
The Curious Case of V CVn

by

c©Michael T. Power

A project submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Master of Science.

Department of Physics and Physical Oceanography

Memorial University

August 2024

St. John’s, Newfoundland and Labrador, Canada

Abstract

From many decades of observations, the star V Canum Venaticorum (V CVn) has

strange behaviour regarding the maxima and minima of its light curve and linear

polarisation, which have an approximately inverse relationship (sometimes with a

lead/lag time between them) and an almost constant polarisation position angle.

One theory proposed to explain this strange behaviour is the existence of a bow shock

driven by a spherically symmetric dusty wind from the star. In this theory, the wind is

assumed to vary with time due to radial pulsations. This work uses a new framework

developed in Zeus3D, a multi-physics magnetohydrodynamics code, to test this theory.

The results of this work show that when a time-varying stellar wind is at its maximum

brightness the polarisation signal is at a minimum due to a dense, symmetric shell

which forms around the star. Conversely, when the brightness is at a minimum, the

symmetric shell around the star is much less dense, and the polarisation is instead

dominated by the asymmetric bow shock structure, causing the polarisation signal to

attain a maximum value. Numerically reproducing the observed inverse relationship

between the polarisation and light curve provides a strong theoretical argument that

a variable stellar wind bow shock is the solution to the curious case of V CVn.

ii

In Loving memory of my grandmother.

It is with a heavy heart that I dedicate this work to my dearest late grandmother,

Mary Neville, whom I lost during my first semester here at Memorial University. She

was the matriarch of our small family, the glue that held it together. Starting long

before I was born, she cooked dinner for everyone in our family every Sunday and

often for unrelated community members and was always there when you needed her.

She was one of the most brilliant people I’ve ever had the pleasure of knowing; she

excelled at everything, whether it was acing her provincial exams in grade 12, de-

stroying everyone in tarabish or cribbage, English, mathematics, taxes, poetry, she

knew it all, even learning how to play the piano in her eighties. Above all else, she

was kind, wise, and completely selfless; she sacrificed her education by getting a job

and helping all her siblings financially through teaching and nursing college. On top

of all that, very few grandchildren can say that they thoroughly enjoyed drinking and

partying with their grandmother, but I can say that without a second thought.

Due to her love of poetry, I dedicate a poem to her by my great-great-grandfather.

He was a farmer with no formal education but another person in a long line who, like

my grandmother, worked hard to get me to where I am today and who clearly was

quite intelligent.

iii

True Friendship & False
George Mahan

circa 1870

I often hear a plaintive sound, with the singing birds of Spring,

As in the shades and woodland glades, their music sweet they sing.

In the morning early, and in the evening late,

They’d discourse true love and friendship, with music to their mate.

If each mortal here would learn sincere, a lesson from each bird,

The world would be a happy place, we’d hear no angry word;

The human race would be united, and get peace from Heaven above,

And true friendship with each other would soon ripen into love.

There are two kinds of friendship, and there are two kinds of love;

The false is of this world, but true love’s from Heaven above.

The true love is in Heaven, therein a secret lies,

It can’t end or change like eternity, for such love never dies.

There is a false deceitful love, it can only last a time,

It depends upon our nature, when love is changed to crime;

Such creatures are unworthy, they never can improve,

For their hearts with pride are scornful, such hearts are not for love.

They can’t enjoy its raptures, because the heart is lost;

They are like a vessel in distress, by the foaming billows tossed;

No doubt they may get married, and life’s gloomy footpath brave,

And enjoy a life of misery, until they meet the grave.

The same love by which He fathoms space,

As He in silence views the false and true, and divides the human race.

But those who possess true friendship, and His righteous laws do keep,

Shall enjoy a bright home of celestial bliss when in death we fall asleep.

All men are created out of dust, what use for selfish pride?

And our day of death uncertain while through life’s lonely vale we glide;

The rich are not for Heaven, for their comforts here they have,

And they’ll rot and crumble into dust, as the poor man in his grave.

So let patience and forbearance lead all true men through life,

Banish selfish interference, which only ends in strife.

God made us all for happiness, and never to rebel,

So strangers to true friendship shall find a home in Hell.

iv

Lay summary

Stars constantly blow off gas from their outer layers, releasing it as they move. Just

as when you clap your hands or crack a whip, the gas coming from the star hits the

gas and dust that the star is moving through in space, making a shock wave. This

research comes down to modelling the complicated physics of these shock waves in a

computer. These shock waves that the stars make change the light they produce by

obscuring and altering its qualities; you can think of this like a car’s headlights on a

foggy night. So, when the light from these distant stars is observed here on Earth, it

doesn’t look how we expect it to. However, with this research, there’s hope to change

that by understanding how these shock waves alter the light from these stars.

The results of this work give strong evidence that the cause of the unexpected light

being observed here on Earth depends on these shocks and the way that the stars

blow off their gas. This is studied numerically with a code called Zeus3D.

v

Acknowledgements

The author would like to thank many people and entities who made this research

possible. Most notably, Dr. Hilding Neilson for partially funding this research and

for his vast knowledge of astrophysical phenomena. Next, Dr. David Clarke for his

illuminating discussions on computational MHD, as well as Tahere Parto and Galina

Sherren for their incredibly useful editorial comments. Also, the author would like to

thank the National Sciences and Engineering Research Council of Canada for funding

provided by a Canada Graduate Scholarship-Master’s (CGS M) and Memorial Uni-

versity of Newfoundland for providing funding via a Dean’s Scholarship, as well as the

Centre for Analytics, Informatics and Research at Memorial University for providing

high-performance computing facilities.

This work has made use of data from the European Space Agency (ESA) mission

Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing

and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/

consortium). Funding for the DPAC has been provided by national institutions, in

particular, the institutions participating in the Gaia Multilateral Agreement.

vi

Statement of contribution

The design and identification of this research topic were ongoing collaborative efforts

between the author and Dr. Hilding Neilson, who was in a supervisory role.

All practical aspects of this research were independently undertaken by the author,

with Dr. Hilding Neilson contributing in a supervisory role.

The data analysis and codes made for this thesis were the sole effort of the author.

The manuscript was prepared solely by the author.

vii

Table of contents

Title page i

Abstract ii

Lay summary v

Acknowledgements vi

Statement of contribution vii

Table of contents viii

List of tables x

List of symbols xi

List of symbols xii

List of symbols xiii

List of abbreviations xiv

1 Background and Introduction 1

2 Methodology 9

viii

2.1 Some Zeus3D Background . 9

2.2 The Boundary Problem . 14

2.2.1 Boundary Conditions Within the Computational Domain 15

2.2.2 Resolving Boundary Zone Geometry Conflicts 22

2.3 Mathematics for the Initialization of Primitive Variables 30

2.3.1 Conditions for a Static Wind Velocity 31

2.3.2 Conditions for a Variable Wind Velocity 33

2.3.3 A Numerical Curiosity . 40

2.4 A Geometric View of Polarisation . 43

2.4.1 Implementation of Polarisation in Zeus3D 49

3 Results and Discussion 52

3.1 Discussion . 52

3.2 Static Wind Velocity Results . 61

3.3 Variable Wind Velocity Results . 74

3.4 Cross-Correlation Functions for Polarisation and Mass-Loss Rate Data 87

4 Conclusions and Future Work 91

References 95

A A Cross-Correlation Calculator 102

ix

List of tables

3.1 Constant Wind Velocity Simulation Parameters 61

3.2 Variable Wind Velocity Simulation Parameters 74

x

List of symbols

1 The identity tensor.
~B The magnetic field vector.

Ĉ(τl) The normalised cross-correlation function.
~E The electric field vector.
e0 The ISM internal energy.
e The internal energy of a fluid.
eT The total energy of a fluid.

ew(t) The time-varying internal energy of a stellar wind.
f A generic integrand.
G Newton’s gravitational constant.
i Inclination angle.
I0 The unpolarised light intensity of a star.
I1 The first intensity Stokes parameter.
I2 The second intensity Stokes parameter.
I3 The third intensity Stokes parameter.
I The sum of the first intensity Stokes parameter and the unpolarised light intensity.
kB The Boltzmann constant.
~L The Lorentz force.
L The radiative cooling function.

MA The Mach number.
˙̄M The average mass-loss rate of a stellar wind.

Ṁw The mass-loss rate of a stellar wind.

Ṁ(t) The time-varying mass-loss rate of a stellar wind.

ṀMax The maximum mass-loss rate of a stellar wind.

ṀMin The minimum mass-loss rate of a stellar wind.
m̄ The average mass of particles in a gas.
n0 The ISM particle number density.
N The number of random points used in a Monte Carlo method.
P0 The ISM thermal pressure.
P The thermal pressure of a gas.

xi

List of symbols

PB The magnetic pressure of a gas.
PR The residual polarisation from scattering in a density field.
Pw The thermal pressure of a stellar wind.
Q The normalised first Stokes parameter.

RSO The standoff distance to a stellar wind bow shock from a star.
R̄SO The average standoff distance to a stellar wind bow shock from a star.
Rw The radius of a stellar wind bubble.

Rsim The radial extent of a simulation.
Ry The rotation matrix about the y-axis.
r The radial coordinate in a spherical polar system.
r̂ The radial coordinate unit vector in a spherical polar system.
~rP The position vector corresponding to a scattering point within a density field.
~s The momentum vector of a gas.
S The shear tensor.
t The time coordinate.

tsim The total time for a simulation.
T0 The ISM temperature.
Tw The stellar wind temperature.
U The normalised second Stokes parameter.
~v The velocity field of a gas.

~vISM The velocity field of the ISM.
V A volume.

Vzone The volume of a computational zone.
vw The speed of a stellar wind.
~v∗ The velocity vector of a star.
v̄w The average speed of a stellar wind.

vw,Max The maximum speed of a stellar wind.
vw,Min The minimum speed of a stellar wind.

x̂ The x-direction unit vector in a Cartesian space.
~xi The coordinate of a point in a Cartesian space.

xii

List of symbols

x1a(i) The a-grid 1-direction coordinate in Zeus3D.
x2a(j) The a-grid 2-direction coordinate in Zeus3D.
x3a(k) The a-grid 3-direction coordinate in Zeus3D.

ŷ The y-direction unit vector in a Cartesian space.
ẑ The z-direction unit vector in a Cartesian space.

βAD The ambipolar diffusion coefficient.
γ The ratio of specific heats.
γP The geometric polarisation factor.
δt A time step.
δθ The difference in angle between zone faces in Zeus3D.
δij The Kronecker delta.
ζ The ratio of the standoff distance to the wind bubble radius.
η The ratio of a stellar wind’s maximum to minimum mass-loss rate.
θ The polar angle.

θ̂ The unit vector for the polar angle.
λ The ratio of a stellar wind’s maximum to minimum speed.
µ The viscosity.
π The ratio of circumference to diameter.
ρ0 The mass density of the ISM.

ρw(t) The time-varying mass density of a stellar wind.
σ0 A convenient constant related to the Thomson scattering cross-section.
σT The Thomson scattering cross-section.
τ The period of V CVn.
τ̄ The average optical depth.
φ The azimuthal angle.

φ̂ The unit vector for the azimuthal angle.
χ The scattering angle.
ψ The polarisation position angle.
ω The angular frequency.

xiii

List of abbreviations

CFL Courant–Friedrichs–Lewy.
EM Electromagnetic.
ISM Interstellar medium.

K-HI Kelvin-Helmholtz instability.
MHD Magnetohydrodynamics.

MUTCI Monotonic, up-winded, time-centered interpolation.
PPI Piecewise parabolic interpolation.

R-TI Rayleigh-Taylor instability.
V CVn V Canum Venaticorum.

xiv

Chapter 1

Background and Introduction

Exploration is in our nature. We began as wanderers, and we

are wanderers still. We have lingered long enough on the shores

of the cosmic ocean. We are ready at last to set sail for the

stars.

Carl E. Sagan

In physics, especially astrophysics, one must often study phenomena that exhibit

unexpected behaviour or defy conventional wisdom to gain a deeper understanding

of the universe. This thesis addresses a star that exhibits unexpected relationships

between its observed parameters. The star in question is known as V Canum Venati-

corum (V CVn). Semi-regular variable stars have the property that their brightness

changes with time and pulsates periodically. However, the variation in brightness

may change from cycle to cycle. Studying these stars further can provide insight

into the behaviour of large, cool stars that our sun will eventually become. Another

very important possibility with semi-regular variables is their potential use as stan-

dard candles. Standard candles calibrate distances in the universe, which allows us to

2

measure important quantities such as the expansion rate of the universe. The more

standard candles that exist, the better the constraints and measurements of important

cosmological quantities become. Therefore, understanding semi-regular variable stars

may be a vital component in our understanding of the universe (Luna et al., 2021).

Runaway stars are another interesting, yet strange category of objects that occur

in the universe. A runaway star has a large velocity with respect to its local inter-

stellar medium (ISM). These stars can attain such velocities in a number of ways

proposed by theories, such as gravitational interaction and ejection from star clusters

(Gies and Bolton, 1986), ejection from binary systems when the companion explodes

as a supernova (Hoogerwerf et al., 2001), or a gravitational slingshot effect from an

interaction with a supermassive black hole (Brown et al., 2006). Like a boat travel-

ling at high speed through water, runaway stars moving through their local ISM at

extreme speeds set up a bow-shaped arc as they pass through the material.

V Canum Venaticorum (V CVn) is a semi-regular variable star located in the con-

stellation Canes Venatici around 501 pc from Earth. In galactic coordinates that

define longitude and latitude with the Sun as the origin, the star is located at about

(107.89o,+70.77o). V CVn is of spectral type M4-M6e, meaning it is a red star (Car-

roll and Ostlie, 2007) and, therefore, can herald information about the future of our

very own star, the sun (Wenger et al., 2000; Gaia Collaboration et al., 2016; Babusi-

aux et al., 2023; Gaia Collaboration et al., 2023).

When one normally thinks of light, the light from the Sun often comes to mind.

When it is radiated away from the sun, all light is electromagnetic (EM) waves, which

vibrate in all directions perpendicular to the direction of travel. This is known as

3

unpolarised light. However, if the EM waves which comprise the light interact with

particles and scatter, such as those in our atmosphere or gas and dust in space, one

would find that the directions in which the light vibrates change. After scattering

interactions, the light may only vibrate in certain directions instead of all directions

perpendicular to the direction of motion. This light is said to be polarised (Young

and Freedman, 2019; Bohren and Huffman, 1983). As it turns out, polarisation can

be an incredibly powerful tool in the astrophysicists’ kit, as it can probe and give

information about the mechanics of circumstellar environments and other phenomena

(Clarke, 2010a).

The curious behaviour of V CVn is detailed in Neilson et al. (2014) and Neilson

et al. (2023). They take multiple decades of observations (Wolff et al., 1996; Mag-

alhães et al., 1986; Poliakova, 1981) for V CVn and show that the brightness and

polarisation have a roughly inverse relationship, with a slight lead or lag time. This

is to say when V CVn reaches its maximum brightness, the polarisation nears its

minimum, and when the brightness reaches a minimum, the polarisation nears its

maximum value. One could imagine that, more often than not, a higher bright-

ness leads to more photons and, therefore, more scattering events. Thus, maximum

brightness should be correlated with maximum polarisation, and conversely minimum

brightness with minimum polarisation. V CVn does not behave as expected with

regard to these measurements. Moreover, Neilson et al. (2014) and Neilson et al.

(2023) noticed that the polarisation position angle is roughly constant (see section 2.4

for the mathematical details of polarisation), which causes them to claim that this

must imply the existence of an asymmetric structure which is mostly stable in time.

They argue that since V CVn is a runaway star (Gaia Collaboration et al., 2016,0;

Babusiaux et al., 2023) the presence of a stellar wind bow shock is likely, which is

4

an asymmetric mostly stable structure that can cause a large polarisation signal to

manifest (Shrestha et al., 2018,0). Some other proposals attempt to explain the cu-

rious behaviour of V CVn, such as Safonov et al. (2019), who claim that there are

‘blobs’ around the star and that the brightness changes in V CVn may be non-radial.

This would mean that when the star is at maximum brightness on the far side, the

Earth observes minimum brightness, but the blob behind the star, which will see

maximum brightness, will scatter a maximal amount of polarised light toward the

Earth. This would imply maximum polarisation at minimum brightness. The reverse

situation would occur when the star’s far side is at minimum brightness, but the close

side is at maximum brightness. The Earth would observe maximum brightness, but

a minimum amount of polarised light would be scattered from the blob on the far side.

Although the blob theory is appealing, Neilson et al. (2023) argue that no star of

V CVn’s brightness variability pulsates non-radially. There are a handful of other

theories involving magnetic fields, rapid rotation, etc., but Neilson et al. (2023) argue

that these scenarios are also unlikely due to the nature of V CVn. Thus, this thesis

aims to numerically test the hypothesis that a spherically symmetric wind, which

varies with time, is the cause of the inverse relationship between the polarisation and

brightness of V CVn.

This work aims to address two problems. The first problem is the computation of

the full range of hydrodynamics in an interaction between the stellar wind from V

CVn and the ISM it is moving through. Secondly, the calculation of the polarisation

signal directed toward Earth. In a simplistic sense, one may imagine this problem

as a sphere which gives off a spherically symmetric gas which may vary in density,

5

temperature, and velocity (the star)1, placed at a fixed location in a gas of very low

density and temperature (the ISM), moving with a constant velocity.2 The structure

which forms in this scenario is known as a bow shock, and it is an illustrative exercise

to follow the theoretical work of Baranov et al. (1971) and Wilkin (1996) to describe

the analytic nature of a simplified case of this.

Following Baranov et al. (1971), if one assumes that in the star’s direction of mo-

tion, then there exists a point where the ram pressure equalizes, which is a distance

RSO away from the star in the coordinates of its rest frame. The ram pressure is the

momentum flux portion of Cauchy’s stress tensor. Therefore, it is physically nothing

more than a measure of the momentum flux in the i-direction through a surface de-

fined by a normal vector in the j-direction. However, for the purposes being discussed,

since the stellar wind meets the ISM head-on, the surface normal for this interaction

is in the same direction as the momentum flux. Thus, the form that the ram pressure

takes for the stellar wind is Pw = ρwv
2
w and P0 = ρ0v

2
? for the ISM. Here, ρw is the

density of the stellar wind, vw is the speed of the stellar wind, ρ0 is the density of the

ISM, and v∗ is the speed of the ISM in the rest frame of the star. Equating the ram

pressure of the stellar wind and ISM yields

ρwv
2
w = ρ0v

2
?. (1.1)

1It is not a requirement that the gas ejected from the star is spherically symmetric. Rotation,
magnetic fields, non-radial pulsation, and other physical phenomena would cause an asymmetry in
the wind. The routines developed for this thesis can handle these cases, but it is just the most likely
case that the winds from V CVn are essentially spherically symmetric. See Neilson et al. (2023) for
the argument.

2The one-dimensional analogue of this problem for a constant wind is just a 1D shock tube
problem, the Riemann problem known as the Sod Shock (Sod, 1978). Therefore, one familiar with
fluid mechanics may think of the constant stellar wind case as a 2D Sod Shock in polar coordinates.
It is non-trivial, but thinking about it this way can give an a priori idea of the type of structures
one would expect in the final results!

6

Consider a sphere of radius RSO (known as the standoff distance to the bow shock);

the total mass loss of the stellar wind through a surface with a spherically symmetric

density and velocity profile is

Ṁw = 4πR2
SOρwvw. (1.2)

Solving equation (1.2) for the density of the wind, ρw, substituting this expression

into equation (1.1) and then rearranging, gives an analytic expression for the standoff

distance to the bow shock,

RSO =

√
Ṁwvw
4πρ0v2

∗
. (1.3)

Moving forward, one may follow Wilkin (1996), which is a detailed calculation of

momentum balance that assumes the bow shock is extremely thin compared with the

distance to the star (equivalent to assuming infinitely efficient cooling). This results

in an analytic expression for the shape of the bow shock in polar coordinates, namely,

r(θ) = RSO csc(θ)
√

3[1− θ cot(θ)]. (1.4)

Figure 1.1 gives an intuition for the shape of a stellar wind bow shock according to

equation (1.4).

Chapter 2 outlines the methodology used for the research. §2.1 gives background

on the code Zeus3D. §2.2 details issues involving the boundary conditions and their

solutions. §2.3 outlines the mathematical models of the simulations. §2.4 overviews

the mathematics and implementation of linear polarisation in Zeus3D. Chapter 3

concerns the results of the work. §3.1 is the discussion, §3.2 gives all results of the

7

static wind velocity model of V CVn, §3.3 gives all results of the variable wind ve-

locity model of V CVn, and §3.4 provides normalised cross-correlation functions for

each model of V CVn, which elucidate the relationship between the polarisation and

brightness (mass-loss rate) of V CVn over the entire dataset as opposed to small time-

slices. Chapter 4 is a reiteration of the conclusions and a discussion of future work.

Finally, Appendix A is the modular code and execution script for the computation of

the normalised cross-correlation functions in §3.4.3

3This is the only code displayed within this thesis, as it will not be uploaded to https://mike

-power666.github.io/.

8

Figure 1.1: A zoomed-in (top) and zoomed-out (bottom) plot of the analytic bow
shock defined by equation (1.4) with the standoff distance RSO normalised to unity.
One may notice that a circle of radius RSO is always smaller than the analytic bow
shock model, except at the apex of the bow shock. This is a visual aid to show that
the approximation of a spherical wind until the point where the ram pressure of the
wind and ISM equalize is acceptable.

Chapter 2

Methodology

You don’t understand something until you compute it.

Michael L. Norman

2.1 Some Zeus3D Background

To tackle the complexities involved in modelling the physics of the solar wind from

V CVn interacting with the local ISM as the star moves, numerical methods must be

employed to solve the equations that govern the situation. Accordingly, this work uses

Zeus3D, one of the most robust and well-tested codes in computational astrophysics.

Zeus3D is a computational (magneto)hydrodynamics code that accounts for many

physical phenomena, including viscosity, gravity, molecular cooling, and ambipolar

diffusion; these are just its single fluid capabilities (Clarke, 2016). The equations

10

which Zeus3D solves are as follows, conservation of mass:

∂ρ

∂t
+∇ · (ρ~v) = 0; (2.1)

conservation of momentum:

∂~s

∂t
+∇ ·

[
~s~v + (p+ pB)1− ~B ~B − µS

]
= −ρ∇φ; (2.2)

conservation of flux, the induction equation:

∂ ~B

∂t
+∇× (~E − βAD

~L× ~B) = 0; (2.3)

and the choice of either conservation of internal energy, which keeps pressures numer-

ically positive-definite but total energy may not be conserved to machine round off

error (Clarke, 2010b):

∂e

∂t
+∇ · (e~v) = −p∇ · ~v + µS :∇~v − L+ 2βADL

2; (2.4)

or the conservation of total energy, which conserves total energy to machine round off

error but may cause negative pressures to manifest (Clarke, 2010b):

∂eT
∂t

+∇ ·
[
(eT + p− pB)~v − µS · ~v + ~E × ~B + βADB

2~L

]
= −L+ βADL

2. (2.5)

Here, ρ represents the mass density of the fluid, t is the time, ~v is the velocity field,

~s = ρ~v is the momentum field, p is the thermal pressure, pB = 1
2
B2 is the magnetic

pressure1, 1 is the identity tensor, ~B is the magnetic induction (magnetic field), µ

is the viscosity (Von Neumann and Richtmyer, 1950), S = ∂jvi + ∂ivj − 2
3
δij∇ · ~v is

1Note that in Zeus3D, µ0, the permeability of free space, is taken to be unity.

11

the shear tensor (Stone and Norman, 1992), φ is the usual Newtonian gravitational

potential defined by ∇2φ = 4πGρ, ~E = −~v× ~B is the induced electric field, βAD is the

ambipolar diffusion coupling constant (Power, 2018), ~L = (∇× ~B)× ~B is the Lorentz

Force, e is the internal energy density, L is the cooling function (Raga et al., 1997),

and eT = e+ 1
2
ρv2 + 1

2
B2 + φ is the total energy density.

The system of partial differential equations must then be closed with an equation

of state to relate the thermodynamic variables. For most applications in astrophysics,

the ideal gas law is an excellent approximation of reality. Therefore, Zeus3D uses it to

close the system (although other equations of state may be employed if desired). The

ideal gas law used by computational astrophysicists is cast into a slightly different

form than one usually encounters due to the use of intensive variables in computa-

tional (magneto)hydrodynamics. Therefore, for the sake of clarity and completeness,

the ideal gas law is

p = (γ − 1)e, (2.6)

where γ is the ratio of specific heats.

One of Zeus3D’s advantages, which was convenient for this project, is the ability

to add new physics or alter how the code’s main (M)HD cycle operates relatively

simply. Often, it is impossible with large codes to directly change the underlying

(M)HD algorithm without chaos quickly ensuing, but Zeus3D comes equipped with

the ability to do “microsurgery” (Clarke, 2010c) on the source code itself. The al-

gorithmic blocks which form the source code allow the user to more easily control

how new code behaves and interacts with the vast number of existing algorithms.

Since the work addressed in this thesis required the development of a large amount

of original code within the framework of Zeus3D, it is, therefore, essential to dive

12

deep into the details of how Zeus3D solves the (M)HD equations if the reader is to

understand the subtleties of the numerical work comprising the majority of this thesis.

Zeus3D is a fully conservative grid code that uses a staggered mesh and an operator

splitting scheme for numerical stability (Clarke, 1996).2 For this thesis, discussing

some of the finer details of the staggered mesh and the process by which Zeus3D

solves the (M)HD equations will be sufficient. A quick thought experiment is helpful

to elucidate the meaning of ‘grid code’. Consider a physical problem in a 2D plane

that is Lx units in the x-direction and Ly units in the y-direction. One creates a

‘grid’ to solve the equations by subdividing the region into several smaller 2D planes

of length Lx/nx and Ly/ny, in each direction, called ‘zones’. The analogy extends to

3D, and it is also not necessary for the geometry to be Cartesian, nor is it essential

for the zones to be uniform. Nonetheless, Zeus3D subdivides a computational domain

into many smaller zones, with their shapes and sizes determined by the overall grid

geometry and the user’s choice of coordinates. The complication in a grid code like

Zeus3D is the staggered mesh approach. Figure 2.1 shows a typical computational

‘zone’ within the Zeus3D framework in 2D (but the principles easily extend to 3D

or other geometries); a zone has a few defining features which must be understood.

In the staggered mesh approach, Zeus3D has two grids with which one must concern

themselves, the ‘a-grid’ and the ‘b-grid’. The left-bottom-back zone corner defines a

quantity located purely on the a-grid (this will be the bottom-left corner in the 2D

example of Figure 2.1. In contrast, the zone centre defines a quantity located purely

on the b-grid (this is still the zone centre in the 2D example of Figure 2.1). The

importance of these grid distinctions comes into play during the manipulation and

definition of the primitive (M)HD variables undergoing evolution on the grid.

2The interested reader is encouraged to explore the in-depth description of these schemes numer-
ically within the cited reference if they wish to learn the finer details.

13

~v1(i, j)

~v2(i, j)

~v1(i+ 1, j)

~v2(i, j + 1)

s(i, j)

Figure 2.1: A generic representation of a 2D zone in Zeus3D. ~v1 represents the 1-
component of a vector, ~v2 represents the 2-component of the same vector. The variable
s represents a scalar. The notation (i, j) represents the zone drawn. Therefore, the
vector components for this zone are located at the left face and the bottom face.
The scalars for this zone are simply located at the centre. Note how the velocity
components of adjacent zones are technically located at this zone’s top and right
faces, hence the designation (i, j + 1) and (i + 1, j). One must always be mindful of
the zone geometries when working in Zeus3D.

It turns out that within a staggered mesh scheme, one must treat vectors and scalars

differently. Pure vector quantities such as a velocity or magnetic field must have their

components at the zone faces. Examining Figure 2.1, one will notice that the vector

quantity, ~v, denoting a generic vector quantity, has its 1-component located at the

1-face (the component points in the 1-direction) and has its 2-component at the 2-face

(the component points in the 2-direction). Scalars, such as the temperature or inter-

nal energy density, on the other hand, are far more intuitive. They are defined at the

zone centres and, therefore, lay directly on the b-grid, while vectors defined on the

zone faces have a mixture of a-grid and b-grid parentage. A complication deliberately

avoided here is the nature of quantities derived from vectors. Dot-product identities

convert vectors into scalars, so pure b-grid coordinates define these scalars at the

14

zone centres (an example being the velocity divergence). However, cross-product def-

initions create some trouble for vectors, as they place them on the zone edges.3 To

re-iterate the crucial points, Zeus3D defines vector quantities at zone faces (so that

each component is perpendicular to its respective face) and defines scalars at the zone

centre. One subtlety, which becomes very important, is that the components of a

vector and the magnitude of the same vector (which is a scalar quantity) reside in

different locations. Thus, when position vectors are required to define a quantity like a

velocity through something like an angle, θ, one must be extremely careful in correctly

choosing these position vectors such that numerical consistency is maintained.

2.2 The Boundary Problem

This work’s first and possibly most daunting task was representing the star V CVn

numerically within Zeus3D. At the very best, if one could have a method of deter-

mining the dynamics of the solar wind as a function of time near the stellar surface,

then in Zeus3D, one would require the smallest length scale to be on the order of the

star’s radius. The largest length scale would have to be on the order of the stand-

off distance to the bow shock, which manifests. Thus, the length scales within the

problem would span many orders of magnitude, and dynamically important physics

would be happening within each. Static or adaptive mesh refinement (Colella, 1982;

Berger and Colella, 1989), which changes the size of the zones in Zeus3D according to

the dynamics and associated length scales required to resolve the physics adequately,

while certainly essential, would still be far too computationally costly to resolve the

problem from the stellar radius to the standoff distance of the bow shock.

3I will avoid discussing this as it mainly concerns magnetic field quantities. However, this would
become important if concerned with a hydrodynamical quantity such as vorticity!

15

This scale problem necessitates an approximation to work in tandem with a mesh

refinement scheme. The approximation used in this work follows Mackey et al. (2021),

where a ‘wind bubble’ resolves the wind coming from the star. Essentially, for the

wind bubble approximation, one calculates the standoff distance to the bowshock,

which sets the overall scale of the problem. One then determines an appropriate min-

imum scale for the problem, which is some factor, η, less than the standoff distance

to the bow shock. One chooses this factor, η, large enough to have sufficient com-

putational zones between the wind bubble, which now acts as a boundary condition

internal to the grid, and the bow shock to resolve the necessary physics. Coupled with

the wind bubble, one may introduce static or adaptive mesh refinement to save more

computational resources while ensuring an adequate level of resolution to capture all

physics sufficiently.

2.2.1 Boundary Conditions Within the Computational Do-

main

In its current form, Zeus3D cannot handle boundary conditions within a compu-

tational domain, which the wind bubble approximation to model V CVn requires.

Zeus3D handles boundary conditions around the physical grid boundary perfectly

and simply (including magnetic conditions). However, there is no direct or intuitive

method to apply the same routines within the grid. Therefore, the answer to bound-

ary conditions within the grid requires much understanding of how Zeus3D functions

and subsequent code development. Within a computational scheme, a boundary con-

dition is nothing more than several zones which remain at a fixed value or a prescribed

value that fluctuates with time in a predetermined way. The latter of these cases is

16

Figure 2.2: The Zeus3D flow chart c©David A. Clarke, reproduced from Clarke (2010c)
with permission.

17

where the interests of this thesis lay. To approach the problem of defining boundary

conditions internal to the grid, one must understand how Zeus3D progresses through

a (M)HD cycle. Thus, examining Figure 2.2, one may follow the flow chart from

the beginning, ‘mstart’ (yellow), downward to the beginning of the section which has

been highlighted, ‘BNDYUPDATE (empty)’ (blue). During the pre-compilation step,

a user inputs a file called ‘zeus36.mac’ (the Mac file), which allows the user to select

the major physics involved in the simulation. For example, the Mac file controls which

coordinate system is used, whether the user is doing magnetohydrodynamics or regu-

lar hydrodynamics, if gravity is turned on, and much more. More importantly for this

work, Zeus3D also comes equipped with the ability to insert user-supplied subroutines

into various locations within the code by aliasing the name of the subroutines within

the Mac file and linking them during pre-compilation.

As a toy example to enhance understanding, if a user wished to add or take away

mass from each computational zone in the simulation, this would change the continu-

ity equation (2.1) to be

∂ρ

∂t
+∇ · (ρ~v) = ρ̇toy. (2.7)

Here, ρ̇toy represents the density rate of change as a function of position and time,

which the user desires. For simplicity, assume there exists a subroutine called ‘mass-

change.f’, which removes a mass density of

ρtoy = ρ̇toyδt (2.8)

18

from every computational zone after each time step, δt.4 Since this influences the

source term of the continuity equation, the user would need to apply their routine

when Zeus3D calculates the source terms for the (M)HD cycle. Following the flowchart

in Figure 2.2, ‘SPECIAL’ (blue) is not aliased ‘(empty)’, so the user could apply their

source term here. Next, in the flowchart, ‘Source’ (red) is aliased to ‘(srcstep)’. The

routines, ‘srcstep’, are listed by following the flow chart to the right. Starting with

‘stda’, this routine calculates the synchrotron age in each zone. Moving onto ‘pres’,

this routine calculates the combinations of the different types of pressures (thermal,

magnetic, etc.) and interpolates them to a zone centre. Next, the ‘stv∗o’ routines

calculate the source terms, such as the pressure gradient, gravitational potential, etc.,

for the equation of motion in the ∗ = 1, 2, 3 direction. Following this, the ‘USER-

SOURCE’ (blue) is not aliased ‘(empty)’. This is where the user has a choice to put

their source terms if it is important for them to be influenced by the subsequent block

of routines starting with ‘kinvis’ (red), which applies viscosity to the equations. How-

ever, after the viscosity routines, follow the flow chart back to ‘SPECIALSRC’ (blue),

which is not aliased ‘(empty)’. The user also has the choice to put their routines after

the viscous step but before the dynamical transport step, ‘TRANSPORT’ (red) ‘(trn-

sprto)’. In this toy example, what should the user do? When influencing the physics

of the simulations in such a direct manner, one should never assume anything. The

only way to truly know where a routine belongs is to open Zeus3D in a debugger and

alias the routine to all the places it could possibly belong to one at a time. During the

investigation within a debugger, one must carefully step through each (M)HD cycle,

noting how the new routine influences the variables on a numerical and physical level.

Then, each case must be compared to the other, and one must draw upon expertise

4This is not physical and would almost certainly be unstable. However, that doesn’t matter, as
the purpose of this exercise is to make a simple example of how Zeus3D functions with respect to
changes in the (M)HD cycle.

19

and physical intuition (or test problems if they exist) to determine the best place to

alias the routine. In the above toy example, it could be the case that the user aliases

‘masschange.f’ to ‘SPECIAL’. After opening a debugger, the user may notice that

placing their mass loss routine before the source terms can be calculated may cause

numerical instabilities to manifest. Therefore, the subroutine would likely have to be

aliased to another location in the Zeus3D (M)HD cycle, but to re-iterate, one should

always investigate where routines which influence the (M)HD cycle belong through

rigorous testing and comparisons in a debugger.

Once one understands how the (M)HD cycle of Zeus3D functions, then one can de-

termine a method of creating boundary conditions internal to the grid. For computa-

tional efficiency, the zones defined by the wind bubble should only be reset as often

as required and not anymore. However, the variable values must remain completely

unchanged before and after any step in the Zeus3D (M)HD cycle which would change

their values.

Once again, following the Zeus3D flow chart of Figure 2.2, there are five aliases which

correspond to the locations in the (M)HD cycle where the zones of the wind bubble

can be reset (blue). The first alias which appears is ‘BNDYUPDATE’. On the initial

(M)HD cycle, there is no need to reset the wind bubble zones, as they would have

just been defined during the grid setup. However, it may be necessary on (M)HD

cycles after the first. This depends upon the other aliases. The second alias which

appears is ‘SPECIAL’. Like ‘BNDYUPDATE’, this is not needed on the first (M)HD

cycle, and if ‘BNDYUPDATE’ is aliased, then ‘SPECIAL’ will be redundant as it

occurs directly afterwards. Thus, if ‘SPECIAL’ is aliased, ‘BNDYUPDATE’ can take

20

its place. Therefore, ‘SPECIAL’ should not be aliased. The third alias is ‘USER-

SOURCE’, which appears after variables are updated via a source step and before

they are updated with viscosity. Since the variables in the wind bubble zones will be

updated by the source step governed by the ‘stv∗o’ routines, ‘USERSOURCE’ should

be aliased to reset the wind bubble zones so that the source step does not numerically

influence the viscous step near the wind bubble in a non-physical manner.5 The fourth

alias is ‘SPECIALSRC’, and as it falls after the viscous step and before the transport

step, the routine to reset the wind bubble zones should be aliased to ‘SPECIALSRC’.

The fifth and final alias is ‘SPECIALTRN’, which comes after the transport step and

before calculating the new time step. Since the new time step depends upon the

dynamics of the entire grid due to the CFL limit6 (Courant et al., 1928), and the

transport step just changed all of the variables in the grid; the routine which resets

the wind bubble zones must be aliased to ‘SPECIALTRN’. Since ‘BNDYUPDATE’

comes directly after ‘SPECIALTRN’ and no physics has been applied to change the

variables between these steps, it is completely unnecessary to alias the routine to

‘BNDYUPDATE’.

Therefore, to minimize computational costs, the routine that resets the wind bub-

ble zones must be aliased to ‘SPECIALSRC’, ‘SPECIALTRN’, and ‘USERSOURCE’

(for safety). Thus, by continuous resets of the zone variables in this manner, the wind

5As it turns out, during the debugging and investigations, having ‘USERSOURCE’ aliased to
reset the wind bubble zones has no noticeable influence on the physics. So, it can be relatively safely
disregarded for computational efficiency. However, it is best to err on the side of caution. There are
very good reasons why this alias has no noticeable influence, but it is far too much of an unrelated
side tangent in an already complicated segment.

6The history of the CFL limit, which governs the time step in all computational fluid dynamics
grid codes to prevent numerical instabilities, is astounding. One would assume that it would have
been discovered after the invention of computers, but this is not the case at all. The original paper
cited is from 1928. The reader is encouraged to delve into the English translation of the original
paper of Courant et al. (1956) to appreciate this almost prescient work, which came many decades
before it would be used in machines yet to be invented.

21

bubble meets the standard of the definition of a computational boundary condition.

Both Figures 2.3 and 2.4 display what the computational domain in Zeus3D would

look like for V CVn in Cartesian and spherical geometries, respectively. For Cartesian

geometry, one may show, using Figure 2.3, that working in the rest frame of the star,

one requires inflow conditions where the ISM will be moving toward the wind bubble

representing V CVn with a velocity of −~v∗. Outflow conditions would be required

at all other grid boundaries to allow material to flow unimpeded out of the grid and

no longer influence the dynamics. These conditions are trivial in Zeus3D and require

almost no thought since the inflow conditions and ISM are simply set with a velocity

that a single Cartesian vector component can represent. However, in this Cartesian

case, the boundary condition internal to the grid representing the wind bubble of V

CVn is highly non-trivial because it requires the representation of a sphere using finite

Cartesian zones, which can never be numerically lossless. These numerical inaccura-

cies can be mitigated, but careful thought is necessary to do so, and the methods

involved with this are discussed in section 2.2.2.

In spherical geometry, one may show, using Figure 2.4, that working in the rest

frame of the star, the boundary conditions for the wind bubble within the grid will be

trivial. Since the wind bubble itself is defined in spherical coordinates, any vector de-

fined within will have no issues representing its components in spherical coordinates.

However, the outer boundary of the computational domain in the case of spherical

coordinates is non-trivial (so is the setup of the atmosphere) since the velocity of the

ISM will be defined by a Cartesian vector component requiring it to be resolved in

spherical coordinates. This will cause numerical errors to manifest, but they can be

mitigated. The methods involved in this mitigation are also discussed in section 2.2.2.

22

Time Varying

Outflow Inflow

Outflow

Outflow

Figure 2.3: A Cartesian coordinate representation of the computational domain in
Zeus3D for the case of V CVn. Here, the conditions on the boundary of the com-
putational domain are trivial since the inflow will be along a Cartesian direction.
However, the conditions within the grid, which act as the star V CVn, are not trivial
since this will be a sphere subdivided into finite Cartesian cubes. This will always
lead to numerical errors, and one must reduce them as much as possible.

2.2.2 Resolving Boundary Zone Geometry Conflicts

The numerical losses from zones with a mismatch between the simulation’s geome-

try and the boundary’s geometry are important to minimize. Since the work of this

thesis involves supersonic flow conditions at the boundaries, any inconsistencies and

numerical losses gather quickly and abruptly. Therefore, boundaries must be treated

with care.

Figure 2.5 is a mock-up of a Zeus3D zone which straddles the wind bubble boundary,

which is represented by the dashed circular line (blue). Zones cut by the wind bubble

boundary are an issue since the portion of the zone within the boundary should have

23

Time Varying

Outflow Inflow

Figure 2.4: A spherical coordinate representation of the computational domain in
Zeus3D for the case of V CVn. Here, the conditions on the boundary of the computa-
tional domain are non-trivial since the inflow will be along a Cartesian direction. This
requires breaking a velocity vector represented in Cartesian coordinates into spher-
ical coordinates. Numerically, in Zeus3D, this will lead to errors due to how zones
are defined (see Figure 2.1), but one must reduce these errors as much as possible.
However, the internal boundary is trivial since it is a sphere represented in spherical
coordinates.

values corresponding to the star. Yet, the values within the same zone on the outside

of the boundary should have values associated with the ISM. Since it is not possible

to infinitely subdivide a zone and have a perfect boundary when the geometries mis-

match, one must carefully consider the numerical methods and structure of Zeus3D

zones to alleviate this problem. The first step in doing this is understanding what a

value even means in Zeus3D.7

In Zeus3D, the fields and variables themselves are not evolved, but rather, their zone

averages. A zone average is defined in terms of an integral over the volume of the

7Algorithmic details will not be discussed in detail within this thesis for the sake of brevity,
as there are many thousands of lines of code with several subtleties. Suppose one wishes to learn
more about the “gotchas” and nuances in the multitude of algorithms developed in Zeus3D for
this work. In that case, a short letter will be released in the Journal of Computational Physics
this Summer (2024), and the full code will be released in an open-source form on my GitHub,
https://mike-power666.github.io/ when the paper is released.

24

~v1(i, j)

~v2(i, j)

~v1(i+ 1, j)

~v2(i, j + 1)

s(i, j)

Figure 2.5: An exaggerated mock example of a Zeus3D zone (black) which straddles
the wind bubble boundary (blue). Scalars are defined at the centre of the zone. The
1-components of vectors for this zone are defined on the left face, so they have an
effective zone which defines them, centred at this position (red). The 2-components
of vectors for this zone are defined on the bottom face, so they have an effective zone
which defines them, centred at this position (cyan).

25

zone defined around a quantity. For scalars, this volume is about the zone centre, and

for vector quantities, this volume is about the centre of the face where each vector

component is defined. Thus, in general, these integrals can be written as

s(i, j, k) ≡ 〈s(x, y, z)〉 =
1

Vzone

∫∫∫
s(x, y, z) dVzone, (2.9)

for some scalar, s, and

~vl(i, j, k) ≡ 〈~vl(x, y, z)〉 =
1

Vzone,l

∫∫∫
~vl(x, y, z) dVzone,l, (2.10)

for each component of a vector, ~vl. By these integrals, a zone which straddles the

boundary will have a weighted average value depending on how much of the zone is

internal to the boundary and how much of the zone belongs to the ISM. Therefore, the

Monte Carlo method will be the simplest way to determine the correct zone-averaged

quantities for zones straddling the wind bubble boundary.

Without going into deep computational detail, a Monte Carlo method randomly sam-

ples an integration zone to give an estimate of the integral, which, in its most basic

and naive form (assuming a Gaussian error, which may not be true), is (Press et al.,

2003) ∫∫∫
f dV ≈ V 〈f〉 ± V

√
〈f 2〉 − 〈f〉2

N
, (2.11)

where

〈fk〉 =
1

N

N∑
i=1

fk(~xi), (2.12)

and f(~xi) is the integrand evaluated at the randomly sampled point ~xi. For this work,

we know precisely the values the integrand takes. The integrand is constant in the

wind bubble’s interior and exterior, so it does not have any sharp, small regions where

26

the value changes abruptly. Thus, two options for the Monte Carlo method are used

in the code. The first is simply a uniform sampling of the region with the number of

points the user chooses. The second is a random sampling with the number of points

the user chooses. The former is likely more accurate (due to the known geometry)

but comes at a higher computational cost. At the same time, the latter is more com-

putationally efficient and almost as accurate on average. In practice, the method the

user selects doesn’t really matter, as both produce relatively accurate, efficient zone

averages for the wind bubble boundary.

For the other geometry of concern, namely that of spherical coordinates, one encoun-

ters another problem entirely. As mentioned, the boundary conditions in spherical

coordinates internal to the grid represented by the wind bubble are trivial since the

wind bubble is a sphere. However, the ISM and the outer simulation boundary have

velocity vectors, which would be in the −ẑ direction but must be defined in spherical

coordinates. In spherical coordinates, the transformation representing the Cartesian

unit vectors in the physicists’ convention from Arfken et al. (2012) is


x̂

ŷ

ẑ

 =


sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)

sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

cos(θ) − sin(θ) 0



r̂

θ̂

φ̂

 . (2.13)

Since the velocity of the ISM in the rest frame of the star will be ~vISM = −v∗ẑ, the

velocity which must be set at each zone in Zeus3D for the ISM and outer boundaries

on a spherical grid is

~vISM = −v∗ cos(θ)r̂ + v∗ sin(θ)θ̂. (2.14)

27

As simple as this may seem, numerically, it is not so. Consider Figure 2.5 once again.

One may notice that the location of the ~v1 and ~v2 components do not occur at the same

location and will have separate values of θ due to the staggered mesh approach. Since

θ ∈ [0, π], which increases counterclockwise from the z-axis in the Zeus3D simulations,

the location of the 1-component of vectors will have a value, θ1, which is less than the

value, θ2, of the location of the 2-component of vectors. Therefore, one may perform

a Taylor expansion about the angle θ1 and take the difference between the angles to

be θ2−θ1 = δθ. Performing this Taylor expansion to first-order, one finds the velocity

of the ISM (note that the angles are zone-dependent) for each zone is

~vISM = −v∗ cos(θ1)r̂ + v∗[sin(θ1) + δθ cos(θ1)]θ̂. (2.15)

This is a perturbation on the velocity, which causes it to not sit perfectly in the −ẑ

direction (and it changes the direction in a way which depends upon the zone location,

governed by θ1). However, this deviation is dependent upon the resolution of the grid,

since infinite grid resolution corresponds to δθ → 0. Therefore, it can be mitigated,

albeit with a higher computational cost.

One might be tempted to think that the use of the zone centre as a common location

so that the values of θ are the same would be best. Still, this simplistic assumption,

which would ensure that there is no rotation of the ISM velocity vector, is unfortu-

nately incorrect for reasons which are not obvious (Clarke, 2023). The reason, is due

to how Zeus3D transports momentum. One can imagine neighbouring zones in the

ISM near, but not necessarily on the boundary, which will not change from a certain

time step, n, to the next, n+ 1, if the stellar wind dynamics are not influencing them

yet. This means the momentum vector for a given zone ~s = ρ~v should be the same at

28

each time step. Of course, in Zeus3D, this must be thought of in a component man-

ner. From Clarke (1996) (with a naive notation to exemplify the point), compressional

momentum is transported as follows (using the 1-component as an example)

sn+1
1 (i, j, k) = sn1 (i, j, k)− J1,1(i, j, k)− J1,1(i− 1, j, k)

dx1,b(i)
. (2.16)

Here,

J1,1 =
1

2
[M1(i, j, k) +M1(i+ 1, j, k)]vn1 (i, j, k)

i
, (2.17)

where

vn1 (i, j, k)
i

=


v1,L (v1,L > 0 and v1,R > 0),

v1,R (v1,L < 0 and v1,R < 0),

0 otherwise,

(2.18)

and

v1,L =
vn1 (i, j, k) + δv1(i, j, k)

1 + δv1(i,j,k)dtn

dx1,b(i)

, (2.19)

v1,R =
vn1 (i+ 1, j, k)− δv1(i+ 1, j, k)

1 + δv1(i+1,j,k)dtn

dx1,b(i+1)

, (2.20)

δv1(i, j, k) =


dv1(i,j,k)dv1(i−1,j,k)
dv1(i,j,k)+dv1(i−1,j,k)

[dv1(i, j, k)dv1(i− 1, j, k) > 0],

0 otherwise,

(2.21)

dv1(i, j, k) = vn1 (i+ 1, j, k)− vn1 (i, j, k). (2.22)

These equations generate an implicit, monotonic, up-winded, time-centered interpo-

lation (MUTCI)8, which in Zeus3D is typically either Van Leer interpolation (shown)

(van Leer, 1977), or piece-wise parabolic interpolation (PPI) (Colella and Woodward,

8Note that these equations only work for Cartesian zones. One must insert the metric factors at
the correct locations for the spherical zones under discussion. However, the equations get extraordi-
narily bulky.

29

1984), whereM1(i, j, k) represents a 1-average of the mass flux (there are similar sets

of equations for the 2- and 3-transport of momentum). What it comes down to is that

within the set of equations above, the velocities are sometimes estimated at the zone

centre, which, if the velocity at the face used the location of the zone centre to esti-

mate its velocity, leads to a cascade of numerical inconsistencies during interpolation.

One may explore how to minimize the numerical problems discussed above using some

of the algebraic methods shown and try to optimize from there. Alternatively, one

may use a debugger to explore the zones numerically. Both exercises are very useful.9

One last thing to note about the boundary conditions is that the transport step of

Zeus3D (the equations above are an example) requires multiple zones in each direction

to complete the interpolations. This is already taken care of in Zeus3D at the typical

simulation boundaries through the inclusion of ‘ghost zones’, which are an extension

of the boundary zones. However, for the wind bubble boundary created for this work,

one must either have a mathematical prescription of the wind throughout the entire

wind bubble as a function of radius, or one must assume that the wind is constant

throughout the wind bubble. As long as one is only concerned with treating the wind

bubble as a boundary condition, assuming that the wind is constant throughout will

produce the correct results for transport.

9This is certainly a ‘cliffhanger’, but as mentioned earlier, in-depth discussion of numerical al-
gorithms and reasoning will be limited to the code (for the sake of clarity and brevity), which will
be available on https://mike-power666.github.io/ (Summer 2024). However, this is a nice view
‘under the hood’ of what one must understand to know what Zeus3D is doing!

30

2.3 Mathematics for the Initialization of Primitive

Variables

To begin a simulation in Zeus3D, or any other code for that matter, one must initialize

all variables on the grid, including the boundary conditions. For pure hydrodynamics,

the primitive variables are the density, ρ, the velocity, ~v, and the internal energy, e.

These primitive variables may not be directly observable by telescopes or any other

device; therefore, some work is required to determine the value of each primitive vari-

able. For the work of this thesis, there are two distinct prescriptions for the stellar

wind, but both share a common average mass-loss rate. The difference between the

prescriptions for the stellar wind comes down to which variables are fixed and which

change with time. In the first prescription (§2.3.1), the wind velocity is fixed, and the

wind density varies for the mass-loss rate to change with time. The wind velocity and

density vary with time in the second prescription (§2.3.2). Each will be discussed in

separate subsections since the mathematics governing each case differs.

Since V CVn is a semi-regular variable star, the mass-loss rate (taken as a proxy

for the brightness) should be modelled to vary periodically with a period equivalent

to the observational data of the star. Since V CVn is an AGB star, one may use the

relation from De Beck, E. et al. (2010) for mass-loss rates. The relationship defines

the average mass loss of an AGB star, ˙̄M , (in solar masses) as a function of its period,

τ , (in days) as

log(˙̄M) =


−7.37 + 3.42× 10−3τ τ . 850,

−4.46 τ & 850.

(2.23)

31

2.3.1 Conditions for a Static Wind Velocity

If one does not model the stellar wind directly by determining a model and then solving

the governing equations for its time evolution (see Henny and Cassinelli (1999) for an

example), then a periodic prescription must be assumed. For this work and the case

of a static wind velocity, the assumed form of the time-varying mass-loss rate of the

wind is

Ṁ(t) = α + β sin2(ωt). (2.24)

Here, α and β represent (yet to be determined) constants, ω = π/τ is used so that

there will be only one full variation over the period, τ , due to the use of sin2(ωt),

which allows the mass-loss rate to vary to any degree which the user wishes. In a case

where sin(ωt) governs the variation in the mass-loss rate, the variation has a limit of

twice its average (and this limit would set the minimum mass-loss rate to zero). Two

more parameters are required to determine the primitive variables uniquely. For this

case, the fixed speed of the stellar wind vw will act as the first, and the second will

be the level to which the mass loss varies, defined by the ratio

η =
ṀMax

ṀMin

. (2.25)

To progress, one must integrate the general mass-loss rate, equation 2.24, in the sense

of a time average over a full period. Doing this, one finds

˙̄M = 〈Ṁ(t)〉 =
1

τ

∫ τ

0

[α + β sin2(ωt)] dt. (2.26)

Since the integral of sin2(ωt) over a period is 1/2, this gives the relationship

˙̄M = α +
1

2
β. (2.27)

32

From the form of equation 2.24, one may notice that the minimum possible mass-loss

rate is

ṀMin = α. (2.28)

Also by inspection, the maximum possible mass-loss rate is

ṀMax = α + β, (2.29)

which, when combined with the definition of the mass loss ratio of equation 2.25 and

equation 2.28, gives

α + β = ηα. (2.30)

Together, equations 2.27 and 2.30 define a system of equations in two unknowns,

namely,  1 1
2

1− η 1


α
β

 =

 ˙̄M

0

 . (2.31)

By Cramer’s rule, the solutions are

α =
2

η + 1

∣∣∣∣∣∣∣
˙̄M 1

2

0 1

∣∣∣∣∣∣∣ ,

α =
2

η + 1
˙̄M, (2.32)

and

β =
2

η + 1

∣∣∣∣∣∣∣
1 ˙̄M

η − 1 0

∣∣∣∣∣∣∣ ,
β = 2 · η − 1

η + 1
˙̄M. (2.33)

33

These solutions give an equation for the mass-loss rate in terms of the known initial

parameters, namely,

Ṁ(t) = 2 · 1 + (η − 1) sin2(ωt)

η + 1
˙̄M. (2.34)

To determine the primitive variables, one must utilize the mass-loss rate for the wind

bubble defined in equation 1.2 with the definition of the mass-loss rate for a static

wind velocity, equation 2.34. Combining these equations yields

ρw(t) = 2 · 1 + (η − 1) sin2(ωt)

η + 1
·

˙̄M

4πR2
wvw

. (2.35)

Since, in this case, the wind velocity is already set, the last primitive variable to solve

for is the internal energy of the wind, ew. This can be accomplished by use of the

ideal gas law, equation 2.6, taking the mean molecular weight of the gas to be m̄, and

the density of the wind, equation 2.35. This procedure gives

ew(t) =
kBTw

(γ − 1)m̄
ρw(t),

ew(t) =
2kBTw

(η + 1)(γ − 1)m̄
· [1 + (η − 1) sin2(ωt)] ·

˙̄M

4πR2
wvw

. (2.36)

2.3.2 Conditions for a Variable Wind Velocity

Similar to the static wind velocity conditions, one must set an average mass-loss rate,

˙̄M , the mass-loss rate ratio, η, and the average stellar wind velocity, v̄w. However, the

stellar wind velocity for these conditions should vary with time. Thus, in a similar

vein to η, one may define a ratio which governs the strength of the wind velocity

variations,

λ =
vw,Max

vw,Min

. (2.37)

34

For these conditions, since both ρw and vw vary with time, setting the form of Ṁ(t)

beforehand does not work. Rather, one must set the type of functions that determine

the behaviour of ρw and vw, then calculate Ṁ(t) from there.10

For this work, to model V CVn, the functions should vary periodically about an

average value. Therefore, the functional forms of the variation are

ρw(t) = ρ̄w + κ sin(ωt), (2.38)

and

vw(t) = v̄w + σ sin(ωt). (2.39)

Here, the oscillation frequency is defined in the usual way ω = 2π/τ ; both κ and σ

are constants yet to be determined. Also, since the integral of sin(ωt) over a period

τ vanishes, it is clear why the first term in each of the functions is their respective

average value.

Three unknown values must be determined before the forms the primitive variables

take can be known. They are the average value of the wind density, ρ̄w, κ and σ.

To begin, one must use the relationship governing the strength of the wind velocity

variation, equation 2.37, and solve for the unknown constant σ. Due to the sinusoidal

nature of the wind velocity variation, it is clear that

vw,Max = v̄w + σ, (2.40)

10Why choose the functional form of ρw(t) and vw(t)? Why not Ṁ(t) and vw(t) to match the
initial conditions, or even Ṁ(t) and ρw(t)? It is simply an arbitrary choice but with good reason.
Since the equations for a time-varying stellar wind are not being solved numerically to determine
the conditions, one must choose some arbitrary functional form for the variations. As it turns out,
the current choice is far simpler algebraically but no more arbitrary than any other!

35

and

vw,Min = v̄w − σ. (2.41)

Combining equations 2.37 and 2.40, one finds that

λvw,Min = v̄w + σ.

Using equation 2.41 gives

λ(v̄w − σ) = v̄w + σ,

v̄w(λ− 1) = σ(λ+ 1),

σ =
λ− 1

λ+ 1
v̄w. (2.42)

Using this relationship, for completeness, one may find that

vw,Max =
2λ

λ+ 1
v̄w, (2.43)

and

vw,Min =
2

λ+ 1
v̄w. (2.44)

Next, one must determine the functional form of the mass-loss rate. Combining

equations 1.2, 2.38, and 2.39 yields two useful forms of the equation, namely,

Ṁ(t) = 4πR2
w[ρ̄w + κ sin(ωt)][v̄w + σ sin(ωt)]. (2.45)

Ṁ(t) = 4πR2
w[ρ̄wv̄w + (ρ̄wσ + v̄wκ) sin(ωt) + κσ sin2(ωt)]. (2.46)

36

Similar to the previous section, integration and averaging over a period gives

˙̄M = 〈Ṁ(t)〉 =
4πR2

w

τ

∫ τ

0

[ρ̄wv̄w + (ρ̄wσ + v̄wκ) sin(ωt) + κσ sin2(ωt)] dt,

˙̄M = 4πR2
w(ρ̄wv̄w +

1

2
κσ). (2.47)

Two unknowns remain. Therefore, one must utilize the remaining initial parameter,

η. To do this, the maximum and minimum values of the mass-loss rate must be

known. By inspection, the maximum mass-loss rate must occur at a time when the

trigonometric functions are maximized. Therefore, one finds that

ṀMax = 4πR2
w(ρ̄w + κ)(v̄w + σ). (2.48)

There are two possible cases for the minimum value of the mass-loss rate due to the

nature of the functional form. The first case occurs when the trigonometric functions

vanish. The second case occurs when sin(ωt) = −1 and simultaneously sin2(ωt) = 1.

By inspecting the functional form of the mass-loss rate, one may determine a condition

that governs which case must be used, namely,

ṀMin =


4πR2

wρ̄wv̄w κσ ≥ ρ̄wσ + v̄wκ,

4πR2
w(ρ̄w − κ)(v̄w − σ) otherwise.

(2.49)

Since each of the variables in the above condition are individually positive-definite,

one may determine if this condition is ever satisfied. Rewriting the condition as

κ(σ − v̄w) ≥ ρ̄wσ,

σ − v̄w ≥
ρ̄wσ

κ
.

37

By using equation 2.42, (
λ− 1

λ+ 1
− 1

)
v̄w ≥

ρ̄wσ

κ
.

−2

λ+ 1
≥ ρ̄wσ

v̄wκ
.

−2 ≥ ρ̄wσ

v̄wκ
(λ+ 1). (2.50)

This is not true, as the right-hand side of this equality is positive-definite. Therefore,

the minimum mass loss has a single value independent of any cases defined by

ṀMin = 4πR2
w(ρ̄w − κ)(v̄w − σ). (2.51)

Now, starting with the mass loss ratio, equation 2.25,

η =
˙̄MMax

˙̄MMin

=
4πR2

w(ρ̄w + κ)(v̄w + σ)

4πR2
w(ρ̄w − κ)(v̄w − σ)

,

η =
(ρ̄w + κ)(v̄w + σ)

(ρ̄w − κ)(v̄w − σ)
,

η(v̄w − σ)ρ̄w − η(v̄w − σ)κ = (v̄w + σ)ρ̄w + (v̄w + σ)κ,

(v̄w + σ − ηv̄w + ησ)ρ̄w + (v̄w + σ + ηv̄w − ησ)κ = 0,

[(1− η)v̄w + (1 + η)σ]ρ̄w + [(1 + η)v̄w + (1− η)σ]κ = 0.

Using equation 2.42 to simplify, one finds that

[
(1− η)v̄w + (1 + η)

λ− 1

λ+ 1
v̄w

]
ρ̄w +

[
(1 + η)v̄w + (1− η)

λ− 1

λ+ 1
v̄w

]
κ = 0.

38

Multiplying through by λ+ 1 and dropping the common v̄w yields

[(λ+ 1)(1− η) + (1 + η)(λ− 1)]ρ̄w + [(λ+ 1)(1 + η) + (1− η)(λ− 1)]κ = 0,

which simplifies considerably after the expansion of terms, leading to

(λ− η)ρ̄w + (λ+ η)κ = 0. (2.52)

From earlier, equation 2.47 can be manipulated into a more useful form by substitution

of equation 2.42. This gives

v̄wρ̄w +
1

2
· λ− 1

λ+ 1
v̄wκ =

˙̄M

4πR2
w

. (2.53)

The equations 2.52 and 2.53 form a system in the two unknown variables ρ̄w and κ,

namely,  2 λ−1
λ+1

λ− η λ+ η


ρ̄w
κ

 =

 ˙̄M
2πR2

w v̄w

0

 . (2.54)

By Cramer’s rule, the solutions for the system are

ρ̄w =
λ+ 1

λ(λ+ 3) + η(3λ+ 1)

∣∣∣∣∣∣∣
˙̄M

2πR2
w v̄w

λ−1
λ+1

0 λ+ η

∣∣∣∣∣∣∣ ,

ρ̄w =
2(λ+ η)(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·

˙̄M

4πR2
wv̄w

, (2.55)

and

κ =
λ+ 1

λ(λ+ 3) + η(3λ+ 1)

∣∣∣∣∣∣∣
2

˙̄M
2πR2

w v̄w

λ− η 0

∣∣∣∣∣∣∣ ,

39

κ =
2(η − λ)(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·

˙̄M

4πR2
wv̄w

. (2.56)

Note that the expression for κ, imposes a physical condition on the variables since it

must be positive definite. Therefore, the initial conditions must always ensure that

the mass loss ratio is greater than the wind velocity ratio. Mathematically,

η > λ. (2.57)

All that remains is to write out the full expressions for the mass-loss rate as a function

of time and all primitive variables. Starting with the mass-loss rate, one must combine

equations 2.42, 2.45, 2.55, and 2.56 which gives

Ṁ(t) = 4πR2
w

{
ρ̄wv̄w +

[
λ− 1

λ+ 1
ρ̄wv̄w + κv̄w

]
sin(ωt) +

λ− 1

λ+ 1
κv̄w sin2(ωt)

}
,

Ṁ(t) =

[
2(λ+ η)(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
+

2(λ+ η)(λ− 1) + 2(η − λ)(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
sin(ωt)

+
2(η − λ)(λ− 1)

λ(λ+ 3) + η(3λ+ 1)
sin2(ωt)

]
˙̄M.

Expansion of the coefficient of sin(ωt) yields the mass-loss rate as a function of time

in terms of the initial conditions,

Ṁ(t) = 2 · (λ+ η)(λ+ 1) + 2λ(η − 1) sin(ωt) + (η − λ)(λ− 1) sin2(ωt)

λ(λ+ 3) + η(3λ+ 1)
˙̄M. (2.58)

Now, one must calculate the primitive variables. Combining equations 2.38, 2.42,

2.55, and 2.56 gives the time variation of the wind density,

ρw(t) =
2(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·
[
(λ+ η) + (η − λ) sin(ωt)

]
·

˙̄M

4πR2
wv̄w

. (2.59)

40

For the sake of completeness, by inspection one can determine the maximum and

minimum values of the wind density,

ρw,Max =
4η(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·

˙̄M

4πR2
wv̄w

, (2.60)

and

ρw,Min =
4λ(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·

˙̄M

4πR2
wv̄w

. (2.61)

By taking a ratio, one finds a simple relationship for the strength of the density

variation

ρw,Max

ρw,Min

=
η

λ
. (2.62)

Combining equations 2.39 and 2.42 gives the time variation of the wind velocity,

vw(t) = v̄w

[
1 +

λ− 1

λ+ 1
sin(ωt)

]
. (2.63)

Finally, combining the ideal gas law, equation 2.6, with the density variation of the

wind, equation 2.59, one finds the internal energy variation of the wind,

ew(t) =
2kBTw(λ+ 1)

[λ(λ+ 3) + η(3λ+ 1)](γ − 1)m̄
·
[
(λ+ η) + (η−λ) sin(ωt)

]
·

˙̄M

4πR2
wv̄w

. (2.64)

2.3.3 A Numerical Curiosity

How does one determine how small to make the wind bubble? As discussed earlier,

attempting to simulate a wind bubble, which is the radius of the star in question,

is folly. Therefore, one must make an approximation of some kind.11 If one wishes

11What I’m about to discuss I found quite strange and genuinely surprising. I did not do the math
like this or think about the problem in the way I’m going to present it until one time when I was
playing with changing the average mass-loss rate of the star. I was trying to decrease the mass-loss
rate to decrease the density of the stellar wind and shrink the gap between the wind density and the

41

to capture all of the physics involved in simulations of stellar wind bow shocks, then

the size of the simulation must be enough to capture the bow shock itself. Therefore,

the standoff distance, R̄SO, is the metric by which one chooses the scales within the

simulation. With this in mind, one must decide how large to make the simulation,

which, presumably, should be some multiple of the standoff distance. Similarly, one

should presumably choose the radius of the wind bubble Rw as some multiple of the

standoff distance to the bow shock. One should choose this multiplier such that the

wind bubble is sufficiently small to capture the physics and sufficiently large so that

the scales within the simulation aren’t too computationally expensive.

To codify this thought process, one may define a scale factor, ζ, such that

ζ =
R̄SO

Rw

, (2.65)

where obviously, R̄SO � Rw. Assuming that one chooses ζ for a given simulation,12

the radius of the wind bubble is

Rw =
1

ζ

√
˙̄Mv̄w

4πρ0v2
∗
. (2.66)

Now, one may notice that all of the primitive variables in the previous section (except

the velocity, of course, that’s chosen a priori) depend upon the ratio ˙̄M/R2
w. One may

also now notice that R2
w ∝ ˙̄M . Therefore, not one of the primitive variables depends

density of the bow shock. To my surprise, changing the mass-loss rate did not change the wind’s
density. So, I went to pen and paper to find out why.

12For example, in the literature (Mackey et al., 2012; van Marle et al., 2006; Freyer et al., 2003),
the size of the wind bubble is usually chosen by making it take up a small number of zones at the
focal point of the simulation. This would constitute a certain ζ since the zone sizes are determined
by the simulation’s scale, which is the standoff distance. Generally, one chooses to make the wind
bubble an order of magnitude or two smaller than the standoff distance. This means that typically,
ζ ∈ [10, 100].

42

on the average mass-loss rate of the star. One may recalculate the formulae for the

dependent primitive variables from the previous sections to be:

ρw(t) =
2ρ0ζ

2

η + 1
· [1 + (η − 1) sin2(ωt)] ·

(
v∗
vw

)2

; (2.67)

ew(t) =
2kBTwρ0ζ

2

(η + 1)(γ − 1)m̄
· [1 + (η − 1) sin2(ωt)] ·

(
v∗
vw

)2

; (2.68)

for the static wind velocity configuration and

ρw(t) =
2ρ0ζ

2(λ+ 1)

λ(λ+ 3) + η(3λ+ 1)
·
[
(λ+ η) + (η − λ) sin(ωt)

]
·
(
v∗
vw

)2

; (2.69)

ew(t) =
2kBTwρ0ζ

2(λ+ 1)

[λ(λ+ 3) + η(3λ+ 1)](γ − 1)m̄
·
[
(λ+ η) + (η − λ) sin(ωt)

]
·
(
v∗
vw

)2

; (2.70)

for the variable wind velocity configuration.

Indeed, due to the numerics, the primitive variables do not depend upon the av-

erage mass-loss rate of the star. One may wonder if this is physically reasonable.

On the surface, no, of course not. However, the simulation still depends heavily on

the mass-loss rate of the star; it’s just at a much deeper level. As mentioned, the

standoff distance to the bow shock sets the scale for the simulation, which means that

the mass-loss rate directly impacts the overall scale of the simulation. This, in turn,

implies that any non-ideal effect such as viscosity (even numerical grid viscosity) will

influence the dynamics according to the dimensionless number associated with the

effect. For the example of numerical viscosity, this would be the Reynolds number,

which depends upon the characteristic length scale of the flow. The time scale also

depends upon the length scale through the simulation crossing time of the star. Also,

turbulence depends upon the flow’s characteristic length scales (Landau and Lifshitz,

43

1987). Therefore, though it is not obvious on the surface, the mass-loss rate still has

a physical meaning and influence upon the dynamics, physical interpretation, and

results of the simulations.13

2.4 A Geometric View of Polarisation

This section follows the seminal work of Brown and McLean (1977) and Brown et al.

(1978) but clarifies some of the geometry, calculations, and understanding during the

derivations while also proving that the results of the first and second papers are equiv-

alent under certain assumptions and a particular geometric orientation.

Figure 2.6 introduces the geometry used in Brown and McLean (1977). Here, the

unprimed coordinate system represents a set of coordinates centred on the astronom-

ical object of interest, where the z-axis is the symmetry axis (Brown and McLean

(1977) assumes azimuthal (φ) symmetry). The primed coordinate system represents

a set of coordinates centred on the astronomical object, but with the x′ axis pointing

in the direction of Earth. The y and y′ axes coincide; therefore, the plane made with

the z′ and y′ axes represents the plane of the sky on Earth. The angle of inclination,

i, is defined between the x and z′ axes. Therefore, the un-primed coordinate system is

related to the primed coordinate system via a passive rotation of ξ = π/2−i clockwise

about the y axis when viewed looking in the +ŷ direction from the origin.

To explain this geometry further and its relation to Earth, one should perform the

following thought experiment. Consider a flat disc which is symmetric about the z

axis (this is to say, the normal vector defining the plane of the disc is ẑ). If the axial

13Despite this justification, it certainly still feels weird and non-intuitive at best. . .

44

inclination is i = 0, then the direction to Earth (the x′ axis) points along the −ẑ

axis, meaning the disc is in the plane of the sky. Therefore, one would see a circle

projected onto the plane of the sky from Earth. Conversely, if the axial inclination is

i = π/2, the direction to Earth would point in the x̂ direction, meaning that the axis

of symmetry of the disc is in the plane of the sky, so one would view the disc from

Earth edge on. This would look like a straight line. The latter case in this thought

experiment is equivalent to V CVn. The motion of V CVn with respect to Earth is

essentially completely tangential. It has a negligible radial component to its velocity

when considering the magnitude of the tangential velocity and the observational er-

rors. Therefore, taking the direction of motion of V CVn to be along the ẑ direction,

this has to be in the plane of the sky to keep all of its velocity tangential. Therefore,

the axial inclination of V CVn is roughly i = π/2.

Equation (1) from Brown and McLean (1977) comes from applying the coordinate

rotation mentioned above. One must solve for the scattering angle, χ, which is the

angle between a radial vector, r̂, to any point in an envelope and the Earth, which is

in the x̂′ direction. Since the important quantity is the cosine of the scattering angle,

one may make clever use of the properties of a dot product. Therefore, it is sufficient

to find cos(χ) = r̂ · x̂′. From Arfken et al. (2012),


r̂

θ̂

φ̂

 =


sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0



x̂

ŷ

ẑ

 . (2.71)

This gives the radial unit vector in terms of the Cartesian set in the unprimed system,

r̂ = sin(θ) cos(φ)x̂+ sin(θ) sin(φ)ŷ + cos(θ)ẑ. (2.72)

45

Now, one must determine the value of x̂′ in terms of the unprimed Cartesian set.

To do this, one may exploit the definition of the primed coordinate system, which,

as mentioned, is a passive rotation of ξ = π/2 − i clockwise about the y axis when

viewed looking in the +ŷ direction from the origin. Mathematically, since rotation

matrices are orthogonal,

x̂′ = R−1
y (π

2
− i)x̂ = Rᵀ

y(
π
2
− i)x̂,

x̂′ =


cos(π

2
− i) 0 sin(π

2
− i)

0 1 0

− sin(π
2
− i) 0 cos(π

2
− i)




1

0

0

 .
By exploiting the even and odd nature of the trigonometric functions, as well as a

shift by a quarter period, one finds that

x̂′ =


sin(i) 0 cos(i)

0 1 0

− cos(i) 0 sin(i)




1

0

0

 ,

x̂′ =


sin(i)

0

− cos(i)

 ,
x̂′ = sin(i)x̂− cos(i)ẑ. (2.73)

Thus, one may now determine the cosine of the scattering angle by a dot product,

reproducing equation (1) from Brown and McLean (1977), namely,

cos(χ) = − cos(θ) cos(i) + sin(θ) sin(i) cos(φ). (2.74)

46

The next few steps in Brown and McLean (1977) follow trivially because the density

distribution is assumed to have azimuthal (φ) symmetry. Therefore, under an integral

cos(φ)→ 0, and cos2(φ)→ π. After this, everything else in Brown and McLean (1977)

follows by utilizing the rotation matrix relating the coordinate systems defined above

with some trigonometric and geometric tricks. Thus, with the geometry clarified, it is

left as an exercise for the reader to derive the important results, equations (19), (22),

and (23)14 from Brown and McLean (1977) cast into a more useful form for Zeus3D,

namely,

γp =

∫∞
0

∫ π
0
ρ(r, θ) cos2(θ) sin(θ) drdθ∫∞

0

∫ π
0
ρ(r, θ) sin(θ) drdθ

, (2.75)

τ̄ =
πσ0

m̄

∫ ∞
0

∫ π

0

ρ(r, θ) sin(θ) drdθ, (2.76)

PR ' τ̄(1− 3γp) sin2(i). (2.77)

Here, γp is a geometric factor which governs the polarisation due to scattering in a

density field with azimuthal symmetry, ρ(r, θ), m̄ is the average particle mass, σ0

is related to the wavelength independent Thomson scattering cross section, σT =

6.66 × 10−25 cm2, by σ0 = 3σT/(16π), and τ̄ is effectively the optical depth of the

envelope averaged over the angular coordinate.

The most important quantity is 2.75 since it effectively governs the polarisation signal

of the density field. Consider a purely radial density field (a completely spherically

14Note that my equation 2.76 differs from Brown and McLean (1977) by a factor of 2. I can only
assume that there is a typo in their equation (22), which also causes a typo in equation (21). Perhaps
they meant to define the optical depth with a coefficient of 3/16, not 3/32. Either way, there is an
inconsistency in either their definition of the average optical depth or the equation for the residual
polarisation. One can prove this by working the simple algebra to derive equation (21) from (5) and
then (23) with definition (22) from Brown and McLean (1977). For the remainder of this thesis, I
will assume that the definition of the average optical depth is incorrect (missing a factor of 2) and
that the polarisation equation is correct. However, either choice of changing the residual polarisation
by a factor of 2 or changing the definition of the average optical depth by a factor of 2 results in
self-consistency among the algebraic equations.

47

symmetric configuration). The integrals are separable, which causes the integral over

the radial coordinate of the density to divide out, and one is left with integrals over

the polar angle. The numerator has a value of 2/3, and the denominator integrates

to 2. Therefore, the gamma value for a spherically symmetric density field is 1/3.

Now, examining equation 2.77, one may notice that the residual polarisation varies

as 1− 3γp. This means that a perfectly spherical configuration causes no polarisation

signal. In general, from this analysis, one may note that symmetric structures about

the symmetry axis in the density profile tend to make the polarisation signal vanish,

whereas asymmetric structures about the symmetry axis in the density profile will tend

to produce a polarisation signal.

All of the calculations of Brown and McLean (1977) only consider the azimuthal sym-

metry case, meaning the density distributions are symmetric about the z axis (the

direction of motion for V CVn). While this is extremely useful for two-dimensional

calculations, one must go further to calculate the polarisation signal from a full three-

dimensional density profile. Brown et al. (1978) provide the exact calculation for

the case of axial inclination i = π/2. In other words, when the direction of motion

of V CVn is in the plane of the sky. Conveniently, as previously discussed, this is

precisely the case for V CVn. Thus, from Brown et al. (1978), one acquires the ingre-

dients to calculate the Stokes parameters and, therefore, the residual polarisation, PR,

and associated position angle, ψ. The equations are as follows, the intensity Stokes

parameters:

I1 =
I0σ0

m̄

∫ ∞
0

∫ π

0

∫ 2π

0

ρ(r, θ, φ)[1 + sin2(θ) cos2(φ)] sin(θ) drdθdφ; (2.78)

I2 =
I0σ0

m̄

∫ ∞
0

∫ π

0

∫ 2π

0

ρ(r, θ, φ)[sin2(θ) sin2(φ)− cos2(θ)] sin(θ) drdθdφ; (2.79)

48

I3 =
I0σ0

m̄

∫ ∞
0

∫ π

0

∫ 2π

0

ρ(r, θ, φ)[sin(2θ) sin(φ)] sin(θ) drdθdφ; (2.80)

with:

I = I0 + I1; (2.81)

the normalised Stokes parameters:

Q =
I2

I
; (2.82)

U =
I3

I
; (2.83)

the residual polarisation:

PR =
√
Q2 + U2; (2.84)

and the polarisation position angle, ψ, defined by:

tan(2ψ) =
U

Q
. (2.85)

Here, I0 represents the undimmed light of the star. The claim made by Brown et al.

(1978) is that these generalized three-dimensional results for the Stokes parameters

collapse to the simpler case of Brown and McLean (1977) under certain assumptions.

Thus, if one assumes for V CVn that the direction of motion is in the plane of the

sky, i = π/2, the net polarisation is small so that I = I0 + I1 ' I0 and the density

field is symmetric about the azimuthal coordinate (φ, which is the critical assumption

of Brown and McLean (1977)), one finds for equations 2.79 and 2.80 that

I2 =
I0σ0π

m̄

∫ ∞
0

∫ π

0

ρ(r, θ)[sin2(θ)− 2 cos2(θ)] sin(θ) drdθ,

49

since sin2(φ)→ π under the azimuthal integral, and

I3 = 0,

since sin(φ) → 0 under the azimuthal integral. From these intensity Stokes parame-

ters, one finds that U = 0 (expected for axis-symmetry (Shrestha et al., 2018)) and

Q ' I2

I0

=
σ0π

m̄

∫ ∞
0

∫ π

0

ρ(r, θ)[sin2(θ)− 2 cos2(θ)] sin(θ) drdθ,

Q ' σ0π

m̄

∫ ∞
0

∫ π

0

ρ(r, θ)[1− 3 cos2(θ)] sin(θ) drdθ.

Q ' σ0π

m̄

[∫ ∞
0

∫ π

0

ρ(r, θ) sin(θ) drdθ

][
1− 3

∫∞
0

∫ π
0
ρ(r, θ) cos2(θ) sin(θ) drdθ∫∞

0

∫ π
0
ρ(r, θ) sin(θ) drdθ

]
.

Using the definitions of equations 2.76 and 2.75, one gets

Q ' τ̄(1− 3γp). (2.86)

Since U = 0, equation 2.84 gives the condition that PR = |Q|. Thus,

PR ' |τ̄(1− 3γp)|, (2.87)

which is precisely the absolute value of equation 2.77 when the axis of symmetry (the

direction of motion of V CVn) is in the plane of the sky (i = π/2) as desired.

2.4.1 Implementation of Polarisation in Zeus3D

The implementation of the polarisation calculations in Zeus3D is quite straightfor-

ward. If one works in two dimensions, then Zeus3D will write the values of γp,u and

50

γp,l (the subscripts u and p here represent upper and lower, corresponding to the

numerator and denominator of γp respectively) assuming azimuthal symmetry to a

file at each time step after the hydrodynamic cycle completes. If one works in three

dimensions, Zeus3D will write the values of the normalised Stokes parameters Q and

U to a file at each time step after the hydrodynamic cycle completes.

The user has three choices for computing the integrals that define the polarisation

parameters, each with strengths and weaknesses. The first option has the highest

numerical accuracy and computational cost. If the user desires, an algorithm for

Romberg integration (Press et al., 2003) (including a Richardson Extrapolation step

(Richardson, 1911; Richardson and Gaunt, 1927)) has been implemented to solve each

of the integrals defining the polarisation. If the user chooses Romberg integration as

the calculation method, they must also include a maximum error allowed by the inte-

gration routines. Therefore, one should proceed with caution in using this method, as

in a simulation with 106 hydrodynamic cycles, the Romberg integrator will be called

106 times. If the maximum error the user selects is too small, the computational cost

will be extremely high. If one is not careful, this can consume most of the compu-

tational time. The second option available to the user is a Monte Carlo integrator

(Press et al., 2003). These routines are severely more efficient than a Romberg inte-

grator but will produce far less accurate results. It is not recommended to use the

Monte Carlo integration scheme. While it does include importance sampling, it is not

necessarily wise to use a Monte Carlo integrator on a density field that has shocks

that change location with time. This is because shocks are incredibly thin regions,

which will contribute a large value to the integrals. Since Monte Carlo methods are

based on random sampling, it is not always guaranteed to include small regions with

51

x

y

z

x′

y′

z′

~rP

O

ii

χ

Figure 2.6: The important aspects of the geometry defined in Brown and McLean
(1977). The plane of the sky is the plane defined by ŷ and ẑ′. Earth is toward x̂′.
The angle, i, defines the axial inclination, which is ∠xOz′. Finally, the scattering
angle, χ, is defined as the angle between the radial vector, which defines an arbitrary
scattering point, ~rP , and the vector defining the direction to Earth, x̂′.

high contributions. The third option available to the user is the most computation-

ally efficient but comes with some inaccuracy. It is a simple Riemann sum, using the

computational zones as the integration regions. Therefore, dr → x1a(i + 1) − x1a(i),

dθ → x2a(j + 1)− x2a(j), and dφ→ x3a(k + 1)− x3a(k) are the differentials approxi-

mated by finite differences of their values defined by the a-grid in Zeus3D, and pure

b-grid coordinates will determine the function values. In practice, since the Zeus3D

variables are defined as zone averages, this is essentially the same as Monte Carlo inte-

gration if it selected fixed points as opposed to random points. Therefore, this scheme

ensures the capturing of shocks and any other small in size but large in contribution

region of the integrand.

Chapter 3

Results and Discussion

The first principle is that you must not fool yourself—and you

are the easiest person to fool.

Richard P. Feynman

3.1 Discussion

Tables 3.1 and 3.2 detail the initial values for the constant and variable wind velocity

models, respectively. In both simulations, the stellar wind is spherically symmetric

and has a mass-loss rate which varies periodically. The star moves directly along

the z-axis (from left to right in the simulations). In the rest frame of the star, this

implies that the ISM is moving with the star’s velocity but in the opposing direction.

Therefore, the ISM is moving from right to left in the simulations.

Figures 3.1 through 3.12 represent the time evolution of the static wind velocity

case, while Figures 3.13 through 3.24 represent the time evolution of the variable

wind velocity case. The interaction between the wind from V CVn and the oncoming

53

ISM produces an incredibly rich structure and physics, far more complicated than

the analytic bow shock model would indicate. By looking at the θ = 0 slice plots

(Figures 3.2, 3.5, 3.8, 3.11, for the static wind speed case; 3.14, 3.17, 3.20, 3.23, for

the variable wind speed case), one may discern the different regions of the interaction.

The three vertical (cyan) lines in each of the θ = 0 slice plots represent the minimum

(RSO, Min), average (R̄SO), and maximum (RSO, Max) standoff distances calculated from

the analytic bow shock model using the minimum, average, and maximum values of

the mass-loss rate, Ṁ(t), and the velocity of the wind, vw(t).

Moving from left to right in the θ = 0 slice plots, the flat line for each variable

represents the prescribed values of the variables in the wind bubble boundary (hence

the flat line). However, one may notice that in the time evolution of the slice plots,

the values in the wind bubble region change. This is expected as the boundary values

are time-dependent. Immediately following the wind bubble boundary zone is a re-

gion where the flow tends to get less dense and cool, and thermal pressure decreases

while the velocity increases. This is a rarefaction fan. In this region, the supersonic

wind can spread out and rarefy unimpeded; one may think of this as the opposite of a

compression region. The oscillations in the rarefaction fan are due to the oscillations

in the boundary conditions. In the case of a stellar wind that is constant in time, one

would see a smooth, non-oscillatory curve connecting the wind bubble region with

the next region of the interaction. The time variations in the boundary conditions

perturb this structure, and the perturbations continue through the rarefaction fan.

The next region of the interaction begins at the discontinuity, which occurs in all of

the variables. This discontinuity is the reverse shock. Here, the material being driven

by the stellar wind is compressed, which vastly increases its density and thermal pres-

sure, heated, which causes the temperature to change by orders of magnitude, and

54

decelerated to a locally sub-sonic speed. The region to the right of the reverse shock

is where the heated and compressed stellar wind material gathers.

Further to the right of the reverse shock is a curious, thin region most easily no-

ticed as a discontinuity in density. Though the density is discontinuous, the thermal

pressure is not. This indicates a contact discontinuity, which separates the material

driven by the stellar wind from the material coming from the ISM. No material may be

transferred across a contact discontinuity, as they have the property that the velocity

normal to the contact surface vanishes. One may notice by looking at the 1-velocity

that this is indeed the case since for the θ = 0 slices, the 1-direction is the normal

direction. Following to the right of the contact discontinuity is a highly compressed,

hot region of ISM gas. This region comprises ISM material swept up by the forward

shock, which is the discontinuity in all variables to the right. Once again, one may

notice that from the ISM (to the right of the forward shock), the shock sweeps up

this material, heating and compressing it, which changes its density, thermal pres-

sure, and temperature by vast amounts. Also, locally, the region between the contact

and forward shock is sub-sonic. Of course, to the right of the forward shock is the

yet-to-be-disturbed ISM.

The heat maps show the density, thermal pressure, temperature, velocity divergence,

Mach number, and flow speed from left to right and top to bottom, respectively. Of

particular note are the plots of velocity divergence and Mach number. Though they

may not seem illuminating initially, the velocity divergence is an excellent measure

of the location of shocks since they cause rapid compression of the material. Any-

where a sudden compression of material exists, the velocity divergence will take on

55

a large (relatively speaking) negative value. Thus, regions in the heat map of ve-

locity divergence with the highest absolute value will represent the shock structure

of the interaction. The Mach number, defined as the ratio of the local gas speed to

sound speed, showcases sub-sonic and super-sonic flow regions. Since the heat map

is logarithmic, zero represents the local sonic transition. Therefore, in areas with a

logarithmic Mach number less than zero, the flow is sub-sonic, while in areas with a

logarithmic Mach number greater than zero, the flow is super-sonic. One may notice

that sub-sonic flow regions typically occur with a high absolute velocity divergence.

This is the case, as the shocks normally cause the local sound speed to rise drastically

while decelerating the flow, thereby causing the Mach number to decrease.

Once again, observing the heat maps for both cases, particularly the density, thermal

pressure, and velocity divergence, one may notice an extremely interesting dynamic

structure in the left half of the simulation, behind the star, with respect to its direction

of motion. The velocity divergence and thermal pressure plots show that a rarefied

region of extremely low thermal pressure develops around the star, surrounded by an

asymmetric shock structure which connects to the reverse shock in the front of the

star. As time progresses, the star forms a comet-like tail, as one may see by examin-

ing the density heat maps. Even more interesting in the region behind the star is the

presence of weaker oblique shocks and a cascade of even weaker shocks that change

dynamically as the simulation evolves. One may see this structure by following the

evolution of the velocity divergence through time. One may notice that by examining

the density and temperature plots, the contact discontinuity that separated the stellar

wind from the ISM at the front of the star persists into the tail. The hot swept-up

ISM material, which travels through the forward shock, is dynamically transported

backwards into the outer envelope of the tail. In contrast, the stellar wind material

56

which passes through the reverse shock is transported into the cometary structure.

As this material moves through the cometary structure, it then passes through the

weaker oblique shocks, but it is still mostly supersonic. Here, a very interesting mix-

ing occurs, which can be most easily noticed in the Mach number, density, and speed

plots. The material passing through the oblique shock, still mostly supersonic, forms

a shear layer with the subsonic gas, which passes through the shock structure directly

behind the star. Due to the density, temperature, and relative velocity differences at

this interface, as time progresses, this interface becomes unstable due to the shear

flow, and Kelvin-Helmholtz instabilities (Drazin, 2002) develop and begin to mix the

layers. As this mixing occurs, the weaker cascading shocks travelling through this tail

region sweep up and mix the Kelvin-Helmholtz unstable regions even more. All of

the dynamic features occurring within the tail region of the interaction cause a large

amount of turbulence in the flow. Due to its stochastic nature, this turbulence will

manifest as an asymmetry in three-dimensional simulations.1

Below the slice plots is a plot of the polarisation as a percentage per optical depth

and the star’s mass-loss rate, which acts as a proxy for its brightness. The polarisa-

tion increases downward while the mass-loss rate increases upward. This is to help

show the inverse relationship between the two curves. It is notable that, even as time

passes by following the plots in either model, the star’s polarisation and mass-loss

rate exhibit an inverse relationship. The reason for this inverse relationship comes

from the structure of the density data. One may notice a few details by examining

both the density heat maps and the density from the slice plots. The material in

1Although I’ve been as descriptive as possible, one cannot fully appreciate and understand the
rich hydrodynamic structure within the cometary tail of the star from the time slice images alone.
A lot is going on, and it’s hard to keep track. To enrich the experience and fully understand the
structure, one should visit https://mike-power666.github.io/ and examine the animations of the
interaction.

57

the rarefaction fan nearest the wind bubble has extremely high density in all plots.

This is because the star has a large mass-loss rate with a low wind speed. Looking

at the heat map, one may notice that this region, especially nearest the wind bubble,

is quite spherical. Thus, in calculating the polarisation, this region, having a high

density and spherical shape, will tend to decrease the polarisation signal, pushing it

toward a vanishing spherical value. Moving further from the wind bubble boundary,

yet staying in the rarefied region both in the direction of motion and in the tail, the

density continues to decrease, and this region has a prolate shape, meaning it is elon-

gated along the z-axis, the direction of motion. This manifests as an asymmetry that

contributes to a polarisation signal. Next, one encounters the reverse shock, which

compresses the stellar wind material and causes the density to be higher than some

parts in the rarefaction fan.

Since a bow shock is, by nature, an asymmetric structure, this shocked region con-

tributes the majority of the asymmetry in the density profile and thereby contributes

the highest polarisation signal, pushing it away from zero. Also of interest is the

cometary structure of the tail, which has a shock structure that varies with time in all

cases. Due to this, the tail has non-negligible density, contributing to the polarisation

in a capacity that depends upon the shock structure at the given time. One may

picture the manifestation of the inverse relationship in the following way. The mate-

rial making up the bow shock in the region after the reverse shock sustains its highly

compressed value with time. As mentioned, since the bow shock is an asymmetric

structure, this contributes the largest polarisation signal. While the bow shock is

asymmetric, the material in the rarefaction fan near the wind bubble is highly sym-

metric. Since it has a much higher density, it dominates the integral, pushing the

polarisation signal toward zero. However, the density coming from the wind bubble

58

varies with time due to the mass loss of the star varying with time. Thus, when

the mass-loss rate is at a maximum, so too is the density of the wind. Therefore,

the density in the rarefaction fan almost entirely takes over the integral, pushing the

polarisation toward zero, thus causing it to attain a minimum. However, as the mass-

loss rate approaches a minimum, the contribution of the region near the star, while

still symmetric, does not dominate the integral as much since the density is lower

and the value of the density in the compressed region after the reverse shock stays

relatively stable. This causes the asymmetric bow shock to dominate more in the

integral, causing a maximum polarisation signal at minimum mass loss. This inverse

relationship persists in both the constant wind velocity case and the variable wind

velocity case. Whenever the mass loss is at a maximum, the polarisation is roughly

at a minimum. Whenever the mass loss is at a minimum, the polarisation is roughly

at a maximum. Although the physics of the current simulations have been very basic,

and the polarisation being simple Thomson scattering, this is an excellent numerical

demonstration of how the variable wind bow shock hypothesis works in practice to

give the inverse relationship observed between the signals of V CVn.

Another aspect of dynamic interest in this interaction is the onset of a Rayleigh-

Taylor inability (R-TI), which develops at the interface of the contact discontinuity

located at the apex of the bow shock. In 1950, Taylor (1950) discovered that the

instability found by Lord Rayleigh (Rayleigh, 1879) involving the interface between

a fluid of higher density sitting on top of a fluid of lower density in a gravitational

field is far more general and happens under any acceleration, not just gravitational

(Sharp, 1984). According to Drazin (2002), “there is instability if and only if the net

acceleration is directed from the lighter toward the heavier fluid.” The R-TI begins

with a perturbation in the density profile, likely caused here by numerical viscosity.

59

It then grows as ‘fingers’ in the linear regime of the instability and quickly grows into

‘mushroom-type clouds’ which are susceptible to the Kelvin-Helmholtz instability. In

the case of the simulations presented here in this work, a net acceleration is caused

by the material passing through the forward shock and decelerating the contact dis-

continuity at the apex of the bow shock. Due to the high density of the stellar wind

being swept up by the reverse shock, the left-hand side of the contact discontinuity

(closer to the star) is far denser than the right-hand side of the contact discontinuity

(the ISM material swept up by the forward shock). Since the shocked ISM material

is causing a deceleration to the contact discontinuity, this is a net acceleration point-

ing from the direction of the much less dense shocked ISM to the much more dense

shocked stellar wind across the contact. The numerical viscosity then initiates the

R-TI in the contact discontinuity, which first acts as fingers. When the mushroom-

type structures begin to form, which are Kelvin-Helmholtz unstable in the non-linear

regime of the R-TI, they don’t have enough time to grow too much because they

are swept into the shear flow of the shocked ISM material making its way into the

tail. However, this behaviour, along with the mixing of the ‘fingers’, can cause large

perturbations to grow at the interface of the contact discontinuity, leading to the tail

destabilizing slightly and changing the morphology. This can be seen toward the end

of the simulation of the constant stellar wind velocity case, Figure 3.15.2 This result

should be taken cautiously, as these simulations are only two-dimensional. Full three-

dimensional simulations should be examined if one wishes to probe if this instability

is truly real. There is some precedent for the onset of this R-TI in the literature, in

the work of Villaver et al. (2012), who used the other version of Zeus3D from Stone

and Norman (1992), as well as Meyer et al. (2014). Lastly, another interesting aspect

of the results is the temperature structure in the tail. Due to the shock heating, the

2If one wishes to see and understand this behaviour, it is recommended to view the animation for
the density heat map on https://mike-power666.github.io/.

60

tail attains an extremely high temperature. This indicates numerical evidence of a

“Mira-like tail” (Neilson et al., 2014).

61

3.2 Static Wind Velocity Results

Table 3.1: Constant Wind Velocity Simulation Parameters

Stellar Wind Parameters

Variable Value (Common) Value (CGS) Meaning

˙̄M 2.0× 10−7 M� yr−1 1.2610× 10+19 Average mass-loss rate
v̄w 25 km s−1 2.5000× 10+06 Average Wind Speed
τ 195 days 1.6848× 10+07 Period
ω 1.8647× 10−07 Frequency
Tw 3.2000× 10+03 Wind Temperature
Rw 2.0000× 10+15 Wind Bubble Radius
η 10 mass-loss rate Ratio
λ Wind Speed Ratio
ζ 12.9057 Wind Bubble Size Ratio

ISM Parameters

Variable Value (Common) Value (CGS) Meaning

v∗ 150 km s−1 1.5000× 10+07 ISM Speed
n0 1.0000× 10+01 ISM Number Density
ρ0 1.6735× 10−23 ISM Density
T0 2.5000× 10+01 ISM Temperature
e0 5.1774× 10−14 ISM Internal Energy

Other Parameters

Variable Value (Common) Value (CGS) Meaning

m̄ 1.0078 u 1.6736× 10−24 Mean Particle Mass
R̄SO 1725.38 AU 2.5811× 10+16 Standoff Distance
RSim 0.162 Pc 5.0000× 10+17 Radius of Simulation
tSim 22181 Julian Years 7.0000× 10+11 Total Simulation Time

Time-Varying Parameters

Variable Functional Form (CGS)

Ṁ(t) (2.2927× 10+18) + (2.0635× 10+19) · sin2(ωt)
ρw(t) (1.8245× 10−20) + (1.6420× 10−19) · sin2(ωt)
vw(t)
ew(t) (7.2248× 10−09) + (6.5023× 10−08) · sin2(ωt)

62

Figure 3.1: From left to right, top to bottom, this Figure represents a heat map of the
logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 8.7500× 1010 s for the static wind
velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm, and
each radial line (gray) indicates an angular increment of π/4 radians. All units are
cgs unless otherwise indicated.

63

Figure 3.2: From left to right, top to bottom, the 1-dimensional slices along θ = 0 (the
direction of motion of V CVn) of the logarithms of the density (blue), thermal pressure
(red), temperature (blue), and radial velocity (red) at time t = 8.7500 × 1010 s. All
are plotted against the logarithm of the radial coordinate. The bottom plot from left
to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

64

Figure 3.3: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 8.7500 × 1010 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 8.7500 × 1010 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

65

Figure 3.4: From left to right, top to bottom, this Figure represents a heat map of the
logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 1.7500× 1011 s for the static wind
velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm, and
each radial line (gray) indicates an angular increment of π/4 radians. All units are
cgs unless otherwise indicated.

66

Figure 3.5: From left to right, top to bottom, the 1-dimensional slices along θ = 0 (the
direction of motion of V CVn) of the logarithms of the density (blue), thermal pressure
(red), temperature (blue), and radial velocity (red) at time t = 1.7500 × 1011 s. All
are plotted against the logarithm of the radial coordinate. The bottom plot from left
to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

67

Figure 3.6: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 1.7500 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 1.7500 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

68

Figure 3.7: From left to right, top to bottom, this Figure represents a heat map of the
logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 4.3750× 1011 s for the static wind
velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm, and
each radial line (gray) indicates an angular increment of π/4 radians. All units are
cgs unless otherwise indicated.

69

Figure 3.8: From left to right, top to bottom, the 1-dimensional slices along θ = 0 (the
direction of motion of V CVn) of the logarithms of the density (blue), thermal pressure
(red), temperature (blue), and radial velocity (red) at time t = 4.3750 × 1011 s. All
are plotted against the logarithm of the radial coordinate. The bottom plot from left
to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

70

Figure 3.9: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 4.3750 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 4.3750 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

71

[!h]

Figure 3.10: From left to right, top to bottom, this Figure represents a heat map of
the logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 7.0000× 1011 s for the static wind
velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm, and
each radial line (gray) indicates an angular increment of π/4 radians. All units are
cgs unless otherwise indicated.

72

Figure 3.11: From left to right, top to bottom, the 1-dimensional slices along θ = 0
(the direction of motion of V CVn) of the logarithms of the density (blue), thermal
pressure (red), temperature (blue), and radial velocity (red) at time t = 7.0000×1011 s.
All are plotted against the logarithm of the radial coordinate. The bottom plot from
left to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

73

Figure 3.12: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 7.0000 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again, from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 7.0000 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

74

3.3 Variable Wind Velocity Results

Table 3.2: Variable Wind Velocity Simulation Parameters

Stellar Wind Parameters

Variable Value (Common) Value (CGS) Meaning

˙̄M 2.0× 10−7 M� yr−1 1.2610× 10+19 Average mass-loss rate
v̄w 25 km s−1 2.5000× 10+06 Average Wind Speed
τ 195 days 1.6848× 10+07 Period
ω 3.7293× 10−07 Frequency
Tw 3.2000× 10+03 Wind Temperature
Rw 2.0000× 10+15 Wind Bubble Radius
η 10 mass-loss rate Ratio
λ 3 Wind Speed Ratio
ζ 12.9057 Wind Bubble Size Ratio

ISM Parameters

Variable Value (Common) Value (CGS) Meaning

v∗ 150 km s−1 1.5000× 10+07 ISM Speed
n0 1.0000× 10+01 ISM Number Density
ρ0 1.6735× 10−23 ISM Density
T0 2.5000× 10+01 ISM Temperature
e0 5.1774× 10−14 ISM Internal Energy

Other Parameters

Variable Value (Common) Value (CGS) Meaning

m̄ 1.0078 u 1.6736× 10−24 Mean Particle Mass
R̄SO 1725.38 AU 2.5811× 10+16 Standoff Distance
RSim 0.162 Pc 5.0000× 10+17 Radius of Simulation
tSim 22181 Julian Years 7.0000× 10+11 Total Simulation Time

Time-Varying Parameters

Variable Functional Form (CGS)

Ṁ(t) (1.1114× 10+19) + (1.1541× 10+19) · sin(ωt)
+(3.2693× 10+18) · sin2(ωt)

ρw(t) (8.8442× 10−20) + (4.7622× 10−20) · sin(ωt)
vw(t) (2.5000× 10+06) + (1.2500× 10+06) · sin(ωt)
ew(t) (3.5022× 10−08) + (1.8858× 10−08) · sin(ωt)

75

Figure 3.13: From left to right, top to bottom, this Figure represents a heat map of
the logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 8.7500 × 1010 s for the variable
wind velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm,
and each radial line (gray) indicates an angular increment of π/4 radians. All units
are cgs unless otherwise indicated.

76

Figure 3.14: From left to right, top to bottom, the 1-dimensional slices along θ = 0
(the direction of motion of V CVn) of the logarithms of the density (blue), thermal
pressure (red), temperature (blue), and radial velocity (red) at time t = 8.7500×1010 s.
All are plotted against the logarithm of the radial coordinate. The bottom plot from
left to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

77

Figure 3.15: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 8.7500 × 1010 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 8.7500 × 1010 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

78

Figure 3.16: From left to right, top to bottom, this Figure represents a heat map of
the logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 1.7500 × 1011 s for the variable
wind velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm,
and each radial line (gray) indicates an angular increment of π/4 radians. All units
are cgs unless otherwise indicated.

79

Figure 3.17: From left to right, top to bottom, the 1-dimensional slices along θ = 0
(the direction of motion of V CVn) of the logarithms of the density (blue), thermal
pressure (red), temperature (blue), and radial velocity (red) at time t = 1.7500×1011 s.
All are plotted against the logarithm of the radial coordinate. The bottom plot from
left to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

80

Figure 3.18: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 1.7500 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 1.7500 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

81

Figure 3.19: From left to right, top to bottom, this Figure represents a heat map of
the logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 4.3750 × 1011 s for the variable
wind velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm,
and each radial line (gray) indicates an angular increment of π/4 radians. All units
are cgs unless otherwise indicated.

82

Figure 3.20: From left to right, top to bottom, the 1-dimensional slices along θ = 0
(the direction of motion of V CVn) of the logarithms of the density (blue), thermal
pressure (red), temperature (blue), and radial velocity (red) at time t = 4.3750×1011 s.
All are plotted against the logarithm of the radial coordinate. The bottom plot from
left to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

83

Figure 3.21: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 4.3750 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 4.3750 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed, so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

84

Figure 3.22: From left to right, top to bottom, this Figure represents a heat map of
the logarithms of density, thermal pressure, temperature, absolute velocity divergence,
Mach number, and speed, at a problem time of t = 7.0000 × 1011 s for the variable
wind velocity case. Each concentric circle (gray) indicates a distance of 1.0× 1017 cm,
and each radial line (gray) indicates an angular increment of π/4 radians. All units
are cgs unless otherwise indicated.

85

Figure 3.23: From left to right, top to bottom, the 1-dimensional slices along θ = 0
(the direction of motion of V CVn) of the logarithms of the density (blue), thermal
pressure (red), temperature (blue), and radial velocity (red) at time t = 7.0000×1011 s.
All are plotted against the logarithm of the radial coordinate. The bottom plot from
left to right is the residual polarisation as a fraction of the optical depth in percentage
(blue) and the mass-loss rate of the star (red). The time coordinates for this plot
are the nearest 80 points to the time of the slice. All units are cgs unless otherwise
indicated.

86

Figure 3.24: From left to right, top to bottom, the 1-dimensional slices along θ = π/2
(perpendicular to the direction of motion of V CVn) of the logarithms of the density
(blue), thermal pressure (red), temperature (blue), and radial velocity (red) at time
t = 7.0000 × 1011 s. All are plotted against the logarithm of the radial coordinate.
Once again from left to right, top to bottom for the lower two plots, the 1-dimensional
slices along θ = π (opposed to the direction of motion of V CVn) of the logarithms
of the density (blue), thermal pressure (red), temperature (blue), and radial velocity
(red) at time t = 7.0000 × 1011 s. All are plotted against the logarithm of the radial
coordinate, but the axis is reversed so it is easier to imagine going from the star
through the tail. All units are cgs unless otherwise indicated.

87

3.4 Cross-Correlation Functions for Polarisation and

Mass-Loss Rate Data

While the polarisation and mass-loss rate plots at various short time slices allow

one to gain an understanding of the relationship between the variables, the entire

dataset of over 20000 years cannot be shown in this way on a singular plot due to how

quickly the data oscillates compared to the total period. Therefore, another method

of displaying the entire dataset coupled with the plots is required to fully understand

the relationship. The most useful and intuitive process for showing the relationship

between the variables in the whole dataset is a normalised cross-correlation function.

The definition of a cross-correlation function (Press et al., 2003) is

C(τl) =

∫ ∞
−∞

PR(t)Ṁ(t+ τl) dt. (3.1)

Here, τl represents the lag. For this work, the normalisation of the cross-correlation

function has a mean which vanishes, and a standard deviation of unity. This causes

the interpretation of the function to be easier to understand. When the normalized

cross-correlation function has a strong positive value, it means that the dataset has a

strong linear relationship. Conversely, when the normalized cross-correlation function

has a strong negative value, it means that the dataset has a strong inverse relation-

ship. Weak values or vanishing values imply little or no correlation in the dataset,

respectively. Mathematically,

Ĉ(τl) =
C(τl)− µ(C(τl))

σ(C(τl))
. (3.2)

88

Here, Ĉ(τl) is the normalised cross-correlation function, µ(C(τl)) represents the mean

of the cross-correlation function, and σ(C(τl)) represents the standard deviation of

the cross-correlation function.3 One may show, using Figures 3.25 and 3.26, that the

normalised cross-correlation function for each model of V CVn has a strong negative

peak near zero, and at zero lag, they also have a strong negative value. This implies

that the functions have a strong inverse relationship across the entire dataset, due

to the mean and standard deviation of Ĉ(τl). However, one may notice that the

cross-correlation function does not peak at the origin; rather, it peaks in the negative

direction near the origin. Thus, while the actual data is strongly inversely related as

is, it is not naturally maximally inversely related. Instead, the polarisation leads the

mass-loss rate by a small number of days for each of the models.

3If one wishes to see the calculation, the code is contained within Appendix A. This code will not
be uploaded to https://mike-power666.github.io/, as it is not maximally efficient (this should
really be accomplished with FFT), nor does it completely meet this author’s usual coding standards
(it was made relatively rapidly and therefore is a bit messy)! If one wishes to acquire this code
for some reason, look on https://mike-power666.github.io/ for a current email address, and the
code may be provided upon request.

89

Figure 3.25: The normalised cross-correlation function of the residual polarisation and
mass-loss rate for the static wind case of V CVn (blue) plotted against the lag time,
τl in days. The dashed line (red), located at τl ≈ −8.5 days with a corresponding
value of Ĉ(τl) ≈ −1.42274, represents a local minimum of the function. Due to
the normalisation condition, this function value means that the residual polarisation
and mass-loss rate have an extremely strong inverse relationship. Since the local
minimum doesn’t occur exactly at zero lag, it means that the polarisation leads the
mass-loss rate by about 8.5 days. However, they still have an extremely strong inverse
relationship across the dataset.

90

Figure 3.26: The normalised cross-correlation function of the residual polarisation and
mass-loss rate for the variable wind case of V CVn (blue) plotted against the lag time,
τl in days. The dashed line (red), located at τl ≈ −15.5 days with a corresponding
value of Ĉ(τl) ≈ −1.52166, represents a local minimum of the function. Due to the
normalisation condition, this function value means that the residual polarisation and
mass-loss rate have an extremely strong inverse relationship. Since the local minimum
doesn’t occur exactly at zero lag, it means that the polarisation leads the mass-loss rate
by about 15.5 days. However, they still have an extremely strong inverse relationship
across the dataset.

Chapter 4

Conclusions and Future Work

The reward for work well done is the opportunity to do more.

Jonas E. Salk

With the new framework for Zeus3D developed for this thesis, one may use its full

capabilities to simulate the interaction of stellar winds, which may vary with time,

and the ISM. Any physics that Zeus3D is capable of simulating works with the rou-

tines, and Zeus3D can now also calculate the Stokes parameters of a density field as

it evolves with time. Some of the features of this new framework for stellar wind

interactions include, but are not limited to, magnetic fields, stellar rotation, general

asymmetric wind profiles, time-varying wind profiles, non-uniform ISM, multiple wind

bubbles (for wind-wind interactions; Cartesian coordinates only), and external ani-

mation and plotting routines.

The results of both numerical models for the wind of the star V CVn show that

the polarisation signal produced varies inversely with its mass-loss rate (a proxy for

the star’s brightness). Observations of V CVn show that polarisation and brightness

92

are roughly inversely correlated. Therefore, this work provides strong numerical evi-

dence that when the mass loss of the star is at its maximum, the envelope around the

star is dense, meaning it dominates the polarisation integrals, and quite symmetric,

meaning it tends to push the polarisation signal to zero causing it to attain a mini-

mum. Conversely, when the mass-loss rate is at a minimum, the stellar wind material

and the compressed ISM material in the post-shock regions of the asymmetric bow

shock begin to contribute much more to the polarisation integral in comparison to the

far less dense symmetric shell around the star at a minimum mass-loss rate. There-

fore, the asymmetric structure of the bow shock pushes the polarisation signal to a

maximum. Though the physics used in these models has been as simple as possible,

additions such as Mie scattering will only strengthen the polarisation signal, thereby

strengthening the results. Thus, it is extremely plausible that the curious case of V

CVn is solved by the existence of an asymmetric stellar wind bow shock driven by a

dusty pulsating wind.

Moving forward, there are many possibilities for continuing this work. The first and

most obvious is full three-dimensional simulations if one has access to sufficient com-

putational power. The problem with needing to simulate a bow shock for tens of

thousands of years, driven by a wind which varies on the order of two hundred days,

is that the wind evolution requires a time step small enough to resolve it adequately. In

three dimensions, this constraint severely increases the computational cost. However,

three-dimensional simulations immediately give access to several pieces of information.

Most important is the calculation of the full suite of Stokes parameters. Having all

Stokes parameters changes the polarisation to PR =
√
Q2 + U2, but now gives access

to information about the polarisation position angle defined by tan(2ψ) = U/Q. The

polarisation is not the only strange behaviour of V CVn; it is also the near-constant

93

position angle. In three dimensions, asymmetries in the envelope caused by insta-

bilities and turbulence will manifest as a variation in the polarisation position angle.

However, these variations will likely be quite small, and therefore, one may find a

nearly constant position angle and contribute more evidence to the variable wind bow

shock hypothesis.

Second, more realistic physics should be included. The simplest of which is radia-

tive cooling. Zeus3D is already capable of radiative cooling (Raga et al., 1997), and

one may turn it on by simply aliasing the cooling flags. This will cause the hot, dense

regions between the forward and reverse shocks to cool and decrease the thickness

of the bow shock. Also, bow shocks from slow winds and fast relative ISM velocity

are subject to radiative instabilities, which tend to shred the bow shock. It would

be interesting to see how this would affect the polarisation signal. Other extremely

important physics would include Mie scattering by either adding a routine to calcu-

late it in Zeus3D or using the established framework to export the time variation of

the density field for use by the SLIP code of Shrestha et al. (2021). Mie scattering

is severely more realistic and will help amplify the polarisation signal coming from

the bow shock, which will likely cause the signal to become closer to the observed

strength. Moreover, one could also include the effects of multiple scattering instead of

single scattering. Once again, this process will aim to increase the polarisation signal

from the bow shock, likely lifting it closer to observed levels.

Finally, the most difficult and possibly the least impactful addition would be that

of a proper stellar wind model, which could be fed into Zeus3D to govern the time

variation of the wind bubble boundary conditions. As one may have noticed, the

two models used have different methods of varying the mass-loss rate. However, the

94

results show qualitatively similar behaviour in the polarisation plots. Therefore, it

doesn’t seem like the process by which the wind pulsates with time would have a

massive impact on the nature of the inverse relationship. However, it could affect the

signal’s strength and morphological features in the tail and shock structure. There is,

however, a caveat. If, for some reason, the velocity of the stellar wind and the density

were to vary out of phase with one another, it could be the case that the maximum

density will not always coincide with the maximum mass loss. One may think of this

by considering a case where the velocity is at a maximum, but the density is at some

intermediate value and decreasing. This could correspond to a local maximum mass

loss but average density. This would cause the polarisation signal not to attain a

minimum at this point (since it depends on the density of the dusty spherical shell

around the star). Therefore, this could manifest as a lead/lag time in the polarisation

and mass loss space. It is thought that V CVn has multiple periods, most notably

τ = 184 days and τ = 195 days. One could contrive a model similar to the one in this

thesis, which has velocity and density variations with different periods. One would

have to devise a method of justifying this physically, but it could be an interesting

experiment, even if it is unjustifiable!

References

Arfken, G. B., Weber, H. J., and Harris, F. E. (2012). Mathematical Methods for

Physicists: A Comprehensive Guide. Academic Press, London, 7th edition.

Babusiaux, C., Fabricius, C., Khanna, S., et al. (2023). Gaia Data Release 3. Cata-

logue validation. Astronomy & Astrophysics, 674:A32.

Baranov, V. B., Krasnobaev, K. V., and Kulikovskii, A. G. (1971). Soviet phys.–dokl.

Soviet Physics–Doklady, 15:791.

Berger, M. and Colella, P. (1989). Local adaptive mesh refinement for shock hydro-

dynamics. Journal of Computational Physics, 82(1):64–84.

Bohren, C. F. and Huffman, D. R. (1983). Absorption and Scattering of Light by

Small Particles. Wiley-Interscience.

Brown, J. C. and McLean, I. S. (1977). Polarisation by thomson scattering in optically

thin stellar envelopes. i. source star at centre of axisymmetric envelope. Astronomy

and Astrophysics, 57:141.

Brown, J. C., McLean, I. S., and Emslie, A. G. (1978). Polarisation by thomson

scattering in optically thin stellar envelopes. ii. binary and multiple star envelopes

and the determination of binary inclinations. Astronomy and Astrophysics, 68:415–

427.

96

Brown, W. R., Geller, M. J., Kenyon, S. J., and Kurtz, M. J. (2006). Hypervelocity

stars. i. the spectroscopic survey. The Astrophysical Journal, 647(1):303.

Carroll, B. W. and Ostlie, D. A. (2007). An Introduction to Modern Astrophysics.

2nd (international) edition.

Clarke, D. (2010a). Stellar Polarimetry. Wiley-VCH, Berlin.

Clarke, D. A. (1996). A Consistent Method of Characteristics for Multidimensional

Magnetohydrodynamics. Astrophysical Journal, 457:291.

Clarke, D. A. (2010b). On the reliability of zeus-3d. The Astrophysical Journal

Supplement Series, 187(1):119.

Clarke, D. A. (2010c). ZEUS-3D User Manual. Institute for Computational Astro-

physics, Saint Mary’s University, Halifax, NS, Canada. Revised versions: 7/11;

11/13; 3/15.

Clarke, D. A. (2016). What is ZEUS-3D? Institute for Computational Astrophysics,

Saint Mary’s University, Halifax, NS, Canada. Copyright c© David A. Clarke, 2016.

Clarke, D. A. (2023). Private communication. Discussion regarding computational

magnetohydrodynamics using the code Zeus3D.

Colella, P. (1982). Local refinement techniques for elliptic problems on cell-centered

grids. Journal of Computational Physics, 37(3):367–382.

Colella, P. and Woodward, P. R. (1984). The piecewise parabolic method (ppm) for

gas-dynamical simulations. Journal of Computational Physics, 54(1):174–201.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen differenzengle-

ichungen der mathematischen physik. Mathematische Annalen, 100(1):32–74.

97

Courant, R., Friedrichs, K., and Lewy, H. (1956). On the partial difference equations

of mathematical physics. IBM Journal of Research and Development, 11(2):215–

234.

De Beck, E., Decin, L., de Koter, A., Justtanont, K., Verhoelst, T., Kemper, F., and

Menten, K. M. (2010). Probing the mass-loss history of agb and red supergiant

stars from co rotational line profiles* - ii. co line survey of evolved stars: derivation

of mass-loss rate formulae. A&A, 523:A18.

Drazin, P. G. (2002). Introduction to Hydrodynamic Stability. Cambridge University

Press, Cambridge.

Freyer, T., Hensler, G., and Yorke, H. W. (2003). Massive Stars and the Energy

Balance of the Interstellar Medium. I. The Impact of an Isolated 60 Msolar Star.

Astrophysical Journal, 594(2):888–910.

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., Vallenari, A.,

Babusiaux, C., Bailer-Jones, C. A. L., et al. (2016). The Gaia mission. Astronomy

& Astrophysics, 595:A1.

Gaia Collaboration, Vallenari, A., Brown, A. G. A., Prusti, T., de Bruijne, J. H. J.,

et al. (2023). Gaia Data Release 3. Summary of the content and survey properties.

Astronomy & Astrophysics, 674:A1.

Gies, D. R. and Bolton, C. T. (1986). The Binary Frequency and Origin of the OB

Runaway Stars. Astrophysical Journal Supplement, 61:419.

Henny, J. G. L. M. L. and Cassinelli, J. P. (1999). Introduction to Stellar Winds.

Cambridge University Press, Cambridge.

98

Hoogerwerf, R., de Bruijne, J. H. J., and de Zeeuw, P. T. (2001). On the origin of

the O and B-type stars with high velocities. II. Runaway stars and pulsars ejected

from the nearby young stellar groups. Astronomy and Astrophysics, 365:49–77.

Landau, L. D. and Lifshitz, E. M. (1987). Fluid Mechanics. Pergamon Press, Oxford,

UK, 2nd edition.

Luna, G., Zijlstra, A., Marigo, P., Girardi, L., and Pastorelli, G. (2021). Semi-regular

red giants as distance indicators. Astronomy & Astrophysics, 656:A66.

Mackey, J., Green, S., Moutzouri, M., Haworth, T. J., Kavanagh, R. D., Zargaryan,

D., and Celeste, M. (2021). Pion: Simulating bow shocks and circumstellar nebulae.

Monthly Notices of the Royal Astronomical Society, 504:983–1008.

Mackey, J., Mohamed, S., Neilson, H. R., Langer, N., and Meyer, D. M. (2012). Double

bow shocks around young, runaway red supergiants: Application to betelgeuse.

Astrophysical Journal Letters, 751.

Magalhães, A. M., Coyne, G. V., and Benedetti, E. K. (1986). Polarimetry of stars

with infrared excesses. ii. The Astronomical Journal, 91:919.

Meyer, D. M., Gvaramadze, V. V., Langer, N., Mackey, J., Boumis, P., and Mohamed,

S. (2014). On the stability of bow shocks generated by red supergiants: The case

of irc -10414. Monthly Notices of the Royal Astronomical Society: Letters, 439.

Neilson, H., Steenken, N., Simpson, J., Ignace, R., Shrestha, M., Erba, C., and Hen-

son, G. (2023). A multiyear photopolarimetric study of the semi-regular variable v

cvn and identification of analog sources. Astronomy and Astrophysics, 677.

Neilson, H. R., Ignace, R., Smith, B. J., Henson, G., and Adams, A. M. (2014).

99

Evidence of a mira-like tail and bow shock about the semi-regular variable v cvn

from four decades of polarization measurements. Astronomy and Astrophysics, 568.

Poliakova, T. A. (1981). Study on the structure of stellar atmospheres. Leningradskii

Universitet Vestnik Matematika Mekhanika Astronomiia, 2:105.

Power, M. T. (2018). On the theory of ambipolar diffusion, with applications

to astrophysical jets. Bachelor’s Thesis. Saint Mary’s University, Halifax, N.S.

http://library2.smu.ca/handle/01/27887.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2003). Numer-

ical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University

Press, Cambridge, 2nd edition.

Raga, A. C., Mellema, G., and Lundqvist, P. (1997). An axisymmetric, radiative bow

shock model with a realistic treatment of ionization and cooling. The Astrophysical

Journal Supplement Series, 109(2):517.

Rayleigh, L. (1879). On the dynamical theory of gravitation. Proceedings of the Royal

Society of London, 10:170–177.

Richardson, L. F. (1911). The approximate arithmetical solution by finite differences

of physical problems involving differential equations, with an application to the

stresses in a masonry dam. Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or Physical Character,

210:307–357.

Richardson, L. F. and Gaunt, J. A. (1927). The deferred approach to the limit.

Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, 226:299–361.

100

Safonov, B. S., Dodin, A. V., Lamzin, S. A., and Rastorguev, A. S. (2019). The

circumstellar envelope of the semiregular variable star v cvn. Astronomy Letters,

45:453–461.

Sharp, D. H. (1984). An overview of rayleigh-taylor instability. Physica D: Nonlinear

Phenomena, 12:3–18.

Shrestha, M., Neilson, H. R., Hoffman, J. L., and Ignace, R. (2018). Polarization

simulations of stellar wind bow-shock nebulae - i. the case of electron scattering.

Monthly Notices of the Royal Astronomical Society, 477:1365–1382.

Shrestha, M., Neilson, H. R., Hoffman, J. L., Ignace, R., and Fullard, A. G. (2021).

Polarization simulations of stellar wind bow shock nebulae - ii. the case of dust

scattering. Monthly Notices of the Royal Astronomical Society, 500:4319–4337.

Sod, G. A. (1978). A survey of several finite difference methods for systems of nonlinear

hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31.

Stone, J. M. and Norman, M. L. (1992). ZEUS-2D: A Radiation Magnetohydrodynam-

ics Code for Astrophysical Flows in Two Space Dimensions. I. The Hydrodynamic

Algorithms and Tests. Astrophysical Journal Supplement, 80:753.

Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction

perpendicular to their planes. Proceedings of the Royal Society of London. Series

A, Mathematical and Physical Sciences, 201(1065):192–196.

van Leer, B. (1977). Towards the ultimate conservative difference scheme. ii. mono-

tonicity and conservation combined in a second-order scheme. Journal of Compu-

tational Physics, 23:276.

101

van Marle, A. J., Langer, N., Achterberg, A., and Garćıa-Segura, G. (2006). Form-

ing a constant density medium close to long gamma-ray bursts. Astronomy and

Astrophysics, 460(1):105–116.

Villaver, E., Manchado, A., and Garćıa-Segura, G. (2012). The interaction of asymp-

totic giant branch stars with the interstellar medium. Astrophysical Journal, 748.

Von Neumann, J. and Richtmyer, R. D. (1950). A Method for the Numerical Calcu-

lation of Hydrodynamic Shocks. Journal of Applied Physics, 21(3):232–237.

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova,

F., Jasniewicz, G., Laloë, S., Lesteven, S., and Monier, R. (2000). The simbad astro-

nomical database: The cds reference database for astronomical objects. Astronomy

and Astrophysics Supplement Series, 143(1):9–22.

Wilkin, F. P. (1996). Exact analytic solutions for stellar wind bow shocks. The

Astrophysical Journal, 459:L31–L34.

Wolff, M. J., Nordsieck, K. H., and Nook, M. A. (1996). An ultraviolet interstel-

lar polarization survey: Stars with high color excess. The Astronomical Journal,

111(2):856.

Young, H. D. and Freedman, R. A. (2019). University Physics with Modern Physics.

Pearson.

Appendix A

A Cross-Correlation Calculator

1 !--

2 ! Memorial University of Newfoundland, MSc Student

3 !--

4 !

5 ! PROGRAM: Cross_Correlation

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> This is the main program to execute the steps to calculate a

12 !> cross-correlation function between the polarisation signal of V CVn and

13 !> its mass-loss rate.

14 !

15 ! REVISION HISTORY:

16 ! 25/06/2024 - Initial Version

17 !--

18
19 program Cross_Correlation

20 use Load_Data_Module

21 use Correlation_Module

22 implicit none

23
24 real(8) :: tau_start, tau_end, tau_step

25
26 ! Call Load_Data, giving access to the Thomson arrays.

27 call Load_Data('ThomsonScattering_tr.txt')

28
29 ! Initialize the lags at which to calculate the cross-correlation function (in days).

30 tau_start = -195.0d0

31 tau_end = 195.0d0

32 tau_step = 2.5d-1

33
34 ! Call Correlation begin the calculation.

35 call Correlation(tau_start, tau_end, tau_step)

36
37 end program Cross_Correlation

1 !--

2 ! Memorial University of Newfoundland, MSc Student

3 !--

4 !

5 ! MODULE: Load_Data

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> This module opens a file and loads the data into arrays, while avoiding

12 !> "gotchas".

13 !

14 ! REVISION HISTORY:

15 ! 25/06/2024 - Initial Version

103

16 !--

17
18 module Load_Data_Module

19 implicit none

20 real(8), dimension(:), allocatable :: t, gam

21 integer :: nmax

22 contains

23
24 subroutine Load_Data(filename)

25 character(len=*), intent(in) :: filename

26 integer :: i, unit_num, num_lines

27 character(len=100) :: line ! This should be adjusted for dynamical allocation.

28 logical :: logic_dummy

29
30 ! Determine a unit number for the file.

31 do unit_num = 10, 99

32 inquire(unit=unit_num, opened=logic_dummy)

33 if (logic_dummy .eqv. .false.) exit ! Exit the loop if the unit number was not in use.

34
35 ! Idiot proofing if too many files are opened.

36 if (unit_num .eq. 99) then

37 print *, "Too many files opened. Load_Data failed."

38 stop

39 end if

40 end do

41
42 ! Open the file.

43 open(newunit=unit_num, file=filename, status='old', action='read', iostat=i)

44 ! Idiot proofing.

45 if (i /= 0) then

46 print *, "Error opening file: ", trim(filename)

47 stop

48 end if

49
50 ! Determine number of lines in the file for array allocation.

51 num_lines = 0

52 do

53 read(unit_num, '(A)', iostat=i) line

54 if (i /= 0) exit ! Exit loop at end of file or error.

55 num_lines = num_lines + 1

56 end do

57
58 ! Allocate memory for arrays.

59 allocate(t(num_lines), gam(num_lines))

60
61 ! Rewind the file to read data.

62 rewind(unit_num)

63
64 ! Read data from the file into allocated arrays.

65 do i = 1, num_lines

66 read(unit_num, *) t(i), gam(i)

67 end do

68
69 ! Close the file.

70 close(unit_num)

71
72 ! Set nmax to the number of lines read.

73 nmax = num_lines

74
75 print *, "Data loaded successfully from file: ", trim(filename)

76 end subroutine Load_Data

77
78 end module Load_Data_Module

1 !--

2 ! Memorial University of Newfoundland, MSc Student

3 !--

4 !

5 ! MODULE: Correlation

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> This module controls the calculation, normalization, and data output of the

12 !> cross-correlation function. It is parallelized for OpenMP.

13 !

14 ! REVISION HISTORY:

15 ! 26/06/2024 - Initial Version

16 !--

17
18 module Correlation_Module

19 use Data_Output_Module

20 use OMP_Lib

21 use Load_Data_Module

22 use Normalization_Module

23 implicit none

104

24 real(8), dimension(:), allocatable :: tau, C

25 integer :: tau_max_index

26
27 contains

28
29 subroutine Correlation(tau_start, tau_end, tau_step)

30 use Romberg_Module

31
32 real(8), intent(in) :: tau_start, tau_end, tau_step

33 integer :: j

34 real(8) :: tau_in_seconds, t_start, t_end, maxerror

35 real(8), dimension(:), allocatable :: temp_array

36
37 ! Initialize start and end times of the integral.

38 t_start = t(1)

39 t_end = t(nmax)

40
41 ! Initialize a maximum error for the integration.

42 maxerror = 1.0d-5

43
44 ! Calculate tau_max_index, the number of entries for the tau and C arrays.

45 tau_max_index = int((tau_end - tau_start) / tau_step) + 1

46
47 ! Allocate memory for tau and C arrays

48 allocate(tau(tau_max_index), C(tau_max_index))

49
50 ! Calculate tau and C arrays

51 !£omp parallel do private(j, tau_in_seconds) shared(tau, C)

52 do j = 1, tau_max_index

53 tau_in_seconds = (tau_start + real(j-1, kind=8) * tau_step) * 2.4d1 * 3.6d3 ! Convert tau to seconds.

54 tau(j) = tau_in_seconds

55 ! Call Romberg module here to calculate C(j).

56 call Romberg(t_start, t_end, maxerror, 1, tau(j), C(j))

57 end do

58 !£omp end parallel do

59
60 ! Calculate the statistically normalized Correlation function.

61 allocate(temp_array(tau_max_index))

62 call Normalization(C, tau, tau_max_index, temp_array)

63
64 ! Call Data_Output to prepare a file for plotting.

65 call Data_Output(tau, temp_array, 'Cross_Correlation_Data.txt')

66 deallocate(temp_array)

67
68 end subroutine Correlation

69
70 end module Correlation_Module

1 !--

2 ! Saint Mary's University, Honours Student

3 !--

4 !

5 ! MODULE: Romberg

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> A Romberg numerical integrator. This program will output the numerical value

12 !> of the definite integral of your function.

13 !

14 ! REVISION HISTORY:

15 ! 29/04/2017 - Initial Version

16 ! 14/05/2018 - Revision 1

17 !> Expunged all goto statements from the original FORTRAN77 version of this

18 !> algorithm and replaced them with while loops and more clear exit conditions.

19 ! 26/06/2024 - Revision 2

20 !> Refactored the original algorithm to be more modular and specialized it to

21 !> the cross-correlation problem. Also, an interesting bug was found when the

22 !> array, T, was passed into EM in modern fortran. See the EM subroutine for

23 !> a more extensive comment.

24 !--

25
26 module Romberg_Module

27 use Integrand_Module

28 implicit none

29
30 contains

31
32 subroutine Romberg(A, B, MaxError, flag, param, Result)

33 integer, intent(in) :: flag

34 real(8), intent(in) :: A, B, MaxError, param

35 real(8), intent(out) :: Result

36 real(8), dimension(:,:), allocatable :: T

37 real(8) :: R, RError, H

38 integer :: Q, j, k, m

39

105

40 ! Initialize constants and arrays.

41 Q = 250

42 allocate(T(Q, 0:Q))

43
44 ! Compute the first E.M. sum.

45 H = (B - A) / 2.0d0

46 T(1, 0) = H * (Integrand(A, flag, param) + Integrand(B, flag, param)) / 2.0d0 + H * Integrand(A + H, flag, param)

47
48 ! Initialize the setp m to one and call the E.M. subroutine to compute T(2,0).

49 m = 1

50 call EM(m, T, A, B, flag, param)

51
52 ! Top of Romberg Ratio Loop

53 do while (.true.)

54 ! Increment the step m by one and then call the E.M. subroutine to compute T(m+1,0).

55 m = m + 1

56 call EM(m, T, A, B, flag, param)

57
58 R = abs((T(m-1, 0) - T(m, 0)) / (T(m, 0) - T(m+1, 0) + 1.0d-99))

59
60 ! If the Romberg ratio is greater than three, we've found the optimal m value to continue with.

61 ! Otherwise, back to the top of the loop to iterate once again.

62 if (R > 3.0d0) exit

63
64 ! Warn the user if we iterate too much...

65 if (m > 20) then

66 print *, 'Cannot converge quickly enough... Change variables?'

67 exit

68 end if

69 end do

70 ! Bottom of Romberg Ratio Loop

71
72 ! Initialize the step k to zero.

73 k = 0

74
75 ! Top of Richardson Extrapolation Loop

76 do while (.true.)

77 ! Increment the step by one.

78 k = k + 1

79
80 ! Warn the user if Richardson extrapolation fails.

81 if ((m+k) > Q) then

82 print *, 'Richardson extrapolation has failed... Increase Q?'

83 exit

84 end if

85
86 ! Create the Richardson extrapolation table.

87 do j = 1, k

88 T(m+k, j) = ((4.0d0**j) * T(m+k, j-1) - T(m+k-1, j-1)) / ((4.0d0**j) - 1.0d0)

89 end do

90
91 ! Evaluate the Richardson error term.

92 RError = 2.0d0 * abs((T(m+k, k) - T(m+k, k-1)) / (T(m+k, k) + T(m+1, k-1)))

93
94 ! If the Richardson error term is less than the maximum tolerated error, we're done!

95 ! Otherwise, call the E.M. subroutine to compute T(m+k+1, 0) and then back to the top of the loop!

96 if (RError < MaxError) exit

97
98 call EM(m+k, T, A, B, flag, param)

99 end do

100
101 ! Bottom of Richardson Extrapolation Loop

102 Result = T(m+k, k)

103
104 deallocate(T)

105
106 end subroutine Romberg

107
108 subroutine EM(m, T, A, B, flag, param)

109 integer, intent(in) :: m, flag

110 real(8), intent(in) :: A, B, param

111 real(8), dimension(:,:), allocatable, intent(inout) :: T

112 ! Note that since T(:,:) has non-standard indexing, one must be very cautious. If it isn't defined

113 ! as an allocatable array, or passed as a pointer, the array indexing will default to normal within

114 ! the subroutine and then back to non-standard outside of the subroutine, which gets very confusing.

115 ! This was a result of technical changes to 'allocatable' on dummy arguments in 1997. This comment

116 ! serves as a reminder of this niche problem for the future.

117 real(8) :: Sum, H

118 integer :: i

119
120 ! Calculate the E.M. sum for the (m+1)th step.

121 Sum = 0.0d0

122 H = (B - A) / (2.0d0**(m+1))

123
124 do i = 1, (2**(m+1)-1), 2

125 Sum = Integrand(A + real(i, kind=8) * H, flag, param) + Sum

126 end do

127

106

128 T(m+1, 0) = T(m, 0) / 2.0d0 + H * Sum

129
130 end subroutine EM

131
132 end module Romberg_Module

1 !--

2 ! Saint Mary's University, Honours Student

3 !--

4 !

5 ! MODULE: Integrand

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> The integrand calculator associated with a Romberg integration algorithm.

12 !

13 ! REVISION HISTORY:

14 ! 29/04/2017 - Initial Version

15 ! 26/06/2024 - Revision 1

16 !> Refactored the original algorithm to be more modular and specialized it to

17 !> the cross-correlation problem.

18 !--

19
20 module Integrand_Module

21 implicit none

22
23 contains

24
25 function Integrand(x, flag, param) result(return_value)

26 integer, intent(in) :: flag

27 real(8), intent(in) :: x, param

28 real(8) :: return_value

29
30 ! Correlation function for first model.

31 if (flag == 1) then

32 return_value = polarisation(x) * Mass_Loss_Rate_1(x + param)

33 end if

34
35 ! Correlation function for second model.

36 if (flag == 2) then

37 return_value = polarisation(x) * Mass_Loss_Rate_2(x + param)

38 end if

39
40 ! Mean of the correlation function.

41 if (flag == 3) then

42 return_value = Mean_Integrand(x)

43 end if

44
45 ! Standard deviation of the correlation function.

46 if (flag == 4) then

47 return_value = Variance_Integrand(x, param)

48 end if

49
50 ! Romberg test case. Solution to compare with is Ln(|x^3+1|)/3.

51 if (flag == 99) then

52 return_value = x**2 / (1.0d0 + x**3 + 1.0d-99)

53 end if

54
55 end function Integrand

56
57 function polarisation(x) result(return_value)

58 use Load_Data_Module

59 use Linear_Int_Module

60 real(8), intent(in) :: x

61 real(8), dimension(:), allocatable :: pol

62 real(8) :: return_value

63
64 ! Allocate the polarisation array.

65 allocate(pol(nmax))

66
67 ! Calculate the absolute polarisation as a fraction of the optical depth (in %).

68 pol = abs(1.0d0 - 3.0d0 * gam)

69
70 ! Calculate the value of the polarisation.

71 return_value = Linear_Int(x, t, pol, nmax)

72
73 ! Deallocate the polarisation array.

74 deallocate(pol)

75
76 end function polarisation

77
78 function Mass_Loss_Rate_1(x) result(return_value)

79 real(8), intent(in) :: x

80 real(8) :: c_1, c_2, omega, return_value

81

107

82 ! Initialize constants.

83 c_1 = 3.63636363d-8

84 c_2 = 9.0d0 * 3.63636363d-8

85 omega = 1.864668d-7

86
87 ! Calculate the mass-loss rate.

88 return_value = c_1 + c_2 * sin(omega * x)**2

89
90 end function Mass_Loss_Rate_1

91
92 function Mass_Loss_Rate_2(x) result(return_value)

93 real(8), intent(in) :: x

94 real(8) :: c_1, c_2, c_3, omega, return_value

95
96 ! Initialize constants.

97 c_1 = 1.762712d-7

98 c_2 = 1.830508d-7

99 c_3 = 4.745763d-8

100 omega = 3.729336d-7

101
102 ! Calculate the mass-loss rate.

103 return_value = c_1 + c_2 * sin(omega * x) + c_3 * sin(omega * x)**2

104
105 end function Mass_Loss_Rate_2

106
107 function Mean_Integrand(x) result(return_value)

108 use Correlation_Module

109 use Linear_Int_Module

110 real(8), intent(in) :: x

111 real(8) :: return_value

112
113 ! Calculate the correlation function divided by the interval size.

114 return_value = Linear_Int(x, tau, C, tau_max_index) / (tau(tau_max_index) - tau(1))

115
116 end function Mean_Integrand

117
118 function Variance_Integrand(x, mean_of_function) result(return_value)

119 use Correlation_Module

120 use Linear_Int_Module

121 real(8), intent(in) :: x, mean_of_function

122 real(8) :: return_value, interpolated_C_value

123
124 ! Calculate the interpolated correlation function value.

125 interpolated_C_value = Linear_Int(x, tau, C, tau_max_index)

126
127 ! Calculate the full integrand for standard deviation.

128 return_value = (interpolated_C_value - mean_of_function)**2 / (tau(tau_max_index) - tau(1))

129
130 end function Variance_Integrand

131
132 end module Integrand_Module

1 !--

2 ! Saint Mary's University, Honours Student

3 !--

4 !

5 ! MODULE: Linear_Int

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> A simple linear interpolator for an array of function values, y. Note that

12 !> the array of associated variable values must be monotonically increasing

13 !> for the binary search algorithm to function properly.

14 !

15 ! REVISION HISTORY:

16 ! 30/04/2017 - Initial Version

17 ! 26/06/2024 - Revision 1

18 !> Refactored the original algorithm to be more modular.

19 !--

20
21 module Linear_Int_Module

22 use Binary_Search_Module

23 implicit none

24
25 contains

26
27 function Linear_Int(int_value, x, y, num_elements) result(return_value)

28 integer, intent(in) :: num_elements

29 real(8), dimension(num_elements), intent(in) :: x, y

30 real(8), intent(in) :: int_value

31 integer :: index

32 real(8) :: x_1, y_1, x_2, y_2, return_value

33
34 ! Call binary search.

35 call Binary_Search(x, num_elements, int_value, index)

108

36
37 ! If the binary search returned the max or min value for the array, return the

38 ! lest there be a segfault corresponding value.

39 if (index == num_elements) then

40 return_value = y(num_elements)

41 elseif (index == 1) then

42 return_value = y(1)

43 else

44 ! Set the values from the binary search for the linear interpolation.

45 x_1 = x(index - 1)

46 y_1 = y(index - 1)

47 x_2 = x(index)

48 y_2 = y(index)

49
50 ! Compute the linear interpolation.

51 return_value = (y_2 - y_1) * (int_value - x_1) / (x_2 - x_1) + y_1

52 end if

53
54 end function Linear_Int

55
56 end module Linear_Int_Module

1 !--

2 ! Saint Mary's University, Honours Student

3 !--

4 !

5 ! MODULE: Binary_Search

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> A classic, simple, and efficient binary search algorithm. The array being

12 !> searched bust be monotonic and increasing. This algorithm returns the index

13 !> of the first entry greater than or equal to the value passed.

14 !

15 ! REVISION HISTORY:

16 ! 30/04/2017 - Initial Version

17 ! 26/06/2024 - Revision 1

18 !> Refactored the original algorithm to be more modular.

19 !--

20
21 module Binary_Search_Module

22 implicit none

23
24 contains

25 subroutine Binary_Search(monotonic_array, num_elements, value, index)

26 implicit none

27 integer, intent(in) :: num_elements

28 real(8), dimension(num_elements), intent(in) :: monotonic_array

29 real(8), intent(in) :: value

30 integer, intent(out) :: index

31 integer :: low, high, mid

32
33 ! Initialize indices.

34 low = 1

35 high = num_elements

36
37 ! Binary search.

38 do while (low < high)

39 mid = (low + high) / 2

40 if (monotonic_array(mid) < value) then

41 low = mid + 1

42 else

43 high = mid

44 end if

45 end do

46
47 ! Check if the element has been found.

48 if (monotonic_array(low) >= value) then

49 index = low

50 else

51 print *, 'Binary search failed... Is your array monotonically increasing?'

52 end if

53
54 end subroutine Binary_Search

55
56 end module Binary_Search_Module

1 !--

2 ! Memorial University of Newfoundland, MSc Student

3 !--

4 !

5 ! MODULE: Normalization

6 !

109

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> Calculates the statistical normalization of a cross-correlation function.

12 !> That is, Norm(C(tau)) = [C(tau) - mean(C(tau))] / sigma(C(tau)).

13 !> The mean and variance are calculated by virtue of a Romberg integrator.

14 !

15 ! REVISION HISTORY:

16 ! 28/06/2024 - Initial Version

17 !--

18
19 module Normalization_Module

20 implicit none

21
22 contains

23
24 subroutine Normalization(C, tau, tau_max_index, norm)

25 use Romberg_Module

26 real(8), dimension(:), allocatable, intent(in) :: C, tau

27 integer, intent(in) :: tau_max_index

28 real(8), dimension(tau_max_index), intent(out) :: norm

29 real(8) :: mean_of_C, variance_of_C

30
31 ! Call Romberg to calculate the mean.

32 call Romberg(tau(1), tau(tau_max_index), 1.0d-9, 3, 0.0d0, mean_of_C)

33
34 ! Call Romberg to calculate the variance.

35 call Romberg(tau(1), tau(tau_max_index), 1.0d-9, 4, mean_of_C, variance_of_C)

36
37 ! Calculate the statistically normalized cross-correlation function.

38 norm = (C - mean_of_C) / sqrt(variance_of_C)

39
40 end subroutine Normalization

41
42 end module Normalization_Module

1 !--

2 ! Memorial University of Newfoundland, MSc Student

3 !--

4 !

5 ! MODULE: Data_Output

6 !

7 !> @Mike-Power666

8 !> Michael Power

9 !

10 ! DESCRIPTION:

11 !> This module opens a file and dumps the data into arrays, while avoiding

12 !> "gotchas".

13 !

14 ! REVISION HISTORY:

15 ! 28/06/2024 - Initial Version

16 !--

17
18 module Data_Output_Module

19 implicit none

20 contains

21
22 subroutine Data_Output(tau, C, filename)

23 real(8), dimension(:), intent(in) :: tau, C

24 character(len=*), intent(in) :: filename

25 integer :: i, unit_num, num_lines

26 logical :: logic_dummy

27
28 ! Determine a unit number for the file.

29 do unit_num = 10, 99

30 inquire(unit=unit_num, opened=logic_dummy)

31 if (.not. logic_dummy) exit ! Exit the loop if the unit number is not in use.

32
33 ! Idiot proofing if too many files are opened.

34 if (unit_num == 99) then

35 print *, "Too many files opened. Data_Output failed."

36 stop

37 end if

38 end do

39
40 ! Open the file.

41 open(newunit=unit_num, file=filename, status='replace', action='write', iostat=i)

42 ! Idiot proofing.

43 if (i /= 0) then

44 print *, "Error opening file: ", trim(filename)

45 stop

46 end if

47
48 ! Write data to the file.

49 num_lines = size(tau)

50

110

51 do i = 1, num_lines

52 write(unit_num, '(2e25.15)') tau(i), C(i)

53 end do

54
55 ! Close the file.

56 close(unit_num)

57
58 print *, "Data successfully written to file: ", trim(filename)

59 end subroutine Data_Output

60
61 end module Data_Output_Module

1 #--

2 # Memorial University of Newfoundland, MSc Student

3 #--

4 #

5 # Program: Cross_Correlation_Plotter

6 #

7 #> @Mike-Power666

8 #> Michael Power

9 #

10 # DESCRIPTION:

11 #> This program simply plots a normalized cross-correlation function and finds

12 #> a local minima.

13 #

14 # REVISION HISTORY:

15 # 29/06/2024 - Initial Version

16 #--

17
18 import numpy as np

19 import matplotlib.pyplot as plt

20
21 # Function to read data from the file.

22 def read_data(filename):

23 data = np.loadtxt(filename)

24 tau = data[:, 0] / (24 * 3600) # Convert lag time back to days.

25 C = data[:, 1]

26 return tau, C

27
28 # Function to find the index of the local minimum near zero.

29 def find_local_minima(tau, C):

30 zero_index = np.argmin(np.abs(tau)) # Find the index closest to zero

31 window_size = 100 # Adjust the window size as needed

32 window_start = max(0, zero_index - window_size)

33 window_end = min(len(tau), zero_index + window_size)

34 local_min_index = window_start + np.argmin(C[window_start:window_end])

35
36 local_min_tau = tau[local_min_index]

37 local_min_C = C[local_min_index]

38 print(f"Local minimum near zero found at = {local_min_tau:.15f}, Ć() = {local_min_C:.15f}")

39
40 return float(local_min_tau), float(local_min_C)

41
42 # Plotting function.

43 def plot_data(tau, C, output_file):

44 plt.rcParams['text.usetex'] = True # Enable LaTeX rendering.

45 plt.rcParams['font.size'] = 12 # Set default font size for tick marks.

46 plt.rcParams['axes.labelsize'] = 20 # Set font size for labels.

47
48 plt.figure(figsize=(10, 6))

49 plt.plot(tau, C, label=r'$\hat{C}(\tau)$')

50 plt.xlabel(r'τ')

51 plt.ylabel(r'$\hat{C}(\tau)$')

52 plt.grid(True)

53
54 # Find and plot the local minimum near zero.

55 local_min_tau, local_min_C = find_local_minima(tau, C)

56 plt.axvline(x=local_min_tau, color='red', linestyle='--', label='Local Minima Near Zero')

57 plt.savefig(output_file, format='png')

58
59 # Main function.

60 def main():

61 input_file = 'Cross_Correlation_Data.txt'

62 output_file = 'Cross_Correlation_Plot.png'

63
64 tau, C = read_data(input_file)

65 plot_data(tau, C, output_file)

66
67 if __name__ == "__main__":

68 main()

1 #--

2 # Memorial University of Newfoundland, MSc Student

3 #--

4 #

111

5 # Script: Cross_Correlation_Calculator

6 #

7 #> @Mike-Power666

8 #> Michael Power

9 #

10 # DESCRIPTION:

11 #> This bash script compiles, executes, and then cleans up the directory

12 #> containing the cross-correlation function calculator. Note that it tries to

13 #> use all cores on a given machine, therefore caution is advised!

14 #

15 # REVISION HISTORY:

16 # 29/06/2024 - Initial Version

17 #--

18
19 #!/bin/bash

20
21 # Determine the number of CPU cores.

22 NUM_CORES=$(sysctl -n hw.physicalcpu)

23
24 # Export OMP_NUM_THREADS to use all available CPU cores.

25 export OMP_NUM_THREADS=$NUM_CORES

26
27 # Compile Fortran files with OpenMP and warnings enabled.

28 gfortran -fopenmp -Wall -Wextra -c Binary_Search.f90

29 gfortran -fopenmp -Wall -Wextra -c Data_Out.f90

30 gfortran -fopenmp -Wall -Wextra -c Linear_Int.f90

31 gfortran -fopenmp -Wall -Wextra -c Load_Data.f90

32 gfortran -fopenmp -Wall -Wextra -c Integrand.f90

33 gfortran -fopenmp -Wall -Wextra -c Romberg.f90

34 gfortran -fopenmp -Wall -Wextra -c Normalization.f90

35 gfortran -fopenmp -Wall -Wextra -c Correlation.f90

36 gfortran -fopenmp -Wall -Wextra -c Cross_Correlation.f90

37
38 # Check if compilation was successful before proceeding.

39 if [$? -ne 0]; then

40 echo "Compilation failed... Exiting."

41 exit 1

42 fi

43
44 # Link object files with OpenMP and create executable.

45 gfortran -fopenmp Binary_Search.o Linear_Int.o Load_Data.o Integrand.o Romberg.o \

46 Correlation.o Data_Out.o Normalization.o Cross_Correlation.o -o Cross_Correlation_Calculator

47
48 # Check if linking was successful before proceeding.

49 if [$? -ne 0]; then

50 echo "Linking failed.... Exiting."

51 exit 1

52 fi

53
54 # Run the executable.

55 ./Cross_Correlation_Calculator

56
57 # Clean up object files and executable after running.

58 rm *.o Cross_Correlation_Calculator

59
60 # Run the python plotting script.

61 python Cross_Correlation_Plotter.py

62
63 echo "Execution and cleanup completed."

