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Abstract

This thesis examines the creation of entanglement in open quantum systems through the

application of quantum channels. The primary objective is to understand the transition

from a product state, initially uncorrelated, to an entangled state upon the application

of quantum channels. The study emphasizes the immediate effects of quantum channels

on entanglement production, employing mathematical modeling and computational sim-

ulations to explore various system configurations and quantum channel parameters. Key

results include the identification of conditions under which quantum channels produce

only classical correlations and the determination of necessary and sufficient conditions for

entanglement generation by specific subclasses of completely positive, trace-preserving

(CPTP) maps.
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Lay summary

This thesis explores how entanglement, a fundamental phenomenon in quantum mechanics

where particles become interconnected regardless of the distance between them, can be

generated in open quantum systems through the use of quantum channels. Unlike closed

systems, which are isolated from their surroundings, open systems continuously interact

with their environment, exchanging energy and information in ways that profoundly affect

their behavior.

The research focuses on the transformation of a product state - an initial state where the

components are uncorrelated - into an entangled state through the application of quantum

channels. Quantum channels are mathematical operations that can represent interactions

or measurement processes in quantum systems. By applying these channels, the study

aims to determine the types and quantities of correlations, both classical and quantum,

that are produced.

In particular, the research identifies specific conditions under which quantum chan-

nels produce only classical correlations, as well as the necessary and sufficient condi-

tions for these channels to generate entanglement. Additionally, the study examines a

d-dimensional quantum system interacting with a field, providing insights into how fac-

tors such as the energy scales of the environment and the strength of coupling affect the

production of entanglement.

The findings are strictly theoretical. This research contributes to the broader field of

quantum mechanics by offering deeper insights into the fundamental processes governing

entanglement in open quantum systems.
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Main results of the thesis

We consider open quantum complexes consisting of a system S and a reservoir R. Our

main interest is to study the entanglement between S and R produced by quantum chan-

nels applied to SR. A quantum channel is a map on the SR states which may represent an

interacting dynamics or a measurement process (generally, a quantum channel is a com-

pletely positive, trace preserving – CPTP – map on SR states). Our main question is:

Given a product state of S and R (no correlation), what kind of correlation and how much

of it is produced by applying a quantum channel? Correlations can be classical or quantum

(=entanglement).

We consider different parameters in the quantum channel and various system configu-

rations and we quantify the degree of entanglement using measures such as purity and

concurrence. Our results highlight the intricate relationship between system parameters,

bath properties and the production of entanglement. The theoretical findings are validated

through numerical simulations.

• Our first main result is Theorem 2.1.1 of Chapter 2. In this theorem we exhibit a

condition for a general CPTP map to produce only classical correlations. This means that

any channel satisfying the condition is not able to entangle the system and the reservoir.

A second result is Theorem 2.2.1, in which we find a condition on a subclass of CPTP

maps, which is necessary and sufficient to produce entanglement.

• In Chapter 3 we consider a more concrete family of quantum channels acting on a

complex of a d-dimensional system interacting with a quantum field. Such models are used

to describe matter-radiation effects in quantum theory. Our main results here are as fol-

lows. In Theorem 3.1.1 we find the reduced state of S after the application of the quantum

channel. We analyze the case of the open qubit (d = 2) in detail, discussing its entan-

glement with the reservoir by studying the qubit purity (Lemma (3.1.1)). We conclude in

particular that large energy scales of the reservoir diminish the qubit-field entanglement

and so does a strong coupling to the ultra-violet (fast) modes of the reservoir. On the other

hand, the infra-red (or, slow) modes of the reservoir enhance the production of the entan-

glement. Our analytical results are illustrated with numerics.
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We further study the situation where the system is composed of N subsystems, in particu-

lar, an N qubit register. We find the reduced system state after application of the quantum

channel and the further reduction to only two qubits. This allows us to study the intra-qubit

entanglement generated by the quantum channel.



Chapter 1

Quantum Mechanics: Fundamentals

This chapter provides an overview of fundamental concepts in quantum mechanics, partic-

ularly focusing on the framework of closed and open systems, entanglement, and quantum

field theory. The content in this chapter follows standard presentations found [2], [4], [3],

[1], [6]. Specifically, Section 1.1 and 1.2 discusses the fundamentals of quantum mechan-

ics and entanglement, drawing from [4], [2] and [1]. Section 1.3 and 1.4, which covers

open quantum systems, follows the treatments in [3], [5], [6]. The derivation of the Born-

Markov equation in Section 1.5 is guided by [5], [4], while Section 1.6 introduces elements

of quantum field theory as discussed by [7]. These references provide a deeper exploration

of the topics discussed and are essential for further understanding.

1.1 Quantum Mechanics of Closed Systems

In quantum mechanics, a closed system is defined as a physical system entirely isolated

from external influences. This isolation ensures that the system’s state and its temporal

evolution are governed solely by its internal dynamics, aligning with the predictive capa-

bilities of quantum mechanics. The mathematical framework of closed quantum systems

can be elucidated through the following key concepts.
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1.1.1 State

The state of a physical system in quantum mechanics encapsulates all the information

about the system and is represented by a ray in a Hilbert space. These states, as mathemat-

ical entities, are crucial for predicting physical outcomes based on quantum theory.

Definition 1.1.1. A Hilbert space (denoted by H) is a vector space over the field of complex

numbers C with the following properties:

a. Vectors in H, denoted as |ψ〉, are combined with an inner product 〈·|·〉 : H×H → C,

which has the following characteristics:

i. Positivity: 〈ψ|ψ〉 ≥ 0 for all |ψ〉, with equality if and only if |ψ〉 is the zero

vector.

ii. Linearity in the second argument: 〈φ| (a |ψ1〉+ b |ψ2〉) = a 〈φ|ψ1〉+ b 〈φ|ψ2〉.
iii. Conjugate symmetry: 〈φ|ψ〉 = 〈ψ|φ〉.

b. Completeness: H is complete, meaning every Cauchy sequence in H has a limit

within H, with respect to the norm defined by ‖ψ‖ =
√

〈ψ|ψ〉.

This structure allows H to support comprehensive physical predictions. The com-

pleteness ensures stability under limits, critical for physical applications such as scattering

theory and quantum field theory.

Definition 1.1.2. Two vectors |ψ〉 , |φ〉 ∈ H are orthogonal if their inner product is zero,

〈ψ|φ〉 = 0.

Definition 1.1.3. A set {|ψi〉}i forms an basis for H if every vector |φ〉 ∈ H can be

uniquely expressed as a linear combination of these basis vectors:

|φ〉 =
∑

i

ci |ψi〉 ,

where ci are complex coefficients, and the series converges in the norm of H. The Hilbert

space is said to be equal to the span of basis set (span{|ψi〉}i). The dimension of H is

defined by the cardinality of its basis set, which can be finite or infinite.
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The inner product in Hilbert space not only supports algebraic operations but also

encodes physical properties such as probability amplitudes and expectation values.

A ray in H represents all vectors that differ only by an overall phase, forming an

equivalence class denoted by {eiα |ψ〉 : α ∈ R}. Conventionally, a vector |ψ〉 with unit

norm, 〈ψ|ψ〉 = 1, is chosen to represent the state, as the overall phase of a state has no

observable physical consequences.

The notation 〈ψ| denotes the dual vector corresponding to |ψ〉, crucial for defining

measurements and transitions between states as per the dual space of H.

Definition 1.1.4. The dual space of H, denoted H∗, consists of all bounded linear func-

tionals mapping H to C. Each functional f in H∗ satisfies:

i. Linearity: f(α |ψ1〉+ β |ψ2〉) = αf(|ψ1〉) + βf(|ψ2〉).

ii. Boundedness: For every |ψ〉 ∈ H, there exists a constantC ≥ 0 such that |f(|ψ〉)| ≤
C‖|ψ〉‖, with the smallest C being the norm of f , ‖f‖.

The profound connection between H and its dual is articulated through the Riesz Rep-

resentation Theorem, which asserts that every functional in H∗ corresponds uniquely to a

vector in H, forming a foundational link between abstract mathematical states and their

physical interpretations.

1.1.2 Observables

In quantum mechanics, observables are defined as self-adjoint operators on a Hilbert space,

associated with measurable physical properties like position, momentum, and spin. These

operators play a critical role in describing how measurements affect quantum systems.

Definition 1.1.5. An operator A on a Hilbert space H is a linear map, meaning that for

any vectors |ψ〉 , |φ〉 ∈ H and scalars a, b ∈ C, the operation of A is defined by:

A(a |ψ〉+ b |φ〉) = aA |ψ〉+ bA |φ〉 .
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This property ensures that A respects the linear structure of H.

Notations such as A |ψ〉, A(|ψ〉), and |Aψ〉 are commonly used interchangeably to

indicate the vector in H resulting from the application of operator A to |ψ〉.

Definition 1.1.6. The adjoint of an operator A, denoted A∗, is defined such that for all

vectors |ψ〉 , |φ〉 ∈ H, it satisfies the equation:

〈φ|Aψ〉 = 〈A∗φ|ψ〉 .

An operator is termed self-adjoint if A = A∗, a fundamental requirement for all observ-

ables in quantum mechanics.

Definition 1.1.7. A scalar λ ∈ C is an eigenvalue of A if there exists a non-zero vector

|ψ〉 ∈ H such that:

A |ψ〉 = λ |ψ〉 .

The vector |ψ〉 is called an eigenvector corresponding to λ. When multiple linearly in-

dependent eigenvectors correspond to the same eigenvalue λ, it is said to be degenerate.

The eigenspace E(λ) associated with λ consists of all vectors, including the zero vector,

satisfying A |φ〉 = λ |φ〉.

Definition 1.1.8. A projection operator Pλ associated with an eigenvalue λ exhibits the

following properties:

• P 2
λ = Pλ (idempotence),

• P ∗
λ = Pλ (self-adjointness).

This operator projects any vector in H onto the eigenspace associated with λ, crucial for

the measurement process.

Eigenvalues of an observable are real and represent potential outcomes of measurements,

directly correlating to observable physical quantities such as energy levels or momentum.
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Moreover, the corresponding eigenvectors define the state of the system post-measurement,

a phenomenon known as wavefunction collapse. This feature underpins the probabilistic

nature of quantum mechanics and bridges mathematical formalism with observable phe-

nomena.

The representation of an operator as a sum of products of eigenvalues and their corre-

sponding projection operators is known as the spectral decomposition of an operator. This

decomposition is particularly insightful in separable Hilbert spaces with a countable ba-

sis, where the spectral theorem provides a powerful tool for understanding the behavior of

quantum systems.

Theorem 1.1.1 (Spectral Decomposition). In a separable Hilbert space H with a count-

able basis, the spectral decomposition of a self-adjoint operator A is given by:

A =
∑

i

λiPi,

where λi are the eigenvalues and Pi are the projection operators onto the eigenspaces

corresponding to these eigenvalues. Each Pi is defined such that P 2
i = Pi and P ∗

i = Pi,

denoting its idempotence and self-adjointness.

This decomposition implies that the eigenvectors associated with A form a complete or-

thonormal set within H. ’Completeness’ refers to the property that any vector in H can be

uniquely represented as a linear combination of the eigenvectors of A. ’Orthonormality’

ensures that these eigenvectors are mutually orthogonal and each has a norm of one.

The set of all bounded observables acting on a Hilbert space H is denoted by B(H). A

bounded operator A on H is a linear operator for which there exists a constant C ≥ 0 such

that ‖Aψ‖ ≤ C‖ψ‖ for all ψ ∈ H. This ensures that A maps bounded sets to bounded

sets.
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1.1.3 Measurement

Measurement in quantum mechanics is a fundamental process through which information

about the state of a physical system is acquired. When an observable A is measured, the

system’s state collapses to an eigenstate of A, with the corresponding eigenvalue repre-

senting the measured value.

Consider an initial quantum state |ψ〉 just before the measurement. The probability

of obtaining a particular eigenvalue λn of A is given by the square of the norm of the

projection of |ψ〉 onto the eigenspace associated with λn:

Prob(λn) = ‖Pn |ψ〉‖2 = 〈ψ|Pn |ψ〉 , (1.1)

where Pn is the projection operator corresponding to λn. Following the measurement, the

quantum system’s state becomes:
Pn |ψ〉
‖Pn |ψ〉‖

. (1.2)

This state reflects the post-measurement condition where the system has collapsed to the

observed eigenstate. If the measurement of A is immediately repeated, the same result

will be obtained, confirming that the system remains in the same eigenstate.

The expectation value of the outcome when measuringA, assuming a separable Hilbert

space, can be computed as:

〈A〉 =
∑

n

λnProb(λn) =
∑

n

λn 〈ψ|Pn |ψ〉 = 〈ψ|
∑

n

λnPn |ψ〉 = 〈ψ|A |ψ〉 . (1.3)

1.1.4 Dynamics

The evolution of a quantum system is governed by the Schrödinger equation, analogous to

Newton’s laws of motion in classical mechanics. This fundamental equation is represented

as:
d

dt
|ψ(t)〉 = −i~H(t) |ψ(t)〉 , (1.4)
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where H(t) is the Hamiltonian of the system, a self-adjoint operator that dictates the en-

ergy and dynamics of the system at any given time.

Remark : In quantum mechanics, it is common practice to use units where the reduced

Planck constant (~) is set to 1. This simplification is often employed to streamline equa-

tions and calculations, making the mathematical expressions more concise. In these units,

the Schrödinger equation takes the form:

d

dt
|ψ(t)〉 = −iH(t) |ψ(t)〉 , (1.5)

This choice of units does not affect the physical interpretations of the results but simplifies

the formalism of quantum mechanics by removing ~ from the equations.

If the state of the system at an initial time t0 is given by |ψ(t0)〉, the state at any later

time t can be described using the unitary propagator U(t, t0):

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (1.6)

where U(t, t0) is unitary, satisfying U∗(t, t0)U(t, t0) = U(t, t0)U
∗(t, t0) = 1, and 1 is

the identity operator. The evolution equation for U(t, t0) can then be derived from the

Schrödinger equation:

d

dt
U(t, t0) = −iH(t)U(t, t0), U(t0, t0) = 1. (1.7)

We can formally write the evolution as a Dyson expansion using the time order operator

T ,

U(t, t0) = T e−i
∫ t

t0
H(s) ds

In the special case where the Hamiltonian does not depend on time, i.e., H(t) = H , the

propagator simplifies to:

U(t− t0) = e−iH(t−t0). (1.8)

Such a system, where H is constant, is termed an isolated system.

The deterministic yet probabilistic nature of quantum mechanics is encapsulated by the
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Schrödinger equation, which describes both the static properties through the Hamiltonian

and the dynamic transitions through the unitary evolution of the system.

1.1.5 Composite Systems

In quantum mechanics, when considering two independent quantum systems, A and B,

with respective state spaces HA and HB, the composite system AB is described in the ten-

sor product space HAB = HA ⊗HB. The state of the composite system can be expressed

as:

|ψAB〉 =
∑

ij

aij |ψi〉A ⊗ |ψj〉B , (1.9)

where |ψi〉A ∈ HA and |ψj〉B ∈ HB are basis vectors of the respective Hilbert spaces, and

aij are complex coefficients.

Observables in the composite system AB are represented by operators that act on HAB.

These operators are typically constructed from the observables of systems A and B using

tensor products, allowing for interactions between the systems that preserve their individ-

ual properties. The general form of such an operator is:

OAB =
∑

ij

Ai ⊗ Bj, (1.10)

where Ai are operators on HA and Bj are operators on HB. This formulation ensures that

measurements on one system do not affect the state of the other system unless the opera-

tors explicitly include interaction terms.

An operatorM that acts only on system A can also be represented in the composite system

as:

MAB =M ⊗ 1B, (1.11)

where 1B is the identity operator on HB. This representation allows M to operate on HA

while acting trivially on HB, illustrating the principle of locality in quantum mechanics.
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This framework adequately captures the essence of quantum physics for closed systems.

However, it raises questions, such as the Schrödinger equation’s linearity in relation to

nature’s non-linear phenomena and the intrinsic randomness of the measurement process,

known as the measurement problem in quantum theory. But, the main problem we are

going to consider is the description of subsytem of a composite system.

1.1.6 Density Matrix Formalism

The density matrix formalism provides a comprehensive mathematical framework for de-

scribing the statistical states of quantum systems, encompassing both pure and mixed

states. This formalism is essential for systems prepared under conditions that lead to

statistical mixtures rather than well-defined pure states.

Definition and Properties of the Density Matrix

A density matrix ρ describes the state of a quantum system within a Hilbert space H. It is

defined as a linear operator with the following properties:

Definition 1.1.9. A density matrix ρ associated with a Hilbert space H is a linear operator

on H that satisfies:

(i) Tr(ρ) = 1 (unit trace),

(ii) ρ∗ = ρ (self-adjointness),

(iii) ρ ≥ 0 (positive semi-definiteness).

These properties ensure that ρ adequately represents a physical state, with probabilities

derived as expectation values that are real and non-negative.
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The general form of a density matrix in an ensemble of states is:

ρ =
∑

i

pi|ψi〉〈ψi|, (1.12)

where pi are probabilities satisfying
∑

i pi = 1, and |ψi〉 are the states in which the system

can be found. The system is in a pure state if ρ can be expressed as |ψ〉〈ψ| for some state

|ψ〉, and in a mixed state if it is a convex combination of such outer products.

Pure State Condition:

ρ2 = ρ and Tr(ρ2) = 1. (1.13)

Mixed State Condition:

Tr(ρ2) < 1. (1.14)

Measurement in Density Matrix Formalism

Upon measurement of an observable A with eigenstates |λi〉, the density matrix ρ trans-

forms according to the projection postulate. The probability of obtaining a specific out-

come λi is given by:

pi = Tr(ρEi), (1.15)

whereEi is the projection operator that maps state vectors to the eigenspace corresponding

to λi. The state of the system after the measurement is:

ρ′ =
PiρPi

Tr(ρPi)
. (1.16)

Dynamics of the Density Matrix

The time evolution of the density matrix in quantum mechanics is governed by the Liouville-

von Neumann equation. For a time-dependent Hamiltonian H(t), the equation is derived

from the fundamental postulate that the evolution must be unitary, preserving the trace

and hermiticity of ρ. Assuming the unitary evolution operator U(t) that satisfies the



13

Schrödinger equation:

i
d

dt
U(t) = H(t)U(t), (1.17)

and its initial condition U(0) = I , the density matrix at time t is given by:

ρ(t) = U(t)ρ(0)U∗(t). (1.18)

Differentiating ρ(t) with respect to time, we get:

d

dt
ρ(t) =

d

dt
U(t)ρ(0)U∗(t) + U(t)ρ(0)

d

dt
U∗(t). (1.19)

Using the Schrödinger equation for U(t) and its adjoint, this simplifies to the Liouville-von

Neumann equation:
d

dt
ρ(t) = − i

~
[H(t), ρ(t)], (1.20)

where [H(t), ρ(t)] denotes the commutator of H(t) and ρ(t).

Composite Systems

If systems A and B are described by density matrices ρA and ρB respectively, the joint

state of the composite system (without correlations) is represented by:

ρAB = ρA ⊗ ρB. (1.21)

The general form, following (1.9) is given by

ρAB =
∑

ijkl

cijkl |ψi〉A 〈ψk| ⊗ |ψj〉B 〈ψl| . (1.22)

where cijkl are complex coefficients.
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1.2 Entanglement

Entanglement is a pivotal concept in quantum mechanics that illustrates profound non-

classical correlations existing between the components of a composite quantum system.

This key phenomenon fundamentally distinguishes quantum mechanics from classical

physics by demonstrating the inseparability of state descriptions across subsystems, re-

gardless of their spatial separation.

Definition 1.2.1. For Pure States: In a composite system AB, described within the tensor

product space HAB = HA ⊗ HB, a pure state |ψAB〉 is defined as entangled if it cannot

be represented as a tensor product of states from each subsystem. Mathematically, this

condition is expressed as:

|ψAB〉 6= |ψA〉 ⊗ |ψB〉 (1.23)

for any |ψA〉 ∈ HA and |ψB〉 ∈ HB. States that satisfy the product condition are termed

separable or factorizable.

For Mixed States: A mixed state, represented by a density matrix ρAB, is considered

entangled if it cannot be decomposed into a convex combination of product states from the

subsystems. This is formally stated as:

ρAB 6=
∑

i

pi(ρ
i
A ⊗ ρiB) (1.24)

where pi ≥ 0,
∑

i pi = 1, and ρiA, ρiB are density matrices on HA and HB respectively.
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1.2.1 Characterization of Entangled and Separable States

Schmidt Decomposition

The Schmidt Decomposition offers a robust framework for analyzing entanglement in pure

states. Any pure state |ψAB〉 in HAB can be decomposed as:

|ψAB〉 =
∑

i

λi
∣

∣φi
A

〉

⊗
∣

∣φi
B

〉

(1.25)

Here, λi are the non-negative real numbers known as Schmidt coefficients, and |φi
A〉, |φi

B〉
form complete orthonormal sets in HA and HB respectively. The number of non-zero

Schmidt coefficients is called Schmidt rank or Schmidt number. The state is identified

as entangled if Schmidt rank is not equal to one, indicating the presence of non-trivial

correlations between the subsystems.

Concurrence

Concurrence serves as a quantifiable measure of entanglement, particularly useful in two-

qubit systems. For a state of two qubits described by the density matrix ρ, the concurrence

C(ρ) is given by

C(ρ) = max
(

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

)

, (1.26)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0 are the eigenvalues of the matrix

ξ(ρ) = ρ(σy ⊗ σy) ρ (σy ⊗ σy), (1.27)

with

σy =

(

0 −i
i 0

)

and where ρ is the entry-wise complex conjugate of ρ, when written in the σz basis (Pauli

matrices).
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A concurrence value greater than zero signifies entanglement, with the maximum value

of 1 indicating maximal entanglement.

The Peres-Horodecki criterion, also known as the Positive Partial Transpose (PPT)

criterion, is particularly notable. According to this criterion, a state ρAB is entangled if

the partial transpose of ρAB has negative eigenvalues. This criterion is both necessary

and sufficient for systems of dimensions 2 × 2 and 2 × 3, but only necessary for higher

dimensions.

Entanglement witnesses are another tool used to distinguish entangled states. These

are Hermitian operators that exhibit non-negative expectation values for all separable states

and negative expectation values for certain entangled states. This tool provides a practical

method for experimentally detecting entanglement in quantum systems.

1.3 Pictures of Quantum Mechanics

In quantum mechanics, the choice of a mathematical framework, or “picture,” for describ-

ing the dynamics of a physical system is dictated by the problem’s specific requirements.

The three main pictures—Schrödinger, Heisenberg, and Interaction—offer different per-

spectives on the time evolution of states and observables.

Schrödinger Picture

In the Schrödinger picture, the state vectors |ψ(t)〉 evolve over time according to the

Schrödinger equation, while operators may also have explicit time dependence that is not

a result of the unitary evolution. This explicit time dependence in operators can arise from

external time-dependent parameters or conditions imposed on the system.

|ψ(t)〉 = U(t) |ψ(0)〉 (1.28)
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where U(t) is the time-evolution operator defined by the differential equation:

d

dt
U(t) = −iH(t)U(t), U(0) = 1 (1.29)

Here, 1 denotes the identity operator, and H(t) is the system’s Hamiltonian.

Heisenberg Picture

In the Heisenberg picture, state vectors are considered static, and all dynamical evolution

is attributed to the operators. This perspective is especially useful for handling systems

with time-dependent Hamiltonians.

|ψ(t)〉H = U∗(t) |ψ(t)〉S = |ψ(0)〉S (1.30)

where U(t) is the unitary evolution operator that solves the time-dependent Schrödinger

equation. The superscripts S,H denote Schrödinger and Heisenberg picture respectively.

The observables in Heisenberg and Schrödinger picture are related as :

AH(t) = U∗(t)AS(t)U(t) (1.31)

The evolution of operators in the Heisenberg picture is given by Heisenberg equation:

d

dt
AH(t) = i[H(t), AH(t)] + U∗(t)

(

∂

∂t
AS(t)

)

U(t) (1.32)

which is straightforward to derive from (1.31) and (1.29).

Interaction Picture

The Interaction picture is particularly valuable for systems where it is beneficial to separate

the Hamiltonian into a free part and an interaction part, which is common in quantum field

theory. This picture can be thought of as a hybrid of the Schrödinger and Heisenberg

pictures.
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In the Interaction picture, both the state vectors and operators are time-dependent. The

time-dependency of observables is due to unitary evolution rather than time-dependent

external parameters. The Hamiltonian is naturally separated into a free part, H0(t), and

an interaction part, Hint(t). This separation is crucial for tackling problems in quantum

field theory and allows for a hybrid approach combining elements of both Schrödinger and

Heisenberg pictures. The state vectors evolve with the free part of the Hamiltonian, H0(t):

|ψ(t)〉I = U∗
0 (t) |ψ(t)〉S (1.33)

where U0(t) is the evolution operator for the free Hamiltonian H0(t), |ψ(t)〉S is the state

vector in the Schrödinger picture. We find the evolution of |ψ(t)〉I as follows:

d

dt
|ψ(t)〉I = −iHI

int(t) |ψ(t)〉I (1.34)

where HI
int(t) = U∗

0 (t)H
S
int(t)U0(t) Thus, we define evolution of observables against the

backdrop of H0 :

AI(t) = U∗
0 (t)A

S(t)U0(t) (1.35)

The differential equation for density operators in interaction picture translates to :

d

dt
ρI(t) = −i[HS

int(t), ρ
I(t)] (1.36)

The evolution equation for operators in the Interaction picture combines the free evolution

and the interaction:

d

dt
AI(t) = i[H0(t), A

I(t)] + U∗
0 (t)

(

∂

∂t
AS(t)

)

U0(t) (1.37)

where AS(t) includes any explicit time dependence in the Schrödinger picture.

Note : Unless otherwise mentioned the state vectors and observables are represented in

Scrödinger picture.



19

1.4 Open Systems

In quantum mechanics, an open quantum system refers to a system that interacts with its

environment, leading to potential changes in its quantum state due to this interaction. This

contrasts with a closed system, where the system evolves in isolation.

Consider a quantum system S and its environment E. Let HS and HE represent the

Hilbert spaces associated with S and E, respectively. The basis for HS is denoted by

{|i〉S}i and for HE by {|k〉E}k. The composite system SE, comprising both S and E, is

described by the Hilbert space HSE = HS ⊗HE , with a basis given by {|i〉S ⊗ |k〉E}i,k.

The state of the composite system is described by a density operator ρSE , which in

general can be expressed as:

ρSE =
∑

ijkl

cijkl |i〉S 〈j| ⊗ |k〉E 〈l| , (1.38)

where cijkl are complex coefficients.

1.4.1 Partial Trace

To analyze the state of just one subsystem, say S, while ignoring the environment (system

E), we use the partial trace operation over the environment. The partial trace over E,

denoted TrE , is defined as follows:

ρS = TrE(ρSE) =
∑

k

(1S ⊗ 〈k|E)ρSE(1S ⊗ |k〉E), (1.39)

where 1S is the identity operator on HS . This operation effectively sums over all possible

states of the environment, yielding a reduced density matrix ρS that describes the state of

S independently of E.
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1.4.2 Kraus Operators

Given ρSE(t0) and a unitary map evolving it in time, U(t− t0), we have

ρSE(t) = U(t− t0)ρSE(t0)U
∗(t0). (1.40)

We can get the density matrix representing the state of S at time t by taking partial trace

over E.

ρS(t) = TrE (ρSE(t0) = TrE (U(t− t0)ρSE(t0)U
∗(t− t0)). (1.41)

For an open system where the environment E might be complex or not fully known,

describing the state evolution of the system S can be challenging. Kraus operators[3]

provide a method to encapsulate the effect of the environment in a set of operators {Kα}α
that act only on the state space of S, simplifying the description of its dynamics.

Consider initial state, at time t0 as a sum of two contributions:

ρSE(t0) = ρS(t0)⊗ ρE(t0) + ρcorr(t0) (1.42)

where TrS ρcorr(t0) = TrE ρcorr(t0) = 0. ρcorr contains all correlations between system

and environment. In general, ρE(t0) =
∑

i λi |ψi〉 〈ψi| where |ψi〉 ∈ HE . The state of S at

time t is given by

ρS(t) = TrE
{

U(t− t0)
[

ρS(t0)⊗ ρE(t0) + ρcorr(t0)
]

U∗(t− t0)
}

=
∑

i

λi TrE
{

U(t− t0)
[

ρA(t0)⊗ |ψi〉 〈ψi|
]

U∗(t− t0)
}

+ TrE
{[

U(t− t0)ρcorr(t0)U
∗(t− t0)

]}

=
∑

α

Kα(t, t0)ρS(t0)K
∗
α(t, t0) + δρ(t, t0) (1.43)

where α = (i, j) - an ordered pair, {|j〉}j form a basis set in HE , δρ(t, t0) = TrE
{[

U(t−
t0)ρcorr(t0)U

∗(t− t0) and Kα(t, t0) =
√
λi 〈j|U(t− t0) |ψi〉. The operators Kα are called
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Kraus operators. In case ρcorr(t0) = 0, We can simply write

ρS(t) =
∑

α

Kα(t, t0)ρS(t0)K
∗(t, t0) (1.44)

The equation (1.44) defining the evolution of the system in terms of Kraus operators is

called Kraus Operator Sum Representation (OSR). We can think of OSR as a map, Φ,

from initial state ρS(t0) at time t0 to final state ρS(t) at a later time t.

ρS(t) = Φ(ρ(t0)) =
∑

α

Kα(t, t0)ρS(t0)K
∗(t, t0) Φ : ρS(t0) 7→ ρS(t) (1.45)

The resulting system state ρS(t) should be a valid state. The map Φ satisfies the following

properties (ensuring that the resulting density matrix ρS(t) is a valid density matrix):

i. Trace preserving : From definition of Krauss operator, Kα ≡
√
λi 〈j|U(t− t0) |ψi〉,

we have
∑

αK
∗(t, t0)K(t, t0) = 1. This ensures that Tr ρS(t) = Tr Φ(ρS(t0)) =

Tr

[

∑

αKα(t, t0)ρS(t0)K
∗
α(t, t0)

]

= Tr ρS(t0).

ii. Linear : Using linearity of Trace operation, we deduce the linearity of Φ.

Φ(aρ1(t0) + bρ2(t0)) =
∑

α

Tr

(

Kα(t, t0)aρ1(t0)K
∗(t, t0)

)

+
∑

α

Tr

(

Kα(t, t0)bρ2(t0)K
∗(t, t0)

)

= a
∑

α

Tr

(

Kα(t, t0)ρ1(t0)K
∗(t, t0)

)

+ b
∑

α

Tr

(

Kα(t, t0)ρ2(t0)K
∗(t, t0)

)

= aΦ(ρ1) + bΦ(ρ2)

iii. Positivity : This property ensures that the map Φ transforms positive operators into

positive operators. To demonstrate that Φ(ρ(t0)) ≥ 0, it is sufficient to show that



22

〈ν|Φ(ρ(t0)) |ν〉 ≥ 0 for all |ν〉 ∈ HS , as this implies that all eigenvalues of Φ(ρ(t0))

are non-negative. Let |wα〉 = K†
α |ν〉. Let ρ(t0) = λi |i〉 〈i| be the spectral decom-

position of ρ(t0) at time t0, where {|i〉}i forms basis set for HS . Then:

〈ν| ρ(t0) |ν〉 =
∑

α

〈ν|Kαρ(t0)K
†
α |ν〉

=
∑

α

〈wα|
(

∑

i

λi |i〉 〈i|
)

|wα〉

=
∑

α,i

λi |〈wα| i〉|2 ≥ 0.

iv. Complete Positivity : The map should not only preserve positivity but also extend

this property when the system is part of a larger system. This is critical for main-

taining the physical validity of the state under entangling operations. This ensures

that for any extension of the system state ρS′(t0) = ρS(t0)⊗ σ (where σ is any state

in an auxiliary Hilbert space), the map defined as Φ⊗ 1 (where 1 is the identity on

the auxiliary space) also produces a valid quantum state.

1.4.3 General Formalism

In quantum mechanics, the Hamiltonian plays a crucial role as the generator of unitary evo-

lution within closed systems. Extending this concept to open quantum systems prompts

the question of whether a similar generator exists that can describe their evolution com-

prehensively. This inquiry leads us to the formulation of an evolution equation for an open

system S, which can be expressed in the form:

ρ̇S(t) = LρS(t0). (1.46)

Here, L represents the generator that drives the evolution of the system’s density matrix

ρS(t). Equation (1.46) is known as the master equation for the state ρS(t).
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To understand the action of L, consider the identity:

LρS(t) = TrR {U(t− t0)ρSR(t0)U
∗(t− t0)} , (1.47)

where TrR denotes the trace over the degrees of freedom of reservoir, and U(t − t0) is

the unitary evolution operator for the combined system-reservoir state ρSR(t0). At first

glance, this may appear merely as a reformulation; however, the true utility of the mas-

ter equation emerges when we impose certain assumptions about the system-environment

interactions and their dynamics. These assumptions enable us to determine the appropri-

ate time evolution of ρS(t) even when direct computation of the exact global dynamics

ρSR(t0) is infeasible.

In the subsequent section, we will derive the Born-Markov master equation [4] under

a specific set of assumptions. For systems that adhere to these assumptions, the resulting

master equation facilitates the computation of the time evolution of ρS(t) for any given

time t. It is a first-order differential equation that is local in time, expressed as:

d

dt
ρS(t) = LρS(t) = −i[H ′

S, ρS(t)] +DρS(t). (1.48)

This formulation emphasizes that the rate of change of ρS(t) at any time t depends solely

on the state of ρS(t) at that instant, without reference to its state at any other times t′ 6= t.

• The term
[

H ′
S, ρS(t)

]

represents the unitary component of the evolution, dictated

by the modified system Hamiltonian H ′
S . This Hamiltonian H ′

S differs from the

system’s free Hamiltonian, which would govern its evolution in the absence of en-

vironmental interactions.

• The non-unitary component DρS(t) encapsulates the effects of decoherence and dis-

sipation attributed to the environmental influence, significantly impacting the sys-

tem’s dynamics.



24

1.5 Born-Markov Equation

Consider a composite quantum system denoted as SR, where S represents the system of

interest and R the reservoir (surrounding environment). The state of the composite system

at time t is described by the density matrix ρSR(t). The dynamics of this composite system

are governed by the Hamiltonian

H = HS ⊗ 1R + 1S ⊗HR +Hint, (1.49)

where HS and HR are free Hamiltonian of system and environment and Hint is the Hamil-

tonian describing interaction between between S and R. The identity operators 1S , 1R

ensure that each Hamiltonian component acts in the correct space.

For notational convenience, the time dependence of the system and environment Hamil-

tonians in the Schrödinger picture is dropped. This does not affect the generality of the

derivation.

In the following section, we will use the interaction picture for the derivation. There-

fore, we will omit the superscripts S, I (used to denote the Scroödinger picture and the

Interaction picture) as it is understood that the density matrices and operators are in the

interaction picture.

Dynamics in Interaction Picture

The time evolution of the density operator ρSR is governed by the von Neumann equation.

In the interaction picture, this is expressed as:

d

dt
ρSR(t) = −i

[

Hint(t), ρSR(t)
]

(Differential form)

ρSR(t) = ρSR(0)− i

∫ t

0

dx
[

Hint(x), ρSR(x)
]

(Integral form)
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Substituting integral form in differential equation, we get

d

dt
ρSR(t) = −i

[

Hint(t), ρSR(0)− i

∫ t

0

dx
[

Hint(x), ρSR(x)
]]

(1.50)

To find the dynamics of subsystem S, we can trace out reservoir R.

d

dt
ρS(t) = −i

∫ t

0

dx TrR
{[

Hint(t), ρSR(0)− i
[

Hint(x), ρSR(x)
] ]}

(1.51)

Assumption - Trace of Commutator with Initial State Vanishes : Assuming

TrR[Hint(t), ρSR(0)] = 0

simplifies the dynamics significantly, eliminating the first term in the above equation. This

assumption posits that the initial state of the composite system is such that the trace of its

commutator with the interaction Hamiltonian Hint(t) vanishes.

As a result, the evolution of the reduced density matrix ρS(t) simplifies to:

d

dt
ρS(t) = −

∫ t

0

dx TrR
{[

Hint(t),
[

Hint(x), ρSR(x)
] ]}

(1.52)

Born Approximation : To obtain a closed equation of motion for ρS only, we assume

that the interaction is weak such that the influence on the environment is small. This is

also known as the Born approximation. Mathematically, this translates to

ρSR(t) ≈ ρS(t)⊗ ρR (1.53)

where ρR = ρR(0). In other words, the state of reservoir remains stationary. Using Born

approximation, (1.52) is

d

dt
ρS(t) = −

∫ t

0

dx TrR
{[

Hint(t),
[

Hint(x), ρS(x)⊗ ρR
] ]}

(1.54)
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Markov Approximation : To obtain a Markovian master equation, we first substitute

x by t − x in the integrand, which does not change the bounds of the integration. Then,

we can understand the parameter x as indicating how far we go backwards in time to

account for memory effects, which last for a characteristic timescale τR. Under the Markov

approximation, we assume that these effects are short-lived. Hence, we can neglect the

contribution of ρ(x) with x < t in (1.54). This leads to

ρS(x) ≈ ρS(t).

In addition, the integrand decays very quickly for x >> τR. Then, we may replace the

upper bound of the integration by infinity, and obtain a Markovian master equation,

d

dt
ρS(t) = −

∫ ∞

0

dx TrR
{[

Hint(t),
[

Hint(t− x), ρS(t)⊗ ρR
] ]}

(1.55)

The two approximation we have made so far are often grouped together as the Born-

Markov approximation. However, the equation cannot be cast into a Lindblad form.

Going to Frequency Domain

Consider Hint(t) in its general form,

Hint(t) = g
∑

α

Aα(t)⊗ Bα(t), (1.56)

where g has units of energy, Aα, Bα are Hermitian operators that act only on system and

reservoir respectively.

Aα(t) = eiHStAα(0)e
−iHSt, (1.57)

Bα(t) = eiHRtBα(0)e
−iHRt (1.58)
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(1.55) takes the form

d

dt
ρS(t) = −g2

∫ ∞

0

dx
∑

α,β

TrR
{[

Aα(t)⊗ Bα(t),

[

Aβ(t− x)⊗ Bβ(t− x), ρS(t)⊗ ρR
]]}

, (1.59)

Expanding the double commutator, we get

TrR
{[

Aα(t)⊗ Bα(t),
[

Aβ(t− x)⊗ Bβ(t− x), ρS(t)⊗ ρR
]]}

= Aα(t)Aβ(t− x)ρS(t)Tr
[

Bα(t)Bβ(t− x)ρR
]

− Aβ(t− x)ρS(t)Aα(t)Tr
[

Bβ(t− x)ρRBα(t)
]

− Aα(t)ρS(t)Aβ(t− x)Tr
[

ρRBβ(t− x)Bα(t)
]

+ ρS(t)Aβ(t− x)Aα(t)Tr
[

Bα(t)ρRBβ(t− x)
]

(1.60)

We define the reservoir two-point correlation function,

Cαβ(t, t− x) ≡ Tr
(

Bα(t)Bβ(t− x)ρR
)

= Tr
(

eiHRtBα(0)e
−iHRteiHR(t−x)Bβ(0)e

−iHR(t−x)ρR
)

= Tr
(

eiHRxBα(0)e
−iHRxBβ(0)ρR

)

= Cαβ(x, 0) ≡ Cαβ(x)

where we have used the assumption that the reservoir state is stationary i.e. [ρR, HR] = 0.

Note that C∗
αβ(x) = Cαβ(−x). Further, the fourth and third term in (1.60) are Hermitian

conjugate of first and second term respectively,

d

dt
ρS(t) = −g2

∑

αβ

∫ ∞

0

dx
{

Cαβ(x)
[

Aα(t), Aβ(t− x)ρS(t)
]

+ h.c.
}

. (1.61)
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Let the spectral decomposition of system HamiltonianHS beHS =
∑

a λa |λa〉 〈λa| where

λa is eigenvalue corresponding to eigenvector |λa〉. We have

Aα(t) = eiHStAα(0)e
−iHSt =

∑

a,b

e−i(λb−λa)t |λa〉 〈λa|Aα(0) |λb〉 〈λb| =
∑

ω

Aα(ω)e
−iωt

where ω ≡ λb − λa is termed as Bohr frequency, and

Aα(ω) ≡
∑

λb−λb=ω

〈λa|Aα(0) |λb〉 |λa〉 〈λb| = A∗
α(−ω) (1.62)

Consider two terms in the commutator [Aα(t), Aβ(t− x)ρS(t)]:

Aα(t)Aβ(t− x)ρS(t) =
∑

ω,ω
′

eiωxei(ω
′

−ω)tA∗
α(ω

′

)Aβ(ω)ρS(t)

Aβ(t− x)ρS(t)Aα(t) =
∑

ω,ω
′

eiωxei(ω
′

−ω)tAβ(ω)ρS(t)A
∗
α(ω

′

)

Using above equations, (1.61) translates to

d

dt
ρS(t) = −g2

∑

αβ

∑

ω,ω′

∫ ∞

0

dx eiωxei(ω
′

−ω)t{Cαβ(x)
[

A∗
α(ω

′

), Aβ(ω)ρS(t)
]

}+ h.c.

(1.63)

The entire x dependence is in the factor eiωx and correlation function. We collect every-

thing that is x-dependent into one function

Γα,β(ω) =

∫ ∞

0

dx eiωx Cαβ(x) (1.64)

This allows us to write (1.63) as

d

dt
ρS(t) = −g2

∑

αβ

∑

ω,ω
′

{

Γα,β(ω)e
i(ω

′

−ω)t
[

A∗
α(ω

′

), Aβ(ω)ρS(t)
]

+ h.c.
}

(1.65)

Γ as defined has dimensions of time, and g2Γ has units of frequency.
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Secular Approximation : The secular approximation, also called rotating wave approx-

imation, is referred to as the omission of all terms with ω 6= ω
′

, as these terms oscillate

fast and average out.

Define

γαβ(ω) ≡
∫ ∞

−∞

dx eiωxCαβ(x) (1.66)

Cαβ(x) ≡ 1

2π

∫ ∞

−∞

dω
′

e−iω
′

xγαβ(ω
′

) (1.67)

Note that γ and correlation function C are full fourier transform and inverse fourier trans-

form of other respectively. Also, γ(ω) is Hermitian matrix. Then,

Γαβ(ω) =

∫ ∞

0

dx eiωxCαβ(x)

=

∫ ∞

0

dx eiωx
1

2π

∫ ∞

−∞

dω
′

e−iω
′

xγαβ(ω
′

)

=
1

2π

∫ ∞

−∞

dω
′

γαβ(ω
′

)

∫ ∞

0

dx ei(ω−ω
′

)x.

We can use the following established result regarding dirac δ function,

∫ ∞

0

dx eixy = πδ(y) + iP
(

1

y

)

, P
(

1

y

)

[f ] = lim
ε→0

∫ ε

−ε

dx
f(y)

y
,

where P (1/y) is the Cauchy principal value for smooth functions f with compact support

on the real line R. Substituting above in expression for Γ, we get

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω) (1.68)

Sαβ(ω) =
1

2π

∫ ∞

−∞

dω
′

γαβ(ω
′

)P
(

1

ω − ω′

)

= S∗
βα(ω) (1.69)

Finally, using the secular approximation i.e. ω = ω
′

and (1.68), Born-Markov equation
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takes the form

d

dt
ρS(t) = −g2

∑

αβ

∑

ω

{(

1

2
γαβ(ω) + iSαβ(ω)

)

[

A∗
α(ω), Aβ(ω)ρS(t)

]

+ h.c.

}

Relabelling α, β indices for Hermitian conjugate term, and simplifying the commutator,

we get

d

dt
ρS(t) = −i[HLS(t), ρS(t)]

+ g2
∑

α,β,ω

γαβ(ω)
(

Aβ(ω)ρS(t)A
∗
α(ω)

− 1

2

{

A∗
α(ω)Aβ(ω), ρS(t)

})

. (1.70)

where HLS(t) = g2
∑

ω

∑

αβ Sαβ(ω)A
∗
α(ω)Aβ(ω) is called the Lamb shift Hamiltonian.

It is straightforward to verify that HLS is Hermitian.

Transformation back to Schrödinger Equation

We, first, show that [HS, HLS] = 0. Using, (1.62), definition of Aα(ω)

[

HS, A
∗
α(ω)] = [HS, Aα(−ω)

]

=
∑

λb−λa=ω

[

HS, 〈λa|Aα(0) |λb〉 |λa〉 〈λb|
]

=
∑

λb−λa=ω

(λa − λb) 〈λa|Aα(0) |λb〉 |λa〉 〈λb|

= ωA∗
α(ω)

Similarly, [HS, Aα(ω)] = −ωAα(ω). Thus, we have [HS, A
†
α(ω)Aβ(ω)] = 0. Thus, it

becomes evident that [HS, HLS] = 0.

We will revert to using superscripts since we are returning to the Schrödinger picture.
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Recall that

ρIS(t) = eiHStρSS(t)e
−iHSt,

so
d

dt
ρIS(t) = i[HS, ρ

S
S(t)] + eiHSt

dρSS(t)

dt
e−iHSt,

hence
dρSS(t)

dt
= −i[HS, ρ

S
S(t)] + e−iHSt

dρIS(t)

dt
eiHSt. (1.71)

Using, (1.62), again

e−iHStAβ(ω)ρ
I
S(t)A

∗
α(ω)e

iHSt

=
∑

λi−λj=ω
λk−λl=ω

e−iHSt |λj〉 〈λj|Aβ(0) |λi〉 〈λi| eiHStρSS(t)e
−iHSt

× |λk〉 〈λk|A∗
α(0) |λl〉 〈λl| eiHSt

=
∑

λi−λj=ω
λk−λl=ω

ei(−λj+λi−λk+λl)t |λj〉 〈λj|Aβ(0) |λi〉

× 〈λi| ρSS(t) |λk〉 〈λk|A∗
α(0) |λl〉 〈λl|

=
∑

λi−λj=ω
λk−λl=ω

|λj〉 〈λj|Aβ(0) |λi〉 〈λi| ρSS(t) |λk〉 〈λk|A∗
α(0) |λl〉 〈λl|

= Aβ(ω)ρ
S
S(t)A

∗
α(ω),
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and

e−iHStA∗
α(ω)Aβ(ω)ρ

I
S(t)e

iHSt

=
∑

λi−λj=ω
λk−λl=ω

e−iHSt |λj〉 〈λj|A∗
α(0) |λi〉 〈λi| eiHSte−iHSt

× |λk〉 〈λk|Aβ(0) |λl〉 〈λl| eiHStρSS(t)e
−iHSteiHSt

=
∑

λi−λj=ω
λk−λl=ω

ei(−λj+λi−λk+λl)t |λj〉 〈λj|Aβ(0) |λi〉

× 〈λi|λk〉 〈λk|Aβ(0) |λl〉 〈λl| ρSS(t)
=

∑

λi−λj=ω
λk−λl=ω

|λj〉 〈λj|Aβ(0) |λi〉 〈λi|λk〉 〈λk|Aβ(0) |λl〉 〈λl| ρSS(t)

= A∗
α(ω)Aβ(ω)ρ

S
S(t),

This shows that

e−iHSt
(

Aβ(ω)ρ
I
S(t)A

∗
α(ω)−

1

2

{

A∗
α(ω)Aβ(ω), ρ

I
S(t)

})

eiHSt

=
(

Aβ(ω)ρ
S
S(t)A

∗
α(ω)−

1

2

{

A∗
α(ω)Aβ(ω), ρ

S
S(t)

})

(1.72)

Also, since we showed that HS and HLS commute,

e−iHSt

[

HLS, ρ
I
S(t)

]

eiHSt = e−iHStHLSe
iHSte−iHStρIS(t)e

iHSt

− e−iHStρIS(t)e
iHSte−iHStHLSe

iHSt

=

[

HLS, ρ
S
S(t)

]

(1.73)

Substituting (1.74) in (1.71) and using (1.73) and (1.72), we get the equation in Schrödinger
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picture.

d

dt
ρS(t) = −i[HS +HLS, ρS(t)]

+ g2
∑

α,β,ω

γαβ(ω)
(

Aβ(ω)ρS(t)A
∗
α(ω)

− 1

2

{

A∗
α(ω)Aβ(ω), ρS(t)

})

. (1.74)

In above equation, we have removed the superscript S.

1.6 Elements of quantum field theory

In this section we will define Fock space, creation and annihilation opertors and Weyl

operators.[7]

1.6.1 Bosons and Fermions

An ideal quantum gas consists of identical, non-interacting quantum particles. A single

particle is described by a complex Hilbert space H. For example, if H = L2(R3, d3x)

(The space L2(R3, d3x) is a specific type of Hilbert space consisting of square-integrable

functions over three-dimensional Euclidean space.), a normalized vector ψ ∈ H is the

particle’s wave function, with |ψ(x)|2 representing the probability density of finding the

particle at x ∈ R3.

The Hilbert space of n distinguishable particles is given by the n-fold tensor product:

H⊗n = H⊗H⊗ · · · ⊗ H.

To describe processes involving particle creation and annihilation, we build the direct sum

Hilbert space:

F(H) =
⊕

n≥0

H⊗n,



34

where H0 = C represents the vacuum sector. An element f ∈ F(H) is a sequence

f = {fn}n≥0, with fn ∈ H⊗n.

For indistinguishable particles, symmetry under particle exchange is essential. Bosons

are described by symmetric state vectors, while Fermions are described by anti-symmetric

state vectors:
1

n!

∑

σ∈Sn

fσ(1) ⊗ · · · ⊗ fσ(n),

for Bosons, and
1

n!

∑

σ∈Sn

ε(σ)fσ(1) ⊗ · · · ⊗ fσ(n),

for Fermions, where ε(σ) is the signature of permutation σ.

1.6.2 Creation and Annihilation Operators

For f ∈ H, the annihilation operator a(f) and creation operator a∗(f) are defined as:

a(f)f1 ⊗ · · · ⊗ fn =
√
n〈f |f1〉f2 ⊗ · · · ⊗ fn,

a∗(f)f1 ⊗ · · · ⊗ fn =
√
n+ 1f ⊗ f1 ⊗ · · · ⊗ fn. (1.75)

These operators satisfy the canonical commutation relations (CCR) for Bosons:

[a(f), a∗(g)] = 〈f |g〉1, [a(f), a(g)] = [a∗(f), a∗(g)] = 0. (1.76)

For Fermions, the canonical anti-commutation relations (CAR) are:

{a(f), a∗(g)} = 〈f |g〉1, {a(f), a(g)} = {a∗(f), a∗(g)} = 0. (1.77)

1.6.3 Weyl Operators

On a mathematical level, working with unbounded operators requires careful handling.

Unbounded operators can grow without limit, which makes them challenging to handle



35

in mathematical analysis. Bosonic creation and annihilation operators are examples of

unbounded operators because they can be applied repeatedly to create states with an in-

creasing number of particles.

For example, applying the Bosonic creation operator a∗(f) multiple times increases the

number of particles without any restriction. This process can go on indefinitely, leading to

an unbounded increase in the norm of the state.

In contrast, Fermionic creation and annihilation operators are bounded. This is due

to the Pauli exclusion principle, which states that no two fermions can occupy the same

quantum state. As a result, applying a Fermionic creation operator to an already occupied

state yields zero. This limitation ensures that the Fermionic operators do not grow indefi-

nitely, making them easier to handle mathematically. To address this, Weyl operators are

introduced. They provide a set of bounded operators that are, in a sense, equivalent to the

creation and annihilation operators.

For f ∈ H, the Weyl operator W (f) is defined as:

W (f) = eiφ(f),

where

φ(f) =
a(f) + a∗(f)√

2
. (1.78)

The operators φ(f) are known as field operators. They combine the creation and annihi-

lation operators into a single self-adjoint operator. Note that Weyl operator is bounded.

Since φ(f) is self-adjoint, the exponential of a self-adjoint operator, eiφ(f), is unitary.

Consequently, the Weyl operator is a unitary operator, and the boundedness of the Weyl

operator follows from the boundedness of unitary operators.

Following are a few basic properties of Weyl operator :

• Unitarity of W (f) :

W (f)∗ = W (−f) = (W (f))−1 (1.79)
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Given that φ(f) is self-adjoint, we have:

W (f)W (−f) = eiφ(f)e−iφ(f) = ei(φ(f)−φ(f)) = 1

and also,

W (f)∗ =
(

eiφ(f)
)∗

= e−iφ∗(f) = e−iφ(f) = W (−f)

• Canonical Commutation Relation (CCR) :

W (f)W (g) = e−
i
2

Im〈f |g〉W (f + g) (1.80)

Considering the commutator:

[φ(f), φ(g)] =
1

2
[a∗(f) + a(f), a∗(g) + a(g)]

=
1

2
([a∗(f), a(g)] + [a(f), a∗(g)])

=
1

2
(〈f |g〉 − 〈g|f〉)

= i Im 〈f |g〉

We can use above commutation relation and the Baker-Campbell-Hausdorff formula:

eAeB = eA+B+ 1

2
[A,B]

W (f)W (g) = eiφ(f)eiφ(g)

= eiφ(f)+iφ(g)+ 1

2
[iφ(f),iφ(g)]

= ei(φ(f)+φ(g))−
i
2

Im〈f |g〉

= W (f + g)e−
i
2

Im〈f |g〉
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• Time Evolution of φ(f) :

eitN(f)φ(f)e−itN(f) = Ψ(eitf ) (1.81)

where N(f) = a∗(f)a(f). (1.80) imply that:

a∗(f)N(f) = (N(f)− 1)a∗(f)

from which we obtain:

a∗(f)e−itN(f) = e−it(N(f)−1)a∗(f) = e−itN(f)e−ita∗(f)

and thus:

eitN(f)a∗(f)e−itN(f) = e−ita∗(f)

Taking the adjoint gives:

eitN(f)a(f)e−itN(f) = eita(f)

• Time Evolution of W (f) :

eitN(f)W (f)e−itN(f) = W (eitf) (1.82)

This follows directly from the Time Evolution of φ(f).



Chapter 2

Entanglement produced by quantum

channels

While the previous material was general, well known information about quantum theory,

we start now to present our own, new results.

In this chapter, we investigate the conditions under which quantum channels produce

either classical correlations or entanglement between a system and its reservoir. The pri-

mary motivation for this exploration lies in understanding the transition from a product

state to an entangled state when subjected to a quantum channel. Specifically, the chapter

aims to identify the necessary and sufficient conditions for completely positive, trace-

preserving (CPTP) maps to generate entanglement.

2.1 Quantum channels producing classical correlation

Consider a bipartite (‘system-reservoir’) quantum system described by the Hilbert space

H = HS ⊗HR. (2.1)
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A density matrix ρ on the bipartite Hilbert space H is called separable if it can be approx-

imated in trace norm by a convex combination of product states [13, 8].1 In other words,

ρ is separable if for n ∈ N, there are density matrices ρSn, ρRn on HS, HR, respectively, and

probabilities 0 ≤ pn ≤ 1,
∑

n≥1 pn = 1, such that

ρ =
∑

n≥1

pn ρ
S
n ⊗ ρRn , (2.2)

where the series converges in the trace norm of H. If ρ is not separable, then it is called

entangled. Equivalently, the term inseparable is used for entangled [9]. If the sum in (2.2)

consists of a single term, ρ = ρS ⊗ ρR, then the state is called factorized. Otherwise it is

called classically correlated.

Let Kα, α ∈ I be bounded (Kraus) operators on H satisfying

∑

α

K∗
αKα = 1 (2.3)

and define the completely positive, trace preserving (CPTP) map on B(H),

Λ[X] =
∑

α

KαXK
∗
α. (2.4)

An operator X on HS is called digonalizable if there is an orthonormal family of vectors

ψl and numbers El ∈ C such that

X =
N
∑

l=1

El|ψl〉〈ψl|. (2.5)

Note that we allow that Ek = El for some k 6= l (degenerate eigenvalues of X).

1The word ‘separable’ is used for states and, in a different context, for Hilbert spaces – a separable

Hilbert space is one which has a countable orthonormal basis. In the original paper [13], separable states are

called classically correlated states.
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Theorem 2.1.1 (Kraus operators producing classical correlation). Suppose there is a di-

agonalizable operator LS on HS and a density matrix ρS on HS satisfying

[LS, ρS] = 0 and [LS ⊗ 1, Kα] = 0 ∀α. (2.6)

Let ρR be any density matrix of the reservoir and Λ any CPTP map (2.4). Then we have

the following.

(1) The state Λ[ρS ⊗ ρR] is separable and, denoting by TrR the partial trace over HR,

we have

TrR
(

Λ[ρS ⊗ ρR]
)

= ρS. (2.7)

Furthermore,

(i) If ρS is a pure state, then Λ[ρS ⊗ ρR] is factorized.

(ii) If ρS is a mixed state, then Λ[ρS ⊗ ρR] is classically correlated.

(2) If Λ[ρS ⊗ ρR] is pure then ρS is pure.

A special case of Theorem 1 is when ρS = LS, leading directly to the

Corollary 2.1.1. Suppose that ρS ⊗ 1 and Kα commute for all α. Then for any density

matrix ρR on HR, the state Λ[ρS ⊗ ρR] is separable and (2.7) holds. Moreover, Λ[ρS ⊗ ρR]

is factorized if and only if ρS is pure.

Discussion. Generally, the density matrix Λ[ρS ⊗ ρR] can be entangled or classically

correlated, according to the choice of the Kraus operators Kα. Theorem 2.1.1 says that

even though there may be correlations in Λ[ρS ⊗ ρR], those correlations are classical and

moreover, those correlations do not influence at all the reduced state of S, as per (2.7).

Proof. We start by proving (1). Since LS is diagonalizable, by (2.5) we have LS =
∑

lElPl, where

Pl = |ψl〉〈ψl|.
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Since LS ⊗ 1 and Kα commute, we have

(Pl ⊗ 1)Kα = (Pl ⊗ 1)Kα(Pl ⊗ 1). (2.8)

Next we note that

(Pl ⊗ 1)Kα(Pl ⊗ 1) = Pl ⊗Ml,α, (2.9)

for some bounded operator Ml,α on HR. Indeed, using that

Kα =
∑

m

Am,α ⊗ Bm,α, (2.10)

for some operators Am,α and Bm,α on HS and HR, respectively, we have

(|ψl〉〈ψl| ⊗ 1)Kα(|ψl〉〈ψl| ⊗ 1) = |ψl〉〈ψl| ⊗
∑

m

〈ψl, Am,αψl〉Bm,α, (2.11)

so that

Ml,α =
∑

m

〈ψl, Am,αψl〉Bm,α. (2.12)

It follows from (2.8), (2.9) and
∑

l Pl = 1 that

Kα =
∑

l

(Pl ⊗ 1)Kα =
∑

l

Pl ⊗Ml,α. (2.13)

Due to the property
∑

αK
∗
αKα = 1 we obtain

1 =
∑

α,l,l′

(Pl ⊗M∗
l,α)(Pl′ ⊗Ml′,α) =

∑

l

Pl ⊗Ql, (2.14)

where

Ql =
∑

α

M∗
l,αMl,α ≥ 0. (2.15)

Applying (2.14) to the vector ψk ⊗ χR, for any fixed k and any vector χR in HR gives
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ψk ⊗ χR = ψk ⊗QkχR, which implies that QkχR = χR, so that

Ql =
∑

α

M∗
l,αMl,α = 1, ∀l. (2.16)

Using (2.13) and the fact that ρS commutes with Pl, we obtain

Kα(ρS ⊗ ρR)K
∗
α =

∑

l,l′

(Pl ⊗Ml,α)(ρS ⊗ ρR)(Pl′ ⊗M∗
l′,α)

=
∑

l

ρSPl ⊗Ml,αρRM
∗
l,α. (2.17)

Next, ρSPl = PlρSPl = plPl, where pl = 〈ψl, ρSψl〉 = TrρSPl. It follows from this and

(2.17) that

Λ[ρS ⊗ ρR] =
∑

l

plPl ⊗ ρR,l, (2.18)

where

ρR,l =
∑

α

Ml,αρRM
∗
l,α. (2.19)

It is clear that ρR,l ≥ 0 and furthermore, due to (2.16),

TrR ρR,l = TrR
(

ρR
∑

α

M∗
l,αMl,α

)

= TrR ρR = 1.

Thus ρR,l is a density matrix on HR. If ρS = |ψ〉〈ψ| is a pure state, then |ψ〉 is an eigenvec-

tor of LS (with eigenvalue 〈ψ, LSψ〉). In this case, we can choose one of the ψl to be equal

to ψ. Then (2.18) is of factorized form. Otherwise several pl are nonzero and Λ[ρS ⊗ ρR],

(2.18), is a classically correlated state. Finally we take the partial trace over HR,

TrRΛ[ρS ⊗ ρR] =
∑

l

plPl = ρS. (2.20)

This completes the proof of points (1) in Theorem 2.1.1.

Now we show (2). Suppose that Λ[ρS⊗ρR] is pure. Then the sum over l in (2.18) must

reduce to a single term, for otherwise the rank of the operator given by this sum would
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exceed 1. This means that all but one of the pl must vanish, so ρS is pure.

2.2 Channels originating from a single Kraus operator

We consider the setup (2.1), (2.4) where Λ is given by a single Kraus operator K with

K∗K = 1. Let {ψl} be an orthonormal basis of HS and set Pl = |ψl〉〈ψl|. We consider

Kraus operators of the form

K =
∑

l

Pl ⊗Ml, (2.21)

where Ml is an operator on HR. An example of such a K is

K = exp
[

− iτ
∑

l

Pl ⊗HR,l

]

,

where τ ∈ R and the HR,l are self-adjoint operators (Hamiltonians) on HR. In this exam-

ple, Ml = e−iτHR,l . Any SR Hamiltonian HSR which commutes with all the Pl ⊗ 1 is of

the form HSR =
∑

l Pl ⊗HR,l for some HR,l.

Theorem 2.2.1 (Necessary and sufficient condition for Λ[ρS ⊗ ρR] to be separable).

Let ρS = |ΩS〉〈ΩS| and ρR = |ΩR〉〈ΩR| be pure states on HS and HR, respectively. Let

Λ[·] = K[·]K∗ with K satisfying (2.21) and assume that

|〈MlΩR,MrΩR〉| < 1 for all l, r such that l 6= r. (2.22)

Then we have

Λ[ρS ⊗ ρR] is separable ⇐⇒ ρS ⊗ 1 commutes with K.

Remarks: (1) As K∗K = 1 we have M∗
l Ml = 1 for every l, so that

‖MlΩR‖2 = 〈MlΩR,MlΩR〉 = 1
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for all l. It follows that |〈MlΩR,MrΩR〉| ≤ 1 (with equality if l = r). The assumption

(2.22) is equivalent to saying that the vectors MlΩR and MrΩR are not parallel. In other

words, (2.22) is equivalent to: ∀l 6= r 6 ∃α ∈ R such that ΩR = eiαM∗
l MrΩR, or simply,

ΩR is not an eigenvector of M∗
l Mr with an eigenvalue on the unit circle in C.

(2) In standard, explicit models where the reservoir is given by a quantum field in

thermal equilibrium, the condition (2.22) is satisfied. We show this in section 2.3.

Proof of Theorem 2.2.1. Since ρS ⊗ ρR is pure and Λ is obtained by a single Kraus

operator, the state Λ[ρS ⊗ ρR] is also pure. Therefore we have

Λ[ρS ⊗ ρR] is separable ⇐⇒ ρ′S := TrR
(

Λ[ρS ⊗ ρR]
)

is pure.

Writing 〈X〉R = 〈ΩR, XΩR〉 for reservoir operatorsX , we obtain ρ′S =
∑

l,r PlρSPr〈M∗
rMl〉R

and

TrS(ρ
′
S)

2 =
∑

l,r

∣

∣〈ψl, ρSψr〉
∣

∣

2 ∣
∣〈M∗

l Mr〉R
∣

∣

2
. (2.23)

Similarly, as ρS =
∑

l,r PlρSPr we have

TrS(ρS)
2 =

∑

l,r

∣

∣〈ψl, ρSψr〉
∣

∣

2
= 1. (2.24)

The last equality is due to the fact that ρS is pure. Combining (2.23) and (2.24) yields

1− TrS(ρ
′
S)

2 =
∑

l,r

∣

∣〈ψl, ρSψr〉
∣

∣

2 (
1−

∣

∣〈M∗
l Mr〉R

∣

∣

2)

=
∑

l 6=r

∣

∣〈ψl, ρSψr〉
∣

∣

2 (
1−

∣

∣〈M∗
l Mr〉R

∣

∣

2)
. (2.25)

To arrive at the last equality, we note that the ‘diagonal’ terms (l = r) in the double sum

vanish, as 〈M∗
l Ml〉R = 1 for all l. Next, we observe that

|〈M∗
l Mr〉R| = |〈MlΩR,MrΩR〉| ≤ ‖MlΩR‖ ‖MrΩR‖ = 1,
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because ‖MlΩR‖2 = 〈M∗
l Ml〉R = 1 for all l. We conclude that each summand in (2.25) is

non-negative. Therefore,

ρ′S is pure ⇔ 1− TrS(ρ
′
S)

2 = 0

⇔
{∣

∣〈ψl, ρSψr〉
∣

∣

2 (
1−

∣

∣〈M∗
l Mr〉R

∣

∣

2)
= 0 ∀l, r such that l 6= r

}

.

Due to the assumption in the theorem, |〈M∗
l Mr〉R| < 1 for l 6= r and so ρ′S is pure if

and only if 〈ψl, ρSψr〉 = 0 for all l, r with l 6= r. The latter condition is equivalent

with ρS being diagonal in the basis {ψl}, which is equivalent to ρS commuting with every

Pl, which is also equivalent to ρS ⊗ 1 commuting with K. This completes the proof of

Theorem 2.2.1.

2.3 Illustrative example: A qubit-reservoir complex

We consider the qubit-reservoir state obtained from a CPTP map (2.4) with a single Kraus

operator,

Λ[ρS ⊗ ρR] = K
(

ρS ⊗ ρR
)

K∗, K = e−iτσz⊗φ(f), (2.26)

where σz is the Pauli-z matrix and φ(f) was defined in (1.78).

The physical meaning is that K evolves the system plus reservoir state ρS ⊗ ρR for a

duration τ according to the interacting Hamiltonian H = σz ⊗ φ(f). For g ∈ HR, we

introduce the Weyl operator

W (g) = eiφ(g), (2.27)

which is a unitary operator acting on F(HR).

Lemma 2.3.1. Let P± be the eigenprojections of σz, P±σz = ±P±. The state (2.26) is
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given by

Λ[ρS ⊗ ρR] = P+ρSP+ ⊗W (τf)∗ρRW (τf)

+ P+ρSP− ⊗W (τf)∗ρRW (τf)∗

+ P−ρSP+ ⊗W (τf)ρRW (τf)

+ P−ρSP− ⊗W (τf)ρRW (τf)∗. (2.28)

The following discussion is an illustration of the result of Corollary 2.1.1.

Discussion.

(1) Suppose that ρS ⊗ 1R commutes with K, which is equivalent with ρS commuting

with P±. Then ρSP+ = pρS for some 0 ≤ p ≤ 1 and ρSP− = (1 − p)P− (where p,

1− p are the populations of ρS) and (2.28) reduces to

Λ[ρS ⊗ ρR] = pP+ ⊗W (τf)∗ρRW (τf)

+ (1− p)P− ⊗W (τf)ρRW (τf)∗. (2.29)

This shows that Λ[ρS ⊗ ρR] is separable. Since ρS is pure if and only if p = 0 or

p = 1, (2.29) shows that

ρS is pure ⇔ Λ[ρS ⊗ ρR] is factorized.

Furthermore, by taking the partial trace over the reservoir in (2.29) and using the

cyclicity of the trace, the unitarity of the Weyl operators and that ρR has trace one,

we readily obtain TrR
(

Λ[ρS ⊗ ρR]
)

= P+ρS + P−ρS = ρS, as predicted by (2.7).

(2) Suppose that ρS does not commute with K. Then P+ρSP− 6= 0. This shows that

generally, if ρS ⊗ 1R and K do not commute, then Λ can create entanglement when

applied to ρS ⊗ ρR. In fact, the previous discussion shows the following result.

Proof of Lemma 2.3.1. By using the spectral decomposition σz = (+1)P+ + (−1)P−, we
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obtain

K = e−iτP+⊗φ(f)+iτP−⊗φ(f) = e−iτP+⊗φ(f) eiτP−⊗φ(f), (2.30)

where the last equality holds since the two operators in the exponent commute. Next we

note that

e−iτP+⊗φ(f) = 1+
∑

n≥1

(−i)n
n!

P+ ⊗
(

φ(τf)
)n

=
(

1− P+)⊗ 1+ P+ ⊗W (−τf). (2.31)

We use (2.31) and the analogous expression for eiτP−⊗φ(f) in (2.30), and that P+P− = 0,

to see that

K = P+ ⊗W (−τf) + P− ⊗W (τf). (2.32)

Using (2.32) and W (g)∗ = W (−g) for g ∈ h in (2.26), we get

Λ[ρS ⊗ ρR] =
(

P+ ⊗W (−τf) + P− ⊗W (τf)
)

×
(

ρS ⊗ ρR
)(

P+ ⊗W (τf)∗ + P− ⊗W (−τf)∗
)

. (2.33)

Multiplying out the terms in (2.33) gives (2.28).

Corollary 2.3.1. Suppose that ρS and ρR are pure. Then the state (2.26) is separable if

and only if ρS ⊗ 1R commutes with K.

Examples of a pure reservoir state are the vacuum (or, zero temperature) state ΩR, or

coherent states W (f)ΩR, or superpositions of states with finitely many excitations.

Proof. We have already shown in (2.29) that if ρS ⊗ 1 commutes with K, then (2.26) is

separable (in fact factorized). Let us now show the converse. Assume that Λ[ρS ⊗ ρR] is

separable. As this is a pure state we know that TrR
(

Λ[ρS ⊗ ρR]
)

is pure as well. From

(2.28) we obtain

TrR
(

Λ[ρS ⊗ ρR]
)

= P+ρSP+ + η P+ρSP− + η P−ρSP+ + P−ρSP−, (2.34)
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where

η = TrR
(

W (τf)∗ρRW (τf)∗
)

= TrR
(

ρRW (−2τf)
)

. (2.35)

Writing

ρS =

(

p z

z 1− p

)

in the P± basis, we get from (2.34)

TrR
(

Λ[ρS ⊗ ρR]
)

=

(

p ηz

ηz 1− p

)

. (2.36)

The latter matrix represents a pure state, so we have p(1 − p) = |η|2|z|2. But ρS is also

pure and thus p(1 − p) = |z|2. It follows that |z|2 = |η|2|z|2. If z = 0 then p ∈ {0, 1}
and ρS commutes with σz, so ρS ⊗ 1R commutes with K. If z 6= 0 then |η| = 1. As

ρR = |ΩR〉〈ΩR| is pure, with ΩR ∈ F(h) a normalized vector, we have from (2.35),

1 = |〈ΩR,W (−2τf)ΩR〉|. Now both ΩR and W (−2τf)ΩR are vectors of norm one, so

the latter constraint implies that W (−2τf)ΩR = eiαΩR for some α ∈ [0, 2π). This means

that ΩR is an eigenvector of the field operator φ(−2τf) (see (2.27)). However, unless

τ = 0, φ(−2τf) has purely absolutely continuous spectrum covering R (the field operator

corresponds to a position operator). Therefore, |η| = 1 implies that τ = 0, so K = 1 and

then again ρS ⊗ 1R commutes with K.

2.3.1 An inverse problem

Suppose a quantum channel determined by a single Kraus operator K is given, and so is a

reservoir density matrix ρR. Suppose further that a given ‘target’ system density matrix ρ

is given. We define the set

Sρ =
{

ρS : ρ = TrR
(

Λ[ρS ⊗ ρR]
)}

.
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Note that Sρ is a convex set: for all 0 ≤ pj ≤ 1,
∑

j pj = 1, j = 1, . . . , n

ρjS ∈ Sρ, j = 1, . . . , n ⇒
n
∑

j=1

pjρ
j
S ∈ Sρ.

Lemma 2.3.2. Consider the qubit in a bosonic environment with Λ as in (2.26). Given

any ρR with associated η, (2.35) and any system target density matrix ρ =

(

p z

z 1− p

)

,

the set Sρ = {ρS} consists of the single point

ρS =

(

p z/η

z/η 1− p

)

.

Proof. This is a simple consequence of the formula (2.36).



Chapter 3

‘Matter-radiation’ channels

In the following text, we extend the analysis to specific models of quantum channels,

particularly those describing matter-radiation interactions. In particular, we examine the

behavior of a d-level quantum system interacting with a quantum field, focusing on how

the energy scales of the reservoir and the strength of coupling affect the entanglement

between the system and its environment, with specific attention to qubit systems (system)

in Bosonic fields (environment).

3.1 A d-level system interacting with a field

Consider a d-level system coupled to the field, so that HS = C
d. We take a family of initial

SR states of the form

ρinSR = Λ[ρS ⊗ ρR] = K(ρS ⊗ ρR)K
∗, (3.1)

where

K = K(λ, µ) = e−i(λG⊗φ(f)+µHR), (3.2)

whereG is a hermitian operator on the system Hilbert space, f ∈ L2(R3, d3k) is a coupling

function and λ, µ are real parameters. K implements an interaction of the system with the
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field for a time which is shorter than the characteristic time of the system Hamiltonian, so

that the latter can be dropped and does not show in the exponential in (3.2). We now also

have the possibility to study the strong interaction regime, when λ is large.

In a first step, we find a useful expression for K and the reduced system density matrix

after the application of Λ. We write the hermitian operator G as

G =
∑

k

γkPk, Pk = |ψk〉〈ψk| (3.3)

where the γk are the eigenvalues (possibly repeated) and the Pk are rank-one orthogonal

projections (with ψk forming an orthonormal basis of HS) satisfying

∑

k

Pk = 1S. (3.4)

We also recall the definition of the field Weyl operator, (2.27).

Theorem 3.1.1. The state of the system obtained by tracing out the reservoir in (3.1) is

given by

ρinS ≡ TrRρ
in
SR

=
∑

k,`

exp
[

− i

2
λ2(γ2k − γ2` )

〈

f
∣

∣

sin(µω)− µω

µ2ω2
f
〉

]

ηk,` PkρSP`, (3.5)

where

ηk,` = TrR

[

ρRW
(

i(γk − γ`)λ
eiµω − 1

µω
f
)]

. (3.6)

For a reservoir in a thermal equilibrium state ρR,β at inverse temperature β <∞, the ηk,`

are

ηk,`(β) = exp
[

− λ2

4
(γk − γ`)

2
〈

f, coth(βω/2)
[sin(µω/2)

µω/2

]2
f
〉

]

. (3.7)

Formula (3.7) follows from the fact that the thermal characteristic function is given by

TrR(ρR,βW (f)) = exp
[

− 1
4
〈f, coth(βω/2)f〉

]

, (3.8)
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and 1− cos(x) = 2 sin2(x/2). In terms of the orthonormal basis {|ψk〉}k, (3.3), the purity

of ρinS is calculated from (3.5),

P(λ, µ) ≡ TrS
(

ρinS
)2

=
∑

k

∣

∣〈ψk, ρSψk〉
∣

∣

2
+
∑

k,`; k 6=`

|ηk,`|2
∣

∣〈ψk, ρSψ`〉
∣

∣

2
. (3.9)

Proof of Theorem 3.1.1. We fist show that the operator K, (3.2), can be written as

K = exp
[

− i

2
λ2G2

〈

f
∣

∣

sin(µω)− µω

µ2ω2
f
〉

]

∑

k

Pk⊗W
(

iγkλ
1− e−iµω

µω
f
)

e−iµHR . (3.10)

From the Trotter product formula, we have

K = lim
N→∞

(

e−
iλ
N
G⊗φ(f)e−

iµ
N

HR
)N
.

We examine N th power of the operator using (3.4),

(

e−
iλ
N
G⊗φ(f)e−

iµ
N

HR
)N

=
∑

k

Pk ⊗
(

W (− λ
N
γkf)e

− iµ
N

HR
)N

=
∑

k

Pk ⊗W (− λ
N
γkf)W (− λ

N
γke

−iµω/Nf) · · ·W (− λ
N
γke

−iµω(N−1)/Nf)e−iµHR

=
∑

k

Pk ⊗ e−
i
2
ΦNW

(

− λ
N
γk

N−1
∑

`=0

e−iµω`/Nf
)

e−iµHR . (3.11)

In the second equality, we have used that the free field dynamics satisfies

e−iαHRW (h)eiαHR = W (e−iαωh). (3.12)

The phase ΦN in (3.11) is accumulated according to the CCR

W (f)W (g) = e−
i
2
Im〈f |g〉W (f + g). (3.13)
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It is given by

ΦN =
γ2k
N2

Im
N−2
∑

`=0

〈

∑̀

r=0

e−iµωr/Nf
∣

∣e−iµω(`+1)/Nf
〉

. (3.14)

Taking N → ∞ in (3.11) gives (3.10).

The formula (3.5) follows from the definition (3.1) and a simple calculation.

3.1.1 The case d = 2: Qubit interacting with field

Consider the setup of Section 3.1 above with d = 2, so the system is a qubit (or spin 1/2)

and choose G = σx, that is,

K = K(λ, µ) = e−i(λσx⊗φ(f)+µHR). (3.15)

We have (see (3.3)) γ1 = 1, γ2 = −1. The reduced density matrix (3.5), written as a 2× 2

matrix in the eigenbasis {|+〉, |−〉} of σz, takes the form

ρinS =

(

x y

ȳ 1− x

)

, (3.16)

where

x = 1
2
− ( 1

2
− [ρS]++) Re η + (Im [ρS]+−) Im η (3.17)

y = Re [ρS]+− + i(1
2
− [ρS]++)Im η + i (Im [ρS]+−)Re η (3.18)

η = TrR

[

ρRW
(

2iλ
eiµω − 1

µω
f
)]

.

Here, [ρS]+− = 〈+|ρS|−〉 and so on are the matrix elements of ρS in the σz eigenbasis.

The purity of ρinS , (3.9), is given in terms of x, y by

P = x2 + (1− x)2 + 2|y|2. (3.19)

Substituting (3.17) and (3.18) in (3.19) gives the following result.
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Lemma 3.1.1. The purity of (3.16) is given by

P(λ, µ) = 1
2
+ 2
(

(1
2
− [ρS]++)

2 + (Im [ρS]+−)
2
)

|η|2 + 2
(

Re [ρS]+−

)2

= P0 |η|2 +
(

1
2
+ 2(Re[ρS]+−)

2
)

(1− |η|2), (3.20)

where P0 is the purity of the state ρS in (3.1) before the action of the channel Λ. (Equiva-

lently, P0 is the purity of ρinS for λ = 0.)

Lemma 3.1.1 shows that the purity is a strictly increasing function of |η| (use the first

expression on the right side), unless [ρS]++ = 1
2

and [ρS]+− ∈ R. In the latter case,

P = P0 =
1
2
+ 2([ρS]+−)

2 is independent of η.

We use the qubit purity to measure entanglement between S and R in the state ρinSR,

(3.1). For this purpose, let us take ρS in (3.1) to be a pure qubit state and let ρR be

the thermal equilibrium state, ρR = ωR,β . For low temperatures, that is β → ∞, the

state ρS ⊗ ρR is approximately a pure state and hence so is the initial state ρinSR, (3.1).

Consequently, the purity P of reduced system state is a good measure for the entanglement

in ρinSR. P = 1 means that there is no entanglement between S and R in the state ρinSR while

P = 1/2 corresponds to maximal entanglement.

In the thermal case η is given by (3.7), which becomes for small temperatures,

|η| → |η∞| = exp

[

−λ2
〈

f,
[sin(µω/2)

µω/2

]2
f
〉

]

, β → ∞. (3.21)

As ρS is pure we have P0 = 1 using (3.20) and (3.21) we obtain,

P(λ, µ) → 1
2

(

1 + |η∞|2
)

+ 2(Re[ρS]+−)
2
(

1− |η∞|2
)

, β → ∞. (3.22)

For λ = 0 the operator K, (3.2), acts trivially on the system density matrix in (3.1). We

then have |η∞| = 1 and (3.22) gives the correct value 1 for the purity of a pure state. For

strong coupling, that is λ large, we have |η∞| << 1 and the purity approaches the value

lim
λ→∞

P(λ, µ) = 1
2
+ 2(Re[ρS]+−)

2.
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It is minimal (= 1
2
) for Re[ρS]+− = 0, in which case the qubit is maximally entangled with

the field. In particular, if ρS is diagonal in the σz basis, say if ρS is an equilibrium state,

then at strong coupling, S and R are maximally entangled.

Next we consider λ = µ and call the common value τ (see (3.15)),

K = K(τ) = e−iτ(σx⊗φ(f)+HR).

We look at large values of τ . Consider a radially symmetric f of the form f(ω/ωc), where

ω = |k| ≥ 0, and where ωc > 0 is an ‘ultraviolet cutoff’ parameter, so that f(k) is small

for ω >> ωc. As
sin2(ωt/2)

ω2
≈ π

4
tδ(0)

for large t (where δ(0) is the Dirac delta function), we obtain for ωcτ >> 1

〈

f,
[sin(τω/2)

ω/2

]2
f
〉

∝
∫ ∞

0

|f(ω/ωc)|2 sin2(ωτ/2)dω

= ωc

∫ ∞

0

|f(ω)|2 sin2(ω ωcτ/2)dω

≈ π
4
ω2
cτ
(

ω2|f(ω)|2
)

|ω=0. (3.23)

For f(ω) ∼ ω−1/2 as ω << 1, (3.23) is proportional to ω2
cτ and thus |η∞| (3.21) decays

exponentially quickly in τ . If the infra-red behaviour of f is more regular,

f(ω) ∼ ωp as ω << 1 (3.24)

for −1
2
< p ≤ 1, then the decay is slower than exponential, and for p > 1 the limit as

ωcτ → ∞ of the term on the leftmost side of (3.23) tends to a nonzero value, see [12]. In

the case p ≤ 1 we thus have |η∞| → 0 as ωcτ → ∞, and we obtain

lim
ωcτ→∞

P(τ, τ) = 1
2
+ 2(Re[ρS]+−)

2 (for p ≤ 1).

We approach maximal entanglement (minimal purity) between the qubit and the reservoir

in the state ρinSR for ωcτ large.
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For our numerical simulation, we choose

f(k) = 1
N
ωpe−ω/ωc , ω = |k|, (3.25)

where p ≥ −1
2
, ωc > 0 and N is chosen so that ‖f‖L2(R3,d3k) = 1. We take

ρS = |−〉〈−|,

which is the equilibrium state at zero temperature (ground state) relative to the qubit

Hamiltonian σz. (Here, σz|−〉 = −|−〉.)

Observing Figure 1 provides us with the following insights:

• Strong interaction favours qubit-reservoir entanglement. As the interaction constant

λ increases, the purity P(λ, µ) decreases, so the qubit-reservoir entanglement increases.

This is expected: bigger qubit-reservoir interaction implies increased entanglement.

• Large reservoir energy decreases qubit-reservoir entanglement. As µ increases,

the purity increases as well, which means that the qubit-reservoir entanglement decreases.

The parameter µ can be viewed as a scaling of the energy of the reservoir particles. As

this energy increases the reservoir becomes less entangled with the qubit.

• Infra-red reservoir modes favour qubit-reservoir entanglement. If the infra-red

reservoir modes are strongly coupled to the qubit (p small) then the purity is small which

means that the qubit-reservoir entanglement is large (panels (a) and (c)). Conversely, if

the infra-red modes are suppressed in the interaction (p large) then purity increases and so

entanglement decreases (panels (b) and (d)).

• Ultra-violet reservoir modes lower qubit-reservoir entanglement. Comparing pan-

els (a) and (b) to (c) and (d) shows that as the ultra-violet cutoff ωc increases the purity

increases as well, so the qubit-reservoir entanglement diminishes.
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(a) ωc = 1, p = −0.5 (b) ωc = 1, p = 5

(c) ωc = 10, p = −0.5 (d) ωc = 10, p = 5

Figure 1: The purity P of single qubit interacting with the field according to (3.15) with

f in (3.25), where p determines the infra-red behaviour, ωc is the ultra-violet cutoff. The

expression for the qubit purity P(λ, µ) is given by (3.20).
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3.2 N d-level systems interacting with a field

The Hilbert space of N d-level systems is given by the tensor product

HS = C
d ⊗ · · · ⊗ C

d. (3.26)

Analogously to Section 3.1 we take a family of initial SR states of the form

ρinSR = Λ[ρS ⊗ ρR] = K(ρS ⊗ ρR)K
∗, (3.27)

where

K = K(λ, µ) = e−i(λG⊗φ(f)+µHR). (3.28)

Here, the operator G acting on HS is symmetric in the subsystems, given by

G =
N
∑

k=1

A(k), A(k) = 1⊗ · · · ⊗ A⊗ · · · ⊗ 1 (A on the kth factor) (3.29)

where A is a self-adjoint operator on C
d with spectral decomposition

A =
∑

k

γkPk,

and where the Pk are a family of disjoint orthogonal rank-one projections with associated

eigenvalues γk. We define

F =
〈

f
∣

∣

sin(µω)− µω

µ2ω2
f
〉

. (3.30)

Theorem 3.2.1. Let ρS = ρS1 ⊗ · · · ⊗ ρSN . The state of the system obtained by tracing out
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the reservoir in (3.27) is given by

ρinS = TrR(ρ
in
SR)

=
∑

k1,··· ,kN

∑

`1,··· ,`N

exp

[

− iλ2F

2

(

(

N
∑

i=1

γki
)2 −

(

N
∑

i=1

γ`i
)2
)

]

×η(~k, ~̀) (Pk1ρS1P`1)⊗ · · · ⊗ (PkNρSNP`N ), (3.31)

where

η(~k, ~̀) = TrR

[

ρRW
(

iλ
N
∑

i=1

(

γki − γ`i
)eiµω − 1

µω
f
)]

. (3.32)

Proof of Theorem 3.2.1. We start by calculating the operator K, (3.28) using the

Trotter formula,

K = lim
M→∞

(

e−
iλ
M

G⊗φ(f)e−
iµ
M

HR
)M
.

Denoting as usual the Weyl operators by W (h) = eiφ(h), we get

e−
iλ
M

G⊗φ(f)e−
iµ
M

HR =
∑

k1,...,kN

Pk1 ⊗ . . .⊗ PkN ⊗W
(

λ
M
f~k

)

e−
iµ
M

HR (3.33)

where

f~k = −
N
∑

j=1

γkjf.

Taking the M th power of (3.33) gives

(

e−
iλ
M

G⊗φ(f)e−
iµ
M

HR

)M

=
∑

k1,...,kN

Pk1 ⊗ . . .⊗ PkN ⊗W
(

λ
M
f~k
)

W
(

λ
M
e−iµω/Mf~k

)

· · ·

· · ·W
(

λ
M
e−iµω(M−1)/Mf~k

)

e−iµHR

=
∑

k1,...,kN

Pk1 ⊗ . . .⊗ PkN ⊗ e−
i
2
ΦMW

(

λ
M

M−1
∑

`=0

e−iµω`/Mf~k

)

e−iµHR , (3.34)
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where the phase is

ΦM =
λ2

M2

(

N
∑

i=1

γki
)2

Im
M−2
∑

`=0

〈

∑̀

r=0

e−iµωr/Mf
∣

∣e−iµω(`+1)/Mf
〉

.

The second equality in (3.34) is obtained as in (3.11) using (3.12) and the phase ΦM is

calculated taking into account (3.13). We now take M → ∞,

K =
∑

k1,...,kN

exp
[

− iλ2F

2

(

N
∑

i=1

γki
)2
]

Pk1 ⊗ · · · ⊗ PkN

⊗W
(

iλ
(

N
∑

i=1

γki
)1− e−iµω

µω
f
)

e−iµHR , (3.35)

where we recall that F is given in (3.30). The system-reservoir density matrix (3.27) for

ρS = ρS1 ⊗ · · · ⊗ ρSN is thus

ρinSR =
∑

k1,··· ,kN

∑

`1,··· ,`N

exp
[

− iλ2F

2

(

(

N
∑

i=1

γki
)2 −

(

N
∑

i=1

γ`i
)2
)]

× (Pk1ρS1P`1)⊗ · · · ⊗ (PkNρSNP`N )

⊗W
(

iλ
(

N
∑

i=1

γki
)1− e−iµω

µω
f
)

e−iµHR ρR e
iµHR W

(

− iλ
(

N
∑

i=1

γ`i
)1− e−iµω

µω
f
)

.

We obtain the reduced register density matrix by taking the partial trace over reservoir.

Now

TrR

[

W
(

iλ
(

N
∑

i=1

γki
)1− e−iµω

µω
f
)

e−iµHR ρR e
iµHR W

(

− iλ
(

N
∑

i=1

γ`i
)1− e−iµω

µω
f
)

]

= TrR

[

ρRe
iµHRW

(

iλ

N
∑

i=1

(γki − γ`i)
1− e−iµω

µω
f
)

e−iµHR

]

(3.36)

and (3.31) follows from (3.12). This completes the proof of Theorem 3.2.1.

Our next goal is to further reduce ρinS to the first two of the N subsystems. We take
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the partial trace of (3.31) over the Hilbert spaces HS3 , . . . ,HSN . As TrS(PkρSjP`) =

δk,`[ρSj ]k,k, we obtain

ρinS,2 := TrS3,...,SN
(

ρinS
)

(3.37)

=
∑

k1,k2,`1,`2

∑

k3,...,kN

exp
[

− iλ2F

2

(

(

2
∑

j=1

γkj + γ
)2 −

(

2
∑

j=1

γ`j + γ
)2
)]

× η

(

∏

j≥3

[ρSj ]kj ,kj

)

(Pk1ρS1P`1)⊗ (Pk2ρS2P`2).

where

γ =
N
∑

j=3

γkj

η = TrR

[

W
(

iλ
∑

j=1,2

(γkj − γ`j)
eiµω − 1

µω
f
)

]

.

If the system state ρS in (3.27) is taken to be symmetric in the N subsystems, say ρS =

ρ1 ⊗ · · · ⊗ ρ1 for a d-level density matrix ρ1, then ρinS is also symmetric, that is invariant

under permutations of the N subsystems. In this case ρinS,2, (3.37) is the the same if the

reduction is taken with respect any of the two subsystems. We will use ρinS,2 to study the

entanglement between two of the subsystems.

3.2.1 N -qubit register

The Hilbert space for N qubits is given by HS, (3.26) with d = 2. Let us consider the

interaction (A = σx in (3.29))

G =
N
∑

k=1

σ(k)
x , σ(k)

x = 1⊗ · · · ⊗ σx ⊗ · · · ⊗ 1 (σx on the kth factor). (3.38)

The operator G ⊗ φ(f) in (3.2) represents an interaction of the N qubits with a common

(‘collective’) environment [11]. The eigenvalues of σx are γ1 = 1 and γ2 = −1 with
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associated eigenprojections P1, P2. The two-qubit density matrix was derived in (3.37).

We now take each qubit initial state to be the ground state (relative to σz),

ρS1 = ρS2 = · · · = ρSN = |−〉〈−|, where |−〉 ≡
(

0

1

)

(3.39)

is the eigenvector of σz with eigenvalue −1. In this notation, we have

P1 =
1
2

∣

∣

∣

∣

∣

(

1

1

)〉〈(

1

1

)∣

∣

∣

∣

∣

, P2 =
1
2

∣

∣

∣

∣

∣

(

1

−1

)〉〈(

1

−1

)∣

∣

∣

∣

∣

.

Proposition 3.2.1. The two-qubit density matrix (3.37) has the following expression,

ρinS,2 = 1
4
1⊗ 1

−1
4
η1
[

cos
(

2Fλ2
)]N−2 (

e−2iFλ2

P1 + e2iFλ2

P2

)

⊗ σx
+ + h.c.

−1
4
η1
[

cos
(

2Fλ2
)]N−2

σx
+ ⊗

(

e−2iFλ2

P1 + e2iFλ2

P2

)

+ h.c.

+1
4

(

η2
[

cos
(

4Fλ2
)]N−2

σx
+ ⊗ σx

+ + σx
+ ⊗ (σx

+)
∗

)

+ h.c., (3.40)

where we recall that F is given in (3.30) and where

ηr = TrR

[

ρRW
(

2riλ
eiµω − 1

µω
f
)]

, r = 1, 2. (3.41)

Proof of Proposition 3.2.1. With the ρS` given in (3.39) we obtain

PjρS`Pj =
1
2
Pj, j = 1, 2 and P1ρS`P2 = −1

4

∣

∣

∣

∣

∣

(

1

1

)〉〈(

1

−1

)∣

∣

∣

∣

∣

= −1
2
σx
+,
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where σx
+ is the raising operator in the σx basis, acting as σx

+

(

1

1

)

= 0, σx
+

(

1

−1

)

=

(

1

1

)

.

We have [ρS]k,k =
1
2

and the sum over k3, . . . , kN in (3.37) becomes

∑

k3,...,kN

(

∏

j≥3

[ρSj ]kj ,kj
)

exp

[

−iλ2F
∑

j=1,2

(γkj − γ`j)
∑

j≥3

γkj

]

= (1
2
)N−2

∑

k3,...,kN

∏

r≥3

exp

[

−iγkrλ2F
∑

j=1,2

(γkj − γ`j)

]

= (1
2
)N−2

(

∑

k=1,2

exp

[

−iγkλ2F
∑

j=1,2

(γkj − γ`j)

]

)N−2

=
[

cos
(

λ2F
∑

j=1,2

(γkj − γ`j)
)

]N−2

. (3.42)

The first line in (3.40) is the term k1 = `1 and k2 = `2, the second line is k1 = `1 and

k2 6= `2, the third line is k1 6= `1 and k2 = `2, and the last line is k1 6= `1 and k2 6= `2. This

completes the proof of Propostion 3.2.1.

Next we analyze the entaglement between two qubits using the entanglement measure

of concurrence which was defined in (1.26). We concentrate on Gaussian centered states

ρR, which means that

TrR
(

ρRW (h)
)

= e−〈h,Ch〉,

where C is a non-negative linear operator. With the definition (3.41), this implies that

η2 = η41, η1 ≥ 0. (3.43)

Physically relevant specific examples where the relation (3.43) is satisfied are thermal

states, for which we have

η1 = exp

[

− 4λ2

µ2

∫

R3

sin2(µω/2)

ω2
|f(ω)|2 coth

(βω

2

)

d3k

]

. (3.44)

Note: It is always true that |ηr| ≤ 1 because the absolute value of the average of a Weyl
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operator in any state ρR cannot exceed 1. (To prove this, take for instance a purification

of ρR, then |TrR(ρRW (h))| = |〈ΩR, π(W (h))ΩR〉| ≤ 1 by Cauchy-Schwarz since ΩR is

normalized and ‖π(W (h))‖ = 1).

Proposition 3.2.2. Suppose that (3.43) is satisfied and set η ≡ η1. Let N ≥ 2. The

concurrence (see (1.26)) of ρinS,2, (3.40) is given by is given by :

C
(

ξ(ρinS,2)
)

= 1
4
max

(

0,

√

(

4η
(

cos 2Fλ2
)N−2(

sin 2Fλ2
)

)2

+
(

1− η4
(

cos 4Fλ2
)N−2

)2

−
(

1− η4
(

cos 4Fλ2
)N−2

)

)

. (3.45)

Note. We see from (3.45) that the concurrence of ξinS,2 vanishes as N → ∞ (unless

| cos(2Fλ2)| = 1). This observation aligns with the quantum DeFinetti theorem, suggest-

ing that since ξ(ρinS,2) constitutes the two-qubit marginal of an exchangeable (symmetric)

N -qubit state, it inevitably becomes separable as N → ∞.

Proof of Proposition 3.2.2. In Appendix A we calculate (3.40) as a matrix in the

ordered orthonormal basis

{|0〉, |1〉, |2〉, |3〉}

of two qubits, where |0〉 = |++〉 , |1〉 = |+−〉 , |2〉 = |−+〉 , |3〉 = |−−〉. Here, |±〉 are

the eigenvectors of σz, σz|±〉 = ±|±〉. The result is

ρinS,2 =













1
2
− a− c 0 0 −ib− a

0 a a 0

0 a a 0

ib− a 0 0 1
2
− a+ c













, (3.46)
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where

a = 1
8
− 1

8
η4
[

cos
(

4Fλ2
)]N−2

b = 1
2
η
[

cos
(

2Fλ2
)]N−2

sin
(

2Fλ2
)

c = 1
2
η
[

cos
(

2Fλ2
)]N−2

cos
(

2Fλ2
)

. (3.47)

We then calculate, in Appendix A, the quantity (1.27),

ξ(ρinS,2) =













(

1
2
− a
)2 − c2 + b2 + a2 0 0 2(1

2
− a− c)(−ib− a)

0 2a2 2a2 0

0 2a2 2a2 0

2(1
2
− a+ c)(ib− a) 0 0

(

1
2
− a
)2 − c2 + b2 + a2













.

The eigenvalues of ξ(ρinS,2) are given by

λ1 = 0

λ2 = 4a2

λ3 =
(

√

(

1
2
− a
)2 − c2 +

√
b2 + a2

)2

λ4 =
(

√

(

1
2
− a
)2 − c2 −

√
b2 + a2

)2
. (3.48)

The eigenvalues of ξ(ρ) always non-negative for any 2-qubit density matrix ρ [15]. It is

immediately clear that λ1, λ2 ≥ 0. To check that λ3, λ4 ≥ 0 we need to verify that

∆ := (1
2
− a)2 − c2 ≥ 0. (3.49)

It is surprisingly difficult to verify this analytically, except for specific parameter values.

We thus give a numerical verification of (3.49). To do this, we use the parameters

γ := cos
(

2Fλ2
)

∈ [−1, 1], η ∈ [0, 1]. (3.50)

All of a, b, c in (3.47) can be written in terms of γ, η. Figure 2 shows that condition (3.49)

is always satisfied.
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(a) N = 2 (b) N = 10

(c) N = 100 (d) N = 5000

Figure 2: The quantity ∆ defined in (3.49) as a function of γ and η, (3.50), for N =
2, 10, 100, 5000. The graphs show that condition (3.49) is satisfied: ∆ ≥ 0.
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In order to obtain the concurrence (1.26), we need to order the eigenvalues (3.48).

Clearly λ1 is the smallest and λ3 ≥ λ4. We check that λ3 ≥ λ2 numerically in Figure 3.

(Again, it turns out not to be simple to do this analytically, except for specific values of the

parameters.)

(a) N = 2 (b) N = 10

(c) N = 100 (d) N = 5000

Figure 3: The difference of the eiganvalues λ3 − λ2 as a function of η, γ, (3.50), for

different values of N . The graph shows that λ3 ≥ λ2.

Thus λ3 is the maximum eigenvalue. The concurrence is thus max(0,
√
λ3 −

√
λ2 −√

λ4), which is the formula (3.45). This concludes the proof of Proposition 3.2.2.

In Figure 4 we plot the two-qubit concurrence C(ξ(ρinS,2)) for varying numbers of to-

tal qubits in the system, N = 2, 10, 100 and 5000. It is clear that concurrence tends to
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(a) N = 2 (b) N = 10

(c) N = 100 (d) N = 5000

Figure 4: Concurrence C(ξ(ρinS,2)), (3.45) as a function of η, γ = cos(2Fλ2) for different

values of N .
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diminish as N increases (DeFinetti theorem). We observe that for fixed N and a constant

value of γ, entanglement increases with an increase in η. For even N , the concurrence is

symmetric in γ.
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Appendix A

Supplementary Calculations for

Proposition 3.2.2

The matrix form of the operators is calculated in the ordered orthonormal basis

{|0〉 , |1〉 , |2〉 , |3〉}

of two qubits where |0〉 = |++〉 , |1〉 = |+−〉 , |2〉 = |−+〉 , |3〉 = |−−〉. |+−〉 are the

eigenvectors of σz, σz |±〉 = ± |±〉 represent the states of each qubit. This specific order

is maintained throughout the calculations. The matrices P1, P2, σx
+, and

(

σx
+

)∗
(in the

basis |±〉 of single qubit) are defined as follows:

P1 =
1

2

(

1 1

1 1

)

, P2 =
1

2

(

1 −1

−1 1

)

(A.1)

σx
+ =

1

2

(

1 −1

1 −1

)

,
(

σx
+

)∗
=

1

2

(

1 1

−1 −1

)

(A.2)

The expression for ρin
S,2 is given by:
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ρin
S,2 =

1

4
1⊗ 1

− 1

4
η1
[

cos
(

2Fλ2
)]N−2

(

e−2iFλ2

P1 + e2iFλ2

P2

)

⊗ σx
+ + h.c.

− 1

4
η1
[

cos
(

2Fλ2
)]N−2

σx
+ ⊗

(

e−2iFλ2

P1 + e2iFλ2

P2

)

+ h.c.

+
1

4

(

η2
[

cos
(

4Fλ2
)]N−2

σx
+ ⊗ σx

+ + σx
+ ⊗ (σx

+)
∗
)

+ h.c. (A.3)

We calculate the intermediate terms as follows:

T1 =
1

4
1⊗ 1 =

1

4













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













(A.4)

e−2iFλ2

P1 + e2iFλ2

P2 =

(

cos(2Fλ2) −i sin(2Fλ2)
−i sin(2Fλ2) cos(2Fλ2)

)

T2 = −1

4
η1
[

cos
(

2Fλ2
)]N−2

(

e−2iFλ2

P1 + e2iFλ2

P2

)

⊗ σx
+

= −1

4
η1
[

cos
(

2Fλ2
)]N−2

(

cos(2Fλ2) −i sin(2Fλ2)
−i sin(2Fλ2) cos(2Fλ2)

)

⊗ 1

2

(

1 −1

1 −1

)

= −1

8
η1
[

cos
(

2Fλ2
)]N−2

×













cos(2Fλ2) − cos(2Fλ2) −i sin(2Fλ2) i sin(2Fλ2)

cos(2Fλ2) − cos(2Fλ2) −i sin(2Fλ2) i sin(2Fλ2)

−i sin(2Fλ2) i sin(2Fλ2) cos(2Fλ2) − cos(2Fλ2)

−i sin(2Fλ2) i sin(2Fλ2) cos(2Fλ2) − cos(2Fλ2)












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T3 = T ∗
2 = −1

8
η1
[

cos
(

2Fλ2
)]N−2

×













cos(2Fλ2) cos(2Fλ2) i sin(2Fλ2) i sin(2Fλ2)

− cos(2Fλ2) − cos(2Fλ2) −i sin(2Fλ2) −i sin(2Fλ2)
i sin(2Fλ2) i sin(2Fλ2) cos(2Fλ2) cos(2Fλ2)

−i sin(2Fλ2) −i sin(2Fλ2) − cos(2Fλ2) − cos(2Fλ2)













T4 = −1

4
η1
[

cos
(

2Fλ2
)]N−2

σx
+ ⊗

(

e−2iFλ2

P1 + e2iFλ2

P2

)

e−2iFλ2

P1 + e2iFλ2

P2 =

(

cos(2Fλ2) −i sin(2Fλ2)
−i sin(2Fλ2) cos(2Fλ2)

)

T4 = −1

4
η1
[

cos
(

2Fλ2
)]N−2 1

2

(

1 −1

1 −1

)

⊗
(

cos(2Fλ2) −i sin(2Fλ2)
−i sin(2Fλ2) cos(2Fλ2)

)

T4 = −1

8
η1
[

cos
(

2Fλ2
)]N−2

×













cos(2Fλ2) −i sin(2Fλ2) − cos(2Fλ2) i sin(2Fλ2)

−i sin(2Fλ2) cos(2Fλ2) i sin(2Fλ2) − cos(2Fλ2)

cos(2Fλ2) −i sin(2Fλ2) − cos(2Fλ2) i sin(2Fλ2)

−i sin(2Fλ2) cos(2Fλ2) i sin(2Fλ2) − cos(2Fλ2)













T5 = T ∗
4 = −1

8
η1
[

cos
(

2Fλ2
)]N−2

×













cos(2Fλ2) i sin(2Fλ2) cos(2Fλ2) i sin(2Fλ2)

i sin(2Fλ2) cos(2Fλ2) i sin(2Fλ2) cos(2Fλ2)

− cos(2Fλ2) −i sin(2Fλ2) − cos(2Fλ2) −i sin(2Fλ2)
−i sin(2Fλ2) − cos(2Fλ2) −i sin(2Fλ2) − cos(2Fλ2)












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T2 + T3 + T4 + T5 = −1

2
η1
[

cos
(

2Fλ2
)]N−2

(A.5)

×













cos(2Fλ2) 0 0 i sin(2Fλ2)

0 0 0 0

0 0 0 0

−i sin(2Fλ2) 0 0 − cos(2Fλ2)













T6 =
1

4
η2
[

cos
(

4Fλ2
)]N−2

σx
+ ⊗ σx

+

σx
+ ⊗ σx

+ =
1

2

(

1 −1

1 −1

)

⊗ 1

2

(

1 −1

1 −1

)

=
1

4













1 −1 −1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1













T6 =
1

16
η2
[

cos
(

4Fλ2
)]N−2













1 −1 −1 1

1 −1 −1 1

1 −1 −1 1

1 −1 −1 1













T7 = T ∗
6 =

1

16
η2
[

cos
(

4Fλ2
)]N−2













1 1 1 1

−1 −1 −1 −1

−1 −1 −1 −1

1 1 1 1












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T6 + T7 =
1

8
η2
[

cos
(

4Fλ2
)]N−2













1 0 0 1

0 −1 −1 0

0 −1 −1 0

1 0 0 1













(A.6)

T8 =
1

4
σx
+ ⊗ (σx

+)
∗

σx
+ ⊗ (σx

+)
∗ =

1

4













1 1 −1 −1

−1 −1 1 1

1 1 −1 −1

−1 −1 1 1













T8 =
1

16













1 1 −1 −1

−1 −1 1 1

1 1 −1 −1

−1 −1 1 1













T9 = T ∗
8 =

1

16













1 −1 1 −1

1 −1 1 −1

−1 1 −1 1

−1 1 −1 1













T8 + T9 =
1

8













1 0 0 −1

0 −1 1 0

0 1 −1 0

−1 0 0 1













(A.7)
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By substituting (A.4), (A.5), (A.6), and (A.7) into (A.3), we obtain:

ρin
S,2 =













1
2
− a− c 0 0 −ib− a

0 a a 0

0 a a 0

ib− a 0 0 1
2
− a+ c













(A.8)

where

a =
1

8
− 1

8
η2
[

cos
(

4Fλ2
)]N−2

b =
1

2
η1
[

cos
(

2Fλ2
)]N−2

sin
(

2Fλ2
)

(A.9)

c =
1

2
η1
[

cos
(

2Fλ2
)]N−2

cos
(

2Fλ2
)

Now, we proceed to calculate the concurrence. First, consider the following

(σy ⊗ σy) ρ
in
S,2 (σy ⊗ σy) ,

where ρin
S,2 in the element-wise conjugate of ρin

S,2. Note that

(σy ⊗ σy) =













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0













ρin
S,2 =













1
2
− a− c 0 0 ib− a

0 a a 0

0 a a 0

−ib− a 0 0 1
2
− a+ c












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Using above definitions,

(σy ⊗ σy) ρ
in
S,2 (σy ⊗ σy) =













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

























1
2
− a− c 0 0 ib− a

0 a a 0

0 a a 0

−ib− a 0 0 1
2
− a+ c













×













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0













=













ib+ a 0 0 −1
2
+ a− c

0 a a 0

0 a a 0

−1
2
+ a+ c 0 0 −ib+ a

























0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0













=













1
2
− a+ c 0 0 −ib− a

0 a a 0

0 a a 0

ib− a 0 0 1
2
− a− c













Consequently, the quantity ξ(ρin
S,2) is

ξ(ρin
S,2) = ρin

S,2 (σy ⊗ σy) ρ
in
S,2 (σy ⊗ σy)

=













1
2
− a− c 0 0 −ib− a

0 a a 0

0 a a 0

ib− a 0 0 1
2
− a+ c

























1
2
− a+ c 0 0 −ib− a

0 a a 0

0 a a 0

ib− a 0 0 1
2
− a− c













=













(

1
2
− a
)2 − c2 + b2 + a2 0 0 2(−ib− a)

(

1
2
− a− c

)

0 2a2 2a2 0

0 2a2 2a2 0

2(ib− a)
(

1
2
− a+ c

)

0 0
(

1
2
− a
)2 − c2 + b2 + a2












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We set for shortness

α =

(

1

2
− a

)2

− c2 + b2 + a2

β = 2(−ib− a)
(

1
2
− a− c

)

γ = 2(ib− a)
(

1
2
− a+ c

)

δ = 2a2

Then, ξ(ρin
S,2) takes the form

ξ(ρin
S,2) =













α 0 0 β

0 δ δ 0

0 δ δ 0

γ 0 0 α













The eigenvalues of ξ(ρin
S,2) are calculated to be

λ1 = 0

λ2 = 2δ = 4a2

λ3 = α +
√

βγ

=

(

1

2
− a

)2

− c2 + b2 + a2 + 2

√

√

√

√

(

(

1

2
− a

)2

− c2

)

(b2 + a2)

=

(
√

(

1
2
− a
)2 − c2 +

√
b2 + c2

)2

λ4 = α−
√

βγ

=

(

1

2
− a

)2

− c2 + b2 + a2 − 2

√

√

√

√

(

(

1

2
− a

)2

− c2

)

(b2 + a2)

=

(
√

(

1
2
− a
)2 − c2 −

√
b2 + c2

)2
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where a, b, c were defined in (A.9). We have numerically verified (2, 3) that for the con-

sidered value ranges the quantity
(

1
2
− a
)2 − c2 is indeed a positive. Thus, validating the

expressions for λ3 and λ4.
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