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Abstract

Exploration of the Arctic and Sub-Arctic regions is a daunting task due to the harsh

environmental conditions, including low temperatures, ice floes, wind, and waves.

Dynamic positioning (DP) is a crucial technology for ships operating in harsh weather

conditions. The goal of this research is to develop energy efficient DP controllers

that can withstand harsh environmental conditions. The scope of the thesis includes

modelling and simulation of environmental disturbances on DP vessel; performance

evaluation of a suite of DP controllers for moderate to harsh environmental con-

ditions; development and simulation of an energy efficient DP system; and finally

experimental implementation and evaluation of the proposed DP system.

Numerical modelling with real-time simulation capability helps design, test, and

validate dynamically positioned and autonomous ships/platforms in harsh environ-

ments. However, advanced simulation technology is needed to predict the expected

loads on these systems due to complex interactions with environmental disturbances.

The first work presents wave, wind, current, and ice models that comply with real-

time simulation requirements and capture the dynamic characteristics of relevant

physical processes. A 3D dispersive numerical model was deployed to predict the

wave parameters to compute the wave loads on a ship with known Response Ampli-

tude Operators (RAO). A uniform current load was incorporated in a superposition

manner by using a combined wave-current field dispersion relation capable of express-

ing the wave-number of an interactive wave-current field. The proposed models can

be used to design, develop, and evaluate dynamic positioning and autonomous ship

controllers’ performance and train conventional, DP, and autonomous ship operators.
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Next, the work evaluates the performance of several control schemes for DP ap-

plication in moderate and extreme sea conditions. The controllers include nonlinear

PID, sliding mode controller (SMC),multi-resolution PID controllers, model predic-

tive controller (MPC) and nonlinear model predictive controller. Matlab/Simulink

models of a full-scale ship and its scaled version are used to compare the efficacy of

the controllers. An Unscented Kalman Filter is utilized to filter out wave-frequency

motions. While all controllers were effective for moderate sea state, only nonlin-

ear model predictive controller (NMPC) and multi-resolution proportional-integral

derivative (MRPID) controllers could stabilize the ship under extreme sea states.The

NMPC demonstrates the best ability to handle extreme disturbances.

Besides maintaining the position, one of the other goals of DP controller is to

minimize the energy requirements and high frequency movements of the thrusters.

An energy-efficient controller, called Green-NMPC was developed for the dynamic

positioning of marine vessels. The Green-NMPC is motivated by the control goal

of minimizing thruster demand. It is based upon the theoretical framework of the

economic NMPC (ENMPC). Green-NMPC uses dynamic weights in the cost function

depending on the vessel position in contrast to the constant weights in conventional

NMPC. The proposed controller was tested for moderate to high sea wave conditions

and reduced up to 50% thruster demand in sway direction compared to NMPC while

maintaining the vessel positioning objectives. The Green-NMPC showed less thruster

demand which was further verified quantitatively from the variance and the spectral

strength of the thruster demand.

Finally, this research presents the experimental implementation of the proposed

Green NMPC to a scaled version of a supply vessel named Magne Viking. Experi-

ments were carried out at the National Research Council’s wave basin. This is one

of the very few experiments where the NMPCs were tested in a controlled environ-

ment with varying wave conditions, and the first experimental implementation of the

Green NMPC. The experimental results on the station keeping tests validated that

on average, the Green NMPC is the most energy efficient controller for the applica-

tion. The Green NMPC minimizes the thruster movement by implementing a relaxed
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control policy. The power spectrum of the thrusters further confirmed that Green

NMPC has less high-frequency movements compared to the rest of the controllers.

This implies that Green NMPC will cause less wear and tear on the thruster system.
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Chapter 1

Introduction

1.1 Background and Motivation

Dynamic positioning is a vital technology for modern marine vessels, particularly in

offshore industries such as oil and gas exploration, subsea construction, and vessel-

to-vessel transfers. These industries require vessels to remain in a fixed position for

prolonged periods despite external forces such as wind, waves, and currents. Dy-

namic positioning enables a vessel to maintain a stable position without the need

for anchors and mooring lines, which reduces the risk of damage to the seabed and

decreases maneuverability. The process of dynamic positioning involves using sophis-

ticated computer-controlled systems to monitor and analyze the vessel’s movement,

position, and external forces. The system then calculates and executes the appro-

priate thruster commands to maintain the vessel’s position and heading. This is

achieved through the use of sensors, including GPS, gyroscopes, and motion sensors,

which continuously provide real-time data to the control system. Dynamic position-

ing is essential for marine safety and efficiency, as it reduces the risk of collisions

and allows for safer and more efficient vessel-to-vessel transfers. The technology

also enables offshore operations in harsh weather conditions, where traditional an-

choring methods may not be feasible. Furthermore, dynamic positioning increases
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operational flexibility, as vessels can be repositioned quickly and efficiently, which

is particularly important in emergency situations. DP technology is essential for

offshore operations, such as drilling, subsea construction, and support vessels for oil

and gas platforms. DP systems must be able to operate in different sea states, which

pose various challenges to the performance and stability of the vessel. Moreover, DP

operations require significant amounts of energy, which can have a significant impact

on the environment and increase the operational costs of the vessel.

This research aims to address these challenges by evaluating the performance of

DP control systems for different sea states, modeling disturbances in harsh environ-

ments, and developing an energy-efficient DP controller for high sea conditions. How-

ever, one of the greatest threats to the Dynamic Positioning (DP) and Autonomous

control systems of vessels and offshore installations is the multi-directionality of drift-

ing sea ice with a wide variety of types and forms, ranging from isolated first-year

floes to compacted multi-year ridges, [1]. In the sub-arctic, marginal ice zone (MIZ,

the first ice-infested area encountered from the open ocean), wind, waves and some-

times current are present beside the broken ice field. This creates a very complex

environment for offshore operations, particularly for DP operations. The already

complicated icefield and vessel interaction get further complicated by waves as the

ice-field characteristics change in the presence of waves in a complex manner and

vice versa. The DP or autonomous control systems in the market today do not

consider the forces and movements that exist in such a highly demanding environ-

ment. Numerical modelling and validation of these interaction phenomena in all

possible environmental cases are essential and a key to understanding the problem

and designing both the floating and control systems. Modelling and simulation of

environmental disturbances for ocean surface vehicles have been used in ship sim-

ulators for naval training and ship hull designs [2]. Numerical simulations of the

Arctic Ocean dynamics can be useful for designing, developing, testing, and validat-

ing DP and Autonomous ships/offshore platforms in harsh environment simulations

[3]. Simulation technology needs to be developed to predict the expected loads on

these systems due to the complex interactions with the disturbances. Modelling
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complex environmental disturbances and their loads on the systems is an essential

and critical component of such simulations. This work discusses the challenges faced

by maritime operations in far offshore regions due to environmental factors such as

larger waves, stronger winds, and turbulent surface currents. These disturbances

can cause excessive wear and tear in thrusters and reduce energy efficiency. This

work also discusses different types of filters and controllers that have been used to

deal with these challenges, including nonlinear passive observers, Kalman filters, and

model predictive controllers, and proposes a new controller called Green-NMPC that

is based on an economic model predictive controller structure and uses a UKF-based

observer module to filter out high-frequency noise. The proposed controller aims

to minimize the operational cost of the DP operation, specifically the thruster de-

mand, and thus wear and tear of the thruster without compromising the position

constraints.

In summary the major challenges for DP systems are as follows:

1. Harsh Ocean Environments: DP systems operate in demanding ocean condi-

tions, including large waves and high wind gusts.

2. Energy Consumption: These operations consume substantial energy to coun-

teract environmental forces and maintain vessel position. Consequently, oper-

ational costs and emissions increase.

3. Energy Efficiency: There is a pressing need to enhance the energy efficiency of

DP systems. Doing so not only reduces costs but also minimizes greenhouse

gas emissions.

4. Thruster Strain: The constant strain on thrusters during DP operations results

in accelerated wear and tear. As a consequence, supply vessels require more

frequent maintenance and repairs, leading to additional costs.
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1.2 Research objectives

This research focuses on developing a new energy-efficient DP controller capable of

operating under harsh environmental conditions. The main tasks to attain the goal

are given below:

1. Develop models of wave, current, wind, and ice that comply with the real-life

simulation requirements and adequately capture the dynamic characteristics of

the most relevant physical processes. The external disturbance models are then

used in the development and evaluation of the most effective control scheme

for different extreme sea conditions.

2. Evaluate the performances of a set of control schemes commonly used for DP

system.Thus, linear and nonlinear model predictive control (MPC), the nonlin-

ear proportional integral and derivative (PID) control, the sliding mode control

(SMC) as well as the multi-resolution PID (MRPID) control schemes are evalu-

ated for moderate and extreme sea states. The outcome of this study provides

a clear picture of the current state of DP controller as well as the need for

future research.

3. Theoretically develop an energy-efficient controller. The goal of the proposed

controller is to reduce the energy demand of the vessel by minimizing unneces-

sary thruster demand. The controller is based upon the theoretical framework

of the economic NMPC (ENMPC). ENMPC allows one directly incorporate

the economic objectives in the NMPC optimization algorithm. The controller

is extensively tested in simulation environment.

4. Upon satisfactory performance in the simulation environment, implement the

NMPC and an energy efficient Green NMPC controller at National Research

Council’s wave basin. This is one of the very few experimental setup where

controllers can be tested in a controlled environment with varying wave condi-

tions.
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1.3 Thesis Structure

This research is presented in a manuscript-style which includes two published journal

articles, and two conference proceedings. This thesis consists of six chapters, Chapter

1 discusses the introduction and objective. Chapter 2 covers a brief literature review

on DP control systems. Chapter 3 focuses on improved models of environmental

disturbances including wave, wind, current, and ice. Chapter 4 covers performance

evaluation of DP; various conventional DP systems including PID, NPID and MPC

are cosidered for different sea states. It also proposes a new version of PID called

multi Resolution PID (MRPID) for DP. Chapter 5 covers development of an en-

ergy efficient DP controller, the proposed controller called Green NMPC is based

on the theory of Economic NMPC. The performance of the controller is compared

with benchmark NMPC and PID controllers. Chapter 6 describes the experimental

implementation and validation of the energy efficient DP controller. The controller

was implemented on scaled model of Magne Viking supply vessel. Controller perfor-

mances were compared with benchmark NMPC and PID controllers. Finally Chapter

7 presents the conclusions drawn from this research and outlines scopes for future

works.
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Chapter 2

Literature Review

2.1 Dynamic Positioning Fundamentals

A dynamic positioning (DP) system, according to the International Marine Contrac-

tors Association, is “a system which automatically controls a vessel’s position and

heading exclusively by means of active thrust” [19]. The purpose of DP systems

is station keeping, i.e. to maintain a vessel at a set position with a fixed heading.

The first DP system, which consisted of an analogue control system getting position

reference via a taut wire, was installed on the drilling ship Eureka in 1961. Station-

keeping activities had previously been carried out using jack-up barges and anchor

spreads. Compared to the pre-existing jack-up barge and anchoring approaches, sta-

tion keeping is now achievable at higher depths and with a considerably reduced setup

due to the introduction of DP-capable vessels. The vessel has good maneuverability

and may be positioned in places where anchoring is neither possible or desirable,

such as coral reefs, because it is not dependent on fixed mechanical equipment or

anchors. All these methods have benefits and drawbacks, but the addition of DP

systems considerably extended the range of feasible operations. The risks of system

failures, high fuel costs are some drawbacks of DP systems. It can be argued that as

the technology develops, some of the drawbacks of DP systems will be overcome.
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A triplet of actions must be carried out for DP systems to be used for accurate low-

speed trajectory following, assisted anchoring, weathervaning, and station keeping.

An accurate estimate of the vessel’s position and heading must be maintained, the

forces and moments required to counteract environmental disturbances and position

deviation must be calculated, and the vessel’s propulsion unit must apply these

forces. A typical DP system’s functionality is frequently broken down into a set of

different sub-systems, including:

• Operator system

• Position and heading reference systems

• Estimators, including signal processing

• Guidance, navigation, and control units

• Thrust allocators.

• Propulsion units including power generators.

Where it is stated that a system’s strength is determined by its weakest link,

the connections between these systems are depicted in Figure 2.1. Numerous com-

mercial providers of full DP systems exist, although Kongsberg Maritime [23] is the

biggest. These commercial systems include a variety of operational modes, includ-

ing station maintenance, manual operator control, combined manual and automatic

control, low-speed tracking, and target following. Commercial DP systems must ad-

here to several safety and dependability standards that are upheld by international

certifying organizations including Det Norske Veritas, Lloyd’s Register of Ships, and

the American Bureau of Shipping.

2.2 Station Keeping of Marine Vessels

The floating vessels are maintained in position by position mooring (PM) either ex-

clusively by thrusters known as dynamic positioning (DP) or exclusively by thruster

assisted position mooring (PM) systems. Positioning control is used to refer to either
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Figure 2.1: Figure depicting control part of DP system. Courtesy of [21].

PM or DP in this context [37]. The first DP systems for regulating yaw, surge, and

sway motion were introduced in the 1960s. There were around 65 DP-equipped ships

in 1980; by 1985, there were 150 such ships. About 200 ships with DP systems were

built each year around the world between 2002 and 2003. Currently, more than 1000

ships have DP systems tailored for various purposes [34]. Most marine applications

for DP systems include cable laying, pipe laying, anchor handling, platform supply,

exploration drilling, production drilling, shuttle tanker off-take, and floating produc-

tion. Other ship types, like cruise ships, naval ships, and fishing vessels, besides those

utilized in the offshore industry, are increasingly using DP systems. It’s interesting

to note that cruise ships operating in the Caribbean are prohibited from anchoring

to prevent potential damage to the coral reefs, necessitating the use of DP system.

For military weapons to be able to aim at the proper targets, navy ships need to be

in an exact position. As a result, the market for DP systems offers promising futures.

2.2.1 Low Speed Maneuvering and Transit

A marine vessel must maintain its assigned speed along a path while in low-speed

maneuvering control. Traditionally, the two goals have been accomplished separately
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in low-speed maneuvering [28]. While the operator assigns the speed, the ship’s

control system automatically sails it along the predetermined path. In 2005, [32]

and [30] proposed adaptive maneuvering control, which combines the two control

objectives into a single task. This work was an expansion of [31]’s proposal for

robust output maneuvering for the class of nonlinear systems. The ship must transit

on a fixed or altered heading due to the autopilot system. [25] proposed the PID

controller for the heading and the model for the vessel’s heading angle. The nonlinear

damping was added to the control plant model by [26]. The nonlinear state space

equation was created by [7] for station keeping and low-speed maneuvering [27].

2.2.2 Development of Estimation and Control Systems for

DP

The requirement for a position reference system and the requirement that the vessel

be able to apply individual forces and moments in the various degrees of freedom

(DOF) were two crucial factors in the lengthy development period. Fully actuated

vessels can apply separate forces and moments in all DOFs. Figure 2.2 depicts the

thruster arrangement of a fully actuated vessel that can apply independent forces

and moments in all DOFs. The initial DP systems used low-pass and notch-filtered

position measurements with linear decoupled PID controllers in cascade for each

DOF. Early DP systems utilized single input, single output PID controllers along

with traditional low-pass and/or notch filters. Introducing phase lag and subpar

wave filtering properties are disadvantages of low-pass and/or notch filter observer.

Also unavailable are non-measurable states like velocity. Additionally, the controller

has no model prediction or dead reckoning options in the event of measurement loss.

The surge, sway, and yaw motions are connected from a hydrodynamic perspective,

but the single-input, single-output PID controller views each motion as indepen-

dent, which negatively impacts the performance of maritime boats equipped with

such systems. [3]-[4] and [29] introduced more sophisticated techniques, including

the model-based observer employing Kalman filter theory to avoid the time delay in



11

estimating and the multi-variable output feedback PID controller for superior per-

formances. [10] demonstrated the connection between notch filter and Kalman filter

observers. The expanded Kalman filtering techniques and stochastic optimum con-

trol theory, which are discussed in ([6],[9],[11],[12],[13], and [14]), were made possible

by the Kalman filter and the multioutput PID controller. A summary of important

studies on DP that have used different control techniques is shown in Table 2.1.

Table 2.1: List of the DP controllers that have been documented in the literature.

Reference Type of Con-

troller(s)

Proposed work and conditions

[33] Identification

system

For the purpose of automatic control design,

1. The numerical values of the model’s pa-

rameters are determined through tow-

ing tests.

2. Adaptive maneuvering experiments for

a scaled-down ship in a marine control

laboratory.

[38] Multivariable

control law

The research proposed a DP control law

with roll and pitch dampening for small-

waterplane-area marine vessels.

[24] PID Case(1): single-output PID

Case(2):hybrid controller using multi-output

PID with position measurement.

Case(3):hybrid controller using multi-output

PID with position measurement and acceler-

ation measurements.
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Reference Type of Con-

troller(s)

Proposed work and conditions

[40] Fuzzy controller This paper’s nonlinear fuzzy controller was

developed as a gain scheduled PID approach

with ”soft” transitions between controller

regimes.

[18] SMC

1. This study suggests a control strat-

egy based on the uncertainty and dis-

turbance estimator (UDE) and sliding

mode control (SMC).

2. While the SMC allows the vessel to fol-

low its trajectory, the UDE determines

the overall disturbance in the DP ves-

sel.

[44] MPC A novel dynamic optimization method

adopting the model predictive control

(MPC) strategy is proposed.

[16],[45],[39] NMPC These works propose an MPC-based control

algorithm for the DP problem. This algo-

rithm consists of two stages:

1. The linear stage, which is activated

when it approaches the required posi-

tion.

2. The nonlinear stage, which employs a

nonlinear predictive model.
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Reference Type of Con-

troller(s)

Proposed work and conditions

[20],[1] NMPC, LMPC,

PID

In these studies, the following two features

relating NMPC scheme are presented:

1. Sideslip angle compensation.

2. Environmental disturbance counterac-

tion for the position and velocity track-

ing of underactuated surface vessels as

well as collision avoidance of static and

dynamic objects.

[5] NDO-NMPC,

DO-LMPC
1. The nonlinear disturbance observer

NDO is used to assess disturbances,

which were unknown in the past.

2. The disturbance estimations are then

added to the receding optimization

problem to create the NMPC.

[17] Lag-NMPC,

Lag-LMPC,

NMPC

The article presents a robust nonlinear model

predictive control strategy for ship dynamic

positioning using the Laguerre function.

[15] ENMPC Economic nonlinear model predictive con-

trol (NMPC) techniques where the stage cost

does not penalise the distance to a predefined

equilibrium.
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Reference Type of Con-

troller(s)

Proposed work and conditions

[2] Green-NMPC,

NMPC, and

PID

This paper aims to minimize thruster de-

mand while maintaining position constraints

by using Green-NMPC control. The simula-

tion conditions involved varying sea states.

The integral controller is used to counteract the mean environmental loads brought

on by wind, wave, and current, while feedback proportional and derivative control

actions are employed to adjust for dynamical environmental pressures. The PID

controller gain matrices’ tuning has a big impact on how well a vessel performs.

For instance, if the integrated controller is not properly tuned, the vessel may drift

away, a condition known as drift-off. [36] suggested a design for controller gain

matrices based on the LQG algorithm to address drift-off concerns. The nonlinear

back-stepping controller was proposed by[21]. The observer and controller are the

main implementaion blocks in the DP system studies listed above. Model predic-

tive controllers (MPC) are being considered for use in DP applications due to the

use of model-based filters. Since the controller is model-based, model-based filters

like the KF and EKF perfectly match it. Furthermore, MPC minimizes the offset

over a prediction horizon to determine the control action. As a result, the controller

has a long-term perspective and does not act overly controlling immediately. The

literature has reported on using nonlinear model predictive controllers (NMPC) and

linear MPC in high- and low-speed reference tracking and station-keeping [46]. [45]

used a linear MPC for DP application on a semi-submersible platform. A relaxed

dynamic positioning control technique utilizing NMPC was introduced by [22].[20]

estimated states and unknown disturbances using an NMPC method and two tightly

connected UKFs. Real-time performance evaluation of the controller was conducted

on a high-fidelity simulator. In summary, first- and second-order wave frequencies

were filtered out by the controllers described in the literature using a variety of

model-based filters. Utilization of the controller configuration to handle the wave

frequencies and noise has not received as much attention. Additionally, maintaining
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the position tightly has been the main goal of the control objectives. As a result,

these controllers frequently impose high and unpredictable control demands. This

may significantly shorten the thrusters’ usable lives. These control needs are some-

times artificially reduced by imposing a ramp rate, introducing move accumulation,

and applying a filter. Meanwhile, all these techniques are ad hoc; therefore, they

don’t provide the best control performance. While PID control is a widely used and

effective method for dynamic positioning in various applications, including supply

ships, it does have limitations, particularly when operating under harsh environmen-

tal conditions. Some of the key limitations include:

A. Inability to Handle Nonlinearities: PID controllers assume that the system

is linear. Hence, they could find it difficult to deal with nonlinearities in the

dynamics of the ship or external environmental factors like inconsistent currents

or extremely high waves.

B. Restricted flexibility: PID controllers may encounter difficulties in adjusting to

swiftly changing environmental conditions. Unexpected and extreme events,

like powerful wind gusts or choppy waves, might cause delayed reactions and

make it harder to maintain an exact posture.

C. Sensitivity tuning: PID control requires precise tuning of the derivative, inte-

gral, and proportional gains in order to achieve optimal performance. However,

the ideal tuning parameters could change depending on the surroundings, mak-

ing the controller sensitive to variations, and perhaps producing less-than-ideal

results.

D. Limited Predictive Capability: PID controllers are unable to predict effect of

potential environmental disturbances. The controller could find it difficult to

counteract environmental forces in extreme sea conditions, which could cause

it to stray away the intended position.

E. Need for Manual Tuning: Manual tuning might be time-consuming and may

not ensure robust operation in all environmental conditions, yet manual tuning



16

is frequently necessary to achieve optimal PID controller performance.

F. Traditional controllers are susceptible to the high frequency disturbances which

can cause excessive thruster movements leading to wear and tear and higher

energy consumption.

In order to enhance the functionality of dynamic positioning systems, reliable

control that can satisfy all the needs of DP operations in harsh environmental cir-

cumstances must be identified. Nonlinear model predictive control (NMPC) can be

considered in more extreme environments. NMPC is a sophisticated control strategy

that accounts for nonlinearities in system dynamics and can handle complex pro-

cesses. However, like any control method, NMPC also has limitations, especially

when applied to dynamic positioning operations in harsh environmental conditions.

A. Computational Complexity: NMPC involves solving optimization problems at

each time step, which can be computationally demanding. In harsh conditions

where rapid adjustments are required, the computational burden may become

a limitation, potentially leading to delays in control action.

B. Sensitivity to Model Accuracy: NMPC relies on an accurate dynamic model of

the ship. In harsh environmental conditions, where the dynamics may be chal-

lenging to model accurately, inaccuracies in the model can lead to suboptimal

control performance.

C. Tuning Requirements: NMPC often involves tuning several parameters, includ-

ing the prediction horizon and control weighting factors. Achieving optimal

tuning may take a lot of effort and time, and the performance of the controller

can be sensitive to these parameters.

D. Measurement Noise: NMPC relies on accurate measurements for feedback. In

real-world scenarios, sensor measurements may be subject to noise, and the

controller may need to incorporate additional strategies, such as filtering or

advanced sensor fusion techniques, to mitigate the impact of noisy measure-

ments.
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Despite these limitations, NMPC remains a powerful tool for dynamic position-

ing, especially in scenarios where accurate modelling and real-time optimization are

crucial. Ongoing research and algorithm advancements may address some of these

limitations and further enhance the applicability of NMPC in challenging, extreme

sea environments. To raise NMPC’s level of performance, from the economic NMPC,

the Green NMPC was conceptualized to decrease gas emissions, lower energy con-

sumption in thrusters, and lower maintenance costs by lessening the strain on the

thrusters, hence extending their lifespan.

2.2.3 State, Parameter and Disturbance Estimation for DP

The DP system requires measurements of heading and position. Gyrocompasses and

the Global Positioning System are the easiest ways to get these, although any pre-

cise position reference system will work. Inertial navigation systems may measure

the motion and acceleration of the vessel; however, they are frequently not available

due to financial constraints. It is necessary to estimate the vessel’s velocity using

the available observations and a model of the dynamics of the vessel. The model

should also try to account for the effects of outside disturbances. The vessel ve-

locity and disturbances estimations will undoubtedly be improved by more precise

modelling and optimal model usage. Finding a model that sufficiently approximates

the complex vessel mechanics and the much more complicated systems characteriz-

ing the environmental disturbances constitutes the modelling challenge. In a real

implementation, the estimator may additionally handle errors, perform defect detec-

tion, and sensor integration, which is the task of merging measurements from several

sensors. The model-based state estimator is also accountable for maintaining an es-

timate using only the mathematical model, or dead reckoning if measurements are

lost. Additionally, estimates of the disturbance forces affecting the vessel due to the

disruptive impacts of the sea, wind, and current are desired by the estimator. The

wind speed and direction are frequently just measured, and the forces caused by wind

disturbance are approximated using a look-up table. The forces caused by waves and

currents are more challenging to quantify because there are no measurement tools
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Figure 2.2: Illustration depicting the actuator configuration of Cybership II. Cour-
tesy of [32].

for them, and they are not easily distinguishable from other effects. As a result,

they are frequently combined rather than divided into low-frequency (LF) and high-

frequency (HF) components. The HF component, also known as wave-frequency

(WF), is primarily caused by oscillating wave-induced forces, whereas the LF com-

ponents manifest as drift forces. The motion from the LF component and the WF
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component are presumed to be super-positioned, as shown in Figure 2.3. The vessel

Figure 2.3: Illustration depicting LF and WF motion. Courtesy of [8].

usually cannot counterbalance the motion caused by the WF components because it

moves at a rate far quicker than its bandwidth. Since no greater performance can

be attained, attempting to counteract them will result in unnecessary strain on the

actuator system and energy waste. To eliminate the WF components, wave-filtering

is used for motion estimations.

The Kalman filter, an optimum filtering technique, was suggested for implemen-

tation in [4]. The initial applications used heading-dependent Kalman gains with

gain-scheduled linear approximations about the yaw axes. Due to the many tuning

options, these methods were challenging. Later implementations greatly reduced the

number of tuning parameters by using an expanded Kalman filter and included a

framework for parameter estimation; for example, see [9]. Nonlinear passive observers

used in recent methods by Strand and Fossen are easier to tune [41]. The tendency

has been to create global observers, which has reduced the number of tuning param-

eters. Adaptive estimators are also offered [43] that estimate vessel parameters and

gains for changing sea states.
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The nonlinear passive observer was created as a result ([9]; and [43]). [9] in-

troduced the passive nonlinear observer and suggested the design of observer gains

based on passivity. They also provided formal stability proof for the observer. [30] ex-

panded the passive nonlinear observer by including recursive adaptive wave filtering

in order to have more effective filtering for the wave frequency (WF) motions. The

difficulty in tuning is a drawback of the nonlinear passive observer with recursively

adaptive WF filtering [43].

Recently, efforts have been made to increase the DP vessels’ performance under

challenging conditions. Instead of combating the wave frequency (WF) motions

frequently brought on by first-order wave loads, the DP system typically counteracts

the low frequency (LF) motions brought on by wind, current, and slowly altering

drift wave loads. In order to isolate the LF motions for feedback control from the

overall motions, the traditional observers with wave filtering can estimate the WF

motions. This approach is successful in areas with moderate seas. Separating WF

and LF motions becomes unclear in extreme sea conditions, especially, when the WF

motions are low frequency and inside the LF domain. In addition to wind-generated

waves, swell waves, which are frequently enormous and have lengthy periods, may

be present [42]. As a result, both WF and LF motions must be corrected for by the

DP control system. [35] suggested an observer for the output PID controller without

WF filtering to solve this issue. As opposed to simply LF motions under typical

environmental conditions, the projected states include all motions.
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Abstract

Performances of a set of control schemes for dynamic positioning (DP) are studied

in this work; DP performance is essential for future developments of autonomous

shipping technology. The linear and nonlinear model predictive control (MPC),

the nonlinear proportional integral and derivative (PID) control, the sliding mode

control (SMC) as well as the multi-resolution PID (MRPID) control schemes are

evaluated under two different sea conditions, namely, moderate and extreme seas.

Matlab/Simulink models of a full-scale ship and its corresponding scaled model are

used to benchmark the efficacy of the controllers. An Unscented Kalman Filter

(UKF) is used to estimate vessel motions and to control low frequency (LF) motions

while filtering out wave frequency (WF) motions. The tuning of the controllers

is also taken into consideration. Of the five controller schemes, the NMPC shows

the best ability to efficiently deal with extreme disturbances. Although all of the

controllers were able to maintain the ship position under moderate conditions, only

the NMPC and the MRPID controllers were able to stabilize the ship under extreme

sea states. Findings from this research are expected to help operators of DP systems

in choosing the most effective control scheme for different sea conditions. Also, the

results are supportive of further control system development for dynamic positioning

and autonomous shipping systems.

keywords: Smart sensing, Autonomous ships,dynamic positioning, offshore

drilling/production, control algorithms, decision support system, alarm monitoring
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3.1 Introduction

As maritime operations move into deeper waters far from the shores, new challenges

are emerging. The main concerns are environmental disturbances such as wind gusts,

surface currents, and large waves. This type of dynamic and ever-changing environ-

ment requires the use of dynamic positioning (DP). Turbulent waters are not only

common but can become extreme within a short time period as one travels farther

from shore. In response, vessels need to have a robust controller that can manage

motion couplings for six degrees of freedom (DOF). Extreme seas are typical in the

North Atlantic, occurring around a third of the time (hence, the commonality of the

nautical term “on the high seas”). Under conditions of extreme seas, the waves are

not only higher than the norm but endure longer. In this case, wave-frequency (WF)

motions occur at similar or the same frequency regimes as the vessel’s low-frequency

(LF) motions. Using a wave filter to separate the WF from the LF under these con-

ditions can be challenging, as critical LF motions that need to be compensated for by

the controller get removed by the filter. To resolve this dilemma, [18] suggested not

applying the wave filter for extreme sea conditions as a means to keep stability and

performance at optimal levels. The suggestion was then tested in [15] and [1]. In both

of these studies, the hybrid controller featured a nonlinear passive observer (NPO)

without wave filtering and a proportional integral derivative control with accelera-

tion feedback (PID-AFB). Comparisons between simulations of a PID controller with

wave filtering and a hybrid controller showed that for varied sea conditions (calm

to extreme), the hybrid controller performed better. In [12], a PID-AFB controller

was introduced; virtual inertia was included with the physical inertia, and both were

increased according to feedback for the system’s measured acceleration [12]. In other

studies, examining the performance of controllers, sliding mode control (SMC) has

been employed to design controllers for use in complex high-order nonlinear dynamic

scenarios. Both [7] and [17] utilize the SMC algorithm for multiple input multiple

output (MIMO) nonlinear systems, intending to develop a controller that can take

into account parameter inaccuracies such as external loads, inertia, mass, damping,

and actuators [7], [17]. In [16], wavelet transforms (WT) were employed in a position
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control system. The error signal was first divided into components, then multiplied

by the respective gains, and finally summed together to determine the final control

command. A self-tuning technique that used wavelet networks was proposed for a

wavelet PID controller [3]. The Green DP system, which employs MPC, was intro-

duced by [21]. Two studies subsequently applied MPC to a DP system, finding the

outcome satisfactory [9], [22]. Constraints posed by DP were then explored in [4].

The non-linear MPC may be employed in both high-speed and low-speed reference

tracking and station-keeping [14]. NMPC frames the control problem as seeking a

solution for objective functions, such as non-linear system dynamics [5], [25]. NMPC

tends to give better outcomes because state and input constraints can be satisfied by

computing control commands. A few NMPC-related methods that can be applied to

DP problems have been published in the literature. For instance, the study in [14]

proposed the use of an NMPC controller in DP coupled with a UKF-based state es-

timation. However, this proved unsuccessful due to the very poor solutions given for

online optimization problems [14]. Researchers in [2] proposed a linear MPC adapt-

able to semi-submersible platform DP, while those in [23] used an NMPC controller

in a simplified non-linear model according to the controller’s design requirements.

A relaxed dynamic positioning control approach that employed NMPC was intro-

duced in [24]. The research in [13] involved sensor fusion as well as observer design

techniques that utilized UKF in DP operations.MPC formulations [11], [20] to solve

the DP problem that takes into consideration state and input constraints along with

the thruster allocation algorithm (TAA) were also considered in the literature. Note

that including TAA in the formulation will result in near-optimal solutions because

of crucial restrictions (e.g., rate of rotation and thruster saturation), but it will still

make the optimal control problem more complex. Because of this, real-time control

computation is likely not a practical approach to this problem [8].

The present paper implements five DP controllers (NMPC, MPC, MRPID, SMC,

and NPID-AFB) into full-scale as well as scaled model ships using a non-linear passive

observer (NPO) for both moderate and extreme seas to evaluate each controller’s

performance. The main performance metrics applied in this work are position and
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heading (pose) accuracy.

3.2 DP Control Systems

3.2.1 Nonlinear PID with Acceleration Feedback (NPID-

AFB)

The proportional integral derivative controller with acceleration feedback (PID-AFB)

[12] differs from traditional PID controllers in that it includes an extra inertia term

Km, which feeds back along with the measured acceleration and is included in the

system’s inertia matrix M. The inclusion of Km makes the system more robust by

reducing its sensitivity to disturbances. The control law depicted in Eqs. 3.1 and

3.2 generate the control input (τ).

τ = τPID−AFB = RT (ψ)τPID −Kmν̇ (3.1)

τPID = −Kpη̃ −R(ψ)Kdν −Ki

∫ t

0

η̃(τ)dτ (3.2)

The control objective is to force η̃ → 0 when t→∞, where η̃ = η−ηd is the error

between the actual and desired position. As the aim is station keeping, the desired

position is constant and η̇d ≈ 0. The positive definite gain matrices Kp ∈ R3×3,

Kd ∈ R3×3 and Ki ∈ R3×3 belong to the PID-part of the controller. The AFB gain

matrix Km ∈ R3×3 is chosen as proposed by [1] with Km = M∗ + ∆K, where M∗ is

a modified inertia matrix
(
M∗ = [Xu̇ 0 0, 0 Yv̇ 0, 0 (Nv̇ − Yṙ) 0]

)
. ∆K =

∆KT . The AFB gain matrix is written as:

Km =

 K11 K12 0

K21 K22 0

K31 K32 0

 =

 Xu̇ + ∆K11 0 0

0 Yv̇ + ∆K22 0

0 Nv̇ − Yṙ 0

 (3.3)
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where Xu̇, Yv̇, Nv̇, Yṙ represent hydrodynamic added-mass terms.

3.2.2 Sliding Mode Control (SMC)

The purpose for using the SMC algorithm [6],[7][17], is to deal with parameter un-

certainties for damping and mass as well as for neglected time delays, unmodeled

dynamics, and so on [17]. In Eq.(3.4), a tracking measure is described.

s := ˙̃η + 2Λη̃ + ΛTΛ

∫ t

0

η̃(τ)dτ (3.4)

where s denotes a sliding surface that is dependent on both position error η̃ and

the NED velocity error ˙̃η = η̇ ; the tuning parameter, Λ ∈ R3×3 and Λ > 0, indicate

the controller’s bandwidth. By describing the virtual reference vector η̇r we can

reformulate Eq. (3.4) as:

s = η̇ − η̇r (3.5)

η̇r = η̇d − 2Λη̃ + ΛTΛ

∫ t

0

η̃(τ)dτ (3.6)

So that

ṡ = η̈ − η̈r (3.7)

In cases where s=0, Eq. (3.7) indicates a sliding surface with η̃ converging to

zero exponentially. Equations of motion are defined within a NED frame, given the

importance of controlling the position. For the implementation, integral part within

Eq. (3.7) has been included independent of the control input. In [6], equations of

motion have been formulated as:

M∗(η)η̈ +D∗(η)η̇ = b+ τ ∗ (3.8)

where , M∗(η) = R(ψ)MRT (ψ), D∗(η) = R(ψ)DRT (ψ), τ ∗ = R(ψ)τSMC , and
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τSMC as shown in (3.9)

τSMC = Mν̇r +Dνr −RT (ψ)Kds−Ks × tanh(φ−1RT (ψ)s)) (3.9)

where , Mν̇r + Dνr is the feedforward term, RT (ψ)Kds s is the PD controller

term and Ks × tanh(φ−1RT (ψ)s) is the robustifying term. Choosing Ks as,

Ks ≥
∥∥∥RT (ψ)b+ M̃ν̇r + D̃νr

∥∥∥+ δ, δ > 0 (3.10)

with Ks dominating any bias or error of the actual or estimated inertias as well

as damping uncertainties, and positive constant δ maintaining Ks > 0.

3.2.3 Multiresolution PID Control (MRPID)

In MRPID [16], frequency-dependent error components can be multiplied according

to the respective gain of each and then summed together. In the present paper, sub-

PIDs of every low- and medium-frequency error component are provided, though

high-frequency terms are neglected. The technique formulates control commands

that denote force and torque inputs for a vessel (uA = FX , FY , T ) :

uA = PIDA,HeH + PIDA,M1eM1 + ...+ PIDA,MN−1
eMN−1

+ PIDLeL (3.11)

The MRPID controller has a large number of tuning parameters, thereby ensuring a

better resolution. Error vectors are generated through mirroring and then appending

previous error data [16]. Wavelet-based decomposition can then be implemented

using the generated error vector, giving error signals in x,y, and ψ. Based on the

literature, we choose wavelets, deciding on “Daubechies” of order 4. Then, L = 8

and F = 4 gave N = 2, or two-level decomposition.
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3.2.4 Model Predictive Control (MPC)

The model predictive control (MPC) has been widely adopted throughout differ-

ent industries, as MPC can easily handle constraints. Furthermore, using a model

as a means to anticipate future conditions and responses enables both a prediction

and subsequent correction aspect. MPC represents a model-based control algorithm

whose essential features include feedback correction, receding optimization, and pre-

dictive modeling (internal modeling). In this process, the latest measurement read-

ings are obtained during sampling time which are then applied for solving open-loop

optimization problems that have been defined as a prediction horizon. The solution

provides control sequences whose initial components are applied to the system, and

the process begins anew by again finding the latest measurement readings. Fig 3.1

shows a simplified version of MPC structure. In using MPC in a ship dynamic po-

sitioning system, low-frequency motion measurements first need to be removed from

the vessel’s overall position information. Then, the DP vessel’s linear low-frequency

state-space model needs to be changed to a discrete state equation:

xk+1 = Axk +Buk +Gωk (3.12)

yk = Cxk + νk (3.13)

Figure 3.1: The basic structure of model predictive control

Here, the initial state x0 = x, xk denotes the state variable vector regarding
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velocities and positions, such as sway, yaw and surge, at time k. uk represent control

input vector, ωk the 3D unmodeled disturbance vector, yk the output position vector,

vk the Gaussian white noise, and A, B, C, are G indicate the constant matrix.

3.2.5 Nonlinear Model Predictive Control (NMPC)

The latest computing and algorithmic advances have made NMPC the standard

technique for designing controllers in non-linear systems that feature state and in-

put constraints. NMPC solves for constrained open-loop optimal control problems

in every iteration. Because predictive control relies on full state knowledge, state

estimators generally have to be activated, unless a reduced model is used. Usually,

the initial control action alone is applied while the remainder are discarded, though

they can also be utilized for ‘warm-starting’ the NMPC for subsequent time instants

[9], [22]. NMPC schemes penalize any deviations from their references made by

states and inputs. NMPC weights are then chosen in relation to the importance

of the deviations. Each iteration of the optimal control problem expressed in Eq.

(3.14) is solved by the NMPC, giving an optimal motion command {uk}t0+TH
k=t0

and

state series {xk}t0+TH
k=t0

. The initial control commands of force and torque demands

([Fx1, Fy1, Tψ1]) are then applied in the system.

Jt0 = arg min
x,u

t0+TH∑
k=t0

‖uk − ur‖2 L+

t0+TH∑
k=t0

‖xk − xr‖2M (3.14)

s.t.xk+1 = f(xk, uk),

µ(uk, xk) ≤ 0

where, L and M , denote the constant positive definite weighting matrices, ur and

xr represent reference inputs and states, respectively, f indicates the numerical inte-

gration for system dynamics over selected time grid, µ expresses constraint function

for system inputs and states, and t0 represents start time of control computations.

Note that while system dynamics constraints cover all six of the states [η v], only



36

position and orientation vector η has been penalized, along with control inputs. A

pseudo-code for the NMPC algorithm is presented in [10].

3.3 System Modeling and State Estimation

3.3.1 Ship Model

A mathematical control plant model (CPM) describes the most crucial physical char-

acteristics for dynamical processes. CPMs are widely applied in model-based observer

or controller design [19]. Equation (3.15,3.16,3.17, and 3.18) expresses a CPM writ-

ten for DP of extreme seas [18]:

η̇ = R(ψ)ν (3.15)

Mν̇ = −Dν +RT (ψ)b+ τ (3.16)

ḃ = −T−1
b b+ Ebwb (3.17)

y = η + ν (3.18)

with η ∈ R3 being the position and heading vector, and the velocity vector being

ν ∈ R3×3 . In this formulation, the rotation matrix R(ψ) ∈ R3×3 changes velocity

from a body fixed to a north-east-down (NED) reference frame. The bias model built

as state b ∈ R3 indicates slowly varying environmental forces. This model employs

the zero-mean Gaussian white noise vector ωb ∈ R3×3 and disturbance scaling matrix

Eb ∈ R3×3, while Tb ∈ R3×3 denotes the user-specified diagonal matrix for positive

bias time constants. Specifically, here, the matrix M ∈ R3×3 comprises the inertia

matrix for the rigid-body as well as the added-mass terms, whereas linear damping

comprises the matrix D ∈ R3×3. Meanwhile, the controller generates the commanded

forces along with the moment vector τ ∈ R3. τ = (τc + τω + τi) indicates applied

force that has τc for the control input, τω designates the wind force and τi is the

ice load , y ∈ R3 denotes the sensor output measurement, and ν ∈ R3 indicates the

measurement noise vector.
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3.3.2 Ocean Waves

For the purpose of this study, ‘extreme’ seas refer to a sea state that is characterized

by large wave height (Hs ≥ 9m) along with peak wave frequency (ωp ≤ 0.46rad/s).

‘Moderate’ seas here refer to a sea states characterized by moderate wave height

(H ≤ 2.5m) with peak wave frequency (ωp ≤ 0.79rad/s). These sea states are further

illustrated in [6]. In this study, we use a MATLAB/Simulink simulator to simulate

wave action for extreme seas. The simulator features an environment module that

simulates wind, wave, and current specs. We formulated wave amplitude as shown

in Eq. (3.19):

A =
√

2S(ω)∆ω (3.19)

with ∆ω designating constant difference between frequencies. Amplitude can be

utilized for developing time-domain realizations for wave spectra, as in Eq. (3.20):

ξ(t) =
N∑
k=1

M∑
i=1

√
2S(ωk, βi)∆ωk∆βisin(ωkt+ εki) (3.20)

Where β describes the angle at which waves impact the vessel, ε describes phase,

and A expresses wave amplitude for the current sea state. Along with wave height Hs

and wave period Ts , we can specify sea state according to frequency spectrum, mean

wave direction, directional spectrum, as well as how many frequencies and directions

appear on the designated spectral grid. We can decrease the amount of harmonic

wave components by discarding those that feature negligible energy content. Fig 3.2,

below illustrates the wave spectrum with harmonic components, calm sea condition

with wave height Hs = 0.1m, and harsh sea condition with wave height Hs = 10m

and wave number = 400.
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Figure 3.2: Wave spectrum with harmonic components, calm sea condition, and
harsh sea condition with wave number = 400.

3.3.3 Wind

Wind can be considered as having two components, namely, a mean component

and a fluctuating component (gust). The mean component is reduced in relation to
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distance-to- ground, while the fluctuating component remains more or less the same

in relation to distance-to-ground [6]. Although comprised of two components, wind

is actually a 3D phenomenon that includes velocities of the horizontal plane that are

parameterized by velocity (U) and direction (ψ) . Mean velocity Ū for elevation (z)

can be expressed as:

Ū(z)

Ū10

=
5

2

√
kln

z

z0

, z0 = 10exp(− 2

5
√
k

) (3.21)

Ū10 denotes 1-hour mean wind speed at an elevation of 10 m, while (k) indicates the

sea surface drag coefficient. Variations to mean wind velocity can be implemented

using a first-order Gauss-Markov process, as expressed in Eq. (3.22)

˙̄U + µŪ = ω (3.22)

where, ω denotes Gaussian white noise and µ ≥ 0 is a constant. Wind direction

variations can be implemented using a similar approach, as formulated in Eq. (3.23):

ψ + µ2ψ = ω2, ψmin ≤ ψ ≤ ψmax (3.23)

where ω2 and µ2 indicate, respectively, white noise and a positive constant. Like

waves, wind gusts are typically described using a spectrum. However, this spectrum

uses measurements that have been made over land. More up-to-date measurements

provide alternative representations, as shown in Eq. (3.24).

S(f) =
4kLŪ10

(2 + f̃ 2)
5
6

, f̃ =
Lf

Ū10

(3.24)

With, (L) denoting scaling length, (k) sea surface drag coefficient, and (f) fre-

quency in Hz. The wind gusts are modelled based on a NORSOK wind spectrum

that features 100 individual frequency components.
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3.3.4 Water Current Model

In surface vessels, a 2D current model suffices. For current measurements obtained

from magnitude Vc and direction of NED frame ψc , a current velocity vector νc can

be expressed as in Eq. (3.25):

νc = [Vccos(ψc), Vcsin(ψc), 0]T (3.25)

Any variations found in current velocity can be implemented using the first-order

Gauss-Markov Process, as follow:

V̇c + µVc = ω (3.26)

Where (ω) denotes Gaussian white noise, and (µ ≥ 0) indicates a constant. If

µ = 0, this would denote a process of random walk, with magnitude of velocity being

constrained by saturation elements, as expressed in Eq. (3.27):

Vc,min ≤ Vc ≤ Vc,max (3.27)

Current direction variations can be implemented in the same way, as shown in Eq.

(3.24).Like wind, current can also be divided into two components, namely wind-

generated and tidal-generated currents. However, unless clear measurement data are

available, the two components are better considered as one [6].

Occasionally, the variations in current according to depth are required. In these

cases, should no actual field measurements be accessible, DNV advises using the

current profile (Vc(Z)), with (z) as depth (positive downwards):

Vc(Z) = Vc,tide(Z) + Vc,wind(Z) (3.28)

Vc,tide(Z) = Vc,tide(
h− Z
h

)1/7, for Z ≥ 0 (3.29)

Vc,wind(Z) = Vc,wind(
h0 − Z
h0

)1/7, for 0 ≤ Z ≤ h0 (3.30)
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Vwind(Z) = 0, for Z ≥ h0 (3.31)

where (Vc,tide) indicates surface level tidal current velocity, (Vc,wind) denotes surface

level wind-generated current velocity, (h) represent water depth, and (h0) serves

as the reference depth of wind-generated currents (e.g., h0 = 50m). Furthermore,

wind-generated current could be expressed as, ((Vc,wind) = 0.015Ū10, ).

3.3.5 Nonlinear Passive Observer (NPO)

The observer is a critical component in the DP system due to its roles (among others)

of filtering and state estimation. In instances where sensors fail or are too costly, an

observer is able to provide state estimations for non-measured states. Furthermore, if

a vessel undergoes signal loss due to a failed sensor, the process of dead reckoning may

be employed in the observer’s prediction model. In [1], the researchers introduced a

Figure 3.3: Illustration of conventional DP system.

wave-filter less observer for use in extreme seas:

˙̂η = R(y)ν̂ +K1ỹ (3.32)
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˙̂
b = −T−1

b b̂+K2ỹ (3.33)

M ˙̂ν = −Dν̂ +RT (y)b̂+ τ +RT (y)K3ỹ (3.34)

ŷ = η̂ (3.35)

where η̂ and ν̂ represent estimated pose and velocity vectors, respectively, b̂ denotes

estimated bias state, and ŷ indicates estimated output (the values for matrices M

and D appear above).Hence, the rotation matrix can be expressed as R(y) = R(ψ)

,while K1 ∈ R3×3 , K2 ∈ R3×3 and K3 ∈ R3×3 comprise positive definite observer

gain matrices.

3.4 Simulation Results

3.4.1 Simulation Setup

The simulations used 3-DOF nonlinear vessel with parameters shown in Table 3.I.

Simulation sample time was set as 0.01s, and set-points were given as (0, 0, 0), for X,Y

and ψ values. To create the five different controllers, we use a MATLAB/Simulink

simulator and toolbox add-ons. The sea state conditions are shown in Table 3.II.

Table 3.1: Specifications of the ship model

Parameters Units Full Scale Down-scale

Length, L m 88.7 2.275

Breadth, B m 17.04 0.437

Draught, T m 5.967 0.153

Displacement m3 4508 0.076
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Table 3.2: Simulated sea states

Parameters Units Moderate Extreme

Wind Speed m/s 8.1-10.7 24.6-28.2

Surface Currents m/s 0.543-0.705 0.85-1.05

Waves, Significant Height, Hs m 1.25-2.5 9.0-12.5

Peak Wave Frequency ωp rad/s 0.79-0.68 0.46-0.39

3.4.2 Down-scale Model with Moderate Sea Conditions

In this study, moderate disturbances acting in X, Y, and Yaw, in the down-scale

model were considered. The disturbance loads cannot be used directly to adjust the

environmental model in MATLAB Simulink without scaling, and we used the Froude

Scaling (1:30) to adjust disturbance loads to the down-scale model. Equality in the

Froude number gives similar wave forces acting on the down-scaled model and full-

scale model. Fig 3.4 shows the performances of the five controllers considered for this

Figure 3.4: X, Y plots of DP with NMPC, MPC, MRPID, SMC, and NPID controllers
under low disturbance for the down-scale model.
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study. It can be seen that, although there are variations in performance, all of the

five controllers are able to stabilize the vessel and maintain its position. A closer look

reveals that the NMPC, the MRPID as well as the SMC perform better compared

to the MPC and NPID-AFB. Although results are not presented here, for the full

scale model with moderate sea conditions, all of the five controllers satisfactorily

maintained the position of the vessel.

3.4.3 Full-scale Model with Extreme Sea Conditions

Fig 3.5 shows results for ship position under extreme sea conditions with the full

scale model. The results for the NMPC and the MRPID controllers are plotted as

the NPID-AFB, MPC and SMC controllers were found to be not able to stabilize

the vessel under extreme conditions. The performance of the NMPC controller was

comparatively better than that of the MRPID controller for extreme sea conditions.

In general, performance of the NMPC was consistently better than other algorithms

for both moderate and extreme sea conditions.

Figure 3.5: X, Y plots of DP with NMPC and MRPID controllers under high dis-
turbance for the full-scale model.
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3.5 Concluding Remarks

Based on the simulation study it can be concluded that many of the available control

algorithm for dynamic positioning can effectively control the vessel under moderate

sea conditions. However, under extreme conditions, the performance may deteri-

orate to the extent that the controller may fail to stabilize the process. For the

extreme sea conditions considered for this study, only the NMPC and the MRPID

controllers were able to stabilize the vessel while each of the five controllers effectively

maintained the vessels position under moderate sea conditions. It is recommended

that the performance of a controller is tested under different conditions before its

implementation in cases where sea conditions may become extreme.
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Abstract

Numerical modelling of the Arctic ocean dynamics with real-time simulation capabil-

ity is useful for designing, developing, testing, and validating Dynamically Positioned

(DP) and Autonomous ships/offshore platforms. However, advanced simulation tech-

nology needs to be developed to predict the expected loads on these systems due

to the complex interactions with environmental disturbances. This paper presents

models of waves, currents, wind, and ice that comply with the real-time simulation

requirements and adequately capture the dynamic characteristics of the most rele-

vant physical processes. A 3D dispersive numerical model is deployed to predict the

wave parameters to be utilized to compute the wave loads on a ship with known

Response Amplitude Operators (RAO). A uniform current load is then incorporated

in a superposition manner by using a combined wave-current field dispersion rela-

tion capable of expressing the wavenumber of an interactive wave-current field. The

mean and the gust wind components are added to the resultant force components.

A multiple regression-based ice model is used to predict the loads caused by an ice

field characterized by varied ice thickness, concentration, floe size, drift speed and

directions. The interaction between the ice field and waves is assumed negligible.

The stationkeeping performance of a generic DP-controlled ship subjected to the

environmental disturbances defined by the time traces of the combined forces and

moments obtained by the above methods for a range of environmental conditions.

The proposed models can be beneficial for designing, developing, and evaluating

dynamic positioning and autonomous ship controllers’ performance. Another appli-

cation may be developing a realistic simulation environment to train conventional,
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DP-controlled and autonomous ship operators.

keywords: Dynamic positioning, wind force, wave force, current force, ice force,

3D wave models, 3D wave-current interaction models.

4.1 Introduction

The offshore industry has raised its research and development endeavour to explore

and extract oil and gas from Arctic and Sub-Arctic offshore regions. The physical en-

vironment in these regions presents several challenges: cold, temperatures, darkness,

precipitation, fog, extreme winds, currents and waves, icing, etc. [20]. One of the

greatest threats to the Dynamic Positioning (DP) and Autonomous control systems of

vessels and offshore installations operating in these regions is the multi-directionality

of drifting sea ice with a wide variety of types and forms, ranging from isolated first-

year floes to compacted multi-year ridges [21]. In the sub-arctic, marginal ice zone

(MIZ, the first ice infested area encountered from the open Ocean), wind, waves and

sometimes current is present besides the broken ice-field. This creates a very complex

environment for offshore operations, particularly for DP operations. The DP or au-

tonomous control systems in the market today do not take account of the forces and

movements that exist in such a highly demanding environment. Numerical modelling

and validation of each interaction phenomenon in all possible environmental cases

are essential and key to understanding the problem and designing both the floating

and control systems. Modelling and simulation of environmental disturbances for

ocean surface vehicles have been used in ship simulators for naval training, ship hull

designs, military science and entertainment activities such as computer games [29].

Numerical simulations of the Arctic ocean dynamics can help design, develop, test,

and validate DP and Autonomous ships/offshore platforms in harsh environment sim-

ulations. Simulation technology needs to be developed to predict the expected loads

on these systems due to the complex interactions with the disturbances. Modelling

complex environmental disturbances and their loads on the systems is an essential

and critical component of such simulations. This paper presents models of waves,
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currents, wind, and ice that comply with the real-time simulation requirements and

adequately capture the most relevant physical processes. Section 2 presents a brief

review of existing models for various environmental disturbances modelling. For the

wave model, the authors proposed a 3D dispersive numerical model to predict the

wave parameters to be utilized to compute the wave loads on a ship with known

Response Amplitude Operators (RAO). A uniform current load is then incorporated

in a superposition manner by using a combined wave-current field dispersion relation

capable of expressing the wavenumber of an interactive wave-current field. The mean

and the gust wind components are added to the resultant force components. Multiple

regression based ice models are then used to predict the forces and moment caused

by an ice field characterized by varied ice thickness, concentration, floe size, drift

speed, and directions. The combined loads are assumed to be the summation of the

wind loads, wave and current interaction loads, and ice loads. The interaction be-

tween the ice field and waves is assumed negligible. In Section 3, the authors present

the time traces of the individual and combined loads exerted by these disturbances

on a Generic DP ship for a range of environmental conditions. Section 4 presents

the implementation of the environmental disturbances model to the DP vessel in a

simulated environment to evaluate the DP performance. A few concluding remarks

and recommendations for future work follow in Section 5.

4.2 Environmental Disturbances

A brief discussion of various existing environmental disturbance models is presented

in this Section. Focus is given to the wave and current interactions and ice force

models. Several wave, wind and current models are proposed in the literature, rang-

ing from very simple empirical/analytical to complex high-fidelity numerical models;

however, literature to capture their interactions is limited. Also, modelling of ice

dynamics in the presence of waves is scarce in the literature.
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4.2.1 Wind Models

The wind load at any instance is the summation of the mean and the gust load

components at a given point, both of which are functions of time and space and vary

on elements of a given structure. For a single-point loading method, it is assumed

that mean and gusty velocities are constant at all locations on the structure. On

the other hand, when the structure is quite large, distributed multiple points of

wind force method might be utilized where the surface of the structure would be

divided into multiple sections, and the mean and gusting wind forces are computed

separately on each Section. The gusting wind load component for each small Section

is evaluated separately using a correlation strategy [10], and then a superposition is

made for the total wind gusting force on the structure. The instantaneous wind force

(Fw) on any structure that has r number of elements can be given by the following

superposition equation [11]:

Fwind(t) =
1

2
ρa

r∑
j=1

CDajAj(Ūaj + ugj(t)− ẋ(t))2 (4.1)

where ρa is the air density, CDa is the drag coefficient in air, A is the projected

area and Ūa is the mean wind velocity on any element, and ug is the wind gust; ẋ

is the structural velocity, which can be considered negligible for our cases. The gust

wind force on the structure can be predicted by the following empirical equation

presented in [31]:
Sw(n)n

4kN
=

Ū2
a10

(2 +N2)
5
6

(4.2)

where, n is the frequency, Sw(n) the spectrum, k ( = 0.003 to 0.005) the drag

coefficient,Ūa10 the velocity at a height of 10m averaged over one hour and N =

1200n/Ūa10. See also, [8] and [6] for more information. The mean force, FwindM , and

fluctuating force, FwindG, on any structure can be expressed as follows:

FwindM(t) =
1

2
ρaCDaAŪ

2
a (4.3)
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FwindG(t) =
1

2
ρaCDaAŪaug(t) (4.4)

For modelling DP operation in a testing facility, particularly in the presence of

ice, the wind forces are sometimes modelled as a certain percentage of total thruster

capacity [12]. The total thruster capacity of the DP vessel is reduced to compensate

for the virtual presence of wind load.

4.2.2 Current Models

The magnitudes of currents vary with the location in the Ocean and also their gener-

ation mechanism. For example, a strong wind could generate a strong current over a

certain water depth, but a tidal current usually moves the whole ocean water body.

Wave breaking and river discharge can generate localized strong current. Current is

typically modelled as uniform over depth or linearly or non-linearly varying sheared

current. The current force is modelled based on the empirical formulation to account

for the global and local current drag coefficients, current magnitude and direction,

and projected area, as discussed below. The computation of the current force is often

done in a very straightforward manner. In general, currents impart non1inear forces

on the structure and could be characterized as a drift force due to the current only

case. The velocity of currents could be depth-dependent, but the current velocity is

considered vertically uniform for simplicity. The force due to currents (Fc) only can

be evaluated using the following equation:

Fc =
1

2
ρwCDcAU

2
c (4.5)

where Uc is the wave-particle velocity, A the projected area and CDc is the drag

coefficient for current. The above current model can be further improved if the two-

dimensional current model introduced by [7] and [4] is used. The same formulation

can be used for predicting the wind and current loads; we use notations for current

to illustrate the method. In this method, the resultant wind or current force acting
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on a surface vessel is defined in terms of relative current speeds ucurrent and vcurrent

illustrated in Fig 4.1.

Figure 4.1: Notations for two dimensional current or wind model [4]

θcurrent is the angle between X-axis and the direction of the current. Then ucurrent

and vcurrent determined as follows:

ucurrent = Vcurrentcos(θcurrent − ψ)− u (4.6)

νcurrent = Vcurrentsin(θcurrent − ψ)− ν (4.7)

The resultant current forces acting on a surface vessel with respect to the ship’s fixed

reference frame:

Xcurrent =
1

2
RwxρwATu

2
current (4.8)
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Ycurrent =
1

2
RwyρwALu

2
current (4.9)

where, Rwx and Rwy - Current drag coefficients, AT - transverse current projected

area of the vessel (underwater for current and above water for wind), AL - lateral

current projected area of the vessel. A similar yet more accurate model was proposed

by [26]. We recommend the model presented in [26] as it accounts for the instanta-

neous vessel yawing the corresponding changes in the speed and directions of current

as well as the project surface areas.

4.2.3 Waves Models

Of the three main environmental forces (wave, wind, and current), the horizontal

wave drift force is quite important. For the cases of regular waves and current, a

3D numerical model with the assumption of inviscid and incompressible fluid flow is

developed and utilized in this work to evaluate wave kinematics. An explicit type

numerical scheme is used for the simulation of the numerical model. A detailed de-

scription of this wave model can be obtained in [37], [38],[40]. On the other hand,

for the irregular waves, a Boussinesq type numerical model with modified dispersion

relation is developed and adopted in this study. The description of this numeri-

cal model is available in [38],[40]. The same model is upgraded for the interacted

wavecurrent coexisting field. An ADI (Alternative Directional Implicit) method is

employed for the solution of the non-linear equations.

The wave force on a unit length of a structure can be calculated when the wave

kinematics are known using Morisons’s equation as follows:

Fw(t) =
1

2
ρwCDAu |u|+ CMρwV u̇ (4.10)

where u is the wave particle velocity, u̇ the wave acceleration, CD and CM(= 1+Cm)

are the drag and mass coefficients, CM the added mass coefficient, V the volume, D

the diameter and A(= D ∗ 1) is the area per unit length.
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The mean drift force due to viscosity effects can be obtained by utilizing the

instantaneous velocity of the water particle in the above equation and integrating

the obtained expression over one wavelength [5]:

Fwdrift =
2

3π
ρwω

2CDvDa
3 (4.11)

The viscous drift coefficient CDv can be obtained from the empirical formula by [5]

and varies roughly from 1.27 to 1.62. The prediction of wave loads due to regular

and irregular waves and waves and current interactions can also be obtained using

the RAO (Response Amplitude Operator) approach, as long as the instantaneous

surface elevation and the RAO of the vessel for the wave environment are known.

In this approach, the wave force RAOs for specific vessels for various operating

conditions are calculated using commercial potential flow solvers such as ANSYS-

AQWA or WAMIT or a similar solver. The RAO curves are then utilized to derive

the wave force and moment spectrums in the irregular sea for the specified theoretical

spectrum. The corresponding wave force/moment values were extracted directly from

the force/moment RAO for the single frequency regular sinusoidal wave.

To obtain the forces and moments due to an irregular sea, the traditional linear

superposition principle is used. This principle allows summing the responses of a

system due to components of the irregular sea in a linear fashion to predict motions

in an irregular sea state. The wave forces and moments in the mathematical model

adopted in [18] also follow the same superposition principle assuming a linear system.

4.2.4 Ice Force Models

One of the challenging tasks in developing a real-time simulator for environmental

disturbances involving ice is to develop, validate and implement a statistically reliable

numerical model that can predict the ice loads in real-time and at the same time

accounts for most of the relevant physical processes of the complex and dynamic

ice-ice, ice-environment and ice-vessel interactions.
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Several published numerical works have been used to understand and model the

ice forces acting on stationary or DPcontrolled or moored floating platforms or slowly

manoeuvring ships in managed or broken sea ice. The authors of [16] presented an

extensive literature review of various existing techniques and approaches for mod-

elling broken ice-structure interactions. In [16], the authors categorized the existing

methods into Analytical Methods, Empirical-Statistical Methods, Numerical Meth-

ods and Hybrid Methods. Popular analytical techniques known as a “Micro” model

and a “Macro” model were used for modelling and simulations of ice interaction

with moored structures by [2],[3], and [41]. [30] extended the approach to simu-

late 6 degrees-of-freedom motion of vessels transiting through the ice. Amongst the

empirical methods, [19] developed a pioneering empirical method for predicting ice-

structure interaction forces due to broken ice using the “equivalent level ice thickness”

approach. [24] developed an empirical-statistical modelling technique for predicting

the ice forces on a DP vessel. The method offers a balanced combination of physical

ice model tests and numerical techniques to justifiably predict statistically valid ice

forces on a DP-controlled vessel due to actions of a broken ice field. The major

shortcoming of the approach is its lack of details of the floe dynamics that would

decrease the fidelity in visualization in the simulation. To improve the fidelity of this

approach, the techniques, as outlined in Fig 4.2, have been implemented

In this technique, the time-average ice forces are expressed as functions of nominal

managed ice variables, e.g. ice thickness and strength, floe size, floe concentration,

and floe velocity and direction, using advanced multivariable statistical analysis of

existing database acquired during an ice basin testing campaign. The next step is

to relate the time-average to the discrete ice impact forces on the DP/Autonomous

vessel using statistical distribution and Monte Carlo methods [24]. The procedure

used to develop this model is outlined below.

The details of the model is provided in[24].

• Developed multiple-regression based models for mean and average of peaks of

thruster forces, for mean loading span and frequencies.
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Figure 4.2: Flow chart of the empirical statistical technique [28].

• Developed models for predicting force peaks and peak time for one or multiple

events using Monte Carlo Simulations.

• Generated time series for thruster forces and yawing moment using idealized

loading profiles.

• Applied correction factors to account for idealization and regression errors.

• Converted thruster forces to ice forces using specialized random noise.

Fig 3.3 compares the model testing measurements and corresponding statistical

model predictions for a test case. The predicted forces/moments are statistically

comparable with the corresponding measurements.
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Figure 4.3: Comparison of measured and predicted global forces (thruster and ice)
on a Drillship, ice thickness 2M, 90% concentration, floe size 50M, drift speed 0.5
knot and ±2◦ heading.

4.2.5 Waves and Currents Interaction Models

The presence of a wave over a current field remained as an interesting research topic

among ocean engineers and researchers. When a wave and a current are in the same

direction, the wavelength increases, and the height decreases to accommodate extra

energy. On the other hand, when the wave and current are opposite, the wavelength

decreases, and as compensation, the wave height increases.

The above-mentioned wave models use a dispersion relation that contains the

current parameter will account for the modified wavenumbers following equation

[13],[34],[39] below:

ω − ~Uc.~k =
√
gktanhkd (4.12)

Where ~k(kx, ky) is the wavenumber, d the mean water depth, ~U(Ucx, Ucy) the current

velocity, and g is the acceleration due to gravity. The descriptions of the wave-current

interaction models can be found in many literatures, See also [36] for details.

The total force for the combined wave-current field Fwc can be obtained from the
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following relation:

Fwc(t) =
1

2
ρCDAuwc |uwc|+ CMρV u̇wc (4.13)

where uwc is the velocity and u̇wc is the acceleration of the combined wave-current

field that be obtained from [37] depending on the requirements of the modelling and

CM is the mass coefficient. See [37] for details.

In this paper for the regular wave and regular wave-current interaction, simulation

is done following [35]. The above force expression, Eq. (4.13) is based on Morison’s

formulation. Alternatively, the total force for the combined wave-current field can

be obtained by using the RAO technique using modified surface elevation and then

superimpose the current load as per Section 4.2.1.

4.2.6 Waves and Ice Interaction Models

The ice and wave interaction is important in the marginal ice zone (MIZ) for two

primary reasons: firstly, ocean waves influence the sea ice cover, which then affects

large scale wind patterns and ocean currents; secondly, ice floes scatter and dampen

waves, which has to be taken into account in forecasts of wave heights [23]. The

grease ice and broken ice floes present in the MIZ, play an important role in damping

the high frequency waves that would otherwise lead to fast-breaking of the inner,

continuous sea ice [25]. [25] presented a brief survey of the existing sea ice and wave

interaction modelling, both physical and numerical and field measurements.

[14] treated the wave attenuation by interaction with sea ice with a percent trans-

mission of wave energy through the ice as a simple linear function of ice concentration.

Rogers and [15] modified a third-generation model for wind-generated surface gravity

waves WAVEWATCH III® to represent the effect of ice on waves as a dissipative

source function with three alternative formulations of varying complexity.

[32] reported a wave-ice interaction model for the MIZ that calculates the atten-

uation of ocean surface waves by sea ice and the concomitant breaking of the ice into

smaller floes by the waves. The rate of attenuation is calculated using a thin elastic
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plate (representing ice floes) scattering model, and a probabilistic approach is used

to derive a breaking criterion in terms of the significant strain. This determines if

the local wave field is sufficient to break the ice cover. An estimate of the maxi-

mum allowable floe size when ice breakage occurs is used as a parameter in a floe

size distribution model, and the MIZ is defined in the model as the area of broken

ice cover. [27] investigated various models of ocean wave propagation in ice-infested

seas. [33] explored these models as well, however, obtained unrealistic attenuation

coefficients for continuous ice sheet/high concentration ice-field. The “Transport

equation models” hold a special status because they can incorporate models from

the other categories as source terms in the transport equation.

Successful modelling of wave-ice interaction is challenging. In particular, both

field and laboratory data are still too scarce. Several competing models exist where

each model can be approximately fitted to the available observations. [23] proposed

a new set of methodology and instruments to perform sea ice and wave interactions

measurements and compared several datasets.

4.3 Model Implementation

A generic Drillship vessel is used for the present simulation cases. The full-scale

vessel has an overall length of 206 m, has a 45 m beam and displaces around 100,000

MT at 12 m draught [17]. The forces and moments (environmental load on the

horizontal plane) were predicted on the vessel due to the environmental disturbance

cases as identified in Table 4.1. The time traces of the forces and moments exerted

by these disturbances (individual cases as well as combined cases) on the Drillship

for a range of environmental conditions are presented in this Section.

To obtain the wave loads due to wave only or wave and current field, the wave

kinematics are first predicted using a vertically integrated 3D numerical model [35].

This model can efficiently compute the dynamics of ocean waves in the presence or in

the absence of the ocean current. The Vessel forces and moments were then predicted

using the surface elevation and RAO-based methods described above. The wave force
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Table 4.1: Simulation matrix for environmental models

Case Environment
Condition

Wave Current Ice

No. Conditions H
Hs

(m) T
Tp

(m) Angle U(m
s

) Angle ConC;
Floe(m);
Thick(m)

Drift
(Kts)

Angle

1 Regular
wave only

8 8 0 NA NA NA NA NA

2 Regular
wave only

8 12 0 NA NA NA NA NA

3 Regular
wave only

8 12 45 NA NA NA NA NA

4 Irregular
waves
(JON-
SWAP)

15 14.6 0 NA NA NA NA NA

5 Irregular
waves, [16]

15 14.6 0 0 NA NA NA NA

6 Regular
wave with
collinear
current

8 12 0 -2.5 180 NA NA NA

7 Irregular
waves
[16] with
collinear
current

15 14.6 0 1 NA NA NA NA

8 Managed
Ice Field

NA NA NA 1.2 0 90%,
50m,
2m

1.2 0

9 Managed
Ice Field

NA NA NA 0.25 10 80%,
50m,
2m

0.5 10

10 Waves and
Current,
Managed
Ice Field

1.5 14.6 0 1 0 90%,
50m,
2m

1.2 0

11 Waves and
Current,
Managed
Ice Field

1.5 14.6 0 1 0 80%,
50m,
2m

0.5 10
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Figure 4.4: The generic Drillship hull utilized in the present research.

RAOs from ANSYS-AQWA for the drillship vessel and for different practical wave

conditions were obtained for 0◦ to 180◦ wave heading in an interval of 15◦. The values

required in between those headings were obtained by interpolation. The first-order

wave loads on the vessel were then estimated using the transfer function for a given

wave. The forces and moments due to the broken ice field is obtained using the

regression-based model [24]. For the sake of the present simulations, the wave and

ice interaction is assumed negligible.

Computations are carried out using Case 1, Case2 and Case 3. The obtained

results are quite reasonable (not shown in this paper for space limitations). The

validations of the 2D version of these models are reported in [39],[38].

The results of irregular waves and forces for Case 4, shown in Fig 4.5, are sim-

ulated using JONSWAP spectrum is used for the simulation of the wave-only case.

But for the case of interaction of irregular waves [22] with a current, [9] spectrum is

utilized shown by Eq. 4.12. Fig 4.6 shows results for surface elevations and forces

due to a regular wave interaction with an opposite current. The computational con-

dition is described in Case 6. In Fig 4.7, the predicted surface elevation is compared

with the RAO-based reconstructed surface elevation for Case 6. Fig 4.8 describes the

results for instantaneous surface elevations and force components when an irregular

wave field interacts with a vertically uniform current for Case 7. Fig 4.9 compares

the power spectrums for irregular waves without (Case 5) and with (Case 7) current.

Fig 4.10 and 4.11 present the ice forces and moment in the horizontal plane on the
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Figure 4.5: Wave elevations and forces for case-4 with JONSWAP SPECTRUM (Hs

= 15 m, Tp = 14.6 s)

Figure 4.6: Surface elevations and wave forces for case-6, regular wave with non-
collinear current (H = 8 m, T = 12 s, U = -2.5 m/s, wave angle = 0o and current
angle = 180o)
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Figure 4.7: Comparisons of the surface elevations between the predicted and RAO-
based reconstruction.

Figure 4.8: Wave elevations and forces for case-7 with GODA [16] SPECTRUM (Hs

= 15 m, Tp = 14.6 s and U = 1.0 m/s)
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Figure 4.9: Comparison of the power spectrums for irregular waves with and without
uniform current for case 7 using [16] SPECTRUM (Hs = 15 m, Tp = 14.6 s and U
= 1.0 m/s)

Drillship due to cases 8 and 9, respectively, as described in Table 4.1. Both conditions

are considered extremely harsh, whereas the first case is for a headon condition, and

the next case is in an oblique condition. Fig 4.12, through Fig 4.14, presented the

simulated disturbances that include ice, waves, and current. In these predictions,

the interactions between the wave and current were included. However, wave and

ice-field interactions were neglected. Fig 4.12 shows the linear superimposition of

the forces in the surge direction. A further discussion on the ice load characteristics

is beyond the scope of this paper.

4.4 Real-time Simulations

The dynamic positioning (DP) performance of the Drillship vessel under the influ-

ence of two cases (Case 10 and Case 11 in Table 4.1) of environmental disturbances

comprising ice, wave and current is investigated in this Section. The vessel equipped
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Figure 4.10: Ice loads in a managed ice field, ice thickness 2M, 90% concentration,
floe size 50M, drift speed 1.2 knots and head-on conditions.

Figure 4.11: Ice loads in a managed ice field, ice thickness 2M, 90% concentration,
floe size 50M, drift speed 0.5 knots and 100 oblique condition.
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Figure 4.12: Combined wave, current and ice loads in surge, ice thickness 2M, 90%
concentration, floe size 50M, drift speed 1.0 knot, waves with Hs = 1.5 m, Tp = 14.6
s and current with U = 1.0 m/s

Figure 4.13: Combined wave, current and ice loads in surge, sway and yaw for case-
10, ice thickness 2 M, 90% concentration, floe size 50 M, drift speed 1.2 knot, waves
with Hs = 1.5 m, Tp = 14.6 s and current with U = 1.0 m/s



70

Figure 4.14: Combined wave, current and ice loads in surge, sway and yaw for case-
11, ice thickness 2 M, 80% concentration, floe size 50 M, drift speed 0.5 knot, waves
with Hs = 1.5 m, Tp = 14.6 s and current with U = 1.0 m/s

with a non-linear proportional integral and derivative (NPID) control system with

acceleration feedback type control system [1] were simulated and evaluated under the

two different extreme sea conditions. Matlab/Simulink models of the fullscale ship

are used, which were developed under the scope of a multi-year R & D project [1].

In the model, an unscented Kalman filter (UKF) is used to estimate vessel motions

and to control low frequency (LF) motions while filtering out wave frequency (WF)

motions.

Fig 4.15 and Fig 4.17 show the thruster responses during the stationkeeping of

the drillship with a target (0,0,0) deg and (0,0,10) deg, respectively, for the two cor-

responding disturbance cases. Fig 4.16 and Fig 4.18 show the corresponding offsets.

Both cases show that the vessel could not maintain its station in the target location

and orientation. This is attributed to the extreme ice, wave and current conditions.

These simulations were carried out to demonstrate the processes of environmental

disturbances modelling for real-time simulation applications and not to investigate

DP systems capability, no further discussion on the DP system’s capability is offered.
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Figure 4.15: The thruster loads during the DP operations of the Drillship with NPID
controller subjected to case-10 disturbances loads.

Figure 4.16: The X, Y offsets of the DP vessel with the target position of 0 M, 0 M,
0 DEG for case-10.
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Figure 4.17: The thruster loads during the DP operations of the Drillship with NPID
controller subjected to case-11 disturbances loads.

In a previous comparative study to investigate five state-of-the-art control schemes,

the authors found that the NMPC (non-linear model predictive control) showed the

best ability to deal with extreme disturbances efficiently [67]. Although all five con-

trollers were able to maintain the ship position under moderate conditions, only

the NMPC and the MRPID (multi-resolution PID) controllers were able to stabi-

lize the ship under extreme sea states. The authors plan to investigate further the

performance of NMPC and MRPID to improve its performance to deal with several

realistic external disturbances that include wind, waves, currents, and ice, including

the two scenarios presented above.

Regardless of the modelling approach taken, the availability (and quality) of

measured data is paramount to the success of the environmental disturbance model

development. For the range of environmental conditions and scenarios of interest

(dictating wave characteristic and interactions with current, the presence of ice, type

and characteristics), and for each vessel of interest (e.g. Drillship, supply vessel, ice

breaker, etc.), the current modelling technique require the availability of a dataset
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Figure 4.18: The X, Y offsets of the DP vessel with the target position of 0 M, 0 M,
10 DEG for case-11

that extends the range of conditions and operations expected from the models. The

authors plan to carry out an extensive test program to evaluate a ship’s performance

with different controllers for DP and Autonomous operations in an environment

consisting of wave, current and/or ice.

4.5 Conclusion and Future Work

In the numerical simulation, the combined environmental loads due to wind, wave,

current, and ice are utilized to perceive the response of the NPID controller in keeping

the DP vessel at the target (0, 0, 0) position. Each of the wave, current, ice and

interaction models presented can be used for real-time and faster than real-time

simulations.

The wave-current models used here for various simulations are all validated for
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limited cases and are published in different conferences and journals. The ice force

models are developed and validated using an extensive dataset of DP vessel’s inter-

actions with managed ice-field. The wave and ice interaction models are still in the

development phase, and besides some rudimentary empirical techniques, the complex

interactions are not well understood.

Regardless of the modelling approach taken, the availability (and quality) of mea-

sured data is paramount to the success of the environment disturbance model de-

velopment. The present modelling techniques and performance of the DP-controller

require further validations using basin test data.

The external disturbance models developed or recommended in this research are

expected to help to develop and evaluate the most effective control scheme for dif-

ferent extreme sea conditions. The results also support control system development

for dynamic positioning and autonomous operations of ships and offshore platforms.

These models should be rigorously tested and validated for DP and autonomous

operations in realistic environmental conditions.
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Abstract

In constantly changing high sea environments characterized by large waves, turbulent

surface currents, and high wind gusts, a dynamic positioning (DP) system with en-

hanced positioning capabilities is becoming essential. The controller in a DP system

calculates the force needed by the propellers and thrusters to counteract environmen-

tal forces and keep the vessel at its desired position. In addition to maintaining the

position, minimizing the thruster demand is another control objective pursued by a

type of controllers, termed as energy-efficient DP or the so-called “Green DP”. In line

with this objectives, the present work proposes a controller that minimizes thruster

demand while maintaining position constraints. This novel energy-efficient controller

(i.e., like Green-DP) exploits the structure of the economic nonlinear model predic-

tive controller (ENMPC) and adopts “green” objectives and performance metrics,

including thruster energy efficiency. The MATLAB/Simulink simulator and toolbox

add-ons were used in a simulation environment to demonstrate the performance of

the proposed energy efficient DP, called Green-NMPC. The controller was tested for

moderate to high sea wave conditions. The controller reduced up to 50% thruster de-

mand in sway direction compared to NMPC while maintaining the vessel positioning

objectives.
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5.1 Introduction

Maritime operations in far offshore regions face additional environmental challenges.

For instance, waves tend to be larger, winds stronger, and surface currents more

turbulent. Unless these disturbances are filtered or adequately dealt with by the

controller, they can cause excessive thruster movements leading to wear and tear in

the thruster, poor controller performance, and reduced energy efficiency [17]. The

noise effect in a dynamic positioning (DP) controller is commonly dealt with using

different types of filters and observers. For example, [3] and [14]applied a nonlinear

passive observer (NPO) along with a nonlinear proportional–integral–derivative con-

troller with acceleration feedback (NPID-AFB). Model based filters such as, Kalman

filter (KF) ([2]; [7];[8];[16]), nonlinear extensions of KF including extended Kalman

filter (EKF) [20], unscented Kalman filter (UKF) [18] showed more success in filter-

ing noise, and first and second order wave frequencies. Application of model based

filter has also lead to interest in the use of model predictive controller (MPC) in the

DP applications. As the controller is modelbased it is a natural fit for model based

filters such as the KF and the EKF. Additionally, MPC calculates the control action

by minimizing the offset over a prediction horizon. Therefore, the controller has a

long term view and does not exert excessive control action immediately. Applica-

tions of Linear MPC and nonlinear model predictive controller (NMPC) have been

reported in literature for station-keeping as well as high- and low-speed reference

tracking [22]. In [19], researchers implemented a linear MPC for DP use in a semi-

submersible platform. [11] presented a relaxed dynamic positioning control method

using NMPC. [10] used two tightly coupled UKF to estimate states and unknown

disturbances, together with an NMPC algorithm. The controller performance was

evaluated in real-time on a high-fidelity simulator. To summarize, the controllers

reported in the literature used various model based filters to filter out first order

and second order wave frequencies. There has been less work on using the controller

configuration to deal with the wave frequencies and noise. Also, the control objec-

tives have been mostly to maintain the position tightly. As a result these controllers

often impart large and erratic control demand. This can be severely diminishing to
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the useful life of the thrusters. In some cases, such control demands are artificially

minimized by applying a filter, imposing a ramp rate, and introducing move accu-

mulation. However, all these are ad hoc methods and thus do not deliver optimal

control performance.

Kongsberg Inc. has been marketing a more environmentally friendly control sys-

tem under the name “Green DP”, which is claimed to minimize excessive thruster

movements. The idea is to minimize the thruster movement, especially during moder-

ate environmental conditions to minimize energy consumption and provide a greener

option. The controller has three major components: environmental compensator,

model predictive controller, and position predictor. In order to minimize thruster

demand a low gain PD controller was used. In addition to the PD controller an

NMPC was used with constraints set at the outer boundary of the operational re-

gion to prevent the vessel from drifting outside the operational region [9]. However,

no further details about the controller structure are available in the published lit-

erature. In contrast to Green-DP the proposed method used NMPC solely for the

entire operational region.

Motivated by the goals of Green DP, in this paper, we propose a controller that is

formulated on the structure of economic NMPC (ENMPC). The goal of the controller

is to minimize the operational cost of the DP operation, specifically the thruster de-

mand and thus wear and tear of the thruster without compromising the position

constraints. In a typical NMPC, the cost minimized at each step is not necessar-

ily directly related to the economic cost of the plant operation. Usually, a linear

programming (LP) layer will provide the optimal setpoint by minimizing the costs

associated with a steady-state operation. In ENMPC, the cost information is directly

included in the optimization layer. The setpoint tracking stage cost of an NMPC is

changed to economic cost in an ENMPC [1].

This work presents a controller that is based on the ENMPC structure with signif-

icant modifications to achieve the “green” objective. We call the controller “Green-

NMPC”. The proposed Green-NMPC also uses a UKF-based observed module to
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filter out high-frequency noise from the sensor measurements. The controller perfor-

mance is compared with two benchmark controllers, NMPC and NPID. The present

work’s further contribution is to evaluate each controller’s performance in high sea

conditions, while most results in the literature are reported for mild to moderate

sea conditions. For this study, the term “high” indicates wave height greater than

6 m as well as wave peak periods of more than 10 s (Tp > 10s). Such conditions

are generally the norm in the North Atlantic and prevail for nearly half the time the

vessels are at sea.

The remainder of the paper is organized as follows: Section 2 provides the sys-

tem description of the 3-DOF (degrees of freedom) dynamic model ship, Section

3 describes the disturbances and their simulation, Section 4 presents the proposed

Green-NMPC structure, Section 5 presents the results and discussions, and Section

6 concludes the paper.

5.2 Mathematical Modeling of Vessel

For a ship depicted in Fig. 5.1, a simplified mathematical model of vessel dynamics

and kinematics with 3 DOF [10] is presented in Eq. (5.1).

MRB v̇ +MAv̇r + CRB(v)v + CA(vr)vr +D(vr)vr = τ (5.1)

η̇ = J(ψ)v (5.2)

where , MRB ∈ R3×3 and MA ∈ R3×3 are the rigid body mass matrix representing

the inertia of the vessel and the hydrodynamic added-mass matrix, and, CRB ∈ R3×3

and CA ∈ R3×3 are the rigid body Coriolis and centrifugal components as well as

added-mass derivatives corresponding to the velocity coupling, the matrix, D ∈
R3×3 includes energy dissipative terms due to relative motion between vessel and

surrounding fluid, τ = τc + τc.s + τω is the applied force with τc is the control input,
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Figure 5.1: Schematic diagram of a vessel with its motion directions [5].

τc.s is the surface current force, and τω is the wave force. Furthermore, η = [x, y, ψ]T

where (x, y) is the horizontal position vector relative to the inertial frame and ψ is

the vessel heading in an inertial frame J(ψ) ∈ R3×3 is the rotational matrix between

the inertial frame and the body frame. Also, ν = [ν1, ν2, ν3]T with ν1, ν2, and, ν3 are

the body-fixed surge velocity, sway velocity, and yaw rate, respectively. The term νr

represents velocity relative to the current. Fig. 5.1 shows the sign conventions.

The rotational matrix J(ψ) is computed as follows:

J(ψ) =

 cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 0

 (5.3)

The vessel is considered to have a typical set of sensors including accelerometer,

gyroscope, attitude sensor, and differential global positioning system (DGPS) sensor.
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Table 5.1: Definition of sea states (Price, 1974).

Number Description
of sea state

Significant
wave
height,Hs[m]

Peak Wave
Frequency
ωp[rad/s]

Probability
in North
Atlantic

1 Moderate 1.25–2.5 0.79–0.68 40.99

2 Rough 2.5–4.0 0.68–0.60 21.33

3 Very rough 4.0–6.0 0.60–0.53 7.01

4 Very rough 6.0–9.0 0.53–0.46 2.69

5 Extreme 9.0–14.0 0.46–0.39 0.43

5.3 Disturbance Modeling

The setpoint stabilization under various environmental disturbances is of prime im-

portance in ship DP operations. This study simulates wave action for various sea

states. The simulator features an environment module that simulates wave, and

surface current. Wave characteristics of different sea conditions are provided in Ta-

ble.5.1.

5.3.1 Ocean Waves

The wave disturbance was simulated using the wave module of the MSS toolbox.

Fig. 5.2 shows the overall methodology for calculation of the wave force. The input

parameters to the module are significant wave height, Hs and average zero crossing

wave period, Tz. The modified Pierson–Moskowitz (MPM) expressions were used to

calculate the wave given by

S(ω) = AMPMω
−5exp(−BMPMω

−4) (5.4)

where, S(ω) describes a wave spectrum, with ∆ω designating constant difference

between frequencies; are given by,



87

AMPM =
4π3H2

s

T 4
z

(5.5)

BMPM =
16π3

T 4
z

(5.6)

The time-domain realizations for wave spectra is given by Eq. (5.7),

ξ(t) =
N∑
k=1

M∑
i=1

√
2S(ωk, βi)∆ωk∆βisin(ωkt+ εki) (5.7)

where for each wave, the phase angle εki is uniformly distributed over the interval

(0, 2π) or equivalently, (−π, π), βi describes the angle at which waves impact the

vessel, εk describes phase, ωk is the randomly selected wave frequencies, N frequencies

and M directions are selected from the range ∆ω and ∆β [5]. The wave accelerations

are calculated as follows:

a1(t) =
N∑
k=1

M∑
i=1

ω2
k

√
2S(ωk, βi)∆ωk∆βicos(ωkt+ εki) (5.8)

a3(t) =
N∑
k=1

M∑
i=1

−ω2
k

√
2S(ωk, βi)∆ωk∆βicos(ωkt+ εki) (5.9)

Assuming that the forces are distributed evenly along the vessel’s main dimension,

the first order and second order wave-induced forces are calculated using Eqs. (5.10)

and (5.11) respectively.

τω1 =

 ρωV a1cos(β0)

ρωV a1sin(β0)

ρωV Da3

 (5.10)
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Figure 5.2: Overall structure of the proposed dynamic positioning system

τω2 =


1
8
ρωg(Rx(ω)ξ)2Bcos(β0)

1
8
ρωg(Ry(ω)ξ)2Lcos(β0)

1
8
ρωg(Rψ(ω)ξ)2BLDcos(β0)

 (5.11)

where Rx, Ry, and Rψ are reflection coefficients, ρω is the density of water, V is the

velocity of the ship, and β0 is the main wave direction. L is the length, B is the

width and D is the draught of the ship. Finally, Eq. (5.12) gives the total wave force

acting on the ship [5]; [6].

τω = τω1 + τω2 (5.12)

5.3.2 Water current model

The 2D non-rotational current velocity is:

η̇c =

 Vccosβc

Vcsinβc

0


T

(5.13)

where current velocity is Vc and the angle between x-axis and the direction of current

is βc . Both Vc and βc are slowly-varying 1st-order Gauss–Markov processes given

as:
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V̇c + µ1(Vc − Vc0) = ω1 (5.14)

β̇c + µ2(βc − βc0) = ω2 (5.15)

with Vc0 and βc0 are mean values, µ1 > 0, µ2 > 0 and ω1, ω2 are Gaussian

variables. In this study we used µ1 = 0.1, µ2 = 0.2, ω1 ∼ N(0, 0.02), ω2 ∼ N(0, 0.01).

If µ1 = 0 and µ2 = 0, this would denote a random walk process, with a magnitude

of velocity being constrained by saturation elements, as expressed in Eq. (5.16) [5];

[6],

Vc,min ≤ Vc ≤ Vc,max (5.16)

The relative current velocities with respect to ship’s fixed reference frame are:

Vc,x = Vccos(βc −Ψ)− ν1 (5.17)

Vc,y = Vcsin(βc −Ψ)− ν2 (5.18)

Accordingly the resultant current forces acting on a surface vessel are given by,

τc,x =
1

2
RwxρwATV

2
c,x (5.19)

τc,y =
1

2
RwyρwALV

2
c,y (5.20)

where Rwx and Rwy are current drag coefficients, AT is underwater transverse current

projected area of the vessel, and AL is underwater lateral current projected area of

the vessel [5]; [23].



90

Figure 5.3: Overall structure of the proposed dynamic positioning system

5.4 Proposed Energy Efficient Controller

The overall structure of the proposed dynamic positioning system is shown in Fig.

5.3. A virtual ship is considered as the system, further we considered wave, and

current are the two unmeasured disturbances acting on the system. These distur-

bances move the ship away from the desired position. It is required to estimate the

unknown disturbances as well to generate control actions to negate the disturbance

effect. The objectives were satisfied in two stages. In the first stage, two tightly cou-

pled UKFs were used to estimate the states and unknown disturbances. Estimated

states were used as the initial state of an NMPC based controller, and an optimal

real-time solution was proposed. In [10], a similar formulation for NMPC was used.

However, the objective of the NMPC was to maintain the position of the vessel pre-

cisely, which demanded aggressive thruster action. In the proposed Green-NMPC,
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the objective function is defined such that it allows the vessel to float inside the

safety limit with reduced thruster movements. The weights in the objective function

are functions of the deviation from the target position rather than constant values

as in typical NMPC operations. Thus, both safety targets and energy efficiency are

achieved through the improvement of the controller. Different components of the

dynamic positioning system are described in the following subsections.

5.4.1 Observer Module

For estimating potential sensor biases, unknown disturbances and overall vessel

states, an observer module is used that employs two parallel UKF sub-modules.

UKF 1 is used to estimate potential sensor bias and overall vessel states. UKF 2

estimates disturbance inputs by applying the vessel’s dynamic model Eq. (5.1) in

conjunction with the UKF 1 state estimation results. The two UKF modules iter-

atively estimate the noise and bias free states and unknown inputs. The details of

the algorithm can be found in [10].

5.4.2 Control Module

Consider a discrete time-constrained dynamic system

ηk+1 = f(ηk, uk); g(ηk, uk) ≤ 0 (5.21)

where f is the nonlinear system dynamics and g is the linear or nonlinear constraint

function. For the DP system, the economic stage cost function, ϕec(ηk, uk), is defined

as follows:

ϕec = Lx ‖Fx,k − Fx,k−1‖2 + Ly ‖Fy,k − Fy,k−1‖2 + Lψ ‖Tψ,k − Tψ,k−1‖2 (5.22)
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where Ll∈x,y,ψ is a function defined in Eq. (5.26), Fx and Fy are the thruster forces

in surge and sway direction, and Tψ is the torque for yaw rotation.

When the cost function is not strongly convex a quadratic regularization term is

added to the cost function [13]. The cost function with the regularization term has

the following form:

ϕ(ηk, uk) = ϕec(ηk, uk) + ‖ηk − ηs‖2 π (5.23)

The ENMPC tries to find a feasible set of control actions that can keep the system

within the constraints by minimizing the cost function

min
ηk,uk

O(ηk, uk)=

Np−1∑
k=0

ϕ(ηk, uk) (5.24)

s.t. ηk+1 = f(ηk, uk);

g(ηk, uk) ≤ 0

The final stage cost function in expanded form is:

ϕec = Lx ‖Fx,k − Fx,k−1‖2 + Ly ‖Fy,k − Fy,k−1‖2 + Lψ ‖Tψ,k − Tψ,k−1‖2

+ ‖xk − xr‖2 π1 + ‖yk − yr‖2 π2 + ‖ψk − ψr‖2 π3 (5.25)

A conventional NMPC uses constant weight matrices L = [Lx + Ly + Lψ] and π =

[π1 + π2 + π3] for penalizing inputs and states, respectively. These parameters are

chosen to minimize corresponding deviations based on operational requirements. In

our proposed Green-NMPC, the components of matrix L are set as a function of

the position of the vessel along the x and y directions. The weight components are

defined to meet the following performance criteria.

1. If the position of the vessel is well inside the safety limits, there is less concern

about the position of the vessel. The controller’s objective shifts to minimizing the

thruster energy. In order to mimic this behavior, the weight corresponding to the
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thruster force needs to be set to a high value when the vessel is well inside the safety

limits. It allows the controller to penalize thruster demands more compared to the

state deviations. As a result, thruster demand is minimized significantly. Having

a relaxed weight on state deviation, the controller allows the vessel to float around

inside the safe operation region instead of tracking the reference tightly.

2. When the vessel nears the safety limits, the controller’s priority changes to

maintaining the position and keeping the vessel within the safety limits. Accordingly,

as the vessel nears a safety limit, weights on the thruster force should be low so that

the controller does not penalize the objective function for thruster usage. This will

allow the controller to utilize all available thruster power to keep the vessel within

safety limits.

To fulfill these two criteria, the weight functions (Lx, Ly) were set as continu-

ously varying nonlinear function of the respective axis distance. For example, Lx

that penalizes the thruster force Fx is defined as a function of x fulfilling the above

requirements. After several trial and error, we selected the nonlinear function defined

in Eq. (5.26).

Lx = 100− x4(log(|Tth|)− |x|)
|Tth|

(5.26)

where, Tth is the position threshold, and x is the current x-axis position of the vessel.

Ly is also defined similarly.

Fig. 5.4 (solid blue line) shows the shape of the weight function. Clearly, the

weight function is convex. However, the convexity of the stage cost function Eq.

(5.25) is still uncertain. The economic stage cost may not be strictly increasing,

therefore, it does not satisfy the Lyapunov based criteria for stability analysis [21].

Significant work has been done to develop cost functions for the ENMPC that adhere

to the Lyapunov function to provide a stable solution. According to [4], the cost

function Eq. (5.25) can be admitted as Lyapunov function if,

Condition 1: the system is weakly controllable, i.e.,
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Figure 5.4: Shapes of weighting function L used in Green NMPC.

N−1∑
kk=1

|uk − us| ≤ γ(|η − ηs|)

Where γ is a positive constant, and subscript s denotes steady-state point.

Condition 2: the rotated stage cost function follows strong duality. The rotated

stage cost is given by adding the constraints to the cost function (Eq. 5.25), changing

the optimization problem to the following form:

ϕrotated(ηk, uk) = Lx ‖Fx,k − Fx,k−1‖2 + Ly ‖Fy,k − Fy,k−1‖2

+ Lψ ‖Tψ,k − Tψ,k−1‖2 + ‖xk − xr‖2 π1

+ ‖yk − yr‖2 π2 + ‖ψk − ψr‖2 π3 + λs
T (ηk − f(ηk−1, uk−1)) (5.27)

min
uk,ηk

Np−1∑
k=0

ϕrotated(ηk, uk) (5.28)

s.t.g(ηk, uk) ≤ 0



95

where λs is the multiplier from the equality constraints. Note that the inequality

constraints are not added to the rotated cost. To prove duality, it has to be shown

that the solutions of Eqs. (5.25) and (5.28) will give the same outcome. We per-

formed extensive simulation, reported in Section 5.2, to investigate the convergence

of the algorithm. The proposed Green-NMPC for dynamic positioning calculates the

required thruster force (i.e., the forces for the X and Y directions, along with the

torque) to regulate the ship’s position. This approach solves a constrained objec-

tive function to evaluate the optimum control action at each time step. Estimated

states from the observer module are used as the initial states for the controller.

The predicted state trajectories are evaluated using the vessel model and estimated

disturbance over a fixed prediction horizon TH from the initial state. The NMPC

approach uses moving horizon predictions over the fixed windows to solve at each

iteration ([12];[22]). After penalizing the deviation of the states and control inputs

from the references, the following objective function is solved at any time step t0:

Jt0 = arg min
η,u

t0+TH∑
k=t0

Lx ‖Fx,k − Fx,k−1‖2 + Ly ‖Fy,k − Fy,k−1‖2

+ Lψ ‖Tψ,k − Tψ,k−1‖2 + ‖xk − xr‖2 π1

+ ‖yk − yr‖2 π2 + ‖ψk − ψr‖2 π3 (5.29)

Or more compactly,

Jt0 = arg min
η,u

t0+TH∑
k=t0

‖uk − uk−1‖2 L+

t0+TH∑
k=t0

‖ηk − ηr‖2 π (5.30)

s.t.ηk+1 = f(ηk, uk)

µ(uk, ηk) ≤ 0

where π is constant weighting matrix and L is continuously varying nonlinear function

as defined in Eq. (5.26), xr denote reference states, and t0 indicates the control
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computation’s start time, ηk and uk are system states and thruster input at time

step ‘k’. System dynamics’ constraints cover each state (six in total), ([η v]), but

only the control inputs uk, position, and orientation vector ηk are penalized. The

reference state vector serves as the setpoint; for the DP problem, setpoint remain

at zero. The Green-NMPC solves the objective function at every time step. The

output is a series of control actions uk = [Fxk, Fyk, Tψk]
t0+TH
k=t0

and predicted states

ηk = [xk, yk, ψk]
t0+TH
k=t0

. From the set of control actions, the first set of forces and

torque ([Fx1, Fy1, Tψ1]) is applied to the thruster and the entire optimization step is

repeated in the next time step.

5.5 Results and Discussion

To demonstrate the performance of the proposed algorithm, specifically energy effi-

ciency and maintaining ship position, several simulations were carried out using the

Cybership II ship model described in Appendix A. We considered two models of Cy-

bership II: (i) a low frequency model of Cybership II without any thruster dynamics,

and (ii) a low frequency model of Cybership II with detailed thruster dynamics. The

parameters for the normalized model are calculated by dividing each parameter by

the mass of the vessel. For simulation, the sampling time is set at 0.1 s, and a

prediction horizon of 7 samples were selected. The x and y axis limits were set to

−5m < x < 5m and −5m < y < 5m. The thruster limits, torque (Tψ) and applied

force (Fx, Fy), were set to −250N-m< Tψ < 250N-m and −25N < Fx, Fy < 25N

respectively. The MATLAB function “fmincon” is utilized for optimization. The

results of the Green-NMPC are compared with an NMPC [10] and a Nonlinear PID

(NPID) [6] controller for identical environmental conditions. In this study, the con-

troller’s performance was evaluated for two sea conditions: ‘moderate’ and ‘high’.

‘Moderate’ condition refers to a sea state characterized by wave height (H = 2.5 m)

with peak wave frequency (ωp = 0.79 rad/s). The ‘high’ condition refers to a sea

state that is characterized by large wave height (H = 6 m) along with peak wave

frequency (ωp = 0.53 rad/s). Parameters for these and other sea states are provided



97

Figure 5.5: Effect of weight function on ship position and thruster demand for con-
ventional NMPC (constant weight), Green-NMPC (with optimized weight function),
and the Green- NMPC (with over-penalized weight function).
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Figure 5.6: Convergence comparison of NPID, NMPC, and Green-NMPC controllers:
ship X, Y position and heading angle ψ changing with time for ship starting from
different initial points.
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in Table 5.1 [15].

Figure 5.7: Position of the vessel in xy-plane starting from [-4, -4, 0] for high sea
state (wave parameters: Hs = 6 m, ωp = 0.53 rad/s, β0 = 0; current parameters:
Vc0 = 1.5 m/s, βc0 = 0).

5.5.1 Selection of Weight Function Parameters

The nonlinear weighting function (Lx, Ly) is plotted in Fig. 5.4. The proposed

function was developed considering that safety limits are at -5 m and 5 m in both X

and Y directions, (Tth) was set to 10 m equal to the range of motion along x and y

direction. Setting the maximum weight to 100 signifies that priority of minimizing

the thruster demand increases by two order of magnitude compared to maintaining

the position when the vessel is close to the setpoint. The x4 term makes the curve

flat near origin, while the ”log” term forces the weights to 0 at the boundaries. To

illustrate the impact of changing the weight function, three different weight functions

were selected, and the performance of dynamic positioning and thruster demands

were observed qualitatively. For the first case (blue in Fig. 5.4), weight is kept

constant similar to a conventional NMPC. For the second case (red in Fig. 5.4), the

weight function is as described in Eq.(5.30) with optimized parameters that were

subsequently used for the proposed Green-NMPC. Finally, the green line in Fig. 5.4

is for an overcompensated weight function after multiplying Eq. (5.26) by a factor

of 5.
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The responses of the DP system for these three weight functions are shown in Fig.

5.5(a to f). For all three cases, the starting point is set at (-4, -4, 0), and the safe

operation region is defined as -5 m to 5 m coordinates for both X and Y directions.

The vessel position and thruster force, and torque (Fig. 5.5(b, d, f)) are presented

to demonstrate the impact of the weight functions. Results show that conventional

NMPC tightly controls the position of the vessel with a significant.

Figure 5.8: Thruster force and spectral density along x direction for different con-
trollers for high sea state (wave parameters: Hs = 6 m, ωp = 0.68 rad/s, β0 = 0;
current parameters: Vc0 = 1.5 m/s, βc0 = 0).
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Thruster demand in both X and Y directions. For a similar scenario, the Green-

NMPC reduces the thruster demand significantly using the penalty function. Finally,

for the over penalized Green-NMPC, the weight function is significantly larger than

the previous case. Due to its high weight, it has very little thruster fluctuations,

and energy is reduced significantly. However, the safety objective is violated for

this case, and the controller failed to keep the vessel inside the safety limits for

a short duration. From this study, it is concluded that the weight function needs

to be carefully chosen, maintaining a balance between safety criteria and energy

consumption. For the Green-NMPC, the weight function described by Eq. (5.26)

(second case of the current study) was used.

5.5.2 Convergence and Stability of the Controllers

In order to demonstrate the convergence and stability of the controller, eight different

starting points were considered for the vessel.The controllers were used to drive the

vessel to its origin. Current, and ‘moderate’ wave condition as given in Table 5.1

were the main disturbances. Fig. 5.6(a-f) show NPID, NMPC, and Green-NMPC’s

setpoint.

Table 5.2: Power and variance of control signals from different controllers for high
sea state (wave parameters: Hs = 6 m, ωp = 0.68 rad/s, β0 = 0; current parameters:
Vc0 = 1.5 m/s, βc0 = 0).

Direction Property NPID NMPC Green-NMPC

X
Power comparison 100% 93.7% 67.5%
Variance [N2] 11.04× 106 10.61× 106 6.86× 106

Y
Power comparison 100% 111.8% 54.0%
Variance [N2] 15.07× 106 18.19× 106 9× 106

ψ
Power comparison 100% 109.8% 116.6%
Variance [(N −m)2] 9.93× 106 12.12× 106 11.69× 106

Stabilization. The XY position of the vessel for NPID, NMPC, and Green-NMPC

controllers are shown in Fig. 5.6(a, c, e) when the reference was set at the origin [0, 0,

0]. Results show that for all cases, vessel positions were well within the safety limits.
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Table 5.3: Power and variance of control signals from different controllers for high
sea state (wave parameters: Hs = 6 m, ωp = 0.68 rad/s, β0 = 0; current parameters:
Vc0 = 1.5 m/s, βc0 = 0).

Direction Property NMPC Green-
NMPC

X
Power comparison 100% 89.29%
Variance [N2] 1.07× 107 6.86× 106

Y
Power comparison 100% 81.74%
Variance [N2] 1.595× 107 9.227× 106

ψ
Power comparison 100% 90.2%
Variance [(N −m)2] 9.77× 106 8.167× 106

However, as Green-NMPC relaxes the point reference tracking to area tracking inside

the safety limits there is more vessel movement for Green NMPC. Fig. 5.6(e) and

(f) show that Green-NMPC maintains the vessel movement within the safety limits.

At each time step, the target was attained and maintained. The vessel heading

eventually converged to 0 rad setpoint (see Fig. 5.6(b, d, f)).

5.5.3 Performance Comparison of the Controllers at Differ-

ent Sea Conditions

The performance of the controllers were evaluated for ‘high’ sea conditions. The

simulation conditions for ‘high’ sea conditions are provided in Table 5.1. Safety

limits are set at −5m and +5m in both X and Y directions. Hence, a safe operating

area is essentially a 10m×10m square on the XY plane. The position of the vessel on

the XY plane is plotted to observe whether the controller can keep the vessel inside

the safe operation square. Controllers’ performances were also assessed based on the

control demands of the thrusters. The variance and power of the control signals are

evaluated for each case. A controller that can maintain vessel position within the

safe operating region with the least variance in control signal and power demand is

considered to be the best. Simulations were performed first on the low frequency

Cybership II model without any thruster dynamics, followed by simulations on the
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Figure 5.9: Thruster force and spectral density along y direction for different con-
trollers for high sea state (wave parameters: Hs = 6 m, ωp = 0.53 rad/s, β0 = 0;
current parameters: Vc0 = 1.5 m/s, βc0 = 0).

Cybership II model with detailed thruster dynamics.

Simulation Results: Low Frequency Cybership II Model

The starting position of the vessel is considered at (-4, -4, 0). The trajectory of

the vessel on the XY plane is shown in Fig.5.7. As the starting position is close
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to the safety limit, initially NPID, NMPC, and Green-NMPC act similarly. Hence

the Figs. 5.8-5.10 show that thruster is almost saturated for all controllers initially.

When the controller moves from the edge to the center of the safe operation zone,

the Green-NMPC starts to put more weight on the thruster demand. Thus, the

thruster demand are reduced significantly compared to the NMPC, and the vessel

floats around within the safety limits. This claim is further verified by the spectral

gain of control signals shown in Figs. 5.8-f, 5.9-f and 5.10-f. The spectral density

of Green-NMPC shows a higher gain for low frequency region and lower gain for

high frequency region compared to the other two benchmark controllers. A lower

gain in high frequency region signifies that control actions of Green-NMPC has less

high-frequency movements. Performance of the control action is quantified from the

evaluated variance and power of the control signals. The variance of the control

signals and relative power consumption of the thrusters are reported in Table 5.2

for the [-4, -4, 0] starting point. Clearly the weight function of the Green-NMPC is

able to maintain a trade-off between keeping the position and minimizing thruster

movements. Especially the controller was effective in minimizing high frequency

movements of the thruster. The results suggest that Green-NMPC has significantly

less thruster demand compared to NMPC, up to 50% less thruster demand in sway

direction, and hence reduces the overall power consumption and wear and tear of the

thruster.

5.5.4 Simulation Results: Cybership II with Detailed Thruster

Dynamics

Finally, the optimized controller was implemented on the Cybership II model with

detailed thruster dynamics. The performance of the Green-NMPC was compared

qualitatively against the NMPC in Figs. 5.11 and 5.12. Clearly the thruster demand

calculated by the controllers are noisy compared to the applied thruster force and

torque.

The time plot shows fluctuations in thruster demands is much higher in NMPC
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Figure 5.10: Thruster torque and spectral density along the rotational axis for dif-
ferent controllers for high sea state (wave parameters: Hs = 6 m, ωp = 0.68 rad/s,
β0 = 0; current parameters: Vc0 = 1.5 m/s, βc0 0).

compared to the Green-NMPC. Further the spectral plot shows that the gain in the

low frequency region is lower for Green-NMPC compared to the NMPC. Due to the

inertia of the thrusters, part of the high frequency noise was filtered from the signal.

There is no marked difference between the spectral plots in the high frequency region.

The performance of the controllers are compared quantitatively in Table 5.3. In
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Figure 5.11: Cybership II with detailed thruster model controlled using NMPC under
high sea condition (wave parameters: Hs = 6 m, ωp = 0.68 rad/s, β0 = 0; current
parameters: Vc0 = 1.5 m/s, βc0 0).

all three directions the variances of the thrusters are less for Green-NMPC compared

to the NMPC. Power consumption is also less for Green-NMPC. These results further

validate the advantages of Green-NMPC in conserving energy. The ship model used

for the simulation cases is more realistic as it has detailed thruster model. This

provides further assurance for the potential energy savings of Green-NMPC in real-

life application.
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Figure 5.12: Cybership II with detailed thruster model controlled using Green-
NMPC under high sea condition (wave parameters: Hs = 6 m, ωp = 0.68 rad/s,
β0 = 0; current parameters: Vc0 = 1.5 m/s, βc0 0).

5.6 Conclusions

In this study, an energy-efficient NMPC based controller is developed for the dynamic

positioning of marine vessels, we call the controller Green-NMPC. The Green-NMPC

is motivated by the control goal of minimizing thruster demand. It is based upon
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the theoretical framework of the economic MPC (ENMPC). The controller uses dy-

namic weights in the cost function depending on the vessel position in contrast to

the constant weights in conventional NMPC. Thus, if the vessel is well within the

safety limit, the controller weighs more on the thruster movements and reduces the

thruster movement. On the contrary, if the vessel approaches the unsafe region, the

cost function weighs more on state deviation and thus works similar to the conven-

tional NMPC. The proposed controller was implemented for ‘moderate’ and ‘high’

sea conditions. The controller performance, specifically energy efficiency of the ship,

was compared against a conventional NMPC and a NPID controller. For all cases,

including high sea conditions, the controller was found energy efficient while it main-

tained the vessel position inside the safety limits. The Green-NMPC showed less

thruster demand in the time domain plots. It is further verified quantitatively from

the variance and the spectral strength of the thruster demand. Relatively lower

power demand was observed in the spectral plot for the Green-NMPC at the higher

frequency range. The weight function for this study was developed empirically for

the current safety targets. It needs further study to develop a methodology to select

a weight function that is applicable for more general purpose.

Appendix A. SeaRose low frequency vessel model

The 3-DOF vessel model and the model parameters are given below (see Table

5.4):

MRB =

 m 0 0

0 m mxG

0 mxG IZ



MA =

 −Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ


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CRB =

 0 0 −m(xG)r + v)

0 0 mu

m(xGr + v) −mu 0



CA =

 0 0 Yv̇vr

0 0 −Xu̇ur

−Yv̇vr Xu̇ur 0



DL =

 −Xu 0 0

0 −Yv −Yr
0 −Nv −Nr



DNL =

 X|u|u|ur| 0 0

0 −Y|v|v|vr| − Y|r|v|r| −Y|v|r|vr| − Y|r|r|r|
0 −N|v|v|vr| −N|r|v|r| −N|v|r|vr| −N|r|r|r|


T
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Table 5.4: Ship parameters used in the study.

Parameter Value

Mass, m 7.889× 106 kg

Length of ship, L 85 m

Width, wd 22m

Draught, d 7.2 m

xG 3.22 m

IZ 2.958× 109 Kg.m2

Xu̇1 −6.86× 105 Kg

Yu̇2 −2.0806× 107 Kg

Nω̇ −1.6807× 109 Kg.m2/s

Xu1 −6.5044× 103 Kg/s

Yu2 −8.2835× 107 Kg/s

Yω −2.0806× 107 Kg.m/s

Nu2 8.9823× 104 Kg.m/s

Nω −3.8168× 108 Kg.m2/s

X|u1|u1 −2.9621× 104 Kg/m

Y|u2|u2 −3.6472× 104 Kg/m

Y|ω|u2 −2.76115× 105 Kg

Y|u2|ω −2.76115× 105 Kg

Y|ω|ω −1.7874× 105 Kg.m

N|ω|ω −1.2605× 109 Kg.m2
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Abstract

The primary objective of a Dynamic Positioning (DP) controller is to maintain vessel

position under varying environmental disturbances, while minimizing thruster usage.

This work presents the development of an innovative energy-efficient DP controller,

named Green NMPC (GNMPC), which minimizes thruster demand while upholding

position constraints. Inspired from the structure of the economic nonlinear model

predictive controller (ENMPC), GNMPC aligns with ”green” objectives and perfor-

mance metrics, notably thruster energy efficiency. Extensive DP tests were conducted

across a spectrum of wave conditions, including head seas, oblique angles, and large

position set-point changes, to validate the efficacy of the GNMPC approach and eval-

uate the dynamic positioning system’s effectiveness in diverse challenging situations.

The results demonstrated that the proposed controller is energy efficient compared

to a benchmark NMPC and proportional-integral-derivative (PID) controller. It suc-

cessfully reduced thruster demand in the sway direction compared to NMPC while

preserving the vessel’s positioning objectives.

6.1 Introduction

A dynamic positioning (DP) system keeps a ship at a designated position and desired

heading using its thrusters [12]. DP technology is crucial in various applications,

such as exploring deep-sea petroleum resources, off-shore supply operations, off-shore

survey applications, etc. Accuracy, precision, and energy efficiency are key factors
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when designing and developing a DP system. In earlier studies, the main focus

was on the accuracy and precision of the controller [11, 27]. In recent years, there

has been a significant discussion on developing solutions prioritizing high efficiency

and low carbon emissions. Improving efficiency within the DP system reduces carbon

emissions during operation and mitigates the overall stress of components, enhancing

their longevity. This study aims to implement and test popular DP control strategies,

including one newly proposed energy-efficient DP controller, to compare performance

and evaluate the efficiency and frequency of thruster movements.

The first DP systems developed in the 1960s used the standard proportional,

inertial, derivative (PID) controllers for horizontal motion (surge, sway, and yaw).

Tuning the gains of the PID controller to perform under various sea states is chal-

lenging. Various approaches have been reported in the literature for tuning PID

controllers for DP. In a recent study, authors in [37] proposed a fuzzy rule based PID

controller for DP applications, where the controller gains were obtained through

fuzzy inference.[4, 15, 26]. Following the PID based DP controllers, more complex

controllers based on modern control theory were introduced to DP application. Au-

thors in [15, 4] proposed an optimal control theory based DP controller with a Kalman

filter based estimator to separate low frequency and high frequency motion of the

vessel due to disturbances. Separating high and low frequency motions enabled the

controllers to apply control actions only for low frequency motions due to forces such

as wind, current and wave drift forces.

Another control strategy widely used in industry is model predictive control

(MPC). A key feature of MPC is its ability to handle nonlinear and multi-input-

multi-output system constraints. Early MPC-based DP systems utilized a linearized

model of the vessel. The nonlinear dynamics of the vessel were linearized using the

small angle theory [34]. The vessel might deviate significantly from the operating

point in practical DP applications. Hence, the assumptions made during lineariza-

tion are violated, and the MPC might not provide the optimal control. Recent

studies have proposed nonlinear model predictive controllers (NMPC) that utilize

the vessel’s nonlinear dynamics without linearization [9, 19, 33].
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The control objectives of DP applications in literature have primarily aimed at

maintaining the desired position and heading of the vessel. Continuously trying to

correct the offset has often resulted in control demand that is large, erratic, and

shortens the thrusters’ life span. Several techniques have been proposed to mini-

mize the variations in control demands. One such technique is to isolate the low

frequency (LF) and high frequency (HF) motion of the vessel due to effect of waves

using Kalman filter techniques and apply control based on the LF motion [28]. In

the similar line of work recently [36] proposed a control strategy called composite

hierarchical anti-disturbance control (CHADC) integrating stochastic disturbance

observer-based control (DOBC) theory, robust wave filter (RWF) method with H-

infinity control. Other approaches minimize control demands artificially through

imposing ramp rates, applying move accumulation, or using hysteresis switching to

minimize back and forth switching of thrusters. An alternative approach is proposed

by Kongsberg Inc. called ”Green DP”, which is an eco-conscious control system.

Their system is designed to address excessive thruster activity, particularly in mod-

erate environmental conditions, to decrease energy consumption, and provide an

environmentally friendly solution. The Green DP controller has three main parts:

the model predictive controller, the position predictor, and the environmental com-

pensator. The system defines a working area inside the operational area, where the

vessel can drift within. These areas are incorporated in the constraints and the cost

function of the NMPC controller. The environmental compensator generates smooth

attractive force towards the desired position, and the MPC generates more aggressive

demands to prevent predicted overshoots. The authors claim that the combination of

environmental compensator and MPC reduces dynamic thruster demands compared

to a standard DP system. [18]

In line with the Green DP, we have successfully developed a controller whose

structure is similar to an economic NMPC (ENMPC) [16]. The developed controller

does not incorporate the operational area in the constraints or in the cost function

directly. Instead, the weights of the economic NMPC are defined as a function of

the deviation from the desired position. Our achievement in building the controller
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has resulted in the reduction of DP’s operational costs, particularly with regard to

thruster demands, which in turn mitigates thruster wear and tear. We have transi-

tioned costs related to an NMPC’s setpoint tracking stage into economic costs within

the optimization layer of our ENMPC. The controller was tested in a simulation en-

vironment and showed good promise [1].

Table 6.1 presents a compilation of key studies on DP that have implemented

various control strategies. Many studies have proposed a single controller without

comparative evaluation against alternative controller types. Another observation is

that most of the studies have used simulations to validate and compare the perfor-

mance of the controllers. Very few experimental implementations of DP systems have

been reported in the literature, and most of the experiments have taken place in open

waters, mostly under calm conditions, where disturbances cannot be controlled. In

contrast, our work focuses on conducting experiments in a controlled environment,

allowing us to compare the performance of different controllers under various wave

conditions. We seek to understand better how these controllers operate under spe-

cific settings and assess their efficacy in real-world scenarios by carefully controlling

the experimental conditions.

Table 6.1: A summary of selected DP controllers reported in the literature

Scope of study

Reference Controller(s) Simulation Experiments
Comparing
controllers

[31], [23] PID Yes No No
[5], [2] PID Yes Yes No
[25] PID, SMC Yes Yes Yes
[30] MPC Yes No No
[17] Lag-MPC, Lag-NMPC Yes No Yes
[33],[9], [35] NMPC Yes No No
[18] NMPC No Yes No
[19] NMPC, PID Yes No Yes
[1] NMPC, GNMPC, PID Yes No Yes

This current research presents the implementation and experimental validation
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of the GNMPC proposed in [1]. Experimental implementation of the controller poses

many challenges: (i) the accuracy of the mathematical model developed using the

first principle and 3D design was insufficient for the NMPC implementation. So,

to get the model’s parameters, we used system identification to get a more accu-

rate estimation of model parameters. (ii) implementation in real-time requires a fast

optimizer to solve the nonlinear minimization problem. The optimizer needs to con-

verge within the sampling interval, and (iii) data communication and implementation

issues also need to be sorted for the experimental implementation.

The performance of the GNMPC is compared with a PID based DP controller

and NMPC based DP controller. To the best of the authors’ knowledge, this is

the first study that has experimentally compared the performance of three different

DP controllers under different sea conditions. We tested each controller under four

different sea conditions: Sea with no waves (NW), regular waves (RW), irregular

waves (IRW), and white noise waves (WNW). We conducted three types of tests to

analyze the performance of the controllers properly: Station keeping in head seas,

station keeping at oblique angles, and large position setpoint change.

The structure of this paper is as follows. The mathematical model of the ves-

sel used in the NMPC is described in Section 2. The formulation of the GNMPC

controller is discussed in Section 3. The experimental setup and the implementation

details of the wave filter, communication, and controller are presented in Section

4. Section 5 presents the experimental results and comparison of the PID, NMPC,

and GNMPC controllers. Finally, the findings and conclusion of the experiments are

discussed in Section 6.

6.2 Mathematical Modeling of Vessel

A vessel floating freely in 3D space can move in six degrees of freedom (DOF). Figure

6.1 shows the 6 DOF of the vessel and coordinate frames used in this paper. In DP

applications, the main focus is to control the three motions: surge, sway, and heading.

Therefore, a simplified vessel model with three DOF is defined as in Eq. (6.1), and



120

Eq. (6.3) [19].

z
(heave)

y
(sway)

x
(surge)

u
(roll)

v
(pitch)

r
(yaw)

X

Y
Z

B

W

Figure 6.1: The coordinate system of generic dynamic positioning vessel.

η̇ = J(ψ)ν. (6.1)

The 3DOF kinematics are shown in Eq. (6.1), where η = [x, y, ψ]T . [x, y] is the

horizontal position vector expressed in the inertial frame W , and ψ is the heading

of the vessel. The rotation matrix, J(ψ) ∈ R3×3, defines the rotation between the

inertial and body frames and can be expressed as

J(ψ) =

 cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (6.2)

The body-fixed surge velocity, sway velocity, and yaw rate are represented by u, v, and r,

respectively, and the body-fixed velocity vector is defined as ν = [u, v, r]T . The

dynamics of the vessel are defined as follows.

(MRB +MA)ν̇ + (CRB(ν) + CA(ν) +D(ν))ν = τ, (6.3)

where MRB ∈ R3×3 and MA ∈ R3×3 are the inertia matrices representing rigid body
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mass and the hydrodynamic added-mass.

MRB =

 m 0 0

0 m mxG

0 mxG IZ

 , (6.4)

MA =

 −Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 , (6.5)

where m is the mass of the ship, Iz is the moment of inertia about the z axis, and

xG is the distance to the center of gravity of the ship along the x axis of the body

frame B.

CRB ∈ R3×3 and CA ∈ R3×3 are the rigid body Coriolis and centrifugal compo-

nents as well as added-mass derivatives corresponding to the velocity coupling and

can be defined as

CRB(ν) =

 0 0 −m(xG)r + v)

0 0 mu

m(xGr + v) −mu 0

 , (6.6)

CA(ν) =

 0 0 Yv̇v

0 0 −Xu̇u

−Yv̇v Xu̇u 0

 . (6.7)

D(ν) ∈ R3×3 represents the energy dissipative terms (drag) due to relative motion

between the vessel and surrounding fluid. The drag effects are nonlinear and can be

divided into linear and nonlinear components as D(ν) = DL +DNL(ν), where

DL =

 −Xu 0 0

0 −Yv −Yr
0 −Nv −Nr

 , (6.8)
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DNL(ν) =

 X|u|u|u| 0 0

0 −Y|v|v|v| − Y|r|v|r| −Y|v|r|v| − Y|r|r|r|
0 −N|v|v|v| −N|r|v|r| −N|v|r|v| −N|r|r|r|


T

. (6.9)

The forces applied to the vessel can be expressed as τ = τc + τw, where τc is

the forces from the thrusters, and τω is the force exerted on the vessel by the ocean

waves. The constants, m, xG, IZ , Xu̇, Yv̇, Yṙ, Nv̇, Nṙ, Xu, Yv, Yr, Nv, Nr, X|u|u,

Y|v|v, Y|r|v, Y|v|r, Y|r|r, N|v|v, N|r|v, N|v|r, N|r|r are vessel-specific constants, and they

are identified through system identification.

6.3 Green-NMPC Theory

In this study we compare our energy efficient Green NMPC with other traditional

controllers. A detailed formulation of the Green NMPC and simulation results are

presented in [1]. This section presents a concise overview of the Green NMPC to

enhance the readability of the manuscript.

The continuous time dynamics of the vessel described in the previous section can

be converted to a discrete time dynamic system as

χk+1 = f(χk, υk), (6.10)

where f is the nonlinear system dynamics with states, χ = [ηT , νT ]T , and inputs

υ = τc. In practical applications, the states and the inputs have constraints and the

linear or nonlinear constraints can be defined as

g(χk, υk) ≤ 0. (6.11)

The objective on NMPC is to determine the control actions υk that minimize

a cost function while satisfying the constraints given in (6.11). The cost function

of the proposed GNMPC comprises the economic cost function and the quadratic

regularization term. The economic cost function ϕec(χk, υk), is defined as follows:
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ϕec(χk, υk) = Lx (Fx,k − Fx,k−1)2 + Ly (Fy,k − Fy,k−1)2 + Lψ (Tψ,k − Tψ,k−1)2 (6.12)

where, Fx, Fy, Tψ are the thruster forces in surge and sway directions and the torque

for yaw rotation, respectively, and τc = [Fx, Fy, Tψ]T . Lx, Ly, Lψ represent the weights

associated with the control actions. When the cost function is not strongly convex, a

quadratic regularization term is added to the cost function [22]. The regularization

term has the following form:

ϕrc(χk, υk) = (xk − xr)2 π1 + (yk − yr)2 π2 + (ψk − ψr)2 π3, (6.13)

where xr, yr, ψr are the reference position and heading, and π is the weight matrix.

The total stage cost function can be expressed as

ϕ(χk, υk) =ϕec(χk, υk) + ϕrc(χk, υk)

=Lx
(
Fx,k − Fx,k−1)2

)2
+ Ly (Fy,k − Fy,k−1)2 + Lψ (Tψ,k − Tψ,k−1)2

+ (xk − xr)2 π1 + (yk − yr)2 π2 + (ψk − ψr)2 π3.

(6.14)

The formulation of the NMPC problem can be expressed as follows:

arg min
χk,υk

k+N∑
j=k+1

ϕ(χj, υj)

subjected to

χj+1 = f(χj, υj),

g(χj, υj) ≤ 0, ∀j ∈ [k, k +N ].

(6.15)

Weights used in the objective function play a critical role in shaping the opti-

mization objective. The weights L = [Lx Ly Lψ] governs the penalization of input

variations, while π = [π1 π2 π3] determines the penalty for state errors. When

a higher weight values are chosen for a specific component, it results in a greater
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penalty for changes of the corresponding component during optimization. This ef-

fectively steers the optimizer towards minimizing the associated error or variations in

the control inputs. A traditional NMPC uses constant weight values and the values

are tuned for the best performance. However, the proposed Green NMPC introduces

variable weights in the cost function, and the variable weights are specified to satisfy

two key performance requirements.

1: When the vessel is well within the safety limits, the main focus of the controller

is to reduce energy consumption.

2: When vessel approaches the safety limit the focus of the controller shifts to

maintaining the vessel at the set position.

When the vessel is well within the safety limits, the weights corresponding to

the surge and sway thruster forces are adjusted to a high value. The higher weights

force the optimizer to penalize variations in the thruster forces. Therefore, when the

vessel deviates from the set point, the controller does not perform sudden thruster

variations. As a result, the overall thruster demands are greatly reduced, and this

behavior allows the vessel to drift inside the safe operation zone instead of closely

maintaining the set point.

When the vessel is approaching the safety limits, the weights corresponding to the

surge and sway thruster forces are adjusted to a lower value, allowing drastic changes

in the thruster values. This allows the controller to perform quick maneuvers and

bring the vessel back to the desired set point.

The weight functions (Lx, Ly) were set as continuously varying nonlinear functions

of the respective axis distance to satisfy these two requirements. For instance, Lx is

defined as a function of x satisfying the aforementioned conditions and penalizes the

thruster force Fx. Acceptable shape of the wave function is shown in Figure 6.2. The

weights can be selected to be over compensated (blue line of Figure 6.2), where the

controller focus more on maintaining the position, or be lenient (green line of Figure

6.2), where the vessel is allowed to drift a longer distance.After much trial and error,
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Figure 6.2: Acceptable shape of weighting function for GNMPC.

we finally settled on the nonlinear function specified in Eq.(6.16).

Lx = 100− x4(log(|Tth|)− |x|)
|Tth|

, (6.16)

where, Tth is the position threshold, and x is the current x-axis position of the vessel.

Ly is also defined similarly.

The constraints of the GNMPC expressed in (6.11) comprise the upper and lower

bounds of the states and inputs. The constraints can be expressed as

g(χk, υk) =


χk − χmax
−χk + χmin

υk − υmax
−υk + υmin

 (6.17)

6.4 Methodology and Experimental Setup

This section provides a comprehensive overview of the experimental setup employed

in our study. The overall configuration of the experimental setup is shown in Figure
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6.3. Additionally, we present the system identification process, where we aim to ac-

curately characterize the dynamics and behavior of the ship. Furthermore, we detail

the implementation of the wave filter utilized in our experiments. The wave filter is

a crucial component that mitigates the response to high-frequency wave action, that

is outside the vessel response capability, or efficient bandwidth of control. Finally,

we outline the test cases that were executed to evaluate and compare the three con-

trollers. These test cases were carefully designed to evaluate the performance and

robustness of the system under different conditions and scenarios.

Sensor
Fusion

ηm, νm Wave
Filtering

η, ν Controller
PID, NMPC,
GNMPC

Reference
position

Wave
disturbances

ηr

τc

τw

Acceleration, Angular velocity

Qualisys Motion
Capture System

Position, Velocity

Figure 6.3: Flowchart of the experiments

6.4.1 Experimental Setup

The experiments were carried out in the Offshore Engineering Basin (OEB) at the

National Research Council (NRC) Ocean, Coastal, and River Engineering Research

Center in St. John’s, Canada. The OEB facility is one of the world’s most advanced

indoor model ocean facilities. The basin, which measures 75 m by 32 m by 4 m,

can simulate extreme model sea-state conditions that happen only once per 10,000

years (scale dependent). The OEB is equipped with 168 individually controlled and

vertically adjustable wave-maker modules in a fixed “L” configuration. Each segment

is 2m high and 0.5m wide and are grouped together in fours to form a module. The

wave-maker system can generate unidirectional or multi-directional waves up to 1m
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tall. Passive wave absorbers are fitted around the other two sides of the tank. The

basin can also produce wind to replicate actual sea conditions. The basin is capable

of testing models at a sizeably large scale and evaluates concepts in a controlled

environment to get high-quality, realistic results.

Figure 6.4: The Magne Viking model vessel

The experiments of the DP controllers were carried out on a scaled model of a

Magne Viking supply vessel (Figure 6.4). The model ship is a 1:19.5 scale model of

the actual vessel and has the following dimensions: mass (m) = 1229 kg, length (L),

4.44 m, and width (B) = 1.16 m. The vessel is equipped with two main propellers,

one bow thruster, and one stern thruster for propulsion. A computer onboard the

model vessel controls the internal hardware including the propulsion system, collect

sensor data from onboard sensors and communicate with the main control computer

through the Data Acquisition System (DAS) network. The OEB is equipped with a

Qualisys motion capture system that measures the Earth-fixed position orientation

and speed of the vessel. Active markers are placed on the model to allow the motion

tracking using the cameras mounted around the basin. The Qualisys motion capture

system is capable of providing position feedback with 1 mm accuracy. However, in

practice there can be dropouts due to the sheer size of the OEB tank. To minimize

the effects of dropouts, an EKF is implemented to fuse inertial measurements from

the vessel with the motion capture feedback.
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The Magne Viking model is retrofitted with Crossbow VG700CB-200 inertial

measurement unit (IMU). The IMU measures the accelerations and angular rates

of the vessel, and these measurements are used in an EKF based attitude heading

reference system [20]. The EKF predicts the position and orientation at 50 Hz using

the measurements from the IMU, and then do the correction based on the absolute

position and orientation measurements from the motion capture system. The AHRS

allows the controller to have an accurate, uninterrupted feedback even during a

dropout of motion capture feedback.

The NMPC and GNMPC controllers run on a separate computer, which is con-

nected to the main control computer via the OPC server. The communication setup

between the model, motion capture system, and the main and secondary control

computers is shown in Figure 6.5.

6.4.2 System Parameter Identification

The performance of an MPC depends on the quality and accuracy of the vessel’s

model. Hence, an accurate mathematical representation of the vessel’s dynamics is

essential for successful MPC implementation. In the case of the experimental setup

involving the scaled model of the Magne Viking supply vessel, the physical param-

eters, such as mass, length, etc. were identified through a set of comprehensive

measurements. The initial hydrodynamic parameters were calculated using the 3D

model of the model vessel. Over time, several modifications were made, and several

sensors were added to the initial design to improve the capabilities of the model.

During experiments it became apparent that the initial parameters no longer ade-

quately reflected the true dynamics of the modified ship. Therefore the new model

parameters had to be identified.

Multiple approaches exist for parameter identification in models. A common

method involves separating transient and steady-state elements and using linear re-

gression to estimate parameter values. In a study by [10], a non-first-principles model
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Figure 6.5: Communication network.

was identified for a high-speed autonomous surface vehicle’s motion. The parame-

ter values were determined through weighted linear least squares regression with

a regularization term to discourage large parameter values. The model’s accuracy

was verified by comparing simulated vessel response with experimental data and was

subsequently employed in a controller with feed-forward terms. In another study

by [13], an offline parallel extended Kalman filter (EKF) algorithm was utilized to

estimate parameters for a nonlinear dynamic positioned ship model. A decoupled

identification scheme involved three different ship maneuvers, with parameters from

one scheme serving as input for the next until all parameters were identified. The

approach’s effectiveness was verified by implementing and testing it on a supply ves-

sel, with the results compared against experimental data. In our experiments, we
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used the optimization-based system identification technique that was developed in

[24].

Start

Development of mathematical
model based on the 3D design

and first principles
f0(X,u)

Model Prediction
X̂ = f(X,u)

Open loop testing
of the ship

System
Identification

Model
validation

∥X̂− X̄∥ ⩽ ε

Human operator

u

X̄ X̂

f(X,u)

No

Yes

End

Figure 6.6: Workflow of system identification

We piloted the vessel at various speeds and in various trajectories to collect

data. When sufficient motion data are available we conducted the identification and

validation workflow shown in Figure 6.6. The optimization technique calculates the

system parameters by minimizing a weighted sum of square errors. The objective
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function is defined as

L(χ, χ̂) =

t0+Ts∑
k=t0

(χk − χ̂k)TW (χk − χ̂k)

χ̂k = f(χk−1, υk−1,Θ),

(6.18)

where f is the ship dynamics given in (6.3), and Θ is the vector of physical and

hydrodynamic parameters to be identified.

Θ =
[
IZ , Xu̇, Yv̇, Yṙ, Nv̇, Nṙ, Xu, Yv, Yr, Nv, Nr, X|u|u, Y|v|v, N|r|r

]
(6.19)

χ is the measured state vector of the ship. χ̂ is the calculated states based on

the system dynamics given in (6.1) and (6.3). The weight matrix W is defined

W = diag(W1,W2.W3,W4,W5,W6), where Wi > 0. Proper initialization is crucial

when performing optimization, and the parameters identified using the measurement

and the 3D model are used as the initial values for the optimization. Calculated

parameters are shown in Table 6.2.

Table 6.2: Identified parameter values of Magne Viking model

Physical
Parameter

Value
Identified
Parameter

Value
Identified
Parameter

Value

Length 4.44 (m) IZ 1577.65 (kgm2) Xu̇ 158.23
Beam 1.16 (m) Yv̇ 1087.3 Yṙ ∼0
m 1358.5 (kg) Nv̇ ∼0 Nṙ 1559.92
xG 0.18 (m) Xu 41.788 Yv 336.06

Yr ∼0 Nv ∼0
Nr 26 X|u|u 194
Y|v|v ∼0 N|r|r 3913.5

6.4.3 Wave Filter Setup

The motion of a ship under the influence of waves is generally modeled as the super-

position of low-frequency (LF) and wave-frequency (WF) motion components. The
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LF motions, i.e., drift, result from second-order wave drift forces and control thrust

forces. On the other hand, the WF motions are predominantly caused by first-order

wave motions, leading to the vessel’s oscillatory movements. Controlling the vessel

based on the oscillatory position feedback can lead to excessive control actions and

poor DP performance.

There has been extensive research on the WF for DP systems. In the study by

Sørensen et. al., WF filtering was employed by utilizing Kalman filter theory and

assuming linearization of the ship’s kinematic equations around predefined constant

yaw angles[29]. This approach was necessary for the application of linear Kalman

filter theory and gain scheduling techniques. In [14], a nonlinear observer incorpo-

rating wave filtering capabilities and bias estimation was developed based on the

principle of passivity.

Furthermore, [32] introduced gain scheduled wave filtering as an additional tech-

nique. In our experiments, we utilized the wave filtering approach proposed in refer-

ence [14] for effective filtering of wave disturbances. In [12], Fossen derives a linear

state space model for the first-order wave response. The response model in surge,

sway, and heading can be expressed as

ξ̇ = Awξ + Eww2 (6.20)

ηw = Cwξ, (6.21)

where ξ ∈ R6 is the state vector, and w2 ∈ R3 is a zero-mean Gaussian white noise.

Matrices Aw ∈ R6×6, Ew ∈ R6×3, and Cw ∈ R3×6 are constant matrices defined as

Aw =

[
03×3 I3×3

−Ω3×3 −Λ3×3

]
, Ew =

[
03×3

I3×3

]
, Cw =

[
03×3 I3×3

]
,

with

Ω = diag(ω1, ω2, ω3) Λ = diag(2ω1ζ1, 2ω2ζ2, 2ω3ζ3)



133

where ω = [ω1, ω2, ω3] is the dominant wave frequency, and ζ = [ζ1, ζ2.ζ3] is the

relative damping coefficients.

ηw is the WF motion of the ship due to the first-order waves. Effects of the

second-order mean and slowly varying wave loads are modeled as a random walk

process (Wiener process) and can be expressed as

ḃ = w3 (6.22)

where w3 ∈ R3 is a vector of zero-mean Gaussian white noise.

The bias b ∈ R3 is incorporated into the ship’s dynamics in (6.1) as a bias force,

and the modified dynamics can be expressed as

MRB ν̇ +MAν̇ + CRB(ν)ν + CA(ν)ν +D(ν)ν = τc + J(ψ)T b+ w1 (6.23)

where w1 ∈ R3 is a vector of zero-mean Gaussian white noise.

In this study, we implemented a UKF-based wave filter to filter out the WF

motions due to waves. UKF performs the propagation of the uncertainties of the

Gaussian Random Variable (GRV) through a deterministic sampling method (un-

scented transform). Using equations (6.3), (6.23), (6.20), and (6.22), the process

model used for the UKF can be expressed as

η̇ = J(ψ)ν (6.24)

ν̇ = (MRB +MA)−1 (−CRB(ν)ν − CA(ν)ν −D(ν)ν + τc + J(ψ)T b+ w1

)
(6.25)

ξ̇ = Awξ + Eww2 (6.26)

ḃ = w3 (6.27)

Feedback for the experiment was obtained through the Qualisys motion capture

system, which provided the ship’s position and heading. The measured position and

heading can be modeled using the linear superposition of the WF motion component

and the LF motion component. Hence the position and heading measurement can
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be modeled as

y = η + ηw + w4 (6.28)

where w4 ∈ R3 is the measurement noise vector.

Mathematical formulation and implementation of UKF are well documented in

the literature and the UKF pseudo code is shown in Algorithm 1. Detailed imple-

mentation of UKF can be found in [7, 19, 21].

Algorithm 1: UKF-Based Wave Filter

1 Initialize the states (Ξ) and their covariance (PΞ), Ξ = [ηT , νT , ξT , bT ]T ;
2 for k ∈ (1, . . . ,∞) do
3 Calculate sigma points for states (Ξ) and measurements (y);
4 Propagate the sigma points through system model (6.24) - (6.27);
5 Compute the predicted mean and covariance Ξk− , PΞ,k− ;
6 Propagate the measurement sigma points through measurement model

(6.28);
7 Read pose and velocities of the vessel;
8 Calculate the Kalman gain;
9 Compute the updated sates and covariance Ξk+ , PΞ,k+ ;

10 end

The wave filter was tuned for each type of wave. This involves adjusting the tun-

ing matrix Aw in (6.20) based on the dominant frequency of the wave and appropriate

damping coefficients. The initial guess of the dominant frequency was determined

by analyzing the wave spectrum, and then fine-tuned through a process of trial and

error. The values used for ω and ζ are shown in Table 6.3

Table 6.3: Tuning parameters of wave filter

Wave Type∗ Dominant Frequency Damping Coefficient
White Noise Wave [2.1, 2.1, 2.1] [0.02, 0.02, 0.02]
Irregular Wave [2.3, 2.3, 2.3] [0.01, 0.01, 0.01]
Regular Wave [2.7, 2.7, 2.7] [0.02, 0.02, 0.02]

∗ See Table 6.4 for the definitions of waves

Figure 6.7 illustrates the measured position and heading of the ship influenced
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by a regular wave and the LF motion of the ship after filtering the WF motion.

Figure 6.7 demonstrates that the wave filter based on UKF successfully estimates

the WF motion components from the feedback and produces LF motion feedback for

the controller.
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Figure 6.7: Position and heading of the ship under the influence of regular waves

6.4.4 Controller implementation

The proposed GNMPC is optimization based control algorithm, which calculates the

optimum control actions by solving the optimization problem defined in (6.15) at

each time step. Optimization based algorithms demand significant computational

resources and may result in longer execution times posing challenges for real-time

implementation. The optimal control problem was formulated using direct multiple

shooting (DMS) approach. We opted for the DMS approach due it’s robustness to

model uncertainty and better convergence [8]. However, the DMS approach has more

optimizing variables which lead to increased computational complexity.
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In this study we used the CasAdi framework to implement the NMPC and Green

NMPC controller [3]. CasADi is an open-source software framework that provides a

powerful set of tools for modeling and solving optimization problems. CasAdi sup-

ports a variety of programming languages, including Python, MATLAB, and C++,

making it versatile. As the solver for the optimization problem we selected built-in

interior point optimizer (IPOPT). IPOPT algorithm is computationally efficient and

can handle large-scale optimization problem generated using DMS approach.

The NMPC and GNMPC controllers are implemented using MATLAB in a laptop

equipped with AMD Ryzen 5 5600H and 16GB of RAM. Number of samples in the

prediction horizon is a key factor determining the execution time of the controller.

Since the vessel has slow dynamics, a controller with shorter prediction horizon does

not yield the best performance. Controller with a longer prediction horizon performs

better but with a longer execution time. After much trial and error, we decided a

prediction horizon of 16 seconds, 80 prediction horizon samples at 5Hz. The selected

controller rate and number of samples provided a better compromise between the

performance and computation time.

The controller communicates with the main control computer through the OPC

server at 5Hz. In each iteration, the controller requests the pose and velocity feedback

of the vessel, and then the control actions are forwarded to vessel. The state and

input limits used in (6.17) are selected based on the experimental setup. The limits

used in the experiment are as follows

χmax = [0(m), 0(m), 2π(rad), 0.3(ms−1), 0.3(ms−1), −0.3(rads−1)]

χmin = [−75(m), −32(m), −2π(rad), −0.3(ms−1), −0.3(ms−1), −0.3(rads−1)]

υmax = [35N, 45N, 65N]

υmin = [−35N, −45N, −65N]

(6.29)
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6.5 Test Cases

A key contribution of this paper is conducting experiments under different wave

conditions in an controlled environment. Wavemakers in OEB can generate various

types of waves. Based on the height and period, the waves can be divided into sea

states. In this study we chose three differnt wave conditions along with no wave

condition (NW) to compare controller performances. Waves area characterized by

the peak wave frequency and the significant wave height. The characteristics of the

waves used in the experiments are listed in Table 6.4.

Table 6.4: Definition of waves

ID Significant
wave height,
Hs[m]

Peak Wave
Frequency
ωp[rad/s]

Wave Type

1 0.178 2.3 Regular
2 0.178 Range White noise
3 0.1 1.26711 Irregular, Short crest

The regular waves (RW) are waves with a single frequency and periodic wave

height, period, and wavelength. The irregular waves (IRW) are a superposition

of several regular waves, which have a significant wave height, and a dominant fre-

quency. The white noise waves (WNW) has a wide frequency range with a flat power

spectrum [6]. The WNW used in this study has an incident angle of 20 degrees, where

as the other two waves, have zero incident angle.

In this study we carried out three different tests, 1: DP at head seas (HS), 2:

DP at oblique angles (OA), 3: DP with large setpoint changes (LSP). These tests

were carried out under different wave conditions, and with each controller. During

each experiment, the vessel was initially maneuvered to the initial set point in calm

waters, and once the vessel was in position the waves were introduced. Through out

this transition, each controller was actively controlling the vessel. The experimental

data was collected once the waves reached a steady state condition. We conducted

a total of 32 experiments and a summary of the experiments is shown in Table 6.5.



138

Table 6.5: Summary of experiments

Type of Wave PID NMPC GNMPC
No Wave HS, OA, LSP HS, OA, LSP HS, OA
White Noise Wave HS, OA, LSP HS, OA, LSP HS, OA
Irregular Wave HS, OA, LSP HS, OA, LSP HS, OA
Regular Wave HS, OA, LSP HS, OA, LSP HS, OA

6.6 Experimental Results

This section presents the comprehensive results obtained from the DP tests con-

ducted under different wave conditions. Three tests, HS, OA, and LSP, were carried

out to assess and compare the performance of the three controllers. The experiments

aimed to evaluate the effectiveness of the dynamic positioning system in different

challenging situations. Due to space limitations, this paper will present the plots

showing the position holding, and spectral density of the thrusters of the controllers

only for the regular wave (RW) conditions. All other results are reported for no wave

(NW), white noise wave (WNW), irregular wave (IRW) and regular wave (RW) con-

ditions.

6.6.1 DP Head Seas

The main task of the DP head seas experiment is to maintain the vessel at a given

position with zero heading amidst disturbances. In most of the practical DP appli-

cations, the heading of the ship will be adjusted to match the wave direction.

Figure 6.8 shows the position and heading accuracy of the three controllers under

the four sea conditions. The bars in the plot represent the root mean square error

(RMSE) values for each test, with the height of each bar corresponding to the mag-

nitude of the mean error. The error bars on each bar indicate the 95% confidence

interval of the root square errors. Under the NW conditions, all controllers’ errors

are extremely small. The maximum position error is around 3% of the total ship

length. The coupling effect of the four propellers can cause motion in the ship. The
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Figure 6.8: Position and heading accuracy of HS tests under different wave condi-
tions.

PID tries to minimize the error in the set point, and therefore, the PID has more

actuator movements. NMPC considers the dynamics of the ship and calculates the

optimum control action. Therefore, the corrections applied by the controller are less

aggressive than the PID, and the errors are less. Since the vessel is within the safety
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boundary, the GNMPC does not make any corrections. Therefore, disturbances due

to the coupling effects are less and the accuracy is the highest. Under the WNW

conditions, the NMPC provides the best performance in terms of accuracy. The x po-

sition RMSE of the PID controller is lower compared to the NMPC, but when closely

observing, we can see the maximum error of the PID controller is higher than the

maximum error of the NMPC. The error of the GNMPC is larger compared to both

PID and the NMPC. However, we can see that the GNMPC errors did not exceed

the safety limit. Since the white noise reached the ship at an oblique angle, the wave

pushed the ship to one side of the set point. We can see the minimum RMSE has a

positive value, which shows a drift of the ship to one side of the set point. Under the

IRW conditions, the vessel movement is small. We can see a higher accuracy in the

NMPC compared to the PID. GNMPC error is larger compared to both NMPC and

PID. In order to maintain the ship within the safety limit and has reduced thruster

usage, the GNMPC allows the vessel to drift slightly. The regular wave is the most

challenging wave for the vessel. We can clearly see a significant improvement in

the accuracy of NMPC compared to the PID controller. Following a similar trend,

the GNMPC position accuracy is lower compared to NMPC. When comparing the

heading accuracies, the GNMPC has the highest accuracy compared to the PID and

NMPC. Since dynamic weights are not assigned for the heading control, the GN-

MPC performs similarly to a NMPC controller for the heading correction. Since the

thruster movements from the GNMPC controller are less compared to the NMPC,

the cross coupling effects on the ship are minimized in the GNMPC controller. This

results in a higher accuracy in the heading angle.

Figure. 6.9. Shows the vessel’s XY position for PID, MPC, and GNMPC con-

trollers under regular wave case. Results indicate that the vessel locations were

within the safe range in every case. Compared to the NMPC control, the PID has

wider spread movements about the setpoint. Moreover, there is more vessel move-

ment for Green-NMPC, as the point reference monitoring is relaxed to area tracking

within the safety limitations. It is evident that the Green-NMPC’s weight function

is able to maintain a trade-off between maintaining position and limiting thruster
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motions.
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Figure 6.9: Comparing the position holding performance of PID,NMPC, and GN-
MPC controller under regular wave

Figure. 6.10a. shows the energy consumption of the three controllers under each

wave condition. We can observe that the GNMPC controller has the lowest power

consumption compared to the PID and NMPC. The PID controller has the highest

power consumption.

The primary reason for preferring less variation in ship thrusters is to ensure

safe and stable ship operations. The thrusters control the ship’s movement and

maintain its position, especially in dynamic positioning operations. If the thrusters’
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Figure 6.10: Comparison of energy consumption of the HS test under different wave
conditions and power spectrum of the thrusters under RW conditions.

output varies too much at quick succession, it can lead to unstable ship movement.

Moreover, excessive variation in thruster output can also cause unnecessary wear and

tear on the thrusters and other ship components, leading to increased maintenance

costs and downtime. Figure 6.10b, Figure 6.10c, and Figure 6.10d show the spectrum

of the forces on the x,y, and torque rotational axes under RW condition. It is clearly

visible that the GNMPC has more low frequency movements compared to the rest

of the controllers. This means that the GNMPC reduces high frequency variations

in thrusters which can result in less wear and tear.
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6.6.2 DP Oblique Angles

The DP oblique angles test is an additional dynamic positioning (DP) test used

to confirm that a vessel can maintain its position at various angles. The vessel

is then kept in the same X-Y orientation while rotating about its axis at 30, and

45 degrees. Figure. 6.11. shows the position and heading accuracy of the three

controller under different sea conditions. The errors made in these tests are minimal

in the no wave condition since there is no external disturbances. The ship may

move as a result of the four propellers coupling effect. The PID makes an effort

to reduce setpoint errors. PID has more actuations as a result, which reduced its

precision. The actuator actions by the other controllers are smaller than those made

by PID since NMPC considers the ship’s dynamics. Given the small position error,

the GNMPC applies the least correction, resulting in the highest accuracy in no

wave conditions. The RMSE of the PID controller at the white noise wave case in

the X , and Y error position is marginally higher than the RMSE of the NMPC.

A closer look at the results also show that the maximum inaccuracy in the PID is

higher. Also it is observed that the NMPC performs better than the PID controller

in X, and Y and heading error minimization. NMPC, and PID almost always have

smaller errors than the GNMPC. However, the GNMPC position errors were within

the acceptable safety limit. The white noise wave pushed the ship to one side of

the setpoint due to the oblique angle. We can observe that the minimal root square

error is positive, indicating that the ship is drifting to one side. Ship movement

under irregular waves is small. When compared to the PID, the NMPC has a higher

accuracy. The GNMPC error is larger than NMPC and PID errors. Regular waves

are the most difficult waves to manage, the precision of the NMPC controller is

significantly better than the PID controller in this situation. The GNMPC position

accuracy is lower than NMPC, continuing a similar pattern. The vessel’s trajectory

on the XY plane under regular wave case is shown in Figure. 6.12. However, there

is more vessel movement with GNMPC as area tracking is allowed instead of point

reference monitoring within the bounds of safety. The GNMPC’s weight function

is able to maintain a trade-off between maintaining position and limiting thruster



144

NW WNW IRW RW
0

10

20

30

40

50

60
X 

er
ro

r (
m

)
PID
NMPC
GNMPC

(a) X error under different waves

NW WNW IRW RW
0

20

40

60

80

100

Y 
er

ro
r (

m
)

PID
NMPC
GNMPC

(b) Y error under different waves

NW WNW IRW RW
0

2

4

6

8

10

12

14

Ya
w

 e
rro

r (
de

g)
 a

t 3
0 

de
g

PID
NMPC
GNMPC

(c) Yaw error at the 30 deg under different
waves
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Figure 6.11: Position and heading accuracy in DP angle setpoint change test under
different wave conditions

motions. To evaluate the control action’s efficacy, the control signals’ variance and

power are analyzed. According to the results, GNMPC has the lowest overall power

consumption as shown in Figure. 6.13a. GNMPC control actions have lower gain

in the mid and high frequency area, as seen in Figure. (6.13b,6.13c,6.13d). This

indicates that there will be less high-frequency movement in the thrusters which will

help to keep the wear and tear of the thrusters to minimal.

6.6.3 Large Position Setpoint Changes

Though the objective of DP is not to track trajectories, it is occasionally required to

make small position changes during DP operation. This test is done to evaluate the
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Figure 6.12: Comparing the position holding performance of PID,NMPC, and GN-
MPC controllers under regular wave

controllers’ ability to make small adjustments in position and angles.

The controllers were tested for their ability to navigate to the four corners of a

rectangular area under irregular wave conditions. Figure. 6.14 shows the trajectory

tracked by the vessel under the PID and the NMPC. Note that GNMPC is not

tested for trajectory tracking since its objective function is not suitable for position

tracking. Depending on the state of the irregular waves, in the PID controller case,

the ship departs from point (-33,15) and stops along the way at points (-28,15),

(-28,10), (-33,10), and (-28,15) as illustrated in Figure 14. In the NMPC case, the

ship moves from the point (-27,14) to stops (-23,14), (-23,10), (-27,10), and (-23,14).
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Figure 6.13: (a) Power consumptions of the thrusters for the DP angle setpoint
change test under different waves; and (b), (c), (d) power spectral of the thrusters
in regular wave conditions

Furthermore, Figure. 6.14. shows the NMPC performance is more stable and closer

to meeting the trajectory reference than PID.
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Figure 6.14: Setpoint tracking using PID, and NMPC controllers: ship X,Y
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Figure. 6.15a shows the energy usage of the two controllers for different wave

situation. For all wave conditions the NMPC uses less energy than the PID control.

Figure. (6.15b,6.15c,6.15d). shows that NMPC control actions have reduced gain in

the high-frequency region indicating less high-frequency thruster movement.

NW WNW IRW RW
Type of Waves

0

2

4

6

8

10

12

En
er

gy
 [W

-s
]

#107

PID
NMPC

(a) Power consumptions of the thrusters

10-2 10-1 100 101

Frequency [Hz]

0

1

2

3

4

5

6

G
ai

n 
(d

b)

#104

PID
NMPC

(b) Spectral density of Fx force.

10-2 10-1 100 101

Frequency [Hz]

0

0.5

1

1.5

2

G
ai

n 
(d

b)

#105

PID
NMPC

(c) Spectral density of Fy force.

10-2 10-1 100 101

Frequency [Hz]

0

1

2

3

4

5

6

7
G

ai
n 

(d
b)

#104

PID
NMPC

(d) Spectral density of F ψ torque.

Figure 6.15: Power consumptions of the thrusters for the large setpoint changes test
under different waves and Power spectral of the thrusters in regular wave conditions

6.7 Conclusion

This study reports an experimental implementation of NMPC and an energy efficient

GNMPC controller. This is one of the very few experiments where the NMPCs were

tested in a controlled environment with varying wave conditions, and to the best

of our knowledge, this is the first experimental implementation of the GNMPC.
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The extensive tests provided many valuable insights which will be useful during the

implementation of model based controllers on DP systems.

The experimental results on the station keeping tests showed that on average,

the GNMPC is the most energy efficient controller for the application. The GNMPC

minimizes the thruster movement by implementing a relaxed control policy, which

results in low energy consumption and less wear and tear. The controller only re-

acted aggressively when it hit the boundaries of the safe operation zone. Hence the

GNMPC can be implemented on applications where extreme levels of accuracy is

not required. However, GNMPC is not suitable for large position setpoint changes.

NMPC delivers the best performance in large setpoint changes with lower energy

compared to the benchmark PID controller. In a situation where setpoint tracking

is necessary, the GNMPC can be switched to a NMPC seamlessly by changing the

weights in the objective function to constant values.

Another observation made during the experiment is the impact of the model

accuracy on the performance of the NMPCs. The benchmark PID controller does not

need any numerical model for the operation. However, the NMPCs highly depend on

the accuracy of the numerical model. When the prediction horizon of the NMPCs

is short, then the impact of an accurate model is minimal. However, when the

prediction horizon is longer, the performance degrades significantly if the numerical

model does not represent the actual vessel dynamics. Therefore, it is critical to

validate the accuracy of the numerical model by conducting several test maneuvers.

The NMPC and GNMPC use optimization to calculate the optimal control action

at each time step. The computation time required by the optimizer to calculate

the optimal control sequence is a key consideration when implementing an NMPC

controller. An NMPC with a longer prediction horizon generally performs better

than an NMPC with a shorter prediction horizon. However, when the prediction

horizon is longer, the optimizer requires more computational time to solve for the

control action. Therefore, careful consideration has to be given when determining

the optimizer, sampling time, and the length of the prediction horizon.

Wave filter was a critical part, especially in the NMPC implementations. When
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the direct feedback of the vessel motion is given to the NMPC, the controller attempts

to over-compensate for the oscillatory motion due to the first-order wave motions.

In order to filter out the oscillatory motion from the feedback, a well-tuned wave

filter is required. In this study, we used a UKF based wave filter to filter out the

first-order wave effects, and the filter was reasonably easy to tune.
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Chapter 7

Conclusions and Recommendations

for Future Research

7.1 Conclusions

The goal of the thesis is to develop energy efficient DP systems that are capa-

ble of operating under harsh environmental conditions. The thesis scope encom-

passed modelling and characterization of environmental disturbances; evaluation of

the benchmark controllers including nonlinear PID, SMC, MRPID as well as more

advanced controller such as MPC and NMPC under various extreme weather con-

ditions; and development of an energy efficient controller based on the principles

of Economic NMPC. Throughout the thesis we employed theoretical development,

simulation studies, and experimental implementation to achieve the goal. Below we

summarize the major accomplishments of the thesis.

1. Disturbance modelling

(a) Detailed numerical modelling and simulation of waves, currents, wind, and

ice were carried out that comply with the real-time simulation require-

ments and adequately capture the dynamic characteristics of the most
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relevant physical processes.

(b) A 3D dispersive numerical model was deployed to predict the wave param-

eters to compute the wave loads on a ship with known Response Amplitude

Operators (RAO). A uniform current load was incorporated in a superpo-

sition manner by using a combined wave-current field dispersion relation

capable of expressing the wavenumber of an interactive wave-current field.

(c) A multiple regression-based ice model was used to predict the loads caused

by an ice field characterized by varied ice thickness, concentration, floe

size, drift speed and directions. The interaction between the ice field and

waves is assumed negligible.

(d) The external disturbance models developed or recommended in this re-

search are expected to help in the development and evaluation of the most

effective control scheme for different extreme sea conditions. Another ap-

plication may be developing a realistic simulation environment to train

conventional, DP and autonomous ship operators.

2. Comparative evaluation of DP controllers

(a) Performances of a set of control schemes for DP system were studied in

this work. The linear and nonlinear model predictive control (MPC), the

nonlinear proportional integral and derivative (PID) control, the sliding

mode control (SMC) as well as the multi-resolution PID (MRPID) control

schemes are evaluated for moderate and extreme sea states.

(b) Based on the simulation study it was concluded that all of the above con-

trol algorithm for DP can effectively control the vessel under moderate

sea conditions. However, under extreme conditions, the performance may

deteriorate to the extent that the controller may fail to stabilize the sys-

tem. For the extreme sea conditions considered for this study, only the

NMPC and the MRPID controllers were able to stabilize the vessel.

(c) The control actions and thruster movements of the existing controllers are



157

often very high. The results supports further development of control sys-

tem for dynamic positioning and autonomous shipping systems, especially

for improving the energy efficiency.

3. Development of an energy efficient DP

(a) An energy-efficient NMPC based controller, called Green-NMPC is devel-

oped for the dynamic positioning of marine vessels. The Green-NMPC

is motivated by the control goal of minimizing thruster demand. It is

based upon the theoretical framework of the economic NMPC (ENMPC).

Green-NMPC uses dynamic weights in the cost function depending on the

vessel position in contrast to the constant weights in conventional NMPC.

(b) Green NMPC was implemented for ‘moderate’ and ‘high’ sea conditions in

a simulation environment. The controller performance, specifically energy

efficiency of the ship, was compared against a conventional NMPC and a

NPID controller. For all cases, including high sea conditions, the controller

was found energy efficient while it maintained the vessel position inside

the safety limits. The Green-NMPC showed less thruster demand in the

time domain plots. It is further verified quantitatively from the variance

and the spectral strength of the thruster demand. Relatively lower power

demand was observed in the spectral plot for the Green-NMPC at the

higher frequency range.

4. Experimental implementation of energy efficient DP

(a) Experimental implementation of NMPC and an energy efficient Green

NMPC controller were done at the National Research Council’s wave

basin. This is one of the very few experiments where the NMPCs were

tested in a controlled environment with varying wave conditions, and the

first experimental implementation of the Green NMPC.

(b) The experimental results on the station keeping tests validated that on

average, the Green NMPC is the most energy efficient controller for the
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application. The Green NMPC minimizes the thruster movement by im-

plementing a relaxed control policy. The power spectrum of the thrusters

further confirmed that Green NMPC has less high-frequency movements

compared to the rest of the controllers. This implies that Green NMPC

will cause less wear and tear on the thruster system.

(c) Green NMPC is not suitable for large position setpoint changes. NMPC

delivers the best performance in large setpoint changes with lower en-

ergy compared to the benchmark PID controller. In a situation where

setpoint tracking is necessary, the Green NMPC can be switched to a

NMPC seamlessly by changing the weights in the objective function to

constant values.

(d) It was observed that the impact of model accuracy on the performance of

the model based controllers including NMPC and Green NMPC is signif-

icant. For short prediction horizon the NMPCs impact on an inaccurate

model is minimal. However, when the prediction horizon is longer, the

performance degrades significantly if the numerical model does not rep-

resent the actual vessel dynamics. Therefore, it is critical to validate the

accuracy of the numerical model by conducting several test maneuvers.

(e) NMPC with a longer prediction horizon generally performed better than

an NMPC with a shorter prediction horizon. However, when the predic-

tion horizon is longer, the optimizer required more computational time

to solve for the control action. Therefore, careful consideration has to be

given when determining the optimizer, sampling time, and the length of

the prediction horizon.

(f) Wave filter was found to be critical in the NMPC implementations. When

the direct feedback of the vessel motion is given to the NMPC, the con-

troller attempts to over-compensate for the oscillatory motion due to the

first-order wave forces. In order to filter out the oscillatory motion from

the feedback, a well-tuned wave filter is required. In this study, we used

a UKF based wave filter to filter out the first-order wave effects, and the
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filter was reasonably easy to tune.

7.2 Recommendations

We have the following recommendations for future research:

1. The wave and ice interaction models are still in the development phase, and

besides some rudimentary empirical techniques, the complex interactions are

not well understood. The ice force models need further theoretical develop-

ment and validated using an extensive dataset of DP vessel’s interactions with

managed ice-field.

2. In tuning the NMPC and Green NMPC we used a trial and error method. There

is scope for developing more systematic methods for tuning of the controllers.

Future researchers may explore use of reinforcement learning for tuning of the

controllers.

3. The performance of an NMPC and Green NMPC depends on the quality and

accuracy of the vessel’s model. However, through zig-zag test it is always not

possible to identify the vessel parameters especially the nonlinear terms. In the

experimental implementation, significant effort was required to fine tune the

vessel model. In many studies researchers have used reinforcement learning to

calibrate model in real-time. Similar approach may be taken to fine tune vessel

model for NMPC applications.



Chapter 8
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8.1 DP Head Seas Test

Station keeping, or the system’s capacity to maintain the vessel in a constant location

despite of external forces like wind, waves, and currents, is a crucial component of

DP. A station-keeping test is often performed to ensure the DP system is capable of

doing this duty.

8.1.1 Spectral Density of Thrusters in No wave Conditions
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(c) Spectral density of Fpsi torque.

Figure 8.1: Spectral density of thrusters in No wave conditions
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8.1.2 Spectral Density of Thrusters in White noise wave

Conditions
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(b) Spectral density of Fy force.

10-2 10-1 100 101

Frequency [Hz]

0

1

2

3

4

5

6

G
ai

n 
(d

b)

#104

PID
NMPC
GNMPC
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Figure 8.2: Spectral density of thrusters in White noise wave conditions



163

8.1.3 Spectral Density of Thrusters in Irregular wave Con-

ditions
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Figure 8.3: Spectral density of thrusters in Irregular wave conditions
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8.1.4 XY plots in PID,NMPC, and GNMPC under Different

Waves Conditions
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Figure 8.4: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at No waves
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Figure 8.5: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at White noise waves
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Figure 8.6: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at Irregular waves
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8.1.5 Thrusters Forces and Spectral Densities under No waves

Condition
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Figure 8.7: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.8: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.9: Fpsi Thruster torque and spectral density along rotational axis for dif-
ferent controllers.
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8.1.6 Thrusters Forces and Spectral Densities under Regular

Waves
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Figure 8.10: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.11: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.12: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.



173

8.1.7 Thrusters Forces and Spectral Densities under White

noise Waves
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Figure 8.13: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.14: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.15: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.1.8 Thrusters Forces and Spectral Densities under Irreg-

ular Waves
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Figure 8.16: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.17: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.18: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.2 DP Oblique Angles Test

The DP oblique angles test is an additional dynamic positioning (DP) test used to

confirm that a vessel can maintain its position at various angles. The vessel is then

kept in the same X-Y orientation while rotating about its axis at 15, 30, and 45

degrees.

8.2.1 Spectral Density of Thrusters in No wave Conditions
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(a) Spectral density of Fx force.
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(c) Spectral density of Fpsi torque.

Figure 8.19: Spectral density of thrusters in No wave conditions



180

8.2.2 Spectral Density of Thrusters in White noise wave

Conditions
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Figure 8.20: Spectral density of thrusters in White noise wave conditions
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8.2.3 Spectral Density of Thrusters in Irregular wave Con-

ditions

10-2 10-1 100 101

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

G
ai

n 
(d

b)

#104

PID
NMPC
GNMPC

(a) Spectral density of Fx force.
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Figure 8.21: Spectral density of thrusters in Irregular wave conditions
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8.2.4 XY plots in PID,NMPC, and GNMPC under Different

Waves Conditions
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Figure 8.22: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at No waves
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Figure 8.23: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at White noise waves
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Figure 8.24: Convergence comparison of PID,NMPC and GNMPC controllers: ship
X,Y position at Irregular waves
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8.2.5 Thrusters Forces and Spectral Densities under No Waves
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Figure 8.25: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.26: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.27: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.2.6 Thrusters Forces and Spectral Densities under Regular

Waves
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Figure 8.28: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.29: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.30: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.2.7 Thrusters Forces and Spectral Densities under White

noise Waves
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Figure 8.31: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.32: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.33: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.2.8 Thrusters Forces and Spectral Densities under Irreg-

ular Waves
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Figure 8.34: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.35: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.36: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.3 Large Position Setpoint Changes Test

This test is used in dynamic positioning (DP) to ensure a vessel can maintain its

position under multiple locations and set angles.

8.3.1 Spectral Density of Thrusters in No wave Conditions
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Figure 8.37: Spectral density of thrusters in No wave conditions
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8.3.2 Spectral Density of Thrusters in White noise wave
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Figure 8.38: Spectral density of thrusters in White noise wave conditions
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8.3.3 Spectral Density of Thrusters in Irregular wave Con-

ditions
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Figure 8.39: Spectral density of thrusters in Irregular wave conditions
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8.3.4 XY plots in PID,and NMPC under Different Waves
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Figure 8.40: Convergence comparison of PID,and NMPC controllers: ship X,Y po-
sition at No waves
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Figure 8.41: Convergence comparison of PID,and NMPC controllers: ship X,Y po-
sition at Regular waves
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(a) XY plot in PID control
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Figure 8.42: Convergence comparison of PID,and NMPC controllers: ship X,Y po-
sition at White noise waves
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8.3.5 Thrusters Forces and Spectral Densities under No Waves
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Figure 8.43: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.44: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.45: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.3.6 Thrusters Forces and Spectral Densities under Regular

Waves
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Figure 8.46: Fx Thruster force and spectral density along x direction for different
controllers.
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Figure 8.47: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.48: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.



208

8.3.7 Thrusters Forces and Spectral Densities under White

noise Waves
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Figure 8.50: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.51: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.
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8.3.8 Thrusters Forces and Spectral Densities under Irreg-

ular Waves
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Figure 8.52: Fx Thruster force and spectral density along x direction for different
controllers.



212

0 50 100 150 200 250 300
Time [s]

-4

-2

0

2

4
Th

ru
st

er
 F

or
ce

 F
y 

[N
]

#105

PID

(a) Force Fy

10-2 10-1 100 101

Frequency [Hz]

0

1

2

3

4

5

6

G
ai

n 
(d

b)

#104

PID

(b) Spectrum Fy

0 50 100 150 200 250 300
Time [s]

-4

-2

0

2

4

Th
ru

st
er

 F
or

ce
 F

y 
[N

]

#105

NMPC

(c) Force Fy

10-2 10-1 100 101

Frequency [Hz]

0

1

2

3

4

5

6

G
ai

n 
(d

b)

#104

NMPC

(d) Spectrum Fy

Figure 8.53: Fy Thruster force and spectral density along y direction for different
controllers.
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Figure 8.54: Fpsi Thruster torque and spectral density along rotational axis for
different controllers.


