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Abstract

We demonstrate that generative deep learning can be used to map astronomical ob-

servations of galaxies across various photometric bands including ultraviolet visible

and infrared bands. We also demonstrate that this mapping can be learned without

the need to use existing multi wavelength observations which are sparse and nontriv-

ial to obtain and preprocess. We do so by using mock observations from the Illustris

cosmological simulations to train our models. To date, this is a novel use of Illustris’

mock observations. We demonstrate that models trained on mock observations can

generalize and extend the learned mapping to real observations using general image

comparison metrics such as the structural similarity index (SSIM) and more specific

astronomical metrics such as the GINI coe�cient and the M20 measurement. This

could allow astronomers to significantly augment existing observations, specifically in

areas where multiwavelength observations do not exist, with minimal inference cost.
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If you’re reading this and you struggle to find peace and contentment within

yourself, there’s not much I can say beyond...

you are not alone.
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Chapter 1

Introduction

1.1 Generative modelling

Studying galaxies is essential for astronomers seeking to gain an understanding of the

universe’s history and future. By looking at how galaxies form, change, and interact,

we can learn about the origins of the universe and its expansion. This knowledge helps

us piece together a timeline of the universe and predict what might happen billions

of years from now.

By analyzing the light from galaxies, astronomers can gather information about the

celestial bodies that inhabit them including what they are made of, their temperatures,

and how they move, see [1]. A diverse collection of celestial objects and events, such as

stars, black holes, supernovae, and planetary systems are located in galaxies. Studying

each of these components o↵ers unique opportunities to learn about di↵erent aspects

of the universe.

For instance, stars in various stages of their life cycles, from birth to their final

days as white dwarfs or supernovae, provide insights into stellar evolution and the

processes that power them. Supermassive black holes, often located at the centers

of galaxies, are another key area of study. These extreme objects allow scientists to

explore the limits of physical laws. Observing how matter behaves near black holes

helps us understand conditions that cannot be replicated on Earth. Supernovae,

the explosive deaths of massive stars, are also critical for our understanding of the

universe. By observing supernovae, astronomers can learn about the life cycles of
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stars and the role these explosions play in shaping galaxies. Additionally, supernovae

can serve as cosmic distance markers, helping us measure the expansion rate of the

universe and refine our models of its overall structure and evolution. Through the

study of these and other phenomena within galaxies, we gain a deeper understanding

of the intricate and dynamic processes that govern the cosmos. For a deeper dive on

the above, see [2].

Traditional methods of data analysis in astronomy, particularly for studying galax-

ies, have been vastly outpaced by the enormous volume of data generated by modern

telescopes and surveys, see [3]. These traditional approaches often involved painstak-

ing manual inspection and interpretation, making them time-consuming and less ef-

ficient. An example of this would be the Galaxy Zoo project, see [4], where crowd-

sourcing was used to assign morphological labels to images of galaxies. However, deep

learning algorithms have revolutionized this process by automating many tasks that

were once performed manually. For example, deep learning has proven instrumental

in classifying galaxies by identifying their various types and structures as in [5]. This

automation has significantly accelerated the analysis process and increased reliabil-

ity, allowing astronomers to handle larger datasets and uncover new insights more

e↵ectively.

Initially, discriminative learning was favored over generative learning because it

was more straightforward and computationally feasible given the technology and re-

sources available. Discriminative models, which focus on classifying data and predict-

ing labels by learning the boundaries between di↵erent classes, were simpler to im-

plement and required less computational power compared to generative models. The

complexity and computational demands of generative models, which aim to model

the underlying distribution of data to generate new samples, were beyond the reach

of earlier computing capabilities. For a detailed survey into deep learning algorithms

and techniques, see [6].

Recently however, generative methods have become popular in astronomy due to

significant advancements in computational power and the development of sophisti-

cated algorithms. These methods can create realistic synthetic data, enhance image

resolution, and fill in gaps where observational data is incomplete. This capability is

invaluable for astronomers, as it allows for more comprehensive and detailed analysis



3

of celestial objects and phenomena. As a result, the integration of generative meth-

ods into astronomical research has opened new avenues for exploration. Examples of

generative modelling applications in astronomy can be found in [7], [8] and [9].

The aim of this thesis is to further explore and expand the use of generative

modelling in astronomy. This work is split into two distinct segments. The first

segment, Chapter 2 , involves unconditioned image generation where we investigate a

number of popular generative learning algorithms for the task of creating realistic color

images of galaxies. This chapter begins with an introduction to generative modelling

followed by an outline of the dataset used to train our models. We proceed to discuss,

for each individual model, the theory, implementation details and results.

The second segment, Chapter 3, deals with conditioned generation, specifically

image-to-image translation. This chapter begins with an introduction to image-to-

image tasks followed by an introducion to the CycleGAN architecture which is capable

of unpaired image-to-image translation. We demonstrate CylceGAN’s performance

by training it to map images of galaxies between di↵erent morphologies (such as round

or cigar-shaped).

The rest of Chapter 3 deals with the task of translating observations of galaxies

taken in a specific wavelength to corresponding observations in di↵erent wavelengths.

Astronomers require observations taken in di↵erent wavelengths since each section of

the electromagnetic spectrum o↵ers a unique and complementary perspective on a

given galaxy. A successful mapping of observations across di↵erent wavelengths can

be used to significantly augment existing observations with minimal computational

cost.

To date, image-to-image models have been used to translate images across dif-

ferent telescopes but not to di↵erent wavelengths. We believe this is the first work

that attempts such a translation. Furthermore, we learn this desired mapping using

training data collected from the Illustris cosmological simulations which is, to date, a

novel use of the Illustris’s mock observation catalogue. We demonstrate that image-

to-image models are capable of learning these mappings and that future e↵orts to

train such models is highly likely to yield very promising results.

Finally, Chapter 4 contains a discussion of the limitations of our wavelength map-

ping models as well as possible future work to further our current attempts.



Chapter 2

Unconditioned Generative

Approaches

This chapter is concerned with the problem of unconditioned image generation. These

models are unconditioned since there is no direct way of influencing the output of the

model.

2.1 Background

2.1.1 Generative Modelling

Two main pillars make up the current landscape of machine learning: discriminative

and generative learning [6]. Another machine learning paradigm is reinforcement

learning which is unrelated to the tasks we attempt in this work.

Discriminative learning, or modeling, aims to predict or output a certain value

given specific data. For example, given the weather forecast for the last 10 days, a

well-trained discriminative model can output an accurate prediction of tomorrow’s

weather as in [10] (an example of regression). Another example would be a network

that, given an image of an animal, produces a probability of the image being of a

certain species (an example of classification as in [11]). Generative modeling, however,

is concerned with the problem of generating high-quality original data. Such a model

is trained by learning to copy the underlying data distribution of a dataset. For
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example, say we want to generate images of cats, we would collect a dataset that is

representative of what cats tend to look like and then feed this dataset to a generative

model which would learn all the salient features of what makes a cat look like a cat.

Once the network has done so, we simply ask it to draw an original cat (original here

refers to a sample not observed in the training dataset). If the network has learned the

underlying distribution of the dataset, then it should be able to generate an original

image of a believable cat.

Until recently, most developments in deep learning have been in the discriminative

domain, this is because for a given discriminative problem the corresponding gener-

ative problem is much more di�cult. Consider for example the task of classifying

images of cats or dogs compared to the task of creating original and believable images

of cats and dogs. The di�culty arises in part due to the vast number of ways in

which the search space, comprised of pixels in this example, can be arranged and the

relatively tiny number of such arrangements that would constitute an image in the

subspace, pixel arrangements resembling cats and dogs, we are attempting to learn

and sample from. For more details, see [12].

Additionally, discriminative modeling is usually supervised while most generative

models fall under the unsupervised learning paradigm [6]. Supervised learning in-

volves training a model on labeled data, where each input data point is paired with

a corresponding output label. The model learns to map inputs to outputs by mini-

mizing the di↵erence between its predictions and the true labels. This paradigm is

akin to a teacher guiding a student by providing correct answers during the learning

process. One of the primary advantages of supervised learning is its ability to achieve

low errors, given a su�cient quantity of labeled data. Additionally, it allows for ex-

plicit control over what the model should learn, making it suitable for tasks where

high quantitative accuracy is desired.

Unsupervised learning, on the other hand, deals with unlabeled data, where the

goal is to extract meaningful patterns or structures without explicit guidance. It

is akin to exploring a dataset without predefined labels or categories, allowing the

model to uncover complex hidden patterns autonomously. It is particularly useful in

scenarios where labeled data is scarce or expensive to acquire. The ability to discover

complex underlying structures in data without the need for labeled examples makes

unsupervised learning the preferred learning paradigm for generative modeling. For
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a deeper dive into unsupervised learning, see [13].

Both learning paradigms come with their own set of restrictions and limitations.

Supervised learning relies on the availability of labeled data, which can be expensive

and time-consuming to obtain, especially for complex tasks. Moreover, the model’s

performance may degrade significantly when faced with inputs that deviate from the

distribution of the training data. Also, a phenomenon known as overfitting, see [14],

can plague discriminative models. Overfitting occurs when a machine learning model

learns to capture noise or random fluctuations in the training data, rather than gen-

eralizing well to unseen data. This phenomenon often arises when a model becomes

overly complex relative to the amount of training data available, e↵ectively memoriz-

ing the training examples instead of learning underlying patterns. An example can

be seen in Figure (2.1). If overfitting is present, the resulting model would perform

well on the training data but would fail to generalize to new, unseen data.

While unsupervised learning is free of such restrictions, evaluating the performance

of unsupervised learning algorithms can be challenging since there are no explicit

ground truth labels to compare against. For this reason, generative models are usually

assessed on qualitative grounds rather than quantitative ones.
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Figure 2.1: A demonstration of overfitting for the task of performing polynomial
regression on the plotted data (green). In the top section, we model (red) the data
with a first-order polynomial which succeeds in capturing the upwards linear trend in
the data. The bottom section of the plot contains the same data but was fit with a
polynomial of order 16 which contains too many variables relative to the complexity
of the data. The resulting model is too sensitive to the noise in the data and is not
well suited to generate any predictions.

2.1.2 Approaches

We will look at three distinct generative learning models, each with it’s own advan-

tages and disadvantages. The goal of each of the di↵erent models presented is to

create original images of galaxies that are indistinguishable from real images.

We will investigate the di↵erent models and compare their outputs on qualitative

grounds and will demonstrate that generating a high quality set of synthetic Galaxy

images is possible but that results di↵er substantially with the type of architecture

selected. First however, we must select a suitable training dataset.
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2.2 Training Dataset

Selecting a suitable training dataset is a matter of vital importance. The criteria we

are looking for are fourfold. Firstly, the dataset should be large enough to capture the

underlying distribution of the data adequately. A larger dataset allows the generative

model to learn more diverse and representative patterns, leading to better sample

generation. Secondly, the selected sample must be representative of the total observed

population of galaxies. This requires the sampled galaxies to represent all diverse

morphological classifications, [15], such that our model is not biased in producing

galaxies of a particular morphology. Thirdly, the images must be of su�cient quality

to allow our model to capture high-frequency features. If the resolution of the images

is insu�cient, then the model may learn the overall shapes and orientations of the

sampled galaxies but may fail to resolve features such as spirals and bars which would

make generating spiral galaxies unfeasible. Finally, it is also preferable that the images

are obtained from a single source rather than multiple sources to ensure consistency

across the samples in the data set.

There are numerous astronomical surveys that we may resort to obtain such data.

Astronomical surveys are systematic observations of the sky conducted to study var-

ious celestial objects and phenomena across di↵erent wavelengths of light, from radio

waves to gamma rays. Examples include the Two Micron All-Sky Survey (2MASS)

[16], the Sloan Digital Sky Survey (SDSS) [17], the Dark Energy Survey (DES) [18],

The Galaxy Evolution Explorer (GALEX) [19], and the The Panoramic Survey Tele-

scope and Rapid Response System (Pan-STARRS) [20]. These surveys play a crucial

role in advancing our understanding of the universe by providing vast amounts of data

that astronomers analyze to uncover new insights about cosmic phenomena. Astro-

nomical surveys can vary in scope and objectives, ranging from comprehensive sky

surveys that map the entire observable universe to targeted surveys focused on specific

types of objects or phenomena, such as galaxies, stars, exoplanets, or transient events

like supernovae or gamma-ray bursts. Of the many types of surveys, sky surveys are

the most suitable type of astronomical survey for finding isolated images of galax-

ies since they are designed to cover large areas of the sky and create comprehensive

maps of celestial objects, including galaxies. SDSS, DES, 2MASS and Pan-STARRS

are examples of sky surveys with SDSS, DES and Pan-STARRS collecting data in
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photometric bands centered on visible light and 2MASS collecting data in the in-

frared range. GALAX on the other hand is a more specialized survey that targeted

galaxies and other astronomical objects that emit strongly in the ultraviolet. Most

astronomical surveys have made their data publicly accessible however, navigating the

databases of surveys that cover vast swaths of the sky to find isolated, well-resolved

images of galaxies is no trivial task. We have found SDSS data to be the most acces-

sible through its image cutout tool and for this reason have ellected to construct all

training datasets in this chapter from SDSS.

SDSS, [17], is one of the most significant and comprehensive sky surveys ever

conducted and has covered nearly a third of the sky, mostly in the northern hemi-

sphere, over the last 20 years or so. To collect a sample of galaxies from SDSS that

meets our criteria, we will resort to Galaxy Zoo 2 (GZ2), [4]. GZ2 is a citizen sci-

ence project with morphological classifications of 304,122 galaxies drawn from SDSS.

The primary goal of GZ2 is to classify galaxies based on their morphological features,

such as their shapes, structures, and other visual characteristics. Participants in the

GZ2 survey were presented with a hierarchical sorting questionnaire, see Figure (2.2),

which started with the most obvious features, like the overall shape and smoothness,

and proceeded through to more specific questions, such as irregular features or the

number of spirals, with the final galaxy classification reached at the end of the ques-

tionnaire. Due to this hierarchical design, initial questions received a greater number

of voters which makes their answers have a higher level of confidence compared to

classifications made further down the questionnaire.

We selected a sample of galaxies from GZ2 to form our dataset. Our sample,

initially unbalanced, was stratified by morphology such that there was roughly an

equal number of spiral and elliptical galaxies. We also selected galaxies based on

their field of view, since we wanted galaxies that would take up most of the area

within the image rather than ones that would constitute a minority of the total image

area. This is due to high-frequency features such as spirals being better resolved in

galaxies that have a higher field of view. Also, images of galaxies with a small field

of view were subject to background influences that are considered a hindrance to the

generative model during training. This selection was done by sorting the galaxies by

their Petrosian 90% angular radius (PetroR90) which measures the angular radius

which encompasses an annulus within which 90% of local surface brightness is found.

The higher the PetroR90 measurement, the larger the galaxy’s field of view. Note
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Figure 2.2: The GZ2 hierarchical questionnaire. For a detailed explanation of this
figure see [4]

that the PetroR90 measurement was obtained from the metadata included in the

GZ2 data.

The galaxies’ coordinates were obtained from GZ2, and a Python script was run

to download the data from the SDSS image cutout service. Example galaxies can be

seen in Figure (2.3).

2.3 Variational Autoencoder

The first unconditioned generative archicture we will investigate is the variational

autoencoder (VAE). First we will begin with a quick revision of the traditional au-

toencoder framework.
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Figure 2.3: Random sample of images taken from our downloaded dataset. The images
are not free of noise and artifacts but will serve as our training data. The galaxies in
our dataset were filtered by selecting the ones with the highest field of view.

2.3.1 Autoencoder

An autoencoder, [21], is a neural network that accepts input data, in our case images,

compresses it to a latent representation, and then attempts to reconstruct the original

image from this latent representation. The autoencoder (AE), shown in Figure (2.4),

can be decomposed into two distinct networks, an encoder and a decoder, that are

joined at a bottleneck layer which contains the latent variables z.

It is the encoder’s job to find the best possible way to represent the given input

image in terms of the latent variables. Essentially, the encoder applies a compression

on the original image to produce a lower dimensional representation. If the encoder

is successful, it should be able to detect the most salient features in the input and

do away with more superfluous features and noise. The decoder’s job is that of

attempting to reconstruct the original image from the latent representation. Since

the decoder does not have any access to the original image data except through the
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Figure 2.4: The encoder compresses the input to its latent representation, z, which
can also referred to as the bottleneck. The decoder then attempts to reconstruct the
original image using only input from z.

latent variables, it is forced to attempt to reconstruct the original image with access

to what are only the most important features (according to the encoder of course) in

the given input image.

The loss function of the AE is some measure of distance between the input and

reconstructed images; examples of such metrics include the mean squared error (MSE),

binary cross-entropy, or structural similarity index. This measure of distance between

the input image and the reconstructed image is referred to as the reconstruction loss.

The reconstruction loss for a single input using the MSE as a metric is given by:

(x� f✓(g�(x)))
2, (2.1)

where x is the input, f is the decoder parameterized by ✓ and g is the encoder

parameterized by �.

For a batch of inputs the reconstruction loss becomes

LAE =
1

n

nX

i=1

(x(i) � f✓(g�(x(i))))
2, (2.2)

where n is the batch size.

During training, the AE is penalized for outputs that di↵er significantly from the

input image and is encouraged to output an image that is as similar as possible to

the original input image, such that

x ⇡ f✓(g�(x)). (2.3)
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Applications for this architecture include noise reduction as in [22], and anomaly

detection as in [23]. Noise reduction is a task well suited for an AE since a well-trained

encoder will not transmit the random noise to the latent variables; this produces

relatively noise-free images that retain the structure of the input images. Anomaly

detection is a suitable task for an AE since training is conducted on images drawn from

a dataset that has a specific underlying distribution. If the trained AE is presented

with an image that lies outside the underlying distribution of the original training set,

then the reconstruction loss, Equation (2.2), will be significantly higher since the AE

was not trained to reconstruct images that lie outside the distribution of the training

set.

In theory, we now have a model that can generate original images (original in the

sense that the output images di↵er from the input images) once it is trained. All we

would have to do to get original images is discard the encoder after training, sample a

random point from the latent space, and feed it to the decoder. If we sample points of

the latent space that the decoder has not seen during training, then the decoder should

output a novel image. However, there are a few issues with this architecture, such as

it is, that renders it rather unhelpful as a generative model. It is these inadequacies

that the VAE attempts to fix which we will discuss in Section 2.3.2.

2.3.2 Latent Space Regularity

Any dimensionality reduction algorithm, such as an AE, that perfectly reconstructs

its input tends to come with the price of lack of a regularity. Lack of regularity

means that the latent space does not have exploitable and interpretable structures

which we can take advantage of in the data generation process. Regularity of the

latent space can be summarized by two properties. The first is completeness where

the latent space is structured in a meaningful way that allows us to manipulate the

output image by modifying the latent variables. Figure (2.5) shows an example of a

an incomplete latent space while (2.6) shows an example of a a complete latent space.

In those figures are depicted the output of two encoders for the task of compressing

images of cylinders into a 2-dimensional representation. The optimal encoder may

utilize the fact that a cylinder is defined by its height and width to assign one latent

dimension to the height of the cylinder and the second latent dimension to the width

of the cylinder. Such an encoder has produced a complete latent space. This allows
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us to interpret the latent variables and sample specific cylinders with a specific width

and height by manipulating the latent variables.

Figure 2.5: An example of an incomplete two-dimensional latent space. Note that
there exists no interpretable structure in the space since the latent variables lack
semantic meaning.

The second property of a regular latent space is continuity where points close to

each other in the latent space should give similar outputs when decoded. A contin-

uous latent space has a smooth gradient over the information defined within it. A

discontinuous latent space is challenging to sample from for several reasons. For in-

stance, there may be undefined regions in the latent space that the AE is not trained

to map to and from which means that only a subspace of the latent space is defined

during training. So, the decoder may yield unsatisfactory results if it is given latent

data points that lie outside the well-defined subspace. Also, it is not guaranteed that

a random point sampled from the latent space, even if it lies within the well-defined

subspace in the latent space, will yield a decent image. For example, the AE may learn

to map the point (1.0, 1.0) to a decent image but nothing in our training guarantees

that the point (1.01, 1.01) maps equally well.
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Figure 2.6: An example of a complete two-dimensional latent space. Note the inherent
structure and organization of the space. Each latent variable represents a meaningful
aspect which can be interpreted and manipulated for generative purposes. The latent
variable taking up the x-axis represents the cylinder width while the latent variable
plotted on the y-axis represents the cylinder height.

An irregular latent space that lacks the well suited to the task of novel data

generation since sampling from it is fraught with challenges. To enforce regularity, we

must modify both the encoding process and the loss function.

2.3.3 From AE to VAE

The encoding process in an AE maps a single input image to a discrete point in the

latent space. To ensure the latent space is continuous, we would have to map every

single point in the latent space to an image which is an infeasible task. The solution

that the VAE presents, as can be found in [24], is to have the encoder map from the

input space to a distribution over the latent dimensions as can be seen in Figure (2.7).

Since we are now sampling not from a point in the latent space, but from a region

defined by a distribution, the decoder must ensure that all points sampled from that
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region produce very similar images when decoded such that the reconstruction loss

remains small. This means that even when the decoder samples a point that it has not

seen before, it will produce a meaningful output. The modified encoder now maps its

inputs to a multivariate Gaussian distribution which means that it is required to map

each input to a mean vector and a variance vector as visualized in Figure (2.8). We

assume a covariance of zero between latent variables to ensure minimal entanglement

in the latent dimensions which means we do not have to worry about a covariance

matrix in our encoder outputs.

Figure 2.7: On the right, we have the encoding process of an AE and on the left,
we have the encoding process of a VAE for a single latent variable. The AE maps
each input to a single point in the latent space while the VAE maps each input to a
distribution. To clarify, for an 8-dimensional latent space the AE would output an
8-dimensional vector while the VAE would output 8 distributions, one for each latent
variable.

However, this modification of the encoding process does not ensure continuity or

completeness on its own, see [25]. If left to its own devices, the model can learn to

ignore the fact that the encoder returns distributions and behaves much like a tradi-

tional AE. It can do this by either making the variances of the returned distributions

very small, or by making the means very far apart. The former would make the distri-

butions very narrow, making them behave punctually, while the latter would produce

undefined gaps in the latent space. Both issues would produce a latent space that is

not regular.

To remedy these potential issues, we must regularize the mean and variance vectors

returned by the encoder. This is done by enforcing that the returned distributions be

close to unit Gaussians. Thus, we penalize the means from deviating from 0 and the

variances from deviating from the identity. The variances being close to identity forces



17

Figure 2.8: Representation of a VAE. The encoder now produces the mean and vari-
ance of the Gaussian distribution(s) that makes up the latent space. Z is then sampled
from these distributions such that the decoder can function just like the AE decoder.

regularity by ensuring that the input images are mapped to a well-defined region in

the latent space rather than a point which ensures continuity. Forcing the means to be

close to zero ensures that distributions for di↵erent image classes are centered around

zero which forces the distributions to cluster together as close as possible which leads

to a latent space with no undefined gaps in it and a smooth gradient across distribution

borders. This in turn leads to the ability to sample from regions where distributions

overlap and get well-formed images that may even combine features from both classes

yielding a smooth transition from one class to another.

Thus, in addition to the reconstruction loss that a traditional AE comes with, the

authors of the VAE, [24], add a regularization term that ensures the latent space is

regular. This regularization term is taken to be the Kullback-Leibler (KL) divergence

between the latent space variables and a standard unit Gaussian. The new loss is

derived below.

Derivation of VAE Loss

The derivation of the VAE loss was obtained from [26].

The main goal of a VAE is to maximize the probability of the observed data under

the model, p(x). However, directly computing this probability is intractable because it

requires integrating over all possible latent variables z. To address this, we introduce

a variational distribution q�(z|x). This is the encoder of the VAE, parametrized by

�, and approximates the true posterior distribution p(z|x).
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Instead of maximizing the log-likelihood of the observed data, log p(x), directly,

we maximize a lower bound on this quantity, known as the Evidence Lower Bound

(ELBO). This derivation is done in the equations below.

log p(x) = log

Z
p(x, z) dz = log

Z
p(x, z)

q�(z|x)
q�(z|x) dz (2.4)

log

Z
p(x, z)

q�(z|x)
q�(z|x) dz = logEq�(z|x)

p(x, z)

q�(z|x)
(2.5)

log p(x) � Eq�(z|x) log
p(x, z)

q�(z|x)
(2.6)

Where in Equations (2.4) and (2.5), we introduced q�(z|x) such that we can express

the log likelihood in a form that allows us to apply Jensen’s inequality. In Equation

(2.6), we used Jensen’s inequality to obtain a lower bound on the log likelihood. This

lower bound, known as the ELBO, can be decomposed into two terms:

Eq�(z|x) log
p(x, z)

q�(z|x)
= Eq�(z|x) [log p✓(x|z)]�KL [q�(z|x)kp(z)] (2.7)

Where p✓(x|z) is the deterministic decoder, parameterized by ✓, that attempts to

reconstruct the input observation, x, from the latent representation z. For further

details on the derivation of Equation (2.7), see page 4 in [26].

The two terms in Equation (2.7) can be interpreted as follows: Eq�(z|x) [log p✓(x|z)]
is the expected log likelihood of the data which is equivalent to the reconstruction loss

of the AE. This term encourages the model to reconstruct the input data x from the

latent variables z. While the second term, KL [q�(z|x)kp(z)], is the Kullback-Leibler

(KL) divergence between the approximate posterior q�(z|x) and the prior p(z). This

term acts as a regularizer, ensuring that the learned latent space q�(z|x) remains close

to the prior distribution p(z). As we have mentioned previously, p(z) will be taken to

be a unit Gaussian. This means that more the latent variables z diverge from the unit

Gaussian, the higher the KL divergence. This term ensures a regular latent space.

By maximizing the ELBO, we simultaneously ensure that the reconstructed data is

close to the original data and that the approximate posterior is close to the Gaussian

prior. This results in a generative model with a regular latent space that allows for
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targeted sampling from the learned latent space. The final ELBO objective function

to be maximized during training is:

LV AE(x) = Eq�(z|x) [log p✓(x|z)]�KL [q�(z|x)kp(z)] (2.8)

Reparameterization Trick

We have delayed the discussion of a core feature of the VAE’s modified encoding

process, namely the fact that the process is now probabilistic as compared to the

deterministic encoder in the AE. As we have discussed, the fact that the encoder

returns a distribution of the latent variables is a key feature that distinguishes the

VAE from its deterministic predecessor. It does however pose a problem that we will

address by going over the single training iteration for the VAE.

First, the encoder maps an input image, x, to a multivariate normal distribution.

The decoder accepts as inputs a given latent variable z which is a random sample

from the distribution returned by the encoder q�(z|x). In this way, we can provide

the decoder with a single point from the latent space such that it can do its job just

like it did within an AE.

The problem arises due to the stochasticity of the sampling process; because the

sampling is stochastic, we cannot perform backpropagation through the latent layer.

The authors of the original VAE, [24], came up with a neat reparameterization trick

to circumvent this issue. In short, the random latent variable z is expressed as a

deterministic variable by introducing a random auxiliary variable epsilon and rewriting

the latent z as

z = µ+ � � ✏ (2.9)

where ✏ ⇠ N (0, I) is an auxiliary independent random variable and µ and � are

the mean and the variance of the Guassian distribution returned by the encoder

The partial derivative of the layer output with respect to its input is independent

of the random ✏. This provides us with the ability to backpropagate the error and

train the model as we would any supervised neural network.
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2.3.4 Implementation

Training Dataset

We selected 22, 000 images of the SDSS images mentioned in Section (2.2). The

images were scaled to a range of [0,1] and the dataset was divided into batches of size

128 which we found to be ideal as far as performance and computational e�ciency is

concerned.

Architecture and Training

The architecture of the encoder is given by:

C32-C64-C128-C256-C512-D512.

While the decoder’s architecture is given by:

D256-CT512-CT256-CT128-CT64-CT32-C3.

Where Ck defines a convolutional layer with k filters, CTk defines a transposed con-

volutional layer with k filters and Dk defines a dense (fully connected) layer with k

units. Please refer to the abbreviations page for a full accounting of architecture layer

acronyms. The encoder and decoder are connected by a latent layer with a dimension

of 128 corresponding to 128 latent variables. There are plenty of hyperparameters

that could be investigated to improve the performance of the model such as batch

size, optimizer selection and learning rate. We did not investigate these hyperpa-

rameters due to resource constraints but instead opted with the default settings as is

found in the original VAE implementation from [24].

All convolutional layers have a stride of 2 e↵ectively downsampling the image by

a factor of 2 in the encoder and upsampling by the same amount in the decoder;

standard practice for this kind of architecture. The ReLU activation function was

used all throughout both networks with the exception being the decoder’s output

later which uses a sigmoid activation to ensure the outputs are in the [0,1] range.

The network was trained for 30 epochs on the training dataset with the Adam

optimizer being used for gradient descent Checkpointing was used to save intermediate
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model weights during training to verify the progression of the models’ outputs during

training. We found that there were little to no improvements to the loss after about

20 epochs of training. We then investigated the outputs from checkpointed models

and found no observable di↵erences in the models’ outputs after 25 epochs so we

concluded that 30 epochs was enough to train the model.

The metric used for the reconstruction loss was binary cross entropy which was

calculated per image and averaged across the whole batch.

2.3.5 Results

The progression of the losses during training is shown in Figure (2.9). As we can

see, the reconstruction loss levels out after only a couple of epochs while the KL loss

slowly increases. This trend is understandable as the KL loss is dominated by the

reconstruction loss. One thing to keep in mind is that for generative tasks such as this

one, tracking the loss can be far less informative than it is with traditional supervised

tasks. This is because in discriminative tasks, the loss function is a direct measure of

the model’s performance and can often be used, alongside other metrics, to measure

the accuracy of the model. However, with generative modelling, the loss function acts

as a proxy for model performance and is not in of itself a measure of the quality of

the model’s generative capability.

Before we take a look at the results, we must discuss the sampling process. After

the VAE is trained, we discard the encoder which is not helpful for the generative

process. If we are working with a labeled dataset, the encoder can be used to study the

latent space by learning the regions in the latent space that correspond to particular

classes but this is not a task we are interested in right now. We generate a batch

of latent vectors by sampling from a Gaussian distribution. These vectors are then

passed to the isolated decoder which generates our desired images.

As can be seen in Figure (2.10), the VAE is able to produce a variety of galaxy-

like objects with variations in color, orientation, roundness, and dispersion. The

images lack the detail present in the original dataset. This is probably due to the

bottlenecking behavior of the latent layer which makes it di�cult for high-frequency

features, such as spirals, to be transmitted through the network. On the flip side, the

images are very crisp with a noticeable reduction in noise compared to the training
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Figure 2.9: Training losses progression. The reconstruction loss dominates the KL
loss. The right side of the y�axis is for the KL loss while the left side is for the
reconstruction loss and total loss.

data; after all, like AEs, VAEs do compress the original image and are excellent

denoisers due to the bottlenecking of the latent layer.

Finally, Figure (2.11) shows that the desirable property of regularity is present in

the VAE’s latent space; note how there is a smooth progression of Galaxy orientation

as well as overall size and dispersion along the space. We cannot locate a one-to-one

correspondence between a given latent variable and an aspect of the outputs. This is

probably due to the high dimensionality of the latent space; perhaps benefits could

be seen from increasing the weight of the KL loss to enforce regularity more strictly.
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Figure 2.10: Sampled Galaxies from the trained VAE decoder; note the variety in
orientation, shape and color. A lack of structure such as spiral arms is unfortunately
also noted.
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Figure 2.11: In this plot, we randomly selected two latent variables and plotted rep-
resentations of sampled decoder outputs as these two latent variables were changed
across their range; all other latent variables were fixed at 0. The x�axis corresponds
to one latent variable and the y�axis corresponds to the second latent variable. We
observe a fair bit of structure indicating that the latent space observes the desirable
quality of being regular.
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2.4 Di↵usion Probabilistic Model

2.4.1 Derivation from VAE

While the VAE architecture, see Section (2.3.3), is structurally very dissimilar to the

di↵usion probabilistic model (DPM), we can use it as a starting point from which

we formulate the DPM. This idea of using the VAE as a starting point to derive the

DPM comes from [26] which is a much recommended resource for those who seek a

deep dive into di↵usion models and will be referenced in this section multiple times.

If we stack VAEs on top of one another, such that the outputs of one become the

inputs of the other, we end up with an architecture that resembles Figure (2.12).

Figure 2.12: HVAE architecture with latents {zt|0 < t  T}. See page 6 in [26].

The architecture shown in Figure (2.12) is a hierarchical VAE or an HVAE with T

hierarchical levels and T � 1 latents; in other words, an HVAE is a generalization of

a VAE with multiple hierarchies over multiple latent spaces. In a regular HVAE, the

latents in level t are conditioned on all the previous latents; the plot shown above is

a Markovian HVAE in which the latents in level t are conditioned only by the latents

in level t� 1.

The DPM is a specific type of HVAE with constraints set upon its architecture.

The first constraint is that the latent dimensions are constant across equal to the

input dimensions. Secondly, unlike the VAE, the DPM’s encoder’s parameters are

not learned but are defined prior to training. Lastly, the encoder’s parameters are set

up such that the latent at the final timestep T is a standard Gaussian distribution.
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Figure 2.13: Di↵usion Model adding noise in forward step and denoising in backwards
step. Page 7 in [26].

The result is an architecture, seen in Figure (2.13), that gradually adds noise to

its input data as it is passed along the levels of the model. The input image x0 is

di↵used with noise along T timesteps with xt denoting an intermediate noisy version

of x0. Since the forward di↵usion process q(xt+1|xt) is defined before training, the

learned parameters are the ones of the reverse di↵usion process p(xt|xt+1). We will

unpack each of these processes in detail in Section (2.4.2).

2.4.2 Inner workings

Forward Di↵usion

Our di↵usion model starts with the forward di↵usion process where we gradually add

noise to the input image until the pixel distribution of the image follows a Gaussian

distribution at the final timestep T . At each step t in the Markov chain, we add

Gaussian noise with variance {�t 2 (0, 1)}Tt=1 making a latent at timestep t:

q(xt|xt�1) = N (xt;
p
1� �txt�1, �tI) (2.10)

=
p
1� �txt�1 +

p
�t✏, (2.11)

where ✏ ⇠ N (0, I).
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The variance parameter �t can be fixed or follow a schedule that adjusts over the

T timesteps. The authors of the original paper used a linear di↵usion schedule where

�t increases linearly over time; the increase over time is due to being able to a↵ord

a larger update step as the images get noisier. We used the same linear di↵usion

schedule.

Note that, unlike the VAE, the encoder distributions are not parameterized since

they are not learned during training but are predefined by the variance parameter.

This means that we only have to learn the conditionals p✓(xt�1|xt) to generate original

data.

Reparameterization Trick

An unfortunate shortcoming of the forward di↵usion process, as we have currently

defined it, is that to obtain the noised image xt, we would have to jump through t� 1

applications of q. However, there is a nifty reparameterization trick that allows us to

circumvent this shortcoming. First we take ↵t = 1 � �t and ↵̄t =
Qt

i=1 ↵i. Then we

substitute into Equation (2.11) and obtain for an arbitrary sample xt ⇠ q(xt|x0):

xt =
p
↵txt�1 +

p
1� ↵t✏t�1 (2.12)

=
p
↵t↵t�1xt�2 +

p
1� ↵t✏t�1 +

p
1� ↵t�1✏t�2 (2.13)

=
p
↵t↵t�1xt�2 +

p
1� ↵t↵t�1✏̄t�2 (2.14)

=
p
↵̄tx0 +

p
1� ↵̄t✏ (2.15)

⇠ N (xt;
p
↵̄tx0, (1� ↵̄t)I), (2.16)

where ✏t�1, ✏t�2, · · · ⇠ N (0, I) and where ✏̄t�2 merges two Gaussians using the fact

that the merger of two Gaussians with di↵erent variances, N (0, �2
1I) and N (0, �2

2I),

results in a Gaussian N (0, (�2
1 + �2

2)I). We have applied this recursively to arrive at

a closed form of q, see Equation (2.16), that allows us to sample an arbitrary xt using

only knowledge of x0 and the ↵i parameters. For more details, see page 11 in [26].
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Reverse Di↵usion

For the reverse di↵usion process, we are looking to model the ground truth denoising

step q(xt�1|xt). For a small enough variance �t, q(xt�1|xt) is a Gaussian, however,

we cannot estimate it directly since we need access to the entire dataset. Therefore,

we seek to model q(xt�1|xt) using a neural network p✓(xt�1|xt). If we can optimize

the network parameters ✓, we can generate novel images by passing random Gaussian

noise, N (0, I), to p✓ and iterate backward T timesteps all the way to a novel x0.

To train this model, we will be using the same ELBO loss we used in the VAE sec-

tion. To derive the ELBO, we rewrite the encoder transitions q(xt|xt�1) = q(xt|xt�1, x0).

The added conditioning term x0 does not a↵ect the calculations due to the Markov

property. The resulting ELBO takes the form:

log p(x) = log

Z
p(x0:T ) dx1:T (2.17)

= log

Z
p(x0:T )q(x1:T |x0)

q(x1:T |x0)
dx1:T (2.18)

= logEq(x1:T |x0)


p(x0:T )

q(x1:T |x0)

�
(2.19)

� Eq(x1:T |x0)


log

p(x0:T )

q(x1:T |x0)

�
(2.20)

= DKL [q(xT |x0) k p✓(xT )]| {z }
LT

� log p✓(x0|x1)| {z }
L0

+
TX

t=2

DKL [q(xt�1|xt,x0) k p✓(xt�1|xt)]

| {z }
Lt�1

(2.21)

Equation (2.21) gives the loss function of the DPM. L0 is the reconstruction term

which is identical to the reconstruction term in the VAE’s loss function. LT is the prior

matching term which indicates how close the final latent xT is to a standard Gaussian;

this term has no trainable parameters and is e↵ectively zero as we assume a large

enough T such that xT is Gaussian. Lt�1 is a denoising matching term that measures

how far o↵ the model’s estimate of the noise is from the noise added during forward

di↵usion. We learn desired denoising transition step p✓(xt�1|xt) as an approximation

to tractable, ground-truth denoising transition step q(xt�1|xt,x0); Lt�1 is minimized



29

when our predicted denoising step matches the ground-truth denoising step. The

optimization cost is primarily dominated by Lt�1 since we must optimize over all

timesteps t. For more details on the derivation of Equation (2.21), see pages 9 and 10

of [26].

For an arbitrary Markovian HVAE, the Lt�1 term would be di�cult to minimize

due to the complexity of having to simultaneously learn the encoder but we can

utilize the fact that for our Di↵usion model, the encoder transitions are predefined as

Gaussians. Thus, we rewrite q(xt�1|xt,x0) using Bayes rule:

q(xt�1|xt,x0) =
q(xt|xt�1,x0)q(xt�1|x0)

q(xt|x0)
(2.22)

Due to the Markovian property, q(xt|xt�1,x0) is equivalent to our encoder tran-

sitions q(xt|xt�1) given by N (xt;
p
↵̄tx0, (1 � ↵̄t)I). What remains is to derive the

forms of q(xt�1|x0) and q(xt|x0) so that we can arrive at a closed form expression of

q(xt�1|xt,x0). We leverage the parametrization trick given above to rewrite

q(xt�1|x0) = N (xt�1;
p
↵̄t�1x0, (1� ↵̄t�1)I) (2.23)

q(xt|x0) = N (xt;
p
↵̄tx0, (1� ↵̄t)I). (2.24)

Plugging these forms into Equation (2.22) gives:

q(xt�1|xt,x0) =
N (xt;

p
↵txt�1, (1� ↵t)I)N (xt�1;

p
↵̄t�1x0, (1� ↵̄t�1)I)

Nxt;
p
↵̄tx0, (1� ↵̄t)I)

(2.25)

/ N
�
xt�1;µq(xt, x0),⌃q(t)I

�
(2.26)

where

µq(xt, x0) =

p
↵t(1� ↵̄t�1)xt +

p
↵̄t�1(1� ↵t)x0

1� ↵̄t
, (2.27)

and

⌃q(t) =
(1� ↵t)(1� ↵̄t�1)

1� ↵̄t
. (2.28)

For details on the derivation of Equation (2.26), see page 12 in [26].
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We now have a form for the ground truth denoising step that is a Gaussian with

mean µq(xt, x0) as a function of xt and x0 and variance ⌃q(t) as a function of the ↵

parameters. Additionally, we can use

x0 =
xt �

p
1� ↵̄t✏0p
↵̄t

, (2.29)

to substitute into Equation (2.27) and arrive at

µq(xt, ✏0) =
1

p
↵t

⇣
xt �

1� ↵tp
1� ↵̄t

✏0
⌘
, (2.30)

where we have parameterized µq by xt and the source noise ✏0 that determines xt

from x0.

Now, we can set our learned denoising step p✓(xt�1|xt) to be a Gaussian; since

we want p✓ to model the ground truth denoising step as closely as possible, we can

construct the variance of p✓ to be equal to Equation (2.28) which, as mentioned

previously, is only dependant on the ↵ parameters. However, unlike the mean of

q(xt�1|xt,x0), the mean of p✓(xt1|xt) cannot be parameterized on x0 so we must

parameterize it as a function of xt only. We can take inspiration from the form of µq,

Equation (2.30), and set the mean as

µ✓(xt, t) =
1

p
↵t

⇣
xt �

1� ↵tp
1� ↵̄t

✏̂✓(xt, t)
⌘
, (2.31)

where ✏̂✓(xt, t) is a nueral network that seeks to predict the source noise ✏0 which

di↵erentiates xt from x0.

Our optimization problem is then:

argmin
✓

k ✏0 � ✏̂✓(xt, t) k22 . (2.32)

That is we seek to minimize the di↵erence between the ground truth noise ✏0 and the

noise predicted by the network ✏̂✓(xt, t).
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2.4.3 Implementation

Network Architecture

The architecture of the DPM is known as a U-net. First used in [27], the U-net design

is similar to the VAE design in that it is comprised of two halves; a downsampling half

which decreases spatial resolution and increases channels, and an up sampling half

which increases spatial resolution and decreases channels. These two halves surround

the latent layers of the network; these are the layers where no down or up sampling

occurs and that have the lowest spatial resolution across the whole network.

Like the VAE, the U-net architecture’s output has the same shape as the input

dimension but the U-net is distinguished by its skip connections between down-blocks

and up-blocks (each block is a collection of layers that either downsample or upsample

their input) with the corresponding spatial resolution. This makes the U-net a non-

sequential network since it allows data to take shortcuts through the network. The

U-net architecture is very well suited for applications where the desired output has

the same size as the input as is the case with the predicted and the input image

respectively.

Figure 2.14: Implementation of a residual block. The input x is added to the output
of the block F (x) such that the final output of the block is F (x) + x

The down-blocks and up-blocks that comprise the U-net are made up of residual

blocks first introduced in [28] and visualized in Figure (2.14). The residual block is

comprised of a group of layers with a skip connection between the input of the block

and the final layer in the block; note that now we have two types of skip connections in
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the network: skip connection between down-blocks and up-blocks, courtesy of the U-

net architecture, and also skip connections within the blocks, courtesy of the residual

block design. The advantage of skip connections is that the network does not have to

reconstruct the images from scratch, rather, it can learn the transformation between

the input image and the desired output. Another advantage of the skip connections

is that they alleviate the issues associated with vanishing gradients which allows us

to build much deeper networks.

The residual block itself is made up of convolutional layers, dense layers to handle

the time embedding inputs and normalization layers; regardless of the layers’ com-

bination, the output of the residual block has the same size as the input and a skip

connection is implemented between input and output layers.

No downsampling or upsampling is performed within the residual blocks; to per-

form downsampling and upsampling, average pooling layers and upsampling layers

accompany the residual blocks in down-blocks and up-blocks respectively. The down-

blocks’ outputs are saved such that they may be used by the up-blocks; the up-blocks

take the down-blocks’ output and concatenate it to their own thus implementing the

skips as seen in Figure (2.15).

Figure 2.15: This diagram, page 223 in [12], demonstrates how the down-blocks are
connected to corresponding up-blocks.

Additional to the original U-net architecture are sinusoidal embedding and atten-

tion layers. Sinosudial embedding’s idea here, in short, is that we want to transform
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Figure 2.16: The U-net architecture of the DPM (page 217 in [12]). The network
accepts 2 inputs on the right hand side: the timestep parameter t is accepted by the
sinusoidal embedding layer and is then up sampled before being concatenated to the
noised image input. The output of the network is the predicted noise.

a scalar value into a higher dimensional tensor capable of a more complex represen-

tation that will be used along the network. The idea is analogous to the encoder of a

VAE but in reverse since the encoder attempts to find a lower dimensional represen-

tation while sinusoidal embedding seeks to find a higher dimensional representation.

We pass t to the sinusoidal embedding layer at the start of the network to produce a

higher dimensional vector that will be carried all along the network.

Attention layers are implemented as well in our U-net. In a nutshell, attention

layers allow the network to assign higher values, and thus pay more “attention”, to

areas of the image that contain the most useful information. An example of that

would be assigning higher values to areas that denote edges that define objects and
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lower values to areas that could be considered the background of an image. Note that

attention layers are an architectural choice and are not necessarily required for the

DPM to function as intended. For a deep dive into the inner workings of the attention

mechanism, see [29].

The body of the U-net architecture follows the following layout:

DB32-DB64-DB96-RES128-RES128-UB96-UB64-UB32.

where DBk is a down-block with k filters, UBk is an up-block with k filters and RESk

is a residual block with k filter. The complete U-net can be seen in Figure (2.16).

Training details

We employ the same dataset as we did to train the VAE but we randomly selected

around 8000 images from the 22000 used to train the VAE. The DPM’s training

dataset size was arrived at independently of the VAE’s training dataset size; the only

factors we considered were that an increase in dataset size beyond 8000 did not yield

any noticeable di↵erence in the generated samples of the training DPM. The relatively

small size of the training data compared with the VAE’s training data is a testament

to the power of the DPM, as compared to the VAE since the network is able to learn

from a much smaller dataset. This ability is courtesy of all those features we discussed

in the previous section as well as the more sophisticated training algorithm. We do

however run the DPM for 800 epochs which despite the smaller dataset does take

considerably longer compared to the VAE; the results are worth the added waiting

time as we will see in the next section.

Finally, we use a batch size of 32 and set T = 1000 corresponding to 1000 timesteps

along which Gaussian noise is di↵used to the initial image x0 to transform it to

Gaussian noise xT . The batch size number, timestep number and epoch number

selected were used in the original di↵usion paper, [30].

2.4.4 Results

Due to the complexity of the model, as compared to the VAE, the sampling process

is significantly more involved. To sample from our trained DPM, we first generate
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random Gaussian noise xT . Note that we are not constrained to using the same batch

size used during training; we can use a custom batch size to generate any number

of images in one go. This batch of Gaussian noise is fed into our trained network

along with the timestep t, initially set to T = 1000, to obtain the predicted noise.

This predicted noise is removed from the noisy batch to give xT�1, these outputs are

fed again into the model along with the modified timestep, and the whole process is

repeated T times until we arrive at a batch of original generated images x0.

Figure (2.17) shows the progression of losses during training. If we were to take the

training loss at face value, we would perhaps conclude that the DPM’s performance

does not change much across its 800 epochs of training and that perhaps training it for

this many epochs is a waste of resources. We have even plotted a uniform distribution

centered on the mean loss, across all epochs, and it exhibits almost as much structure

and behaviour as the actual training loss.

This is the downside with interpreting a generative model’s performance through

the loss function; the loss function while providing adequate feedback to the network

during training is not a measure in itself of the model’s ability to generate novel images.

Furthermore, Figure (2.18) shows a clear progression of improved performance from

the outputs of later epochs’ checkpoints compared to the outputs from earlier epochs.

Our investigation of the model’s performance is a qualitative one as the generated

images have to be visually inspected to assess our model’s generative capabilities.
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Figure 2.17: Total loss across training (above) and a random uniform distribution
(below). If the labels were removed, the total training loss could perhaps be mistaken
for the uniform distribution.
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Figure 2.18: The numbers on the left hand side of the plot indicate the epoch of
the checkpoint used to generate the row of images opposite to it. This figure shows
the clear progression across training in the generated images from noisy outputs to
galaxy-like blobs and finally to high quality images.
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Figure 2.19: Sample of generated images from the trained (800 epochs) DPM.

The results of the DPM, seen in Figure (2.19) are a vast improvement over the

results of the VAE from Section (2.3.5). Note the variety of colors, shapes and orien-

tations. The DPM even manages to resolve some spiral arms in a few instances. The

DPM’s more sophisticated architecture and training routine are more computationally

costly compared to the VAE, but are worth the results.

2.5 DCGAN

In this section, we present an implementation of a deep convolutional generative

adverserial network (DCGAN). We present a much more sophisticated implementation

of a generative adverserial network, which builds on the concepts introduced in this

section, in Chapter 3.

2.5.1 Theory and Background

The VAE architecture could be decomposed into two distinct models (encoder and

decoder) joined at the bottleneck layer. Both these models are working together to

achieve the goal of recreating the original input image. The generative adversarial
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network (GAN), first introduced in [31], similarly has two models defined within it,

but rather than working together, they are adversaries competing with each other to

achieve opposite ends.

The two networks that make up a GAN are a generator, G, and a discriminator,

D. The purpose of training a GAN is to produce a high quality generator; the

generator is the part of the GAN that is retained for generative purposes after training

much like the decoder is with the VAE. Specifically, the generator converts random

noise z ⇠ pz(z) into images that look like they came from the original training data

distribution pdata. In this sense, we can think of the generator as a forger whose job is

to create novel data that is indistinguishable from the original set. The discriminator

facilitates the generator’s training; its job is to classify images based on how likely

they are to have come from the original dataset as compared to the generator. In

this way, the discriminator is like a detective whose job is to stop the generator from

slipping any fake data past it. This process is visualized in Figure (2.20).

Figure 2.20: This figure shows a flowchart that outlines the how the generator and
discriminator of a GAN share data.

Training the discriminator boils down to a standard image classification task where

the model takes as input an image and outputs the probability of the image coming

from the real dataset. This is then a supervised learning task where we assign real and

fake images the labels 1 and 0 respectively. Therefore, the discriminator is trained to

classify inputs from the real dataset as 1 and inputs from the generator as 0. The
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discriminator’s objective is given by:

V (D) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (2.33)

To train the generator, we rely on the discriminator to score its outputs. An ideal

generator will be able to produce results that fool the discriminator; upon being given

a batch of fake images, the discriminator would output a vector of 1’s indicating that

it recognizes the generated images as real. The generator’s objective is given by:

V (G) = Ez⇠pz(z)[log(1�D(G(z)))] (2.34)

The two networks are trained in an alternating process where feedback is ex-

changed between the networks such that their progress is interdependent. This in-

terplay between both networks can be modeled by the following two-player minimax

game where G wants to minimize V while D wants to maximize it.

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)]� Ez⇠pz(z)[log(D(G(z)))] (2.35)

Note that we have substituted [1 � log(D(G(z))] for [� log(D(G(z))] since the

former may not provide su�cient gradient for G to perform backpropagation. This

modification maintains equilibrium dynamics while providing the generator and dis-

criminator with stronger gradients. The improved signals lead to faster convergence

and more e�cient training as can be referenced in [31].

2.5.2 Implementation

Network Architecture

Let’s delve into the architecture of both networks, G and D, to see how they are

implemented. Our generator accepts random noise, z and proceeds to upsample it

through transposed, strided convolutions. The ReLU activation was used throughout

the netork. Our generator, G, has the following architecture:
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D100-CT256-CT128-CT64-C3

This architecture is nearly identical to the decoder of the VAE since (see Section

2.3.4), like the decoder, its function is to map from the a low dimensional latent

space to an image. Of course, the VAE’s latent space is organized and semantically

meaningful while the latent space of G is random Gaussian noise.

The discriminator employs a fairly basic architecture as concerns binary image

classification. The network is essentially comprised of convolutional layers that use

strided convolutions to reduce the spatial resolution of filters while also increasing the

number of channels along the depth of the network. The output is a single neuron

with a sigmoid activation to output as is standard for binary classification problems

like this, see [6]. The discriminator, D, has the following architecture:

C64-C128-C128-D1

Implementation

We trained our GAN using the same dataset used to train the VAE in Section (2.3);

that is a total of 22,000 images. We used a batch size of 64 images and trained the

model for 50 epochs. No further benefits were seen from training beyond 50 eopchs.

The Adam optimizer was used to perform gradient descent.

2.5.3 Results

The results, seen in Figure (2.21), are far inferior to the results obtained previosly with

the DPM and the VAE seen in Figures (2.19) and (2.10) respectively. The outputs of

the DCGAN are noisy and exhibit no structure whatsoever as far as spirals or bars

are concerned.

As unconvincing as the results displayed in Figure (2.21) are, they were in fact

obtained after extensive hyperparameter tuning. We found the DCGAN to be signif-

icantly more sensitive, compared to the VAE or DPM, to di↵erent hyperparameter

configurations such that models whose architecture di↵ered slightly from the one listed

in Section (2.5.2) produced only noise after training. These results are not unexpected

since these sort of unconditioned GANs are notoriously di�cult to train, see [32].
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Figure 2.21: Sample of generated images from the trained generator after 50 epochs.



Chapter 3

Conditioned Generation

3.1 Image-to-image

In Chapter 2, we explored unconditioned generative models which require no explicit

conditioning to produce their output. These models learn to generate output im-

ages from random noise or latent representations without any specific conditioning

restricting their outputs. Unconditioned generative models o↵er more flexibility in

generating diverse outputs however, this lack of conditioning results in less determin-

istic or interpretable outputs. Conditioned models learn to generate output images

that satisfy a given set of conditions supplied to the network. This provides us with

fine-grained control over the produced images and is easier to assess qualitatively due

to the ability to determine whether or not the output image meets the condition we

have set. For more details on conditioned vs unconditioned generative modeling, see

[12].

An example of such conditioned models is image-to-image translation where each

input image is paired with a corresponding output image which enables targeted image

manipulation. Image-to-image models vary in implementation and scope and can be

supervised as in [33], where labeled data is available, or unsupervised as in [34]. For

this section, we will initially assume image-to-image to refer to supervised tasks but

will introduce an unsupervised implementation in Section (3.2).

Image-to-image techniques involve learning a mapping that translates images from
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one domain to another, where each domain represents a di↵erent visual style or se-

mantic meaning. An example is the task of image colorization where grayscale images

serve as input, while colorized versions of these images are provided as output. The

grayscale inputs serves as a reference for generating the output images in the target

domain. This type of image-to-image translation deals with pairs of images which

places a considerable limitation on finding appropriate training data. Despite this,

image-to-image techniques have a broad range of applications from image colorization,

see [35], to semantic segmentation, see [36].

Another example of conditioned generative modeling is style transfer, see [37].

Style transfer typically operates on individual images, where the content and style

images are provided as input, and the output is a single stylized image that imbues

the content image with the style characteristic. For this reason, it does not require

paired data and is more flexible than image-to-image techniques. However, it is not

well suited for approaches where quantitative accuracy is desired but is more suited

for artistic applications, such as creating stylized artwork, transforming photographs

into paintings, or generating visually appealing images with artistic e↵ects. Image-

to-image techniques are limited by requiring paired datasets but do a much better

job with tasks where quantitative accuracy is needed. So, it is a trade-o↵ between

flexibility and quantitative accuracy.

3.2 CycleGAN

CycleGAN, introduced in [34], is an image-to-image technique that belongs to the

family of GANs. Unlike previous image-to-image techniques like pix-to-pix, [33], which

rely on paired data for training, CycleGAN introduces a novel framework for unpaired

image-to-image translation which provides the flexibility of style transfer with the

quantitative accuracy of supervised image-to-image models.

Let us first introduce some notation for the problem we are exploring. We are

concerned with translating an input image x sampled from the data distribution X to

a corresponding image y in the target domain Y . Examples of X and Y pairings could

be photographs and paintings, horses and zebras, or apples and oranges. As concerns

astronomical image data, we could select pairings such as elliptical and spiral galaxies

or images taken at di↵erent photometric bands; we will discuss such pairings in more
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detail further ahead.

As we saw in Section (2.5), an unconditioned GAN is comprised of a generator

and discriminator that are trained in tandem. CycleGAN uses two distinct pairs of

GANs. The first pair contains the mapping function G : X ! Ŷ along with an

associated adversarial discriminator DY while the second pair is comprised of the

inverse mapping function F : Y ! X̂ along with its associated discriminator DX . X̂

and Ŷ are distributed identically to X and Y respectively.

The problem is that there may be infinitely many mappings between input image

x and the output ŷ = G(x), with the same being true for the counterpart, with no

guarantee of finding a semantically meaningful mapping. The authors of the original

CycleGAN paper, [34], came up with a solution that utilizes the ‘cycle consistency’

property of these transformations. Cycle consistency implies that if G and F are

inverse mappings, then we should observe that G(F (y)) = y and F (G(x)) = x.

To enforce this cycle consistency property, CycleGAN introduces a cycle consis-

tency loss term

Lcycle(G,F ) = Ex⇠pdata(x) [kF (G(x))� xk1] + Ey⇠pdata(y) [kG(F (y))� yk1] . (3.1)

Lcycle(G,F ) penalizes the discrepancy between the original input image and the

image reconstructed from its translated counterpart, visualized in Figure (3.1), and is

added to the adversarial loss which is identical to the objective of the unconditioned

GAN we looked at earlier. Since we have two pairs of GANs, we have a pair of adver-

sarial losses, first introduced as Equation (2.35), the loss for G and its corresponding

discriminator Dy is

Ladv(G,DY , X, Y ) = Ey⇠pdata(y)[logDY (y)] + Ex⇠pdata(x)[log(1�DY (G(x)))], (3.2)

while the loss for F and its associated discriminator Dx is

Ladv(F,DX , X, Y ) = Ex⇠pdata(x)[logDX(x)] + Ey⇠pdata(y)[log(1�DX(F (y)))]. (3.3)
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The full objective function of the cycle GAN becomes:

L(G,F,DX , DY , X, Y ) = Ladv(G,DY , X, Y ) + Ladv(F,DX , Y,X) + Lcycle(G,F )

(3.4)

To sum up, we are training two GANs in tandem which in turn are comprised

of two networks that are trained in tandem. The adversarial loss ensures that each

generator learns a mapping from its input domain to the target domain while the

cycle consistency loss acts as a regularizing term that constrains the learned mapping

to be semantically meaningful.

Figure 3.1: Here we see a visual representation, from [34], of the cycle consistency loss.
On the left we have the cycle-consistency loss measuring the distance between x and
the twice transformed x̂ and on the right is the counterpart measuring the distance
from y to the twice transformed ŷ.

3.2.1 Network Architecture

The architecture of the generators is the U-net, [27], discussed in Section (2.4.3),

along with some slight modifications. The residual blocks that make up the latent

space of the U-net are much greater in number compared to the DPM. The number

of down-blocks determines the spatial resolution of the latent space with an increase

in down-blocks corresponding to a decrease in resolution. Finally, this network does

not contain any time embedding layers nor does it include attention blocks.
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The exact architecture is given by:

DB64-DB128-

RES256-RES256-RES256-RES256-RES256-RES256-

UB128-UB64-

CT3

The discriminator is based on the PatchGAN architecture, [33], which produces

a spatial map of predictions. Each spatial element corresponds to the realism of a

local image patch which is in contrast to more traditional discriminators that output a

single scalar value representing the probability that the entire image is real or fake. By

performing local discrimination at the patch level, PatchGAN can capture fine-grained

details and spatial structures in the images. This enables more precise feedback during

training, allowing the generator to focus on producing realistic textures, patterns, and

structures at a local level. PatchGAN also has fewer parameters than a traditional

discriminator and can be used on arbitrarily sized images. The resolution used is

70 ⇥ 70 which means that the PatchGAN discriminator aims to classify whether 70

⇥ 70 overlapping image patches are real or fake.

The exact architecture of the PatchGAN is given by:

DB64-DB128-DB256-DB512

3.3 Cigar to Round

We will demonstrate the e↵ectiveness of the CycleGAN model by transforming images

obtained from the GZ2, [4], questionnaire. We require two classes of galaxies to per-

form transformations between. We selected two galaxy classifications from question

7 of the GZ2 questionnaire: ‘How round is it?’. There were three distinct answers for

this question:

1. Completely round

2. In between

3. Cigar-shaped
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We selected galaxies which fell in the first or third classifications which can be seen

in Figure (3.2). We believe the second category would not be suitable for this problem

since its distribution may overlap significantly with the distributions of either of the

more concretely defined classifications. This set of classifications arises quite early on

in the hierarchical questionnaire which means that there is a high degree of confidence

in these classifications since higher numbers of voters exist for classifications higher

up in the questionnaire. The dataset is naturally unpaired since there is no possible

way of getting a ground truth for what a specific galaxy would look like if it existed in

a di↵erent morphology. Thus, no quantitative analysis can be conducted; the outputs

will merely be investigated on qualitative aspects.

Figure 3.2: Samples from the training data. The top row gives examples of cigar-
shaped galaxies while the bottom row shows round galaxies.

The first generator, G, will be mapping cigar-shaped galaxies to corresponding

round galaxies while F will be learning the inverse mapping from round galaxies

to corresponding cigar-shaped galaxies. We selected around 2000 galaxies for each

distinct classification and extracted the data using the SDSS image cut out service in

the same manner as mentioned in Section (2.2).

As can be seen in Figure (3.3), the model does a fairly decent job of converting

round galaxies into cigar-shaped galaxies and vice versa. Other qualities such as

orientation, location, and color were preserved indicating that the network successfully

isolated the property that distinguished the two domains which is the shape of the

galaxy.
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Figure 3.3: The first column contains cigar-images from the validation set while the
second column shows the transformation to corresponding round images applied by G.
Similarly, the third and fourth columns show round images as well as the correspond-
ing cigar-shaped images generated by F . Note the networks’ ability to preserve all
other features besides the degree of roundness; the semantically meaningful mappings
are courtesy of the Cycle consistency loss.
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Figure 3.4: The layout of the columns is identical to Figure (3.3) where the first pair
of columns are for G and the second pair is for F . We observe no transformation
applied whatsoever to most of these edge case images. The identity function is doing
its job but that means that both networks require input data from regions in the
input distributions that do not overlap with each other.
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There are however examples, Figure (3.4), of the network failing to translate the

images satisfactorily. The thing to note about these instances is that the input images

could be considered edge cases in that in their shape is not strictly round or cigar-

shaped but can be said to lie somewhere in the middle of these two extremes. In

fact, these images were sampled from galaxies that were voted into the ‘in between’

classification, which was not used during training, and our prediction of this class

yielding mixed results is confirmed. The reason our network does not translate these

images well is due to the identity loss. The identity loss forces the network to collapse

to identity if and when it receives an input that already belongs to the domain of

the target distribution. In other words, if F , which is meant to produce cigar-shaped

galaxies, receives as input a galaxy that it deems to be cigar-shaped then no translation

will occur. Therefore, our CycleGAN is limited to galaxies with somewhat strict

classifications.

3.4 Band Transfer

The task we now turn our attention to is that of cross-photometric band image map-

ping. A photometric band is an optical filter with a known sensitivity for a particular

section of the electromagnetic spectrum. For a deep dive into astronomical photome-

try, see [38]. Each band has an e↵ective wavelength and is designated by a particular

letter; while the letters are not standards, they are recognized by astronomers by

agreement and are a matter of convention. SDSS, for example, captures data in the

following bands: U, G, R, I, and Z with e↵ective wavelengths of [360, 470, 620, 800, 900]

nanometers (nm) respectively, see [17] for more details on SDSS. Table (3.1) gives a

comprehensive, though not exhaustive, list of bands sorted in ascending wavelength.

The need for collecting data at di↵erent bands arises from the fact that each band

provides information about di↵erent characteristics of a particular galaxy, see Figure

(3.5). For instance, ultraviolet (UV) bands reveal the emission from larger, younger

stars which indicates locations of ongoing star formation while longer-wavelength

bands in the infrared (IR) range trace the majority of the stellar mass (comprised

of older, cooler stars) more e�ciently and exhibit less band-to-band variation, see

[39]. Specifically, the arms of spiral galaxies are areas of star formation and therefore

emit mostly in the UV range while the central bulge of spiral galaxies are made up
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Filter �e↵ (nm) Description Peak Thermal Emission (K)
FUV 150 Far Ultraviolet(UV) 30,000
NUV 230 Near UV 12,500
U 360 UV 8,000
B 445 Blue 6,500
G 470 Green 6,150
V 550 Visual 5,200
R 620 Red 4,600
I 800 Infrared 3,600
Z 900 - 3,200
H 1,630 - 1,800
K 2,200 - 1,300
M 4,750 Mid-Infrared 600
N 8,800 - 330

Table 3.1: This table presents a selection of photometeric bands. The first columns
gives the band name, the second gives the e↵ective wavelength of the band and the
third column gives a description of the abbreviated name of the band name (if it
exists). The last column gives the peak thermal emission of a body emitting radiation
at the given e↵ective wavelength; the reason for including this is to show how sensitive
each band is to objects of certain temperatures. For example, UV bands are sensitive
to radiation from hotter, younger stars while Infrared bands are more sensitive to
older cool stars.

of mostly older stars that emit in the IR range. Elliptical galaxies have little to no

structure and are comprised of mostly older stars that emit in the IR range, see [15]

for more details.

Figure 3.5: From the right to the left, we have images of a single galaxy taken in
bands FUV, U, R, K and M. Note the following features: the spiral arms contain
most of the star forming and are mostly visible in the UV bands while the central
bulge, containing older stars, is mostly visible in the IR bands.
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The stellar mass and the star formation rate (SFR) are among the most criti-

cal features for understanding the present state of galaxies, their history, and future

evolution. IR photometry is widely used to measure stellar mass since IR traces the

emission of the majority of the stellar population. However, IR cannot trace the emis-

sions of younger stars directly but may only do so indirectly by tracing dust emissions

powered by star-forming activity. For this reason, IR-based SFR estimation leads to

a significant underestimation of the true SFR in dust-deficient galaxies. Therefore,

observing UV emissions as a direct indication of SFR is preferable to IR photome-

try. The problem with obtaining UV observations is a phenomenon referred to as

astronomical extinction. For more details on stellar mass and SFR tracing as well as

astronomical extinction, see [39].

In summary, astronomical extinction refers to the absorption and scattering of light

by interstellar gas and dust grains, as it travels through space, causing a reduction

in the observed intensity of light from celestial objects. Extinction poses a significant

challenge to astronomers as it can obscure or distort the appearance of distant objects

and a↵ect measurements of their properties, including their brightness, colors, and

spectral features. This phenomenon a↵ects the wavelengths of light di↵erently, with

shorter wavelengths (such as UV and blue light) being more strongly absorbed than

longer wavelengths (such as IR and red light). As a result, the observed UV flux may

be significantly attenuated, compared to IR, leading to underestimation of the SFR.

For this reason, using UV to trace SFR requires precise measurements of extinction.

However, obtaining precise measurements for extinction requires accurate knowledge

of the dust distribution, which can be challenging to determine, especially in complex

or dusty environments.

It is for these reasons that multiple observations in di↵erent wavelengths are re-

quired for accurate estimates of stellar mass and SFR, again see [39]. Observations

made in multiple ranges of wavelengths require fewer inferences and lead to stronger

conclusions being drawn about the observed galaxies. Unfortunately, most surveys

cover a limited range of wavelengths at su�ciently high quality for e↵ective analysis,

making feature extraction from particular bands impossible in certain regions of the

sky.

Image-to-image models may be able to generate synthetic images of galaxies in

a greater range of photometric bands than the input image(s). The idea here is
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as follows: if we can learn the mapping between two photometric bands then this

mapping may be used to augment existing observations by generating synthetic images

in bands not previously observed. An example of such a transformation would be

generating synthetic UV observations based on IR observations or vice versa.

A successful mapping can be used to augment survey datasets substantially and

may provide benefit when studying the properties of galaxies in a specific region that

has not yet been covered by high-quality surveys or that lacks su�cient band coverage.

In addition to this, the trained model would have a very low computational cost for

generating inferences; therefore, large batches of synthetic images may be generated

with minimal computational expense.

Therefore, we seek a dataset that in addition to the criteria mentioned in chapter 2,

provides us with images of galaxies taken in a su�ciently varied number of photometric

bands. If the bands are not su�ciently distant from each other, then the di↵erence

observed between the corresponding images may not justify the trouble of learning

the mapping between the bands; such a mapping may end up collapsing to identity

anyway. For instance, translating between band G and band B would provide little

to no added benefits in terms of understanding galaxy properties and morphologies.

It is for this reason that most sky surveys, our best resource for obtaining images

of galaxies, will not su�ce for our purposes. The most significant surveys include

SDSS, the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS),

and the Dark Energy Survey (DES), [17], [20] and [18] respectively. None of which

individually covers a wide enough range of wavelengths for our purposes. For this

reason, getting a paired dataset of galaxy observations from one single source is out

of the question.

Fortunately, image-to-image techniques exist for unpaired data but even getting

our hands on an unpaired dataset requires coordinating and integrating data from var-

ious surveys which has proven to be quite complex and time-consuming. In addition

to the challenge of obtaining such data, preprocessing data obtained from di↵erent

surveys involves correcting for instrumental e↵ects and accounting for varying back-

ground levels and noise characteristics. This requires a sophisticated image processing

pipeline which requires a high level of domain knowledge of astronomical data pro-

cessing.

These challenges made us question if obtaining observed data was necessary or if
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we could seek other resources. Besides observations taken by sky surveys, simulations

may provide us with training data that su�ciently encodes the cross-band mapping

we seek to learn. If the cross-band mapping for simulated data matches the mapping

for observed data, then we may leverage simulated data to train our model for the

purpose of subsequently generating inferences based on observed data. In the next

section, we will investigate one such simulation which we believe provides an adequate

training set for our model.

3.5 Illustris Dataset

The Illustris simulations1, [40], are a set of large-scale cosmological simulations along

with galaxy formation simulations. For a complete accounting of the details in this

section, please reference [41]. The goal of cosmological simulations is to test our

current understanding of cosmology. Currently, the most favored model is the Lambda

Cold Dark Matter, see [42], which contains three major components: ordinary matter

(Bayrons), cold dark matter, and dark energy. It is the simplest model that provides

a reasonably accurate accounting of the large-scale structure of the universe, observed

in the distribution of galaxies, as well as the accelerating expansion of the universe.

For this reason, it is referred to as the standard cosmological model. The model posits

that the mass-energy density of the Universe is dominated by unknown forms of dark

matter and dark energy.

Testing this model requires precise predictions on the formation of the Cosmic

Web of sheets filaments and voids, inside which visible matter is embedded in the

basic units of cosmic structure - galaxies. Cosmological simulations utilizing di↵erent

models can be run to produce a simulated universe. These simulations are then

compared to observed galaxy populations to test the underlying model; the utility

of the underlying model can be measured by the degree of concordance between the

simulation and real observations. To draw any conclusions from any such comparisons,

we require simulated galaxies to be as detailed and realistic as possible.

Previous to Illustris, cosmological simulations had successfully recreated the large-

scale cosmic web of galaxies seen in the universe but have unfortunately failed to

recreate a mixed population of elliptical and spiral galaxies; this severely limited their

1https://www.illustris-project.org/about/
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utility as a means to directly connect with observations. These previous cosmological

simulations have been run to track the combined evolution of dark matter and dark

energy and have only included the force of gravity. These dark matter-only (DM-only)

simulations are limited by their inability to predict the distribution of galaxies made

up of baryonic matter.

Illustris is set apart from previous attempts in its ability to directly account for

baryonic matter by calculating hydrodynamics in addition to gravity. Since these

simulations can follow the dynamics of both the dark matter and baryons, predictions

can be made about the internal structure of galaxies. The Illustris simulations were

run using the moving mesh code AREPO, [43], which, in addition to gravity and

hydrodynamics includes comprehensive physics and feedback modules allowing for

radiative gas cooling, heating, and ionization by a UV background, star formation

with associated feedback and mass and metal return to the interstellar medium from

aging stellar populations.

As concerns the image data generation, mock observations were created using stel-

lar population synthesis models which assigned spectral energy distributions (SED)

to each star particle in the galaxies. Stellar light is then spread using adaptive light

spreading based on the local density of star particles. Images are created by projecting

the stellar light using pinhole cameras located at various viewing angles. The spec-

tra are then convolved with various broadband filters to create an equal number of

broadband images for each galaxy. All details on the creation of the mock observation

catalogue can be found in [44].

Before we proceed with these mock observations, we must ask how realistic the

synthetic images are before utilizing data from this cosmological simulation. The

generated images must match images captured in sky surveys. After all, we will train

our model on simulated data for, eventually, running it on observed data. If our

model is to perform as well on observed data as it does on simulated data, then the

data distribution of the simulated galaxies has to match the distribution of observed

galaxies. If the gap between both distributions is too large, then the model may well

learn to navigate the distribution of simulated galaxies but will fail to generalize to

observed data. In this case, then our model would be trained on unrealistic data and

would be of no benefit as far as augmenting real observed data. Since there is no

benefit to augmenting the Illustris data set, any successes we have with the mock
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observations would be a theoretical proof of concept with little to no applicability.

So, are the simulated galaxies realistic enough?

There are a few metrics that indicate high agreement between simulated data and

observed data. Illustris successfully reproduces several observable properties as well as

relationships between these properties. Firstly Illustris matches the present-day ratio

of the quantity of stars to dark matter mass for galaxies of all masses. Additionally,

Illustris matches the total amount of star formation in the universe as a function

of time. These two properties are well constrained by observations and Illustris is

constructed to agree with both properties. Furthermore, the simulation is observed to

match how many galaxies of each mass and brightness exist at the present day as well

as back in time and is also able to match the observed star formation rates. Illustris

also precisely measures the gas composition of the universe as well as its location or

in other words: the simulated galaxies’ chemical composition is in agreement with

observations. The simulation is also able to correctly predict that the majority of gas

remains in intergalactic medium but that this gas contains only a minority of metals

produced in the universe so far. Agreement across all of those metrics allows us to say

with a fair degree of confidence that the Illustris-generated data distribution should

be able to match a data distribution drawn from observed data.

3.5.1 Data processing

One advantage of dealing with simulated data such as Illustris, is that we have meta-

data about each Galaxy. Metadata features include stellar mass, SFR, metallicity,

and spin. Of those features, we have found the one feature that has the largest e↵ect

on band-to-band variation to be the star formation rate.

In Figure (3.6), we observe much higher variation across di↵erent bands with

galaxies with higher SFRs compared to ones with lower SFRs. As we have mentioned

previously, galaxies with a high SFR emit high levels of UV which is evident by

the isolated clusters and spirals observed in the UV images of high star formation

rate galaxies. These regions indicate areas of high stellar formation and are vitally

important to account for when making inferences on the SFR of observed galaxies.

Again, see [39] for further details.

Illustris has generated images for nearly 7000 galaxies, see [44], the IDs of these
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Figure 3.6: The above plot shows the progression of Galaxy observations from UV to
IR. The top two rows show galaxies with high SFRs while the bottom two rows show
galaxies with low SFRs. Note, the large variability between bands in galaxies with
high SFRs compared to the mostly uniform observations of the low SFR galaxies.

galaxies were obtained using the web API found on the Illustris website. We sorted the

galaxies based on total stellar mass and then selected the top 3000 galaxies in terms of

stellar mass; the reason for this selection was that galaxies with higher stellar masses

had a larger field of view and therefore had high-frequency features such as spirals

resolved better compared to galaxies with lower stellar masses.

The data for each Galaxy was then downloaded for the specific bands that we

wished to perform mappings to and from. We will discuss band selection in the next

sections. The original images had resolutions of 256⇥ 256 however we have cropped
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the images to 128 ⇥ 128 since we found the the majority of the galaxies fit within

that central selection of 128 ⇥ 128; in other words, we discarded the background of

the image.

We selected 1000 galaxies of the 3000 galaxies we had downloaded by stratified

sampling. The stratification was done based on SFR; we felt it necessary to do so

since the SFR had the largest impact on Galaxy morphology and we did not want our

model to be biased in terms of it’s performance with galaxies of di↵erent morphologies

or structures. This stratified sampling was done once; all subsequent results in this

paper, regardless of di↵erent band combinations, were obtained with models trained

on the same stratified sample.

The data was processed in the following way: each image was loaded and then

scaled using asinh scaling, which is standard practice in astronomical image processing

(see [45]), and normalized to a range of [�1, 1]. It is important to note that each

Galaxy was captured from four di↵erent viewing angles which means that we have

four sets of images for each Galaxy. The di↵erent cameras are notated by Cam0,

Cam1, Cam2, and Cam3. To test our models’ ability to generalize to data not

included in the training set we will use Cam0 and Cam2 for training and reserve

Cam1 and Cam3 for validation in all subsequent sections. This means if our training

set is comprised of 1000 sampled galaxies, then it contains 2000 images.

The validation data set is comprised of 250 galaxies, which due to the two di↵erent

viewing angles yields 500 images. The validation data set has also been stratified by

SFR and is identical across all subsequent sections.

3.6 Model Selection

3.6.1 Performance Metrics

One of the main advantages of working with the Illustris dataset, besides ease of

access, is the existence of ground truth labels. To fully take advantage of the ground

truth labels, we must have a reliable metric that can provide an intelligent measure

of distance between the generated images and the corresponding ground truth labels.

Metrics such as the mean squared error or the mean absolute error while providing a

general measure of distance are not particularly well suited to detecting subtle nuances
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in how images may di↵er.

The structural similarity index or SSIM, see [46], is a metric that is much better

suited for our purposes. It accepts as input two images and outputs a number in

[�1, 1] where 1 indicates perfect agreement, �1 indicates perfect disagreement and

0 indicates no relationship whatsoever. It is a much better predictor of distance

than the other metrics like the mean squared error because it takes into account

structural di↵erences by measuring the variance and covariance between individual

image patches; this is in contrast to metrics such as the mean squared error which

only measure the di↵erence in magnitude of individual pixels.

In the example visualized in Figure (3.7), both images have been constructed such

that their mean squared error is equal, this is done by setting all pixels to have a

value of 1 and changing an equal number of pixels to a value of 0.5. However, the

way the altered pixels are distributed across each image di↵ers. The SSIM is sensitive

to such di↵erences in structure while the mean squared error is only concerned with

the mean pixel di↵erence and has no regard for the structure or arrangement of the

pixels. This renders the MSE not very helpful as far as assessing image data. The

SSIM is a much smarter metric that will serve as a more accurate indication of model

performance by being a better measure of agreement between the output image and

the ground truth.

We will be measuring performance by looking at the a metric we will refer to as

SSIM Gain which is given by

SSIM(Output,Target)� SSIM(Input,Target), (3.5)

where the first term is the SSIM between the output image and the target image and

the second term is the SSIM between the input image and the target image. The

reasoning for this metric is as follows, the second term o↵ers a baseline measure of

distance between the input and target bands while the first term gives the distance

between the output band and the target band (it is this di↵erence that our model seeks

to minimize). Looking exclusively at the SSIM taken between the output and target

images as a measure of model performance would give a very crude measurement

that lacks context. Considering how relative the model’s performance is compared to

the initial di↵erence between input and target images provides a more comprehensive

measure of success. We desire SSIM(Output,Target) > SSIM(Input,Target) since this
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Figure 3.7: Each row pertains to a single example used to demonstrate the SSIM.
The first column represents the first set input images; those are just identity. The
second columns represent the second set of input images; to construct these images, we
started with identity then modified an equal number of pixels in each image but with
di↵erent arrangements. The final column shows the SSIM map, which is averaged for
the final calculation, for each pair of images. Note the SSIM’s ability to account for
structure.

indicates that our model has successfully transformed the input image into an image

that is smaller in distance to the target image compared to the initial distance of the

input image. Thus, a positive SSIM Gain indicates satisfactory model performance,

a negative SSIM Gain indicates undesirable performance while a score of 0 indicates

that the model did not alter the image whatsoever.
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3.6.2 Hyperparameter Tuning

Hyperparameters are parameters that control the configuration of the model and are

not learned during training; hyperparameter tuning involves training di↵erent models

with varying hyperparameter configurations to determine which configuration works

best for the task at hand. For a detailed dive into hyperparameter tuning, see [47].

The authors of the original CycleGAN paper, [34], proposed that for images of size

128 ⇥ 128, that the generator architecture be comprised of 2 down-sampling blocks

followed by a latent space containing 6 residual blocks and 2 upsampling blocks as in:

DB64-DB128-

6⇥ RES256

UB128-UB64-

CT1

which, save for the output layer having only one channel instead of three, is identical

to the model used in Section (3.3). To determine if this particular hyperparameter

configuration was ideal for our specific purpose we ran nine models with various hyper-

parameter adjustments. The two dimensions across which we varied hyperparameters

are as follows:

1. The number of downsampling and upsampling blocks; this number must be equal

for both sets of blocks since we desire the output to have the same resolution as

the input. We will refer to this as the latent scaling factor; each sampling block

reduces the latent space resolution by a factor of 2. So, a latent scaling factor of

2, with a latent dimension of 64⇥64, is obtained with one downsampling block.

A latent scaling factor of 4, with a latent dimension of 32 ⇥ 32, is obtained

with two downsampling blocks and so on. The original paper proposed a latent

scaling factor of 4 so we tried scaling factors of {2, 4, 8}.

2. The number of residual blocks. The original paper proposed 6 blocks, so we

tried {3, 6, 9} for each of the three di↵erent latent scaling factors giving us a

total of 9 di↵erent hyperparameter configurations.

All other hyperparameters and aspects of training were kept equal across the 9

models as was the training dataset; the number of residual and sampling blocks was
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changed but the contents of the blocks themselves were identical across all models.

For this task of hyperparameter tuning, we have decided to train our models to map

to and from bands U and K. This means that G will be learning to map observations

from band U to band K and F will be doing the inverse mapping from K to U.

We have selected these two bands as they are su�ciently distant from each other

and are su�ciently varied to pose a decent challenge for our model. While such a

mapping from UV (U) to IR (K) and back is somewhat extreme, for hyperparameter

tuning it is better to have a challenging problem such that we allow su�cient room for

the models’ performance to improve with di↵erent hyperparameters. If the problem

presented to the models is too trivial, then the model may well perform optimally with

any hyperparameter configuration and we would learn very little as to the relationship

between the hyperparameter space and model performance.

Each model was trained on the training set for 200 epochs with checkpoints saving

each model’s weights every 4 epochs. We logged the losses of each generator for all

checkpoints and selected G and F that each had the lowest loss amongst all check-

points. The selected models were then loaded, and the validation set was run on

both G and F with the SSIM between output images and target images logged for

each image in the validation set. This was repeated identically for all hyperparameter

configurations. The mean SSIM Gain taken over the validation set for each hyperpa-

rameter configuration is shown in Tables (3.2) and (3.3) for G and F respectively.

Residual Blocks

Latent Scaling Factor 3 6 9

2 0.026011 0.038999 0.039292
4 0.018069 0.015956 0.020942
8 0.010781 0.005545 0.007753

Table 3.2: The mean SSIM Gain returned by the various G models on the validation
set. We observe a trend of increased performance as the number of residual blocks is
increased and the latent scaling factor is decreased.

We also plotted the distributions, see Figures (3.8) and (3.9), of the SSIM Gain

returned over the validation set for the each hyperparameter configuration.

We observe a noticeable trend across the latent scaling factor and a slightly more

subtle trend with the number of residual blocks. There is a significant decrease in

performance as the latent scaling factor is increased with a latent scaling factor of

two (only one down-block before the latent layers) performing best across all residual
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Residual Blocks

Latent Scaling Factor 3 6 9

2 -0.01559 -0.01460 0.00048
4 -0.02392 -0.02339 -0.02583
8 -0.03040 -0.04354 -0.0392

Table 3.3: The mean SSIM Gain returned by the various F models on the validation
set. We observe the same trend, as Table (3.2), of increased performance as the num-
ber of residual blocks is increased and the latent scaling factor is decreased. However,
most of the are values in the table below zero indicating that the F models’ overall
performance is lower than the corresponding G models.

block configurations. Our reasoning for this is as such: the latent scaling factor

determines the size of the bottleneck similar to how the latent dimension of a VAE

determines its bottleneck. A smaller bottleneck does not transmit high-frequency

features, such as spirals and bars, but only transmits low-frequency features such as

overall shape and orientation. Recall that the VAE struggled with recreating high-

frequency features due to this bottlenecking behavior. Given that the most significant

di↵erences between both bands are mainly high-frequency features, it makes sense that

the more aggressive the bottleneck, the less adept our network is in resolving these

high-frequency features.
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Figure 3.8: The distribution of SSIM gains for G obtained from the validation set for
di↵erent hyperparameter configurations. The horizontal line at 0 separates between
desirable and undesirable performance in positive and negative values respectively.
The top and bottom edges of the box show the 75th and 25th percentile respectively
while the notch in the middle shows the 50th percentile. For example, if we find a
notch at zero SSIM gain, this indicates that the given model performed satisfactorily
with 50% of the validation set but unsatisfactorily for the other 50%of the validation
set. The lines protruding from the boxes show the 0th and 100th percentiles while the
points beyond represent outliers. Observe the noticeable trend of lower latent scaling
factors having better performance as well, although less significant in e↵ect, increased
numbers of residual blocks also having better performance.



66

Figure 3.9: The distribution of SSIM gains for F obtained from the validation set for
di↵erent hyperparameter configurations. We observe the same noticeable trend, as
in Figure 3.8, of models with lower latent scaling factors having better performance.
The only F model with that produced satisfactory performance with more than 50%
of the validation set (indicated by the notch located above the 0 SSIM Gain line) is
the model with a latent scaling factor of 2 and 9 residual blocks.

As for the number of residual blocks, we observe a slight increase in performance

with more blocks being added. However, little to no increase in performance was

observed in employing latent spaces with more than 9 residual blocks. We experi-

mented briefly with 12 and 15 blocks and found no performance di↵erences compared

to models with 9 blocks. We also found that models with a latent scaling factor of 0

(no downsampling and upsamling blocks) performed no better than the model’s with

a latent scaling factor of 2 but required longer training times. Therefore, we can state

that the hyperparameter configuration with a latent scaling factor of 2 along with 9

residual blocks, as in:

DB64-

9⇥ RES128-

UB64-

CT1,
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performs best. Therefore, we will use this configuration in all subsequent sections, and

any results beyond this point were obtained with this hyperparameter configuration.

SSIM Correlations

We also conducted a simple investigation into the relationship between the SSIM

Gain and the variation exhibited between input and target band as measured by

SSIM(Input,Target). The investigation was only conducted using the model with the

best found hyperparameter configuration. The idea behind this analysis is that per-

haps galaxies that had very little variation between input and target bands were more

prone to producing a negative SSIM Gain since there was less room for improvement.

Figure 3.10: This plot shows the relationship between the models’ performance as
measured by the SSIM Gain and plotted on the y�axis, and the Original SSIM given
by SSIM(Input,Target) and plotted on the x�axis. The green line shows the hypo-
thetical optimal performance. While there is a slight o↵set for blue line, representing
G, it’s slope is nearly identical to the optimal line. This is a strong indication that
model performs as intended but that it performs best with galaxies that have higher
variability across di↵erent bands.The orange line, representing F , is farther away from
the optimal line but still exhibits the same overall trend.
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We found a significant negative correlation between the both measurements with

�0.86 for G and �0.61 for F . These findings are visualized in Figure (3.10) and

are a strong indication that our model performs optimally for galaxies with greater

initial variation between input and target bands. This is in many ways good news

since translating galaxies that have little to no variation across photometric bands is a

less demanding task compared to galaxies with greater variation between photometric

bands. It also gives a justification to results that may have a low or negative SSIM

Gain. That justification being that there was little the model could do to change the

input images to one closer to the target image as opposed to these failures being due

to some inexplicable shortcoming of the model.

3.6.3 Supervised Training

Even though CycleGAN is designed to be trained with unpaired datasets, we can take

advantage of our dataset being paired. This is one of the main advantages of working

with Illustris data and provides us with a somewhat rare opportunity to turn this

problem into a fully supervised problem. After all, ground truth labels are available

in abundance. The following modifications were made to the original CycleGAN:

1. The discriminators were discarded since we are no longer conducting adversarial

training.

2. Gone is the Cycle Consistency loss; this decouples both generators which now

run independently of each other.

3. The loss function has been modified to be the mean squared error between the

output image and the target image. In this way, the loss function is transformed

from its original complex form, Equation(3.4), to the simplest form of supervised

lossv seen in Equations (3.6) and (3.7) .

The new losses, which are minimized during training, for for G and F respectively

are

LG = (y �G(x))2, (3.6)
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and

LF = (x� F (y))2, (3.7)

where x and y are paired observations in di↵erent bands.

We trained the supervised model with the optimal hyperparameter configuration

discussed previously and conducted analysis using the validation data set exactly as in

the previous subsection. We compare this supervised model with the performance of

the traditional CycleGAN with the optimal hyperparameter configuration and observe

that the fully supervised model performs significantly better for both G and F , see

Figure (3.11). The cycle consistency loss could have been retained with the adversarial

loss simply being replaced by the fully supervised objective. Perhaps this configuration

would maintain the benefits of full supervision while observing the cycle consistency

property.

Figure 3.11: This pair of box plots, G on the left and F on the right, compares the
performance of fully supervised training to the unsupervised training routine of the
original CycleGAN model. We observe a noticeable increase in performance using
full supervision to train the models. All models used the optimal hyperparameter
configuration discussed previously.

3.6.4 Ultraviolet to Infrared Results

What we expect in the G : U �! K transformation is the following:

1. Attenuation of the spiral arms since they emit mostly in UV.
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2. Amplification of the central bulge that emits mostly in IR.

Figure 3.12: Outputs for G for the fully supervised model. The top row contains
the inputs (U-band), the middle row contains the mapped outputs (K-band) and the
bottom row contains the ground truth labels (K-band).

Figure 3.13: More output examples for G, the same layout as Figure (3.12) is used.

We observe desirable qualities in outputs of G. We can see in Figures (3.12) and

(3.13) that the model is able to learn the correct transformations and apply them to
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the input image while preserving structure. There is a fair bit of agreement between

the outputs and the ground truth labels in the remaining structure of the spiral arms.

There are examples of the model removing too much structure such as in the second

column of Figure (3.12) but overall, the model’s transformations are aligned with the

physically motivated di↵erences we expect to observe in the U �! K transformation.

3.6.5 Infrared to Ultraviolet Results

What we expect in the F : K �! U transformation is the following:

1. Attenuation of the central bulge since it emits mostly in IR.

2. Amplification of the spiral arms that emit mostly in UV.

This K �! U transformation is significantly more challenging than the previous

U �! K transformation since the model has to infer a lot more structure in the spiral

arms. This is the reason for the lower performance of F compared to G observed in

Sections (3.6.2) and (3.6.3). The results can be seen in Figures (3.14) and (3.15).

Figure 3.14: Outputs for F for the fully supervised model. The top row contains
the inputs (K-band), the middle row contains the mapped outputs (U-band) and the
bottom row contains the ground truth labels (U-band).

While the overall style of the output images is in line with expectations, the model

occasionally struggles with inferring the correct structure of the spiral arms. This is
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especially true for input images that lack any traces of spiral arms’ structure such as

columns one in Figure (3.14) and columns one and five in Figure (3.15). Without any

traces of structure, the model resorts to assigning areas of star formation somewhat

haphazardly. This results in the lower qualitative accuracy observed in subsections

3.6.2 and 3.6.3. There are however encouraging results with input images where traces

of the UV emitting structure are visible such as in columns three, four and five of

Figure (3.14).

Figure 3.15: More examples for F , the same layout as Figure (3.14) is used.
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3.7 Band Interpolation

In Section (3.6), we selected two bands, U and K, with a large di↵erence in wavelength

to perform hyperparameter tuning and test di↵erent training paradigms. In this

section, we will investigate interpolating between two distant bands. The idea here is

to generate a sequence of observations at intermediate bands. For instance, we could

select bands U and K as input and train a model to map to a specific band delineated

by both input bands such as bands B, G, R or Z. To clarify, we have now multiple

models that each accept the same two inputs but are trained to map to a specific

intermediate band. A unique model needs to be trained for each output band; we

have not tried developing a single model that can output multiple bands but given

the relatively low cost of making inferences with multiple models, we do not believe

having one model that outputs all bands would be of any significant advantage.

We desired to experiment with bands corresponding to observations taken with

GALAX and 2MASS telescopes (see [19] and [16] respectively), so we have selected the

FUV as well as K bands as input, see Figure (3.16). We observe significant di↵erences

between both input bands since we have selected the bands to be even farther apart

than the bands used in Section (3.6).

Figure 3.16: Each column shows an individual Galaxy observed in both FUV (top
row) and K (bottom row) bands which represents a single input accepted by the
model. Note that there is a substantial di↵erence between both inputs since each
traces particular sections of the stellar population; the FUV band observations trace
the younger star population in the spiral arms, while the K band observations trace
the majority of the stellar population of older, cooler stars located mostly in the
central galactic bulge.
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We trained three models to map to the G,R and Z bands with results for each

model shown in Figures (3.17), (3.18), and (3.19) respectively.

Figure 3.17: Here we show outputs of the model trained to infer G band observations
from pairs of FUV and K band inputs. The top row shows the ground truth labels
and the bottom row shows corresponding inferences from the model. The images
are nearly identical with almost no visible di↵erences beyond slight di↵erences in the
luminosity of some sections. The structure recreated in the inferred images is identical
to the ground truth images which is very promising indeed.

Figure 3.18: Outputs of the model trained to map to the R band. The top row is
the ground truth labels and the bottom row are the model outputs. The structure is
less visible than in Figure (3.17) which is to be expected with this higher wavelength
band.

This sort of band interpolation yields the most promising results; the outputs are

nearly identical to the ground truth labels. This is because the model has a significant

advantage in being able to detect areas of high star formation from the FUV band

while also having access to the distribution of the majority of the stellar matter

through the K band. Leveraging information from both bands allows it to make
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much more precise predictions than was previously possible with only one band’s

input.

Figure 3.19: Outputs of the model trained to map to the Z band. Again, the top
row is the ground truth labels and the bottom row are the model outputs. There
is significantly less structure than in Figures (3.17) and (3.18) which is in line with
expectations of IR observations.

Since we now require a paired dataset from potentially di↵erent instruments, the

application of this type of band interpolation faces significant hurdles as regards to

running inferences based on real observations. However, the performance is very

promising and shows how powerful these models can be.

We selected bands G, R, and Z to map to, since SDSS, [17], collects observations

in these bands. We also chose bands FUV and K as inputs since GALAX and 2MASS

collect observations in those respective bands. The motivation was that a paired set

of observations taken from both GALAX and 2MASS could be used to significantly

augment the SDSS database. The task of obtaining and preprocessing such a paired

data set is not one we have investigated but is theoretically possible and would poten-

tially produce a high volume of high-quality images to augment SDSS observations

with minimal inference cost.

Finally, we have plotted all results side-by-side to show the progression of learned

bands in Figure (3.20).
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Figure 3.20: Each row represents a single galaxy observation. The first and last
columns are observations of the FUV band, the 5th (middle), column is the K band
observation, and the intermediate bands are plotted as and arranged sequence with
Z, R and G plotted outwards from K respectively ( Z in columns 4 and 6, R in 3 and
7 and G in 2 and 8). One set of sequences (Z, R and G columns) shows ground truth
labels while another set shows inferences produced by the model. The sequence on
the right was generated by our models while the one on the left is of the ground truth
labels.
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3.8 Band Extrapolation

The focus of Section (3.7) was on band interpolation where an intermediate band was

inferred from two surrounding bands. This section will investigate band extrapolation

where a sequence of bands is extended to infer bands. Specifically, we will look

extrapolating low wavelength bands since this is an inherently challenging task. The

challenge presented here is twofold: firstly, the model is at disadvantage compared

to the setup in Section (3.7) where it could use information from both high and low

wavelength bands; extrapolation is inherently more challenging that interpolation.

Secondly, the nature of low wavelength inference presents more challenges since models

must infer structures such as spiral arms, bars and star forming areas.

The input bands we have selected are bands B and R; the reason for this selection is

that most sky surveys cover these two bands in the visible light segment. Furthermore,

there is su�cient variation between bands to encode enough information about the

pattern of progression between bands to the model. Using pairs of B and R as input

data, we trained two models to perform extrapolation to NUV and FUV bands. Note

that there is a significant di↵erence between the input bands and the extrapolated

output bands; this makes the task further challenging for the model.

Despite the challenging nature of the inference, we note significant agreement

between the model outputs and corresponding ground truth labels for both NUV in-

ference, Figure (3.21), and FUV inference, Figure (3.22). The halos observable in the

input bands are reduced to match the signatures in the ground truth labels. Addi-

tionally, the star forming regions are also correctly inferred making this a successful

translation at least on qualitative terms.

As noted in Section (3.7), the challenges of interpolation include having to source

the input pairs from di↵erent surveys. This challenge is not present in extrapolation.

Since the two input bands are relatively close enough to each other and are in the same

band of electromagnetic radiation (visible light in our case), we can source both inputs

from the same survey. This makes extrapolation a much more appealing application

as far as practicality is concerned.
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Figure 3.21: The top two rows show the R and B band inputs respectively. The
third and fourth rows show the NUV inferences and the ground truth NUV labels
respetively. Note the agreement between the inferences and labels despite the com-
plexity of the structure.

We could for instance use bands inputs from G and R ( bands B and G are so close

that they are practically interchangeable) from the SDSS to make inferences to FUV

and NUV bands from the GALAX survey. Further work could be done to expand

this approach to include the Z band as an additional input to benefit from further

observations that the SDSS o↵ers.
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Figure 3.22: The top two rows show the R and B band inputs respectively. The third
and fourth rows show the FUV inferences and the ground truth FUV labels respetively.
Note the agreement between the inferences and labels despite the complexity of the
structure.

3.8.1 Astronomical Validation

The bulk of the background information in this section references [48] which we con-

sider to be a comprehensive reference on non-parametric galaxy morphology classifi-

cation.

So far, we have investigated the outputs of our models qualitatively, by visual

inspection and comparison, and quantitatively by means of the SSIM metric. As

mentioned in Section (3.6.1), the SSIM metric accounts for local structural di↵erences

between images and is a much smarter metric compared to pointwise metrics such as

the MSE.

However, the SSIM is a general metric that is not specialized for analyzing galaxy

images and while it is a decent indicator of overall image agreement, it does not encode
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any semantically meaningful information about the galaxies in question. Therefore,

using only the SSIM does not provide any assurances that the generated images are

free of spurious e↵ects and reliably resemble natural images.

Astronomers utilize specialized metrics that encode certain features about galaxies;

the utility of these metrics lies in their ability to transmit complex features compactly

which facilitates the large-scale analysis of vast numbers of galaxies. These metrics are

adapted specifically for galaxy images and therefore encode semantically meaningful

information about the given galaxy.

Astronomers often employ non-parametric methods to quantify galaxy morphol-

ogy, focusing on specific structural features. Three widely used non-parametric mea-

sures are concentration, asymmetry, and clumpiness (often abbreviated as the CAS

parameters), see [49]. Concentration quantifies how centrally concentrated the light

from a galaxy is, indicating whether the galaxy has a dense core or a more di↵use

distribution. Asymmetry measures the degree to which a galaxy’s shape deviates

from perfect symmetry, providing insights into recent interactions, mergers, or other

dynamic processes. Clumpiness assesses the distribution of light within the galaxy,

highlighting the presence of star-forming regions or other irregularities. These param-

eters collectively o↵er a compact, yet detailed, description of a galaxy’s morphology,

capturing essential features that are critical for understanding the galaxy’s evolution-

ary history.

In addition to the CAS parameters, astronomers also utilize Gini and M20 mea-

surements to further characterize the morphological features of galaxies, see [48]. The

Gini coe�cient is a statistical measure originally used to quantify income inequality,

but in galaxy morphology, it quantifies the distribution of light among a galaxy’s pix-

els. A high Gini coe�cient indicates that most of the galaxy’s light is concentrated in

a few pixels, often corresponding to a bright, compact core, whereas a low Gini coe�-

cient suggests a more evenly distributed light profile. This metric is particularly useful

for distinguishing between galaxies with di↵erent central light concentrations, such as

elliptical galaxies and spirals, and for identifying galaxies that may have undergone

recent mergers.

M20, on the other hand, is a measure of the relative contribution of the brightest

20 percent of a galaxy’s light to its overall light distribution. Specifically, it quantifies

the spatial distribution of the brightest regions within a galaxy, helping to identify
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whether the galaxy has a single dominant core or multiple bright regions, which could

indicate complex internal structures or recent mergers. When used together, Gini and

M20 provide a powerful tool for di↵erentiating between various morphological types,

especially in galaxies with irregular or disturbed structures. These measurements are

particularly valuable in large-scale surveys where they enable astronomers to classify

and analyze thousands of galaxies e�ciently, o↵ering insights into the processes driving

galaxy formation and evolution. For more details on the calculation of the Gini and

M20 measurements, see Section 2 in [48].

The Gini and M20 measurements o↵er several advantages over the CAS parame-

ters when it comes to analyzing certain types of galaxies, particularly those with more

complex or irregular structures. One key advantage is that while the CAS parame-

ters—concentration, asymmetry, and clumpiness—are useful for analyzing relatively

well-defined, symmetric galaxies, they may struggle to capture the nuances of galax-

ies that have undergone mergers or other disturbances. In contrast, Gini and M20

excel at quantifying the light distribution in galaxies that are not well-described by

traditional, symmetric models. The Gini coe�cient is adept at revealing variations in

light concentration without relying on assumptions about the galaxy’s overall shape,

making it more flexible for analyzing galaxies with irregular or clumpy structures.

Additionally, the M20 measure o↵ers more specific information about the brightest

regions of a galaxy, which can be crucial for detecting signs of recent mergers or inter-

actions that cause multiple bright cores or irregular features. Unlike the concentration

parameter, which only measures how light is concentrated overall, M20 directly as-

sesses how this concentration is distributed spatially within the brightest 20 percent

of the galaxy’s light. This gives astronomers a more detailed understanding of inter-

nal structures, making Gini and M20 particularly useful for distinguishing between

galaxies that might look similar in terms of CAS parameters but di↵er significantly

in their internal dynamics or recent interaction history. These advantages make Gini

and M20 ideal for analyzing more diverse galaxy populations in large-scale surveys.

It is for this reason that we will use the Gini coe�cient and M20 to confirm that the

outputs are free of spurious e↵ects and reliably resemble natural images.

We conducted the following analysis. First, we took our trained extrapolation

models, one for NUV and one for FUV bands. We then selected a validation set of 500

images using stratified sampling by SFR as discussed in Section (3.5.1). These images
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are completely independent from the training dataset. We then passed the validation

set through each of the models and recorded the outputs. We calculated the M20 and

Gini measurements for both the model outputs and the ground truth labels. A kernel

density plot was obtained comparing the Gini and M20 measurement distributions

for both the generated images and the ground truth labels. Large agreement between

both distributions indicates that the model produces realistic images and is able to

preserve the distributions observed for ground truth labels.

(a) Gini coe�cient distributions for NUV la-
bels and outputs

(b) Gini coe�cient distributions for FUV la-
bels and outputs

Figure 3.23: Gini coe�cient distributions for NUV (right) and FUV (left) labels and
outputs. The input bands are plotted as well to visualize the extent to which the
networks shift the input distributions. We note the models ability to produce outputs
that match the ground truth label GINI distributions.

As seen in Figures (3.23) and (3.24) for the GINI coe�cient and M20 distributions

respectively, we observe many desirable properties. Firstly, there is a significant shift

between the input distributions and the ground truth distributions. Despite this, our

networks are capable of producing images that follow the ground truth label distri-

bution for both measurements. There is a slight discrepancy between the generated

images and the ground truths labels but given how significant the shift is compared

to the inputs, this discrepancy is not a significant cause for concern. Note in Figure

(3.24a) how the generated distribution follows along the ground truth distribution

despite the ground truth distributions being bimodal (the second mode, centered on

M20 = 0.15, of the ground truth distribution lines up with the second mode of the B

input). This is an indication that the model is sensitive to subtle di↵erences in the

input images.
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(a) M20 distributions for NUV labels and
outputs

(b) M20 distributions for FUV labels and
outputs

Figure 3.24: M20 distributions for NUV (right) and FUV (left) labels and outputs.
The input bands are plotted as well to visualize the extent to which the networks shift
the input distributions. We note the models ability to produce outputs that match
the ground truth label M20 distributions.

3.9 SDSS Validation

While the results of Sections (3.6) and (3.7) show promise, they were all obtained with

a validation set comprised of Illustris data. This leaves open the following question:

to what extent are the models we have developed and trained capable of generalizing

the learned mappings to real observations? As mentioned previously, the mock ob-

servations were obtained from a cosmological simulation that matches many observed

properties both in large-scale structure and in galaxy morphology and composition.

In theory, our model should generalize to observed image data with little to no issues

however, until this is done in practice, our speculations will remain as such.

In this section, we show promising results in using a model, trained on mock obser-

vations from Illustris, to make inferences using real observations from SDSS. To begin,

we train a fully supervised model, with the optimal hyperparameter configuration dis-

cussed in Section (3.6), to map from band R to band U. This model was then used to

make inferences using data gathered from SDSS as in Section (2.2). We selected the

R band from the SDSS images by extracting the red channel of the original 3-channel

images obtained from the image cut-out tool. These SDSS R band images were fed

into the trained model to make inferences. We were unable to obtain U band images
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for these galaxies. Therefore, we have no ground truth and will assess the inferred

outputs on purely qualitative grounds.

Figure 3.25: The top row shows SDSS inputs while the bottom row show the mapping
produced by the Illustris trained model. Note that the model can detect structures and
apply the appropriate transformations to these structures as seen with transformations
applied to the Illustris data as input.

We observe in the mapped images, Figure (3.25), the patterns that were observed

when translating Illustris inputs to U bands (see Figures (3.14) and (3.15)). Traces

of spiral arms, which usually indicate areas of high star formation, are amplified and

are used by the model to infer surrounding structures which are much more distinctly

outlined and highlighted. Also, note that some galaxies have central regions (galactic

bulges) attenuated significantly by the mapping, see Figure (3.26). Again, this is in

line with expectations for such a translation.

However, there are instances of the model performing little to no transformation

on the input image, see Figure (3.27 ). This usually happens when there is little to

no underlying structure that the model can use to make inferences. These restrictions

are discussed further in the next chapter.
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Figure 3.26: The top row shows input galaxies while the bottom row shows the
transformed output. Note the attenuation of the central galactic bulge which has
little star-forming activity and therefore would contribute little to UV observations.

Figure 3.27: Again,the top row is SDSS inputs and the bottom row are the model
outputs. We observe little to no transformation applied to these galaxies due to a
lack of structure which the model uses to make inferences.
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Discussion

We have shown that the image-to-image models can learn semantically meaningful,

bijective mappings that are in line with the expected transformations based on our cur-

rent understanding of galaxies’ stellar population distributions. We have also shown

that band interpolation yields very promising results and that such models could be

used to significantly augment existing observations.

We have done all of our training using mock observations from the Illustris sim-

ulations which is, to date, a novel use of this dataset. Training with Illustris data

allowed us to take advantage of the existence of ground truth labels and turn the un-

supervised CycleGAN objective into a fully supervised objective which yielded better

results than its unsupervised counterpart.

There are however restrictions to the models and to the training routine we use.

Firstly, training in a fully supervised manner requires a paired data set with ground

truth labels. This places a significant restriction on our training data set; specifically,

getting a paired data set consisting of real astronomical observations can prove to be

quite challenging for various reasons such as scarcity of data and the need for complex

pre-processing pipelines. This restriction is particularly cumbersome for the band

interpolation models which cannot be run using the original unsupervised CycleGAN

training routine.

We also observe a restriction as to the type of galaxies on which our models perform

best. We note that our model performs best with galaxies that have a high variation

across di↵erent band observations. These galaxies tend to be ones with higher SFRs
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which tend to be spiral galaxies. Also, for transformations from high wavelength

bands, such as IR bands, to low wavelength bands, such as UV bands, our models

require traces of the star-forming regions to be visible in the high wavelength input

band. Without these traces, our models struggle to recreate the correct structure

observed in the low wavelengths band. This was particularly noticeable in Section

(3.9), where the model performed little to no transformation on the SDSS inputs due

to the lack of structure in the inputs.

As for future work, it is not uncommon for research to beg more questions than

it answers and this one is no exception. As it currently stands, our work presents

many di↵erent avenues of exploration. First and most importantly, we would like to

train our models using real observations, whether paired or unpaired. We would then

quantitatively compare, all else being equal, the performance between an Illustris-

trained model and one that is trained using real observations. This would yield a

great deal of insight into any biases the Illustris data contains over real observations.

Furthermore, we would like to perform quantitative analysis on an Illustris-trained

model using a validation set comprised of real observations; we have only performed

a qualitative analysis in Section (3.9) due to a lack of ground truth labels.

As regards band interpolation, we would like to experiment with di↵erent input

band combinations such as using infrared and visible observations to predict ultravi-

olet observations. An example would be using Z and R bands to infer the U band.

Such inferences are more challenging than the ones presented in Section (3.7) but are

less challenging than the single input transformation we presented in Section (3.6).

Finally, our hyperparameter training indicates that an increase in the number

of residual blocks that make up the latent space could produce models with better

performance. We also would like to experiment with the objective function of the

supervised models; perhaps retaining the cycle consistency loss in the supervised

objective could yield better results.

Overall, our results are very promising, and we believe that further research and

development of image-to-image models for the purpose of photometric band transla-

tion would be very beneficial to astronomers.
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