 

self-producing items (MacLeod, 2011). Although few studies beyond those already discussed 

have tested memory directly for information sung by participants at study, some investigations of 

second-language vocabulary acquisition might have particular relevance to the production effect 

(e.g., Baills et al., 2021; Ludke et al., 2014).  

 
9 Rainey and Larsen (2002) observed an advantage in serial recall for words presented in the sung condition after a delay of one week, suggesting 

that the presence of melody can improve memory to some degree. However, the mechanism through which this benefit occurred was evidently 
not immediately available to participants at test; given that only one production study has included a delay of this length between study and test 

(Ozubko et al., 2012b), it is unlikely that the delayed benefit observed by Rainey and Larsen (2002) would transfer to typical production tasks.  
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For example, Ludke et al. (2014) tested participants’ memory for English-Hungarian 

paired associate phrases that were presented auditorily in one of three conditions: sung, read 

aloud, or read aloud rhythmically. For each condition, participants were instructed to reproduce 

the stimuli in the same manner that they were initially presented. The authors found that 

performance on several different memory tests for both English and Hungarian phrases was 

better for those sung at study relative to either spoken condition, for which performance was 

equivalent (cf. Baills et al., 2021).10 Although the paradigm used differed substantially from 

typical production tasks, these findings are consistent with those reported by Quinlan and Taylor 

(2013, 2019); thus, Ludke et al. (2014) provides additional evidence in favor of a singing 

superiority effect. Furthermore, the pattern of results observed therein (i.e., sing > read aloud = 

read aloud rhythmically) raises an important implication, in that distinctive processing at study 

related to rhythmic information does not appear to benefit memory; if a reliable singing 

superiority effect exists, then, this advantage might instead be related to other types of 

processing. 

Indeed, the specific nature of processing that occurs during singing is important to 

consider in establishing a theoretical basis for the singing superiority effect; Quinlan and Taylor 

(2013, 2019) suggested that singing appends additional distinctive features to the production 

trace, which implies that singing elicits fundamentally different processing relative to reading 

aloud. Generally, this assertion has been supported empirically. Neuroimaging studies suggest 

that human speech and song elicit increased neural activation in both the superior temporal gyrus 

(STG) and superior temporal sulcus (STS) regions of the brain (e.g., Özdemir et al., 2006; 

 
10 Interestingly, Baills et al. (2021) observed no production effect in a foreign language acquisition paradigm for a passage that was sung at study 

relative to passive listening of the same passage. Although the relative superiority of singing over reading aloud has been inconsistent in the 
literature, a typical production effect for singing has not (Whitridge et al., 2022). Accordingly, it is likely that the findings of Baills et al. (2021) 

can be attributed to substantial methodological differences (e.g., stimulus complexity).  
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Whitehead & Armony, 2018). While activation in the STS is greater for spoken language relative 

to singing, the latter elicits increased activation in the STG. This differential pattern of activation 

persists even when accounting for the pitch and rhythm of vocalization (e.g., Geiser et al., 2008; 

Özdemir et al., 2006), implying an inherent difference between how spoken and sung words are 

processed. Accordingly, increased activation in the STG provides a potential neural correlate for 

the singing superiority effect: If this activation reflects additional distinctive processing of 

elements unique to or more pronounced for singing (e.g., melody), the sensorimotor scaling 

hypothesis would indeed predict a singing superiority effect. With this in mind, however, it is 

important to consider that production modalities neurologically distinct from reading aloud do 

not inherently translate to a larger production effect (Wakeham-Lewis et al., 2022). 

Considered in aggregate, singing-related mnemonic benefits and differences in 

neurological activation provide some degree of theoretical basis for the singing superiority effect. 

However, whether this basis can be realized reliably in production paradigms remains unclear 

(Whitridge, 2022). Given that the sensorimotor scaling model of distinctiveness proposed by 

Forrin et al. (2012) has been widely adopted into theoretical perspectives of the production effect 

(e.g., Fawcett et al., 2012; Forrin & MacLeod, 2018; Jamieson et al., 2016; Kelly et al., 2022), 

the reliability of the singing superiority effect is a critical issue. Although several studies suggest 

that the magnitude of the production effect decreases in proportion to the number of distinctive 

features encoded at study (e.g., Mama & Icht, 2016; Taitelbaum-Swead et al., 2018), the flipside 

of this prediction relies almost entirely on the finding of a singing superiority effect. A challenge 

to this pattern of results thereby poses a challenge to the distinctive account of the production 

effect: If the singing superiority effect is not reliable, the sensorimotor scaling hypothesis can 

only be verified unidirectionally. Despite the importance of this issue, it is difficult to draw 
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strong conclusions about the reliability of the singing superiority effect given the scarcity of 

relevant literature. In the investigations described below, I address gaps in previous conceptual 

replications of the production effect for singing (Whitridge, 2022) and attempt to further 

elucidate the phenomenon. 

1.5 Current Experiments 

The present investigations were designed to address several key issues regarding the 

production effect for singing. First, findings from the few studies that have included singing as a 

manipulation in production tasks have been inconsistent and often contradictory. To explain this 

discrepancy amongst results, Quinlan and Taylor (2019; Hassall et al., 2016) suggested that 

methodological differences might have obviated the singing superiority effect. Alternatively, 

several key experiments utilized very small sample sizes (e.g., < 24 participants; Quinlan & 

Taylor, 2013), which Whitridge (2022) speculated might have led to poor estimates of the 

effect’s magnitude; these possibilities were explored in Experiment 1. Second, the failure of 

Quinlan and Taylor (2019) to observe a between-subject production effect for singing is 

inconsistent with a growing body of literature suggesting that the production effect is reliable in 

such designs (e.g., Bodner et al., 2014; Fawcett, 2013; Fawcett & Ozubko, 2016; Fawcett et al., 

2023). Given that the magnitude of the between-subject production effect is smaller than that of 

the effect within-subject, I speculated that the results of Quinlan and Taylor (2019) may again 

have resulted from inadequate statistical power; Experiment 2 investigated this hypothesis. 

Finally, the overall disagreement in findings across studies of the production effect for singing 

was addressed in the meta-analysis.  

Experiment 1 was designed as a replication and extension of Whitridge (2022). Although 

the aforementioned study provided evidence against artifacts related to one particular aspect of 
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study design (i.e., color matching), other aspects of the paradigm differed from that used by 

Quinlan and Taylor (2013, Experiment 1). Accordingly, the materials and procedure for 

Experiment 1 were a modified version of that used in Whitridge (2022, Experiment 2) such that 

the design of the study matched Quinlan and Taylor (2013) as closely as possible; additionally, 

the presence of foil matching at test was manipulated between-subjects. In Experiment 2, I 

conceptually replicated the paradigm employed in Experiment 4 of Quinlan and Taylor (2019): 

Production modality (sing, aloud, silent) was manipulated between-subjects, such that 

participants studied a pure list of items in a manner corresponding to the group to which they 

were assigned. Finally, the meta-analytic model incorporated data from all known studies to 

investigate the production effect for singing. Effect sizes obtained from these data were used to 

calculate an aggregate singing superiority effect, which could then be evaluated for evidence of 

heterogeneity.   

Across Experiments 1 and 2, I expected a pattern of results consistent with Hassall et al. 

(2016) and Whitridge (2022). Relative to silent reading, a production effect should occur for both 

singing and reading aloud; however, I expected to observe no difference between the two critical 

conditions (i.e., sing = aloud > silent). Further, I expected this pattern of results to persist for 

judgements of both recollection and familiarity in Experiment 2. Finally, I predicted that the 

meta-analysis would support a small aggregate singing superiority effect, albeit with evidence of 

heterogeneity, as in Whitridge (2022). Although this may appear discrepant with my predictions 

for Experiments 1 and 2, I assumed that the large, supportive effects reported in Quinlan and 

Taylor (2013, 2019) would drive a credible benefit in aggregate even if new effects derived from 

the current experiments were unsupportive.   
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Chapter 2: Experiment 1 

2.1 Overview 

The central purpose of this experiment was to determine whether previous efforts to 

replicate the singing superiority effect failed due to methodological differences. Previously, 

Whitridge (2022) found evidence against a singing superiority effect regardless of whether items 

were foil matched or unmatched at test. However, a number of other differences existed between 

Quinlan and Taylor (2013, Experiment 1) and the replications conducted by Whitridge (2022). 

For example, Quinlan and Taylor (2013) included practice and familiarization phases prior to the 

study phase; it is possible that providing participants with additional trials to practice an atypical 

study condition like singing may have helped facilitate the singing superiority effect. However, 

an exploratory analysis of data from Whitridge (2022) suggests that mnemonic benefits for 

singing are no more pronounced for items occurring late in the study list (i.e., when participants 

have had more practice) relative to early items.  

Additionally, Quinlan and Taylor’s (2013) recognition test used correctable yes/no 

judgements, whereas Whitridge (2022) employed six-point confidence judgements. Some 

researchers have suggested that increasing the number of points available in a confidence 

judgement increases decision noise and can thereby decrease the precision of the estimate 

produced by the judgement (e.g., Benjamin et al., 2013). However, Whitridge (2022) reasoned 

that this would not likely obfuscate a singing superiority effect, given that decision noise should 

impact judgements equally in all conditions. Nonetheless, all discrepancies in the study and test 

phases were adjusted to match Quinlan and Taylor (2013) in the present experiment.  

One further difference between Quinlan and Taylor (2013) and Whitridge (2022) that 

might be of particular importance is the list of words used at study. The latter study used a 
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slightly modified version of the stimuli from Ozubko et al. (2020), which was generated from a 

different corpus than that used by Quinlan and Taylor (2013). This led me to speculate that item 

characteristics might have modulated the singing superiority effect. For example, being 

instructed to produce a monosyllabic item (e.g., dog) via singing might lead participants to sing 

the item using only one distinct pitch. On the other hand, participants might be more inclined to 

sing multisyllabic items using a variety of different pitches because singing with variation is 

more intuitive for these items. Importantly, it is possible that additional variation within singing 

could render the associated production trace more distinctive (see Section 5.3 for further 

discussion). Thus, the production effect for singing could be larger for study lists that consist of 

more items that encourage varied singing (e.g., items with a greater number of syllables). 

Furthermore, evidence suggests that processing of melodic information differs for consonant and 

vowel sounds, with the latter being processed more independently from melody relative to the 

latter (e.g., Kolinksy et al., 2009). It is reasonable to speculate, then, that singing words with 

more vowel sounds might help to bind the record of distinctive melodic processing to the 

production trace; if this renders distinctive melodic information more accessible at test, the 

magnitude of the production effect for singing might increase. Given the potential importance of 

item characteristics, I selected stimuli that were as similar as possible to those used by Quinlan 

and Taylor (2013), although the exact list used in that study could not be obtained.  

The present experiment updated the materials and procedure of Whitridge (2022, 

Experiment 2) to replicate Quinlan and Taylor (2013, Experiment 2) as exactly as possible. To 

this end, I modified the stimuli, pre-study phase, study phase and test phase from Whitridge 

(2022) in accordance with the methods reported by Quinlan and Taylor (2013); as in Whitridge 

(2022), foil matching at test was included as a between-subject manipulation. If evidence for a 
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singing superiority effect were to emerge under these conditions, it would suggest that the 

relative superiority of singing over reading aloud is likely facilitated by hidden moderators 

related to study design. In this experiment, I expected to observe evidence for a production effect 

on sensitivity (d’) for both reading aloud and singing relative to reading silently. However, given 

that Whitridge (2022) observed evidence against the superiority of singing and that 

methodological changes made to the present experiment are minor, I expected to observe no 

evidence for a difference in sensitivity between the two production modalities.  

2.2 Method 

2.2.1 Participants 

Participants in Experiment 1 consisted of 102 undergraduate students (N = 51 matched) 

from The University of Southern Mississippi who took part in the experiment in exchange for 

partial course credit. 

2.2.2 Stimuli and Apparatus 

Stimuli were selected by using the Paivio et al. (2009) word generator 

(http://euclid.psych.yorku.ca/shiny/Paivio/) to create a list of 240 words. Parameters for word 

generation were selected such that the characteristics of the generated stimuli were as close as 

possible to the characteristics reported by Quinlan and Taylor (2013); the corpus from which the 

words were selected was also the same as that used by Quinlan and Taylor. All words were nouns 

between three and seven letters in length, with a mean 5.20 letters (SD = 1.13) and a mean 1.54 

syllables (SD = 0.63). The stimuli had a mean concreteness rating of 3.93 (SD = 1.10) and a mean 

SUBTLEX frequency score (Brysbaert & New, 2009) of 103.18 (SD = 194.34). 

Each participant saw all possible words over the course of the experiment. Half the words 

(120 items) appeared in the study phase and were randomized between the three study conditions 

http://euclid.psych.yorku.ca/shiny/Paivio/
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for each participant (i.e., 40 words each to read silently, read aloud, and sing). Words at study were 

presented in colored font, with each respective study condition being assigned either red, white or 

blue; color assignments were counterbalanced across participants. All words were displayed in 

their assigned color at study and at test. The remainder of the words (120 items) appeared only as 

“new” foils at test. For the matched group, the color assignment for foils was randomized across 

the three possible assignments, such that an equal number of foils appeared in each possible color. 

For the unmatched group, all foils were presented in yellow. All words were presented in 42-point 

Times New Roman font against a black background. The experiment was coded in PsychoPy 

(version 3.4.2; Peirce et al., 2019) and presented via a 20-inch color monitor attached to a computer 

running Windows 10. 

2.2.3 Procedure 

The experiment consisted of a study phase and a test phase. Prior to the study phase, a 

researcher gave participants verbal instructions that were later reiterated within the experimental 

program. Participants were informed that they would see words presented one at a time in one of 

three colors (red, white, or blue) and that the color indicated how the words should be studied. The 

specific color assignment for each study condition was counterbalanced between participants. For 

the read silently condition, participants were instructed to read the words silently without any 

vocalization or mouth movement. For the read aloud condition, participants were instructed to read 

the words aloud in a normal voice. For the sing condition, participants were instructed to sing the 

words aloud as they would sing in any other context (e.g., in the car or in the shower). Participants 

were told that they would complete a memory test after they had studied all the words. The 

experimenter remained in the room with participants throughout the familiarization phase, practice 

phase and study phase. Prior to beginning the study phase, participants were told that they would 
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first complete a familiarization phase followed by a practice phase to make sure they understood 

each study condition.  

Familiarization Phase. In the familiarization phase, participants were presented with 15 

trials. Participants saw 5 familiarization trials per study condition (i.e., sing, read aloud, read 

silently) in random order. Each trial consisted of a 500 ms blank screen followed by the name of a 

color assignment and its associated study condition (e.g., RED – Sing) for 2000 ms; text in each 

familiarization trial was displayed in colored font corresponding to the color assignment being 

displayed. After all familiarization trials had been presented, participants moved on to the practice 

phase. 

Practice Phase. The practice phase consisted of 15 trials, 5 per study condition, presented 

in random order. Each trial consisted of a 500 ms blank screen followed by the presentation of the 

word “banana” at center and in colored font for 2000 ms. As indicated by the word’s color 

assignment, participants were cued to either sing the word, read it aloud, or read it silently. After 

completing the practice phase, participants moved on to the study phase.   

Study Phase. During the study phase, participants were presented with a series of 120 

words, one at a time. As indicated by their color assignment, one third of the items were to be sung 

aloud, one third were to be read aloud and the remaining third were to be read silently (40 items 

each). Each trial began with a 500 ms blank screen and then the word at center for 2000 ms. 

Participants were supervised by an experimenter throughout the study phase. After all practice 

trials were complete, participants moved on to the test phase. 

Test Phase. During the test phase, participants were presented with a total of 240 words, 

120 of which were “old” words seen in the study phase and 120 of which were “new” foil words. 

For the matched group, “old” words were presented in the same color to which they were assigned 
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at study (e.g., a word presented in blue at study was presented in blue at test). Foils were randomly 

intermixed between the three color assignments such that 40 foils were presented in each possible 

color. For the unmatched group, all items were presented in yellow at test; there were no other 

differences between the matched and unmatched groups. Each test trial began with a 500 ms blank 

screen followed by the word at center. The word remained on screen until participants made a 

yes/no recognition judgement as to whether the word was previously studied (i.e., “old”). 

Judgements were made using a textbox that appeared below the word, in which participants could 

respond by pressing either the “Y” key (yes) or the “N” key (no). Participants could correct their 

responses using the backspace key. When they were ready, participants submitted their response 

to each trial using the space bar. After a response was submitted, the next word was presented at 

center; this repeated until participants had completed all 240 trials. 

2.2.4 Statistical Approach 

Several approaches were used to analyze the data from Experiment 1. My primary 

analysis used multilevel probit regression to estimate signal detection parameters for each study 

condition. Subsequently, I fit exploratory diffusion models to model response times whilst also 

accounting for accuracy. Finally, I conducted exploratory analyses of serial position effects in the 

data using generalized additive mixed models (GAMMs). Below, I provide a detailed overview 

of each approach.  

2.2.4.1 Signal Detection Analysis 

Rather than analyzing raw or corrected hit rates, I opted to estimate sensitivity (d’) and 

response bias (C), parameters derived from signal detection theory as applied to recognition 

memory (Egan, 1958). According to this model, participants use a decision criterion to determine 

whether a test item is old (i.e., previously studied) or new (i.e., a foil item). At test, each item 
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elicits some degree of familiarity, which is compared to the participant’s decision criterion: If the 

familiarity elicited by a given item exceeds the criterion, the participant will make an “old” 

response. If the familiarity elicited is below the criterion, the participant will instead make a 

“new” response. Both studied and unstudied items are expected to elicit some degree of 

familiarity, although the degree to which a given stimulus is familiar is assumed to vary across 

trials. Thus, distributions of familiarity arise for both studied items (i.e., a “signal” distribution) 

and unstudied items (i.e., a “noise” distribution). However, participants are expected to make 

more “old” responses for studied relative to unstudied items, given participants’ recent exposure 

to the former. Thus, the means of the signal and noise distributions are assumed to differ, with 

the mean of the former being higher than the latter under typical circumstances. My parameters 

of interest can be derived from this general model: C reflects the threshold of familiarity at which 

participants will make an “old” response (i.e., the decision criterion), whereas d’ reflects the 

distance between the signal and noise distributions. In other words, C quantifies the participant’s 

propensity to make “old” responses regardless of whether an item was previously studied (with 

higher values reflecting more conservative response bias), and d’ quantifies the participant’s 

propensity to discriminate successfully between old and new items (with higher values reflecting 

better discriminability; for a detailed overview of signal detection theory in the context of 

recognition memory, see Macmillan & Creelman, 2005; see also, Banks, 1970; Stanislaw & 

Todorov, 1999).  

My decision to adopt a signal detection approach throughout the present thesis was 

motivated by two factors. First, a large body of research on recognition memory suggests that 

analyses using only raw or corrected hit rates do not adequately quantify participants’ true 

capacity for discrimination (e.g., Rouder et al., 2007; Stanislaw & Todorov, 1999; see Macmillan 
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& Creelman, 2005, for a detailed discussion). Secondly, investigations of the production effect 

have demonstrated a tendency towards more liberal response bias for produced (relative to 

unproduced) items. Accordingly, these findings argue for the superiority of signal detection 

analysis for interpretation of the production effect on the basis that ignoring response bias may 

overestimate the size of the effect and bias inference (e.g., Fawcett et al., 2012, 2023). 

With this framework in mind, I opted to use Bayesian probit regression to estimate d’ and 

C in a multilevel context. Although this methodology has seldom been used within the 

production literature (e.g., Fawcett & Ozubko, 2016; Zormpa et al., 2019), the approach 

possesses several advantages over more conventional analyses. First, the primary dependent 

measure in the present experiment was binary (i.e., old/new responses). Typically, studies of the 

production effect have collapsed binary trial data into aggregate hit and false alarm rates for each 

participant, which produces response variables that are appropriate for conventional statistical 

approaches such as analysis of variance (ANOVA; e.g., Gathercole & Conway, 1988; MacLeod 

et al., 2010). However, aggregating trial data into proportions often produces data that are (1) 

heteroscedastic, thereby violating a core assumption made by ANOVA, and (2) constrained 

between zero and one, which typical ANOVA models cannot account for; these problems have 

been shown to lead to increases in Type I error rates and such procedures are thereby liable to 

detect spurious effects (e.g., Dixon, 2008; Jaeger, 2008). While these issues can be addressed to 

some extent by using conventional procedures to calculate d’ and C (e.g., Stanislaw & Todorov, 

1999), this approach still necessitates that data be aggregated into proportions prior to applying 

transformations. This is problematic, as collapsing data across items and participants fails to 

capture variability that arises across these parameters and can systematically bias inference 

(Baayen et al., 2002; Gelman & Hill, 2006; Rouder et al., 2007). Given that item-level 
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characteristics (e.g., word frequency; Broadbent, 1967; concreteness; Paivio et al., 1994) and 

participant-level characteristics (e.g., age; Grady et al., 1995) have long been known to impact 

memory, this variability cannot be safely ignored in the present experiment.  

However, these problems can be mitigated by using generalized linear mixed models 

(GLMMs) to estimate signal detection parameters directly (Rouder & Lu, 2005; Rouder et al., 

2007; Wright et al., 2009). Approaching categorical data analysis using logistic or probit 

regression models does not necessitate that data be collapsed across trials and avoids systematic 

inflation in error rates that can arise due to heteroscedasticity in ANOVA models (Dixon, 2008; 

Jaeger, 2008). Furthermore, GLMMs permit the inclusion of random effects, which account for 

variability that is expected to arise at the level of the item or the participant (Baayen et al., 2002; 

Barr et al., 2013; Gelman & Hill, 2006). My decision to implement these models using a fully 

Bayesian approach was motivated firstly by the capacity of Bayesian models to incorporate 

regularizing prior knowledge: Because both my dependent measures of interest possess lower 

and upper bounds, and it is reasonable to establish an a priori range in which these parameters 

can be expected to fall. Furthermore, the present experiment aimed to evaluate evidence 

favouring the existence of an effect, which must therefore accept the possibility that no effect 

exists. While typical Frequentist approaches to hypothesis testing allow only for failure to reject 

the null hypothesis on the basis of a null effect, Bayesian approaches allow for the quantification 

of evidence favoring a null model (Masson, 2011). 

For these reasons, the analyses reported herein utilized multilevel probit regression 

models implemented via the brms package (Bürkner, 2017) in R (R Core Team, 2020; see also, 

Fawcett & Ozubko, 2016; Fawcett et al., 2016). The probit models implemented herein deviate 

slightly from comparable approaches within the production literature, which have utilized 
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logistic regression to estimate analogous parameters (e.g., Fawcett & Ozubko, 2016; for a 

comparable Frequentist approach, see Zormpa et al., 2019; see also, Fawcett et al., 2016). 

However, logistic and probit approaches to multilevel signal detection models produce near 

identical estimates that differ only insofar as they exist on different scales (DeCarlo, 1998). 

Because conventional calculations of d’ and C utilize probit transformations (e.g., Stanislaw & 

Todorov, 1999), the estimates for these parameters produced by probit regression exist on the 

same scale as those produced by conventional procedures. Thus, I opted for probit regression 

over logistic regression to ensure that my parameter estimates could be easily interpreted by 

readers familiar with signal detection theory.  

The models reported herein were parameterized in accordance with the general structure 

for generalized linear signal detection models outlined by DeCarlo (1998; see also, Macmillan & 

Creelman, 2005; Rouder et al., 2007; Stanislaw & Todorov, 1999; Wright et al., 2009), albeit 

adapted for probit models using a Bayesian approach (for a tutorial, see Vuorre, 2017). For this 

parameterization, the probability of a correct “old” response (i.e., a hit), H, is given by 

𝐻 = Φ(𝑑′/2 − 𝐶) 

and the probability of an incorrect “old” response (i.e., a false alarm), F, is given by 

𝐹 =  Φ(−𝑑′/2 − 𝐶) 

where Φ denotes the normal cumulative distribution function (Macmillan & Creelman, 2005). To 

estimate the probability, p, of an “old” response for a given trial event, k, let old denote a binary 

classification variable that is coded as either ½ or -½. The latter coding indicates that the target 

item for a given trial was previously studied, whereas the former coding indicates that the target 

is a foil. The probability of an “old” response on the kth trial is then given by 

𝑝𝑘 =  Φ(𝑑′𝑜𝑙𝑑𝑘 − 𝐶) 
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Thus, the probability of a hit is calculated when old = ½, and the probability of a false alarm is 

calculated when old = -½. All models were parameterized using the general structure given by 

this equation, albeit also including fixed and random effects as applicable for a given design. 

This parameterization permitted d’ and C to be estimated directly, with fixed and random effects 

applied independently to each parameter. Using this approach, I removed the model intercept and 

computed slopes that produced estimates of d’ and C for all possible combinations of the fixed 

effects. 

Each model included fixed effects for condition (sing, aloud, silent) and group (matched, 

unmatched) applied to both d’ and C. I assumed that the impact of the fixed effects would vary 

across participants and items, given that failure to account for item- and participant-level 

variability in effects – or accounting solely for baseline levels variability along these dimensions 

(i.e., by including only a random intercept) – can produce biased estimates (Rouder et al., 2007). 

Thus, I included random slopes to permit item-level variation in the impact of the fixed effects of 

both group and condition. For participant-level effects, however, the random slopes only 

permitted variation in the effect of condition, given that group was manipulated between-subjects 

and participant-level effects corresponding to this parameter were thereby not justified by the 

design (see, e.g., Barr et al., 2013; Gelman & Hill, 2006). Although I removed the intercept from 

the models in all cases, I also modeled correlations between random slopes reflecting my 

assumption of baseline variability in d’ and C across participants and items.11 While not all 

model terms corresponding to the random effects are reported in-text, an overview of these 

estimates is provided for each signal detection model reported below.  

 
11 Modeling correlations between item- and participant-level random slopes accounts for the notion that some participants or items may vary in 
baseline sensitivity or response bias. For example, if participant-level slopes for sensitivity are positively correlated across conditions, this 

indicates that participants who exhibit high sensitivity in one condition also tend to exhibit high sensitivity for other conditions.  
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For each model, I applied uninformative, mildly regularizing priors. These priors were 

specified to reflect my belief that sensitivity for any given condition (i.e., sing, aloud, silent) 

should reasonably fall between -1 and 3 and that response bias should fall between -2 and 2; 

these priors were calibrated with respect to effects observed in other signal detection analyses of 

the production effect (e.g., Fawcett et al., 2012; Forrin et al., 2016; Quinlan & Taylor, 2013) and 

the lower and upper boundaries that d’ and C can reasonably assume. For random effects, my 

priors were calibrated to beliefs that the standard deviation for any given clustering variable 

across these parameters should fall between 0 and 2. Finally, where applicable, I also applied 

regularizing lkj priors to correlations between random effects with a scale of 4 (Lewandowski et 

al., 2009). These priors essentially regularize correlation coefficients in a manner similar to the 

priors for parameters reported above, placing greater weight upon coefficients close to zero—but 

nonetheless allowing for reasonably high estimates (for further discussion, see McElreath, 2018).  

All models were fit using 8 independent sampling chains of 15000 iterations each. 

However, because each chain requires a warm-up period to converge to the posterior, the first 

7500 samples were discarded, as is standard practice (see Kruschke, 2014, and McElreath, 2018, 

for technical discussion of sampling procedures used in Bayesian parameter estimation). Thus, 

the models included 60000 post-warmup draws in total. Model convergence was assessed using 

visual inspection of the chains and R-hat statistics, which were less than 1.01 in all cases, 

indicating that the models converged (Gelman & Hill, 2006; Kruschke, 2010). Further, 

inspection of the chains showed that both bulk and tail effective sample sizes were equal to or 

greater than 20000 for all estimates reported in-text. Although sampling chains for some item-

level correlation terms were less efficient, effective sample sizes for these coefficients were 

nonetheless greater than 7000 in all cases.  
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For each model, I report median posterior estimates for d’ by condition and group and 

contrasts between conditions by group. The latter parameters were calculated directly from the 

posterior distributions of the estimates for each coefficient and reflect raw differences in each 

parameter. Alongside these parameters, I report the 95% highest density interval (HDI) 

surrounding each estimate. The HDI represents the interval containing 95% of the posterior 

distribution such that all values within the interval are more probable than values that fall outside 

the interval (Kruschke, 2010). This interval quantifies uncertainty around the posterior estimate 

and can be used to adjudicate whether estimates are credibly different from zero, analogous to 

statistical significance in Frequentist analysis. For example, if 95% of credible values are above 

zero, this can be interpreted as indicating 95% confidence that the estimate is positive. On the 

other hand, a 95% HDI that contains zero represents an estimate that is not credibly different 

from zero.  

With respect to my analyses of response bias, the colour matching procedure allowed me 

to record separate false alarm rates that permitted direct, condition-specific estimates of C for the 

matched group. However, estimates of C for the unmatched group were calculated using 

arbitrarily separated false alarm rates (i.e., by randomly distributing foil items across conditions). 

As a result, condition-specific estimates of this parameter for the unmatched group capture 

differences in hit rates but not false alarm rates. Thus, estimates of response bias can be 

meaningfully interpreted only for the matched group; my discussion of this parameter thereby 

focuses solely on the matched group. With this limitation in mind, I also report median posterior 

estimates for C by condition and contrasts between conditions; the 95% HDI is reported 

alongside each estimate. Estimates for this parameter can be interpreted such that lower values 
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reflect more liberal response bias (i.e., a higher propensity to respond with “old” irrespective of 

whether an item is old), whereas higher values indicate more conservative responses. 

2.2.4.2 Diffusion Models 

An alternative approach to analyzing data derived from binary decision-making tasks 

(e.g., recognition memory) is the diffusion model (Ratcliff, 1978; for reviews, see Voss et al., 

2013; Wagenmakers, 2009). Broadly, this model assumes that after a to-be-judged stimulus is 

presented, a process of evidence accumulation is initiated. This accumulation process is noisy, 

but the evidence will eventually cross one of two possible thresholds corresponding to the two 

available decisions, prompting a response. In a simple recognition paradigm, for example, 

participants encounter words at test and are asked to decide whether the words were previously 

studied or not. Thus, in this example, the two boundaries represent decisions corresponding to 

“old” and “new” responses, respectively. According to the diffusion model, when a participant 

encounters a test word, the participant begins to accumulate evidence with respect to whether the 

word matches one previously studied. As evidence accumulates, the participant will “drift” 

towards one of the boundaries; once one of the boundaries is reached, the participant will decide 

whether they recognize the word (Ratcliff et al., 2004).  

From this model, several key parameters of interest can be derived. The central parameter 

of the diffusion model is drift rate, which refers to the rate at which evidence toward either 

boundary is accumulated. As applied to recognition memory, this parameter reflects the quality 

of the agreement between the test item and the participant’s memory; in other words, higher drift 

rate equates to accumulation of evidence that is faster, more accurate, or both. The second 

parameter of interest is boundary separation, which refers to the distance between the two 

decision boundaries. This parameter quantifies the amount of evidence required to make a 
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decision, with a larger boundary separation indicating that more information is necessitated. 

Diffusion models also include a parameter corresponding to starting point (sometimes referred to 

as bias, e.g., Wiecki et al., 2013), which reflects the point at which the process of evidence 

accumulation begins; this parameter quantifies bias towards either boundary. Finally, non-

decision time quantifies the amount of time participants spend encoding the stimulus prior to 

initiation of the decision process (Ratcliff & Rouder, 1998; Ratcliff et al., 2004). Although more 

complex variants of the diffusion model including additional parameters exist (e.g., parameters 

corresponding to trial-by-trial variability in drift rate, starting point, and non-decision time; 

Ratcliff & Rouder, 1998), the four-parameter version detailed above is commonly employed for 

recognition memory and is easily implemented within a Bayesian framework (Bürkner, 2021; 

Wiecki et al., 2013); as such, I chose to conduct my exploratory analyses using the four-

parameter variant.  

My decision to fit exploratory diffusion models to this data was motivated firstly by the 

absence of previous efforts to model production data in this manner: Although the diffusion 

model has been applied in a wide variety of cognitive tasks that involve binary decision-making 

(see, e.g., Voss et al., 2013; Wagenmakers, 2009), no published study within the production 

literature has adopted this approach. Further, diffusion models offer several advantages over 

conventional approaches to analysis of recognition data. For example, response times and the 

response variable of interest (e.g., and old/new response) are typically modeled separately. 

However, this approach is limited insofar as it generally does not account for the full distribution 

of response times (focusing instead on the mean), nor speed-accuracy trade-offs. On the other 

hand, the diffusion approach permits response times to be modeled whilst also accounting for a 

response variable; the approach is thus able to capture variation in each as well as any number of 
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interactions between the two variables. Furthermore, the parameters derived from the model 

allow for the quantification of latent cognitive processes that are ignored in conventional 

analyses; thus, diffusion modeling can provide a more complete picture of the decision process 

(Ratcliff & Rouder, 1998; Ratcliff et al., 2004; Wagenmakers, 2009).  

With respect to my implementations of this model, an overview of the general 

parameterization and mathematical assumptions underlying diffusion models is far beyond the 

scope of the present thesis. Broadly, the diffusion models I implemented modeled response times 

and response accuracy as a joint process and produced estimates corresponding to drift rate, 

boundary separation, starting point, and non-decision time (for detailed overviews, see Feltgen & 

Daunizeau, 2021; Ratcliff, 1978; Wagenmakers, 2009; for a tutorial, see Singmann, 2017). I 

specified the models using a non-linear formula that allowed fixed and random effects to be 

applied separately to each parameter. Importantly, approaches to diffusion modeling typically 

assume that stimulus characteristics which are not known to participants prior to the start of each 

trial can only affect drift rate; this is because all other parameters are thought to be fixed prior to 

encountering the stimulus (see, e.g., Feltgen & Daunizeau, 2021). Accordingly, fixed effects 

corresponding to stimulus characteristics that could not be known before the stimulus was 

presented were applied only to drift rate. Thus, for the present experiment, the drift rate 

parameter included fixed effects for condition, “old” status (i.e., a categorical classification 

variable indicating whether an item was previously studied) and group, whereas the other 

parameters included only a fixed effect for group. The drift rate parameter also included a 

random slope that allowed for variability in the effects of condition, “old” status and group 

across items, as well as slopes that permitted variability in the former two fixed effects across 

participants. All other parameters included random slopes corresponding to item-level variability 
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across groups and random intercepts permitting baseline variability across participants. Due to 

issues with convergence, correlations between random effects were not included in the final 

models. 

Initially, I modeled the data using two approaches that differed slightly: I first modeled 

the yes/no responses irrespective of correctness and then modeled accuracy (i.e., correct 

identification of an item as old or new). For the former approach, the models were implemented 

as described above. For the latter approach, however, starting point was fixed at the midpoint 

(i.e., no bias towards either decision), resulting in a three-parameter diffusion model that is 

standard for models of correctness (Voss et al., 2015; see also, Bürkner, 2021). Thus, for the 

latter approach, no estimates corresponding to starting point were produced. However, the four-

parameter models did not converge as well as the simpler models and moreover, estimates of 

starting point produced by these models were not meaningfully different from the fixed bias 

specified for the models of accuracy (i.e., the credible intervals corresponding to estimates of this 

parameter contained 0.5); the inferences derived from each approach were also identical. 

Accordingly, I opt to report only the results of the simpler models herein.  

In either case, I first prepared the data by removing all trials for which participants self-

corrected their decision. To elaborate, the recognition test employed in this paradigm was 

atypical insofar as participants were able to correct their response before pressing another key to 

submit the response. Typically, diffusion models are employed for fast decisions (e.g., 1000 – 

1500 ms on average; Ratcliff et al., 2004) and fitting such a model to the data collected in this 

experiment thereby presents a unique challenge. Although the opportunity to self-correct was 

available, the data showed that participants opted instead to immediately submit their initial 

decision on most trials. Drawing upon this finding, I opted to analyze response times for the 
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initial decision and discard trials for which multiple decisions were made; this resulted in the 

exclusion of < 5% of trials. Because no precedent exists for applying diffusion models to 

response times derived from such a paradigm, this approach is novel and is likely not without 

limitations. Accordingly, conclusions drawn from the exploratory diffusion models reported 

herein should be interpreted with caution. Subsequently, I discarded all trials for which response 

times were extreme by excluding observations that were below the 2.5% quantile and above the 

97.5% quantile (see, e.g., Berger & Kiefer, 2021; see also, Ratcliff et al., 2018); this step was 

necessary to ensure that the models could successfully initialize and converge (Bürkner, 2021; 

Singmann, 2017). 

For the diffusion models, I applied uninformative, mildly regularizing priors. Given that 

no published study has fit diffusion models to production data, my priors were broadly calibrated 

with respect to other studies of recognition memory (e.g., Ratcliff, 1978; Ratcliff et al., 2004) 

and the upper and lower boundaries that each parameter could hypothetically assume. For drift 

rate, I specified priors such that this parameter was reasonably expected to fall between -4 and 4. 

For boundary separation, nondecision time and starting point (where applicable), priors were 

specified such that each parameter was reasonably expected to fall between 0 and 2. For random 

effects, my priors were calibrated to beliefs that the standard deviation for any given clustering 

variable across these parameters should fall between 0 and 2. Finally, I also applied regularizing 

lkj priors to correlations between random effects with a scale of 3 (Lewandowski et al., 2009; for 

further discussion, see McElreath, 2018).  

The diffusion models were fit using 6 independent sampling chains of 5000 iterations 

each, with a warmup period of 2500 iterations. Thus, the models included 15000 post-warmup 

draws in total. Model convergence was assessed using visual inspection of the chains and R-hat 
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statistics, which were less than 1.01 in all cases, indicating that the models converged (Gelman & 

Hill, 2006; Kruschke, 2010). Further, both bulk and tail effective sample sizes were equal to or 

greater than 1000 for all estimates reported in-text. For each model, I report the median posterior 

estimate corresponding to each parameter of interest alongside the 95% HDI.  

2.2.4.3 Analyses of Serial Position 

As outlined previously in Section 1.1 of the present thesis, recent research efforts by Saint-

Aubin and colleagues (2021; Cyr et al., 2022; Gionet et al., 2022, in press) have provided evidence 

for an interaction between production and serial position in certain paradigms: In pure-list tests of 

recall, a reverse production effect (i.e., silent > aloud) arises for early positions, whereas a typical 

production advantage emerges for late positions. To expand upon my earlier discussion, this 

interaction has been explained with reference to a revised feature model (RFM), adapted from 

Nairne’s (1990) feature model. According to this model, production interferes with rehearsal and 

can thereby hinder the encoding and maintenance of item features. In pure lists, items read silently 

are not subject to production-related interference (i.e., interference arising due to production-

related sensory processes) because no items are produced; thus, these items are well-rehearsed at 

both early and late serial positions. On other hand, produced items in pure lists are subject to 

varying degrees of interference depending upon their serial position. For early positions, 

substantial interference arises and hinders rehearsal, whereas late items are subject to relatively 

less interference because few items are produced subsequent to these positions. Accordingly, a 

reverse production effect arises for early items because silent items are better rehearsed relative to 

aloud items, while a typical production advantage occurs for late positions (for discussion and 

computational implementation of the RFM, see Saint-Aubin et al., 2021). The notion that such an 
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interaction occurs in pure-list recall paradigms has received considerable support from recent 

reviews (Gionet et al., 2022) and meta-analyses (Fawcett et al., 2023).  

However, evidence for an interaction between production and serial position in tests of 

recognition is mixed. One meta-analytic model of serial position effects in recognition found the 

production effect to be credible for both early and late positions, albeit with a numerical trend 

favoring a larger advantage for the latter (Fawcett et al., 2023). In contrast to these findings, 

however, a recent series of empirical investigations by Gionet et al. (in press) found no evidence 

for an interaction between production and serial position in recognition. These authors speculated 

that the interaction predicted by the RFM might have failed to emerge due to the greater list length 

typical of recognition paradigms: Participants rehearse a lower proportion of items as list length 

increases, reducing the cost of production-related interference for early items. Given this 

discrepancy in findings, I speculated that the statistical approach employed by Gionet et al. (in 

press) could have obfuscated the critical interaction. Whereas those authors fit single- and 

multilevel linear models to the data, earlier investigations of serial position and production (e.g., 

Cyr et al., 2022; Gionet et al., 2022) appear to show nonlinear relationships between the variables 

that would not likely be captured by typical approaches (see, e.g., Wood, 2017, for a detailed 

discussion). On this basis, I opted to investigate serial position effects in my own data using an 

approach designed to capture the possibility of a nonlinear relationship.  

As a secondary objective, I implemented models of serial position to potentially capture 

practice effects within my data. Earlier work by Wakeham-Lewis et al. (2022) observed non-

significant trends hinting at an increase in the size of the production effect for character voices – 

but not for reading aloud – for later list positions. Given that both singing and reading in character 

voices constitute unusual production modalities with which participants may be unfamiliar (see 
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Sections 1.3 and 5.2 of the present thesis for further discussion), it is possible that similar patterns 

could emerge in my data. If this were the case, it would suggest that the singing superiority effect 

is driven in part by experience with the modality (but see Quinlan & Taylor, 2019). 

With respect to the precise implementation of my serial position analyses, a detailed 

overview of the mathematical theory underlying GAMMs lies outside the scope of this thesis; 

interested readers are directed to Wood (2017). In simple terms, additive models allow for 

functions describing patterns in the data to be constructed as the weighted sum of any number of 

simpler basis functions. Thus, a complex, nonlinear pattern that could not be captured by a single 

polynomial function can instead be captured by a piecewise function composed of multiple 

components. Practically speaking, this approach allowed me to fit probit models inclusive of serial 

position effects that were capable of capturing complex nonlinear trends in my data—although 

models fit using this approach are penalized by smoothing parameters for departures from linearity 

(i.e., curves that are “wigglier” are penalized more than smoother curves) to mitigate the risk of 

overfitting.  

For reasons described above, I opted to fit signal detection models (rather than models of 

raw or corrected hit rates) inclusive of fixed and random effects corresponding to serial position 

(i.e., the order in which items appeared during the study phase). Because foil items do not have a 

meaningful position within the study phase order, I first randomly (and arbitrarily) split foil items 

across serial positions, thus assuming a common false alarm rate for each position. I then modeled 

standardized serial position first as a nonlinear effect and subsequently as a linear effect; this 

approach was taken to allow for the possibility that serial position effects could be linear. For either 

approach, the parameterization of the models was similar to the probit models of old/new 

recognition detailed above, albeit inclusive of fixed and random effects corresponding to serial 
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position applied to d’ (but not C).12 For the linear models, I included fixed effects for serial position 

across conditions as well as random slopes for serial position across participants; the structure of 

the nonlinear models was identical, albeit instead including fixed and random smooth terms that 

permitted the estimation of nonlinear serial position effects. Initially, I intended to include random 

effects such that participant-level random curves for serial position were permitted to vary across 

conditions. However, nonlinear implementations of the models inclusive of these effects 

converged poorly; accordingly, my primary linear and nonlinear models proceeded instead with a 

simplified random effects structure excluding only that term. I opted not to model interactions 

between serial position and group on the basis that differences related to color matching would be 

expected to emerge primarily in false alarm rates, which could not be meaningfully captured by 

the modeling approach taken here. Further, I chose to exclude item-level random slopes and curves 

for serial position for two reasons: First, because there is no obvious theoretical basis from which 

to suggest that item-level variation in serial position effects should emerge; and second, because 

fixed and random effects corresponding to serial position should already account intrinsically for 

some degree of intertrial variability.  

For the models of serial position, priors on d’ and C were largley identical to those 

described for the probit models above. For these models, however, I also placed uninformative, 

mildly regularizing priors on the effect of serial position on d’. For the linear models, these priors 

were specified such that serial position-related changes in d’ in any given condition were 

expected to fall between -1 and 1; identical priors were placed on the linear trend of serial 

position in the nonlinear models. For the nonlinear models, I also placed priors on the variance of 

 
12 Given that my random assignment of foil items to study positions meant that estimates of C could not be meaningfully interpreted, I opted to 
apply fixed and random effects corresponding to serial position exclusively to d’. In support of this decision, models inclusive of serial position 

terms applied to both parameters produced identical inferences to the models in text, but convergence was superior for the latter. 
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the smooth parameters (i.e., the “wiggliness” of the curves) such that these coefficients were 

expected to fall between 0 and 4. In all cases, priors were calibrated to be largely uninformative 

and allow for a wide – but reasonable – range of possible effects. 

Both the linear and nonlinear models were fit using the brms package (Bürkner, 2017) in 

R (R Core Team, 2020); the latter approach additionally made use of functions imported from the 

mgcv package (Wood, 2011). With further respect to the nonlinear analyses, these models were fit 

using the default number of 10 knots (i.e., the number of points between the component basis 

functions). This approach was taken because I had no strong theoretical basis from which to 

describe the proximate curve expected to arise from the data. Although it is very likely that 10 

knots was greater than the number of knots necessitated by my data, no issues related to overfitting 

should arise because wigglier curves are penalized accordingly. Due to the extensive 

computational cost of fitting additive mixed models using a Bayesian approach, all models were 

fit using 6 independent chains of 5000 iterations each, with a warm-up period of 2500 iterations. 

Thus, each model included a total of 15000 post-warmup draws. Model convergence was assessed 

using R-hat statistics, which were less than 1.01 in all cases, indicating that all models converged 

(Gelman & Hill, 2006; Kruschke, 2010). Effective sample size was greater than 6000 for all 

estimates reported in this supplement and greater than 10000 in most cases. Chains corresponding 

to some random effects were less efficient, but effective sample size for these coefficients was 

greater than 2000 in all cases and greater than 5000 in most cases. 

2.3 Results and Discussion 

Table 2.1 shows means and standard deviations for all primary dependent measures as a 

function of condition and group. Table 2.2 shows means and standard deviations for response 

times as a function of condition, group, and item type.  
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Table 2.1 

Mean Proportion and Standard Deviation of the Mean for Hit Rates, Corresponding False Alarm 

Rates, Sensitivity (d’), and Response Bias (C) as a Function of Condition and Group 

Condition Hits FAs d’ C 

     

Matched     

Sing .68 (.16) .17 (.15) 1.65 (.63) .30 (.50) 

Aloud .68 (.16) .21 (.16) 1.46 (.56) .21 (.50) 

Silent .48 (.20) .24 (.17) .78 (.41) .46 (.58) 

Unmatched     

Sing .69 (.15) .22 (.15) 1.44 (.55) .17 (.44) 

Aloud .68 (.15) .23 (.14) 1.33 (.55) .15 (.39) 

Silent .45 (.18) .23 (.15) .70 (.45) 

 

.51 (.48) 

 

Note. Sensitivity (d’) and response bias (C) were calculated conventionally (rather than estimated 

via Bayesian probit regression).  
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Table 2.2 

Mean and Standard Deviation of the Mean for Response Times (RTs) in Seconds as a Function of 

Condition, Group, and Item Type 

Condition Item Type 

 Old New 

   

Matched   

Sing 1.49 (.83) 1.47 (.80) 

Aloud 1.43 (.76) 1.51 (.83) 

Silent 1.51 (.82) 1.48 (.82) 

Unmatched   

Sing 1.31 (.74) 1.37 (.77) 

Aloud 1.33 (.73) 1.32 (.72) 

Silent 1.41 (.79) 1.36 (.80) 

 

Note. Descriptive statistics for RTs were calculated after the removal of outlier trials, as outlined 

above.   
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2.3.1 Signal Detection Analysis  

I applied a multilevel probit regression to old/new responses, which was parameterized as 

described above. Below, I report the results for each parameter of interest estimated by the model 

(i.e., d’ and C).  

Sensitivity. Figure 2.1 shows posterior estimates for sensitivity by condition and group 

and contrasts between conditions. As depicted in Figure 2.1, the production effects for either 

modality were credible across groups. These findings are unsurprising and align well with prior 

studies that have observed robust production effects for singing (e.g., Quinlan & Taylor, 2013, 

2019; Whitridge, 2022). Importantly, however, a small but credible singing superiority effect 

emerged in the matched group (estimate = 0.11, HDI95% = 0.01 – 0.21), although this pattern did 

not occur for the unmatched group (estimate = 0.02, HDI95% = -0.07 – 0.12). Contrary to my 

hypotheses, then, it appears that singing does result in a larger production effect relative to 

reading aloud, at least under certain circumstances. However, Whitridge (2022; see also, Hassall 

et al., 2016) previously failed to detect the effect across multiple experiments, with the effect 

emerging only in the present experiment when the design of the study was a near-exact 

replication of Quinlan and Taylor (2013; Experiment 2). Accordingly, my observation of a 

credible singing superiority effect comes with the important caveat that the effect appears to be 

driven – at least in part – by aspects of study design. In tentative support of this notion, a 

numerical trend favored a larger singing superiority effect in the matched group relative to the 

unmatched group (estimate = 0.08, HDI95% = -0.05 – 0.21), a pattern which was also observed in 

Whitridge (2022; Experiment 3). Taken together, these findings hint strongly at the possibility of 

an interaction between singing and color matching. I further explored this point in Chapter 4 of 

the present thesis.  
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Figure 2.1 

Posterior Estimates for Sensitivity (d’) as a Function of Condition and Group (Left Column) and 

Contrasts Between Conditions as a Function of Group (Right Column) for Experiment 1 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate. Thick lines represent the 50% HDI and thin lines represent the 95% HDI.  

 

As outlined previously, the design of Experiment 1 did not justify the inclusion of 

participant-level random effects for group. Thus, estimates corresponding to participant-level 

random effects reflect variability in both the matched and unmatched groups. With this in mind, 

participant-level random slopes corresponding to the effect of condition were informative in all 

cases (all estimates > 0.31), indicating variability in the impact that study modality had on 

sensitivity across individuals. Participant-level correlations between the aloud/sing and 

sing/silent conditions were moderate and positive (estimates > 0.48), suggesting overall that 

participants with higher sensitivity in one condition also exhibited higher sensitivity in other 

conditions.  
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Item-level random slopes corresponding to the effects of condition and group were also 

informative in all cases (estimates > 0.41 for the matched group and > 0.35 for the unmatched 

group). While correlation terms corresponding to item-level effects were less informative than 

those corresponding to participant-level effects, the majority of the estimates were credible and 

positive, suggesting some degree of baseline variation in sensitivity across items.  

Response Bias. Figure 2.2 shows posterior estimates for response bias by condition and 

group and contrasts between conditions. As depicted in Figure 2.2, response bias across groups 

was credibly more liberal for either production condition relative to the silent condition. This 

finding is generally congruent with earlier literature that has identified liberal shifts in response 

bias for produced relative to silent items (e.g., Fawcett et al., 2012; Quinlan & Taylor, 2013; 

Zormpa et al., 2019) and highlights the superiority of signal detection analysis for production 

studies. Interestingly, response bias was credibly more conservative for the sing relative to aloud 

condition (difference = 0.11, HDI95% = 0.01 – 0.21). This trend is novel, with earlier studies 

observing similar bias for sing and aloud items (Quinlan & Taylor, 2013). Why this pattern has 

been hitherto unobserved is unclear, although the effect may simply have emerged due to the 

relatively greater statistical power of the present experiment.  

Because participant-level effects could not be clustered by group and because of the 

limitations associated with calculating C for the unmatched group (as described previously), all 

participant-level random effects on response bias reported hereafter should be interpreted with 

caution. With this caveat in mind, participant-level random slopes corresponding to the effect of 

condition were informative in all cases (all estimates > 0.25). Participant-level correlations 

between all conditions were moderate to strong and positive (estimates > 0.63). 

 



PRODUCTION AND SINGING 

76 
 

Figure 2.2 

Posterior Estimates for Response Bias (C) as a Function of Condition and Group (Left Column) 

and Contrasts Between Conditions as a Function of Group (Right Column) for Experiment 1 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate. Thick lines represent the 50% HDI and thin lines represent the 95% HDI.   

 

Item-level random slopes corresponding to the effects of condition and group were also 

informative in all cases and similar across groups (estimates > 0.25 for the matched group and > 

0.24 for the unmatched group). For response bias, item-level correlations were moderate, 

positive, and similar across groups (estimates > 0.48 for the matched group and > 0.41 for the 

unmatched group), indicating baseline variation in response bias across items. Overall, these 

trends are generally consistent with those observed for the random effects on sensitivity.  

2.3.2 Diffusion Models 

In addition to a standard signal detection model, I applied a multilevel diffusion model to 

accuracy, which was parameterized as described previously. I computed a single value of drift 
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rate for each condition by adding the posterior of the parameter for old items to the posterior of 

the parameter for new items (see, e.g., Ratcliff et al., 2021, 2022). This approach allowed me to 

simultaneously account for drift rates for both old and new items, akin to a signal detection 

analysis.  

For the matched group, a credible production effect on drift rate emerged for both the 

sing (difference = 0.78, HDI95% = 0.61 – 0.96) and aloud conditions (difference = 0.65, HDI95% = 

0.46 – 0.83), indicating faster accumulation of evidence towards correct responses for produced 

relative to unproduced items. Additionally, a non-credible trend supported higher drift rate in the 

sing condition relative to the aloud condition (difference = 0.13, HDI95% = -0.07 – 0.33). For the 

unmatched group, credible production effects again emerged for both sing (difference = 0.70, 

HDI95% = 0.50 – 0.90) and aloud (difference = 0.67, HDI95% = 0.46 – 0.88), but there was no 

trend toward a singing superiority effect (difference = 0.03, HDI95% = -0.15 – 0.23). Generally, 

these results echo the findings I observed across my signal detection models, demonstrating 

robust production effects for either modality. Nonetheless, these findings are the first to extend 

the production effect to drift rate, providing evidence that the advantage persists when jointly 

accounting for both accuracy and response times.  

As discussed above, constraints associated with diffusion models meant that boundary 

separation and nondecision time could not be separated by condition or “old” status and were 

thus separated only by group. With respect to boundary separation, a credible effect of group 

emerged such that boundary separation was higher for the matched group relative to the 

unmatched group (difference = 0.16, HDI95% = 0.01 – 0.32), suggesting that participants require 

more evidence before making a decision when color matching is present. This notion could be 

interpreted as consistent with differential use of heuristic strategies across groups: Knowing the 
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way an item has been studied could lead participants to search for specific sensorimotor 

information not normally sought in typical paradigms. Changes in boundary separation are often 

indicative of a speed-accuracy trade-off, wherein higher boundary separation equates to better 

accuracy at the cost of slower responses (Ratcliff & McKoon, 2008). Thus, participants might 

leverage specific information and think more carefully prior to adjudication when oriented to 

cues via stimulus dimensions (see Sections 5.2 and 5.3 of the present thesis for further discussion 

of this hypothesis). Finally, there were no credible differences nor trends in nondecision time 

across groups (difference = 0.01, HDI95% = -0.06 – 0.08)  

2.3.3 Analyses of Serial Position 

Below, I report the results of both the linear and nonlinear models of serial position as well 

as empirical comparisons between the linear and nonlinear models. Model comparison was 

undertaken using approximate leave-one-out cross-validation to compare expected log pointwise 

predictive densities (ELPDs) via the loo package (Vehtari et al., 2024; for further discussion, see 

Vehtari et al., 2017);13 in all cases, model comparison diagnostics were good (all k estimates < 

0.7). Because the nonlinear models were often favored over the linear models throughout the 

present thesis, I focus my discussion on the former. The RFM (Saint-Aubin et al., 2021) makes no 

specific predictions as to the effect serial position might have in mixed-list recognition paradigms; 

accordingly, my analysis of Experiment 1 has no immediate theoretical relevance to this 

framework and was undertaken primarily for completeness and to explore practice effects.  

Given that additive models describe the data using a piecewise function made up of smaller 

components, it is difficult to derive straightforward inferences from smooth predictors. That is to 

 
13 For each comparison, I report the difference in ELPD between the candidate models (ΔELPD) and the standard error of the difference (ΔSE). 

These values can be interpreted such that models with lower ELPD generate better predictions. As a rule of thumb, I considered a model to have 
been supported if ΔELPD was greater than two times ΔSE (akin to a 95% confidence interval). However, readers should note that this convention 

is arbitrary.  
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say that unlike the linear models, the nonlinear models did not compute slopes for serial position 

that could be evaluated for credibility. To derive inferences from these analyses, then, I computed 

model predictions for d’ across serial positions (excluding random effects) and compared model 

estimates for sensitivity at different positions. Figure 2.3 depicts conditional nonlinear model 

estimates for d’ across serial positions and contrasts between conditions across serial positions 

(i.e., difference smooths for sing/aloud - silent and sing - aloud). 

 

Figure 2.3 

Nonlinear Model Estimates for d’ as a Function of Condition and Serial Position  

 

Note. The shaded region surrounding each curve depicts the 95% quantile interval of the estimate. 

  

For the linear model, the slope for serial position narrowly reached credibility for the sing 

condition (estimate = 0.08, HDI95% = 0.00 – 0.16), but not for the aloud or silent conditions. In 

this case, model comparison failed to provide definitive evidence, but marginally favored the 



PRODUCTION AND SINGING 

80 
 

nonlinear model over the simpler linear model (ΔELPD = -4.5, ΔSE = 3.6) and definitively 

favored the nonlinear model over the more complex linear model (ΔELPD = -164.7, ΔSE = 

17.9). To evaluate whether the inclusion of terms corresponding to serial position was beneficial, 

I also compared models inclusive of serial position effects to comparable models excluding these 

terms (i.e., parametrized identically to the signal detection analysis described above). For this 

comparison, the inclusive nonlinear model was marginally favored over the exclusive model 

(ΔELPD = -16.5, ΔSE = 11.4).  

As shown in Figure 2.4, for the nonlinear model, the production effect was credible for 

either modality at all serial positions. Additionally, I computed planned contrasts comparing the 

initial 3 items to the final 3 items. These positions were selected to mimic those used in analyses 

by Fawcett et al. (2023; see also, Gionet et al., in press), who selected these positions arbitrarily. 

In this case, the planned contrasts provided credible evidence for a larger production effect for 

late items relative to early items in the sing condition (difference = 0.74, HDI95% = 0.43 – 1.06), 

but only a non-credible trend emerged for reading aloud (difference = 0.14, HDI95% = -0.18 – 

0.45). Interestingly, this trend extended to the singing superiority effect (difference = 0.60, 

HDI95% = 0.29 – 0.91), which was credible from position 77 onwards.  

My serial position analyses of Experiment 1 hint strongly at a practice effect confined to 

the sing condition. Interestingly, this interaction emerged in an experiment which utilized both a 

practice phase and a longer study phase list (120 items versus 90 items), methodological features 

which were present in earlier studies that observed a singing superiority effect (e.g., Quinlan & 

Taylor, 2013, 2019) but not in earlier conceptual replications that failed to observe the effect 

(Whitridge, 2022). Further, the singing superiority effect peaked at the latest positions in the list, 

with positions this extreme not existing in earlier conceptual replications. While it could be the 
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case that the singing superiority effect emerges only when participants have had significant 

practice with the modality, I caution against definitively accepting this interpretation for several 

reasons. First, exploratory serial position analyses of data from Whitridge (2022) detected no such 

trend towards a larger singing superiority effect for later positions; in fact, the effect marginally 

decreased for later positions. Additionally, although the singing superiority effect in Experiment 1 

peaked at the latest serial positions, the effect was credible from position 77 onwards. Given that 

conceptual replications reported in Whitridge (2022) used study lists consisting of more than 77 

items (i.e., 90 items), a practice-related interaction would be expected to emerge prior to positions 

that were not present for the shorter lists. Furthermore, the amount of practice afforded by the 

additional pre-study phase in Experiment 1 was negligible: This phase consisted of 15 trials split 

equally between conditions, meaning that participants completed only five practice singing trials. 

Finally, earlier research has shown that experienced singers – who would be expected to be more 

practiced with the modality – do not show a singing superiority effect that is meaningfully different 

from those previously observed in typical samples (Quinlan & Taylor, 2019; see Section 5.3 of the 

present thesis for further discussion of practice- and experience-related effects).  

Chapter 3: Experiment 2 

3.1 Overview 

In Experiment 2, I evaluated Quinlan and Taylor’s (2019) claim that the production effect 

for singing occurs only in mixed-list, within-subject experimental designs. Quinlan and Taylor 

(2019) manipulated production (sing, aloud, silent) between-subjects to test a strength account of 

the singing superiority effect. Drawing on early research into the production effect (e.g., MacLeod 

et al., 2010; Ozubko & MacLeod, 2010), Quinlan and Taylor (2019) speculated that the singing 

superiority effect should persist between-subject if singing results in increased encoding strength 
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for memory traces relative to reading aloud. After failing to observe a production effect for singing 

altogether, the authors concluded that the benefit must be driven predominantly by distinctiveness.  

However, Quinlan and Taylor (2019) also failed to observe a between-subject production 

effect for reading aloud. Recent meta-analytic evidence from Fawcett et al. (2023) suggests that 

the production effect is reliable in between-subject designs, but also that the benefit is generally 

much smaller in magnitude than its within-subject counterpart. Accordingly, failures to observe a 

between-subject effect (e.g., Hopkins & Edwards, 1972; MacLeod et al., 2010; Ozubko & 

MacLeod, 2010) might often be attributable to insufficient statistical power to reliably detect the 

effect. In the case of Quinlan and Taylor (2019, Experiment 4), the authors recruited 20 participants 

per group. Based on power analyses conducted by Fawcett et al. (2023), then, this experiment 

would have achieved less than 30% power to detect a typical between-subject production effect on 

sensitivity (i.e., d = ~ 0.30). Given that both the present investigation and Whitridge (2022) have 

largely suggested that the production effect for singing is very similar to that for reading aloud, it 

is reasonable to speculate that Quinlan and Taylor (2019) failed to observe a between-subject effect 

due to a lack of statistical power. Accordingly, there is no obvious reason that a well-powered 

experiment should not be able to detect a between-subject production effect for singing.  

To test this hypothesis, the present investigation conceptually replicated Quinlan and 

Taylor (2019, Experiment 4). Fawcett et al. (2022) recommended a minimum sample size of 64 

participants per group in order to ensure 80% power for detecting typical between-subject 

production effects on sensitivity. However, this experiment was conceptualized and implemented 

prior to the publication of Fawcett et al. (2023) and did not meet their recommendations for 

recruitment. Nonetheless, the sample size in the present experiment was more than double that of 

Quinlan and Taylor (2019, Experiment 4) and thereby had a much greater chance of detecting an 
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effect. In this experiment, I expected to observe evidence for a production effect on sensitivity for 

both singing and reading aloud relative to reading silently. If a between-subject production effect 

for singing is observed, this would suggest that the benefit for singing – much like that for reading 

aloud – persists across experimental designs and thereby cannot be explained solely by relative 

distinctiveness. Additionally, I expected to observe no evidence for a difference in sensitivity 

between singing and reading aloud.  

As a secondary objective, the present experiment was the first investigation to examine the 

influences of recollection and familiarity processes on the between-subject production effect for 

singing; this was accomplished via the inclusion of recollect/familiar/neither judgements at test. 

Given that Fawcett and Ozubko (2016) found that the between-subject production effect was 

driven by familiarity (rather than recollection), I expected to observe evidence for a production 

effect on familiarity such that more “familiar” judgements are made for items that were either sung 

or read aloud at study relative to unproduced items. Finally, I did not expect to observe evidence 

for differences in “recollect” judgements between conditions.  

3.2 Method 

3.2.1 Participants 

Participants in Experiment 2 consisted of 140 undergraduates from The University of 

Southern Mississippi who completed the experiment in exchange for partial course credit. 

Fifteen participants were excluded from analyses due to their failure to discriminate between old 

and new items at above chance level. Participants were randomly assigned to one of three 

conditions: Read silently (N = 40), aloud (N = 42), or sing (N = 43).  
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3.2.2 Stimuli and Apparatus 

For Experiment 2, stimuli were randomly selected from a pool of 360 words retrieved 

from the MRC Psycholinguistic Database (Coltheart, 1981) and previously used in both Ozubko 

et al. (2020) and Whitridge (2022). All words were nouns between 5 and 10 letters long, with a 

mean of 6.56 letters (SD = 1.54) and a mean 1.97 syllables (SD = 0.84). The stimuli had a mean 

concreteness rating of 3.42 (SD = 0.71) and a mean SUBTLEX frequency score (Brysbaert & 

New, 2009) of 82.01 (SD = 250.48).  

Each participant was assigned a random subset of 180 words derived from the larger pool. 

Half the words (90 items) were studied by participants and were randomized between three 

possible color assignments (i.e., red, blue, and yellow) at study; this was implemented to maintain 

consistency with typical, mixed-list designs, wherein production is cued using color assignment. 

At test, these items were presented in white font. The remainder of the words (90 items) appeared 

only as “new” foils at test and were presented in white font. The experiment was coded in 

PsychoPy (version 2.3.2; Peirce et al., 2019) and presented via a 20-inch color monitor connected 

to a computer running Windows 10. All stimuli were presented in 14-point Arial font against a 

black background. 

3.2.3 Procedure 

Prior to the experiment, each participant was randomly assigned to one of three conditions 

(i.e., sing, aloud, or silent), which dictated how they would be instructed to study items. The 

experiment consisted of a study phase and a test phase. Prior to the study phase, participants were 

informed that they would see words presented, one at a time, in one of three colors (red, yellow, 

or blue) and that they should ignore the color assignment of each word. Depending on the condition 
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to which they were assigned, participants were instructed either to (1) read all words silently, (2) 

read all words aloud, or (3) sing all words.  

Study Phase. During the study phase, participants were presented with a series of 90 words, 

one at a time. Each trial began with a 500 ms fixation (“+”), followed by a 500 ms blank screen 

and then the word at center for 2000 ms. Depending on the condition to which they were assigned, 

participants either read each word silently, read each word aloud, or sang each word. Participants 

were supervised by an experimenter throughout the study phase. After all trials were complete, 

participants moved on to the test phase. 

Test Phase. During the test phase, participants were presented with a total of 180 words, 

90 of which were “old” words that were previously seen in the study phase and 90 of which were 

“new” foil words; all test words were presented in white font. Each test trial began with a 500 ms 

fixation “+”, followed by a 500 ms blank screen and the word at center. The word remained on 

screen until participants made both a confidence judgement and a recollect/familiar/neither 

judgement, which were separated by a 500 ms blank screen. 

Confidence judgements were given as a rating on a scale ranging from 1 to 6. Values 

from 1 to 3 indicated that participants thought the word was new, whereas values from 4 to 6 

indicated confidence that the word was old. Anchors were provided for each value: Confidence 

in the new or old status of the word could be less sure, somewhat sure, or very sure, with values 

of 1 or 6 indicating maximum confidence that the word was new or old, respectively. For the 

recollect/familiar/neither judgements, participants were instructed to respond with “recollect” to 

items that participants were able to visualize and for which they could recall subjective details 

about the associated encoding event, “Familiar” responses were to be given when participants 

recognized the item but were unable to recall subjective details. Finally, “neither” responses were 
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to be given when participants did not recognize the item, Responses for these judgements were 

given by pressing the “R” key to indicate the word was recollected (i.e., remembered), the “F” 

key to indicate that the word was familiar (i.e., known), or “N” to indicate that the word was 

neither recollected nor familiar.  

3.2.4 Statistical Approach 

3.2.4.1 Signal Detection Analysis 

The approach utilized in the present experiment was nearly identical to that described for 

Experiment 1, albeit with three exceptions. First, the models described below included only a 

fixed effect for condition (sing, aloud, silent) rather than fixed effects for condition and group. 

Second, the random effects structure of the models differed from Experiment 1 insofar as random 

slopes corresponding to participant-level variability across conditions were removed; because 

condition was manipulated between-subject in the present experiment, the inclusion of these 

model terms was no longer justified by the design of the experiment (see, e.g., Barr et al., 2013; 

Gelman & Hill, 2006). Finally, whereas Experiment 1 recorded only old/new responses as a 

dependent variable, the present experiment used confidence ratings and recollect/familiar/neither 

judgements. Accordingly, each dependent measure for the present experiment (i.e., confidence, 

recollection, and familiarity) was analyzed using a separate probit model. Further details about 

the parameterization of each model are discussed below. Finally, it is important to note that the 

design of this experiment intrinsically produces separate false alarm rates across conditions; thus, 

estimates of C produced by models reported hereafter could be meaningfully interpreted. 

Priors and sampling procedures were identical to that described for the signal detection 

models reported in Experiment 1. While visual inspection of the chains and R-hat statistics 

indicated that the chains mixed well and that the models converged, effective sample size was 
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lower for estimates of C relative to comparable estimates reported for Experiment 1. 

Nonetheless, effective sample size was greater than 3000 for these estimates and greater than 

7000 in all other cases.  

3.2.4.2 Diffusion Models 

The general approach used for diffusion models of Experiment 2 was similar to that 

described for Experiment 1, albeit with several exceptions. First, the confidence judgements 

collected in the present experiment could not be self corrected; thus, only a single response time 

was recorded for each trial and no trials were discarded on the basis of ambiguous decisions. 

Second, the design of the present experiment necessitated different fixed and random effects 

structures. Like the signal detection models described above, the diffusion models I implemented 

for Experiment 2 included only fixed effects for condition (as well as “old” status, for drift rate), 

rather than condition and group. Further, given that study condition was known to participants 

prior to the start of each trial in this experiment (i.e., because participants studied all items in the 

same manner), all parameters in the diffusion models were permitted to vary as a function of 

condition. With respect to random effects, random slopes corresponding to participant-level 

variability across conditions were removed as described for the signal detection analysis above. 

All other aspects of the modelling approach were identical to that described for Experiment 1. 

Once again, separate models of correctness and binarized old/new responses produced identical 

inferences, but the latter converged poorly; as such, I again report only the results for the simpler 

models.  

3.2.4.3 Analyses of Serial Position 

The approach taken for the serial position analyses of Experiment 2 differed from that 

reported for Experiment 1 only insofar as the linear effects structure and dependent variable of 
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the models was modified to match the probit models of binarized confidence ratings described 

above. Model parametrization, priors, and sampling procedures were otherwise identical to those 

described for the serial position analyses of Experiment 1.  

3.3 Results and Discussion 

3.3.1 Signal Detection Analysis 

Table 3.1 shows means and standard deviations for all primary dependent measures as a 

function of condition. Table 3.2 shows means and standard deviations for confidence ratings and 

response times as a function of condition and item type.  

3.3.1.1 Confidence Ratings 

For my analysis of confidence ratings, responses were first binarized such that ratings 

greater than 3 indicated an “old” response.14  I then applied a multilevel probit regression model 

to the binarized responses.  

Sensitivity. Figure 3.1 depicts estimates for sensitivity across conditions and contrasts 

between conditions. As shown in Figure 3.1, a credible production effect was observed for both 

singing and reading aloud. However, no singing superiority effect emerged, and a non-credible 

numerical trend favored higher sensitivity for the aloud relative to the sing condition, difference 

= -0.15 (HDI95% = -0.36 – 0.05). Interestingly, the production effects observed for both singing 

and reading aloud were comparable in magnitude to those observed for Experiment 1. This 

contrasts with prior evidence suggesting that the between-subject production effect is typically 

smaller than its within-subject counterpart (e.g., Bodner et al., 2014; Fawcett, 2013; Fawcett et 

al., 2023). This unusual pattern is further discussed below in my analyses of recollection.   

 
14 I recorded confidence ratings because it had been my intention to analyze these data using a multilevel ordinal regression model. However, 

since conducting these studies, I have become aware that this is not yet possible in the manner I had intended owing to limitations of the brms 
package (Bürkner, 2017) with respect to random effects for thresholds. For that reason, and because the gains from conducting ordinal as opposed 

to binarized probit models are modest, I have instead adopted a more traditional approach. 
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Regarding random effects for sensitivity, the participant-level random intercept was 

informative (estimate = 0.41, HDI95% = 0.34 – 0.48), as were item-level random slopes 

corresponding to the effect of condition (all estimates > 0.33) and item-level correlations 

between conditions (estimates > 0.51). 

Table 3.1 

Mean Proportion and Standard Deviation of the Mean for Hit Rates, Corresponding False Alarm 

Rates, Sensitivity (d’), and Response Bias (C) as a Function of Condition  

Condition Confidence Recollection Familiarity 

 Hits FAs d’ C Hits FAs d’ C Hits FAs d’ C 

              

Sing .59 

(.16) 

.22 

(.19) 

1.16 

(.49) 

.31 

(.63) 

.37 

(.24) 

.13 

(.24) 

1.19 

(.56) 

.97 

(.98) 

.56 

(.26) 

.37 

(.33) 

.62 

(.69) 

-.03 

(1.19) 

Aloud .65 

(.15) 

.24 

(.20) 

1.31 

(.52) 

.21 

(.60) 

.47 

(.22) 

.15 

(.21) 

1.26 

(.70) 

.77 

(.86) 

.61 

(.26) 

.39 

(.30) 

.75 

(.42) 

-.09 

(1.07) 

Silent .58 

(.17) 

.35 

(.20) 

.67 

(.37) 

.09 

(.61) 

.37 

(.22) 

.19 

(.22) 

.75 

(.48) 

.73 

(.86) 

.53 

(.25) 

.41 

(.26) 

.33 

(.96) 

.03 

(.81) 

 

 

Note. Familiarity scores were computed using the independence remember/know procedure 

(Yonelinas & Jacoby, 1995; see below for further discussion). Sensitivity (d’) and response bias 

(C) were calculated conventionally (rather than estimated via Bayesian probit regression).  
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Table 3.2 

Mean and Standard Deviation of the Mean for Confidence Ratings and Response Times (RTs) in 

Seconds as a Function of Condition and Item Type 

Condition Item Type RT Confidence 

Sing 
Old 2.32 (1.18) 3.87 (2.19) 

New 2.21 (1.20) 2.31 (2.88) 

Aloud 
Old 2.32 (1.22) 4.21 (2.07) 

New 2.34 (1.23) 2.38 (2.10) 

Silent 
Old 2.31 (1.21) 3.84 (2.23) 

New 2.27 (1.23) 2.80 (2.03) 

 

Note. Descriptive statistics for RTs were calculated after the removal of outlier trials, as outlined 

above.   
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Figure 3.1 

Posterior Estimates for Sensitivity (d’) as a Function of Condition (Left Column) and Contrasts 

Between Conditions (Right Column) for Experiment 2 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate. Thick lines represent the 50% HDI and thin lines represent the 95% HDI.  

 

 

Response Bias. Figure 3.2 depicts estimates for response bias across conditions and 

contrasts between conditions. No credible differences in response bias between conditions 

emerged, although a numerical trend favored more conservative response bias for the sing 

condition relative to the silent condition (difference = 0.23, HDI95% = -0.04 – 0.49). Although 



PRODUCTION AND SINGING 

92 
 

this pattern differs from that observed in Experiment 1, these results are consistent with earlier 

literature that has failed to observe production-related differences in response bias between-

subject (e.g., Fawcett & Ozubko, 2016); this may suggest that experimental design modulates 

production effects on response bias. However, the trend towards an effect for the sing condition 

might also suggest that the effect is simply smaller in between- relative to within-subject designs, 

much like the production effect on sensitivity; thus, reliably detecting such an effect might 

require larger samples.  

For response bias, the participant-level random intercept was informative (estimate = 

0.61, HDI95% = 0.54 – 0.71). Item-level random slopes corresponding to the effect of condition 

were also informative (estimates > 0.26), as were item-level correlations between conditions 

(estimates > 0.71). 

3.3.1.2 Recollection 

Having evaluated the between-subject production effect for singing in standard 

recognition, I next applied a comparable multilevel probit model to analyze “recollect” 

responses. Analyzing recollection responses produces estimates analogous to d’, only reflecting 

the degree to which participants differentiated between “new” and “old” items via their recollect 

responses. 

Sensitivity. Figure 3.1 depicts estimates for recollection sensitivity across conditions and 

contrasts between conditions. As shown in Figure 3.1, production effects were observed for 

either modality. As in my analysis of confidence ratings, there was no evidence for a credible 

singing superiority effect (difference = -0.06, HDI95% = -0.34 – 0.21). Interestingly, however, the 

presence of a production effect for recollection in a between-subject design fails to replicate the 

findings of Fawcett and Ozubko (2016).  
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Figure 3.2 

Posterior Estimates for Response Bias (C) as a Function of Condition (Left Column) and 

Contrasts Between Conditions (Right Column) for Experiment 2 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate. Thick lines represent the 50% HDI and thin lines represent the 95% HDI. 

 

 

Given that the emergence of a between-subject production effect for recollection 

coincides with an unusually large production effect on confidence ratings for this design, it may 

be the case that some unknown methodological aspect of this experiment caused the recollective 

component to re-appear. To elaborate, Fawcett and Ozubko (2016) speculated that the between-
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subject production effect is smaller than its within-subject counterpart because it is driven solely 

by processes related familiarity, rather than both recollection and familiarity; thus, if the 

recollective component of the benefit were to emerge between-subjects, the size of the 

production effect might be comparable across designs. Although no candidate moderators are 

apparent, the present experiment differed from Fawcett and Ozubko (2016) in that participants 

were supervised by a researcher for the entirety of the study phase. While minor, it is possible 

that supervision at study may have encouraged participants to remain attentive, leading to 

stronger encoding and thereby more detailed item representations consistent with a recollective 

experience. Consistent with this possibility, Bodner et al. (2016) tested participants in small 

groups and observed within- and between-subject production effects of comparable magnitude. 

While recollection was not assessed in that investigation, these findings are congruent with the 

notion that participants might pay more attention to production tasks in the presence of others. 

Were this the case, however, it is not clear why additional attentional allocation would facilitate 

memory in the produced conditions preferentially. At present, I cannot satisfactorily account for 

my observation of between-subject production effects on recollection; further research is 

necessary to elucidate the mechanisms that might have driven this pattern of results. 

Much like my analysis of confidence ratings, the participant-level random intercept for 

the model of recollection was informative (estimate = 0.54, HDI95% = 0.45 – 0.64), indicating 

baseline variability in recollection sensitivity across participants. Item-level random slopes 

reflecting variability in the effect of condition were also informative (estimates > 0.37), as were 

item-level correlations (estimates > 0.63).  

Response Bias. Figure 3.2 depicts estimates for recollection response bias across 

conditions and contrasts between conditions. Consistent with the pattern observed for confidence 
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ratings, no credible differences in response bias emerged across conditions, although numerical 

trends favored more conservative bias in the sing condition relative to either the silent (difference 

= 0.29, HDI95% = -0.15 – 0.71) or aloud condition (difference = 0.24, HDI95% = -0.18 – 0.66). 

Consistent with earlier research (e.g., Fawcett & Ozubko, 2016), participants were considerably 

more conservative in making “recollect” responses relative to “old” confidence ratings; this is 

generally congruent with the notion that recollection represents a detailed reexperience of the 

encoding event and thereby requires a stronger mnemonic signal (e.g., Yonelinas, 2002).  

For this parameter, the random intercept indicated that participants exhibited considerable 

baseline variability (estimate = 0.99, HDI95% = 0.86 – 1.13). For item-level effects, all random 

slopes (estimates > 0.24) and correlations between conditions (estimates > 0.59) were 

informative. 

3.3.1.3 Familiarity 

Finally, I analyzed familiarity, which is often viewed as a nonspecific feeling of fluency 

or knowing that can drive recognition responses (Yonelinas, 2002). Familiar responses from 

recollect/familiar/neither judgements were binarized such that trials for which participants 

responded with “F” indicated a “familiar” response. However, estimating familiarity using the 

raw trial data for which a familiar response was made is liable to underestimate the parameter: 

Trials in which participants indicate recollection likely still involve some degree of familiarity, 

but the former response takes precedence over the latter. To mitigate this problem, some theorists 

have advocated for the use of the Independence Remember-Know Procedure, which produces 

estimates of familiarity that better align with other techniques used to estimate the parameter 

(see, e.g., Yonelinas, 2002; Yonelinas & Jacoby, 1995). Typically, this procedure involves 

dividing the raw proportion of trials for which “familiar” responses were made by the raw 
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proportion of trials for which “recollect” responses were not made. For the purposes of the 

present analyses, however, I opted instead to apply a probit regression to trial data for which 

“recollect” response were not made. Estimating familiarity using this methodology is equivalent 

to conventional calculations of the Independence Remember-Know Procedure (for further 

discussion and mathematical proof, see Fawcett et al., 2016; see also, Fawcett & Ozubko, 2016). 

Aside from these differences, the model applied to “familiar” responses was otherwise identical 

to that described for the previous analyses. The estimates reported hereafter can be interpreted 

much like those reported for confidence ratings and recollection, albeit with estimates for 

sensitivity representing participants’ propensity to successfully discriminate between old and 

new items with “familiar” responses.   

Sensitivity. Figure 3.1 depicts estimates for familiarity sensitivity across conditions and 

contrasts between conditions. As depicted in Figure 3.1, analysis of the familiarity responses 

followed the same pattern observed for the other dependent measures, with credible production 

effects for either modality. Thus, it appears that the production effect for singing is driven at least 

in part by processes related to familiarity in between-subject designs. Once again, however, I 

observed no evidence for a singing superiority effect (difference = -0.03, HDI95% = -0.22 – 0.15).  

Once again, the random intercept corresponding to baseline variability in sensitivity 

across participants was informative (estimate = 0.30, HDI95% = 0.23 – 0.38). The same was true 

for item-level random slopes corresponding to the effect of condition, although estimates for this 

parameter were numerically lower than in previous models (estimates > 0.12), suggesting less 

item-level variability in familiarity. Interestingly, correlations between conditions were not 

informative for this model and failed to reach credibility.  
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Response Bias. Figure 3.2 depicts estimates for familiarity bias across conditions and 

contrasts between conditions. Echoing trends observed in previous models for Experiment 2, no 

credible differences in response bias between conditions emerged.  

Similar to my analysis of recollection bias, the participant-level random intercept 

indicated substantial variability in bias across participants (estimate = 1.06, HDI95% = 0.92 – 

1.23). Item-level random slopes for condition were less informative but credible nonetheless 

(estimates > 0.28), and correlations between conditions were positive and informative (estimates 

> 0.61).  

3.3.2 Diffusion Models 

I applied a multilevel diffusion model to accuracy coded from binarized confidence 

ratings. As described in Section 2.3.2, a single value of drift rate was computed for each 

condition. For Experiment 2, credible production effects on drift rate emerged for both reading 

aloud (difference = 0.38, HDI95% = 0.24 – 0.53) and singing (difference = 0.31, HDI95% = 0.17 – 

0.45), indicating that participants accumulated evidence towards correct responses at a greater 

rate for produced relative to unproduced items. However, no singing superiority effect emerged 

for this parameter, with a numerical trend instead favoring lower drift rate for singing relative to 

reading aloud (difference = -0.07, HDI95% = -0.21 – 0.07). Consistent with my diffusion models 

of Experiment 1, these results provide further evidence that the production effect can be observed 

in drift rate and extends this finding to a between-subject design. 

With respect to other diffusion parameters, the design of Experiment 2 permitted separate 

estimates of boundary separation and nondecision time to be computed for each condition. Thus, 

I was able to explore production-related differences in these parameters in greater depth relative 

to my diffusion models of Experiment 1. The model revealed a strong but non-credible numerical 
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trend favoring higher boundary separation in the aloud relative to silent condition (difference = 

0.17, HDI95% = -0.03 – 0.38), and a similar but less pronounced trend emerged when comparing 

the sing and silent conditions (difference = 0.09, HDI95% = -0.12 – 0.30). As with drift rate, there 

was a non-credible trend towards lower boundary separation in the sing relative to aloud 

condition (difference = -0.08, HDI95% = -0.30 – 0.13). Although neither comparison with the 

silent condition reached credibility, these results are generally congruent with the notion that 

participant require additional evidence to make decisions for produced relative to unproduced 

items. From one perspective, this finding could be interpreted as consistent with the use of a 

heuristic strategy at test, wherein participants might think more carefully about items for which 

distinctive information can be retrieved relative to items for which retrieval fails. On the other 

hand, one might instead expect the inverse pattern: Once information about having produced an 

item is retrieved, participants might be expected to make a decision immediately, whereas 

participants might search for longer or employ additional strategies if retrieval of distinctive 

information fails (see Ozubko et al., 2020).  

Finally, I observed non-credible trends favoring lower nondecision time relative to the 

silent condition for both the aloud (difference = -0.05, HDI95% = -0.13 – 0.02) and sing 

conditions (difference = -0.05, HDI95% = -0.13 – 0.03), but the difference between the two 

production conditions was centered on zero (difference = 0.00, HDI95% = -0.07 – 0.08). While 

this pattern of results may appear at odds with the estimates for boundary separation discussed 

above, lower nondecision time does not necessarily equate to faster overall responses; rather, 

these findings suggest that for produced items, participants spent less time encoding the stimuli 

prior to initiating the decision processes—thereby still allowing for longer decision processes 

and overall response times for produced items. To contextualize these results in light of a 
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distinctiveness heuristic, it could be that decision processes are initiated faster when distinctive 

information can be retrieved successfully. However, accounts that assume increased encoding 

strength for produced items might also predict such a pattern: Stronger memory traces might be 

more easily retrieved, leading to faster process initiation.  

3.3.3 Analyses of Serial Position 

Figure 3.3 depicts conditional nonlinear model estimates for d’ across serial positions and 

contrasts between conditions across serial positions for Experiment 2. 

For the linear model, no credible evidence for an interaction between production and 

serial position emerged. In this case, model comparison provided evidence favoring the nonlinear 

model over the linear model (ΔELPD = -14.6, ΔSE = 4.9). Because participant-level random 

slopes for serial position were not justified by the design of this experiment, no additional linear 

models were fit. Comparing the nonlinear model to probit models of confidence ratings 

excluding serial position effects provided evidence favoring the inclusion of such effects 

(ΔELPD = -21.0, ΔSE = 6.6).  

As shown in Figure 3.3, a nonlinear trend emerged for the aloud condition such that the 

production effect for either modality increased in size early in the study list (peaking at roughly 

position 20) and subsequently decreased. In this model, the production effect was credible for 

reading aloud at all serial positions. For singing, the effect was credible from positions 5 through 

89 and marginal at all other positions. For this experiment, planned contrasts provided no 

credible evidence favoring a larger production effect for late relative to early positions in the 

aloud condition (difference = 0.02, HDI95% = -0.38 – 0.41), and only a weak trend emerged in the 

sing condition (difference = 0.06, HDI95% = -0.33 – 0.43).  
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Figure 3.3 

Nonlinear Model Estimates for d’ as a Function of Condition and Serial Position (Left Panel) 

and Nonlinear Model Estimates for the Production Effect (Sing/Aloud - Silent) and the Singing 

Superiority Effect (Sing - Aloud) as Function of Serial Position (Right Panel) 

 

Note. The shaded region surrounding each curve depicts the 95% quantile interval of the 

estimate. 

 

Unlike Experiment 1, I found no evidence for practice effects in any modality for 

Experiment 2. Otherwise, these findings are only weakly consistent with the meta-analytic 

evidence reported in Fawcett et al. (2023): Although the production effect was larger for late 

relative to early positions for either modality, the differences were very small and did not 

approach credibility. Thus, like Gionet et al. (in press), my analysis of Experiment 2 failed to 

provide strong evidence for the interaction predicted by the RFM in pure-list recognition 

paradigms. Nonetheless, my findings disagree with Gionet et al. insofar as the production effect 
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does interact with serial position to some degree, but not necessarily in the predicted manner: 

The size of the production effect for either modality varied systematically across serial positions, 

peaking early in the list. However, the theoretical implications of this trend are not obvious and 

further research is needed to elucidate the specific nature of these findings. Given that this 

unusual trend was not captured by the linear model, future investigations of serial position and 

production might benefit from approaches capable of capturing nonlinear effects. Finally, with 

respect to practice effects in Experiment 2, I found no evidence suggesting that performance in 

any condition improved as serial position increased.  

Chapter 4: Meta-analysis of the Singing Superiority Effect 

4.1 Overview 

The purpose of this investigation was to address disagreement amongst findings 

regarding the singing superiority effect by extending the meta-analysis of the effect reported in 

Whitridge (2022). As discussed in Section 1.3 of the present thesis, the results of investigations 

into the production effect for singing vary widely: While Quinlan and Taylor (2013, 2019) 

reported large singing superiority effects, both Hassall et al. (2016) and Whitridge (2022) found a 

production effect for singing that was similar in magnitude to that observed for reading aloud. 

Accordingly, Whitridge (2022) aggregated all known studies that compared performance for 

reading aloud and singing in production paradigms in order evaluate evidence for the effect as a 

whole. The author found that the aggregate singing superiority effect was significant, albeit small 

and with evidence of heterogeneity: The meta-analytic model revealed that the distribution of 

effects expected from a typical study ranged from large singing superiority effects (Hedge’s g = 

1.05) to moderate effects favoring a benefit for reading aloud over singing (Hedge’s g = -0.39).  
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The purpose of updating the meta-analytic model reported in Whitridge (2022) was 

twofold. First, Experiment 1 in the present thesis contributed two new independent effects that 

could be added to the model (i.e., the matched and unmatched groups), and I became aware of an 

additional single-effect study that met my inclusion criteria (Zhang, 2024); increasing the 

number of effect sizes present in the model will allow for a better estimation of the aggregate 

effect and between-study heterogeneity. Second, whereas Whitridge (2022) conducted a 

Frequentist meta-analysis, I adopted a Bayesian approach in the present investigation, the 

advantages of which I discuss below. For this investigation, I predicted a pattern of results akin 

to Whitridge (2022): I expected to observe evidence favoring an aggregate singing superiority 

effect, but I also expected to observe evidence for substantial heterogeneity across studies.  

4.2 Method 

4.2.1 Search and Coding 

As in Whitridge (2022), the present meta-analysis made use of a recent search already 

conducted for the production effect literature (Fawcett et al., 2023). This search used the broad 

keyword “production effect” with no modifiers and should thereby have captured the vast majority 

of relevant literature. It also included all articles citing or cited by key articles in the area (i.e., 

Fawcett, 2013; MacLeod et al., 2010) and a forward and backward snowball search of articles 

included in their search. For the present investigation, the search conducted by Fawcett et al. (2023) 

was combined with forward and backward snowball searches of each study that previously 

contributed effect sizes to the meta-analysis reported in Whitridge (2022). Additionally, I 

conducted forward and backward snowball searches of two potentially relevant articles that 

manipulated singing in language acquisition paradigms (i.e., Baills et al., 2021; Ludke et al., 2014) 

to determine whether any studies in this area met the inclusion criteria.  
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The combined search efforts did not identify any additional articles that met the inclusion 

criteria beyond those previously included in Whitridge (2022). Although some articles within the 

language acquisition literature included manipulations of singing versus reading aloud, these 

studies were excluded largely due to immense procedural variation relative to typical production 

paradigms. However, I became aware of an eligible unpublished investigation of the production 

effect for singing (Zhang, 2024) via correspondence with the author, for which I was able to obtain 

raw data.  Accordingly, the present analyses included five studies based on their reporting a within-

subject production manipulation including both sing and aloud conditions: Quinlan and Taylor 

(2013, 2019), Hassall et al. (2016), Zhang (2024) and Whitridge (2022). Including the effects 

reported in the present study, my sample consisted of 14 independent effect sizes reported across 

five studies. Means, standard deviations, sample sizes and correlations between the sing and aloud 

conditions were recorded for each included experiment. 

4.2.2 Effect Size Calculation and Statistical Approach 

For all models, effect sizes were calculated as raw difference scores computed using the 

escalc function from the metafor package (Viechtbauer, 2010) in R (R Core Team, 2020). As the 

primary dependent measure across my own experiments has been sensitivity (rather than raw or 

corrected hits), I computed effect sizes for each experiment as the raw mean difference in d’ scores 

between the sing and aloud conditions. Raw data were procured for all studies with the exception 

of Experiment 3 from Quinlan and Taylor (2013), for which mean d' scores for each condition 

were coded directly from the article. For all studies for which raw data could be obtained, d’ was 

calculating by aggregating hits and false alarm rates into proportions and applying transformations 

to the data (see, e.g., Stanislav & Todorov, 1999). Because estimates of variability for differences 
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between conditions were not available for Quinlan and Taylor (2013, Experiment 3), I imputed 

this parameter using the other data available to me.15  

Models were fit using the brms package (Bürkner, 2017) in R (R Core Team, 2020) using 

an approach comparable to Frequentist random effects meta-analysis. I opted to use a Bayesian 

approach for two reasons. First, simulation studies show that Bayesian models provide superior 

estimates of parameters corresponding to both aggregate effects and between-study heterogeneity, 

particularly in cases where the sample of effects being aggregated is small (e.g., Harrer et al., 2021; 

Williams et al., 2018).16 Second, Bayesian models produce credible intervals that allow for 

probabilistic statements to be made regarding the existence of effects in the data, permitting direct 

and intuitive interpretation of effects (for further discussion of the advantages of Bayesian credible 

intervals over Frequentist confidence intervals, see, e.g., Morey et al., 2016).  

I modeled the data using two approaches, first including the singing superiority effect as 

the effect of interest. Subsequently, I fit separate models including the production effect observed 

in the singing and read aloud conditions with production modality as a moderator. In either case, 

the general parameterization I used was analogous to a Frequentist random effects meta-analysis, 

such that the models estimated the size of the aggregate effect across studies weighted by sampling 

variance and included random effects corresponding to the experiment from which each effect was 

derived, thus assuming variability in effect sizes across studies; given heterogeneity across 

samples, sites, and methodologies used in investigations of the production effect for singing, I 

believe this assumption to be justified (for further discussion, see, e.g., Borenstein et al., 2010). 

However, some aspects of the parameterization differed across my approaches.  

 
15 In this case, I imputed the missing within-subject correlation by taking the average of all within-subject correlations that were available to me 

(see, e.g., Furukawa et al., 2006). 
16 The superiority of Bayesian estimates arises in part because Bayesian approaches to meta-analysis incorporate uncertainty into estimates of 

between-study heterogeneity, whereas Frequentist approaches do not (Harrer et al., 2021). 



PRODUCTION AND SINGING 

105 
 

For models of the singing superiority effect, I computed the dependent measure as the raw 

mean difference in d’ (calculated conventionally; see, e.g., Stanislaw & Todorov, 1999) between 

the sing and aloud conditions. Models fit using this approach included a random intercept that 

permitted baseline variability in the size of the singing superiority effect across studies. With this 

parameterization in mind, the models computed an intercept corresponding to the estimated 

aggregate singing superiority effect across studies. Additionally, the models produced a random 

intercept corresponding to between-study heterogeneity, akin to Tau in Frequentist models (see, 

e.g., Harrer et al., 2021). For models of the production effect, I computed the dependent measure 

as the raw mean difference in d’ between produced (sing/aloud) and unproduced conditions. These 

models included a fixed effect for production modality, a random intercept to quantify between-

study heterogeneity, and a random slope that assumed variability in the impact of production 

modality across samples. Because the models of the production effect used a common comparison 

condition for each effect (i.e., silent), my approach allowed for the estimation of separate 

dependent effects for each sample. 

I also applied uninformative, mildly regularizing priors to the meta-analytic models. For 

models of the singing superiority effect, these priors reflected my belief that the size of the raw 

mean difference in sensitivity should reasonably fall between -0.6 and 0.6 in a typical study, with 

effects in individual studies permitted to range from -1.2 to 1.2. These priors were calibrated with 

respect to previous effects reported by Quinlan and Taylor (2013, 2019; Hassall et al., 2016), who 

observed raw mean differences in d’ scores ranging from ~ 0.1 to 0.5. Additionally, these priors 

reflect my a priori theoretical belief that a slightly more elaborate type of vocalization should not 

be vastly superior to an already large benefit; nonetheless, these priors did allow for the possibility 

of very large singing superiority effects in individual studies. For models of the production effect, 
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my priors were specified in accordance with my belief that the raw mean difference in d’ between 

either production condition and the silent condition should reasonably fall between -1 and 1 in a 

typical study, with effects in individual studies permitted to range from -2 to 2. These priors were 

calibrated with respect to effects reported in previous investigations of the production effect for 

singing (i.e., Quinlan & Taylor, 2013, 2019; Hassall et al., 2016; Whitridge, 2022).   

All meta-analytic models were fit using 4 independent chains of 80000 iterations each 

with a warm-up period of 40000 iterations. Model convergence was assessed using R-hat 

statistics, which were less than 1.01 in all cases, indicating that all models converged (Gelman & 

Hill, 2006; Kruschke, 2010). Further, the effective sample size was greater than 70000 for all 

estimates.  

4.3 Results and Discussion 

For each model, I report median posterior estimates reflecting the raw mean difference in 

d’ for each relevant comparison alongside the 95% HDI. Where applicable, I also report 95% 

prediction intervals (PIs), which reflect the range of plausible “true” effects expected from 

hypothetical studies similar to those included in the sample (IntHout et al., 2016).  

4.3.1 Models of the Singing Superiority Effect  

Figure 4.1 shows a forest plot of the meta-analytic model of the singing superiority effect. 

As depicted in Figure 4.1, the aggregate singing superiority effect was credible, with the difference 

between the sing and aloud conditions estimated at 0.13 (HDI95% = 0.03 – 0.24). Although the 

aggregate estimate was credible, this model also implies that the size of the effect is much smaller 

than previous experiments have reported (e.g., Quinlan & Taylor, 2013, 2019). Furthermore, this 

model revealed substantial heterogeneity across reported effects, with prediction intervals ranging 

from -0.14 to 0.47; this implies that some studies show unsupportive effects (i.e., aloud > sing), 
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whereas others show effects that are quite large. The random intercept permitting baseline 

variability in the size of the singing superiority effect was also informative (estimate = 0.17, 

HDI95% = 0.10 – 0.27), further supporting the notion that there is substantial between-study 

heterogeneity in the size of the singing superiority effect. This pattern of results is unsurprising 

given that previous research has often utilized underpowered samples, which are liable to provide 

poor estimates of the effect due to sampling error (e.g., Wilson Van Voorhis & Morgan, 2007). 

Like the meta-analysis reported in Whitridge (2022), this model suggests that the singing 

superiority effect – if truly reliable – has likely been overestimated.  
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Figure 4.1 

Forest Plot Depicting Raw Mean Differences in d’ (Sing-Aloud) for a Meta-Analytic Model of the 

Singing Superiority Effect 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate; observed effects are represented by an “X.” Thick lines represent the 50% HDI and thin 

lines represent the 95% HDI. The dotted line represents the 95% PIs.  
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Given that Experiment 1 hinted at the possibility that color matching might play an 

important role in facilitating the singing superiority effect (see also, Whitridge, 2022; Experiment 

3), I fit an exploratory meta-analytic model that included colour matching as a moderator. This 

model was parameterized similarly to that described above, albeit with the inclusion of a 

categorical fixed effect corresponding to whether each experiment used colour matching. Further, 

because the model now included a categorical fixed effect, I removed the model intercept and 

instead computed slopes corresponding to the aggregate singing superiority effects for color 

matched and unmatched studies, respectively (akin to a subgroup analysis; see, e.g., Borenstein & 

Higgins, 2013). Here, the aggregate singing superiority effect was credible when color matching 

was present, with the difference between the sing and aloud conditions estimated at 0.22 (HDI95% 

= 0.11 – 0.33; PI95% = -0.00 – 0.49). However, the effect was not credible in the absence of this 

procedure, estimated at 0.00 (HDI95% = -0.11 – 0.14; PI95% = -0.22 – 0.29). Interestingly, the 

random intercept corresponding to between-study heterogeneity was numerically smaller and less 

informative relative to that observed in the previous model (estimate = 0.12, HDI95% = 0.06 – 0.21), 

suggesting that there was less heterogeneity across studies after accounting for the use of color 

matching. Consistent with the trend observed in Experiment 1, these results suggest that the 

singing superiority effect might emerge only when color matching is used at test.  

4.3.2 Models of the Production Effect 

Figure 4.2 depicts a meta-analytic model of the production effect. As shown in Figure 4.2, 

the aggregate production effects for both aloud and sing conditions were credible, with the 

differences between the sing/aloud and silent conditions respectively estimated at 0.57 (HDI95% = 

0.48 – 0.66; PI95% = 0.35 – 0.82) and 0.43 (HDI95% = 0.31 – 0.55; PI95% = 0.07 – 0.74). The 
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production effect for singing was credibly larger than that for reading aloud, with the contrast 

between effects estimated at 0.14 (HDI95% = 0.01 – 0.27).  

Subsequently, I fit an additional exploratory model using the approach outlined above to 

test for effects of color matching. Regardless of whether color matching was present or not, 

production effects for both singing and reading aloud were credible. However, the production 

effect for singing was credibly larger only for matched experiments, with the contrast between 

effects for this group estimated at 0.24 (HDI95% = 0.08 – 0.39). Conversely, the production effects 

for each condition were similar when colour matching was not present (difference = 0.02, HDI95% 

= -0.15 – 0.20). A numerical trend also favored a smaller production effect for reading aloud in 

colour matched experiments, with the difference between aloud conditions estimated at 0.15 

(HDI95% = -0.09 – 0.37).  Accordingly, both modelling approaches favor similar inferences. 

Although small, the aggregate singing superiority effect is credible; however, moderator analyses 

suggest that this effect is driven by larger effects in studies using color matching, whereas no 

credible effect appears to be present in studies that did not adopt this procedure. 
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Figure 4.2 

Forest Plot Depicting Raw Mean Differences in d’ (Aloud-Silent and Sing-Silent) for a Meta-

Analytic Model of the Production Effect 

 

Note. Light-coloured polygons and square points represent the difference in d’ between the aloud 

and silent conditions, whereas dark-coloured polygons and circular points represent contrasts 

between sing and silent. Polygons depict the posterior distribution for each contrast and points 

show the median estimate; observed effects are represented by an “X.” Thick lines represent the 

50% HDI and thin lines represent the 95% HDI.  
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4.3.3 Analysis of Publication Bias  

Finally, to evaluate publication bias, I first fit two multilevel models analogous to Egger’s 

regression test; this procedure can be used to evaluate associations between effect sizes and the 

precision with which the effects were estimated (Egger et al., 1997). In either case, priors, 

sampling procedures and random effects structures were identical to my other meta-analytic 

models of the singing superiority effect. These models were parameterized similarly to 

conventional calculations of Egger’s regression test, albeit inclusive of random effects; the 

random effect structure of these models and the corresponding assumptions were identical to that 

reported for the models above. Each model estimated the size of the singing superiority effect 

weighted by sampling variance and included a fixed effect for either standardized sample size or 

standard error. Thus, each model respectively computed an intercept reflecting the aggregate 

singing superiority effect for a study with an average sample size or standard error. Additionally, 

each model computed a random intercept reflecting between-study heterogeneity (described 

above) and a slope corresponding to the included fixed effect. For the model including sample 

size, the intercept (reflecting the effect size for a study with an average sample size) was 

estimated at 0.14 (HDI95% = 0.04 – 0.24) and the slope for sample size narrowly failed to reach 

credibility (estimate = 0.08, HDI95% = -0.03 – 0.19). For the model including standard error, the 

intercept (reflecting the effect size for a study with an average standard error) was estimated at 

0.13 (HDI95% = 0.03 – 0.24) and the slope for standard error was not credible (estimate = -0.04, 

HDI95% = -0.15 – 0.08). Thus, these analyses failed to provide convincing evidence for 

publication bias. For either model, the estimates corresponding to the random intercept were 

informative and comparable in size to that of my first meta-analytic model.  
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To further evaluate publication bias, I fit a cumulative meta-analysis of the singing 

superiority effect, wherein studies were added to the model iteratively in order of sample size 

(largest to smallest; see, e.g., Leimu & Koricheva, 2004). To accomplish this, I began by fitting a 

model of the singing superiority effect that was parameterized identically to my first meta-

analytic model reported above, albeit including only the largest study. Subsequently, I added the 

next largest study and re-fit the model; this procedure was repeated until all studies had been 

included. For all iterative models, priors, sampling procedures and random effects structures 

were identical to my other meta-analyses of the singing superiority effect. As shown in Figure 

4.3, the aggregate singing superiority effect was small and non-credible when only large studies 

were included. The aggregate estimate was credible only after small studies (N < 24 participants) 

were added to the model; this pattern is consistent with an aggregate singing superiority effect 

that is driven predominantly by small sample effects. However, it could also be that sample size 

is correlated with colour matching (which was the only condition to show a credible effect). 
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Figure 4.3 

Forest Plot Depicting Raw Mean Differences in d’ (Sing-Aloud) for a Cumulative Meta-Analytic 

Model of the Singing Superiority Effect 

 

Note. Polygons depict the posterior distribution for each estimate and points show the median 

estimate. Thick lines represent the 50% HDI and thin lines represent the 95% HDI. Studies were 

added in order of sample size, starting with the largest study (at the top) and adding one study at 

a time until all studies were included (at the bottom). 
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Chapter 5: General Discussion 

5.1 Overview of Results 

The central purpose of the present thesis was to extend the evaluation of the production 

effect for singing conducted by Whitridge (2022). Previous investigations within this area have 

produced conflicting findings, with two studies reporting large singing superiority effects 

(Quinlan & Taylor, 2013, 2019) and two studies observing a production effect for singing that 

was comparable in magnitude to that for reading aloud (Hassall et al., 2016; Whitridge, 2022). 

Despite these discrepant findings, the singing superiority effect has been accepted as evidence 

for the distinctiveness account of the production effect (e.g., Forrin & MacLeod, 2018; Mama & 

Icht, 2016): Proponents argue that the relative superiority of singing arises on the basis of 

additional distinctive features encoded with the production trace (Quinlan & Taylor, 2013, 2019), 

which validates the sensorimotor scaling corollary of the distinctiveness account (Fawcett et al., 

2012; Forrin et al., 2012). While Whitridge (2022) posed a strong initial challenge to this claim, 

the present investigations explored two important points not yet addressed: (1) that the singing 

superiority effect might be driven in part by hidden moderators related to study design, and (2) 

that the production effect for singing should be robust in between-subject designs.  

To address these points, I first modified the conceptual replications reported in Whitridge 

(2022) to replicate the methods of Quinlan and Taylor (2013; Experiment 3) as exactly as 

possible; this entailed the modification of items, the addition of familiarization and practice 

phases, and the inclusion of a group for whom test items were presented in the corresponding 

font colour from study. Although a credible singing superiority effect emerged in this 

experiment, it was confined to the color matched group and was smaller than those previously 

reported. Subsequently, in Experiment 2, I evaluated the production effect for singing using a 
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between-subject paradigm that conceptually replicated Quinlan and Taylor (2019; Experiment 4). 

Here, I detected a credible production effect for singing that was of similar magnitude to that for 

reading aloud; however, no credible singing superiority effect emerged. Finally, to address 

discrepancy amongst findings within the literature, I updated the meta-analysis of the singing 

superiority effect reported in Whitridge (2022) and conducted exploratory moderator analyses to 

evaluate the possibility of an interaction between singing and color matching. This investigation 

provided evidence for a credible aggregate singing superiority effect, but the effect was smaller 

than previously estimated (e.g., Quinlan & Taylor, 2013, 2019) and appeared to be driven by use 

of the color matching procedure—and inflated by small sample effects. Considered in aggregate, 

the results reported herein support three conclusions: first, that the size of the singing superiority 

effect has been overestimated by previous investigations; second, that the effect arises at least 

partially on the basis of factors related to study design, which limits the support this effect can 

provide for the sensorimotor scaling hypothesis; and finally, that the production effect for singing 

persists between-subjects, and is thereby not likely driven solely by relative distinctiveness. In 

the discussion that follows, I contextualize my findings with respect to theoretical frameworks of 

the production effect and the mnemonic utility of singing.  

5.2 Implications for Scaling Distinctiveness  

Earlier investigations of the singing superiority effect have explained the benefit with 

reference to the idea of scaling distinctiveness: Singing is thought to append additional 

distinctive features to the production trace in the form of sensorimotor information related to 

pitch or rhythm (Quinlan & Taylor, 2013, 2019). Although other studies have shown the 

production effect to decrease when distinctive features are removed in experimental paradigms 

(e.g., Forrin et al., 2012; Mama & Icht, 2016), evidence for the inverse of this pattern rests solely 
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upon the singing superiority effect, despite exhaustive efforts to increase the size of the 

production effect (e.g., Ozubko et al., 2020; Wakeham-Lewis et al., 2022). However, evidence 

that the singing superiority effect is in fact driven by scaling distinctiveness derives almost 

entirely from evidence that the effect is not driven by other mechanisms. Across their 

investigations, Quinlan and Taylor (2013, 2019) provided evidence that the relative superiority of 

singing did not arise due to increased intensity, bizarreness, or production time. The only prior 

experiment to directly address a distinctiveness-based explanation did so by manipulating 

production between-subjects, but some investigations have since provided evidence that 

discrepancies in the size of the production effect across designs are compatible with both 

distinctiveness- and strength-based frameworks (Jamieson et al., 2016). Given the lack of direct 

evidence for the sensorimotor scaling account of the singing superiority effect, then, I believe it 

is important to evaluate the findings of the present investigation with respect to the predictions 

that would be made by such an account. 

For example, it can be inferred that the sensorimotor scaling hypothesis would predict the 

singing superiority effect to be both large and reliable. Given that previous investigations have 

observed substantial decrements to the size of the production effect when distinctive encoding 

processes are eliminated at study (e.g., a mean difference in hit rates between the produced and 

unproduced conditions of ~ 0.06 for writing compared to ~ 0.20 for reading aloud; Forrin et al., 

2012), adding at least one additional encoding process via singing would be expected to produce 

a comparable advantage. Furthermore, although some degree of between-study heterogeneity is 

to be expected, the presence of additional distinctive features should be inherent to a given 

output modality. Relative advantages thought to be driven by the presence of additional encoding 

processes should thereby emerge reliably across investigations despite minor discrepancies in 
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methodology, which has been shown by previous work: Forrin et al. (2012) replicated the 

relative superiority of reading aloud over mouthing first reported by Conway and Gathercole 

(1987). Accordingly, the sensorimotor scaling hypothesis would also predict the singing 

superiority effect to emerge reliably because changes in site or methodology should not impact 

the number of distinctive encoding processes elicited by the modality. 

Across my own investigations, however, the singing superiority effect appears neither 

large nor reliable. For example, the initial effects observed by Quinlan and Taylor (2013) were 

mean differences in sensitivity of ~ 0.36 and 0.51 for Experiment 2 and Experiment 3, 

respectively. Conversely, the sole singing superiority effect I observed was much smaller, with 

the mean difference between the sing and aloud conditions estimated at only 0.23. Further, my 

meta-analytic model estimated a small aggregate singing superiority effect of 0.13, which was 

only more pronounced in studies using color matching (difference = 0.22) and negligible in 

unmatched studies (difference = 0.00). Critically, the large effect sizes reported in Quinlan and 

Taylor (2013) were derived from small samples ranging from 15 to 22 participants. Later 

investigations by Quinlan and Taylor (2019) and Hassall et al. (2016) using larger samples (e.g., 

N = 27 – N = 43) reported smaller effect sizes better aligned with the differences observed in the 

present investigation (e.g., MD = ~0.17). Because smaller studies only have adequate statistical 

power to detect large effects, estimates derived from such samples are susceptible to 

overestimation (e.g., Sterne et al., 2000). Taken together with the results of my cumulative meta-

analytic model, which suggested that the aggregate benefit was driven largely by small studies 

that observed large effects, it appears likely that large singing superiority effects previously 

reported reflect inflated estimates.  
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It is difficult to reconcile the lower magnitude of the singing superiority effect observed 

herein with the sensorimotor scaling hypothesis. Interpreted at face value, the account would 

suggest that additive benefits operate on an all-or-nothing basis, wherein the magnitude of the 

effect depends solely upon the number of encoding processes elicited at study irrespective of 

what these processes are (see, e.g., Mama & Icht, 2016). If one rejects or modifies this account, 

however, a small singing superiority effect is perhaps better aligned with expected patterns: 

Because typical production effects deriving from reading aloud already entail very large benefits 

to sensitivity relative to silent reading (e.g., MD = ~0.78; Forrin et al., 2016), it seems unlikely 

that a slightly more elaborate form of vocalization should nearly double the size of the effect. 

Rather than an all-or-nothing basis, then, it could be that additional features associated with a 

common modality possess less discriminative utility relative to those deriving from distinct 

modalities. To elaborate, previous tests of the sensorimotor scaling hypothesis have observed 

large effects when manipulating the presence of distinctive features by altogether removing 

processes associated with a given modality (e.g., auditory or visual processing; Forrin et al., 

2012; Conway & Gathercole, 1987; Mama & Icht, 2016). On the other hand, singing is thought 

to afford additional distinctive features that must be encoded via auditory processing (e.g., pitch 

or rhythm; Quinlan & Taylor, 2013, 2019), which is also elicited by reading aloud. Thus, any 

processing related to pitch or rhythm might simply encode additional auditory features at study, 

rather than representing the addition of a wholly distinct form of processing. To accommodate 

this explanation, however, one must adopt a more nuanced model of distinctiveness than those 

outlined by previous research (e.g., Forrin et al., 2012; Mama & Icht, 2016).  

In addition to being small in magnitude, my investigations largely suggest that the 

singing superiority effect emerges only in the presence of the color matching procedure. This 
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finding raises questions about the theoretical mechanisms driving the singing superiority effect, 

given that this procedure may alter how participants engage with items at test. Although the 

design of the present investigations did not allow me to definitively ascertain the mechanism 

through which singing might interact with color matching, one potential explanation is that 

presenting items in their study colors – and thereby orienting participants to the condition under 

which items were studied – encourages different strategies to be employed across conditions. In 

typical production paradigms, participants are thought to scan their memories for distinctive 

information about having produced items to adjudicate between studied items and foils (e.g., 

Dodson & Schacter, 2001; MacLeod, 2010; see also, Fawcett & Ozubko, 2016). However, if a 

participant is aware that an item would have been studied silently, they may abstain from 

scanning their memory for information about having produced it. On the other hand, knowing 

that a test item was sung or read aloud might encourage participants to search for or reactivate 

very specific sensorimotor information about having produced the item using a particular 

modality. With respect to why an alternative type of distinctiveness heuristic might preferentially 

lead to a larger production effect for singing, it is possible that additional tonal or rhythmic 

information is useful in guiding retrieval but that participants simply do not check for these 

features in typical paradigms. In this sense, information about stimulus dimensions derived from 

colour matching might help focus the search for distinctive information on modality-specific 

features. For a production benefit to emerge, the production trace must be both discriminative 

and utilized to guide retrieval; if participants typically neglect additional features specific to 

singing, no singing superiority effect would be expected. 

An analogous alternative explanation for such an interaction is that colour matching 

might help to reinstate study context at test. Wakeham-Lewis et al. (2022) suggested that in 
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production paradigms, participants might consciously reinstate the study phase production 

condition to aid item discrimination (e.g., by thinking about saying the item aloud). The most 

natural approach to doing so would be to imagine reading the item aloud in a normal speaking 

voice; however, unless prompted to do so, it is unlikely participants would specifically imagine 

singing the item. According to this sensorimotor reinstatement hypothesis, recreating the 

productive act in one’s mind would preferentially benefit singing (or other elaborate modes of 

speaking, e.g., character voices; Wakeham-Lewis et al., 2022). Providing cues about how an item 

would have been produced might guide participants to reinstate production in a manner attuned 

to study phase conditions. Much like my discussion above, such an explanation would suggest 

singing does encode additional information that drives superior memory relative to reading 

aloud, but that this information is useful only when heuristics atypical to production paradigms 

are applied to retrieve the information. 

While distinctiveness- and context-based accounts provide plausible (albeit speculative) 

explanations for the interaction between the singing superiority effect and color matching, these 

accounts do not fit neatly into extant sensorimotor scaling models of distinctiveness (e.g., 

Fawcett et al., 2012; Forrin et al., 2012; Mama & Icht, 2016). As formulated by Mama and Icht 

(2016), the sensorimotor scaling hypothesis contends that the magnitude of the production effect 

depends on the number of unique encoding processes elicited at study. However, the present 

investigation highlights that simply adding unique encoding processes to the study phase is not 

sufficient to afford additional discriminative utility to the production trace: If processing specific 

to singing encodes additional sensorimotor features relative to reading aloud, it appears that these 

features are either unavailable in typical paradigms or that participants simply do not leverage 

the features unless prompted to do so. Accordingly, these findings pose a strong challenge to 
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current formulations of the sensorimotor scaling hypothesis, suggesting instead that the presence 

of additional distinct processes at study does not inherently impact the magnitude of the 

production effect.  

5.3 Alternative Accounts of the Singing Superiority Effect  

Given the failure of the sensorimotor scaling hypothesis to adequately explain the 

patterns of findings observed across this investigation and in Whitridge (2022), it might be the 

case that an alternative mechanism drives the singing superiority effect. Indeed, perhaps the 

simplest explanation for my difficulty in replicating the effect is that singing simply does not 

append additional distinctive features to the production trace relative to reading aloud. Quinlan 

and Taylor (2013, 2019; Hassall et al., 2016) argued that production via singing benefits from 

features related to pitch or tone. This is generally congruent with earlier literature, which has 

suggested that mnemonic benefits related to song occur because participants leverage melodic or 

rhythmic information in a process analogous to a distinctiveness heuristic (e.g., Wallace, 1994; 

but see Rainey & Larsen, 2002). However, the features thought to afford a relative benefit are not 

necessarily specific to singing: Human speech intrinsically incorporates varying degrees of 

rhythm, melody (e.g., Xu, 2005), pitch, and timbre (e.g., Dolson, 1994). If one accepts that all 

these features should also be present for items read aloud, the sensorimotor scaling hypothesis 

would not predict a relative advantage for singing.  

However, the scaling model might be theoretically “rescued” if it allows for the 

possibility that variation in distinctive features can be qualitative rather than quantitative. Rather 

than appending additional features to the production trace, singing might allow for a greater 

degree of variation in item representations across articulatory and auditory features. To elaborate, 

although both singing and speaking involve pitch, the two modalities differ in how they use 
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pitch. For example, singing involves highly accurate use of pitches that are typically organized in 

a scale, whereas pitch in speech intonation is less precise and organized (e.g., Zatorre & Baum, 

2012); further differences can be found in the articulatory demands of each modality (e.g., 

Burrows, 1989). Thus, while both singing and speaking may encode a common set of auditory 

and articulatory features, those deriving from singing might contain additional sensorimotor 

information that could be leveraged to guide discrimination at test. This hypothesis fits well with 

neuroimaging studies of singing, which have observed substantial processing differences 

between singing and speaking (e.g., Geiser et al., 2008; Jeffries et al., 2003; Özdemir et al., 

2006). Such a model might also accommodate an interaction between singing and colour 

matching at test: Regardless of modality, produced items share common features that participants 

may not normally distinguish between even if features related to singing possess additional 

discriminative value. However, participants might capitalize on the diagnostic value of this 

variation when prompted by cues at test to search modality-specific information. 

If singing allows for qualitative variation in item representations across sensorimotor 

features, it is possible that certain stimulus dimensions might render items more conducive to the 

emergence of a singing superiority effect. Earlier, I discussed the notion that participants might 

be more likely to sing multisyllabic items with greater melodic variation because it is more 

natural to do so. However, exploratory analyses of the experiments reported herein and of data 

from Whitridge (2022) failed to observe any credible interaction between number of syllables 

and singing. Thus, the qualitative account outlined above does not receive any immediate support 

from the present investigations. However, it could be the case that additional syllables are not 

sufficient to meaningfully increase variability, or that participants do not typically sing with 

much variability unless explicitly prompted to do so. Accordingly, this hypothesis could be tested 
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using longer stimuli that permit greater variation in pitch (e.g., sentences) or instructing 

participants to sing items using particular melodies. At present, however, evaluating the viability 

of a qualitative account requires further investigation. 

Nonetheless, even a highly modified formulation of the sensorimotor scaling hypothesis 

would struggle to account for past and current difficulties in replicating the singing superiority 

effect. Of the relevant studies published prior to Whitridge (2022), Hassall et al. (2016) is unique 

insofar as that investigation failed to detect a singing superiority effect despite using color 

matching at test. Those authors explained their failure to replicate the effect with reference to 

methodological differences, suggesting that the effect failed to emerge either because of a delay 

in production necessitated by their paradigm or because participants failed to tonally differentiate 

singing and speaking at study. However, neither of these explanations can satisfactorily account 

for my own failures to observe a singing superiority effect. Here and in Whitridge (2022), my 

experiments used standard production paradigms that did not separate productive cues and acts, 

indicating that any failures to replicate the effect could not be attributed to temporal separation. 

With respect to a “lazy singing” hypothesis, my participants were supervised throughout the 

study phase and prompted to sing more effortfully if their singing faltered at any point. Because 

previous efforts did not go as far as to implement these safeguards, it seems unlikely that my 

findings could be attributed to lack of participant effort. While Hassall et al. (2016; see also, 

Quinlan & Taylor, 2019) posited that their observation of a null effect was an atypical exception 

to a reliable advantage for singing, my findings instead suggest that this advantage is itself 

atypical and can emerge only when certain conditions are met.  

An alternative means of explaining the apparent inconsistency of the singing superiority 

effect might be to suggest that singing-related expenditure of cognitive resources could obfuscate 
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the superiority of the modality. Whereas reading aloud necessitates only that participants process 

the word and speak it, singing elicits additional demands: Participants must improvise a melody 

for each word, which requires the simultaneous execution of several cognitive processes (e.g., 

performance monitoring and perceptual encoding; Pressing, 1988). Increases to cognitive load 

are known to impair performance on tests of recognition memory (e.g., Jones et al., 2012), and 

this pattern of findings has been extended directly to production paradigms (e.g., Mama et al., 

2018). Further to this point, earlier research has demonstrated that diversion of attention related 

to performance anticipation can hinder performance in production paradigms (Forrin et al., 

2019). Given that singing in front of an experimenter would likely be considered more 

embarrassing than simply reading items aloud (see, e.g., Hofmann et al., 2006) and that the 

complexity of the former might require additional preparatory processing (Beaty, 2015), it is 

possible that attentional diversions related to performance anticipation could be accentuated for 

this modality. Thus, the additional cognitive demands elicited by singing (anticipatory or 

otherwise) could diminish benefits arising from the presence of additional sensorimotor features.  

However, previous studies of production and singing appear to argue against these points 

(Quinlan & Taylor, 2019; Hassall et al., 2016). Because the cognitive processes elicited by 

musical improvisation become automatized with practice (Pressing, 1988), the cognitive load 

associated with this modality is diminished for experienced musicians (Beaty, 2015). If an 

attentional mechanism hinders benefits arising from singing, then, this population might be 

expected to show a more pronounced singing superiority effect. Contrary to this hypothesis, 

however, Quinlan and Taylor (2019) observed a singing superiority effect of typical size in a 

sample of singers who had at least one year of experience. With respect to explanations related to 

performance anticipation, neuroimaging work by Hassall et al. (2016) observed no differences in 
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processing between singing and reading aloud during the preparatory phase or otherwise. 

Furthermore, decrements to performance in Forrin et al. (2019) occurred only for silent items 

preceding the to-be-produced items, suggesting that participants diverted their attention away 

from silent items and toward produced items when anticipating the latter. If performance 

anticipation is greater for singing, this allocation of attention would thereby be expected to 

improve memory for items sung at study at the expense of other conditions. Despite the 

differential cognitive demands elicited by reading aloud and singing, then, it appears unlikely 

that an attentional mechanism could obviate the superiority of the latter modality.   

Given the boundary conditions that the present study imposes on the singing superiority 

effect, my findings argue against claims that such an effect provides strong support for the 

sensorimotor scaling hypothesis (e.g., Quinlan & Taylor, 2013, 2019). Whereas such an account 

would predict the effect to be driven by improved memory for singing, my findings cannot rule 

out the possibility that the effect might be driven by a decrement to performance for aloud items. 

When colour matching at test was used, numerical trends in my meta-analytic model of the 

production effect favored lower sensitivity in the aloud condition whilst sensitivity in the sing 

condition remained comparable across groups (see also, Whitridge, 2022; Experiment 2). 

Furthermore, I observed no credible difference in sensitivity between conditions in Experiment 

2, for which my design did not permit the emergence of within-participant “costs” to 

performance. Were the singing superiority effect facilitated by the addition of distinctive features 

to the production trace, the effect should not impair performance for aloud items and should 

emerge irrespective of whether production is manipulated within- or between-subject.17 Rather, 

 
17 Although Quinlan and Taylor (2019) argued that between-subject production effects do not arise on the basis of encoding distinctiveness (but 
see Jamieson et al., 2016), participants report utilizing strategies resembling distinctiveness- or context-based heuristics in production paradigms 

regardless of design (Fawcett & Ozubko, 2016). 
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the pattern of results I observed suggests that participants might preferentially attend to or 

rehearse items sung at study, leading these items to be better represented in memory at the cost of 

poorer representations for aloud items.  

Indeed, earlier research using typical production paradigms has shown that the within-

subject production effect arises in part due to performance decrements for silent items (e.g., 

Bodner et al., 2014) and that adding additional production conditions at study can accentuate this 

decrement (Ozubko et al., 2020). With respect to my paradigm, it is not immediately clear why 

participants would prioritize singing over reading aloud, particularly given that Ozubko et al. 

(2020) only observed decrements to silent items (rather than produced items from other 

conditions). It could be that preferential attention to sung items could occur due to the inherent 

peculiarity of the modality relative to reading aloud (but see Quinlan & Taylor, 2019). 

Alternatively, such a mechanism could arise due to perceived emphasis on singing during 

instruction or otherwise. In my own investigations, participants were provided with a 

demonstration of how items should be sung to help ensure task compliance, but the same did not 

occur for reading aloud; it is possible that such a demonstration could have led some participants 

to prioritize items sung at study. Analyses of my own data and data provided by others provide 

some support for this hypothesis: Participants who exhibited a singing superiority effect 

generally exhibited performance for aloud items that was below average, whilst performance for 

singing for these participants was near the overall mean. If the singing superiority effect were to 

be driven by such a mechanism, however, the effect would be attributable to preferential 

attentional allocation or rehearsal rather than sensorimotor scaling.  

The failure of the sensorimotor scaling hypothesis to accommodate my findings implies 

two possible conclusions, each of which differ in their implications with respect to broader 
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theoretical frameworks of the production effect. The first possibility is that singing does not 

encode additional sensorimotor features relative to reading aloud and that the singing superiority 

effect is driven instead by an alternative mechanism unrelated to encoding distinctiveness (e.g., 

preferential rehearsal). Were this the case, it would not necessarily imply that the sensorimotor 

scaling hypothesis is flawed: A great deal of empirical evidence supporting this hypothesis exists 

(e.g., Conway & Gathercole, 1987; Forrin et al., 2012; Mama & Icht, 2016) and remains 

unchallenged by the results of my investigation. However, this possibility would imply that the 

sensorimotor scaling hypothesis can be validated only insofar as removing distinctive processes 

from the productive act can reduce the size of the production effect. Thus, this conclusion would 

pose a challenge to the distinctiveness account in that the singing superiority effect does not 

provide evidence for such a framework. If this conclusion is accepted, whether the sensorimotor 

scaling hypothesis can be validated bidirectionally remains to be seen, although the failure of 

repeated efforts to increase the magnitude of the production effect (e.g., Ozubko et al., 2020; 

Wakeham-Lewis et al., 2022) suggests that this task might prove difficult.18   

The second possibility is that singing does benefit from additional sensorimotor features, 

but that these features provide little utility in typical production paradigms. If this conclusion is 

accepted, it would imply that the singing superiority effect does provide solid evidence for 

distinctiveness accounts, but that the mechanism by which the effect arises is not yet accounted 

for by such frameworks. In this case, extant formulations of the sensorimotor scaling hypothesis 

(e.g., Forrin et al., 2012; Mama & Icht, 2016) would require modification: Even if a given 

modality recruits additional encoding processes at study, participants may not leverage features 

 
18 Alternatively, the failure of multiple efforts to bidirectionally validate the sensorimotor scaling hypothesis could arise due to a ceiling effect: 

The production effect is already large, so it may be the case that the benefit cannot be increased further. Were this the case, however, extant 
formulations of the sensorimotor scaling hypothesis (e.g., Fawcett et al., 2012; Forrin et al., 2012; Mama & Icht, 2016) would nonetheless require 

modification to accommodate empirical evidence.  
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related to these processes unless oriented to do so. Accordingly, this conclusion would imply a 

more nuanced view of distinctiveness in production, wherein the benefit is driven in part by 

factors beyond sensorimotor features. Although this notion does not pose an inherent challenge 

to the distinctiveness account, it does argue that the singing superiority effect does not validate 

the account in the manner that earlier investigations contended (e.g., Quinlan & Taylor, 2013, 

2019). 

5.4 Implications for The Mnemonic Utility of Singing and Conclusions 

Much like investigations within the production literature, broader investigations of 

singing and memory have produced inconsistent and often conflicting findings (e.g., Kilgour et 

al., 2000; Rainey & Larsen, 2002; Salcedo, 2010; Wallace, 1994). With respect to the present 

investigation, my findings provide mixed evidence for the utility of singing as a mnemonic aid. 

First, the present thesis consistently observed a large production effect for singing, which meta-

analysis revealed to be robust across studies. Consistent with earlier research, then, my findings 

suggest that singing almost certainly improves item memory relative to silent reading (e.g., 

Hassall et al., 2016; Quinlan & Taylor, 2013, 2019; Whitridge, 2022). Further, Experiment 2 is 

the first investigation to show that the production effect for singing emerges in between-subject 

designs, suggesting that the benefit is absolute and not relative (i.e., being driven by a cost to 

silent items; e.g., Bodner et al., 2014). Accordingly, I can reasonably conclude that singing is a 

powerful mnemonic and appears to improve item memory at least as much as reading aloud.  

However, my findings do not provide strong support for the notion that singing possesses 

superior mnemonic utility relative to reading aloud. Based on Experiment 1, it appears that the 

singing superiority effect is replicable. However, it is important to consider not only whether 

singing can boost memory further, but whether this increase in performance can be leveraged in 
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a meaningful way. To this point, both Experiment 1 and my meta-analytic models strongly 

suggested that the singing superiority effect appeared to be driven by color matching at test. 

While it appears that singing can produce superior memory, then, this additional benefit emerges 

only when a specific, atypical set of conditions are met. Thus, the utility of singing as a superior 

mnemonic and the generalizability of this finding to other designs is dubious. Furthermore, given 

that Experiment 2 failed to detect a singing superiority effect, the benefit appears to occur only 

relative to aloud items and may emerge due to preferential rehearsal or an accentuated decrement 

to silent items (see, e.g., Forrin et al., 2019; Ozubko et al., 2020). Accordingly, the applicability 

of this strategy in other contexts might be limited: If singing is not an inherently superior 

modality, it would appear to possess little utility over reading aloud for improving learning in 

comprehension or second language acquisition paradigms, where the modality has received 

attention (e.g., Baills et al., 2021; Ludke, 2014). While it is possible that the study design or 

materials used in investigations outside the production literature might be more conducive to the 

emergence of singing superiority effects, the evidence available at present leads me to conclude 

that the mnemonic utility of singing is probably not meaningfully different from reading aloud.  

In sum, the present thesis poses a challenge to the singing superiority effect as described 

in earlier literature (e.g., Quinlan & Taylor, 2013, 2019). Across several analyses, I observed a 

production effect for singing that was generally similar in magnitude to that for reading aloud 

(see also, Hassall et al., 2016). When the singing superiority effect did emerge, it was much 

smaller than previous estimates and was confined to the color matched group. Contrary to 

sensorimotor scaling explanations of the effect, it appears that the relative superiority of singing 

likely arises due to idiosyncratic methodological factors. Even if these factors can be leveraged 

via an atypical distinctiveness heuristic or some alternative, context-based mechanism, it does 
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not seem that singing affords any additional discriminative utility to the production trace that is 

immediately accessible in typical paradigms. Given that the singing superiority effect does not 

appear to arise solely on the basis of appending additional distinctive features to the production 

trace, the present thesis argues that the effect should not be construed as strong evidence for the 

sensorimotor scaling hypothesis and, by extension, the distinctiveness account.  

 

  



PRODUCTION AND SINGING 

132 
 

References 

Anton, R. J. (1990). Combining singing and psychology. Hispania, 73(4), 1166-1170. 

https://doi.org/10.2307/344326 

Baayen, R. H., Tweedie, F. J., & Schreuder, R. (2002). The subjects as a simple random effect 

fallacy: Subject variability and morphological family effects in the mental lexicon. Brain 

and Language, 81(1-3), 55–65. https://doi.org/10.1006/brln.2001.2506 

Bailey, L. M., Bodner, G. E., Matheson, H. E., Stewart, B. M., Roddick, K., O'Neil, K., 

Simmons, M., Lambert, A. M., Krigolson, O. E., Newman, A. J., & Fawcett, J. M. (2021). 

Neural correlates of the production effect: An fMRI study. Brain and Cognition, 

152, Article 105757. https://doi.org/10.1016/j.bandc.2021.105757 

Baills, F., Zhang, Y., Cheng, Y., Bu, Y., & Prieto, P. (2021). Listening to songs and singing 

benefitted initial stages of second language pronunciation but not recall of word 

meaning. Language Learning, 71(2), 369–413. https://doi.org/10.1111/lang.12442 

Banbury, S. P., Tremblay, S., Macken, W. J., & Jones, D. M. (2001). Auditory distraction and 

short-term memory: Phenomena and practical implications. Human Factors, 43(1), 12–

29. https://doi.org/10.1518/001872001775992462 

Banks, W. P. (1970). Signal detection theory and human memory. Psychological Bulletin, 74(2), 

81–99. https://doi.org/10.1037/h0029531 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for 

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 

68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001 

https://doi.org/10.2307/344326
https://psycnet.apa.org/doi/10.1006/brln.2001.2506
https://psycnet.apa.org/doi/10.1016/j.bandc.2021.105757
https://psycnet.apa.org/doi/10.1111/lang.12442
https://psycnet.apa.org/doi/10.1518/001872001775992462
https://psycnet.apa.org/doi/10.1037/h0029531
https://psycnet.apa.org/doi/10.1016/j.jml.2012.11.001


PRODUCTION AND SINGING 

133 
 

Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of 

processing resources. Psychological Bulletin, 91(2), 276–

292. https://doi.org/10.1037/0033-2909.91.2.276 

Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience and 

Biobehavioral Reviews, 51, 108–117. https://doi.org/10.1016/j.neubiorev.2015.01.004 

Benjamin, A. S., Tullis, J. G., & Lee, J. H. (2013). Criterion noise in ratings-based recognition: 

Evidence from the effects of response scale length on recognition accuracy. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 39(5), 1601–

1608. https://doi.org/10.1037/a0031849 

Berger, A., & Kiefer, M. (2021). Comparison of different response time outlier exclusion 

methods: A simulation study. Frontiers in Psychology, 12, Article 

675558. https://doi.org/10.3389/fpsyg.2021.675558 

Bodner, G. E., Huff, M. J., & Taikh, A. (2020). Pure-list production improves item recognition 

and sometimes also improves source memory. Memory & Cognition, 48(7), 1281–

1294. https://doi.org/10.3758/s13421-020-01044-2 

Bodner, G. E., Jamieson, R. K., Cormack, D. T., McDonald, D.-L., & Bernstein, D. M. (2016). 

The production effect in recognition memory: Weakening strength can strengthen 

distinctiveness. Canadian Journal of Experimental Psychology, 70(2), 93–

98. https://doi.org/10.1037/cep0000082 

Bodner, G. E., & Taikh, A. (2012). Reassessing the basis of the production effect in 

memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 

1711–1719. https://doi.org/10.1037/a0028466 

https://psycnet.apa.org/doi/10.1037/0033-2909.91.2.276
https://psycnet.apa.org/doi/10.1016/j.neubiorev.2015.01.004
https://psycnet.apa.org/doi/10.1037/a0031849
https://psycnet.apa.org/doi/10.3389/fpsyg.2021.675558
https://psycnet.apa.org/doi/10.3758/s13421-020-01044-2
https://psycnet.apa.org/doi/10.1037/cep0000082
https://psycnet.apa.org/doi/10.1037/a0028466


PRODUCTION AND SINGING 

134 
 

Bodner, G. E., Taikh, A., & Fawcett, J. M. (2014). Assessing the costs and benefits of production 

in recognition. Psychonomic Bulletin & Review, 21(1), 149–

154. https://doi.org/10.3758/s13423-013-0485-1 

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2010). A basic introduction 

to fixed-effect and random-effects models for meta-analysis. Research Synthesis 

Methods, 1(2), 97–111. https://doi.org/10.1002/jrsm.12 

Borenstein, M., & Higgins, J. P. (2013). Meta-analysis and subgroups. Prevention Science, 14, 

134-143. https://doi.org/10.1007/s11121-013-0377-7 

Broadbent, D. E. (1967). Word-frequency effect and response bias. Psychological Review, 74(1), 

1–15. https://doi.org/10.1037/h0024206 

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of 

current word frequency norms and the introduction of a new and improved word 

frequency measure for American English. Behavior Research Methods, 41, 977–990. 

https://doi.org/10.3758/BRM.41.4.977 

Burke, J., & Ornstein, R. (2018). Communication and faith in the Middle Ages. 

In Communication in History (pp. 65-71). Routledge. 

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal 

of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01  

Bürkner, P. C. (2021). Bayesian Item Response Modeling in R with brms and Stan. Journal of 

Statistical Software, 100, 1-54. https://doi.org/10.18637/jss.v100.i05 

Burrows, D. (1989). Singing and saying. The Journal of Musicology, 7(3), 390-402. 

https://doi.org/10.2307/763607 

https://psycnet.apa.org/doi/10.3758/s13423-013-0485-1
https://psycnet.apa.org/doi/10.1002/jrsm.12
https://doi.org/10.1007/s11121-013-0377-7
https://psycnet.apa.org/doi/10.1037/h0024206
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.18637/jss.v100.i05
https://doi.org/10.2307/763607


PRODUCTION AND SINGING 

135 
 

Castel, A. D., Rhodes, M. G., & Friedman, M. C. (2013). Predicting memory benefits in the 

production effect: The use and misuse of self-generated distinctive cues when making 

judgments of learning. Memory & Cognition, 41(1), 28–

35. https://doi.org/10.3758/s13421-012-0249-6 

Coltheart, M. (1981). The MRC psycholinguistic database. The Quarterly Journal of 

Experimental Psychology: Human Experimental Psychology, 33(4), 497–505. 

https://doi.org/10.1080/14640748108400805 

Conway, M. A., & Gathercole, S. E. (1987). Modality and long-term memory. Journal of 

Memory and Language, 26(3), 341–361. https://doi.org/10.1016/0749-596X(87)90118-5 

Crowder, R. G. (1970). The role of one's own voice in immediate memory. Cognitive 

Psychology, 1(2), 157-178. https://doi.org/10.1016/0010-0285(70)90011-3 

Cyr, V., Poirier, M., Yearsley, J. M., Guitard, D., Harrigan, I., & Saint-Aubin, J. (2022). The 

production effect over the long term: Modeling distinctiveness using serial 

positions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

48(12), 1797–1820. https://doi.org/10.1037/xlm0001093 

DeCarlo, L. T. (1998). Signal detection theory and generalized linear models. Psychological 

Methods, 3(2), 186–205. https://doi.org/10.1037/1082-989X.3.2.186 

Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and 

Language, 59(4), 447–456. https://doi.org/10.1016/j.jml.2007.11.004 

Dodson, C. S., & Schacter, D. L. (2001). If I had said it I would have remembered it: Reducing 

false memories with a distinctiveness heuristic. Psychonomic Bulletin & Review, 8, 155–

161. https://doi.org/10.3758/BF03196152 

https://psycnet.apa.org/doi/10.3758/s13421-012-0249-6
https://doi.org/10.1080/14640748108400805
https://psycnet.apa.org/doi/10.1016/0749-596X(87)90118-5
https://doi.org/10.1016/0010-0285(70)90011-3
https://psycnet.apa.org/doi/10.1037/xlm0001093
https://psycnet.apa.org/doi/10.1037/1082-989X.3.2.186
https://psycnet.apa.org/doi/10.1016/j.jml.2007.11.004
https://doi.org/10.3758/BF03196152


PRODUCTION AND SINGING 

136 
 

Dolson, M. (1994). The pitch of speech as a function of linguistic community. Music Perception, 

11(3), 321–331. https://doi.org/10.2307/40285626 

Donchin, E. (1981). Surprise!… Surprise? Psychophysiology, 18(5), 493-513. 

https://doi.org/10.1111/j.1469-8986.1981.tb01815.x 

Egan, J. P. (1958). Recognition memory and the operating characteristic. USAF Operational 

Applications Laboratory Technical Note. 

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by 

a simple, graphical test. BMJ, 315(7109), 629–634. 

https://doi.org/10.1136/bmj.315.7109.629 

Einstein, G. O., McDaniel, M. A., & Lackey, S. (1989). Bizarre imagery, interference, and 

distinctiveness. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

15(1), 137–146. https://doi.org/10.1037/0278-7393.15.1.137 

Fawcett, J. M. (2013). The production effect benefits performance in between-subject designs: A 

meta-analysis. Acta Psychologica, 142, 1-5. https://doi.org/10.1016/j.actpsy.2012.10.001 

Fawcett, J. M., Baldwin, M. M., Whitridge, J. W., Swab, M., Malayang, K., Hiscock, B., Drakes, 

D. H., & Willoughby, H. V. (2023). Production improves recognition and reduces 

intrusions in between-subject designs: An updated meta-analysis. Canadian Journal of 

Experimental Psychology, 77(1), 35–44. https://doi.org/10.1037/cep0000302 

Fawcett, J. M., Bodner, G. E., Paulewicz, B., Rose, J., & Wakeham-Lewis, R. (2022b). 

Production can enhance semantic encoding: Evidence from forced-choice recognition 

with homophone versus synonym lures. Psychonomic Bulletin & Review, 29(6), 2256-

2263. https://doi.org/10.3758/s13423-022-02140-x 

https://doi.org/10.2307/40285626
https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
https://doi.org/10.1136/bmj.315.7109.629
https://psycnet.apa.org/doi/10.1037/0278-7393.15.1.137
https://doi.org/10.1016/j.actpsy.2012.10.001
https://psycnet.apa.org/doi/10.1037/cep0000302
https://doi.org/10.3758/s13423-022-02140-x


PRODUCTION AND SINGING 

137 
 

Fawcett, J. M., Lawrence, M. A., & Taylor, T. L. (2016). The representational consequences of 

intentional forgetting: Impairments to both the probability and fidelity of long-term 

memory. Journal of Experimental Psychology: General, 145(1), 56–81. 

https://doi.org/10.1037/xge0000128 

Fawcett, J. M., & Ozubko, J. D. (2016). Familiarity, but not recollection, supports the between-

subject production effect in recognition memory. Canadian Journal of Experimental 

Psychology, 70(2), 99–115. https://doi.org/10.1037/cep0000089 

Fawcett, J. M., Quinlan, C. K., & Taylor, T. L. (2012). Interplay of the production and picture 

superiority effects: A signal detection analysis. Memory (Hove), 20(7), 655–666. 

https://doi.org/10.1080/09658211.2012.693510 

Feltgen, Q., & Daunizeau, J. (2021). An overcomplete approach to fitting drift-diffusion decision 

models to trial-by-trial data. Frontiers in Artificial Intelligence, 4, 531316. 

https://doi.org/10.3389/frai.2021.531316  

Fernandes, M. A., Wammes, J. D., & Meade, M. E. (2018). The surprisingly powerful influence 

of drawing on memory. Current Directions in Psychological Science, 27(5), 302–

308. https://doi.org/10.1177/0963721418755385 

Forrin, N. D., Groot, B., & MacLeod, C. M. (2016). The d-prime directive: Assessing costs and 

benefits in recognition by dissociating mixed-list false alarm rates. Journal of 

Experimental Psychology. Learning, Memory, and Cognition, 42(7), 1090–1111. 

https://doi.org/10.1037/xlm0000214 

Forrin, N. D., & MacLeod, C. M. (2018). This time it’s personal: the memory benefit of hearing 

oneself. Memory, 26(4), 574–579. https://doi.org/10.1080/09658211.2017.1383434 

https://doi.org/10.1037/xge0000128
https://doi.org/10.1037/cep0000089
https://doi.org/10.1080/09658211.2012.693510
https://doi.org/10.3389/frai.2021.531316
https://psycnet.apa.org/doi/10.1177/0963721418755385
https://doi.org/10.1037/xlm0000214
https://doi.org/10.1080/09658211.2017.1383434


PRODUCTION AND SINGING 

138 
 

Forrin, N. D., MacLeod, C. M., & Ozubko, J. D. (2012). Widening the boundaries of the 

production effect. Memory & Cognition, 40, 1046–1055. https://doi.org/10.3758/s13421-

012-0210-8 

Forrin, N. D., Ralph, B. C. W., Dhaliwal, N. K., Smilek, D., & MacLeod, C. M. (2019). Wait for 

it… Performance anticipation reduces recognition memory. Journal of Memory and 

Language, 109, Article 104050. https://doi.org/10.1016/j.jml.2019.104050 

Furukawa, T. A., Barbui, C., Cipriani, A., Brambilla, P., & Watanabe, N. (2006). Imputing 

missing standard deviations in meta-analyses can provide accurate results. Journal of 

Clinical Epidemiology, 59, 7–10. https://doi.org/10.1016/j.jclinepi.2005.06.006 

Gathercole, S. E., & Conway, M. A. (1988). Exploring long-term modality effects: Vocalization 

leads to best retention. Memory & Cognition, 16(2), 110–119. 

https://doi.org/10.3758/BF03213478 

Geiser, E., Zaehle, T., Jancke, L., & Meyer, M. (2008). The neural correlate of speech rhythm as 

evidenced by metrical speech processing. Journal of cognitive neuroscience, 20(3), 541-

552. https://doi.org/10.1162/jocn.2008.20029 

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical 

models. Cambridge University Press. 

Gfeller, K. E. (1983). Musical mnemonics as an aid to retention with normal and learning 

disabled students. Journal of Music Therapy, 20(4), 179-189. 

https://doi.org/10.1093/jmt/20.4.179 

Gionet, S., Guitard, D., & Saint-Aubin, J. (2022). The production effect interacts with serial 

positions: Further evidence from a between-subjects manipulation. Experimental 

Psychology, 69(1), 12–22. https://doi.org/10.1027/1618-3169/a000540 

https://doi.org/10.3758/s13421-012-0210-8
https://doi.org/10.3758/s13421-012-0210-8
https://psycnet.apa.org/doi/10.1016/j.jml.2019.104050
https://doi.org/10.1016/j.jclinepi.2005.06.006
https://doi.org/10.3758/BF03213478
https://doi.org/10.1162/jocn.2008.20029
https://doi.org/10.1093/jmt/20.4.179
https://doi.org/10.1027/1618-3169/a000540


PRODUCTION AND SINGING 

139 
 

Gionet, S., Guitard, D., & Saint-Aubin, J. (in press). The production effect interacts with serial 

positions in recall tasks, but not in item recognition. Experimental Psychology. 

Good, A. J., Russo, F. A., & Sullivan, J. (2015). The efficacy of singing in foreign-language 

learning. Psychology of Music, 43(5), 627–

640. https://doi.org/10.1177/0305735614528833 

Grady, C. L., McIntosh, A. R., Horwitz, B., Maisog, J. M., Ungerleider, L. G., Mentis, M. J., 

Pietrini, P., Schapiro, M. B., & Haxby, J. V. (1995). Age-related reductions in human 

recognition memory due to impaired encoding. Science, 269(5221), 218–

221. https://doi.org/10.1126/science.7618082 

Greene, R. L., & Crowder, R. G. (1984). Modality and suffix effects in the absence of auditory 

stimulation. Journal of Verbal Learning & Verbal Behavior, 23(3), 371–

382. https://doi.org/10.1016/S0022-5371(84)90259-7 

Gretz, M. R., & Huff, M. J. (2020). Multiple species of distinctiveness in memory? Comparing 

encoding versus statistical distinctiveness on recognition. Memory, 28(8), 984–

997. https://doi.org/10.1080/09658211.2020.1803916 

Harrer, M., Cuijpers, P., Furukawa, T.A., & Ebert, D.D. (2021). Doing meta-analysis with R: A 

hands-on guide. Chapmann & Hall/CRC Press.  

Hassall, C. D., Quinlan, C. K., Turk, D. J., Taylor, T. L., & Krigolson, O. E. (2016). A 

preliminary investigation into the neural basis of the production effect. Canadian Journal 

of Experimental Psychology, 70(2), 139–146. https://doi.org/10.1037/cep0000093 

Hintzman, D. L. (1984). MINERVA 2: A simulation model of human memory. Behavior 

Research Methods, Instruments & Computers, 16(2), 96–

101. https://doi.org/10.3758/BF03202365 

https://psycnet.apa.org/doi/10.1177/0305735614528833
https://psycnet.apa.org/doi/10.1126/science.7618082
https://psycnet.apa.org/doi/10.1016/S0022-5371(84)90259-7
https://psycnet.apa.org/doi/10.1080/09658211.2020.1803916
https://doi.org/10.1037/cep0000093
https://psycnet.apa.org/doi/10.3758/BF03202365


PRODUCTION AND SINGING 

140 
 

Hofmann, S. G., Moscovitch, D. A., & Kim, H.-J. (2006). Autonomic correlates of social anxiety 

and embarrassment in shy and non-shy individuals. International Journal of 

Psychophysiology, 61(2), 134–142. https://doi.org/10.1016/j.ijpsycho.2005.09.003 

Hopkins, R. H., & Edwards, R. E. (1972). Pronunciation effects in recognition memory. Journal 

of Verbal Learning and Verbal Behavior, 11(4), 534–537. https://doi.org/10.1016/S0022-

5371(72)80036-7 

Hourihan, K. L., & Churchill, L. A. (2020). Production of picture names improves picture 

recognition. Canadian Journal of Experimental Psychology, 74(1), 35–

43. https://doi.org/10.1037/cep0000185 

Huff, M. J., Bodner, G. E., & Fawcett, J. M. (2015). Effects of distinctive encoding on correct 

and false memory: A meta-analytic review of costs and benefits and their origins in the 

DRM paradigm. Psychonomic Bulletin & Review, 22(2), 349–

365. https://doi.org/10.3758/s13423-014-0648-8 

Hunt, R. R. (2006). The concept of distinctiveness in memory research. In R. R. Hunt & J. B. 

Worthen (Eds.), Distinctiveness and memory (pp. 3–25). Oxford University 

Press. https://doi.org/10.1093/acprof:oso/9780195169669.003.0001 

Icht, M., Bergerzon-Biton, O., & Mama, Y. (2019). The production effect in adults with 

dysarthria: Improving long-term verbal memory by vocal 

production. Neuropsychological Rehabilitation, 29(1), 131–

143. https://doi.org/10.1080/09602011.2016.1272466 

Icht, M., & Mama, Y. (2015). The production effect in memory: A prominent mnemonic in 

children. Journal of Child Language, 42(5), 1102–

1124. https://doi.org/10.1017/S0305000914000713 

https://psycnet.apa.org/doi/10.1016/j.ijpsycho.2005.09.003
https://doi.org/10.1016/S0022-5371(72)80036-7
https://doi.org/10.1016/S0022-5371(72)80036-7
https://psycnet.apa.org/doi/10.1037/cep0000185
https://psycnet.apa.org/doi/10.3758/s13423-014-0648-8
https://psycnet.apa.org/doi/10.1093/acprof:oso/9780195169669.003.0001
https://psycnet.apa.org/doi/10.1080/09602011.2016.1272466
https://psycnet.apa.org/doi/10.1017/S0305000914000713


PRODUCTION AND SINGING 

141 
 

Icht, M., Mama, Y., & Algom, D. (2014). The production effect in memory: Multiple species of 

distinctiveness. Frontiers in Psychology, 5, Article 

886. https://doi.org/10.3389/fpsyg.2014.00886 

Icht, M., Taitelbaum-Swead, R., & Mama, Y. (2022). Production improves visual and auditory 

text memory in younger and older adults. Gerontology, 68(5), 578–

586. https://doi.org/10.1159/000518894 

IntHout, J., Ioannidis, J. P., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting 

prediction intervals in meta-analysis. BMJ Open, 6(7), e010247. 

https://doi.org/10.1136/bmjopen-2015-010247 

Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking difficulty: 

Evidence for multiple resources in dual-task performance. Psychophysiology, 17(3), 259–

273. https://doi.org/10.1111/j.1469-8986.1980.tb00146.x 

Jacoby, L. L. (1983). Remembering the data: Analyzing interactive processes in reading. Journal 

of Verbal Learning & Verbal Behavior, 22(5), 485–508. https://doi.org/10.1016/S0022-

5371(83)90301-8 

Jacoby, L. L., Woloshyn, V., & Kelley, C. (1989). Becoming famous without being recognized: 

Unconscious influences of memory produced by dividing attention. Journal of 

Experimental Psychology: General, 118(2), 115–125. https://doi.org/10.1037/0096-

3445.118.2.115 

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and 

towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. 

https://doi.org/10.1016/j.jml.2007.11.007 

https://psycnet.apa.org/doi/10.3389/fpsyg.2014.00886
https://psycnet.apa.org/doi/10.1159/000518894
https://doi.org/10.1136/bmjopen-2015-010247
https://psycnet.apa.org/doi/10.1111/j.1469-8986.1980.tb00146.x
https://psycnet.apa.org/doi/10.1016/S0022-5371(83)90301-8
https://psycnet.apa.org/doi/10.1016/S0022-5371(83)90301-8
https://psycnet.apa.org/doi/10.1037/0096-3445.118.2.115
https://psycnet.apa.org/doi/10.1037/0096-3445.118.2.115
https://doi.org/10.1016/j.jml.2007.11.007


PRODUCTION AND SINGING 

142 
 

James, W. (1890). The principles of psychology. New York: Henry Holt and Company. 

https://doi.org/10.1037/11059-000 

Jamieson, R. K., Mewhort, D. J. K., & Hockley, W. E. (2016). A computational account of the 

production effect: Still playing twenty questions with nature. Canadian Journal of 

Experimental Psychology, 70(2), 154–164. https://doi.org/10.1037/cep0000081 

Jamieson, R. K., & Spear, J. (2014). The offline production effect. Canadian Journal of 

Experimental Psychology, 68(1), 20–28. https://doi.org/10.1037/cep0000009 

Jeffries, K. J., Fritz, J. B., & Braun, A. R. (2003). Words in melody: An H₂¹⁵ O PET study of 

brain activation during singing and speaking. NeuroReport: For Rapid Communication of 

Neuroscience Research, 14(5), 749–754. https://doi.org/10.1097/00001756-200304150-

00018 

Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological 

Bulletin, 114(1), 3–28. https://doi.org/10.1037/0033-2909.114.1.3 

Jones, A. C., & Pyc, M. A. (2014). The production effect: Costs and benefits in free 

recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 

300–305. https://doi.org/10.1037/a0033337 

Jones, R. M., Fox, R. A., & Jacewicz, E. (2012). The effects of concurrent cognitive load on 

phonological processing in adults who stutter. Journal of Speech, Language, and Hearing 

Research, 55(6), 1862–1875. https://doi.org/10.1044/1092-4388(2012/12-0014) 

Jonker, T. R., Levene, M., & MacLeod, C. M. (2014). Testing the item-order account of design 

effects using the production effect. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 40(2), 441–448. https://doi.org/10.1037/a0034977 

https://doi.org/10.1037/11059-000
https://doi.org/10.1037/cep0000081
https://psycnet.apa.org/doi/10.1037/cep0000009
https://psycnet.apa.org/doi/10.1097/00001756-200304150-00018
https://psycnet.apa.org/doi/10.1097/00001756-200304150-00018
https://psycnet.apa.org/doi/10.1037/0033-2909.114.1.3
https://psycnet.apa.org/doi/10.1037/a0033337
https://psycnet.apa.org/doi/10.1044/1092-4388(2012/12-0014)
https://psycnet.apa.org/doi/10.1037/a0034977


PRODUCTION AND SINGING 

143 
 

Kappel, S., Harford, M., Burns, V. D., & Anderson, N. S. (1973). Effects of vocalization on 

short-term memory for words. Journal of Experimental Psychology, 101(2), 314–

317. https://doi.org/10.1037/h0035247. 

Karis, D., Fabiani, M., & Donchin, E. (1984). "P300" and memory: Individual differences in the 

von Restorff effect. Cognitive Psychology, 16(2), 177–216. https://doi.org/10.1016/0010-

0285(84)90007-0 

Kellogg, R. T., Newcombe, C., Kammer, D., & Schmitt, K. (1996). Attention in direct and 

indirect memory tasks with short- and long-term probes. The American Journal of 

Psychology, 109(2), 205–217. https://doi.org/10.2307/1423273 

Kelly, M. O., Ensor, T. M., Lu, X., MacLeod, C. M., & Risko, E. F. (2022). Reducing retrieval 

time modulates the production effect: Empirical evidence and computational 

accounts. Journal of Memory and Language, 123, 104299. 

https://doi.org/10.1016/j.jml.2021.104299 

Kilgour, A. R., Jakobson, L. S., & Cuddy, L. L. (2000). Music training and rate of presentation as 

mediators of text and song recall. Memory & Cognition, 28(5), 700–

710. https://doi.org/10.3758/BF03198404 

Kok, A. (2001). On the utility of P3 amplitude as a measure of processing 

capacity. Psychophysiology, 38(3), 557-577. https://doi.org/10.1017/S0048577201990559 

Kolinsky, R., Lidji, P., Peretz, I., Besson, M., & Morais, J. (2009). Processing interactions 

between phonology and melody: Vowels sing but consonants speak. Cognition, 112(1), 1–

20. https://doi.org/10.1016/j.cognition.2009.02.014 

https://psycnet.apa.org/doi/10.1037/h0035247
https://psycnet.apa.org/doi/10.1016/0010-0285(84)90007-0
https://psycnet.apa.org/doi/10.1016/0010-0285(84)90007-0
https://psycnet.apa.org/doi/10.2307/1423273
https://doi.org/10.1016/j.jml.2021.104299
https://psycnet.apa.org/doi/10.3758/BF03198404
https://doi.org/10.1017/S0048577201990559
https://psycnet.apa.org/doi/10.1016/j.cognition.2009.02.014


PRODUCTION AND SINGING 

144 
 

Kramer, A. F., Wickens, C. D., & Donchin, E. (1983). An analysis of the processing requirements 

of a complex perceptual-motor task. Human Factors, 25(6), 597–621. 

https://doi.org/10.1177/001872088302500601 

Kruschke, J. K. (2010). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive 

Science, 1(5), 658-676. https://doi.org/10.1002/wcs.72 

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic 

Press. 

Lambert, A. M., Bodner, G. E., & Taikh, A. (2016). The production effect in long-list recall: In 

no particular order? Canadian Journal of Experimental Psychology, 70(2), 165–

176. https://doi.org/10.1037/cep0000086 

Leimu, R., & Koricheva, J. (2004). Cumulative meta-analysis: A new tool for detection of 

temporal trends and publication bias in ecology. Proceedings of the Royal Society of 

London. Series B: Biological Sciences, 271(1551), 1961-1966. 

https://doi.org/10.1098/rspb.2004.2828 

Lentz, T. M. (1985). From recitation to reading: Memory, writing, and composition in Greek 

philosophical prose. Southern Speech Communication Journal, 51(1), 49-70. 

https://doi.org/10.1080/10417948509372646 

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices 

based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 

1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008 

Lin, O. Y. H., & MacLeod, C. M. (2012). Aging and the production effect: A test of the 

distinctiveness account. Canadian Journal of Experimental Psychology, 66(3), 212–216. 

https://doi.org/10.1037/a0028309 

https://doi.org/10.1177/001872088302500601
https://doi.org/10.1002/wcs.72
https://psycnet.apa.org/doi/10.1037/cep0000086
https://doi.org/10.1098/rspb.2004.2828
https://doi.org/10.1080/10417948509372646
https://doi.org/10.1016/j.jmva.2009.04.008
https://doi.org/10.1037/a0028309


PRODUCTION AND SINGING 

145 
 

Lloyd, M. E., & Miller, J. K. (2011). Are two heuristics better than one? The fluency and 

distinctiveness heuristics in recognition memory. Memory & Cognition, 39(7), 1264–

1274. https://doi.org/10.3758/s13421-011-0093-0 

Ludke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language 

learning. Memory & Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013-0342-5 

MacDonald, P. A., & MacLeod, C. M. (1998). The influence of attention at encoding on direct 

and indirect remembering. Acta Psychologica, 98(2-3), 291-310. 

https://doi.org/10.1016/S0001-6918(97)00047-4 

MacLeod, C. M., & Bodner, G. E. (2017). The production effect in memory. Current Directions 

in Psychological Science, 26(4), 390–395. https://doi.org/10.1177/0963721417691356 

MacLeod, C. M., Gopie, N., Hourihan, K. L., Neary, K. R., & Ozubko, J. D. (2010). The 

production effect: Delineation of a phenomenon. Journal of Experimental Psychology. 

Learning, Memory, and Cognition, 36(3), 671–685. https://doi.org/10.1037/a0018785 

MacLeod, C. M., Ozubko, J. D., Hourihan, K. L., & Major, J. C. (2022). The production effect is 

consistent over material variations: Support for the distinctiveness 

account. Memory, 30(8), 1000-1007. https://doi.org/10.1080/09658211.2022.2069270 

Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user's guide (2nd ed.). 

Lawrence Erlbaum Associates Publishers. 

Mama, Y., Fostick, L., & Icht, M. (2018). The impact of different background noises on the 

production effect. Acta Psychologica, 185, 235–

242. https://doi.org/10.1016/j.actpsy.2018.03.002 

https://psycnet.apa.org/doi/10.3758/s13421-011-0093-0
https://psycnet.apa.org/doi/10.3758/s13421-013-0342-5
https://doi.org/10.1016/S0001-6918(97)00047-4
https://psycnet.apa.org/doi/10.1177/0963721417691356
https://doi.org/10.1037/a0018785
https://doi.org/10.1080/09658211.2022.2069270
https://psycnet.apa.org/doi/10.1016/j.actpsy.2018.03.002


PRODUCTION AND SINGING 

146 
 

Mama, Y., & Icht, M. (2016). Auditioning the distinctiveness account: Expanding the production 

effect to the auditory modality reveals the superiority of writing over vocalising. Memory, 

24(1), 98–113. https://doi.org/10.1080/09658211.2014.986135 

Mama, Y., & Icht, M. (2018). Production on hold: Delaying vocal production enhances the 

production effect in free recall. Memory, 26(5), 589–

602. https://doi.org/10.1080/09658211.2017.1384496 

Mama, Y., & Icht, M. (2019). Production effect in adults with ADHD with and without 

methylphenidate (MPH): Vocalization improves verbal learning. Journal of the 

International Neuropsychological Society, 25(2), 230–

235. https://doi.org/10.1017/S1355617718001017 

Marshall, P. H., & Werder, P. R. (1972). The effects of the elimination of rehearsal on primacy 

and recency. Journal of Verbal Learning & Verbal Behavior, 11(5), 649–

653. https://doi.org/10.1016/S0022-5371(72)80049-5 

Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis 

significance testing. Behavior Research Methods, 43(3), 679–

690. https://doi.org/10.3758/s13428-010-0049-5 

McCurdy, M. P., Viechtbauer, W., Sklenar, A. M., Frankenstein, A. N., & Leshikar, E. D. (2020). 

Theories of the generation effect and the impact of generation constraint: A meta-analytic 

review. Psychonomic Bulletin & Review, 27(6), 1139–

1165. https://doi.org/10.3758/s13423-020-01762-3 

McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan. 

Chapman and Hall/CRC. 

https://psycnet.apa.org/doi/10.1080/09658211.2014.986135
https://psycnet.apa.org/doi/10.1080/09658211.2017.1384496
https://psycnet.apa.org/doi/10.1017/S1355617718001017
https://psycnet.apa.org/doi/10.1016/S0022-5371(72)80049-5
https://psycnet.apa.org/doi/10.3758/s13428-010-0049-5
https://psycnet.apa.org/doi/10.3758/s13423-020-01762-3


PRODUCTION AND SINGING 

147 
 

McGettigan, C., Eisner, F., Agnew, Z. K., Manly, T., Wisbey, D., & Scott, S. K. (2013). T'ain't 

what you say, it's the way that you say it—left insula and inferior frontal cortex work in 

interaction with superior temporal regions to control the performance of vocal 

impersonations. Journal of Cognitive Neuroscience, 25(11), 1875-1886. https://doi.org/ 

10.1162/jocn_a_00427 

Morehead, K., Rhodes, M. G., & DeLozier, S. (2016). Instructor and student knowledge of study 

strategies. Memory, 24(2), 257-271. https://doi.org/10.1080/09658211.2014.1001992 

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J. (2016). The fallacy 

of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23, 103–

123. https://doi.org/10.3758/s13423-015-0947-8 

Mulligan, N. W. (2011). Generation disrupts memory for intrinsic context but not extrinsic 

context. The Quarterly Journal of Experimental Psychology, 64(8), 1543–

1562. https://doi.org/10.1080/17470218.2011.562980 

Mulligan, N. W., & Hartman, M. (1996). Divided attention and indirect memory tests. Memory & 

Cognition, 24(4), 453–465. https://doi.org/10.3758/BF03200934 

Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251–

269. https://doi.org/10.3758/BF03213879 

Namias, J. M., Huff, M. J., Smith, A., & Maxwell, N. P. (2022). Drawing individual images 

benefits recognition accuracy in the Deese–Roediger–McDermott paradigm. The 

Quarterly Journal of Experimental Psychology, 75(8), 1571–

1582. https://doi.org/10.1177/17470218211056498 

https://doi.org/%2010.1162/jocn_a_00427
https://doi.org/%2010.1162/jocn_a_00427
https://doi.org/10.1080/09658211.2014.1001992
https://doi.org/10.3758/s13423-015-0947-8
https://psycnet.apa.org/doi/10.1080/17470218.2011.562980
https://psycnet.apa.org/doi/10.3758/BF03200934
https://psycnet.apa.org/doi/10.3758/BF03213879
https://psycnet.apa.org/doi/10.1177/17470218211056498


PRODUCTION AND SINGING 

148 
 

Otten, L. J., & Donchin, E. (2000). Relationship between P300 amplitude and subsequent recall 

for distinctive events: Dependence on type of distinctiveness attribute. Psychophysiology, 

37(5), 644–661. https://doi.org/10.1017/S004857720098171X 

Özdemir, E., Norton, A., & Schlaug, G. (2006). Shared and distinct neural correlates of singing 

and speaking. Neuroimage, 33(2), 628-635. 

https://doi.org/10.1016/j.neuroimage.2006.07.013 

Ozubko, J. D., Bamburoski, L. D., Carlin, K., & Fawcett, J. M. (2020). Distinctive encodings and 

the production effect: failure to retrieve distinctive encodings decreases recollection of 

silent items. Memory (Hove), 28(2), 237–260. 

https://doi.org/10.1080/09658211.2019.1711128 

Ozubko, J. D., Hourihan, K. L., & MacLeod, C. M. (2012a). Production benefits learning: The 

production effect endures and improves memory for text. Memory, 20(7), 717–

727. https://doi.org/10.1080/09658211.2012.699070 

Ozubko, J. D., Gopie, N., & MacLeod, C. M. (2012b). Production benefits both recollection and 

familiarity. Memory & Cognition, 40(3), 326–338. https://doi.org/10.3758/s13421-011-

0165-1 

Ozubko, J. D., & MacLeod, C. M. (2010). The production effect in memory: Evidence that 

distinctiveness underlies the benefit. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 36(6), 1543–1547. https://doi.org/10.1037/a0020604 

Ozubko, J. D., Major, J., & MacLeod, C. M. (2014). Remembered study mode: Support for the 

distinctiveness account of the production effect. Memory, 22(5), 509–

524. https://doi.org/10.1080/09658211.2013.800554 

Paivio, A. (1991). Images in mind: The evolution of a theory. Harvester Wheatsheaf. 

https://psycnet.apa.org/doi/10.1017/S004857720098171X
https://doi.org/10.1016/j.neuroimage.2006.07.013
https://doi.org/10.1080/09658211.2019.1711128
https://psycnet.apa.org/doi/10.1080/09658211.2012.699070
https://doi.org/10.3758/s13421-011-0165-1
https://doi.org/10.3758/s13421-011-0165-1
https://psycnet.apa.org/doi/10.1037/a0020604
https://psycnet.apa.org/doi/10.1080/09658211.2013.800554


PRODUCTION AND SINGING 

149 
 

Paivio, A., Walsh, M., & Bons, T. (1994). Concreteness effects on memory: When and 

why? Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 

1196–1204. https://doi.org/10.1037/0278-7393.20.5.1196 

Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness 

values for 925 nouns. Journal of Experimental Psychology, 76, 1–

25. https://doi.org/10.1037/h0025327 

Peirce, J. W., Gray, J. R., Simpson, S., MacAskill, M. R., Höchenberger, R., Sogo, H., Kastman, 

E., & Lindeløv, J. (2019). PsychoPy2: Experiments in behavior made easy. Behavior 

Research Methods. https://doi.org/10.3758/s13428-018-01193-y 

Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative 

review. Biological Psychology, 41(2), 103–146. https://doi.org/10.1016/0301-

0511(95)05130-9 

Pressing, J. (1988). Improvisation: Methods and models. In J. A. Sloboda (Ed.), Generative 

processes in music: The psychology of performance, improvisation, and composition (pp. 

129–178). Clarendon Press/Oxford University Press. 

Prickett, C. A., & Moore, R. S. (1991). The use of music to aid memory of Alzheimer's 

patients. Journal of Music Therapy, 28(2), 101–110. https://doi.org/10.1093/jmt/28.2.101 

Pritchard, V. E., Heron‐Delaney, M., Malone, S. A., & MacLeod, C. M. (2020). The production 

effect improves memory in 7‐ to 10‐year‐old children. Child Development, 91(3), 901–

913. https://doi.org/10.1111/cdev.13247 

Quinlan, C. K., & Taylor, T. L. (2013). Enhancing the production effect in memory. Memory 

(Hove), 21(8), 904–915. https://doi.org/10.1080/09658211.2013.766754 

https://psycnet.apa.org/doi/10.1037/0278-7393.20.5.1196
https://psycnet.apa.org/doi/10.1037/h0025327
https://doi.org/10.3758/s13428-018-01193-y
https://psycnet.apa.org/doi/10.1016/0301-0511(95)05130-9
https://psycnet.apa.org/doi/10.1016/0301-0511(95)05130-9
https://psycnet.apa.org/doi/10.1093/jmt/28.2.101
https://psycnet.apa.org/doi/10.1111/cdev.13247
https://doi.org/10.1080/09658211.2013.766754


PRODUCTION AND SINGING 

150 
 

Quinlan, C. K., & Taylor, T. L. (2019). Mechanisms Underlying the Production Effect for 

Singing. Canadian Journal of Experimental Psychology, 73(4), 254–264. 

https://doi.org/10.1037/cep0000179 

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ 

Rainey, D. W., & Larsen, J. D. (2002). The effects of familiar melodies on initial learning and 

long-term memory for unconnected text. Music Perception, 20(2), 173–

186. https://doi.org/10.1525/mp.2002.20.2.173 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–

108. https://doi.org/10.1037/0033-295X.85.2.59 

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A Diffusion Model Account of the Lexical 

Decision Task. Psychological Review, 111(1), 159–182. https://doi.org/10.1037/0033-

295X.111.1.159 

Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice 

decisions. Psychological Science, 9(5), 347-356. https://doi.org/10.1111/1467-

9280.00067 

Ratcliff, R., Voskuilen, C., & Teodorescu, A. (2018). Modeling 2-alternative forced-choice tasks: 

Accounting for both magnitude and difference effects. Cognitive Psychology, 103, 1–

22. https://doi.org/10.1016/j.cogpsych.2018.02.002 

Richards, J. (1969). Songs in language learning. Tesol Quarterly, 3(2), 161-174. 

https://doi.org/10.2307/3586103 

https://doi.org/10.1037/cep0000179
https://www.r-project.org/
https://psycnet.apa.org/doi/10.1525/mp.2002.20.2.173
https://psycnet.apa.org/doi/10.1037/0033-295X.85.2.59
https://psycnet.apa.org/doi/10.1037/0033-295X.111.1.159
https://psycnet.apa.org/doi/10.1037/0033-295X.111.1.159
https://doi.org/10.1111/1467-9280.00067
https://doi.org/10.1111/1467-9280.00067
https://psycnet.apa.org/doi/10.1016/j.cogpsych.2018.02.002
https://doi.org/10.2307/3586103


PRODUCTION AND SINGING 

151 
 

Richler, J. J., Palmeri, T. J., & Gauthier, I. (2013). How does using object names influence visual 

recognition memory? Journal of Memory and Language, 68(1), 10–

25. https://doi.org/10.1016/j.jml.2012.09.001 

Riefer, D. M., Chien, Y., & Reimer, J. F. (2007). Positive and negative generation effects in 

source monitoring. The Quarterly Journal of Experimental Psychology, 60(10), 1389–

1405. https://doi.org/10.1080/17470210601025646 

Robinson, J. A., & Taylor, L. R. (2014). Autobiographical memory and self-narratives: A tale of 

two stories. In Autobiographical memory (pp. 125-143). Psychology Press. 

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an 

application in the theory of signal detection. Psychonomic Bulletin & Review, 12(4), 573–

604. https://doi.org/10.3758/BF03196750 

Rouder, J. N., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-Benjamin, M. (2007). Signal 

detection models with random participant and item effects. Psychometrika, 72(4), 621-

642. https://doi.org/10.1007/s11336-005-1350-6 

Routh, D. A. (1970). ‘Trace strength,’ modality, and the serial position curve in immediate 

memory. Psychonomic Science, 18(6), 355-357. https://doi.org/10.3758/BF03332397 

Saint-Aubin, J., Yearsley, J. M., Poirier, M., Cyr, V., & Guitard, D. (2021). A model of the 

production effect over the short-term: The cost of relative distinctiveness. Journal of 

Memory and Language, 118, 104219. https://doi.org/10.1016/j.jml.2021.104219 

Salcedo, C. S. (2010). The effects of songs in the foreign language classroom on text recall, 

delayed text recall and involuntary mental rehearsal. Journal of College Teaching & 

Learning, 7(6). 

https://psycnet.apa.org/doi/10.1016/j.jml.2012.09.001
https://psycnet.apa.org/doi/10.1080/17470210601025646
https://doi.org/10.3758/BF03196750
https://doi.org/10.1007/s11336-005-1350-6
https://doi.org/10.3758/BF03332397
https://doi.org/10.1016/j.jml.2021.104219


PRODUCTION AND SINGING 

152 
 

Schacter, D. L., Israel, L., & Racine, C. (1999). Suppressing false recognition in younger and 

older adults: The distinctiveness heuristic. Journal of Memory and Language, 40(1), 1–

24. https://doi.org/10.1006/jmla.1998.2611 

Shafritz, K. M., Marchione, K. E., Gore, J. C., Shaywitz, S. E., & Shaywitz, B. A. (2004). The 

effects of methylphenidate on neural systems of attention in attention deficit hyperactivity 

disorder. The American Journal of Psychiatry, 161(11), 1990–

1997. https://doi.org/10.1176/appi.ajp.161.11.1990 

Singmann, H. (2017, November 26). Diffusion/Wiener model analysis with brms – Part I: 

Introduction and estimation. http://singmann.org/wiener-model-analysis-with-brms-part-i/ 

Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal 

of Experimental Psychology: Human Learning and Memory, 4(6), 592–

604. https://doi.org/10.1037/0278-7393.4.6.592 

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior 

Research Methods, Instruments, & Computers, 31(1), 137–149. 

https://doi.org/10.3758/BF03207704 

Taikh, A., & Bodner, G. E. (2016). Evaluating the basis of the between-group production effect 

in recognition. Canadian Journal of Experimental Psychology, 70(2), 186–

194. https://doi.org/10.1037/cep0000083 

Taitelbaum-Swead, R., Icht, M., & Mama, Y. (2017). The effect of learning modality and 

auditory feedback on word memory: Cochlear-implanted versus normal-hearing 

adults. Journal of the American Academy of Audiology, 28(03), 222-231. https://doi.org/ 

10.3766/jaaa.16032 

https://psycnet.apa.org/doi/10.1006/jmla.1998.2611
https://psycnet.apa.org/doi/10.1176/appi.ajp.161.11.1990
http://singmann.org/wiener-model-analysis-with-brms-part-i/
https://psycnet.apa.org/doi/10.1037/0278-7393.4.6.592
https://doi.org/10.3758/BF03207704
https://psycnet.apa.org/doi/10.1037/cep0000083
https://doi.org/%2010.3766/jaaa.16032
https://doi.org/%2010.3766/jaaa.16032


PRODUCTION AND SINGING 

153 
 

Taitelbaum-Swead, R., Mama, Y., & Icht, M. (2018). The effect of presentation mode and 

production type on word memory for hearing impaired signers. Journal of the American 

Academy of Audiology, 29(10), 875–884. https://doi.org/10.3766/jaaa.17030 

Varao Sousa, T. L., Carriere, J. S., & Smilek, D. (2013). The way we encounter reading material 

influences how frequently we mind wander. Frontiers in Psychology, 4, 892. 

https://doi.org/10.3389/fpsyg.2013.00892 

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Bürkner, P., Paananen, T., & Gelman, A. (2024). 

loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package 

version 2.7.0. https://mc-stan.org/loo/ 

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-

one-out cross-validation and WAIC. Statistics and Computing, 27, 1413-1432. 

https://doi.org/10.1007/s11222-016-9696-4 

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of 

Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03 

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A 

practical introduction. Experimental Psychology, 60(6), 385–

402. https://doi.org/10.1027/1618-3169/a000218 

Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model 

analyses: A tutorial based on fast-dm-30. Frontiers in Psychology, 6, 124917. 

https://doi.org/10.3389/fpsyg.2015.00336 

Vuorre, M. (2017, October 9). Bayesian estimation of signal detection models. 

https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-

theory-models/ 

https://psycnet.apa.org/doi/10.3766/jaaa.17030
https://doi.org/10.3389/fpsyg.2013.00892
https://mc-stan.org/loo/
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.18637/jss.v036.i03
https://psycnet.apa.org/doi/10.1027/1618-3169/a000218
https://doi.org/10.3389/fpsyg.2015.00336
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/
https://mvuorre.github.io/posts/2017-10-09-bayesian-estimation-of-signal-detection-theory-models/


PRODUCTION AND SINGING 

154 
 

Wagenmakers, E. J. (2009). Methodological and empirical developments for the Ratcliff 

diffusion model of response times and accuracy. European Journal of Cognitive 

Psychology, 21(5), 641–671. https://doi.org/10.1080/09541440802205067 

Wakeham-Lewis, R. M., Ozubko, J., & Fawcett, J. M. (2022). Characterizing production: the 

production effect is eliminated for unusual voices unless they are frequent at 

study. Memory, 30(10), 1319–1333. https://doi.org/10.1080/09658211.2022.2115075 

Wallace, W. T. (1994). Memory for music: Effect of melody on recall of text. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1471–

1485. https://doi.org/10.1037/0278-7393.20.6.1471 

Wammes, J. D., Meade, M. E., & Fernandes, M. A. (2016). The drawing effect: Evidence for 

reliable and robust memory benefits in free recall. Quarterly Journal of Experimental 

Psychology, 69(9), 1752–1776. https://doi.org/10.1080/17470218.2015.1094494 

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the 

drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 55610. 

https://doi.org/10.3389/fninf.2013.00014 

Wilson Van Voorhis, C. R., & Morgan, B. L. (2007). Understanding power and rules of thumb for 

determining sample sizes. Tutorials in Quantitative Methods for Psychology, 3(2), 43–50. 

https://doi.org/10.20982/tqmp.03.2.p043 

Whitehead, J. C., & Armony, J. L. (2018). Singing in the brain: Neural representation of music 

and voice as revealed by fMRI. Human Brain Mapping, 39(12), 4913–

4924. https://doi.org/10.1002/hbm.24333 

https://psycnet.apa.org/doi/10.1080/09541440802205067
https://doi.org/10.1080/09658211.2022.2115075
https://psycnet.apa.org/doi/10.1037/0278-7393.20.6.1471
https://doi.org/10.1080/17470218.2015.1094494
https://doi.org/10.3389/fninf.2013.00014
https://doi.org/10.20982/tqmp.03.2.p043
https://psycnet.apa.org/doi/10.1002/hbm.24333


PRODUCTION AND SINGING 

155 
 

Whitridge, J. W. (2022) Does the song remain the same? Singing does not necessarily improve 

memory more than reading aloud [Undergraduate honours thesis]. Memorial University 

of Newfoundland and Labrador. 

Whitridge, J. W., Clark, C. A., Hourihan, K. L., & Fawcett, J. M. (2024). Generation (not 

production) improves the fidelity of visual representations in picture naming. [Manuscript 

submitted for publication].  

Willoughby, H. V., Tiller, J., Hourihan, K. L., & Fawcett, J. M. (2019). The pupillometric 

production effect: Measuring attentional engagement during a production task [Paper 

presentation]. CSBBCS 2019 Meeting, Waterloo, Canada. 

Wilson, M., & Emmorey, K. (1997). Working memory for sign language: A window into the 

architecture of the working memory system. Journal of Deaf Studies and Deaf Education, 

2(3), 121–130. https://doi.org/10.1093/oxfordjournals.deafed.a014318 

Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood 

estimation of semiparametric generalized linear models. Journal of the Royal Statistical 

Society, 73, 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x 

Wood, S. N. (2017). Generalized additive models: An introduction with R. Chapman and 

Hall/CRC. https://doi.org/10.1201/9781315370279 

Woods, S. P., Lovejoy, D. W., & Ball, J. D. (2002). Neuropsychological characteristics of adults 

with ADHD: A comprehensive review of initial studies. The Clinical Neuropsychologist, 

16(1), 12–34. https://doi.org/10.1076/clin.16.1.12.8336 

Wright, D. B., Horry, R., & Skagerberg, E. M. (2009). Functions for traditional and multilevel 

approaches to signal detection theory. Behavior Research Methods, 41, 257–267. 

https://doi.org/10.3758/BRM.41.2.257 

https://psycnet.apa.org/doi/10.1093/oxfordjournals.deafed.a014318
https://doi.org/10.1111/j.1467-9868.2010.00749
https://doi.org/10.1201/9781315370279
https://psycnet.apa.org/doi/10.1076/clin.16.1.12.8336
https://doi.org/10.3758/BRM.41.2.257


PRODUCTION AND SINGING 

156 
 

Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of 

research. Journal of Memory and Language, 46(3), 441–517. 

https://doi.org/10.1006/jmla.2002.2864 

Yonelinas, A. P., & Jacoby, L. L. (1995). The relation between remembering and knowing as 

bases for recognition: Effects of size congruency. Journal of Memory and 

Language, 34(5), 622–643. https://doi.org/10.1006/jmla.1995.1028 

Xu, Y. (2005). Speech melody as articulatorily implemented communicative functions. Speech 

Communication, 46(3), 220–251. https://doi.org/10.1016/j.specom.2005.02.014 

Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different 

tune. PLoS Biol, 10(7), e1001372. https://doi.org/10.1371/journal.pbio.1001372 

Zhang, B. (2024). Comparing memory levels between reading aloud and singing. Unpublished 

manuscript. 

Zhang, B., Meng, Z., Li, Q., Chen, A., & Bodner, G. E. (2023). EEG-based univariate and 

multivariate analyses reveal that multiple processes contribute to the production effect in 

recognition. Cortex, 165, 57–69. https://doi.org/10.1016/j.cortex.2023.04.006 

Zhou, Y., & MacLeod, C. M. (2021). Production between and within: Distinctiveness and the 

relative magnitude of the production effect. Memory, 29(2), 168–

179. https://doi.org/10.1080/09658211.2020.1868526 

Zormpa, E., Brehm, L. E., Hoedemaker, R. S., & Meyer, A. S. (2019). The production effect and 

the generation effect improve memory in picture naming. Memory, 27(3), 340–352. 

https://doi.org/10.1080/09658211.2018.1510966 

https://doi.org/10.1006/jmla.2002.2864
https://doi.org/10.1006/jmla.1995.1028
https://doi.org/10.1016/j.specom.2005.02.014
https://doi.org/10.1371/journal.pbio.1001372
https://psycnet.apa.org/doi/10.1016/j.cortex.2023.04.006
https://psycnet.apa.org/doi/10.1080/09658211.2020.1868526
https://doi.org/10.1080/09658211.2018.1510966

