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Abstract

Cops and Robber is a pursuit-evasion game where a set of cops and a robber are placed

on the vertices of a graph. The cops and the robber take turns moving onto vertices

adjacent to the vertices they currently occupy. In this thesis, we consider a variation

of Cops and Robber where the robber is a cheating robot, meaning the cops and the

robber move simultaneously and the robber knows how the cops will move each turn.

The cheating robot number of a graph G, denoted ccr(G), is the fewest number of

cops needed to win the game on G. We study the computational complexity of this

cheating robot game and prove that for any bipartite planar graph G, ccr(G) ≤ 4 is

a tight upper bound. We introduce two new parameters, the push number and the

bodyguard number, that are used to give new upper bounds on the cheating robot

number for various graph products and show that ccr(⊠
k
i=1Pni

) ≤ 3k−1
2

.
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Lay summary

Pursuit-evasion games are models that mathematicians use to study scenarios in which

a group of pursuers are chasing an evader in a fixed environment. The main application

for these games is in robotics where the algorithms developed from solving these

games are translated into algorithms robots can use to accomplish important tasks.

This allows pursuit-evasion games to be useful in a wide range of fields, such as in

emergency response to optimize search and rescue missions and in aeronautics to

optimize flight paths.

Among pursuit-evasion games that are played in discrete environments, the most

well studied is the game of Cops and Robber. The pursuers in this model are cops and

the evader is a robber. If any of the cops are able to reach the location of the robber,

then the cops win. If the robber can indefinitely avoid the cops, then the robber wins.

In this thesis, we study a variation of Cops and Robber where the cops and the robber

move simultaneously but the robber is given intelligence on how the cops will move

throughout the game. The parameter of interest for this game is the fewest number of

cops needed to capture this knowledgeable robber on a given playing field. We study

this parameter on various playing fields. Studying this parameter on certain playing

fields naturally produces a new pursuit-evasion game where the pursuers’ goal is to

indefinitely surround the evader. We study this new pursuit-evasion game and show

how this game relates to the model with a knowledgeable robber.
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Chapter 1

Introduction

1.1 History and thesis overview

Pursuit-evasion games are a way for mathematicians to model various scenarios in

which a group of pursuers are trying to capture an evader. Cops and Robber is a

pursuit-evasion game that was first studied by Quilliot [41] and independently by

Nowakowski and Winkler [35]. In Cops and Robber, a group of cops chase after a

robber on the vertices of a graph. If a cop can move onto the vertex occupied by

the robber, the cops win. Otherwise, if the robber can avoid the cops indefinitely,

then the robber wins. One of the main problems we are interested in with Cops

and Robber is finding bounds on the fewest number of cops needed to win the game

for a given graph. This problem has been tackled for many graph families including

planar graphs [1], outerplanar graphs [12], graphs with genus g ≥ 1 [9] and graphs

constructed using various graph products [32, 33, 34, 40]. For a survey on Cops and

Robber, we direct the reader to the book [8].

The main focus of this thesis is on a variation of Cops and Robber first introduced

by Huggan and Nowakowski [23]. In this variation, the robber is a “cheating robot.”

The term “cheating robot” refers to a robot that was built to always win in Rock

Paper Scissors [26, 39]. We direct the reader to [43] for a description of the rules and

terminology of Rock Paper Scissors. During each round in a game of Rock Paper

Scissors, the robot would analyze the movements of its human opponent’s hand as

they were throwing their move and accurately predict what its opponent was going
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to throw. By doing this, the robot would look like it was moving at the same time

as its opponent, but it would know in advance what move its opponent was going

to make. Applying the same idea to Cops and Robber yields a game where a group

of cops and a robber are playing on the vertices of a graph simultaneously, but the

robber knows how the cops are going to move throughout the entirety of the game.

The fewest number of cops needed to win this game on a given graph is referred to as

the cheating robot number. In their paper, Huggan and Nowakowski [23] study how

the cheating robot number behaves with respect to trees, cycles, retracts, Cartesian

products of graphs, strong grids, and outerplanar graphs.

The goal of this thesis is to expand on the work that was done in [23]. In the rest

of Chapter 1, we give the prerequisite knowledge of graph theory needed to read this

thesis and we discuss the various Cops and Robber models that are studied in this

thesis. In Chapter 2 we give general bounds on the cheating robot number that apply

to all graphs, we show that there exists a graph with a cheating robot number that

is lower than the cheating robot number of one of its subgraphs, and we introduce

the push number which is a new parameter that considers the strategies the cops

implement to capture the robber. In Chapter 3 we give a proof that the cheating

robot number of any bipartite planar graph is at most four and we give an example of

a bipartite planar graph with a cheating robot number of four. In Chapter 4 we give

a polynomial time algorithm for checking whether a graph’s cheating robot number

is at most a given integer. In Chapter 5 we introduce a new pursuit-evasion game

Bodyguards and Presidents where the goal of the pursuers is to, after some finite

number of moves, surround the evader by the end of each of their infinite number of

turns. We also study the fewest number of pursuers needed to win Bodyguards and

Presidents for various families of graphs. In Chapter 6 we make use of the model

introduced in Chapter 5 to obtain new results on the behaviour of the cheating robot

number with respect to the strong product of graphs. In Chapter 7 we end the thesis

with open questions and some areas where further research can be done.
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Figure 1.1: An example of a graph.

1.2 Introduction to graph theory

A graph is an ordered pair (V,E) where V is a set and E is a set of 2-element subsets

of V . In this thesis, V is always assumed to be a finite set. For example,

G = ({a, b, c, d, e, f, g, h, i, j},

{{a, b}, {a, e}, {a, f}, {b, c}, {b, g}, {c, d}, {c, h}, {d, e},

{d, i}, {e, j}, {f, h}, {f, i}, {g, i}, {g, j}, {h, j}})

is a graph. The elements of V are referred to as vertices and the elements of E are

referred to as edges. We will use V (G) to denote the set of all vertices of G and E(G)

to denote the set of all edges of G. In graph theory, the edges of a graph are sometimes

considered to be multisets, which allows for the edges to be 2-element subsets of the

vertex set with both elements being the same. Such edges are referred to as loops. In

this thesis, graphs will be assumed to not have loops unless stated otherwise. Instead

of writing graphs using set notation, it is usually easier to understand the properties

of a graph by using diagrams. In a diagram of a graph, circles are used to represent

the vertices and lines between circles represent the edges. Figure 1.1 is an illustration

of the above graph G. These diagrams are also referred to as graphs.

While edges are sets, it is convenient to write edges without the curly brackets or

the comma between the two vertices. For example, instead of {x, y} we may write

xy. Two vertices in a graph G, say u, v ∈ V (G), are adjacent if uv ∈ E(G). If
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uv ∈ E(G), we say that u is incident to the edge uv. A set of vertices S ⊆ V (G) is

said to be independent if for any pair of vertices u, v ∈ S, u and v are not adjacent.

For example, the set of vertices {a, c, g} in the graph in Figure 1.1 is an independent

set. The cardinality of the largest independent set of vertices in G is denoted α(G).

As an example, if G is the graph in Figure 1.1 then α(G) = 4. The degree of a

vertex v, denoted deg(v), is the total number of vertices adjacent to v. Equivalently,

deg(v) is the total number of edges incident to v. For k ∈ Z+, a graph is k-regular

if every vertex in the graph has degree k. For example, since every vertex in the

graph in Figure 1.1 has a degree of three, the graph is 3-regular. For a graph G, we

denote the maximum degree as ∆(G) = maxv∈V (G){deg(v)} and the minimum degree

as δ(G) = minv∈V (G){deg(v)}. The open neighbourhood of a vertex v, denoted N(v),

is the set of all vertices adjacent to v. The closed neighbourhood of a vertex v is the

set N(v) ∪ {v} and is denoted N [v]. Since we will talk about open neighbourhoods

more often than closed neighbourhoods, we will use the phrase neighbourhood in place

of open neighbourhood throughout this thesis for convenience. To help specify the

graph that contains the neighbourhood of interest, say the graph G for example, then

we write the neighbourhood as NG(v) and the closed neighbourhood as NG[v].

A walk is a sequence of vertices in a graph v0, v1, . . . , vk such that vi is adjacent

to vi+1 for each 0 ≤ i ≤ k − 1. The sequence of vertices a, e, j, e, d is a walk in Figure

1.1. The length of a walk is one less than the number of vertices contained in the

walk. A path is a walk that does not contain a repeated vertex. Thus, a, e, j, e, d is

not a path since it contains the vertex e twice. On the other hand, a, e, j, g would be

an example of a path in Figure 1.1. If, for example, the first and last vertices in a

path P are u and v, then we say that the endpoints of P are u and v and we call P a

u-v path. If u and v are vertices in a graph G, then a u-v geodesic is a u-v path P in

G such that for any other u-v path P ′ in G, the length of P is at most the length of

P ′. In other words, a geodesic is a shortest path between two vertices. While a, e, j, g

is an a-g path in Figure 1.1, the path a, b, g is a shorter path. Thus a, e, j, g is not

a geodesic and it can be seen by inspection that a, b, g is a geodesic. We say that a

graph G is connected if and only if for every pair of vertices u, v ∈ V (G), there exists

a walk whose first vertex is u and whose last vertex is v. Equivalently, a graph G is

connected if and only if for every pair of vertices u, v ∈ V (G) there exists a u-v path

in G. If a graph is not connected we say that it is disconnected. The distance between

two vertices u and v in a graph G is the length of a u-v geodesic. This distance is
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K3 K4 K5

Figure 1.2: The graphs K3, K4, and K5.

denoted d(u, v). The eccentricity of a vertex v is defined as maxu∈V (G){d(v, u)}. A

center vertex is a vertex with minimum eccentricity in a graph. It is possible for a

graph to have more than one center vertex. For example, in Figure 1.1 every vertex

has an eccentricity of three and so every vertex is a center vertex.

A cycle in a graph is a sequence of distinct vertices v0, . . . , vk such that vi is a

adjacent to vi+1 for each 0 ≤ i ≤ k − 1 and vk is adjacent to v0. The sequence

of vertices a, b, c, h, f form a cycle in Figure 1.1. A connected graph that does not

contain a cycle is called a tree. The girth of a graph G is the minimum number of

vertices in any cycle contained in G. For example, the girth of the graph in Figure

1.1 is five. If G is a tree, then the girth of G is defined to be infinity. Any vertex in a

tree that has degree one is called a leaf. Vertices of degree one in graphs that are not

trees are called pendants.

Let v0, v1, . . . , vn−1 be a set of n vertices. The graph Pn is obtained by including

the edges vivi+1 for each 0 ≤ i ≤ n − 2. That is, Pn is a path containing n vertices.

The graph Cn is obtained by including the same edges as Pn with the additional edge

vn−1v0. That is, Cn is a cycle with n vertices. We may also refer to the graph Cn as

the n-cycle. The complete graph, Kn, is formed by including every possible edge. So

E(Kn) = {vivj | 0 ≤ i < j ≤ n− 1}. Figure 1.2 illustrates three complete graphs. An

empty graph is a graph that does not have any edges.

A graph G is bipartite if V (G) can be partitioned into two sets X, Y ( V (G) such

that X and Y are independent sets. The three graphs in Figure 1.3 are all bipartite

graphs. For example, the vertices of the left graph in Figure 1.3 can be partitioned

into two sets of independent vertices, one of size two and one of size three. A vertex

colouring of a graph G using a set C is a mapping c : V (G) → C. The elements of

the set C are referred to as colours. A proper k-colouring of G is a vertex colouring
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Figure 1.3: The graph K2,3 (left), a subgraph of K2,3 that is not an induced subgraph
(middle), and an induced subgraph of K2,3 (right).

that uses at most k colours and no pair of adjacent vertices share the same colour.

If a graph can be coloured this way, then we say that the graph can be properly k-

coloured. Vertex colourings allow for a second way of defining bipartite graphs. A

graph is bipartite if and only if it contains at least two vertices and it can be properly

2-coloured. There is a third way bipartite graphs can be defined. It is commonly

known that a graph is bipartite if and only if it does not contain a cycle with an

odd number of vertices. As an example, the graph in Figure 1.1 contains the cycle

a, b, c, d, e of length five and so the graph is not bipartite. The complete bipartite

graph Kn,m is the graph with vertex set V = X ∪ Y where X = {x1, . . . , xn} and

Y = {y1, . . . , ym} and edge set E = {xy | x ∈ X, y ∈ Y }. A star is a graph of the

form K1,n where n ∈ Z+.

Let G be a graph. We say that a graph H is a subgraph of G, denoted

H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). By this definition, every graph is

a subgraph of itself. In the case where H ⊆ G such that V (H) ⊂ V (G), we call

H a proper subgraph of G. We call H an induced subgraph of G if H ⊆ G and

E(H) = {uv ∈ E(G) | u, v ∈ V (H)}. If H is an induced subgraph of G with vertex

set V (H) ⊆ V (G), then we say that H is the subgraph induced by the set of vertices

V (H). Figure 1.3 illustrates the graph K2,3 and two subgraphs of K2,3 where one is

an induced subgraph while the other is not. We say that H is a component of G

if H is an induced subgraph of G and for every u ∈ V (H) and v ∈ V (G)\V (H),

uv /∈ E(G). If S ⊆ V (G), then the graph H = G\S is the graph with vertex set

V (H) = {v ∈ V (G) | v /∈ S} and edge set E(H) = {uv ∈ E(G) | u, v /∈ S}. If

T ⊆ E(G), then the graph H = G\T is the graph with vertex set V (H) = V (G) and

edge set E(H) = {uv ∈ E(G) | uv /∈ T}. In the case where S and T only have one

element, say {v} = S and {uv} = T , then we may instead write G\v to indicate the
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Figure 1.4: An example of a retract with the mapping of the vertices labelled.

removal of a single vertex or G\uv to indicate the removal of a single edge. We call

H ⊆ G a k-core if H is an induced subgraph of G and δ(H) ≥ k. For example, since

every graph is an induced subgraph of itself, the graph K2,3 is a 2-core of K2,3. On

the other hand, the proper subgraph on the right in Figure 1.3 is a 1-core.

If there exists a mapping ϕ : V (G) → V (H) such that for every pair of adjacent

vertices u, v ∈ V (G) the pair of vertices ϕ(u), ϕ(v) ∈ V (H) are either adjacent or

ϕ(u) = ϕ(v), then we say that G is homomorphic to H and we call the map ϕ a

homomorphism. An isomorphism is a homomorphism that is also a bijection. Two

graphs are isomorphic if there exists an isomorphism that maps the vertices of one

graph to the other. If G and H are isomorphic graphs, we use the notation G ∼= H.

We say that H is a retract of G if H is an induced subgraph of G and there exists a

homomorphism ϕ : V (G) → V (H) such that for every v ∈ V (H) ⊆ V (G), ϕ(v) = v.

In this case we call the homomorphism ϕ a retraction map. Figure 1.4 gives an

example of a retract.

For more on graph theory, see the textbook by West [42].

1.3 Cops and Robber models

Cops and Robber is a two-player, discrete time-step, pursuit-evasion game played

on the vertices of a graph. This game was first studied by Quilliot [41] and then

later, independently, by Nowakowski and Winkler [35]. One player controls a set of

cops while the other player controls a robber. To help distinguish the cops and the
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robber, the cops are given the pronouns she/her while the robber is given the pronouns

he/him. The game begins with the cops being placed on the vertices of a graph, then

the robber is placed on a vertex. A legal move for either a cop or the robber is to

either stay at the vertex they currently occupy or move to a vertex that is adjacent

to the vertex they currently occupy. After the cops and the robber are placed on the

graph, the cops get the first turn. On a cop turn, every cop makes one legal move.

After the cops’ turn, it is the robber’s turn where he makes one legal move. The cops

and the robber alternate taking turns for the rest of the game. If, after a finite number

of moves, a cop and a robber occupy the same vertex, then the robber is considered

to be captured and the cops win. If the robber can indefinitely avoid sharing a vertex

with any of the cops, then the robber wins.

The cop number of a graph, introduced by Aigner and Fromme [1], is the fewest

number of cops needed to win Cops and Robber on that graph. If G is a graph then

its cop number is denoted c(G). We say that G is copwin if c(G) = 1. Figure 1.5

illustrates an example of Cops and Robber being played on a graph that is copwin.

In Figure 1.5, the red vertex labelled “R” represents Robert while the blue vertex

labelled “C” represents a cop. The red arrow indicates movement from Robert while

the blue arrow indicates movement from a cop. For a survey on Cops and Robber,

see [8]. While the game Cops and Robber is usually referred to as Cops and Robbers

in newer publications, for example the book written about the game [8], we will use

the name Cops and Robber for the game since the minimum number of cops needed

to win does not change based on the number of robbers. Once a robber is captured

in Cops and Robbers, he is eliminated from the game. Thus given any graph G and

r ∈ Z+ robbers, c(G) cops can win by capturing the robbers one at a time.

In this thesis, we focus on a variation of Cops and Robber first introduced by

Huggan and Nowakowski [23] where the robber is a cheating robot. We will refer to

this game as the cheating robot variant. The term “cheating robot” refers to a player

in a two-player game that moves at the same time as their opponent, but always knows

in advance the move of their opponent. The term originally came from a robot who

would cheat in Rock Paper Scissors by throwing the winning move after determining

what its opponent was throwing [26, 39]. Studying games where one of the players is

a cheating robot has been done in [22, 23, 24].

The setup and legal moves for the cheating robot variant is the same as in Cops and
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R

C

(a) Placement of cop and robber.

R

C

(b) First cop move.

R

C

(c) First robber move.

CR

(d) The cop captures the robber.

Figure 1.5: Example of possible moves in a game of Cops and Robber played on the
graph shown.
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Robber. The difference is instead of the cops and the robber alternately making legal

moves, all of the cops and the robber move simultaneously. However, the robber has

the advantage of knowing how the cops will move before each move. Since the robber

is also a cheating robot, we will give him the nickname Robert to help distinguish him

from a robber in Cops and Robber. The win condition for the cops is to either move

onto the vertex occupied by Robert or to traverse the same edge as Robert during a

move. If Robert can avoid this indefinitely, Robert wins. We define a cop winning

strategy for k ∈ Z+ cops c1, . . . , ck on the graph G to be a pair (X,A) where X

set of vertices X = {x1, . . . , xk} ⊆ V (G) and A is an algorithm for the cops’ moves

such that when ci starts the game on xi for each 1 ≤ i ≤ k, regardless of how Robert

moves the cops can capture Robert in finitely many moves by following the algorithm

A. The fewest number of cops needed to win the cheating robot variant on a given

graph G is called the cheating robot number of the graph and is denoted ccr(G). Figure

1.6 illustrates an example of the cheating robot variant being played. It is clear that

one cop alone cannot capture Robert on the graph in Figure 1.6 since Robert could

pick any C3 contained in the graph and avoid the cop indefinitely. Since the graph in

Figure 1.6 is copwin, this is an example where the cheating robot number is strictly

larger than the cop number.

We can see that for any graph G, ccr(G) ≥ c(G) if we translate the rules of the

cheating robot variant to a game where the players alternately move as was done in

[23]. To do this, we need to change the win condition for the cops.

Theorem 1.3.1. For any k ∈ Z+, k cops win the cheating robot variant if and only if

they win the game where the cops and Robert alternately move the same as in Cops

and Robber but the cops win only if either

• Robert ends his turn on a vertex occupied by a cop, or

• Robert traverses an edge that was traversed by a cop on her previous legal move.

Proof. If Robert can win against k ∈ Z+ cops in the cheating robot variant, then he

has a strategy where he never traverses an edge traversed by a cop during his move

and he never ends his move on a vertex occupied by a cop. If he uses the same strategy

in the turn-based game described in the theorem, Robert will never traverse an edge

that was traversed by a cop on the previous cop move and he will not end his turn on
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C R

C

(a) Placement of cops and Robert.

C

R C

(b) First round.

R

C C

(c) Second round.

CR C

(d) Third round: Robert is captured.

Figure 1.6: Example of possible moves in a game of the cheating robot variant played
on the graph shown.
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a vertex occupied by a cop. Thus, Robert can win against k cops in the turn-based

game.

If instead Robert has a winning strategy against k cops in the turn-based game,

then he has a strategy where, for the entirety of the game, he neither ends his turn on

a vertex occupied by a cop nor traverses an edge that was traversed by a cop during

the previous cop turn. By using the same strategy against k cops in the cheating

robot variant, Robert will never occupy a vertex that is also occupied by a cop and

he will never traverse an edge at the same time as a cop. That is, Robert can win the

cheating robot variant against k cops.

For the rest of this thesis, we will consider the game as turn-based and also refer

to this version as the cheating robot variant.

One way for the cops to win against Robert is to first occupy every vertex in

his neighbourhood, and then have these cops move onto Robert’s vertex. When this

occurs, Robert will lose if he stays on the vertex he is currently occupying since he

would be ending his turn on a vertex occupied by a cop and Robert will lose if he

moves to a different vertex since he will be traversing an edge that was just traversed

by a cop. If the cops are able to occupy every vertex in Robert’s neighbourhood, then

the cops have surrounded Robert. If the cops are able to win against Robert, then by

changing their final move they can surround him before capturing him.

Lemma 1.3.2. A set of k cops can surround Robert at some vertex in G if and only

if k ≥ ccr(G).

Proof. If k cops can surround Robert, they can win the game on their next move by

the previous discussion. Thus k cops can win the cheating robot variant on G and so

k ≥ ccr(G).

Instead suppose k ≥ ccr(G) and consider the game being played with k cops.

Assume that Robert is playing in such a way that he will never purposefully make a

move that would result in a loss. Since the cops win, Robert is eventually put into a

position where every move results in a loss. Let v be the vertex Robert is occupying

when Robert is put into such a position.

Since Robert staying on v is a losing move, there is a cop on v. For every vertex

u that is adjacent to v, moving to u is a losing move. Thus either a cop is occupying
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u or a cop traversed the edge {u, v} on their last turn. Suppose the cops replay the

game using the same strategy as before with the following change to their move the

turn before they capture Robert. For each cop c that moved onto v to capture Robert,

instead c remains on the vertex she was occupying on the previous turn. By making

this change, every vertex adjacent to v becomes occupied by a cop. So Robert is

surrounded.

Another variation of Cops and Robber that we will discuss is Surrounding Cops

and Robbers which was first introduced in [11]. For this variation of Cops and Robber,

we will keep the plurality of the name Surrounding Cops and Robbers to be consistent

with the original paper on the game [11]. Surrounding Cops and Robbers has the same

ruleset as Cops and Robber with the only exception being the winning condition for

the cops. In Surrounding Cops and Robbers, the cops win if they can surround the

robber, or if the robber ends his turn on a vertex occupied by a cop. For convenience,

we will also refer to this game as the surrounding variant. The minimum number of

cops needed to win the surrounding variant on a graph G is called the surrounding

number and is denoted σ(G). Figure 1.7 demonstrates how in the surrounding variant,

three cops are needed to win on the graph shown unlike in the cheating robot variant

where two cops were shown to win in Figure 1.6. For more on the surrounding variant,

see [2, 10, 11, 27].

Lemma 1.3.2 shows that the cheating robot variant and the surrounding variant

have almost identical win conditions for the cops. The only difference between the

two games is that Robert cannot traverse edges that were traversed by cops while

the robber in the surrounding variant can. In Section 2.3 we will further discuss the

relationship between these two games.

1.4 Graph classes

Let G and H be graphs. The Cartesian product of G and H, denoted G�H, has

vertex set V (G�H) = {(u, v) | u ∈ V (G) and v ∈ V (H)} and edge set

E(G�H) = {{(u, v), (x, y)} | ux ∈ E(G) and v = y,

or u = x and vy ∈ E(H)}.
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R

C C

(a) Placement of cops and robber.

CR

C

C

R C

(b) Regardless of how the two cops move, the robber can avoid being surrounded.

R C

C C

(c) With three cops, the robber loses immediately.

Figure 1.7: An illustration that the graph from Figures 1.5 and 1.6 has a surrounding
number of three.
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The strong product of G and H, which is denoted G ⊠ H, has the vertex set

V (G⊠H) = {(u, v) | u ∈ V (G) and v ∈ V (H)} and edge set

E(G⊠H) = {{(u, v), (x, y)} | ux ∈ E(G) and v = y,

or u = x and vy ∈ E(H),

or ux ∈ E(G) and vy ∈ E(H)}.

The lexicographic product of G and H, which is denoted G • H, has vertex set

V (G •H) = {(u, v) | u ∈ V (G) and v ∈ V (H)} and edge set

E(G •H) = {{(u, v), (x, y)} | u = x and vy ∈ E(H),

or ux ∈ E(G)}.

Figure 1.8 illustrates what these products look like when applying them to two copies

of P3. Notably, the Cartesian product and the strong product are symmetric meaning

that for any two graphs G and H, G�H (G⊠H) is the same graph as H�G (H⊠G).

However, the lexicographic product is not symmetric and an example is illustrated in

Figure 1.9.

If we take the product of two graphs G ⊗ H where ⊗ is either the Cartesian

product, the strong product or the lexicographic product, then the graphs G and H

are called the factors of the graph product. The subgraph induced by the vertices

{(u, v) | u ∈ V (G)} ⊆ V (G⊗H) is denoted G.{v}. Similarly, the subgraph of G⊗H

induced by the vertices {(u, v) | v ∈ V (H)} is denoted {u}.H. We can think of

G.{v} and {u}.H as being “copies” of G and H respectively within the graph G⊗H.

We say that two copies of G within G ⊗ H, say G.{v1} and G.{v2}, are adjacent if

v1v2 ∈ E(H). Similarly, two copies of H, say {u1}.H and {u2}.H, are adjacent if

u1u2 ∈ E(G).

If we want to take the Cartesian product of the graph G with itself k times we

use the notation �
k
i=1G. If we want to do the same with the strong and lexicographic

products we use the notation ⊠
k
i=1G and •ki=1G respectively. If n1, . . . , nk ≥ 2, the

graphs of the form �
k
i=1Pni

, ⊠k
i=1Pni

and •ki=1Pni
are called the Cartesian grid, the

strong grid, and the lexicographic grid respectively. In particular, we will refer to these

graphs as k-dimensional grids. The graph �
k
i=1P2 is referred to as the kth dimensional

hypercube and is denoted Qk. Usually we will label the vertices of a k-dimensional
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P3�P3 P3 ⊠ P3

P3 • P3

Figure 1.8: Cartesian, strong, and lexicographic products with factors P3 and P3.
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P3 • P4

P4 • P3

Figure 1.9: An example where G •H is not the same as H •G.
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Not a planar embedding A planar embedding

Figure 1.10: Two diagrams of the graph K4 where one is a non-planar embedding
while the other is a planar embedding.

grid ⊗k
i=1Pni

with k-coordinate vectors (x1, x2, . . . , xk) where for each 1 ≤ i ≤ k,

1 ≤ xi ≤ ni and whether two vertices corresponding to the vectors (v1, . . . , vk) and

(v′1, . . . , v
′
k) are adjacent depends on the product. For more on graph products, we

direct the reader to [25].

If Robert is on the vertex (u, v), then we say that Robert’s shadow occupies the

vertices of the form (u, y) for any y 6= v and (x, v) for any x 6= u. In particular,

Robert’s shadow in the graph G.{t} occupies the vertex (u, t) and Robert’s shadow

in the graph {s}.H occupies the vertex (s, v). It is useful to reference these vertices

when developing winning strategies for the cops on graphs constructed using graph

products.

A graph is planar if it can be drawn on a flat surface in such a way that none of its

edges intersect. Such a drawing of a graph is referred to as a planar embedding. Figure

1.10 illustrates two ways of drawing the graph K4 where one is a planar embedding

while the other is not a planar embedding. Since K4 has a planar embedding, K4 is a

planar graph. The faces in a planar embedding are the bounded, empty regions that

are enclosed by vertices and edges as well as the unbounded region in which the graph

is contained. For example, the planar embedding in Figure 1.10 has three bounded

faces and one unbounded face. A graph is outerplanar if it has a planar embedding

with every vertex adjacent to the unbounded face. Some examples of outerplanar

graphs are trees and the graph Cn for any n ≥ 3.

Instead of graphs being drawn on a flat surface, we can generalize the idea of

planarity to graphs drawn on other surfaces. The genus of a surface, intuitively, is

the number of “holes” the surface has. For more on the genus of a surface, we direct

the reader to [21]. If a graph G can be drawn on a surface of genus g such that none of
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its edges intersect, and G cannot be drawn on a surface of genus g−1 without having

intersecting edges, then we say that the genus of the graph G is g. As an example,

planar graphs are graphs that have genus zero. Graphs that can be drawn on surfaces

of genus one, such as a torus, are called toroidal graphs.



Chapter 2

Preliminary Results

In this chapter, we will review some of the results from the original paper on the

cheating robot number [23]. These results will be used throughout the thesis. We

will also provide new, general upper bounds on the cheating robot number. In the

original Cops and Robber game, it is easy to find graphs G and H satisfying H ⊆ G

and c(G) < c(H). For example, for any n ≥ 4, c(Kn) = 1 but c(Cn) = 2. We

will show that such examples exist for the cheating robot number. In Chapter 1

we alluded to a connection between the cheating robot number and the surrounding

number. In Section 2.3 we will give new bounds for the surrounding number in terms

of the cheating robot number.

2.1 General bounds on the cheating robot number

First, we give a useful lower bound on the cheating robot number that was first proved

in [23].

Theorem 2.1.1. [23] If G is a graph with a k-core where k ∈ Z+, then ccr(G) ≥ k.

Proof. Suppose Robert is playing against k − 1 cops on a graph with a k-core. If

Robert starts on a vertex u in the k-core, then there are at least k vertices adjacent

to him that are still in the k-core. Thus if a cop moves to u, there will always be

at least one vertex, say v, in the k-core such that v is adjacent to Robert, v is not

occupied by a cop, and the edge uv was not traversed by a cop on their previous turn.
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Therefore Robert can avoid the k − 1 cops indefinitely by staying in the k-core.

While the size of the largest k such that a graph G contains a k-core provides a

lower bound for ccr(G), the difference ccr(G)− k may be arbitrarily large.

Theorem 2.1.2. If N ∈ Z+ then there exists a graph G where k is the largest integer

such that G contains a k-core and ccr(G)− k > N .

Proof. To prove the theorem, we give an infinite family of graphs where the every

graph in the family contains a 2-core, none of the graphs in the family contain a

3-core and for any N ∈ Z+ there exists a graph G in the family such that ccr(G) > N .

Consider the family of graphs {Gn}
∞
n=2 where Gn is obtained by replacing all of the

edges in the hypercube Qn−1 with 4-cycles. The graphs G2 and G3 are illustrated in

Figure 2.1. Every vertex of Gn either has degree 2 or degree 2(n− 1). Furthermore,

all of the neighbours of each vertex of degree 2(n − 1) have degree 2. Thus for all

n ≥ 2, Gn contains a 2-core but not a k-core for any k ≥ 3. Next, we claim that

ccr(Gn) > n− 1.

Fix n ≥ 2 and suppose Robert plays against n − 1 cops on the graph Gn. Since

there are 2n−1 vertices of degree 2(n−1), regardless of where the cops place themselves

at the start of the game, Robert can place himself on a vertex of degree 2(n − 1).

There are n− 1 other vertices of degree 2(n− 1) that are each of distance two away

from Robert. Let U denote this set of n−1 vertices each of degree 2(n−1). There are

two internally disjoint paths from Robert’s vertex to each of the vertices in U . Since

for all u, v ∈ U , u and v do not have any neighbours in common, it is not possible

for one cop to be adjacent to more than one vertex in U . Therefore Robert can avoid

capture indefinitely by waiting at a vertex of degree 2(n− 1) until a cop moves to his

position, and then moving to a vertex of degree 2(n− 1) before any of the other n− 2

cops can stop him.

So, ccr(Gn) ≥ n. Thus, if N ∈ Z+, then ccr(GN+2) − 2 ≥ N . Since each Gn

contains a 2-core and not a 3-core, this proves the result.

As a direct consequence of Theorem 2.1.1, Huggan and Nowakowski [23] gave a

characterization of all graphs with a cheating robot number of one. Here we provide

the characterization as well as their proof.

Theorem 2.1.3. [23] Let G be a graph. Then ccr(G) = 1 if and only if G is a tree.
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G2

G3

Figure 2.1: The two smallest graphs in the family of graphs discussed in the proof of
Theorem 2.1.2.

Proof. If G is a tree then a winning strategy for a single cop is to always move such

that the distance between her and Robert decreases. Since G does not contain a cycle,

in finitely many moves Robert will be forced to move onto a leaf where he will be

surrounded. So ccr(G) = 1. If G is not a tree, then it contains a cycle which is a

2-core. So ccr(G) ≥ 2 by Theorem 2.1.1.

Using a technique from [13], we can prove that the girth of a graph has an effect

on the cheating robot number.

Theorem 2.1.4. If G is a graph with δ(G) ≥ 3 and girth g ≥ 6, then ccr(G) ≥ 4.

Proof. Suppose three cops are able to surround Robert at some vertex. We consider

the possibilities for the positions of the cops and of Robert on Robert’s last move

before he is surrounded. Since we are assuming that every move Robert makes results

in him being surrounded, including Robert’s option to pass, Robert is on a vertex

of degree three and every vertex adjacent to him that is not occupied by a cop has

degree three. There are three cases for the position of the cops: none of the cops are

within distance one of Robert, exactly one cop is within distance one of Robert and

exactly two cops are within distance one of Robert. For convenience, we will say that

a cop is near Robert if she is at most distance one from him.
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c

R

Figure 2.2: An illustration of the case in the proof of Theorem 2.1.4 where one cop is
near Robert.

No cops near Robert: Let v be the vertex on which Robert starts on his final

move. By moving to an adjacent vertex, Robert is able to avoid being surrounded

for an extra turn since no cop can move onto v in one move. This contradicts our

assumption that the cops were one move away from surrounding Robert.

One cop near Robert: There are two possibilities for the cop that is near

Robert, either she is adjacent to Robert or she has moved onto Robert’s vertex. In

both cases, Robert has the same options for his final move and the other two cops are

of distance two away from Robert before he moves. Let c be one of the cops that is

distance two away from Robert. Since G does not contain a cycle of size five or less,

Robert can move to a vertex that is of distance three away from c. This makes it

impossible for c to move to a vertex adjacent to Robert in one move, and so Robert

cannot be surrounded. Figure 2.2 gives an illustration of this argument. In Figure

2.2, the dashed lines indicate edges that cannot exist because the girth of the graph

is at least six.

Two cops near Robert: If the two cops are adjacent to Robert and Robert

moves on his final turn, one of those cops will have to move to a vertex adjacent to

Robert that is different from Robert’s initial vertex. Thus the graph contains a C4.

Figure 2.3 illustrates this argument. A similar argument holds for the case where

one cop is on the vertex occupied by Robert before his final move while the other

cop is adjacent to him. If both cops are on the vertex occupied by Robert before his

final move then, since Robert’s initial vertex has degree three, Robert can move to

a vertex that has two neighbours that are not adjacent to these two cops. Thus the
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R

C

C

Figure 2.3: An illustration of the case in the proof of Theorem 2.1.4 where two cops
are near Robert.

cops cannot surround Robert.

By our case analysis, it is impossible for three cops to surround Robert. Thus,

ccr(G) ≥ 4.

Next, we focus on upper bounds for the cheating robot number. It is trivial that

for any graph G, ccr(G) ≤ |V (G)|. We can do slightly better by placing a cop on

every vertex except on a set of independent vertices. This forces Robert to begin the

game on a vertex that is already surrounded by cops. Since the largest independent

set of G has size α(G), we have the following theorem.

Theorem 2.1.5. For any graph G, ccr(G) ≤ |V (G)| − α(G).

Next, we give a new upper bound on the cheating robot number by making use of

the idea that Robert is unable to access vertices that are occupied by cops. Depending

on the placement of the cops, it is possible for a vertex v unoccupied by the cops to

be inaccessible to Robert. This occurs when every walk from Robert’s vertex to v

contains a vertex occupied by a cop. For example, on the path Pn = v1, . . . , vn, if a

cop is on vi and Robert is on vj where j < i, then it is not possible for Robert to

move onto any of vi+1, . . . , vn no matter how many moves he is given. Suppose on

a graph G we place a cop on each of the vertices x1, . . . , xk ∈ V (G). Then Robert

will not be able to move onto xi for any 1 ≤ i ≤ k. If we delete the vertices x1, . . . ,

xk from G then the resulting graph H may be disconnected, meaning Robert is on

some component of H and is unable to walk to any other component of H. Suppose
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m is the maximum cheating robot number out of all components of H. Then m + k

cops can capture Robert in G by placing a cop on each xi where 1 ≤ i ≤ k and then

using m cops to capture Robert who is restricted to a component of the subgraph H.

The following theorem generalizes this idea to obtain an upper bound on the cheating

robot number.

Theorem 2.1.6. Let G be a graph on n vertices. If Sk is the smallest set of vertices

in G such that the components of G\Sk have cheating robot number at most k, then

ccr(G) ≤ min
1≤k≤|V (G)|−α(G)

{|Sk|+ k}.

Proof. Let j ∈ Z+ such that

min
1≤k≤|V (G)|−α(G)

{|Sk|+ k} = |Sj|+ j.

The cops can win the game by first placing one cop on each vertex of Sj. Then Robert

will be restricted to playing on some component of G\Sj that has cheating robot

number at most j. The rest of the j cops can move into the component containing

Robert and then implement a winning strategy to capture Robert.

First introduced by Beineke and Vandell [3], the decycling number of a graph G,

denoted ∇(G), is the minimum number of vertices needed to be deleted from G so

that the resulting graph does not contain a cycle. The decycling number gives us

another way of bounding the cheating robot number from above.

Corollary 2.1.7. If G is a graph, then ccr(G) ≤ ∇(G) + 1.

Proof. By Theorem 2.1.3, we know that any graph without a cycle has a cheating

robot number of one. Therefore, from Theorem 2.1.6 we have

ccr(G) ≤ min
1≤k≤|V (G)|−α(G)

{|Sk|+ k} ≤ |S1|+ 1 = ∇(G) + 1.

2.2 Subgraphs

Huggan and Nowakowski [23] asked whether it is true that ccr(H) ≤ ccr(G) for any

graph G and subgraph H. Here we provide examples where this is not true.
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Theorem 2.2.1. There exists a graph G with a connected subgraph H such that

ccr(H) > ccr(G).

Proof. Consider the graphs G and H in Figure 2.4.

Suppose Robert is playing against two cops on the graph H and that he starts on

a vertex of degree four. It should be noted that there are two other vertices of degree

four, vi and vj, that are of distance two away from Robert and it is not possible for a

single cop to be of distance less than two away from both vi and vj. Thus, if Robert

waits on a vertex of degree four until a cop moves to that vertex then the cops cannot

prevent him from moving to another vertex of degree four. So ccr(H) > 2.

Since G contains a 2-core, ccr(G) ≥ 2 by Theorem 2.1.1. Suppose Robert is playing

against two cops, c1 and c2, on G. To win the game c1 starts at v1 and c2 starts at

v3. If Robert does not start the game on either v2 or v4 then the cops can surround

Robert on their first turn. If Robert starts on v2 then the cop c2 can move to v2

which forces Robert to move on his next turn. If Robert then moves closer to v1, he

is surrounded. If Robert instead moves further away from v1 then, since Robert could

not have traversed the edge v2v3, Robert’s only option is to move to a vertex that is

adjacent to only v2 and v3. In response, c1 can move to v2 and c2 can move to v3 to

surround Robert. Similarly, if Robert starts on v4 the cops can surround him in at

most two moves. Therefore ccr(G) = 2 < ccr(H).

Theorem 2.2.1 shows that adding edges to a graph can decrease the cheating robot

number. Next, we show that adding both vertices and edges can also decrease the

cheating robot number.

Theorem 2.2.2. There exists a graph G with an induced subgraph H such that

ccr(H) > ccr(G).

Proof. Consider the graphs G and H in Figure 2.5. If Robert is playing against two

cops on the graph H, then he can use the same strategy as in the proof for Theorem

2.2.1 to evade the cops. Thus ccr(H) > 2.

By Theorem 2.1.1, ccr(G) ≥ 2. Suppose Robert is playing against two cops, c1

and c2, on G with c1 starting on v1 and c2 starting on v3. There are five cases, up

to symmetry, for Robert’s position; either Robert is on v2, Robert is on a vertex that

is distance one away from v2 and c2, Robert is of distance one away from c2 and of
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H

v1 v2

v3v4

G

Figure 2.4: A graph, G, with a cheating robot number of two that contains a subgraph,
H, with fewer edges and a cheating robot number of at least three.
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distance three away from v2, Robert is of distance three away from c2 and of distance

one away from v2, or Robert is of distance two away from v2 and c2.

Case (i): Suppose Robert is of distance one away from c2 and distance three away

from v2. Let v2, x, y, z, v3 be the path that Robert is on. Then Robert is starting the

game at vertex z. For the rest of the game, the cop c2 will react to how Robert moves

and prevent Robert from moving onto either v2 or v3. To accomplish this, c2 will

move as follows: if Robert moves to z, c2 will move to v3; if Robert moves to y, c2 will

move to the vertex adjacent to both v2 and v3; if Robert moves to x, c2 will move to

v2. With this shadowing strategy, c2 can keep Robert on the path x, y, z indefinitely.

Meanwhile, c1 begins taking the shortest path to Robert, and eventually Robert is

surrounded on the vertex z.

Case (ii): Suppose Robert is of distance two away from c2 and v2. If c2 moves to

the vertex adjacent to both v2 and v3, then she can use the same shadowing strategy

from Case (i) to catch Robert.

Case (iii): Suppose Robert is of distance three away from c2 and distance one

away from v2. On the cops’ first turn, c2 will move to the vertex adjacent to both v2

and v3 while c1 does not move. If Robert moves towards v3 on his first turn, then c2

can use the shadowing strategy from Case (i) to catch Robert. If Robert moves to

v2, then c2 will move to v2 on her next turn which forces Robert to move off v2 on

his next turn. By the rules of the game, Robert is not allowed to move to the vertex

adjacent to both v2 and v3. If Robert moves to the vertex adjacent to v1 and v2, then

he is surrounded. If Robert makes any other move, c2 can use the shadowing strategy

from Case (i).

Case (iv): Suppose Robert is on v2. On the cops’ first turn, c2 will move to the

vertex adjacent to v2 and v3 and c1 will remain at v1. If Robert does not move, then

by using the strategy from Case (iii) Robert is eventually captured. If Robert moves

off v2, then c2 will move to v2 and either the cops immediately surround Robert or c2

can use the shadowing strategy from Case (i).

Case (v): Suppose Robert is adjacent to c2 and v2. On the cops’ first turn, c2

will move to the vertex occupied by Robert and c1 will not move. This forces Robert

to move to v2. From here we are in a scenario described in Case (iv). Thus Robert is

eventually captured.
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Therefore ccr(G) = 2 < ccr(H).

While it is not true in general that graphs have higher cheating robot numbers

than their subgraphs, it is true in the case when the subgraph is a retract.

Theorem 2.2.3. [23] If G is a graph and H ⊆ G is a retract of G, then

ccr(H) ≤ ccr(G).

Suppose we want to show that k ∈ Z+ cops can win against Robert on a graph

G. One way we can do this is to find a graph G′ such that G is a retract of G′ with

retraction map f : V (G′) → V (G) and k cops can capture Robert on G′ when he is

restricted to moving on G. If the cops can win in this way, a strategy for the k cops

to win on G can be obtained by making use of the retraction map f . Suppose on

the nth turn, a given cop c is required to move from the vertex u to the vertex v as

part of a winning strategy for the cops playing on G′ with Robert restricted to G.

Consider the change in movement of c on the nth turn of the game when both the

cops and Robert are restricted to G, where instead of moving from u to v, c moves

from f(u) to f(v). We can create a winning strategy for the cops on G by translating

all of the cops’ moves on every turn in the same way. This strategy works since either

f(x) = x or f(x) is adjacent to x for all x ∈ V (G′). Thus, translating a cop move in

G′ to a cop move in G by using the retraction map f is always possible. Furthermore,

since f(x) = x when x ∈ V (G), Robert will have at most the same options for moves

on each turn as he did when the cops were using the original winning strategy and

playing on G′. Therefore, this new strategy that utilizes the retraction map f will

result in Robert being captured. This technique of creating a new winning strategy for

the cops by using retraction maps is especially useful when studying pursuit-evasion

games on grids which we will see in Chapters 5 and 6.

2.3 The push number

Recall that a winning strategy for the cops on a graph G is a pair (X,A). The set

X ⊆ V (G) is the set of vertices the cops start the game on and A is an algorithm

for the cops’ moves such that no matter how Robert moves he is eventually captured.

Let S(G, k) denote the set of all cop winning strategies for k cops against Robert on

the graph G. Since capturing Robert happens if and only if the cops can surround
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Figure 2.5: A graph, G, with a cheating robot number of two that contains an induced
subgraph, H with a cheating robot number of at least three (top).
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him by Lemma 1.3.2, and since a strategy for capturing Robert can be changed into

a strategy for surrounding Robert by changing the cops’ last move, without loss of

generality we assume that all of the algorithms for these winning strategies end with

the cops surrounding Robert. While following some winning strategy, if a cop moves

onto the vertex occupied by Robert forcing him to move and Robert does not lose at

the end of his next turn then we say that the cop has pushed Robert. In the case

where more than one cop moves onto Robert’s vertex at the same time, we say that

each of those cops has pushed Robert. For a given graph G and a winning strategy S,

let pcr(G,S) denote the maximum number of distinct cops that push Robert over all

possible ways Robert could play the game. Let pcr(G) = minS∈S pcr(G,S). We will

call pcr(G) the push number of G.

Theorem 2.3.1. If G is a graph, then pcr(G) ≤ ccr(G).

Proof. At most the number of cops needed to push Robert is the number of cops

needed to capture Robert.

Since for any graph G, 0 ≤ pcr(G) ≤ ccr(G), the push number is well defined.

Next, we give some families of graphs that have a push number of zero.

Theorem 2.3.2. If n ≥ 3, then pcr(Cn) = 0.

Proof. Since ccr(Cn) = 2, suppose Robert is playing against two cops, c1 and c2, on Cn

with vertices v0, v1, . . . , vn−1 where vi is adjacent to vi+1 and the addition is modulo

n. The cops will begin by placing c1 on v0 and c2 on v1. The cops will move as follows.

If c1 is on the vertex vi and Robert is not on vi−1, then c1 will move to vi−1. If c2 is

on the vertex vj and Robert is not on vj+1, then c2 will move to vj+1. By using this

strategy, Robert will be surrounded in finitely turns without any pushes. Once he is

surrounded, the cops can capture him to end the game without any pushes.

The following lemma gives a condition that easily guarantees a push number of

zero.

Lemma 2.3.3. Let G be a graph. If ccr(G) cops can capture Robert in one move on

G, then pcr(G) = 0.

Proof. If the ccr(G) cops capture Robert in one move, then Robert will not have been

pushed by definition.
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Theorem 2.3.4. If m,n ≥ 2, then pcr(Kn) = 0 and pcr(Km,n) = 0.

Proof. By Lemma 2.3.3, it suffices to show that ccr(Kn) and ccr(Km,n) cops can win

in one move on Kn and Km,n respectively.

Since ccr(Kn) = n− 1, Robert has no choice but to place himself on a vertex that

is already surrounded by cops. Therefore, the cops win in one move.

Without loss of generality, assume n ≤ m. Since Km,n contains an n-core,

ccr(Km,n) ≥ n by Theorem 2.1.1. Let X be the independent set of vertices in Km,n

of size m. The cops can win by placing one cop on each vertex not in X. This forces

Robert to place himself on a vertex in X. However, every vertex in X is surrounded

by cops and so the cops can win in one move.

While there is no known characterization for when the push number is zero, we

can give a simple condition for when it is nonzero.

Theorem 2.3.5. If G is a graph with at least ccr(G) + 1 vertices of degree at least

ccr(G) + 1, then pcr(G) ≥ 1.

Proof. Robert can begin the game on a vertex of degree at least ccr(G) + 1 and then

wait until a cop is forced to push him.

Consider, as an example, the graph G in Figure 2.4. We showed in the proof of

Theorem 2.2.1 that ccr(G) = 2. Since G has four vertices of degree six, G satisfies

the condition in Theorem 2.3.5. Thus, we know pcr(G) ≥ 1 without determining a

winning strategy for the cops.

Note that there exist examples of graphs for which the converse of Theorem 2.3.5

is not true. Let G be the graph in Figure 2.6. Since G is not a tree, ccr(G) ≥ 2. Two

cops can win by beginning on the vertices x and y and then taking the shortest path

to Robert’s vertex until he is captured. So ccr(G) = 2. We claim that regardless of

where the cops start, one of them is forced to push Robert. If Robert is able to start

on either x or y, then the cops cannot surround Robert without pushing him since

deg(x) = deg(y) = 3. If the two cops start on x and y, then Robert can start on the

vertex that is adjacent to x but not adjacent to y. From here, the only way for the

cops to win is to push Robert onto the pendant. Therefore pcr(G) > 0.
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x y

Figure 2.6: A graph illustrating that the converse of Theorem 2.3.5 does not hold.

It was first observed without proof in [23] that the surrounding number is always

at least as large as the cheating robot number. Here we will give a proof for this

observation.

Lemma 2.3.6. If G is a graph, then ccr(G) ≤ σ(G).

Proof. Consider the same cop and robber positions in both games and suppose it is

the robber’s turn to move. In the cheating robot variant, Robert can only move to

a vertex that is not occupied by a cop and he cannot traverse an edge that was just

traversed by a cop. On the other hand, the robber in the surrounding game is only

not allowed to move to a vertex that is occupied by a cop. Therefore, if the cops

play the same way in both games, the robber in the surrounding game will always

have at least as many options for moves as Robert in the cheating robot variant.

Furthermore, we know by Lemma 1.3.2 that the win condition for the cops is the

same in both games. Thus every winning strategy for the cops in the surrounding

game is a winning strategy for the cops in the cheating robot variant.

By using the push number, we can also give an upper bound on the surrounding

number in terms of the cheating robot number. This gives the following theorem.

Theorem 2.3.7. If G is a graph, then ccr(G) ≤ σ(G) ≤ ccr(G) + pcr(G).

Proof. For convenience, let k = ccr(G). By Lemma 2.3.6, σ(G) ≥ k. Fix a winning

strategy S for the cops in the cheating robot variant such that regardless of how

Robert plays, at most pcr(G) different cops push Robert before surrounding him.

We describe a winning strategy for k + pcr(G) cops in Surrounding Cops and

Robbers as follows. We will label the cops c1, c2, . . . , ck, d1, d2, . . . , dpcr(G). To start

the game, the cops c1, c2, . . . , ck will place themselves on the vertices used in the

strategy S. These cops will play using strategy S. Since pcr(G) ≤ k by Theorem 2.3.1,

without loss of generality assume that the cops that need to push Robert in order to
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c1 c2

xy

Figure 2.7: A graph G such that ccr(G) = σ(G) but pcr(G) > 0.

execute the strategy are the cops c1, c2, . . . , cpcr(G). For every 1 ≤ i ≤ pcr(G), the cop

di will start at the same vertex as ci and will always move to the vertex occupied by

ci on the previous turn. With this strategy, the robber is unable to traverse an edge

previously traversed by c1, c2, . . . , cpcr(G). Since by assumption these k cops are using

a strategy that surrounds Robert in the cheating robot variant, the k + pcr(G) cops

are able to surround the robber using the same strategy.

There exist graphs where the upper bound in Theorem 2.3.7 is not tight. Let G

be the graph in Figure 2.7. Two cops, c1 and c2, can win Surrounding Cops and

Robbers by starting on the vertices shown in Figure 2.7. If the robber starts on a leaf

or on the vertex y, he gets surrounded in one move. Suppose the robber starts on the

vertex x. The cop c2 can move to x while the cop c1 moves to the vertex c2 was just

on. This forces the robber to move to either a leaf, where he is surrounded, or to y,

where the cops can surround him in one additional move. Therefore σ(G) ≤ 2. Since

G contains a cycle, by Theorem 2.1.3 ccr(G) > 1 and so ccr(G) = σ(G) = 2. However,

by Theorem 2.3.5, pcr(G) ≥ 1 since there are three vertices of degree larger than two.

So we have σ(G) < ccr(G) + pcr(G).



Chapter 3

Planar Graphs

For almost as long as the game of Cops and Robber has existed, mathematicians have

been interested in how the cop number behaves with respect to the genus of the graph.

It was first shown by Aigner and Fromme [1] that for any planar graph G, c(G) ≤ 3.

In the case where the planar graph is also outerplanar, it was shown by Clarke [12]

that c(G) ≤ 2. For graphs with genus g, Schroeder [38] conjectured that c(G) ≤ g+3.

Currently, the best known upper bound is c(G) ≤ 4
3
g + 10

3
[9]. Schroeder’s conjecture

is known to hold for planar graphs [1] and toroidal graphs [30] where c(G) ≤ 3 for

both classes of graphs.

Since there are known bounds for the cop number of a graph based on the graph’s

genus, it is natural to ask whether bounds exist for the cheating robot number based

on the genus of the graph. For Surrounding Cops and Robbers, it was shown by

Bradshaw and Hosseini [10] that for any planar graph G, σ(G) ≤ 7. Since we know

ccr(G) ≤ σ(G) for any graph, it follows that a planar graph has a cheating robot

number of at most seven. By Theorem 2.1.1, any planar graph with a minimum

degree of five will have a cheating robot number of at least five. It is unknown if there

exists a planar graph G with ccr(G) ≥ 6. For outerplanar graphs, it was shown by

Huggan and Nowakowski [23] that ccr(G) ≤ 2. In this chapter, we will use Bradshaw

and Hosseini’s work in [10] to show that for any planar graph, ccr(G) ≤ 7 and for any

bipartite planar graph, ccr(G) ≤ 4. We will also discuss a new operation on graphs

introduced in [13] which we will use to construct a bipartite planar graph with a

cheating robot number of 4.
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3.1 Double subdivision

Let G be a graph and let xy ∈ E(G). A subdividing of the edge xy is a graph operation

where the edge xy is deleted, a new vertex z is added to the graph, and the edges xz

and yz are added to the graph. A subdivision of G is a graph operation where every

edge of G is subdivided. Clarke, Finbow and Mullen [13] define the graph operation

double subdivision as follows:

• for every edge uv ∈ E(G) add a vertex x along with the edges xu and xv; and

• for every edge uv ∈ E(G), subdivide uv.

Alternatively, double subdividing a graph can be thought of as replacing every edge

of the graph with a copy of C4.

The graph obtained by double subdividing a graph G is denoted DS(G). As an

example, the first graph in Figure 2.4 is isomorphic to DS(C4). Since ccr(C4) = 2

and, as it was proven in Theorem 2.2.1, ccr(DS(C4)) = 3, this example shows that

the double subdivision operation can increase the cheating robot number. By double

subdividing any tree, we obtain a graph that is no longer a tree since the resulting

graph will contain cycles. Therefore, we have infinitely many graphs where double

subdividing increases the cheating robot number.

One important property of the double subdivision operation is that it turns planar

graphs into bipartite planar graphs.

Lemma 3.1.1. If G is a planar graph, then DS(G) is a bipartite planar graph.

Proof. Planarity is preserved when applying the double subdivision operation. The

graph DS(G) can always be properly 2-coloured by colouring the vertices that were

originally in G red and colouring the vertices that were added in by the double sub-

division operation blue. Since a graph is bipartite if and only if it can be properly

2-coloured, DS(G) is a bipartite planar graph.

The following lemma gives another important property of double subdividing.

Lemma 3.1.2. Let G be a graph with vertex set V . If u, v, w ∈ V ( V (DS(G)), then

there does not exist a vertex x ∈ V (DS(G)) such that x is adjacent to u, v and w.
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Proof. Suppose x ∈ V . Then in DS(G), the distance between x and any other vertex

in V is at least two. Now suppose x /∈ V . That is, x is a vertex that was created

by the double subdivision. By the definition of double subdivision operation, x is

adjacent to exactly two vertices. Therefore, no vertex in DS(G) is adjacent to three

vertices in V .

In Section 3.2 we will give an example where the double subdivision operation

decreases the cheating robot number. There are no known characterizations for graphs

where double subdividing increases the cheating robot number, decreases the cheating

robot number, or leaves the cheating robot number unchanged.

3.2 Bipartite planar graphs

Bradshaw and Hosseini [10] proved that for any bipartite, planar graph G, σ(G) ≤ 4.

From Theorem 2.3.7, we know that ccr(G) ≤ σ(G) and so the cheating robot number

of any planar graph is at most seven. In this section, for completeness, we go through

Bradshaw and Hosseini’s proof from the perspective of the cheating robot number

instead of the surrounding number.

Lemma 3.2.1. [10] Let P = v0, . . . , vk be a geodesic path with vi adjacent to vi+1

for each 0 ≤ i ≤ k − 1 in a bipartite graph G. If w is a vertex adjacent to vi ∈ V (P ),

then d(w, v0) ∈ {i− 1, i+ 1}.

Proof. First, we show that i − 1 ≤ d(w, v0) ≤ i + 1. Since v0, . . . , vi, w is a v0 − w

path with i + 2 vertices, we have d(w, v0) ≤ i + 1. Suppose for a contradiction that

d(w, v0) ≤ i − 2. Then there exists a path v0, x1, . . . , xi−3, w, vi, . . . , vk in G with at

most k − 1 vertices, which contradicts P being a geodesic. So d(w, v0) > i− 2.

Now, suppose for another contradiction that d(w, v0) = i. Then there exists a

j < i and a path v0, . . . , vj−1, vj, yj+1, . . . , yi−2, yi−1, w containing i+ 1 vertices where

yℓ /∈ V (P ) for each j + 1 ≤ ℓ ≤ i − 1. Since w is adjacent to vi, let the path

P1 = vi, w, yi−1, . . . , yj+1, vj . Note that P1 contains i − j + 2 vertices and the path

P2 = vi, vi−1, . . . , vj contains i− j + 1 vertices. Therefore the cycle formed by P1 and

P2 contains 2i − 2j + 1 vertices. Thus G contains an odd cycle which contradicts G

being bipartite. So d(w, v0) 6= i.
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Therefore either d(w, v0) = i− 1 or d(w, v0) = i+ 1.

Let G be a graph with a subgraph H. We will say that H is geodesically closed if

for every u, v ∈ V (H), every u-v geodesic in G is contained in H.

Lemma 3.2.2. [10] Let P = v0, . . . , vk be a geodesically closed path with vi adjacent

to vi+1 for each 0 ≤ i ≤ k − 1 in a bipartite graph G. If w is a vertex outside of P

that is adjacent to vi ∈ V (P ), then d(w, v0) = i+ 1.

Proof. Since a geodesically closed path is a geodesic, by Lemma 3.2.1 we have that

d(w, v0) ∈ {i − 1, i + 1}. Suppose for a contradiction that d(w, v0) = i − 1. Then

there exists a path w, x1, x2, . . . , v0 containing i vertices and so the path P ′ defined

by P ′ = vi, w, x1, x2, . . . , v0 contains i+1 vertices. The length of P ′ is i. Thus P ′ has

the same length as the subpath v0, . . . , vi contained in P . This contradicts P being

geodesically closed since P ′ is a v0-vi geodesic that is not contained in P . Therefore,

d(w, v0) = i+ 1.

We will say that H ⊆ G can be guarded with k cops, or that H is k-guardable, if,

after some finite number of moves, k cops can move on the vertices of H such that if

Robert moves onto H then he lands on a vertex occupied by a cop.

Lemma 3.2.3. [10] Let G be a bipartite graph and let P = v0, . . . , vk be a path

with vi adjacent to vi+1 for each 0 ≤ i ≤ k − 1 in G. If P is a geodesic, then P is

2-guardable.

Proof. Let r denote the vertex Robert is on and let d = d(r, v0). To guard P , two

cops c1 and c2 will implement the following strategy:

• if 1 ≤ d ≤ k − 1, then c1 will move to vd−1 and c2 will move to vd+1, and

• if d ≥ k then c1 will move to vk−1 and c2 will move to vk.

The above strategy is illustrated in Figure 3.1.

Every time Robert moves, d changes value by at most one. Furthermore, paths

are copwin. Thus after finitely many turns, c1 and c2 are able to occupy the vertices

listed in the above strategy. Suppose c1 and c2 are implementing the above strategy

and Robert is not on P . If Robert is not adjacent to any vertex in P , then it is not
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v0 vd−2 vd−1 vd vd+1 vd+2 vk

P

R

r

d

Figure 3.1: A diagram of the cops’ strategy to guard a geodesic in a bipartite graph.

possible for him to move onto P in one move. Suppose instead that Robert is adjacent

to a vertex on P , say vi. By Lemma 3.2.1, d ∈ {i− 1, i+1}. If d = i+1 then since P

is a geodesic and G is a bipartite graph, vi is the only vertex Robert could be adjacent

to. However, vi is occupied by c1 following the above strategy. If d = i− 1 then since

P is a geodesic and G is bipartite, the only two vertices Robert could be adjacent

to are vi−2 and vi which are occupied by c1 and c2 respectively following the above

strategy. So, Robert cannot access P when he is adjacent to a vertex in P .

Suppose c1 and c2 move into the positions described by the above strategy while

Robert is on P . If Robert is still on P once c1 and c2 are in position, then Robert

must be on the vertex vj where j = d. To force Robert off P , c1 will move from vj−1

to vj. After Robert moves off of vj, by Lemma 3.2.1 either d = j − 1 or d = j + 1.

If d = j + 1 after Robert moves off of vj, then c1 and c2 can move into position to

implement their strategy. If d = j − 1, then c1 will move to vj−1 and c2 will move

to vj. If Robert does not decrease d on his next move, then c1 and c2 can move into

their positions to implement the above strategy. Otherwise, consider the scenario

where Robert continues to decrease d every move. Every time Robert decreases d,

c1 and c2 will continue to move along P towards v0. If at any point d increases or

stays the same by the end of a Robert move, then c1 and c2 can move into position to

implement their strategy. If Robert moves onto P at any point, then when c1 and c2

move towards v0, c1 will move onto the vertex occupied by Robert and force him off

of P . This creates the same scenario as before where either d decreases on Robert’s

next move or c1 and c2 can get into position. Suppose Robert decreases d until d = 0.
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Figure 3.2: A diagram of a cops’ strategy to guard a geodesically closed path in a
bipartite graph.

That is, Robert moves onto v0. Then c1 and c2 will move onto v0 and v1 respectively.

On Robert’s next move, he is forced to move off of v0 and so d increases. Thus the

cops can move into position on their next move.

Therefore, in finitely many moves, c1 and c2 can implement the above strategy to

guard P .

Lemma 3.2.4. [10] Let G be a bipartite graph and let P = v0, . . . , vk be a path with

vi adjacent to vi+1 for each 0 ≤ i ≤ k − 1 in G. If P is geodesically closed, then P is

1-guardable.

Proof. Let r denote the vertex Robert is on and let d = d(r, v0). To guard P , one cop

c will implement the following strategy:

• if 1 ≤ d ≤ k, then c will move to vd−1, and

• if d ≥ k + 1 then c will move to vk.

Figure 3.2 illustrates the above strategy.

Using the same argument as in the proof of Lemma 3.2.3, c can get into position

to implement this strategy in finitely many turns. Consider Robert’s position when

c moves onto the vertex the above strategy instructs her to move to. If Robert is not

adjacent to a vertex on P , then he cannot move onto P in one move. If Robert is

adjacent to a vertex in P , say vj, then by Lemma 3.2.2, d = j+1 and so c is occupying
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vj. Furthermore, since P is geodesically closed and since G is bipartite, vj is the only

vertex Robert could possibly be adjacent to. Thus Robert cannot access P . If instead

Robert is on P , then Robert is on the vertex vd. In response, c can move from vd−1

to vd until Robert is forced off of P . Once Robert moves off of P , c will already be

in position to implement the above strategy. Therefore, in finitely many moves, c can

guard P .

Together, Lemma 3.4 and Theorem 3.5 in [10] prove that for any bipartite planar

graph G, σ(G) ≤ 4. The proof of the following theorem is an adaptation of the proofs

of Lemma 3.4 and Theorem 3.5 in [10].

Theorem 3.2.5. If G is a connected, bipartite, planar graph, then ccr(G) ≤ 4.

Proof. In this paragraph, we give an overview of the proof. First, after fixing an

embedding of the graph, we will describe a strategy that three cops can use to force

Robert to stay within a region enclosed by two paths with one cop guarding one path

and two cops guarding the other path. Next we will consider an arbitrary point in the

game where Robert is enclosed by two paths with one cop guarding one path and two

cops guarding the other path. We will then show that with the fourth cop, in finitely

many moves the cops can enclose Robert in a smaller region where the boundary

is two paths with one cop guarding one path and two cops guarding the other. By

repeating this process, Robert will eventually be in a region containing only a single

vertex. Once this occurs, he will be surrounded and the cops will win.

We define the Robert territory as the set of all vertices x ∈ V (G) such that there

exists a path from x to the vertex occupied by Robert that does not contain a vertex

on a guarded path. Note that since Robert can walk to the vertices in the Robert

territory, the subgraph induced by the vertices in the Robert territory is connected.

Fix an embedding of G. First, we show that three cops can enclose Robert in a

region. By Theorem 2.1.3, if G is a tree, then ccr(G) = 1. Suppose G is not a tree.

Since G contains a cycle, let uv ∈ E(G) such that G\uv is connected. Note that the

edge uv is a geodesically closed path in G. Thus, since G is bipartite, by Lemma 3.2.4

one cop can guard uv. Let P be a u-v geodesic in G\uv. Since Robert is unable to

access uv due to it being guarded by a cop, Robert is restricted to moving within the

subgraph G\uv. Therefore, since P is a geodesic in the graph Robert is playing on,

by Lemma 3.2.3 two cops can guard P . The paths uv and P divide the graph into
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two regions: the region inside {uv} ∪ P and the region outside of {uv} ∪ P . Without

loss of generality, assume G is embedded onto the plane such that Robert is in the

region enclosed by uv and P . Since Robert cannot access the vertices of uv and P

because of the cops guarding those two paths, Robert is only able to access vertices

enclosed by the two paths.

Now we consider any point in the game where the cops and Robert are positioned

in the following way:

• two cops, c1 and c2, are guarding an x-y path P1;

• a cop, c3 is guarding an x-y path P2;

• the Robert territory, R, is enclosed by P1 and P2;

• P1 is a geodesic with respect to the induced subgraph P1 ∪R; and

• P2 is geodesically closed with respect to the induced subgraph P2 ∪R.

This positioning of the cops is illustrated in Figure 3.3. From here we will show that

with the use of a fourth cop c4, the cops can decrease the Robert territory from R to

R′ ( R by transitioning to guarding two x′-y′ paths, P ′
1 and P ′

2, where P
′
1 is a geodesic

with respect to P ′
1 ∪ R′ and P ′

2 is geodesically closed with respect to P ′
2 ∪ R′. There

are three cases to consider:

Case (i): P1 is geodesically closed with respect to P1 ∪R and there exists an x-y path in

P1 ∪ P2 ∪R distinct from P1 and P2;

Case (ii): P1 is geodesically closed with respect to P1 ∪R and there does not exist an x-y

path in P1 ∪ P2 ∪R distinct from P1 and P2; and

Case (iii): P1 is not geodesically closed with respect to P1 ∪R.

Suppose we are in Case (i). Since there exists an x-y path in P1 ∪ P2 ∪R distinct

from P1 and P2, let P3 be a shortest x-y path distinct from P1 and P2. Then P3 is

a geodesic with respect to P3 ∪ R and so it can be guarded with two cops. Since

P1 and P2 are geodesically closed, only one cop is needed to guard each by Lemma

3.2.4. This leaves two cops to move onto and begin guarding P3 using the strategy

in the proof of Lemma 3.2.3. Furthermore, P3 splits the Robert territory into smaller
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Figure 3.3: A diagram of the position of the cops before implementing a strategy to
decrease the Robert territory.
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Figure 3.4: A diagram of the outcome of the cops implementing the strategy described
in Case (i). Robert is trapped in either the region R1 or the region R2.

regions. Without loss of generality, the embedding and orientation of P1 ∪ P2 ∪ R is

such that every vertex in P1\{x, y} is to the left of every vertex in P2\{x, y} and every

vertex in R is within the enclosure of P1 ∪ P2. The path P3 can be embedded such

that for every vertex a ∈ V (P3)\(V (P1)∩ V (P2)), a is not to the left of P1 and not to

the right of P2. Thus the vertices and edges of P3 can be drawn such that no edge or

vertex is to the left of P1 nor to the right of P2. By embedding the paths in this way,

it is not possible for a region within P1 ∪P2 ∪R to have all three of P1, P2 and P3 on

its boundary. Therefore each region is either enclosed by P1 and P3 or enclosed by P2

and P3. Figure 3.4 illustrates the result of the cops implementing the above strategy.

Let R′ be the region occupied by Robert. Without loss of generality, assume R′ is

enclosed by P1 and P3. Then we have that P1 is geodesically closed with respect to

P1 ∪ R′, P3 is a geodesic with respect to P3 ∪ R′, and P1 and P3 are guarded by one

and at most two cops respectively. Therefore the game is in a position described by

Case (i), (ii), or (iii), with a smaller Robert territory.

Now suppose we are in Case (ii). Let vr denote the vertex occupied by Robert.

Since there is no x-y path distinct from P1 and P2 in P1 ∪P2 ∪R, we claim that there

exists a unique vertex z ∈ V (P1∪P2) such that for any vertex r ∈ R either r is adjacent

to z or r is not adjacent to any vertex in P1 ∪ P2. If no vertex in P1 ∪ P2 is adjacent

to a vertex in R, then G would be disconnected, which is a contradiction. Therefore,

there exists at least one vertex in P1 ∪P2 that is adjacent to at least one vertex in R.

Suppose for a contradiction there exists two vertices in P1 ∪ P2 that are adjacent to

vertices in R. Let x = v0, v1, . . . , vk be the vertices of the path P1 where vi is adjacent
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Figure 3.5: A diagram of the cops implementing the strategy to decrease the Robert
territory in Case (ii).

to vi+1 for each 0 ≤ i ≤ k − 1. Without loss of generality, assume two distinct

vertices, vi and vj with i < j, in P1 are adjacent to at least one vertex in R. Since R

is connected, there exists a path vi = r1, r2, . . . , rℓ = vj where for each 2 ≤ r ≤ ℓ− 1,

ri ∈ R. Thus the path formed by the vertices v0, . . . , vi, r2, . . . , rℓ−1, vj . . . , vk is an x-y

path in P1 ∪P2 ∪R that is distinct from P1 and P2 which contradicts the assumption

of being in Case (ii). Thus the claim holds. Let z be the vertex described in the claim.

Without loss of generality, assume z ∈ V (P1).

Since P1 and P2 are geodesically closed, only one cop is needed to guard each path.

Let c1 be the cop guarding P1 and c2 be the cop guarding P2. Let c3 and c4 be the

other two cops. To decrease the Robert territory, the cops begin their strategy with

c3 moving to z. There are two cases for z, either z is adjacent to more than one vertex

in R or exactly one vertex in R. Suppose z is adjacent to more than one vertex in R.

Let w be one of the vertices in R that is adjacent to z. Since c3 is on z and the only

vertex in P1 that is adjacent to any vertex in the Robert territory is z, Robert cannot

access P1. So, c1 can stop guarding P1 and move onto w. Since there are no vertices

in R that are adjacent to any vertex in P2, c2 does not need to guard P2. Thus c2

and c4 can move onto and guard a z-w geodesic P ′
1 in the subgraph induced by the

vertices R\{z, w} using the strategy in the proof of Lemma 3.2.3. Since the edge zw

is a geodesically closed path, either c1 or c3 can guard zw using the strategy in the

proof of Lemma 3.2.4. This setup is illustrated in Figure 3.5.

Suppose instead z is adjacent to only one vertex, y, in R. In this case c3 will move

onto y. If deg(y) = 2, c3 will keep moving onto vertices in R she had not previously
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occupied. If every vertex in R has degree at most two, then the subgraph induced

by the vertices in R is a path. Thus, c3 will capture Robert in finitely many moves.

Suppose instead that c3 moves onto a vertex of degree at least three. Let y′ be this

vertex of degree at least three and let w′ be one of the vertices adjacent to y′ that c3

has not yet occupied. From here, the cops can use a similar setup as before where one

cop guards the edge y′w′ and two cops guard a y′-w′ geodesic in R\{y′, w′}. In both

cases, after the cops have set up, Robert is enclosed in a region R′ ( R by two paths,

P ′
1 and P ′

2, with P ′
2 being geodesically closed with respect to P ′

2 ∪R′ and guarded by

one cop, and P ′
1 being a geodesic with respect to P ′

1 ∪ R′ and guarded by two cops.

Thus the position of the game is in either Case (i), (ii) or (iii), with a smaller Robert

territory.

Finally, suppose we are in Case (iii). Let x = v0, v1, . . . , vk = y be the vertices of

P1 where vi is adjacent to vi+1 for all 0 ≤ i ≤ k − 1. Let c1 and c2 be the two cops

guarding P1, let c3 be the cop guarding P2 and let c4 be the last cop that has yet to be

assigned a strategy. We assume that c1 and c2 are using the strategy from the proof

of Lemma 3.2.3 and c3 is using the strategy from the proof of Lemma 3.2.4. That is,

when Robert is distance d ≤ k − 1 away from v0, c1 and c2 occupy the vertices vd−1

and vd+1 respectively. Since P1 is not geodesically closed, there exists a geodesic with

respect to P1 ∪R that is not contained in P1 and has endpoints in P1. Out of all such

geodesics, let S be a geodesic from vi to vj, with i < j, such that j − i is minimized.

Assume that G is embedded such that S is within the region enclosed by P1 and P2.

Furthermore, assume that out of all vi-vj geodesics not contained in P1, S minimizes

the region enclosed by S and P1. Let ℵ be the region enclosed by P1 and S. Let

P1(i, j) be the subpath vi, vi+1, . . . , vj contained in P1.

Let P3 be the x-y path formed by the vertices in (V (P1)\V (P1(i, j))) ∪ V (S).

Figure 3.6 gives an illustration of all the paths. Note that since S is a vi-vj geodesic

with respect to P1 ∪ R, P3 contains the same number of vertices as P1. We label the

vertices of P3 to z0 = v0, . . . , zk = vk. The four cops’ strategy will be to transition

from two cops guarding P1 to two cops guarding P3 while one cop remains on P1. The

cop c3 will continue guarding P2 during this transition. We will show that during this

transition, Robert will not be able to move onto P1. We will also show that once the

transition is finished, the Robert territory will have decreased and the position of the

game will be in either Case (i), (ii) or (iii).
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Figure 3.6: A diagram of P1, P2, P3, S, and ℵ in Case (iii).

First, we claim that if α ∈ R is adjacent to vℓ ∈ V (P1(i, j))\{vi, vj} then it holds

that d(α, v0) = ℓ + 1. By Lemma 3.2.1, if α is adjacent to vℓ ∈ V (P1(i, j))\{vi, vj}

then d(α, v0) ∈ {ℓ− 1, ℓ+1}. Note that by our embedding of G, α is in the region ℵ.

Suppose for a contradiction that d(α, v0) = ℓ − 1. Then there exists a α-v0 geodesic

with respect to P1 ∪ R of length ℓ − 1. Let α = α1, α2, . . . , αℓ = v0 be the vertices

of this α-v0 geodesic. The path formed by the vertices vℓ, α1, . . . , αℓ is a vℓ-v0 path

of length ℓ and so this is a vℓ-v0 geodesic. Furthermore, this vℓ-v0 geodesic shares

a vertex vm with P1 for some 0 ≤ m ≤ ℓ − 1. So we have a vℓ-v0 geodesic of the

form vℓ, α1, . . . , vm, vm+1, . . . , v0. Note that since there exists one such vℓ-v0 geodesic,

there may exist many such geodesics. Out of all of these vℓ-v0 geodesics, let S ′ be

the subpath vℓ, α1, . . . , vm of length ℓ−m from the vℓ-v0 geodesic that maximizes m.

There are two cases for m, either i ≤ m < ℓ− 1 or m < i. If i ≤ m < ℓ− 1, then the

length of S ′ is less than the length of S which contradicts our choice of S. Suppose

m < i. Since S ′ and S must intersect due to α being within the region ℵ, by the

planarity of G and by our choice of S minimizing the region between S and P1(i, j), S

and S ′ share a vertex, say w. Then the path formed by the vertices vℓ, α1 . . . , w, . . . , vi,

where every vertex listed before w is on the path S ′ and every vertex listed after w

is on the path S, is a vℓ-vi geodesic. The existence of this vℓ-vi geodesic contradicts

our choice of the vi-vj geodesic S minimizing j− i. Therefore, d(α, v0) 6= ℓ− 1 and so

d(α, v0) = ℓ+ 1.

Let vr denote the vertex occupied by Robert and let d = d(r, z0). Since c1 and

c2 are using the strategy from the proof of Lemma 3.2.3 to guard P1, we can assume

that c1 occupies vd−1 and c2 occupies vd+1. The cops will begin transitioning from
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S

Figure 3.7: A diagram of the cops’ strategy in Case (iii) when the distance between
Robert and v0 stays within the interval (i, j).

guarding P1 to guarding P3 as follows. First, c4 will move to zd in finitely many moves.

Next, c2 will move to zd+1 in finitely many moves while P1 stays guarded. To show

that this strategy results in decreasing the Robert territory, we consider the value of d

while the cops are executing their strategy. Suppose d stays within the interval (i, j)

during the entire execution of the cops’ strategy. If Robert is not adjacent to a vertex

in P1, then Robert cannot move onto P1 in one move. If instead Robert is adjacent

to a vertex vℓ ∈ V (P1), then by the previous claim d = ℓ + 1 and so c1 occupies

vℓ. By using the strategy from the proof of Lemma 3.2.4, c1 can guard P1. Since

d(vℓ+2, vj) < j − ℓ − 1, c2 can make it to vj before Robert can. Thus Robert cannot

access P1 while c2 executes her strategy. After c2 moves onto vj, c2 will move towards

zd+1. On the cop turn that c2 moves to zd+1, c4 will move from zd to zd−1. This way,

c2 and c4 can use the strategy from the proof of Lemma 3.2.3 to guard P3. Figure 3.7

illustrates the movements of c2 and c4. Once the cops have finished executing their

strategy, Robert will either be in the region enclosed by P1 and P3, or he will be in

the region enclosed by P3 and P2.

Now we consider the cases where d does not stay within the interval (i, j) during the

execution of the cops’ strategy. Suppose that at some point during the cops’ execution

of their strategy, d attains the value i. On the cop turn immediately following d

attaining the value i, c1 moves to vi−1 = zi−1 and c4 moves to zi+1. Note that since

d ≤ i, by the embedding of the graph Robert is not in the region ℵ and is instead

in the region enclosed by P3 and P2. Therefore, if c1 and c4 use the strategy from

the proof of Lemma 3.2.3 to guard P3, Robert will not be able to access P3. Suppose

instead that at some point during the cops’ execution of their strategy, d attains the

value j. Then on the cop turn immediately following d attaining the value j, c2 can

move to vj+1 = zj+1 and c4 can move to zj−1. Since d ≥ j, Robert is not in the region
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ℵ and is instead in the region enclosed by P3 and P2. Therefore, c2 and c4 can use the

strategy from the proof of Lemma 3.2.3 to guard P3. In both of the subcases where

d does not stay within the interval (i, j), Robert is, in finitely many turns, enclosed

in the region bounded by the paths P3 and P2. Let R
′ be this region. Since R′ ( R,

P2 is geodesically closed with respect to P2 ∪R′ and guarded by one cop, and P3 is a

geodesic with respect to P3∪R′ that is guarded by two cops, the position of the game

coincides with either Case (i), (ii) or (iii), with a smaller Robert territory.

Since the cops are able to repeatedly decrease the Robert territory, eventually the

Robert territory will contain only a single vertex. Once this occurs, Robert will be

surrounded. Thus the cops can capture Robert by Lemma 1.3.2.

Next, we will show that the upper bound in Theorem 3.2.5 is tight. We will

do this by making use of the double subdivision operation on a planar graph with

a “high” cheating robot number to obtain a bipartite planar graph with a cheating

robot number of four.

Theorem 3.2.6. There exists a planar, bipartite graph with a cheating robot number

of four.

Proof. Consider the double subdivided icosahedron, DS(I20), as illustrated in Figure

3.8. We will show that three cops are not enough to capture Robert on DS(I20).

There are more than three vertices of degree ten, so Robert can begin the game

on one of these vertices. Robert’s strategy will be to wait at this vertex until a cop

moves to his vertex. Note that Robert is of distance two away from five other vertices

of degree ten and Robert is able to move closer to any one of them on his next move

without traversing an edge that was just traversed by a cop. It is not possible for a

single cop to be distance one away from more than two of these vertices by Lemma

3.1.2. Therefore, there exists a vertex of degree ten that Robert can move to before

any of the cops can. Once Robert has done this, by the symmetry of the graph Robert

can repeat the strategy of waiting until he is forced to move indefinitely.

The strategy Robert uses to beat three cops in the proof of Theorem 3.2.6 will

work on any double subdivided 5-regular planar graph. Suppose G is a 5-regular

planar graph. Then in DS(G), one cop can be adjacent to at most two vertices of

degree ten by Lemma 3.1.2. Thus two cops can access at most four vertices of degree
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Figure 3.8: The graph DS(I20).

ten in one move. Therefore if Robert waits at a vertex of degree ten until he is pushed

by a cop, then he can move to another vertex of degree ten in two moves for the

same reason he was able to in the proof of Theorem 3.2.6. There are infinitely many

connected, 5-regular planar graphs, see [20] for a way of constructing all connected,

5-regular planar graphs, and so there are infinitely many bipartite planar graphs with

a cheating robot number of four.



Chapter 4

Complexity

For an introduction to complexity theory, see [17]. Berarducci and Intrigila [4] were

the first to prove that for any fixed positive integer k, the problem of determining for a

graph G whether c(G) ≤ k is in P. This fact has also been proven in other papers, see

for example [6, 14, 19]. In the case where k is not fixed, Goldstein and Reingold [18]

proved that determining whether c(G) ≤ k is EXPTIME-complete when the initial

positions of the cops and the robber are given. They conjectured that even when the

initial positions are not given, determining whether c(G) ≤ k is EXPTIME-complete.

Fomin, Golovach, Kratochv́ıl, Nisse and Suchan [16] showed that the decision problem

is NP-hard and Mamino [31] showed that the decision problem is PSPACE-hard. Kin-

nersley [29] proved Goldstein and Reingold’s conjecture and showed that determining

whether c(G) ≤ k is indeed EXPTIME-complete. The computational complexities of

different variations of Cops and Robber have also been studied such as Surrounding

Cops and Robbers [11], Zombies and Survivors [28] and generalized Cops and Robber

games [7]. Because complexity results are known for Cops and Robber and many

of its variants, in this chapter we will explore the complexity of the cheating robot

variant. We will show that determining whether ccr(G) ≤ k for any graph G and for

any fixed k ∈ Z+ can be done in polynomial time.
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4.1 Cops and Cheating Robot complexity

Recall that a loop is an edge, a 2-element multisubset of the vertex set, where both

vertices in the edge are the same. A graph G is reflexive if {v, v} ∈ E(G) for every

v ∈ V (G). For convenience, we will assume that all graphs in this chapter are reflexive.

This will allow us to say that a vertex is adjacent to itself. Recall that for an integer

n ∈ Z+, the graph ⊠
n
k=1G is defined to be the strong product of the graph G with

itself n times. For convenience, we will shorten the notation ⊠
n
k=1G to ⊠

nG. Vertices

of ⊠nG will be written as n-vectors (x1, . . . , xn). The tensor product of two graphs G

and H, denoted G × H, has vertex set V (G × H) = {(u, v) | u ∈ V (G), v ∈ V (H)}

and edge set E(G×H) = {{(u, v), (x, y)} | ux ∈ E(G) and vy ∈ E(H)}. When both

G and H are reflexive graphs, the graph products G×H and G⊠H are isomorphic.

While the theorems and proofs in this section can be written using the tensor product

instead of the strong product, we will use the strong product to be consistent with

the paper [6] that our work is based on.

Bonato, Chiniforooshan and Pra lat [6] showed that determining whether the cop

number of a graph was less than or equal to a fixed integer k can be solved in polyno-

mial time. Here we use the same technique to show the analogous decision problem

for the cheating robot number can be solved in polynomial time.

Theorem 4.1.1. Let 2(V (G),V (G)) denote the power set of {(u, v) | u, v ∈ V (G)}.

Let k ∈ Z+. For a graph G, ccr(G) > k if and only if there exists a function ψ :

(V (⊠kG), V (⊠kG)) → 2(V (G),V (G)) with the following properties.

(i) For all T1T2 ∈ E(⊠kG),

ψ((T1, T2)) 6= ∅.

(ii) For all T1 = (v1, . . . , vk), T2 = (u1, . . . , uk) ∈ V (⊠kG) such that T1T2 ∈ E(⊠kG),

ψ((T1, T2)) ⊆ {(r1, r2) |r1 ∈ V (G)\(VT1
∪ ST1

),

r2 ∈ V (G)\(VT2
∪ ST2

∪XT1,T2,r1),

r1r2 ∈ E(G)}

where VT1
(analogously VT2

) is the set of all vertices in the k-tuple T1 (T2), ST1

(ST2
) is the set of all vertices that can be surrounded by T1 (T2) in one move,

and XT1,T2,r1 = {vi ∈ T1 | r1 = ui ∈ T2}.



53

(iii) For all T1, T2, T3 ∈ V (⊠kG) such that T1T2, T2T3 ∈ E(⊠kG),

ψ2((T1, T2)) ⊆ ψ1((T2, T3))

where ψ2((T1, T2)) is the set of all second entries of ψ((T1, T2)) and ψ1((T2, T3))

is the set of all first entries of ψ((T2, T3)).

Before proving Theorem 4.1.1, here we explain the meaning of Theorem 4.1.1.

Every vertex of the graph ⊠
kG corresponds to a position for k cops on the graph G.

Two adjacent vertices in ⊠
kG corresponds to a legal move that the cops can make on

G. The purpose of ψ is to map legal cop moves to legal Robert moves that allow him

to win the game. Condition (i) ensures that a legal move for Robert exists given any

cop move. Condition (ii) ensures that ψ outputs only Robert moves that do not result

in him being captured by the cops by the end of their next move. More specifically,

condition (ii) has ψ only output Robert moves where he does not start on a vertex

occupied by a cop, moves where he does not end his turn on a vertex occupied by a

cop, moves where he cannot be surrounded by the cops by the end of their next move,

and moves where he is not traversing an edge that the cops traversed. Condition (iii)

ensures that for any two consecutive cop moves, Robert can make two consecutive

moves that allow him to evade capture.

Proof. For two vertices T1, T2 ∈ V (⊠kG), instead of writing ψ((T1, T2)) we will write

ψ(T1T2) for convenience.

Suppose ccr(G) > k and Robert is playing against k cops on G. For all vertices

T1, T2 ∈ V (⊠kG), define ψ(T1T2) to be the set of all ordered pairs of vertices (r1, r2)

with r1, r2 ∈ V (G) such that if the cops start at T1 and move to T2, then Robert can

win by starting on r1 and then moving to r2. Since ccr(G) > k, Robert can always

win regardless of how the cops play. Thus ψ(T1T2) 6= ∅. Furthermore, we know that

r1 is not one of the vertices occupied by the cops in T1, the cops cannot surround r1 in

one move when moving off of T1, r2 is not one of the vertices occupied by the cops in

T2, the cops cannot surround r2 in one move when they move off of T2, and as Robert

moves from r1 to r2 he does not traverse an edge that the cops traverse moving from

T1 to T2. Therefore properties (i) and (ii) hold.

Let T1, T2, T3 ∈ V (⊠k) such that T1 is adjacent to T2 and T2 is adjacent to T3.

That is, (T1, T2) and (T2, T3) are two consecutive cop moves. Let (r1, r2) ∈ ψ(T1T2).
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If Robert is on r1 when the cops are on T1, then Robert can win when the cops move

to T2 by moving to r2. That is, if the cops move from T2 to T3 Robert can move

to some vertex r3 ∈ V (G) and continue his winning strategy. So (r2, r3) ∈ ψ(T2T3).

Thus property (iii) holds.

Now suppose a mapping ψ exists satisfying properties (i), (ii) and (iii). Using

induction, we now construct a winning strategy for Robert against k cops by using

ψ. Let Tt ∈ V (⊠kG) denote the position of the cops in round t of the game. If the

cops begin the game at T0, Robert can begin the game on a vertex r0 in the second

coordinate of a pair of vertices in ψ(T0T0). We know such a vertex exists since, by

property (i), ψ(T0T0) 6= ∅. By property (ii), r0 /∈ VT0
∪ ST0

and so there is no cop on

r0 and the cops cannot surround Robert in one move. Assume that Robert is able

to move along edges in ψ(Tt−1Tt) for all rounds t ≤ a where a ≥ 0 is fixed. If the

cops move from Ta to Ta+1, then by property (iii) Robert, starting from some vertex

ra ∈ ψ2(Ta−1Ta), can move to an adjacent vertex ra+1 such that (ra, ra+1) ∈ ψ(TaTa+1).

By property (ii), ra+1 ∈ VTa+1
∪ STa+1

∪ XTaTa+1
. Thus ra+1 does not have a cop on

it, the cops are not able to capture Robert in one move from Ta+1, and Robert is not

traversing an edge that the cops traversed while moving from Ta to Ta+1. Therefore,

Robert can avoid capture in the (a+1)th round. So, by the principle of mathematical

induction, Robert can indefinitely avoid capture.

In step 1 of Algorithm 1, we begin by defining ψ to be a function that maps every

cop move to all possible Robert moves that do not immediately result in a Robert loss.

Then we delete entries from ψ2 until the conditions of Theorem 4.1.1 are satisfied.

Whenever an entry of ψ2 is deleted, say the ith entry, then the ith entry of ψ1 will also

be deleted. Consequently, if either ψ1(T1T2) = ∅ or ψ2(T1T2) = ∅, then ψ(T1T2) = ∅.

If by the time Algorithm 1 finishes, ψ(T1T2) = ∅ for some cop move T1T2 ∈ E(⊠kG),

this tells us that Robert has no safe moves he can make and so ccr(G) ≤ k. If, by

the time the algorithm finishes, for every cop move (T1, T2) where T1, T2 ∈ V (⊠kG)

we have ψ(T1T2) 6= ∅, then Robert is able to always safely move regardless of how the

cops play and so ccr(G) > k.

Theorem 4.1.2. Algorithm 1 runs in polynomial time.

Proof. Note that |V (⊠kG)| = nk and |E(⊠kG)| ≤
(

nk

2

)

= O(n2k). During each

iteration of the repeat loop on lines 2–7, |ψ(T1T2)| will decrease by at least one for
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Algorithm 1 CHECK CHEATING ROBOT NUMBER k

Require: G = (V,E), k ≥ 0
1: initialize ψ(T1T2) to {(r1, r2) | r1 ∈ V (G)\(VT1

∪ ST1
), r2 ∈ V (G)\(VT2

∪ ST2
∪

XT1T2
), r1r2 ∈ E(G)} for all T1, T2 ∈ V (⊠kG)

2: repeat
3: for all T1, T2, T3 ∈ V (⊠kG) such that T1T2, T2T3 ∈ E(⊠kG) do
4: ψ(T1T2) ← ψ(T1T2) ∩ {(r1, r2) | r1 ∈ ψ1(T1T2), r2 ∈ ψ2(T1T2) ∩ ψ1(T2T3)}
5: ψ(T2T3) ← ψ(T2T3) ∩ {(r1, r2) | r1 ∈ ψ1(T2T3) ∩ ψ2(T1T2), r2 ∈ ψ2(T2T3)}
6: end for
7: until the value of ψ is unchanged
8: if there exists T1, T2 ∈ V (⊠kG) such that
9: ψ(T1T2) = ∅
10: then
11: return ccr(G) ≤ k
12: else
13: return ccr(G) > k
14: end if

some (T1, T2) where T1, T2,∈ V (⊠kG) except for the last iteration of the loop where

ψ is unchanged. Since there are (nk)(nk) = n2k ways of choosing an ordered pair of

vertices in ⊠
kG, (T1, T2), and since |ψ(T1, T2)| = O(n2k), the repeat loop in lines 2–7

will finish in at most O(n4k) steps.

Now we consider the number of steps within one iteration of the repeat loop. There

are at most n3k ways to choose T1, T2, T3 ∈ V (⊠kG) such that T1T2, T2T3 ∈ E(⊠kG).

There are at most nk vertices in ψ1(T1, T2) and ψ2(T1, T2) for a given pair of vertices

(T1, T2). Calculating the intersection between two sets of vertices can be done in

O(n2k) and calculating the intersection between two sets of ordered pairs of vertices

can be done in O(n4k) steps. Thus in each iteration of the for loop, there are at most

O(n4k)O(n2k) = O(n6k) steps.

Therefore we have a total of

O(n4k)O(n3k)O(n6k) = O(n13k)

steps for Algorithm 1. So Algorithm 1 finishes in polynomial time.



Chapter 5

Bodyguards and Presidents

In this chapter we define a new pursuit-evasion game called Bodyguards and Presi-

dents that will be used to obtain results in Chapter 6. This new model plays a role

in the cheating robot variant when considering the game on strong products. Recall

that we defined the strong product in Section 1.4. When taking the strong product

of two graphs, say G and H, the resulting graph G ⊠H contains a subgraph that is

isomorphic to G, G.{v}, for each v ∈ V (H). Suppose v1 and v2 are two adjacent ver-

tices in H. The question that motivates the Bodyguards and Presidents model is as

follows: how can the cops prevent Robert from moving from G.{v1} to G.{v2} in the

graph G⊠H? When playing on G⊠H, we know that if Robert is on u ∈ V (G.{v1}),

then Robert is adjacent to every vertex in NG.{v2}[u]. So if the cops want to stop

Robert from moving onto G.{v2} from G.{v1} they need at least degG.{v2}(u)+1 cops

on G.{v2}. However, if Robert moves from (u, v1) onto some other vertex in G.{v1},

say (u′, v1), and the cops still want to prevent Robert from moving onto G.{v2}, they

have to go from occupying every vertex in NG.{v2}[u] to occupying every vertex of

NG.{v2}[u
′].

For example, let G be the graph in Figure 5.1 and consider G⊠H for any graph

H. Suppose Robert is on the vertex (x, v) ∈ V (G ⊠ H). If v′ ∈ V (H) is adjacent

to v in H and the cops want to prevent Robert from moving onto G.{v′}, they need

to occupy every vertex in NG.{v′}[x]. This can be done by occupying four vertices.

Now suppose Robert moves from (x, v) to (y, v). Four cops are now needed to occupy

the vertices in NG.{v′}[y]. However, as illustrated in Figure 5.1, it is not possible to

go from occupying all of the vertices NG[x] to occupying all of the vertices in NG[y]
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Figure 5.1: A graph with two vertices x and y such that if four cops are covering N [x],
then they cannot cover N [y] in one move.

in one move. This gives Robert an opening to move onto G.{v′} which means that

more cops were needed to prevent Robert moving from G.{v} to G.{v′}. The goal

of the Bodyguards and Presidents model is to quantify how many cops are needed

to accomplish the task of occupying closed neighbourhoods of vertices indefinitely

regardless of how Robert moves.

5.1 Rules for Bodyguards and Presidents

Bodyguards and Presidents is played with two players on the vertices of a graph.

One player controls a set of bodyguards while the other player controls a president.

To help distinguish the bodyguards and the president, the bodyguards will be given

the pronouns she/her and the president will be given the pronouns he/him. At the
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beginning of the game, the player controlling the bodyguards chooses which vertices

they start on followed by the player controlling the president choosing their starting

vertex. Once all of the bodyguards and the president are placed on the graph, the

players take turns moving with the bodyguards moving first. A legal move in this

game for either a bodyguard or a president consists of either staying at the vertex they

were already occupying or moving to an adjacent vertex. For the player controlling the

bodyguards, when it is their turn they are allowed to move any number of bodyguards

and there are no restrictions on which bodyguards are allowed to move. If there

exists an N ∈ Z+ such that on the Nth turn for the bodyguards they surround the

president and for every n ≥ N , by the end of the bodyguards nth turn they surround

the president, the bodyguards win. We say that the bodyguards can indefinitely

surround the president if after a finite number of turns, say N ∈ Z+, the bodyguards

can surround the president at the end of each of their moves after their Nth turn.

If the president can avoid this, in other words there always exists a u-v walk the

president can take starting on u such that the bodyguards cannot surround him in

one move once he moves to v, then the president wins.

We note that while Bodyguards and Presidents has many similarities to Cops and

Robber, there are some important differences. In Bodyguards and Presidents, it does

not make a difference to either the bodyguards or the president if a vertex is occupied

by both a bodyguard and a president. On the other hand, in Cops and Robber having

a cop and a robber occupying the same vertex is the cops’ goal. In Cops and Robber,

the game ends when the cops’ win condition is satisfied. However, in Bodyguards and

Presidents, regardless of who wins the game, there are an infinite number of rounds.

If the bodyguards surround the president, the bodyguards and the president continue

playing. The bodyguards have to surround the president by the end of infinitely many,

consecutive bodyguard turns, but the cops only have to capture the robber a single

time in Cops and Robber.

Let B(G) denote the minimum number of bodyguards needed to win Bodyguards

and Presidents on the graph G. We will call B(G) the bodyguard number of G. In

the case where G is the empty graph, we define B(G) = 0. If a bodyguard is placed

on every vertex of a graph, then the president is always surrounded regardless of how

he plays. Thus the parameter B(G) is well defined. Figure 5.2 illustrates the first few

rounds of a game with four bodyguards. Since the game never ends, it is not possible

to draw every round. However, seeing how the first few rounds of the game can play
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out can sometimes be enough to show who wins. Consider the starting positions of

the bodyguard and the president in Figure 5.2. It is shown that from that position,

the bodyguards can surround the president in one move. From there, the president

has two options; either move to a vertex of degree two or degree four. If the president

moves to a vertex of degree four, the bodyguards can reposition themselves in a way

that is rotationally symmetrical to the position shown in (b). If the president moves

to a vertex of degree two, the bodyguards can surround him. Thus if the president has

any hope of winning from here, he must move off his vertex of degree two and onto

a vertex of degree four. If the president does so, the bodyguards can again position

themselves in a way that is rotationally symmetrical to the position shown in (b).

Therefore, if the bodyguards and the president start the game as shown in (a), the

president will lose. It is easy to see that regardless of where the president starts on

the graph in Figure 5.2, the bodyguards can surround the president in one move such

that the position of the bodyguards and the president is rotationally symmetric to

one of the positions shown in (c). Thus the bodyguards can indefinitely surround the

president regardless of where he starts. So the bodyguard number of this graph is at

most four. In Section 5.2, we will introduce lower bounds of the bodyguard number

that will prove that the bodyguard number of this graph is exactly four.

By the way the game is defined, we only require the bodyguards to occupy the

president’s open neighbourhood in order to win. Instead, we could have considered a

similar game where instead of surrounding the president indefinitely, the bodyguards

are required to occupy every vertex in the president’s closed neighbourhood by the end

of each of their moves indefinitely. When using the Bodyguards and Presidents game

in Chapter 6 to obtain results for the cheating robot number on strong products of

graphs, we will need the cops to occupy the closed neighbourhood of Robert’s shadow

in order to capture him. Let B[G] denote the fewest number of bodyguards needed to

win this version of Bodyguards and Presidents on the graph G. The following lemma

shows that B[G] attains only two possible values.

Theorem 5.1.1. If G is a graph, then B(G) ≤ B[G] ≤ B(G) + 1.

Proof. Suppose B(G) + 1 bodyguards are aiming to indefinitely occupy the closed

neighbourhood of the president. If they first use a cop winning strategy, then after

finitely many moves one bodyguard can always move to the vertex occupied by the

president. The remaining B(G) bodyguards can use a bodyguard winning strategy
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(c) Regardless of how the president moves, the bodyguards can surround him.

Figure 5.2: Example of Bodyguards and Presidents being played.
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to surround the president indefinitely. Thus, after finitely many moves, the B(G) + 1

bodyguards can always occupy the closed neighbourhood of the president.

Suppose for a contradiction that B(G) > B[G]. Then if B[G] bodyguards are

playing Bodyguards and Presidents, the president can always find a u-v walk in G

such that by starting on u and ending at v the bodyguards cannot surround the

president on their turn immediately after the president finishes the walk. However, if

B[G] bodyguards cannot surround the president after the u-v walk, then they cannot

occupy the closed neighbourhood of the president. So the B[G] bodyguards can never

indefinitely occupy the president’s closed neighbourhood, which is a contradiction.

Therefore B(G) ≤ B[G].

5.2 General bounds

In this section we give a lower bound on the bodyguard number, we characterize all

graphs G with B(G) = |V (G)| − 1, and we give a result analogous to Theorem 2.2.1

for the bodyguard number.

Lemma 5.2.1. For any graph G, B(G) ≥ max{∆(G), σ(G)}.

Proof. On any given turn the president can either move to any adjacent vertex or

he can remain at the vertex he is currently occupying. The president’s moves are

not restricted by the position of the bodyguards. Comparatively, the robber in Sur-

rounding Cops and Robbers has the same movement options as the president with the

exception that he cannot move to a vertex occupied by a cop. Thus, if the robber has

a winning strategy against k cops where k < σ(G), the president can use the same

strategy against k bodyguards to avoid being surrounded. Therefore, at least σ(G)

bodyguards are needed to win.

If the president stays on the vertex of maximum degree, the bodyguards cannot

win without first surrounding the president on that vertex. Thus, B(G) ≥ ∆(G).

Naturally, the next question to ask is how large the bodyguard number can be

for any graph. Consider any graph on n vertices. From Lemma 5.2.1, the bodyguard

number is at least the maximum degree of the graph. However, the maximum degree

can be as large as n − 1. So there are graphs that need at least n − 1 bodyguards.
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We claim that the bodyguards can always win with n − 1 bodyguards on any graph

with n vertices. Suppose n − 1 bodyguards are placed on the graph with no two

bodyguards sharing the same vertex. If the president is placed on the lone vertex

without a bodyguard, then he is surrounded. If he is placed on any vertex occupied

by a bodyguard, then the bodyguards can shift themselves along a path from the

president to the vertex that has no bodyguard on it. This results in bodyguards

occupying every vertex except the one occupied by the president, and so the president

is surrounded. Whenever the president moves after being surrounded, he will move to

a vertex with a bodyguard on it. That bodyguard can then move back to the vertex

the president came from to surround him again. Thus, the president gets surrounded

by the end of every bodyguard turn indefinitely. So B(G) ≤ n− 1 for any graph G.

Since we know n− 1 bodyguards will always win, which graphs need exactly that

many for the bodyguards to win? As an immediate consequence of the previous

lemma, we have the following.

Lemma 5.2.2. If G is a graph on n vertices with ∆(G) = n− 1, then B(G) = n− 1.

Proof. From Lemma 5.2.1, B(G) ≥ ∆(G) = n− 1.

A graph on n vertices has maximum degree n− 1 if and only if the graph contains

a vertex that is adjacent to all other vertices in the graph. Such a vertex is called a

universal vertex.

Theorem 5.2.3. For any graph G on n vertices, B(G) = n− 1 if and only if ∆(G) =

n− 1.

Proof. Consider the cases when n ≤ 3. The only graph with one vertex is the empty

graph which we defined to have a bodyguard number of zero. Furthermore, the only

graphs that have a bodyguard number of zero are empty graphs since a bodyguard

number of zero implies a maximum degree of zero by Lemma 5.2.1. So the theorem

holds for n = 1. If G is connected and contains exactly two vertices, then G is P2.

Since one bodyguard can win on P2 by always moving to the vertex not occupied

by the president, B(G) = 1. Furthermore, for a graph G to have B(G) = 1, the

maximum degree is at most one by Lemma 5.2.1. Thus either G is empty, which we

have established has a bodyguard number of zero, or G is P2, which indeed has a

bodyguard number of one. Thus the theorem holds for n = 2. Suppose G has three
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vertices. If ∆(G) = 2, then G is either the path P3 or the complete graph K3. By

Lemma 5.2.1, B(P3) ≥ 2 and B(K3) ≥ 2. Two bodyguards can win on P3 and K3 by

occupying whichever two vertices the president is not on and so B(P3) = B(K3) = 2.

If ∆(G) < 2, then either G is an empty graph or G has one edge. If G is an empty

graph then B(G) = 0. If G has one edge then G has one isolated vertex and two

adjacent vertices. One bodyguard is needed in case the president starts on the two

adjacent vertices and no bodyguards are needed if the president starts on the isolated

vertex. Thus B(G) = 1 when G only has one edge. Therefore the theorem holds when

n ≤ 3. From here, we assume that G contains at least four vertices.

Lemma 5.2.2 establishes sufficiency. To prove the other direction, we show the

contrapositive is true. That is, ifG does not have a universal vertex then B(G) ≤ n−2.

First, we will show that the bodyguards can surround the president in finitely many

moves such that for any pendant in G that is not occupied by the president, there

is at most one pendant that is not occupied by a bodyguard. Afterwards, regardless

of how the president moves, we show that the bodyguards can indefinitely surround

the president by making use of the fact that, excluding the vertex occupied by the

president, there is at most one pendant without a bodyguard on it and the bodyguards

can maintain this condition for the entirety of the game.

Suppose we are playing on G with n − 2 bodyguards. Begin by placing one

bodyguard on every pendant in G. Note that if G has n − 1 pendants, then G is

a star which means G has a universal vertex. So G has at most n − 2 pendants.

Then place the rest of the bodyguards on all but two of the remaining vertices of G

such that at most one bodyguard occupies every vertex in G. Let x and y be the

two vertices that are not occupied by bodyguards. There are five cases for the initial

placements of the bodyguards and the president. Each case is illustrated in Figure

5.3.

Case (i): The president is on a vertex that does not contain a bodyguard and is

completely surrounded by bodyguards. That is, the president is starting the game on

either x or y and x is not adjacent to y. This is the position we want the bodyguards

to be in. So for their first turn, they will not move. Since x and y are not pendants,

we have that every pendant is occupied by a bodyguard.

Case (ii): Every vertex in the president’s closed neighbourhood has a bodyguard

on it. Let v1, v2, . . . , vn be a path in G such that v1 is the vertex occupied by the
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president and vn = x. Let bi be the bodyguard on vi. On the bodyguards’ first turn,

for each 1 ≤ i ≤ n − 1 the bodyguard bi will move from vi to vi+1. This results in

a bodyguard on every vertex in the president’s closed neighbourhood except for the

vertex he is occupying and there is at most one bodyguard on every vertex. Since y

is not a pendant and the vertex the president starts on may be a pendant, we have

that at most one pendant is not occupied by a bodyguard.

Case (iii): The president is adjacent to a vertex that does not have a bodyguard

on it and shares a vertex with a bodyguard. Without loss of generality, assume the

president is adjacent to x. On the first bodyguard turn, the only bodyguard that will

move is the one on the president’s vertex and she will move to x. For the same reason

as in Case (ii), after the bodyguard moves there is at most one pendant that does not

contain a bodyguard.

Case (iv): The president is on a vertex without a bodyguard on it and is adjacent

to a vertex that is not occupied by a bodyguard. Without loss of generality, assume

the president is on x and so he is adjacent to y. Since y is not a pendant, there exists

a vertex y′ adjacent to y that has a bodyguard on it. On the bodyguards first turn,

the bodyguard on y′ will move to y which results in the president being surrounded.

This also leaves x and y′ to be the only vertices to not contain a bodyguard. Since x

is not a pendant and y′ may be a pendant, at most one pendant is not occupied by a

bodyguard.

Case (v): The president is adjacent to both x and y. Suppose y is adjacent to

a vertex z where z 6= x and z is not the vertex that the president is starting on. We

know such a vertex can exist since we are assuming G contains at least four vertices.

The bodyguard that is occupying the same vertex as the president can move to x and

the bodyguards can use the same strategy from Case (iv) to surround the president.

Besides possibly the vertex occupied by the president, this leaves at most one pendant

unoccupied. If x is adjacent to a vertex z where z 6= y and z is not the vertex that

the president is starting on, then a similar strategy can be applied to surround the

president in one turn.

Now suppose instead that x is only adjacent to y and the president’s vertex while y

is only adjacent to x and the president’s vertex. Let vp denote the vertex the president

is starting on. Let α1 /∈ N [vp] and let α1, α2, . . . , αk−2, vp = αk−1, x = αk be a α-x

path containing vp. Let bi be the bodyguard on αi for each 1 ≤ i ≤ k − 1. On
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Figure 5.3: Illustrations of the five cases in the proof of Theorem 5.2.3.

the bodyguards’ first turn, the bodyguard bi will move from αi to αi+1. This results

in vp and x having a bodyguard on it and the only two vertices not occupied by

bodyguards are α1 and y. Now we consider the president’s first turn. If the president

moves onto x, moves onto y, or stays at vp, then the president is adjacent to only one

vertex that is not occupied by a bodyguard and he shares a vertex with a bodyguard.

So, the bodyguards can use the strategy from Case (iii) to surround the president.

If the president moves to some vertex that is not vp, x or y, then at the end of the

president’s move either every vertex in his closed neighbourhood contains a bodyguard

or the president is adjacent to α1 and he shares a vertex with a bodyguard. From

here the bodyguards can use either Case (ii) or Case (iii) respectively to surround the

president in one move.

Note that by the end of each case, the bodyguards have positioned themselves

such that excluding the vertex occupied by the president which may or may not

be a pendant, there is at most one pendant that is not occupied by a bodyguard.

Furthermore, by the end of each case the president is surrounded by bodyguards and

there is no bodyguard on the president’s vertex. Now, consider the kth president

move where k ≥ 1 and assume that the bodyguards are positioned such that out of all
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the pendants that do not contain the president, at most one of them is not occupied

by a bodyguard. Every move the president makes from this position has three cases;

either the president does not move, the president moves to a vertex that is adjacent

to one vertex that is not occupied by a bodyguard, or he moves to a vertex that is

adjacent to two vertices that are not occupied by bodyguards. Let v be the vertex the

president is moving from and let u be the vertex the president is moving to. Next we

will show that the bodyguards can respond to the president’s move in both cases such

that they maintain the condition that out of all the pendants that do not contain the

president, at most one of them is not occupied by a bodyguard.

If v and u are the same vertex, then the bodyguards will not move. On the other

hand, suppose the only vertex adjacent to u that does not have a bodyguard on it is

v. After the president moves to u, the bodyguard on u can move to v, resulting in

the president being surrounded.

Finally, suppose u is adjacent to a vertex other than v that does not have a

bodyguard on it, say w. We claim that it is not possible for both v and w to both

be pendants. Suppose for a contradiction that they are. Consider the moment the

president first occupied v. If the president was placed onto v during the setup of the

game, then by the end of the first bodyguard turn w would still have had a bodyguard

on it. If the president moved onto v during the game from u, then as the president

moved from u to v the only bodyguard that moved the next turn was the bodyguard

that was already on v. Therefore, if both v and w are not occupied by a bodyguard,

then when the president was at u there was no bodyguard at w and so he was not

surrounded. This contradicts the outcomes of the strategies the bodyguards have

been implementing up until this point in the game. So, at most one of v or w is a

pendant.

Thus, at least one of v or w is adjacent to a vertex other than u that has a

bodyguard on it. Since u is not a universal vertex, without loss of generality assume

that w is adjacent to a vertex q such that q /∈ N [u] and a bodyguard occupies q.

After the president moves from v to u, the bodyguard on u can move to v and the

bodyguard on q can move to w. Since u is not a vertex of degree one, at most one

vertex of degree one is not occupied by a bodyguard. Therefore, regardless of how the

president moves every following turn, the bodyguards can use one of the two strategies

described above to continuously surround the president. So, n − 2 bodyguards can
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Figure 5.4: The graph G with B(G) = 3 in the proof of Theorem 5.2.4.

win against the president on G when ∆(G) < n− 1.

In Chapter 2, we showed that there exists a graph with a smaller cheating robot

number than one of its subgraphs. The same holds true for the bodyguard number.

Theorem 5.2.4. There exists a graph G with a connected subgraph H such that

B(H) > B(G).

Proof. Let H be the graph in Figure 5.1 and let G be the graph in Figure 5.4. At the

beginning of the chapter, we showed that B(H) > 3. To show that B(H) > B(G),

we will show that B(G) ≤ 3.

Let b1, b2 and b3 be the three bodyguards. Consider the two positions b1 at v1, b2

at v5 and b3 at v6; and b1 at v4, b2 at v2 and b3 at v3. We will call the positions A1 and

A2 respectively. If the president is on one of v1, v5 or v6, then the president will be

surrounded when the bodyguards are in position A2. If the president is on one of v2,

v3 or v4, then the president will be surrounded when the bodyguards are in position

A1. Note that the bodyguards can move from A1 to A2 in one move. Therefore, the

bodyguards can surround the president every round indefinitely. So B(G) ≤ 3.

By Lemma 5.2.1 and the proof of Theorem 5.2.4, the bodyguard number of the

graph in Figure 5.4 is exactly three. In Section 5.3, we will prove a theorem that tells

us the graph in Figure 5.1 has a bodyguard number of four.

Theorem 2.2.3 shows how the cheating robot number behaves with respect to

retracts. The following theorem shows that the bodyguard number behaves the same

way.



68

Theorem 5.2.5. If H is a retract of the graph G, then B(H) ≤ B(G).

Proof. Let r : V (G) → V (H) be a retraction map from G to H. Suppose we have

B(G) bodyguards on H. Given a winning strategy for the bodyguards on G, we claim

that the bodyguards on H can win by mapping the bodyguards’ moves on G using

the retraction map r. That is, if the winning strategy for a bodyguard in G would

require her to move to the vertex v ∈ V (G), when playing on H she will move to the

vertex r(v) ∈ V (H).

Retracts preserve adjacency and so if a bodyguard moves from u to v when playing

on G, the bodyguard can move from r(u) to r(v) when playing on H. Thus it suffices

to show that following this strategy when playing on H will result in the president

being indefinitely surrounded after a finite number of moves. Since B(G) bodyguards

can win on G, B(G) bodyguards can also win on G when the president is restricted

to playing on the subgraph H. Fix a winning strategy for the B(G) bodyguards

when playing on G while the president is restricted to playing on H. Suppose it

takes N ∈ Z+ bodyguard moves to begin indefinitely surrounding the president when

playing on G. Let v ∈ V (H) be the vertex the president is on immediately following

theNth bodyguard move. Since the president is surrounded on v, every vertex inN(v)

is occupied by a bodyguard. Since r is a retraction map, for each u ∈ NG(v) we have

r(u) ∈ NH(v). Furthermore, for each u ∈ NG(v) either r(u) = u or r(u) is adjacent to

u and so |NG(v)| ≥ |NH(v)|. Thus if every vertex inNG(v) is occupied by a bodyguard,

then when playing on H every vertex in NH(v) will be occupied by a bodyguard. So

when playing on H, the bodyguards will have the president surrounded at the end of

their Nth move. This argument shows that if the bodyguards have surrounded the

president when the bodyguards are on G and the president is restricted to H, then

the bodyguards have surrounded the president when everyone is restricted to H.

Now we consider any president move after the bodyguards’ Nth move. Suppose

in the game where the bodyguards are playing on G while the president is restricted

to H that on the president’s mth move, where m ≥ N , the president moves from

x to y where x, y ∈ V (H). We assume that the bodyguards have been using the

strategy of mapping their moves on G from their fixed winning strategy onto H up

until the president’s mth move. Since the bodyguards, when playing on G, surround

the president after he moves to y, by mapping the bodyguards’ moves using r we have

that the president is surrounded when everyone is restricted to H.
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Therefore, by the principle of mathematical induction, when playing on H, the

bodyguards can indefinitely surround the president.

In the above proof, we have the bodyguards play on a graph G, restrict the presi-

dent to a retract of G, H, and then map the bodyguards’ movements by the retraction

map from G to H. This is an adaptation of a classic proof technique in the Cops and

Robber literature. In the classic proof technique, both the bodyguards and the pres-

ident play on the retract H and the bodyguards’ moves are the image of the winning

strategy on G. We will use the same proof technique from the proof of Theorem 5.2.5

for Lemmas 5.4.2 and 5.4.3.

5.3 Bodyguard numbers for some graph families

In this section, we determine the bodyguard numbers of some simple families of graphs.

Theorem 5.3.1. If n ≥ 2, then

B(Pn) =

{

1 if n = 2

2 if n ≥ 3.

Proof. One bodyguard can win on P2 by always moving to the vertex not occupied

by the president. From Lemma 5.2.1, for any n ≥ 3 we have B(Pn) ≥ ∆(Pn) = 2.

Let b1 and b2 be the two bodyguards playing against the president on Pn and let

v1, v2, . . . , vn be the vertices of Pn where vi is adjacent to vi+1 for each 1 ≤ i ≤ n− 1.

The bodyguard b1 will start on v1 while b2 will start on vn. Let vi denote the vertex

the president is occupying on any given round. Since the president is restricted in how

far he can move in each direction, in finitely many moves the bodyguard b1 can move

onto vi−1 and the bodyguard b2 can move onto vi+1. Once the president is surrounded

by the two bodyguards, regardless of whether he moves to vi−1 or vi+1 the bodyguards

can follow him and continue to surround him. If the president moves onto v1 then b1

will stay on v1 and if the president moves onto vn then b2 will stay on vn. Using this

strategy, the bodyguards win the game. Therefore, B(Pn) = 2 for all n ≥ 3.

Theorem 5.3.2. If n,m ∈ Z+, then B(Kn,m) = max{n,m}.

Proof. From Lemma 5.2.1, B(Kn,m) ≥ ∆(Kn,m) = max{n,m}.
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Without loss of generality, assume n ≥ m. Let X, Y ( V (Kn,m) be the indepen-

dent sets of vertices in Kn,m such that |X| = n, |Y | = m and X ∩ Y = ∅. If the

president moves onto Y , then the bodyguards can move to X such that one body-

guard occupies each vertex of X. If the president is on X, then all of the bodyguards

can move onto Y such that every vertex of Y is occupied by at least one bodyguard.

The bodyguards can repeat this strategy indefinitely, and so max{n,m} bodyguards

win on Kn,m.

Theorem 5.3.3. If n ≥ 3, then

B(Cn) =

{

2 if n ≤ 5

3 if n > 5.

Proof. Let v0, v1, . . . , vn−1 be the vertices of the cycle Cn where vi is adjacent to

vi−1 mod n and vi+1 mod n. Once the president is surrounded by two bodyguards, re-

gardless of whether the president moves clockwise or counterclockwise around the

cycle, the bodyguards can follow his movements indefinitely. Thus, to determine the

bodyguard number of a cycle it suffices to determine how many bodyguards are needed

to surround the president.

Consider the cycle C5. Place a bodyguard on each of the vertices v0 and v2. If the

president starts on v0, the bodyguards can shift to v4 and v1. If the president starts

on v1 then he is already surrounded. If the president starts on v2 the bodyguards

can move to v1 and v3. If the president starts on v3 then the bodyguard on v0 can

move to v4. Lastly, if the president is on v4 then the bodyguard on v2 can move to

v3. Therefore, regardless of where the president starts, two bodyguards are enough to

surround him. Thus B(C5) ≤ 2. From Lemma 5.2.1, B(C5) ≥ 2. So B(C5) = 2.

Note that for any two cycles Ck and Ck−1, Ck−1 is a retract of Ck via the retraction

map f : V (Ck) → V (Ck−1) defined by

f(vi) =

{

vi if 0 ≤ i ≤ k − 2

vk−2 if i = k − 1.

Therefore, by Lemma 5.2.1 and Theorem 5.2.5,

2 ≤ B(C3) ≤ B(C4) ≤ B(C5) = 2.
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So B(Cn) = 2 for n ≤ 5.

Now consider the cycle Cn for a fixed n ≥ 6. First, we will show that two body-

guards are not enough to win the game. Then we will show that three bodyguards

can win. Suppose two bodyguards b1 and b2 are playing against the president. Re-

gardless of where the bodyguards begin the game, the president can start on a vertex

that is distance at least three away from b1. From here, the president can always

maintain a distance of at least three by moving in the same direction, either clockwise

or counterclockwise, as b1. This strategy is illustrated in Figure 5.5. Therefore, b1 can

never be adjacent to the president and so the president never gets surrounded. Thus

B(Cn) > 2.

Suppose the president is playing against three bodyguards, b1, b2 and b3, on Cn.

Note that c(Cn) = 2. For the bodyguards to win, they must move onto the two

vertices adjacent to the president. The bodyguards can use a cop winning strategy on

Cn to force one of the vertices adjacent to the president to be occupied by one of the

bodyguards, say b1. Afterwards, b2 and b3 can use a cop winning strategy again to

move onto the other vertex adjacent to the president. So, the president is surrounded

in finitely many moves. Therefore B(Cn) = 3.

As a consequence of Theorem 5.3.1 and Theorem 5.3.3, we can completely char-

acterize all graphs with bodyguard numbers one and two.

Theorem 5.3.4. Let G be a connected graph. Then B(G) = 1 if and only if G ∼= P2.

Furthermore, B(G) = 2 if and only if either G ∼= Pn for some n ≥ 3 or G ∼= Cm where

3 ≤ m ≤ 5.

Proof. If B(G) = 1, then ∆(G) = 1 by Lemma 5.2.1. The only connected graph with

maximum degree one is P2 and so G ∼= P2. From Theorem 5.3.1, B(P2) = 1.

If B(G) = 2, then ∆(G) ≤ 2. Since ∆(G) = 1 implies G ∼= K2 and since

B(K2) = 1, any graph with a bodyguard number of two has a maximum degree of

two. The only connected graphs with maximum degree two are paths and cycles.

From Theorem 5.3.1, all paths on at least three vertices have a bodyguard number of

two and from Theorem 5.3.3, the cycles with a bodyguard number of two are C3, C4

or C5.

Next we will show that the bodyguard number of a tree on three or more vertices
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Figure 5.5: The president can indefinitely maintain a large distance from one body-
guard on a large cycle.

is exactly the number of leaves on the tree. We begin by showing that if there is one

bodyguard for each leaf on a tree, then the bodyguards have a winning strategy.

Lemma 5.3.5. If T is a tree with ℓ leaves, then B(T ) ≤ ℓ.

Proof. We proceed by describing a winning strategy for ℓ bodyguards. Let v1, . . . , vℓ

be the leaves of T and let vP denote the vertex that is occupied by the president. Let

B1, . . . , Bℓ be the bodyguards and for each i, the bodyguard Bi will be assigned to

start on vi. For each 1 ≤ i ≤ ℓ, let Pi denote the unique geodesic from vi to vP . Let ui

denote the unique vertex on Pi that is adjacent to vP . Note that by the way the ui’s

are defined they are not necessarily distinct and as the president moves each turn, Pi

and ui may change.

Since c(T ) = 1, for each 1 ≤ i ≤ ℓ the bodyguard Bi can move to ui in finitely

many moves. Thus u1 . . . , uℓ can be occupied indefinitely by the bodyguards after

finitely many turns. Next we claim that N(vP ) = {u1, . . . , uℓ}. By the way the

ui’s are defined, it is clear that {u1, . . . , uℓ} ⊆ N(vP ). Suppose there exists a vertex

x ∈ N(vP ) such that x 6= ui for any i. Note that x /∈ {v1, . . . , vℓ} since otherwise the

edge xvP would be a geodesic from a leaf to vP and so x ∈ {u1, . . . , uℓ} by definition.

Let P i
x be the path from x to vi. If vP /∈ V (P i

x) for some 1 ≤ i ≤ ℓ, then P i
x and Pi

share a vertex y. Thus the path contained in P i
x from x to y, the path contained in

Pi from y to vP , and the edge xvP form a cycle which is a contradiction. If for all

1 ≤ i ≤ ℓ, P i
x contains vP then the only vertex adjacent to x is vP . So x is a leaf

which we have already shown leads to a contradiction.
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Thus, after finitely many turns, every vertex adjacent to the president can be

indefinitely occupied by the ℓ bodyguards and so B(T ) ≤ ℓ.

To prove that the bodyguard number of a tree is the number of leaves, all that

remains to show is that if the president plays against any fewer number of bodyguards

then he has a winning strategy.

Theorem 5.3.6. If T is a tree on at least three vertices with ℓ leaves, then B(T ) = ℓ.

Proof. Let v1, . . . , vℓ be the leaves of T and let c be a center vertex of T . Assume

that there are ℓ − 1 bodyguards in play. The president will begin the game on c. If

the bodyguards cannot surround the president at c, then ℓ− 1 bodyguards would not

be enough to win. Suppose instead that the bodyguards surround the president on c

after finitely many moves. Since there are ℓ− 1 bodyguards and ℓ leaves in T , there

exists a component X in T\vP that contains more vertices in the set {v1, . . . , vℓ} than

bodyguards. On his next turn, the president will move onto X. The president will

repeat this process without traversing the same edge during two consecutive moves

until either the bodyguards fail to surround him on one of their moves, in which case

the president walks back to c and begins this process again, or the president moves

to a vertex u adjacent to the leaves vn1
, . . . , vnk

. Since the president always moves

onto a component of T\vP that contains fewer bodyguards than vertices in the set

{v1, . . . , vℓ}, once the president moves onto u there will be at most k − 1 bodyguards

that are either on u or on one of the vni
’s. Thus on the bodyguards’ next move, it

is not possible for the bodyguards to occupy all of the leaves vn1
, . . . , vnk

and so the

president does not get surrounded. Then the president can move back to c and repeat

this process indefinitely so that the bodyguards cannot win. So B(G) ≥ ℓ. Since

B(G) ≤ ℓ by Lemma 5.3.5, we have B(G) = ℓ.

Theorem 5.3.6 gives an example of how the difference between the bodyguard

number and the lower bound in Lemma 5.2.1 can be arbitrarily large. It was shown

in [11] that the surrounding number on trees is at most two and so B(G) − σ(G)

can attain any nonnegative integer value. Furthermore, if we force ∆(G) = 3 we can

construct a tree with ℓ ≥ 3 leaves. Therefore B(G)−∆(G) can attain any nonnegative

integer value as well. So B(G) − max{∆(G), σ(G)} can be any nonnegative integer

value. We also know from Theorem 2.1.3 that the cheating robot number of any tree
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is one. So B(G)− ccr(G) can also attain any nonnegative integer value since the tree

P2 has a bodyguard number of one.

5.4 Cartesian product

Here we will find the exact bodyguard numbers for all two dimensional Cartesian

grids and give an upper bound on the bodyguard number for all Cartesian grids. To

help find these bodyguard numbers, we first give an upper bound on the bodyguard

number of the Cartesian product of any two graphs.

Theorem 5.4.1. If G and H are graphs, then

B(G�H) ≤ B(G) + B(H) + c(G�H)− 1.

Proof. Let (up, vp) denote the president’s vertex on G�H. If the bodyguards are able

to set up a bodyguard winning strategy on G.{vp} with B(G) bodyguards, then the

president will indefinitely be surrounded on G.{vp}. Similarly, if the bodyguards can

set up a bodyguard winning strategy on {up}.H with B(H) bodyguards, then the

president will indefinitely be surrounded on {up}.H.

Fix a bodyguard winning strategy on G.{vp} and a bodyguard winning strategy

on {up}.H. If, by using a set of B(G)+B(H) bodyguards, the bodyguards can set up

both of these winning strategies simultaneously, then they can indefinitely surround

the president since every move the president makes either puts him in a new copy of

G or a new copy of H and he cannot move to both a new copy of G and H in one

move. The vertices that the B(G)+B(H) bodyguards need to occupy to successfully

implement these strategies change relative to the president. By using c(G�H) − 1

bodyguards plus 1 bodyguard from a set of B(G)+B(H) bodyguards, the bodyguards

can use a cop winning strategy to move a bodyguard b onto a desired vertex relative

to the president’s position after a finite number of moves. If the president moves in

such a way that the desired vertex changes position, b can move onto the new position

of the desired vertex. When a bodyguard has been set up in this way, we will say

that the vertex is captured by the bodyguard. Once one vertex is captured, this leaves

c(G�H)−1 bodyguards to join with another one of the B(G)+B(H) bodyguards to

capture another vertex needed for the winning strategy. In finitely many turns, the

B(G) +B(H) bodyguards can be set up to indefinitely surround the president.



75

Next, we will study 2-dimensional Cartesian grids through multiple lemmas.

Lemma 5.4.2. If n ≥ 2, then

B(P2�Pn) =







2 if n = 2,

3 if n ≥ 3.

Proof. If n = 2, then P2�P2 is isomorphic to C4. From Theorem 5.3.3, B(C4) =

2. Suppose n ≥ 3. Since ∆(P2�Pn) = 3, B(P2�Pn) ≥ 3. To show that three

bodyguards can win on P2�Pn, assume that the bodyguards play on P2�Pn+2 with

vertices labelled (x, y) where 1 ≤ x ≤ 2 and 0 ≤ y ≤ n + 1 while the president plays

on the subgraph induced by the vertices {(u, v) | 1 ≤ u ≤ 2, 1 ≤ v ≤ n}. Note

that two vertices (x, y) and (x′, y′) are adjacent if either x = x′ and |y − y′| = 1 or

|x− x′| = 1 and y = y′. We will begin by giving a strategy for the bodyguards to win

on P2�Pn+2. Next, we will define a retract from P2�Pn+2 to P2�Pn. This retract will

translate the winning bodyguard strategy on P2�Pn+2 with the president restricted

to the subgraph P2�Pn, to a winning bodyguard strategy where both the bodyguards

and the president play on P2�Pn.

Three bodyguards can win the game by starting on the vertices (1, 0), (2, 0) and

(1, 1). All three bodyguards will begin the game by increasing their second coordinates

every round. Let (xp, yp) denote the vertex occupied by the president at the time when

the bodyguards have moved to the vertices (1, yp − 1), (1, yp) and (2, yp − 1). From

here, the bodyguards’ strategy changes depending on how the president moves from

this position. If the president moves by increasing yp at any point, the bodyguards

can respond by moving towards the president without changing their strategy. Since

the president can only increase yp finitely many times, the president will eventually

only have three options: decrease his second coordinate, change his first coordinate, or

stay at the vertex he is currently on. There are two cases for the president’s position,

either he is at (1, yp) or he is at (2, yp).

Case (i): The president is at (1, yp). If the president stays at (1, yp), the

bodyguards can move to (1, yp − 1), (1, yp + 1) and (2, yp) to surround the president.

If the president moves to (1, yp−1), the bodyguards can move to (1, yp−2), (1, yp) and

(2, yp−1) to surround the president. If the president moves to (2, yp), the bodyguards

can move to (2, yp − 1), (1, yp) and (2, yp). From here the president can either stay

at (2, yp), move to (1, yp) or move to (2, yp − 1). If the president stays at (2, yp), the
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bodyguards can move to (2, yp − 1), (1, yp) and (2, yp + 1) to surround the president.

If the president moves to (1, yp), the bodyguards can move to (1, yp − 1), (2, yp)

and (1, yp + 1) to surround the president. If the president moves to (2, yp − 1), the

bodyguards can move to (2, yp − 2), (1, yp − 1) and (2, yp) to surround the president.

Case (ii): The president is at (2, yp). If the president stays on (2, yp) then

the bodyguards can move to (1, yp − 1), (2, yp) and (2, yp − 1). By the symmetry of

the graph, the bodyguards can surround the president from this position by using a

strategy similar to the one from Case (i). If the president moves to (1, yp), then the

bodyguards can follow the strategy from Case (i). If the president moves to (2, yp−1),

the bodyguards can move to (2, yp−2), (1, yp−1) and (2, yp) to surround the president.

Therefore, in the case where the bodyguards play on P2�Pn+2 while the president

is restricted to the subgraph P2�Pn, regardless of how the president moves three

bodyguards are enough to surround him. Once the president is surrounded, the

bodyguards can indefinitely surround the president by either changing the value of

their second coordinates in the same way as the president or by changing the value of

the first coordinate whenever the president does the same.

To obtain a winning strategy for three bodyguards on P2�Pn, consider the follow-

ing retract f : V (P2�Pn+2) → V (P2�Pn).

f((u, v)) =











(u, v) if 1 ≤ v ≤ n,

(u, v + 2) if v = 0,

(u, v − 2) if v = n+ 1.

Fix a bodyguard winning strategy on P2�Pn+2. If a bodyguard was to move to

the vertex (u, v) when using the winning strategy on P2�Pn+2, to win on P2�Pn

the bodyguard will instead move to f((u, v)). Since retracts preserve adjacency, by

mapping the bodyguards movements using the retract f , the bodyguards will surround

the president in finitely many moves and then indefinitely surround him. This creates

a winning strategy where both the bodyguards and the president are playing on

P2�Pn.

We note that in the proof of Lemma 5.4.2 we showed that, for a given n ≥ 2, if the

bodyguards are able to win when playing on P2�Pn+2 with the president restricted to a

retract P2�Pn then the bodyguards can win when everyone is restricted to the retract
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P2�Pn. The reason we described a winning strategy for the bodyguards playing on

a larger graph instead of describing a winning strategy directly on P2�Pn was to

decrease the number of cases needed to describe the winning bodyguard strategy. For

example, suppose both the bodyguards and the president are playing on P2�Pn. If

the bodyguards have already surrounded the president and he moves from (1, 2) to

(1, 1), then the bodyguard that was on (1, 1) when the president was on (1, 2) would

now either have to move to (1, 2) or stay at (1, 1). In other words, the bodyguard

would no longer be able to move in the same direction as the president. However, by

extending the graph that the bodyguards play on to P2�Pn+2, the bodyguard that

was on (1, 1) when the president was on (1, 2) can respond to the president’s move to

(1, 1) by moving in the same direction as the president. Extending the graph in this

way eliminates the cases for when the president moves to either (1, 1), (1, n), (2, 1), or

(2, n). We will use a similar technique of having the president restricted to a retract

of the graph the bodyguards are playing on in the proof of Lemma 5.4.3.

Lemma 5.4.3. If n ≥ 2, then

B(P3�Pn) =







3 if n = 2,

4 if n ≥ 3.

Proof. If n = 2, B(P3�Pn) = 3 by Lemma 5.4.2. Let n ≥ 3. By Lemma 5.2.1,

we have B(P3�Pn) ≥ ∆(P3�Pn) ≥ 4. To show that four bodyguards can win on

P3�Pn, we use a similar argument as in the proof of Lemma 5.4.2. Assume the

bodyguards are playing on P3�Pn+3 with vertices labelled (u, v) where 1 ≤ u ≤ 3

and 0 ≤ v ≤ n+ 2 while the president plays on the subgraph induced by the vertices

{(u, v) | 1 ≤ u ≤ 3, 2 ≤ v ≤ n + 1}. The bodyguards start the game on the

vertices (1, 1), (2, 0), (2, 2) and (3, 1). The bodyguards’ strategy begins with increasing

their second coordinates every round. Let (xp, yp) denote the vertex occupied by the

president at the time when the bodyguards have moved to the vertices (1, yp − 1),

(2, yp−2), (2, yp) and (3, yp−1). The bodyguards’ strategy changes from this position.

To show that the four bodyguards win, we will give two positions for the bodyguards

and the president and show that once in one of the two positions, the bodyguards can

indefinitely surround the president. Following this, we will show that in finitely many

turns, regardless of how the president moves, the bodyguards can force the game into

one of these two positions.
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Figure 5.6: Two winning positions for four bodyguards on P3�Pn.

First, we describe two winning positions for the bodyguards. Suppose the president

is on (1, y) for some 2 ≤ y ≤ n+ 1. We claim that if there are bodyguards occupying

the vertices (1, y − 1), (1, y), (2, y) and (1, y + 1) as labelled * in Figure 5.6, then the

president loses. In this position the president can either move to (1, y − 1), (1, y + 1)

or (2, y). If the president moves to (1, y − 1) the bodyguards can move to (1, y − 2),

(1, y − 1), (2, y − 1) and (1, y) to surround him again. If the president moves to

(1, y + 1) the bodyguards can move to (1, y), (1, y + 1), (2, y + 1) and (1, y + 2). If

the president moves to (2, y) the bodyguards can move to (2, y − 1), (1, y), (3, y) and

(2, y + 1) which is ** in Figure 5.6. From this point, regardless of how the president

moves the bodyguards can continue to surround him indefinitely. A similar argument

can be made if the president is on (3, y) and the bodyguards occupy (3, y− 1), (3, y),

(2, y) and (3, y + 1). Therefore, to show that four bodyguards can win it suffices to

show that they can force the president into either position * or ** in Figure 5.6.

Next we will show that the bodyguards can, in finitely many turns, force the game

into either position * or **. Suppose xp = 1. If the president moves to (1, yp − 1) or

(2, yp) then the bodyguards can force either position * or ** in Figure 5.6. Suppose the
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president stays at (1, yp) for his next turn. The bodyguards can position themselves to

have one bodyguard at (1, yp − 1) and (2, yp) and have two bodyguards at (2, yp − 1).

If the president moves to (1, yp − 1), the bodyguards can move into position *. If

the president moves to (2, yp) then the bodyguards can move to (1, yp), (2, yp − 1),

(2, yp) and (3, yp). Regardless of how the president moves from this position the

bodyguards can either move to position * or **. Suppose the president again stays at

(1, yp). The bodyguards can then move to (1, yp − 1), (1, yp), (2, yp − 1) and (2, yp).

If the president either does not move, moves to (1, yp − 1) or moves to (2, yp) the

bodyguards can respond by either moving to positions * or ** or to a position from

a previous case. If at any point the president had chosen to move to (x, yp + 1) then

the bodyguards could have responded by increasing their second coordinates until

they obtain the same position as before. Since the president can only increase his

second coordinate finitely many times, he will eventually be forced to move in any

other direction, allowing the bodyguards to continue the above strategy.

Suppose instead xp = 2 or xp = 3. If xp = 3 then a similar argument to above

holds by the symmetry of the graph. If xp = 2 then the bodyguards can move into

position **.

Finally, to obtain a winning strategy for the bodyguards where everyone is playing

on P3�Pn, we make use of the following retract f : V (P3�Pn+3) → V (P3�Pn).

f((u, v)) =











(u, v) if 2 ≤ v ≤ n+ 1,

(u, v + 2) if v = 1 or v = 0,

(u, v − 2) if v = n+ 2.

By mapping the bodyguards’ moves when using their strategy on P3�Pn+3 with the

retract f , we have a winning strategy for the bodyguards on P3�Pn when both the

bodyguards and the president are playing on P3�Pn.

Lemma 5.4.4. If n = 4, then B(Pn�Pn) = 5.

Proof. By Theorem 5.4.1, B(P4�P4) ≤ 5. Suppose the president is playing against

four bodyguards. We label the vertices (x, y) where 1 ≤ x, y,≤ 4 and (x1, y1) is

adjacent to (x2, y2) if either x1 = x2 and |y1 − y2| = 1 or |x1 − x2| = 1 and y1 = y2.

The president will stay on the vertices (2, 2), (2, 3), (3, 2), (3, 3). If the bodyguards

are to win this game, they need to be able to surround the president in finitely many
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turns. Consider the last move the president makes from (up, vp) to (u′
p, v

′
p) before

he is surrounded. The four bodyguards need to occupy the four vertices adjacent to

the president after he makes his final move. Therefore, if any bodyguard is distance

three away from (up, vp), then the president can avoid being surrounded by staying

on (up, vp) for his final turn. This is a contradiction and so we assume that every

bodyguard is at most distance two away from the president before his final move.

Let C be the set of vertices {(2, 2), (2, 3), (3, 2), (3, 3)}. There are multiple cases

for the position of the bodyguards. Since the president has four neighbours, there are

either zero, one, two, three or four bodyguards adjacent to the president. Furthermore,

each of these bodyguards are either in C or not in C. Figure 5.7 illustrates an example

for each of the cases we consider. First, we consider the case where a vertex adjacent to

the president contains more than one bodyguard. Suppose there are two bodyguards

adjacent to the president that occupy the same vertex. Without loss of generality,

assume the president is on the vertex (2, 2). If the president does not move, then

it is not possible for either one of the two bodyguards to move to a different vertex

adjacent to the president in one move. Therefore, the bodyguards cannot surround

the president in one move. Using the same argument, if a vertex adjacent to the

president contains two or more bodyguards then the bodyguards cannot surround the

president in one move.

Now suppose instead that every vertex adjacent to the president is occupied by at

most one bodyguard. We split the rest of the proof into cases based on positions of

the bodyguards while under the assumption that no vertex adjacent to the president

contains more than one bodyguard. Without loss of generality, assume that in all of

these cases the president is on the vertex (2, 2). First, we consider the case where

there is a bodyguard that is neither adjacent to the president nor in C. If there

is a bodyguard outside of C that is not adjacent to the president then, since the

bodyguards are at most distance two away from the president, that bodyguard is

either on (1, 1), (1, 3), (2, 4), (3, 1) or (4, 2). If there is a bodyguard on (1, 1), (1, 3)

or (2, 4), the president can move to (3, 2) and now that bodyguard cannot move to a

vertex adjacent to the president on their next move. If that bodyguard is on (3, 1) or

(4, 2), then the president can move to (2, 3) and again that bodyguard cannot move

to a vertex adjacent to the president in one move.

Suppose instead that every bodyguard is either adjacent to the president or in C.
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Then, every bodyguard that is not adjacent to the president is forced to be in C. Since

the president is one move away from being surrounded, there can be anywhere between

zero and three bodyguards adjacent to the president. So, we have the following four

cases:

(i): there are exactly three bodyguards adjacent to the president that may or may

not be in C and the remaining bodyguard is in C and not adjacent to the

president,

(ii): there are exactly two bodyguards adjacent to the president that may or may

not be in C and the remaining two bodyguards are in C and not adjacent to

the president,

(iii): there is exactly one bodyguard adjacent to the president that may or may not

be in C and the remaining three bodyguards are in C and not adjacent to the

president, and

(iv): no bodyguards are adjacent to the president, but all four are in C.

Case (i): Let b be the bodyguard not adjacent to the president. The bodyguard

b is either on (2, 2) or (3, 3). Suppose either (2, 3) or (3, 2) is unoccupied. If the

president moves to whichever of (2, 3) or (3, 2) is unoccupied, then the bodyguards

cannot cover (2, 4) and (4, 2) respectively. Suppose, on the other hand, that there is a

bodyguard on (2, 3) and (3, 2). Then, without loss of generality, the third bodyguard

adjacent to the president is on (1, 2). Since there is no bodyguard on (2, 1), the

president can move to (3, 2) and the bodyguards cannot cover (3, 1) and (4, 2) in one

move.

Case (ii): There are three subcases: either there is no bodyguard on (2, 2), there

is one bodyguard on (2, 2), or there are two bodyguards on (2, 2). Suppose there are

no bodyguards on (2, 2). Then the two bodyguards not adjacent to the president, but

are still in C are on (3, 3). Furthermore, since the president can be surrounded in one

move if he does not move off of (2, 2), there must be bodyguards on (1, 2) and (2, 1).

If the president moves to (3, 2) then no bodyguard can cover (4, 2).

Suppose instead that one bodyguard is on (2, 2), forcing the other bodyguard onto

(3, 3). Note that the two bodyguards adjacent to the president may or may not be

on C. So one of the two bodyguards adjacent to the president is forced to be on
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More than one bodyguard on a
vertex adjacent to the president.

One bodyguard is neither in C
nor adjacent to the president.

Case (i). Case (ii).

Case (iii). Case (iv).
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Figure 5.7: Examples of each of the cases considered in the proof of Lemma 5.4.4.
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either (1, 2) or (2, 1). If there is a bodyguard on (1, 2) and (2, 1) then the president

can move to (3, 2) and avoid being surrounded since the vertex (4, 2) is not covered

by the bodyguards. Suppose there is a bodyguard on (1, 2) and not (2, 1). Then the

fourth bodyguard is either on (2, 3) or (3, 2). Whichever one is not occupied by a

bodyguard, if the president moves there then either (4, 2) or (2, 4) respectively will

not be covered by the bodyguards. If instead there is a bodyguard on (2, 1) and not

(1, 2) then by the symmetry of the graph, the same strategy of moving to an empty

vertex will prevent the president from being surrounded in one move. Therefore, there

cannot be one bodyguard on (2, 2).

Finally, suppose the two bodyguards not adjacent to the president are on (2, 2).

If the president moves to (3, 2), then neither of the bodyguards on (2, 2) can get to

(3, 1), (3, 3) nor (4, 2) in one move. So it is not possible for all four bodyguards to

cover those vertices in one move. Thus the president cannot be surrounded in one

move.

Case (iii): If there are no bodyguards on (2, 2), then there are three bodyguards

on (3, 3). If the president does not move, it is not possible for the bodyguards to

surround the president from this position in one move. If instead there are at least

two of the bodyguards on (2, 2), then by the work done in Case (ii) the president can

move to (3, 2) and avoid being surrounded in one move. Suppose one bodyguard is on

(2, 2) and two bodyguards are on (3, 3). Then the last bodyguard must be on either

(1, 2) or (2, 1). In the analysis of Case (ii), we showed that the president can avoid

being surrounded in one move when two bodyguards are on (2, 2) and one bodyguard

is on either (1, 2) or (2, 1). By using the same strategy for the president as described

in the analysis of Case (ii), the president can move and avoid being surrounded in one

move.

Case (iv): If all four bodyguards are in C, at least two of them must be on

(2, 2). Otherwise, two of the vertices in the president’s open neighbourhood would be

distance at least two away from three of the bodyguards, so the bodyguards would

not be able to surround the president on their next move. Thus at least two of the

bodyguards are on (2, 2). However, by the argument in Case (ii), the president can

avoid being surrounded.

Therefore, against four bodyguards, the president can always avoid being sur-

rounded. Thus B(Pn�Pn) > 4 and so B(P4�P4) = 5.
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To determine the bodyguard numbers for every 2-dimensional Cartesian grid, we

make use of Maamoun and Meyniel’s result in [32] on the cop number of the Cartesian

product of trees.

Theorem 5.4.5. [32] If T1, . . . , Tk are trees such that each Ti has more than one

vertex, then

c(�k
i=1Ti) =

⌈

k + 1

2

⌉

.

However, we only need the case when each tree in the Cartesian product is a path.

So we use the following corollary.

Corollary 5.4.6. If n1, . . . , nk ≥ 2, then

c(�k
i=1Pni

) =

{

k+1
2

if k is odd
k
2
+ 1 if k is even.

Theorem 5.4.7. If n ≤ m, then

B(Pn�Pm) =































2 if n,m = 2,

3 if n = 2 and m ≥ 3,

4 if n = 3 and m ≥ 3,

5 if n,m ≥ 4.

Proof. From Lemma 5.4.2 we have B(P2�P2) = 2 and B(P2�Pm) = 3 for any m ≥ 3.

From Lemma 5.4.3 we have B(P3�Pm) = 4 for any m ≥ 3. From Lemma 5.4.4 we

know that B(P4�P4) = 5. Since P4�P4 is a retract of Pn�Pm where n,m ≥ 4,

by Theorem 5.2.5 B(Pn�Pm) ≥ 5. From Corollary 5.4.6, c(Pn�Pm) = 2 for all

n,m ∈ Z+. Therefore by Theorem 5.4.1, B(Pn�Pm) ≤ 5 and so B(Pn�Pm) = 5 when

n,m ≥ 4.

Next, we give bounds on k-dimensional Cartesian grids.

Theorem 5.4.8. If n1, . . . , nk ≥ 3, then

2k ≤ B(�k
i=1Pni

) ≤

{

5k−1
2

if k is odd
5k
2

if k is even.
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Proof. The lower bound is obtained by considering ∆(�k
i=1Pni

) and Lemma 5.2.1.

Suppose the bodyguards are playing on the graph �
k
i=1Pni+2 with vertices labeled

(x1, . . . , xk) where 0 ≤ xi ≤ ni+1 while the president plays on the subgraph induced by

the vertices (y1, . . . , yk) where 1 ≤ yi ≤ ni. If the president is on the vertex (v1, . . . , vk)

and the bodyguards can occupy the vertices (v1, . . . , vi−1, vi + ai, vi+1, . . . , vk) where

1 ≤ i ≤ k and for each i, ai ∈ {1,−1}, then the president can never escape being

surrounded regardless of how he moves. Therefore, it suffices to show that
⌊

5k
2

⌋

bodyguards can move from a position where the president is not surrounded to a

position where the president is surrounded.

Suppose we are playing with 2k + c(�k
i=1Pni

)− 1 bodyguards. Note that we have

∆(�k
i=1Pni

) = 2k. Using a cop winning strategy, c(�k
i=1Pni

) bodyguards can force

one of the 2k neighbours of the president, say b+i = (v1, . . . , vi−1, vi + 1, vi+1, . . . , vk),

to become occupied by a bodyguard. Once b+i is occupied by a bodyguard, the

bodyguard that moved onto b+i can always move to b+i after every president turn.

The c(�k
i=1Pni

) − 1 bodyguards that did not move onto b+i can then combine with

one of the remaining 2k− 2 bodyguards to force a bodyguard onto another one of the

president’s neighbours. They can continue this until eventually all of the president’s

neighbours are occupied by bodyguards.

From Corollary 5.4.6, we know that c(�k
i=1Pni

) = k+1
2

if k is odd and c(�k
i=1Pni

) =
k
2
+ 1 if k is even. Therefore, to utilize the above strategy we need

2k +
k + 1

2
− 1 =

5k − 1

2

bodyguards if k is odd and

2k +
k

2
+ 1− 1 =

5k

2

bodyguards if k is even.

If ni = 2 for all 1 ≤ i ≤ k, then the graph �
k
i=1Pni

is called the k-dimensional

hypercube and is denoted Qk. Note that ∆(Qk) = k and so by Lemma 5.2.1, B(Qk) ≥

k. Theorem 5.4.8 gives an upper bound on B(Qk). In the following theorem, we give

tighter bounds on B(Qk) than the bounds given by Lemma 5.2.1 and Theorem 5.4.8.
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Theorem 5.4.9. If k ≥ 3, then

k + 1 ≤ B(Qk) ≤

{

3k−1
2

if k is odd
3k
2

if k is even.

Proof. We will label the vertices in Qk with vectors (a1, . . . , ak) where ai ∈ {0, 1} for

each 1 ≤ i ≤ k. By the structure of Qk, two vertices are adjacent in Qk if they differ

in exactly one of the k coordinates in their labels.

First, we will show that B(Qk) ≥ k + 1 by showing that k bodyguards cannot

surround the president. At the start of the game the president can place himself on a

vertex (x1, . . . , xk) such that one of the bodyguards is on (x′
1, . . . , x

′
k) where xi 6≡ x′

i

mod 2. Since k ≥ 3, the president is beginning the game distance at least three away

from one of the bodyguards. Thus, the bodyguards cannot surround the president on

their first move.

Now, suppose for a contradiction that k bodyguards can surround the president on

some move after their first move. Consider the president’s last move before being sur-

rounded. Let (v1, . . . , vk) be the vertex occupied by the president. Since the president

is one bodyguard turn away from being surrounded, there is a bodyguard b that is dis-

tance two away from the president. Let (v1, . . . , vi−1, v
′
i, vi+1, . . . , vj−1, v

′
j, vj+1, . . . , vk)

where vi 6≡ v′i mod 2 and vj 6≡ v′j mod 2 be the vertex occupied by b. To avoid being

surrounded, the president can move to a vertex whose label differs from (v1, . . . , vi−1,

v′i, vi+1, . . . , vj−1, v
′
j, vj+1, . . . , vk) in one coordinate that is neither the ith coordinate

nor the jth coordinate. By making this move, the president puts himself at distance

three away from b, and so b cannot move adjacent to the president on the next body-

guard turn. Since the degree of every vertex in Qk is k, the k bodyguards cannot

surround the president without having every bodyguard adjacent to the president.

Therefore, we have a contradiction and so the president can indefinitely avoid being

surrounded by k bodyguards.

Next, we will show that B(Qk) ≤
⌊

3k
2

⌋

by using the technique from the proof

of Theorem 5.4.8. Let (v1, . . . , vk) be the vertex occupied by the president. Sup-

pose we are playing with k + c(Qk) − 1 bodyguards. Using a cop winning strat-

egy, c(Qk) bodyguards can force one of the k neighbours of the president, say ui =

(v1, . . . , vi−1, v
′
i, vi+1, . . . , vk) where vi 6≡ v′i mod 2, to become occupied by a body-

guard. The bodyguard that moves onto the vertex ui can always move to ui following
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every president move for the entirety of the game. The c(Qk)−1 bodyguards that did

not move onto ui can then combine with one of the remaining k − 2 bodyguards to

force a bodyguard onto another one of the president’s neighbours. The bodyguards

can continue this strategy until eventually all of the president’s neighbours are occu-

pied by bodyguards. By Corollary 5.4.6, c(Qk) =
⌈

k+1
2

⌉

. Therefore if k is odd, then

k + k+1
2

− 1 = 3k−1
2

bodyguards can surround the president and if k is even, then

k + k
2
+ 1− 1 = 3k

2
bodyguards can surround the president. It remains to show that

once the president is surrounded, the bodyguards can indefinitely surround him.

Suppose the president is surrounded on the vertex v = (v1, . . . , vk). We claim

that if the president moves from v to v′ = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vk) where vi 6≡ v′i

mod 2, the bodyguards can respond by surrounding the president in one move. If

a bodyguard adjacent to the president is on the vertex u = (u1, . . . , uk), then that

bodyguard can move to the vertex u′ = (u1, . . . , ui−1, u
′
i, ui+1, . . . , uk) where ui 6≡ u′

i

mod 2. That is, each of the k bodyguards will change their ith coordinates. Since u

is adjacent to v, u′ is adjacent to v′. Furthermore, since each of the k bodyguards

occupied different vertices when they were surrounding the president, if each body-

guard changes their ith coordinate they will still occupy k distinct vertices. Therefore,

the bodyguards can surround the president on their turn immediately following the

president moving onto v′. Thus, the bodyguards can surround the president indefi-

nitely.

Bounds on B(�k
i=1Pni

) when ni = 2 for some i can be obtained by using Corollary

5.4.6, Theorem 5.4.8, and Theorem 5.4.9.

Theorem 5.4.10. Let k, t ∈ Z+ where t ≤ k. If n1, . . . , nt = 2 and nt+1, . . . , nk > 2,

then

2k − t ≤ B(�k
i=1Pni

) ≤

{

6k−2t−1
2

if k is odd

3k − t+ 1 if k is even.

Proof. The lower bound is obtained by considering ∆(�k
i=1Pni

) and Lemma 5.2.1.

By Theorem 5.4.8, we have

B(�k
i=1Pni

) = B((�t
i=1P2)�(�k

i=t+1Pni
))

≤ B(Qt) + B(�k
i=t+1Pni

) + c(�k
i=1Pni

)− 1.
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By Corollary 5.4.6, Theorem 5.4.8, and Theorem 5.4.9, if k is odd we obtain

B(�k
i=1Pni

) ≤
3t− 1

2
+

5(k − t)− 1

2
+

k + 1

2
=

6k − 2t− 1

2

and when k is even we obtain

B(�k
i=1Pni

) ≤
3t

2
+

5(k − t)

2
+

k + 2

2
= 3k − t+ 1.

5.5 Strong grids

In Chapter 6, we will analyze the cheating robot number of strong grids. In this

section, we determine the bodyguard number of any k-dimensional strong grid which

will be used to bound the cheating robot number of strong grids. First, we show that

any k-dimensional strong grid is copwin using a theorem by Neufeld and Nowakowski

[34].

Theorem 5.5.1. ([34]) If G and H are graphs, then

c(G⊠H) ≤ c(G) + c(H)− 1.

Corollary 5.5.2. If ni ≥ 2 where 1 ≤ i ≤ k, then c(⊠k
i=1Pni

) = 1.

Proof. We know c(Pn) = 1 for any n ∈ Z+. So, by Theorem 5.5.1,

c(Pn1
⊠ Pn2

) = c(Pn1
) + c(Pn2

)− 1 = 1.

By induction, we get c(⊠k
i=1Pni

) = 1.

Theorem 5.5.3. If k ∈ Z+ and ni ≥ 3 for 1 ≤ i ≤ k then

B(⊠k
i=1Pni

) = 3k − 1.

Proof. Note that B(⊠k
i=1Pni

) ≥ ∆(⊠k
i=1Pni

) = 3k − 1. We will label the vertices of

B(⊠k
i=1Pni

) by vectors of length k, (v1, . . . , vk) where 1 ≤ vi ≤ ni for each 1 ≤ i ≤ k.
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To show that 3k − 1 bodyguards can win on ⊠
k
i=1Pni

, we use the same technique

as in the proof of Theorem 5.4.8. Let G = ⊠
k
i=1P

′
ni

where P ′
ni

is obtained by adding

a leaf to each end of the path Pni
. The vertices of G will be labeled the same way

as the vertices of ⊠k
i=1Pni

with additional vertices that have labels containing 0 and

ni + 1. The bodyguards will play on G while the president plays on ⊠
k
i=1Pni

.

If the president is on the vertex (v1, . . . , vk) and the bodyguards can occupy vertices

of the form (v1 + a1, . . . , vk + ak) where 1 ≤ i ≤ k, for each i, ai ∈ {1, 0,−1}, and ai

is nonzero for some 1 ≤ i ≤ k, then the president can never escape being surrounded

regardless of how he moves. By Corollary 5.5.2, c(⊠k
i=1Pni

) = 1 and so each of the

3k−1 bodyguards can use a cop winning strategy to move onto each of the president’s

neighbours. Once each of the president’s neighbours is occupied by a bodyguard, the

bodyguards can indefinitely surround the president.



Chapter 6

Graph Products

In this chapter we discuss how the cheating robot number behaves with respect to

different graph products. Huggan and Nowakowski [23] showed that for any two graphs

G andH, ccr(G�H) ≤ ccr(G)+ccr(H). Comparatively, it was shown by Tošić [40] that

c(G�H) ≤ c(G) + c(H). Since the cheating robot number has a similar upper bound

to the cop number for Cartesian products, it is natural to ask whether the same can

be said regarding other graph products. Consider the strong product. It was shown

by Neufeld and Nowakowski [34] that c(G ⊠ H) ≤ c(G) + c(H) − 1. Is it true that

ccr(G⊠H) ≤ ccr(G)+ccr(H)−1? Burgess et al. [11] showed that σ(G)+σ(H)−1 is not

an upper bound for σ(G⊠H) by showing that the graphK1,n⊠K1,n contains an n-core.

Since K1,n⊠K1,n contains an n-core, by Theorem 2.1.1 ccr(K1,n⊠K1,n) ≥ n. However,

by Theorem 2.1.3 ccr(K1,n) = 1 and so ccr(K1,n ⊠ K1,n) > ccr(K1,n) + ccr(K1,n) − 1.

Therefore ccr(G) + ccr(H)− 1 does not bound ccr(G⊠H) from above in general. To

obtain an upper bound on ccr(G⊠H), we will make use of the push number introduced

in Chapter 2 and the bodyguard number introduced in Chapter 5. We also give a new

upper bound on the cheating robot numbers of the strong grid and the lexicographic

product of two graphs. We discuss how we can use similar proof techniques as with

the cheating robot number of strong products to obtain a new upper bound on the

surrounding number for strong products of graphs and for k-dimensional strong grids.
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6.1 General strong product

We begin with an upper bound on the cheating robot number for the strong product

of any two graphs.

Theorem 6.1.1. If G and H are graphs with more than one vertex, then

ccr(G⊠H) ≤ min{ccr(H) · (B(G) + 1) + max{pcr(H), 1} · ccr(G),

ccr(G) · (B(H) + 1) + max{pcr(G), 1} · ccr(H)}.

Proof. Let S be a winning strategy for ccr(H) cops on H such that at most pcr(H)

cops push Robert. Let x1, . . . , xccr(H) be the vertices in H that the cops start on when

using strategy S and, without loss of generality, suppose the pcr(H) cops that Robert

can force to push him start on the vertices x1, x2, . . . , xpcr(H). Let ci denote the cop

starting on xi for each 1 ≤ i ≤ ccr(H). We will use S to develop a winning strategy

for ccr(H) · (B(G) + 1) + pcr(H) · ccr(G) cops on G⊠H.

For a given vertex v ∈ V (H), we will use the same notation as before where G.{v}

denotes the subgraph of G ⊠ H induced by the vertex set {(u, v) | u ∈ V (G)}. At

the beginning of the game on G ⊠ H, B(G) + 1 cops will be placed on G.{xi} for

each 1 ≤ i ≤ ccr(G) and an additional ccr(G) cops will be placed on each G.{xi} for

1 ≤ i ≤ pcr(H). Let Ci denote the set of all cops that are starting on G.{xi}. In

finitely many turns, B(G)+1 cops on each G.{xi} will first use a cop winning strategy

to catch Robert’s shadow on G.{xi}. Then while one cop continues moving to remain

on Robert’s shadow, the other B(G) cops use the bodyguard winning strategy where

they treat Robert’s shadow as the president.

The cops then proceed to capture Robert as follows. If for some 1 ≤ i ≤ ccr(H)

the strategy S has the cop ci move from vertex v1 to v2 where Robert is not on v2

when playing on H, then the set of cops Ci will move from G.{v1} to G.{v2} while

maintaining the bodyguard winning strategy and while capturing Robert’s shadow on

G.{v2}. The cops are able to accomplish this since, by the construction of G ⊠ H,

if a cop is on the vertex (u, v1) then that cop can move to any vertex in the set

{(x, v2) ∈ V (G ⊠ H) | x ∈ NG[u]}. If for some 1 ≤ i ≤ pcr(H) the strategy S has

the cop ci move from v1 to v2 where Robert is on v2 when playing on H, then the

ccr(G) cops from the set Ci that are not a part of the bodyguard winning strategy will

move from G.{v1} to G.{v2} while the remaining B(G) + 1 cops stay on G.{v1} and
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continue moving onto Robert’s shadow and using the bodyguard winning strategy.

By using this strategy, the B(G) + 1 cops prevent Robert from moving onto G.{v1}.

The ccr(G) cops will use the cop winning strategy on G to catch Robert on G.{v2}

and force Robert to move off of G.{v2}. Once Robert has moved off of G.{v2}, either

by force or by his own choice, the B(G) + 1 cops on G.{v1} will move onto G.{v2}

continuing the same strategy of catching Robert’s shadow and using the winning

bodyguard strategy.

Since strategy S eventually results in Robert’s capture at some vertex, say vf , by

using the above strategy on G ⊠ H the cops are able to force Robert onto G.{vf}.

Afterwards, ccr(G) cops will move onto G.{vf} while for every u ∈ V (H) adjacent

to vf , the subgraphs G.{u} each contain at least B(G) + 1 cops that are preventing

Robert from moving off of G.{vf}. From here the ccr(G) cops use the cop winning

strategy for G to capture Robert on G.{vf}.

This proves that ccr(G⊠H) ≤ ccr(H) ·(B(G)+1)+max{pcr(H), 1}·ccr(G). A sim-

ilar proof can be done to show that ccr(G⊠H) ≤ ccr(G) ·(B(H)+1)+max{pcr(G), 1}·

ccr(H).

In Section 6.2, we will make use of the following corollary.

Corollary 6.1.2. If G is a graph and n ≥ 2, then

2δ(G) + 1 ≤ ccr(G⊠ Pn) ≤ B(G) + ccr(G) + 1.

Proof. Since ccr(Pn) = 1 and pcr(Pn) = 1, by Theorem 6.1.1

ccr(G⊠ Pn) ≤ 1(B(G) + 1) + max{1, 1}(ccr(G)) = B(G) + ccr(G) + 1.

Since Pn has a vertex of degree one, δ(G⊠ Pn) = 2δ(G) + 1. Note that for any graph

G, G contains a δ(G)-core. So by Theorem 2.1.1

ccr(G⊠ Pn) ≥ δ(G⊠ Pn) = 2δ(G) + 1.

We can generalize Corollary 6.1.2 by considering the strong product of two graphs

where either one is a tree.



93

Corollary 6.1.3. Let G and H be graphs, both on at least three vertices. If G is a

tree with ℓ leaves then

2δ(H) + 1 ≤ ccr(G⊠H) ≤ (ℓ+ 1)ccr(H) + pcr(H).

If H is also a tree then

3 ≤ ccr(G⊠H) ≤ ℓ+ 2.

Proof. The upper bound follows directly from Theorem 2.1.3, Theorem 5.3.6 and

Theorem 6.1.1. By using the same argument as in the proof of Corollary 6.1.2,

δ(G⊠H) gives the lower bound.

The following theorem gives the exact value of the cheating robot number for

specific strong products.

Theorem 6.1.4. If n,m ≥ 2, then

ccr(Cn ⊠ Pm) = 5,

ccr(Cn ⊠ Cm) = 8,

ccr(Kn ⊠ Pm) = 2n− 1,

ccr(Kn ⊠ Cm) = 3n− 1,

and

ccr(Kn ⊠Km) = mn− 1.

Proof. We have that δ(Cn ⊠ Pm) = 5, δ(Cn ⊠ Cm) = 8, δ(Kn ⊠ Pm) = 2n − 1,

δ(Kn ⊠ Cm) = 3n − 1 and δ(Kn ⊠Km) = mn − 1. Thus we have that the cheating

robot numbers of these products are bounded below by these values by Theorem 2.1.1.

For Kn ⊠Pm, Kn ⊠Cm and Kn ⊠Km, the upper bound from Theorem 6.1.1 matches

their minimum degrees. For the other two products we will describe a winning strategy

for the cops.

Let v1, . . . , vm be the vertices of the path Pm where vi is adjacent to vi+1 for each

1 ≤ i ≤ m−1. Suppose Robert is playing against five cops on Cn⊠Pm. The cops have

a winning strategy by starting in the subgraph Cn.{v1}. Three of the cops will use

the bodyguard winning strategy to surround Robert’s shadow on Cn.{v1} while the

other two cops use the cop winning strategy to move onto the vertex Robert’s shadow

occupies. After finitely many moves the closed neighbourhood of Robert’s shadow
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will be occupied by three cops. From here the cops can use a winning strategy from

the cheating robot variant to capture Robert on Cn.{vm} as described in the proof

for Theorem 6.1.1.

If Robert is playing against eight cops on Cn ⊠Cm then the cops can set up their

strategy by placing four cops on two different cycles, Cn.{x1} and Cn.{x2} where

x1, x2 ∈ V (Cm), using the cop winning strategy to move a cop onto Robert’s shadow

on the two cycles, and then using the bodyguard winning strategy to eventually

occupy the closed neighbourhood of Robert’s shadow on the two cycles. Six cops

will be occupying these closed neighbourhoods which leaves two cops to push Robert

where needed and capture him using a winning cheating robot strategy on Cm.

6.2 Strong grids

Huggan and Nowakowski [23] gave the following bounds on the cheating robot number

of the k-dimensional strong grid.

Theorem 6.2.1 ([23]). If k ∈ Z+, then

3
(

2k−1
)

− 2 ≤ ccr
(

⊠
k
i=1Pni

)

≤ 3k.

The lower bound is the size of the largest core in a k-dimensional strong grid. In

this section we will improve on the upper bound, starting with a direct approach.

Theorem 6.2.2. If k ∈ Z+ and ni ≥ 4 for 1 ≤ i ≤ k, then

ccr
(

⊠
k
i=1Pni

)

≤ 1 +
k−1
∑

δ=0

(

k

δ

)

·

⌊ k−δ

2 ⌋
∑

ℓ=0

(

k − δ

ℓ

)

.

Proof. We proceed by showing that after a finite number of moves, the cops can force

Robert’s k-coordinates to have more increases than decreases every time he moves

until he is captured. Eventually, Robert will have no option but to move to the vertex

(n1, n2, . . . , nk) where he gets surrounded. Suppose Robert moves from the vertex

v = (v1, v2, . . . , vk) with 1 ≤ vi ≤ nk to the vertex v′ = (v′1, v
′
2, . . . , v

′
k) such that

vi = v′i for exactly 0 ≤ δ < k different vis. We want to count the number of ways

v′ can have at least as many coordinates satisfy v′j < vj as coordinates that satisfy
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v′j > vj. If this condition on v′ holds, at most
⌊

k−δ
2

⌋

of the coordinates satisfy v′j > vj.

If the δ coordinates that do not change as Robert moves from v to v′ are fixed, the

total number of choices for v′ is

⌊ k−δ

2 ⌋
∑

ℓ=0

(

k − δ

ℓ

)

.

Since there are
(

k

δ

)

ways to choose the δ coordinates that do not change when Robert

moves, there are a total of

Ak =
k−1
∑

δ=0

(

k

δ

)

·

⌊ k−δ

2 ⌋
∑

ℓ=0

(

k − δ

ℓ

)

vertices Robert could move to such that he would decrease at least as many of his

coordinates as he increases. If a cop occupied each of these Ak vertices, then every

time Robert moved he would have no choice but to increase more of his coordinates

than decrease. It remains to show that the cops can move to these vertices in finitely

many moves.

Let H = ⊠
k
i=1P

′
ni

where P ′
ni

is the path obtained by adding a leaf at each end of

the path Pni
. Thus every vertex (x1, . . . , xk) of H has coordinates 0 ≤ xi ≤ ni +1 for

all 1 ≤ i ≤ k. Then G is a retract of H via the map

f(xi) =











xi if 1 ≤ xi ≤ ni

1 if xi = 0

ni if xi = ni + 1

and so by Theorem 2.2.3, ccr(G) ≤ ccr(H). We will allow the cops to play on H while

restricting Robert to playing on G to ensure that Robert will always be adjacent to

the same number of vertices during every round of the game.

The cops’ strategy will be to have Ak of the cops move to the Ak vertices adjacent to

Robert that were previously discussed while the last cop moves to the vertex occupied

by Robert. Let cy be one of the Ak cops and assume she is attempting to get to the

position y = (y1, . . . , yk) that is relative to Robert. If Robert moves from (v1 . . . , vk)

to (v1 + a1, . . . , vk + ak) where ai ∈ {−1, 0, 1}, then the position y will also change

by adding ai to each coordinate. By Lemma 5.5.1, c(H) = 1. Furthermore, since the
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R

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

Figure 6.1: The red squares correspond to the vertices Robert is forbidden to move to
which are also the vertices whose labels are obtained by adding at most 2 incremental
increases of one to the coordinates of (0, . . . , 0).

position y moves based on Robert’s movements, the position y moves the same way

a robber could in the original Cops and Robber. Therefore there exists a strategy for

the cop cy to move onto y in finitely many moves. This argument holds for all of the

Ak vertices adjacent to Robert as well as the vertex Robert occupies. So, after finitely

many moves, the cops can be on the vertices that force Robert to eventually move to

the vertex (n1, . . . nk) where he gets surrounded by cops.

The sequence of values obtained by evaluating the upper bound in Theorem 6.2.2

for different k match the sequence A027914 in the Online Encyclopedia of Integers [36].

The kth integer in the sequence A027914 is defined to be the sum of the coefficients

of x0, x1, . . . , xk in the expansion of (1 + x + x2)k. To see why these two sequences

are the same, note that (1 + x + x2)k is the generating function for the number of

ways to distribute identical balls into k distinct bins such that each bin contains at

most two balls. Thus the sum of the coefficients of x0, . . . , xk in the expansion of

(1+x+x2)k is equal to the number of ways to distribute at most k identical balls into

k distinct bins such that each bin receives at most two balls. The sum in Theorem

6.2.2 is counting the number of vertices on a k-dimensional strong grid that need to

be forbidden to force Robert to move closer to the vertex (n1, . . . , nk). Let (v1, . . . , vk)

denote the vertex Robert is on. For convenience, we will relabel the vertices such that

(v1 − 1, . . . , vk − 1) is mapped to (0, . . . , 0).

Here the identical balls are the incremental increases by one to the coordinates
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of (0, . . . , 0). The distinct bins are the k-coordinates of the vertices. It takes 2k

incremental increases by one to go from (0, . . . , 0) to (2, . . . , 2). Therefore if we add

at most k incremental increases, we obtain all of the vertices that are either as close

to (0, . . . , 0) as they are to (2, . . . , 2) or closer to (0, . . . , 0) than (2, . . . , 2). In other

words, we obtain the set of all vertices that have at least as many 0’s as 2’s in their

labels. This is exactly what the sum in Theorem 6.2.2 counts and so the two sequences

are the same. Figure 6.1 illustrates the 2-dimensional case of this proof.

Using the bodyguard number, we can obtain a much stronger upper bound on the

cheating robot number for k-dimensional strong grids.

Theorem 6.2.3. If k ∈ Z+ and ni ≥ 3 for 1 ≤ i ≤ k, then

ccr
(

⊠
k
i=1Pni

)

≤
k−1
∑

j=0

3j =
3k − 1

2
.

Proof. We proceed by induction on k. When k = 2,
∑k−1

j=0 3
j = 4. Huggan and

Nowakowski [23] showed that ccr(Pn ⊠ Pm) ≤ 4 for any n,m ≥ 2 and so the theorem

holds when k = 2. Fix k ≥ 2 and assume

ccr(⊠
k−1
i=1Pni

) ≤
k−2
∑

j=0

3j.

We can write ⊠
k
i=1Pni

as
(

⊠
k−1
i=1Pni

)

⊠ Pnk
. By applying Theorem 6.1.1 and Theorem

5.5.3, we obtain

ccr(⊠
k−1
i=1Pni

⊠ Pnk
) ≤ ccr(Pnk

) ·
(

B(⊠k−1
i=1Pni

) + 1
)

+max{pcr(Pnk
), 1} · ccr(⊠

k−1
i=1Pni

)

≤ (1)
(

3k−1 − 1 + 1
)

+ (1)

(

k−2
∑

j=0

3j

)

= 3k−1 +
k−2
∑

j=0

3j

=
k−1
∑

j=0

3j

as required.

Figure 6.2 gives a table for the values of all the bounds in this section up to
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k 3(2k−1)− 2 3k 1 +
∑k−1

δ=0

(

k

δ

)

·
∑⌊ k−δ

2 ⌋
ℓ=0

(

k−δ

ℓ

)

3k−1
2

1 1 3 2 1
2 4 9 6 4
3 10 27 17 13
4 22 81 50 40
5 46 243 147 121
6 94 729 435 364
7 190 2187 1290 1093
8 382 6561 3834 3280
9 766 19683 11411 9841
10 1534 59049 34001 29524

Figure 6.2: A table comparing all of the proven bounds on the cheating robot of
k-dimensional strong grids up to k = 10.

10-dimensional strong grids.

6.3 Surrounding numbers for strong products

Using the same technique as in the proof for Theorem 6.1.1, we can obtain a new

upper bound on the surrounding number of the strong product of any two graphs.

Theorem 6.3.1. If G and H are graphs, then

σ(G⊠H) ≤ min{σ(H) · (B(G) + 1) + σ(G),

σ(G) · (B(H) + 1) + σ(H)}.

Proof. Let S be a winning strategy in Surrounding Cops and Robbers for σ(H) cops

on H and let x1, . . . , xσ(H) be the vertices in H that the cops start on when using

strategy S. We now give a winning strategy for σ(H) · (B(G) + 1) + σ(G) cops in

Surrounding Cops and Robbers on the graph G⊠H.

At the beginning of the game, B(G) + 1 cops will be placed on G.{xi} for each

1 ≤ i ≤ σ(H) and an additional σ(G) + 1 cops will be placed on G.{x1}. In finitely

many turns, the B(G) + 1 cops on each G.{xi} will use the cop winning strategy

and the bodyguard strategy to indefinitely capture the closed neighbourhood of the

robber’s shadow in the same way as in the proof of Theorem 6.1.1. These cops will

also move to adjacent copies of G as needed according to the strategy S in the same
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way as in the proof of Theorem 6.1.1. In finitely many moves, the robber will be

forced onto the subgraph G.{vf} and for each u ∈ V (H) such that uvf ∈ E(H),

the robber will be unable to move onto G.{u} due to the B(G) + 1 cops on each of

the G.{u}. To finish the game, the remaining σ(G) cops will move to G.{vf} and

use a winning strategy in Surrounding Cops and Robbers to eventually surround the

robber in G.{vf}. Since the rest of the robber’s adjacent vertices outside of G.{vf}

are occupied by the groups of B(G) + 1 cops, the robber is surrounded and the cops

win.

This proves that σ(G ⊠H) ≤ σ(H) · (B(G) + 1) + σ(G). A similar proof can be

done to show that σ(G⊠H) ≤ σ(G) · (B(H) + 1) + σ(H).

The bound in Theorem 6.3.1 is tight. Consider the game being played on Cn⊠Cm

where n ≤ 5. Since δ(Cn ⊠ Cm) = 8, σ(Cn ⊠ Cm) ≥ 8. It is easy to see that

σ(Cn) = σ(Cm) = 2. From Theorem 5.3.3 we know that B(Cn) = 2. Therefore the

upper bound is 2(2 + 1) + 2 = 8. Thus, σ(Cn ⊠ Cm) = 8.

We can also obtain an upper bound on the surrounding number of k-dimensional

strong grids by leveraging off of Theorem 6.2.3.

Theorem 6.3.2. If k ∈ Z+ and ni ≥ 3 for 1 ≤ i ≤ k, then

σ
(

⊠
k
i=1Pni

)

≤
3k + 1

2
.

Proof. From Theorem 6.2.3, ccr(⊠
k
i=1Pni

) ≤ 3k−1
2

. To show that σ(⊠k
ni
) ≤ 3k−1

2
+ 1,

by Theorem 2.3.7 it suffices to show that 3k−1
2

cops can capture Robert on ⊠
k
i=1Pni

with only one cop pushing Robert. In this proof, we will allow Robert to be more

powerful, as if he were a robber in the surrounding variant, for part of the game and

then only have one cop push him afterwards. For convenience, we will have the cops

play on the graph ⊠
k
i=1P

′
ni

as defined in the proof of Theorem 5.5.3. The vertices of

⊠
k
i=1Pni

and ⊠
k
i=1P

′
ni

will be labeled the same as in the proof of Theorem 5.5.3.

Begin by placing all of the cops on the vertex (0, . . . , 0). Let (v1, . . . , vk) denote

the vertex Robert is on. For 2 ≤ ℓ ≤ k, let Aℓ denote the set of all vertices adjacent

to Robert labelled (x1, . . . , xℓ−1, vℓ−1, vℓ+1, vℓ+2, . . . , vk) where xi ∈ {vi−1, vi, vi+1}.

For each 2 ≤ ℓ ≤ k, |Aℓ| = 3ℓ−1. Thus,
∑k

ℓ=2 |Aℓ| =
3k−3
2

. Since c(⊠k
i=1P

′) = 1,
3k−3
2

cops can place themselves on the vertices in A2, . . . , Ak in finitely many turns.
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While these cops are getting into position, we will allow Robert to have the ability to

traverse edges that cops traverse as if Robert was a robber in the surrounding variant.

Regardless of whether he has this ability or not, it does not change the cops’ ability

to set up their strategy. This leaves one cop who will, after finitely many turns, move

onto the vertex Robert is on and continue to push him every turn. Once all of the

cops are in their positions, there are three possibilities every time Robert moves from

(v1, . . . , vk) to (v′1, . . . , v
′
k):

(i) v′1 = v1 + 1 and v′i = vi for all 2 ≤ i ≤ k;

(ii) v′1 = v1 − 1 and v′i = vi for all 2 ≤ i ≤ k;

(iii) for some 2 ≤ i ≤ k, v′i 6= vi.

We claim that if (iii) occurs enough times, Robert will be forced onto a vertex

of the form (x, n2, . . . , nk) where 1 ≤ x ≤ n1. Because of the cops’ placements,

we claim that Robert is not able to move back to any vertex he was on in any

previous round. Suppose for a contradiction that Robert was able to move to a vertex

(u1, . . . , uk) he was at on some previous round. By the way the cops are positioned,

at least one of Robert’s coordinates increases whenever he moves. Let uj1 , . . . , ujm

with j1 ≤ j2 ≤ · · · ≤ jm be the coordinates of Robert’s position that increase when

Robert first moves off of (u1, . . . , uk). Then for Robert to be able to move back onto

(u1, . . . , uk), at some point he would need to decrease ujm without increasing any of

ujm+1, . . . , uk which is not possible due to the positioning of the cops. Therefore every

time (iii) occurs, Robert moves to a vertex that he can never go back to. So if (iii)

occurs at most
∏k

i=2 ni times, he will be forced onto a vertex of the form (x, n2, . . . , nk).

Next, we claim that (iii) is impossible for Robert to avoid indefinitely. Suppose

for a contradiction that he can. If (i) occurs, since Robert is unable to move back

to the vertex he was on in the previous round, he is unable to move such that (ii)

occurs. Thus, (i) is Robert’s only movement option if he wants to avoid (iii). However,

Robert’s first coordinate v1 can only decrease finitely many times until v1 = 1. Once

this occurs, on Robert’s next move (iii) will occur. A similar argument holds if (ii)

occurs. Therefore, (iii) is impossible for Robert to avoid indefinitely and, for as long

as the game continues, Robert will continually be forced to change at least one of

v2, . . . , vk after finitely many turns.
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So after finitely many turns, Robert will be on the path induced by the vertices

(1, n2, . . . , nk), (2, n2, . . . , nk), . . . , (n1, n2, . . . , nk). Once here, Robert will be unable

to move off of the path due to the cops’ positioning. Eventually the one cop that is con-

tinuously pushing Robert will force him onto either (1, n2, . . . , nk) or (n1, n2, . . . , nk)

where he will be surrounded.

6.4 Lexicographic product

Using a similar approach as in Section 6.1, we can obtain a new upper bound on the

cheating robot number of the lexicographic product of two graphs.

Theorem 6.4.1. If G and H are graphs, then

δ(G)|V (H)|+ δ(H) ≤ ccr(G •H) ≤ |V (H)|ccr(G) + max{pcr(G), 1}ccr(H).

Proof. The lower bound is obtained by considering δ(G • H). The upper bound is

obtained by using a nearly identical strategy as in the proof of Theorem 6.1.1 where

instead of using the bodyguard number, we have a cop on every vertex of a copy of

H to prevent Robert from moving onto that copy of H.

Let S be a winning strategy for ccr(G) cops on G such that at most pcr(G) cops

push Robert. Let x1 . . . , xccr(G) be the vertices in G that the cops start on when using

strategy S. Without loss of generality assume the cops that start on the vertices

x1, . . . , xpcr(G) are the cops that Robert can force to push him. Let ci denote the cop

starting on xi.

Suppose we are playing with |V (H)|ccr(G)+max{pcr(G), 1}ccr(H) cops on G •H.

We begin the game by placing |V (H)| cops on each {xi}.H where 1 ≤ i ≤ ccr(G)

and an additional ccr(H) cops on {xj}.H where 1 ≤ j ≤ pcr(G). The |V (H)| cops on

each {xi}.H will distribute themselves so that each vertex in {xi}.H is occupied by

exactly one cop from the |V (H)| cops while the ccr(H) cops can be placed anywhere

within each {xi}.H. Let Ci denote the set of all cops starting on {xi}.H. Once the

cops are set up, if for some 1 ≤ i ≤ ccr(G) the strategy S has the cop ci move from

the vertex v1 to v2 where Robert is not on v2 when playing on G, then the set of cops

Ci will move from {v1}.H to {v2}.H such that every vertex of {v2}.H ends up with a

cop on it. If, for some 1 ≤ i ≤ pcr(G), the strategy S has the cop ci move from v1 to
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v2 where Robert is on v2 when playing on G, then the ccr(H) cops from Ci will move

from {v1}.H to {v2}.H while the |V (H)| cops on {v1}.H remain at {v1}.H. Next, the

ccr(H) use a winning strategy to capture Robert on {v2}.H, forcing him to another

copy of H. Once Robert has moved off {v2}.H, the |V (H)| cops on {v1}.H move to

{v2}.H.

Since strategy S results in Robert’s capture on G, the above strategy will trap

Robert onto some copy of H, say {vf}.H. From there, a group of ccr(H) cops can

move onto {vf}.H and capture Robert.

In the case when G and H are paths and cycles, the lower bound and the upper

bound in Theorem 6.4.1 are equal. This leads to the following corollary.

Corollary 6.4.2. For any admissible n,m ∈ Z+,

ccr(Pn • Pm) = m+ 1,

ccr(Pn • Cm) = m+ 2,

ccr(Cn • Pm) = 2m+ 1,

ccr(Cn • Cm) = 2m+ 2.



Chapter 7

Further Directions

Since Chapter 6 contains the major results of the thesis, we will first discuss the open

problems that arise from the results of Chapter 6. In Section 6.1 and Section 6.2, we

introduced new upper bounds on the cheating robot number of the strong product of

two graphs. Theorem 6.1.1 gives an upper bound on ccr(G⊠H) where G and H are

any two graphs. However, there are cases where this bound is not tight. Consider the

graph C6⊠C6. Theorem 6.1.4 states that ccr(Cn⊠Cm) = 8 for all n,m ≥ 2, and so we

know that ccr(C6 ⊠C6) = 8. By Theorem 6.1.1, ccr(C6 ⊠C6) ≤ 10. For which graphs

G and H is the bound in Theorem 6.1.1 the exact value for ccr(G ⊠ H)? Theorem

6.2.3 gives an upper bound on the cheating robot number of k-dimensional strong

grids. Huggan and Nowakowski showed in [23] that when k = 2, ccr(⊠
k
i=1Pni

) = 4

for large enough n1 and n2. The upper bound in Theorem 6.2.3 attains a value of

four when k = 2, so the bound is tight for 2-dimensional strong grids. Is the bound

in Theorem 6.2.3 tight for all k ∈ Z+? We can ask the same questions regarding the

bounds on the surrounding number from Theorem 6.3.1 and Theorem 6.3.2.

As mentioned in Chapter 3, Bradhsaw and Hosseini [10] proved that for any con-

nected, planar graph G, σ(G) ≤ 7. As a consequence of the lower bound in Theorem

2.3.7, we have that ccr(G) ≤ 7 when G is connected and planar. There are infinitely

many examples of planar graphs with ccr(G) ≥ 5 since there are infinitely many pla-

nar graphs that have a minimum degree of five [20]. It is unknown if there exists a

connected, planar graph with ccr(G) = 6 or ccr(G) = 7. A graph that can be em-

bedded on the torus such that none of the graph’s edges intersect is called toroidal.

Bradshaw and Hosseini [10] showed that for connected, toroidal graphs, σ(G) ≤ 8.
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They also gave an example of a connected, toroidal graph with σ(G) = 7. It is known

that the graph K7 is toroidal, and so we have an example of a toroidal graph with

a cheating robot number of six. What is the largest cheating robot number among

all connected, toroidal graphs? If G is a graph with a given genus, what can be said

about the cheating robot number of G?

In Section 2.2 we showed that deleting edges or vertices from a graph may reduce

its cheating robot number. Since there exist graphs with subgraphs that have a smaller

cheating robot number, for example Kn and any tree on n vertices, the cheating robot

number is not monotonic with respect to subgraphs. In Section 5.2, we showed that

the bodyguard number is also not monotonic with respect to subgraphs. Determining

when and how deleting edges or vertices changes either the cheating robot number or

the bodyguard number remains an open problem.

In Section 2.3, we showed that for any graph G, ccr(G) ≤ σ(G) ≤ ccr(G)+ pcr(G).

Since we know pcr(G) ≤ ccr(G) by Theorem 2.3.1, we have 0 ≤ σ(G)−ccr(G) ≤ ccr(G).

In [23], it was asked whether 0 ≤ σ(G)− ccr(G) ≤ 1 holds for any graph G. One way

of answering this question in the affirmative, by a previous discussion, would be to

prove that pcr(G) ≤ 1 for all graphs. It was proven in [23] that for any outerplanar

graph G, 0 ≤ σ(G)− ccr(G) ≤ 1. A chord in a cycle C contained in a graph G is an

edge uv ∈ E(G) where u, v ∈ V (C) but uv /∈ E(C). A chordal graph is a graph where

every cycle on at least four vertices contained in the graph has a chord. Trees and

complete graphs are two examples of chordal graphs. The clique number of a graph

G, denoted ω(G), is the largest n such that Kn is an induced subgraph of G. It was

shown in [11] that if G is a chordal graph then ω(G)− 1 ≤ σ(G) ≤ ω(G). Since any

graph containing a k-core has cheating robot number at least k by Theorem 2.1.1,

any graph of clique number m has cheating robot number at least m− 1. Therefore,

for any chordal graph G, ω(G) − 1 ≤ ccr(G) ≤ σ(G) ≤ ω(G). So for chordal graphs,

it is true that the cheating robot number and the surrounding number differ by at

most one.

Clarke, Finbow and Mullen in [13] introduce a new variant of Cops and Robber

with a nearly identical ruleset to Surrounding Cops and Robbers where the only

difference is that on every robber turn, the robber must move to an adjacent vertex.

In other words, the robber is active since they will never occupy the same vertex on

two consecutive robber turns. The fewest number of cops needed to win this game
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on the graph G is called the active surrounding number and is denoted σa(G). The

authors [13] proved that for any connected graph G, σa(G)
2

≤ ccr(G) ≤ σa(G) + 1.

By making use of the double subdivision operation, they also demonstrate that there

exist graphs with ccr(G) = σa(G)+1. However, it remains open whether there exists a

graph with ccr(G) < σa(G).It was also proven in [13] that σa(G) ≤ σ(G) ≤ σa(G)+1.

Therefore, if it were proven that there does not exist a connected graph such that

ccr(G) < σa(G), then we would have σa(G) ≤ ccr(G) ≤ σ(G) ≤ σa(G)+1. This would

be another way of proving that 0 ≤ σ(G)− ccr(G) ≤ 1 holds for all graphs.

Containment, studied in [15, 37], is a variation of Cops and Robber where the cops

play on the edges of a graph while the robber plays on the vertices. If uv, xy ∈ E(G),

then the cops are allowed to move from the edge uv to the edge xy if either x ∈ uv

or y ∈ uv. The robber moves the same way as in Cops and Robber, with the only

exception being that he cannot traverse an edge that is occupied by a cop. The

cops win if in finitely many turns, they can occupy all edges incident to the vertex

occupied by the robber. The containability number of a graph G, denoted ξ(G), is

the fewest number of cops needed to win Containment. In the original paper on

Surrounding Cops and Robbers [11], the authors asked if σ(G) ≤ ξ(G). Here, we

ask the same question for the cheating robot number. Is it true that ccr(G) ≤ ξ(G)?

Jungeblut, Schneider and Ueckerdt in a conference paper [27] studied the behaviour of

four different variations of Cops and Robber. One is Surrounding Cops and Robbers,

one is Containment, one is a variation on Surrounding Cops and Robbers where the

robber is allowed to end his turn on a cop vertex, and one is a variation on Containment

where the robber is allowed to traverse edges occupied by cops. Besides Surrounding

Cops and Robbers, the cheating robot variant has yet to be compared to any of the

three other games in that list.

A characterization for copwin graphs was found by Quilliot [41] and independently

by Nowakowski and Winkler [35]. Decades later, Clarke and MacGillivray [14] char-

acterized graphs with a cop number of at least k for each k ∈ Z+. Let k ∈ Z+ and G

be a graph on n vertices. Currently, the only known characterization for ccr(G) = k

is when k = 1 which was found by Huggan and Nowakowski [23]. What can be said

about graphs with ccr(G) = k where k ≥ 2? For Bodyguards and Presidents, we

gave characterizations for when B(G) = 1, B(G) = 2 and B(G) = n − 1. What

characterizations exist for graphs with B(G) = k where 3 ≤ k ≤ n− 2?
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One natural variation of Bodyguards and Presidents would be to have the body-

guards play on the edges of the graph while the president plays on the vertices. How

would this game compare to the original Bodyguards and Presidents? Would it be

possible to obtain new results for the Cops and Robber variants where the cops play

on the edges in the same way the original Bodyguards and Presidents allowed us to

obtain results for the cheating robot variant and Surrounding Cops and Robbers?

Let G be a connected graph on n ≥ 3 vertices and e edges. Since G is connected,

n − 1 ≤ e ≤
(

n

2

)

. What are the range of values that B(G) can attain? It is easy to

construct G so that B(G) = n − 1 since we can first make one of the vertices of G

adjacent to all of the other vertices using n − 1 edges. Since G contains a universal

vertex, B(G) = n − 1 by Theorem 5.2.3. Therefore, the more difficult question is

what is the smallest bodyguard number G could have?

The Handshaking Lemma is a well-known result in graph theory that states that

for any graph G,
∑

v∈V (G) deg(v) = 2|E(G)|. We can obtain a lower bound on B(G)

by making use of the Handshaking Lemma. By the Handshaking Lemma and Lemma

5.2.1 we have

2e =
∑

v∈V (G)

deg(v) ≤ n ·∆(G) ≤ n ·B(G).

Therefore,

B(G) ≥

⌈

2e

n

⌉

.

As an example, consider e = n− 1. Note that on a graph with n vertices, it is known

that the fewest number of edges needed to make G connected is n− 1. Then by our

lower bound, B(G) ≥
⌈

2n−2
n

⌉

= 2. We know that B(Pn) = 2, and so in this case our

lower bound is tight. For which n ≤ e ≤
(

n

2

)

can we find a graph with bodyguard

number
⌈

2e
n

⌉

?

This line of questioning leads naturally into asking about the bodyguard number

of random graphs. Consider a graph on n vertices randomly generated by giving each

possible edge a probability p ∈ [0, 1] of being in the graph. Let G be a graph randomly

generated in this way. In this case, B(G) is now a random variable. Given n and p,

what is the expected value of B(G)? For more on random graphs, see Chapter 7 of

[5].

In Section 2.3 we introduced the push number of a graph. The push number was
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used in Theorem 2.3.7 to give an upper bound of the surrounding number. We also

used the push number to obtain an upper bound on the cheating robot number of the

strong product of two graphs in Theorem 6.1.1. What other bounds on the cheating

robot number can be obtained by making use of the push number? By Theorem 2.3.1

we know that for any graph G, 0 ≤ pcr(G) ≤ ccr(G). However, we have yet to find an

example where pcr(G) > 1. Is it true that 0 ≤ pcr(G) ≤ 1 for all graphs?

While we have yet to find an upper bound on the push number that we know is

tight, we can ask questions regarding characterizations for graphs with different push

numbers. Lemma 2.3.3 gives a property such that graphs that satisfy that property

have pcr(G) = 0. Theorem 2.3.5 gives a property such that graphs that satisfy that

property have pcr(G) > 0. If a graph has a push number of zero, what can be said

about that graph? Which graphs have a nonzero push number?

The idea of a push number can be generalized to the original game of Cops and

Robber. In the cheating robot variant, a push occurs when a cop moves to the vertex

Robert is on, forcing him to move or else he is captured next turn. In Cops and Robber,

to get the robber into a situation where he is forced to move off his current vertex or

else he will lose by the end of the next cop move, a cop needs to move into the robber’s

neighbourhood. Suppose c(G) cops are playing Cops and Robber on the graph G. Let

pc(G) be the fewest number of cops needed to enter the robber’s neighbourhood such

that when they do move into the robber’s neighbourhood, the cops cannot guarantee

capture by the end of their next turn. Is it true that 0 ≤ pc(G) ≤ 1 for any graph?

If instead of playing with the fewest number of cops needed to win we play with

more cops, it is possible to decrease the number of pushes. For example, on a graph

on n vertices, playing either Cops and Robber or the cheating robot variant with n−1

cops allows the cops to win without any pushes. Given a graph G, how many cops

are needed to win either Cops and Robber or the cheating robot variant such that

none of the cops push the robber?
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