AUTOMATED ACOUSTIC DETECTION OF SUBMERGED

HYDROCARBON PLUMES PRODUCED BY SEEPS AND SPILLS

© Ginelle Claire Nazareth

A Thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Engineering
Faculty of Engineering and Applied Science

Memorial University of Newfoundland and Labrador

October 2024

St. John’s Newfoundland and Labrador Canada

Abstract

Assessing the impact of an oil spill is especially challenging when it forms a neutrally buoyant
submerged plume, as in the case of the Deepwater Horizon well blowout. Autonomous
Underwater Vehicles (AUVs) have proven to be an effective platform for detecting, tracking,
and sampling these plumes due to their adaptive response capabilities. However, efforts to test
AUV spill detection technology at naturally occurring seeps are hindered by challenges posed
by seep environments. This thesis consequently focuses on addressing seep-site challenges by
enhancing automated acoustic detection of submerged plumes. It proposes a novel plume
detection algorithm for forward-looking sonars consisting of five steps: range-gating,
segmentation, grid conversion, clustering, and georeferencing. Due to the computational
complexity of the clustering step, a custom ‘block clustering’ algorithm for image data is
developed to meet real-time processing requirements. A playback test using field trials data
collected at Holyrood Bay demonstrates that the plume detection algorithm successfully
identifies high-density clusters. Furthermore, the block clustering is consistently faster than the
benchmark algorithm and produces clustering results that are visually more intuitive. The
plume detection algorithm was implemented on Memorial University’s Explorer AUV and

utilized during trials to adaptively detect and sample the Scott Inlet seeps in Baffin Bay.

ii

Acknowledgments

I am deeply grateful to my supervisors, Dr. Neil Bose, Dr. Jimin Hwang, and Dr. Ting Zou for
their thoughtful guidance throughout my program and the much-needed course corrections
when I lost sight of the bigger picture. In particular, I would like to thank Dr. Neil Bose for
the exciting opportunity to be a part of the Scott Inlet Seeps project and experience a true
Arctic adventure.

My graduate studies would not have been possible without funding from multiple sources:
Memorial University’s School of Graduate Studies provided my baseline funding, while the
Fisheries and Oceans Canada’s Multi-Partner Research Initiative (MPRI) and the Natural
Sciences and Engineering Research Council (NSERC) Alliance program provided additional
funding.

I would like to thank Dr. Evan Edinger for providing me with data acquired by the SuMo
ROV aboard the CCGS Amundsen at the Scott Inlet seeps, and Dr. Jimin Hwang for
providing me with sonar data of a micro-bubble plume; these data sources were invaluable for
my research. I am also sincerely thankful for Gina Millar and Craig Bulger, who persevered

despite overwhelming challenges during the field trials.

iii

There have been countless people supporting me throughout this journey, and I would like
to thank my parents, Rodney and Vanessa Nazareth not only for encouraging me to choose
this path, but also for being the best role models of lifelong learners. I wish to thank Bill and
Karen Tucker for welcoming me as family and giving me a home away from home. Thanks also
go to Xi Chen, Irene Tong, Shauna Irani, and Gillian Nazareth for listening, empathizing, and
ensuring I never felt alone. And finally, to Kodie Collings, for your help with diagrams, and for

your limitless faith and love.

iv

Table of Contents

ADSETACE . - ettt e e e e eena e ii
ACKNOWIEAGIMENTS.eieiiii e a s iii
Table of COMBENTS ...ttt e et et e et e e et e e en e v
| 5T o) A L T - D viii
List Of Tables. ..ottt b'e
(€] (0T TN SRRt xi
Chapter 1: INtroductionooiiii ettt e e e et eee e e eens 1
1.1 Background and Motivation..........cccccoiiiiiiii e 1
1.2 Research QUestionsS........oooiiiiiiiiiiiii 3
1.3 Organization of TResiS. ..ot 3
1.4 The Scott Inlet Seeps Projectcccccoiiiiiiiiiii e 5
1.5 Research Contributionsoooiiiiiiiiii 6
Chapter 2: Literature ReVIieW ... 7
2.1 INtrodUCtion. ...oooiii 7
2.2 Seep and SPill PIUINESuuiiiiiiiiiiiiiiiiiiiiiii e 8
2.3 Hydrocarbon Plume Detection Sensors...........ccceeviiiiiiiiiiiiiiiiiieeiiee e, 10
2.4 AUV Tracking of Submerged Oil PIumes...........cccccooiiiiiiiiiiiiiic 11
2.5 Utilizing Spill Detection Methods at SEEpsuueuuuiimimiiiiiiiiiiiiiiiiiii 12
2.6 Automated Acoustic Plume Detectioncccocvviiiiiiiiiiiiiiiiiiiiieeeeeeeee e, 14
2.7 Bubble Ebullition at the Scott Inlet SEepsoooiiiiiiiiiii 19
2.8 COTICIUSION Lttt 21

Chapter 3: Plume Detector DeSignovvuiiiiiiiiiiii et 23

3.1 INtrodUCtioN. ..ooii i 23
3.2 Design Considerationscouiiiiiiiiiiiiiiiii e 24
3.3 Ping360 Sonar OPerationueueeeueeeeeiririeirrieesisesssssssaeessssssssseeseasasssssesesnsraraae. 25
3.4 Algorithm OVEIVIEWvviiiiiiiiiiiiiiii e, 26
3.5 RANGE-GAbIIZ «.eoviiiiiiiii e 28
3.6 SeEMENTATION .. .etiiiiiiiiiiii e 30
3.7 GIrid CONVETSION «oeieiiiiiiiiiiie ettt e e e et e e e e e e 31
Rt B O] 11 1c) 1TSS PPRRR 34
3.8.1 IntrodUuction........oooiiiiiiii 34

3.8.2 Plume Detector Clustering Interface..........cccccccceiiiiiiiiiiiii 35

3.8.3 Clustering with DBSCANoooiiiiiiiiiiii e 36

3.8.4 The Motivation for a Novel Clustering Algorithmcccooiiiiiin. 39

3.8.5 A Novel Block Clustering Algorithm............ccocoviiiiiiiiiiiiiee, 41

3.8.6 Clustering COmMPATISOIccciiiuiiiiiiiiiee ettt ee e 49

3.9 GEOTELETEIICINIE .. eeieeeiiiiiiiit et 52
310 COTCIUSION Lttt 55
Chapter 4: Plume Detector Performanceoooooiiiiiiiiiiiiii e 57
4.1 INtrodUCtion. ...oooiiii 57
4.2 EXPETiment SEUUD ... 57
4.2.1 Explorer AUV Navigation and Control...........cccccoviiiiiiiiiiiiiiiniiieiice 57

4.2.2 Micro-bubble PIUMEooiiiiiiiiiiiiiiiiiii 59

4.2.3 MisSSion DeSCTIPEION «.eveviiiiiiiiiiiiiiiiiii e 59

4.2.4 Data Acquisition and Playback Setup.........ccccooiiiiiiiiiii 61

4.3 R SIS s 62
A4 ANALYSIS ottt 66
4.4.1 Clustering Output COmpPariSONevviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 66

4.4.2 Computation Time COMPATISONeviririeiiiiiiiiiiiiiiiiiieiiieiiieeeeeeeeeeeeeeeeaees 68

4.4.3 Parameter SEleCtion............uuiiiiiiiiiiiiiiiiiiiiiiiiie et 72

4.5 COMCIUSION - s 75

vi

Chapter 5: Conclusions and Future WorkK.............ccooiiiiiiiiiiiiiiiie e 77

Appendix A: Plume Detector Code.........oouiiiiiiiiiiiiiiie e 81
Appendix B: Block Clustering Codeooeiuiiiiiiiiiieiie e 92
Appendix C: Scott Inlet Project SoftWare.............ooeiiiiiiiiiiiiiiiiiiieiieeeeee e 93
C.l INETOAUCTION. 1.ttt e et e e e e e 93
C.2 OVEIVIBW ittt ettt e e et e e e e e e e e e e e e e e 93
C.3 MiSSION IMIOAES ..ttt 95
C.4 Application INEETaCtiONScciiiiiiiiiiiie e, 96
C.5 Application INBEITACES.uuueiiiiiiiiiiiiiiiiiii e 101
C.5.1 PMOOSCTOSSIIZ. ..ttt e e e 101

C.5.2 PNOAEREPOTTOT ..coeeiiieiieeeeee 103

C.5.3 iPINg360DEVICEcooiiiiiiiiiiiiiiee 104

C.5.4 pPlumeDetector..........ooooiiiiiii 108

C.5.5 PHelIMIVD oo 110

C.5.6 pSurveyPlanner ... 113

C.5.7 PPrObMapper....ccoiiiiiiiiii 116
RETETEIICES ...ttt et et 118

vii

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2.1:

2.2:

2.3:

2.4:

3.1:

3.2:

3.3:

3.4:

3.5:

3.6:

3.7:

3.8:

3.9:

3.10:

3.11:

3.12:

3.13:

3.14:

3.15:

3.16:

3.17:

Mlustration of a seep plume’s rising flare shape in bottom-facing sonar data............. 15
Seep identified during the CCGS Amundsen 2018 cruise to Scott Inlet..................... 20
ROV track along with seep loCationseeeiiiiiiiiiiiiiiiiiie e 21
White microbial mats indicating methane seepage at Scott Inlet!...............c....ooei. 21
Ping360 SCANNING SOMAT ...eoeeiiiiiiiiiiiiii et e e 26
Ping360 sector scan of a micro-bubble plume............ocoooiiiiiii 26
Plume Detection Algorithm Flowchart...........ccooooiiiiiii e, 28
Acoustic Intensity data from a single beam...........ccccccooviiiiiiiii 30
Range-gated acoustic intensity data from a single beam.ccccoociiiiiiiii. 30
Range-gated data for a single beam and the segmentation threshold......................... 31
Segmented data for a single beam ..o 31
Input and output images of a polar to Cartesian coordinate space transformation.... 32

Finding data points within square areas in two types of grids..........ccccccevvnnnniniin. 33
Image data pixels for a 90° swath. The data pixels are shown in black................... 34
[lustration of the two types of clustering blocks..............c.cc 36
Neighbourhood shapes produced by two different distance metrics...............oovvvee... 37
Euclidean and Chebyshev distance measurements...............cccccc. 37
The plume detector’s clustering process with DBSCANcccooiiiiiiiiiiiie, 39
Images created during the clustering process for a small 8x8 pixel image................. 43
The padded input image overlaid with the high-density blocks image..................... 45
HMlustration of the high-density blocks image creation process............ccccccceiiiiiin. 46

viii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3.18: Hlustration of connectiviby........cooviiiiiiiiii 47

3.19: Generation of the clusters image, visualized as a masking process 48
3.20: Clustering Output CompPariSON.......ceeeeieiiieiie i 51
3.21: The local, body, instrument, and image reference frames... 53
4.1: Memorial University’s Explorer AUVcccccoiiiiiiiiiiiiiiiiiiieeeee 58
4.2: The Nikuni KTM6552 bubble generator setup at the Holyrood wharf....................... 58
4.3. AUV trajectory during the lawnmower miSSion............ccccoevviiiiiiniiiiiiiiiiceeeie e, 60
4.4. Navigation data and sonar data is stored in the MOOSDB on the PCC 61
4.5. Data flow between MOOS applications in the playback setupcccccceveeeeiiiiniinn.. 62
4.6: The plume detection algorithm processing steps for a single sector scan 64
4.7: AUV trackline during the mission, along with the cluster detections......................... 65
4.8: Comparison of DBSCAN and Block Clustering Outputs for Scan A............cccceeenne. 67
4.9: Comparison of DBSCAN and Block Clustering Outputs for Scan B.......................... 67
4.10: Dataset containing clusters with non-flat geometry...........ccccccoiniiiiiiiiiiin 68
4.11: Comparison of DBSCAN and Block Clustering outputs for a Ping360 scan 69
4.12. Number of clusters formed by DBSCAN and the block clustering algorithm........... 70
4.13: Impact of increasing clustering complexity on the computation times..................... 71
4.14: Segmentation with the threshold set t0 10%. ...coooviiiiiiiiiiiiiiii e, 73
4.15: Block clustering steps with a 50% segmentation threshold.................ccccocceeveeni..n. 73
4.16: Clustering of a segmented image with different block widths...............ccccoiiiii 74
4.17: Clustering of a segmented image with different minimum fill thresholds. 75

ix

List of Tables

Table 2.1: Research involving the automated acoustic detection of hydrocarbon plume.......... 17
Table 3.1: Summary of the plume detection algorithm parameters.............ccccccoovviiiiiiiiineannn. 56
Table 4.1: Plume detection algorithm parameter settings for the playback test. 64

Glossary

ACE Automated Control Engine

AUV Autonomous Underwater Vehicle

CDOM Chromophoric Dissolved Organic Matter

CFD Computational Fluid Dynamics

CTD Conductivity, Temperature, and Depth

DBSCAN Density-Based Spatial Clustering of Applications with Noise
DVL Doppler Velocity Log

DWH Deepwater Horizon

INS Inertial Navigation System

LISST Laser In-Situ Scattering and Transmissometry

MOODB MOOS Database

MOOS Missions Oriented Operation Suite

MOOS-IvP Missions Oriented Operation Suite - Interval Programming
PAHs Polycyclic Aromatic Hydrocarbons

PCC Payload Control Computer

ROV Remotely Operated Vehicle

VCC Vehicle Control Computer

WHOI Woods Hole Oceanographic Institution

X1

Chapter 1

Introduction

1.1 Background and Motivation

The 2010 Deepwater Horizon (DWH) oil spill released an unprecedented 3.19 million barrels of
oil into the Gulf of Mexico [1]. Although early ship-based observations indicated that large
amounts of oil remained trapped in the deep ocean, the existence of submerged oil plumes was
debated at the time. Their existence was confirmed, however, one month following the initial
release when submerged oil was detected at a depth of approximately 1000 m [2]. Studies
following the DWH disaster showed that submerged oil can persist in the deep sea for more
than six months, and is toxic to marine life [3]. Naturally, significant efforts have been put into
characterizing, delineating, and understanding the fate of the submerged oil [3].

A range of monitoring platforms are utilized to detect and track submerged oil. Of these,
Autonomous Underwater Vehicles (AUVs) are most appropriate for spills occurring over large
spatial and time scales [4]. As untethered vehicles, AUVs are not spatially constrained by the
surface support vessel, and can also respond to onboard sensor measurements in real-time.
These adaptive response capabilities are essential given the time-sensitive nature of spills.

Consequently, AUV technology has been developed to adaptively track, characterize, and

sample submerged oil plumes. The collected water samples are sent to laboratories for chemical
analysis to definitively confirm the presence of oil [5]

There are several factors that make characterizing submerged oil plumes challenging,
including (1) the complex chemical composition of oil, (2) the multi-phase nature of the plume,
and (3) the degradation and transport of the plume by natural processes [6]. Given these
challenges, the onboard sensors can provide only a likelihood of the existence of oil. Tracking
methods designed for AUVs during the DWH spill utilized a single sensor measurement for the
decision criterion [2], [7]. Building on this pioneering work, recent research has focused on
enhancing autonomy by combining data from multiple sensors [8].

Testing is an essential part of the design process but releasing oil into the ocean for this
purpose is both counterproductive and illegal. Dye tracers and bubble plumes have accordingly
been identified as environmentally friendly proxies for spilled oil [9],[10]. However, since these
proxies do not emulate both the physical and chemical properties of oil, they cannot produce
positive detections across a suite of plume detection sensors because each sensor detects a
different property of the plume. It is consequently challenging to create a test environment for
a multi-sensor system, and an alternative approach is to test the technology at naturally
occurring oil and gas seeps. Seeps, however, are more challenging to detect [11], and this thesis
consequently focuses on expanding the scope of AUV spill detection capabilities to include the

detection of seep sites.

1.2 Research Questions

The following is the core research question of this thesis:
Q. How can the oil spill detection capability of an AUV be enhanced to facilitate testing at
a natural seep location?
This thesis is structured around the following sub-questions, which derive from the core
research question:
Q1. To what extent can existing oil spill detection methods be utilized at natural seep
locations?
Q2. What methods exist for automated acoustic detection of submerged oil and gas plumes?
Q3. How can an AUV use automated acoustic detection to detect both spill plumes and seep

plumes?

1.3 Organization of Thesis

Chapter 2: Literature Review first covers the background information required to answer
Research Question 1. It includes a comparison of seep and spill plumes, as well as sensors and
methods for detecting submerged plumes. Through an analysis of the applicability of spill
detection methods in seep areas, it identifies acoustic detection as a viable method requiring
further research, thereby motivating Research Question 2. The subsequent review of
automated acoustic detection methods for seeps, submerged spills, and pipeline leaks reveals
that existing algorithms for processing sonar data are not applicable to both seeps and spills.
Thus, a novel plume detection method is required.

Chapter 3: Plume Detector Design, presents a novel plume detection algorithm for a

forward-looking scanning sonar, thereby answering Research Question 3. The algorithm creates

a binary image of the sonar data and recognizes the plume as dense clusters of points in the
image; its final output is the georeferenced center coordinates and radius of each cluster.
Although existing clustering algorithms could be utilized by the plume detector, they are not
well suited for this image-based real-time application. Accordingly, a novel ‘block clustering’
algorithm which combines density-based clustering and image processing methods is also
presented.

Chapter 4: Plume Detector Performance validates the proposed plume detection algorithm
using field trials data collected by Memorial University’s Explorer AUV at Holyrood Bay. The
trials were designed to collect acoustic data of a micro-bubble plume, which was utilized as a
proxy for a submerged oil plume. During the playback test, the plume detector effectively
identified high-density features in several scans of the sonar data. Chapter 4 also contains an
analytical comparison between the proposed clustering algorithm and the frequently utilized
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. It shows
that the block clustering algorithm produces a better clustering output and outperforms
DBSCAN in a computation time performance test. The block clustering algorithm is
consequently a better option for this application as real-time performance enables rapid
adaptation. Finally, Chapter 4 provides direction on how to tune some of the plume detection
algorithm parameters.

The Conclusion in Chapter 5 contains a summary of the thesis and recommendations for
future work. It demonstrates that the plume detection algorithm is well suited for applications
integrating multiple sensors. More significantly, the block clustering algorithm can be utilized

in any image processing application where density-based clustering is required.

1.4 The Scott Inlet Seeps Project

This research was conducted as part of a Memorial University project: Investigating Scott Inlet
Seeps with Autonomous Underwater Vehicles. The primary objective of the project is to
enhance AUV capabilities for oil spill response through the development and testing of new
technologies [12]. The project’s field trials were conducted in September 2023 at the Scott Inlet
seeps in Baffin Bay, and the results of the trials are published in [13]. During these trials, I
was involved with several aspects of operation, including mission planning, piloting and data
analysis.

Over the course of the Scott Inlet Seeps project, a software suite consisting of new and
existing applications was compiled for Memorial University’s Explorer AUV. Some applications
in the suite were responsible for interfacing with sensors and processing the data onboard;
others controlled the mission, and adaptively modified the search plan based on sensor data to
collect a water sample at the optimal location. The software suite also included the plume
detection software developed for this thesis. A higher-level description of the missions and
software is provided in [13], while Appendix C contains the complementary software-focused
documentation. The Appendix includes an overview of the individual software components,
how they interact with each other, and descriptions of their interfaces. It should be noted that
while the software interface design documented in Appendix C is my own work, the higher-
level mission design for the Scott Inlet Project is not, and the implementation of the software
represents a collaborative effort.

During the Scott Inlet trials, adverse weather conditions and a range of hardware issues

significantly limited operational days at the actual seep site, and most dives were consequently

conducted in sheltered water near the seep area. Two dives were conducted at the location
where bubble ebullition had been previously observed, but no plume-like features were present
in the sonar data that was collected when the vehicle was at depth. Several factors including
the INS drift, the AUV’s high altitude, the slower scan rate of the sonar, and lower activity of
the seep itself, could have caused the AUV to miss the seep plumes. The plume detector
software however, worked as intended. The sonar ‘saw’ the water surface when the vehicle was
diving and surfacing, and these detections were correctly classified as clusters by the plume
detector. Since the vehicle was not at depth when the detections occurred, the clusters were
appropriately ignored by the mission control system. Even though the trials did not produce
useful acoustic data, it is important to recognize that the goal of testing the developed
software at the Scott Inlet seeps has driven the design and implementation of the plume

detection algorithm presented in this thesis.

1.5 Research Contributions

The following are the notable research contributions of this thesis:
1. Identification of the absence of automated plume detection algorithms for forward-
looking sonars which are appropriate for both seep and spill plumes.
2. Development of a novel plume detection algorithm for a forward-looking sonar.
3. Development of an innovative clustering algorithm which operates directly on image
data. To the best of my knowledge, this clustering algorithm represents a completely

original approach.

Chapter 2

Literature Review

2.1 Introduction

The first half of this literature review provides an overview of AUV plume detection
technology and the marine environment in which it is used. More specifically, the seep and
spill environments are described in Section 2.2, while the plume detection sensors and tracking
methods are covered in Section 2.3 and Section 2.4, respectively. Section 2.5 draws from this
background information to analyze the extent to which spill plume detection methods for
AUVs can be used at seep sites. The analysis reveals challenges created by the seep
environment and identifies acoustic detection as a method that can address these challenges.
Accordingly, Section 2.6 reviews automated acoustic detection algorithms for submerged
plumes from a range of research fields. It finds that none of the algorithms are applicable to
both seep and spill plumes, but identifies a promising clustering-based approach, which is
developed in the next chapter. Finally, Section 2.7 verifies that the Scott Inlet seeps can be

detected using a forward-looking sonar.

2.2 Seep and Spill Plumes

Natural seeps occur primarily along continental margins, where oil or gas from subsurface
reservoirs flows through fissures and faults into the ocean [14]. These seeps are considered
analogous to terrestrial oases as they provide the basic nutrients for chemoautotrophic
microorganisms, which in turn support higher forms of life [15]. While seeps occur naturally,
spills are caused by anthropogenic activity and can result in the formation of submerged oil
plumes regardless of whether the leaking source is pressurized or not [6]. The focus of this
thesis, however, is on spill plumes caused by pressurized leaking sources such as the broken
DWH oil well, which exposed limitations in submerged spill detection technology [16].

An understanding of the differences between seeps and spills is required when testing oil spill
detection technology at a natural seep site. The primary difference is that hydrocarbons are
released into the environment at a much faster rate during an oil spill. For example, the daily
release of oil from the damaged DWH well was on the same scale as the annual natural
seepage in the Gulf of Mexico [17]. Spills consequently overwhelm marine ecosystems, whereas
seeps release oil at a slower rate that allows ecosystems to adapt [18]. Furthermore, unlike
spills, seeps have multiple sources with transient fluid flows which vary both spatially and
temporally [19]. Flow rates are influenced by environmental factors such as tide-induced
pressure variations and bottom current velocities [20]. Most seeps are calm, with a slow
seepage of oil or dissolved methane into ambient waters; white bacterial mats on the seafloor
are often the sole visible indicator of a methane seep, as eruptive bubble plumes form only

where the methane concentration exceeds the saturation level [21].

The deep plume formed in the wake of the DWH well blowout was distinctly different from
natural seep plumes [22]. A sudden drop in pressure at the release point resulted in the
formation of microscopic oil droplets. Subsequently, a submerged multi-phase plume consisting
of oil droplets with a relative neutral buoyancy (< 70 pm diameter), dissolved hydrocarbon
compounds, and gas bubbles entrained with seawater was formed [1], [23]. The DWH plume
was transported laterally by currents to extend continuously more than 35 km from the source
[24]. Seeps, however, release hydrocarbons slowly and diffusely rather than with a high
intensity, and cannot create the same type of large multi-phase plume. While the dissolved
methane forms a diffused methane-rich area close to the seabed and can cover tens of square
kilometers, the vented gas bubbles rise without spreading laterally and have a footprint that is
typically less than tens of square meters [22], [25].

At seep sites, microbes in the sediment biodegrade the hydrocarbons even before they are
released into the water, contributing to a lowered environmental impact. However, once in the
water column, the fate of hydrocarbons produced by seeps and spills is governed by the same
environmental and biological processes. A significant amount of oil rises to the surface to form
a slick, while soluble components dissolve in the water column, and simpler hydrocarbons such
as methane are quickly consumed by bacteria. At the surface, the lighter compounds evaporate
and the remaining oil is broken down over time by microbes and weathering processes.
Eventually, the remains “fallout” into a neutrally buoyant layer or back into the sediment [26],

[27].

2.3 Hydrocarbon Plume Detection Sensors

Oil is a complex substance composed of dozens of major hydrocarbon compounds and
thousands of minor ones [28]. Given the complex chemical nature of oil, the size of a
submerged spill plume, and its dynamic multi-phase nature, a range of sensors are used to
detect, characterize, and track submerged oil [16]. Among these sensors, mass spectrometers
provide highly selective and sensitive information about dissolved hydrocarbons; they uniquely
identify a range of complex compounds and can detect trace amounts of chemicals with
concentrations in the ppb range [16], [29]. However, existing underwater mass spectrometers’
capabilities are limited to measuring the lighter hydrocarbons [30].

Fluorometers detect oil based on its tendency to fluoresce, and despite being less selective
and sensitive than mass spectrometers, are frequently used because of their low cost,
availability, light weight, and usability [16], [29]. Fluorometric measurements of the heavier
polycyclic aromatic (multiple-ring) hydrocarbons (PAHs) [31] complement mass spectrometry
measurements of their lighter counterparts. Fluorometers require calibration to distinguish oil
from other naturally occurring fluorescing substances in the water [29], and laboratory analysis
of collected water samples is used to confirm that measured fluorescence peaks were produced
by oil [16]. Since fluorometers do not indicate the degree of dispersion, data from a holographic
camera or laser in-situ scattering and transmissometry (LISST) sensor can be used to
complement fluorometric data [16]. Both instruments can provide estimates of the size
distribution of droplets in the water column based on how light is scattered [11], [32]. This

droplet size distribution can be used not only to predict the fate of the plume, but also to

10

determine whether the plume dispersion is due to physical forces or chemical dispersants since
dispersants create smaller droplets [16].

Most sensors utilized for submerged oil and gas detection are in-situ sensors which must first
come in contact with hydrocarbons to detect them [33]. Sonars, however, are remote sensors
which can scan large sectors of the water column to detect acoustic scatterers such as oil
droplets and gas bubbles [11], [34]. While they enable plume tracking in fast-moving currents,
their primary limitation is that they may not be capable of distinguishing between oil droplets
and other targets in the water column [34]. Although theoretically, acoustic frequency-based
methods exist to differentiate between fish and bubbles [35], in practice these methods cannot
be utilized with the data from commercial sonar systems. The down-sampled version of the
complete acoustic waveform provided by commercial sonars is insufficient for a frequency
analysis, which requires a high-resolution signal. Thus, a combination of sensors which detect
different characteristics of the plume are utilized in practice. This approach not only mitigates
the impact of false positives, but enables researchers to correlate the sensors’ data and
positively identify the plume even in the absence of prior knowledge of the sensor signatures

[36).

2.4 AUV Tracking of Submerged Oil Plumes

Approaches to AUV tracking of submerged spilled oil plumes are based on what is known
about the plume and the environmental conditions, as well as the capabilities of the AUV
itself. Although the tracking algorithms utilized by AUVs during the DWH spill reflected low
levels of adaptation, they were successful because researchers first achieved a general

localization of the plume using a towed instrument package before planning the AUV missions.

11

For example, the Woods Hole Oceanographic Institution (WHOI) researchers utilized an
automated and reconfigurable, but not autonomous approach with the Sentry AUV to
determine the horizontal extent of the submerged oil. The AUV was programmed to descend
until it detected oil, and then follow a pre-planned zig-zag path transecting the plume down-
current from the wellhead. During the mission, Sentry transmitted the mass spectrometry data
back to the surface vessel; researchers monitored this data, which showed distinct ‘background’
and ‘plume’ regions, and commanded the vehicle to cut the tracklines short once it indicated
that the vehicle was no longer within the plume [7]. The detected neutrally buoyant plume was
at times 200 m high and 2 km wide and extended continuously for at least 35 km from the
source.

The method utilized with the Sentry AUV proved to be effective but required significant
human intervention. Accordingly, Jakuba et. al proposed a Bayesian clustering method
through which an AUV can use data from multiple hydrocarbon sensors to semi-autonomously
identify a hydrocarbon plume, and validated it using data collected during the DWH spill [8].
While Kukulya et. al have focused on developing and validating an adaptive method for
transecting a plume [37], some studies have taken an alternative boundary-following approach
[27], [38], [39]. For example, Hwang et. al have developed an algorithm for an AUV to

autonomously delineate a submerged oil plume using a forward-looking sonar [38].

2.5 Utilizing Spill Detection Methods at Seeps

While the low hydrocarbon concentrations at natural seeps support life, it makes detection
more challenging. This was made evident during a series of trials conducted at the Santa

Barbara seeps off the coast of California in 2019. During the trials, an AUV equipped with a

12

fluorometer collected water samples in areas of higher fluorescence using a simple threshold-
based algorithm. Despite confirmation from the AUV’s holographic camera of oil droplets at
the sampling locations, laboratory analysis of the samples indicated that they did not contain
significant quantities of oil; the hydrocarbon concentrations were similar to those in samples
from an uncontaminated site. Researchers consequently concluded that further trials in areas
with higher concentrations of oil are necessary [5], [11].

Like the approach utilized with the Sentry AUV during DWH, a significant amount of
operator oversight was involved during the Santa Barbara trials. An AUV equipped with a
sonar was utilized as a pre-screening tool to survey large areas and identify regions where gas
bubbles or oil droplets were present. Missions with the primary water-sampler equipped AUV
were then planned in areas identified as ‘hot spots’ using the sonar data. The spatial and
temporal variability of fluid flow at the seeps, however, revealed that behaviours with more
rapid adaptation were required [11].

Since hydrocarbons are released at seep sites through a distributed network of fissures, the
spatial distribution of seep plumes is inherently different from spill plumes. An AUV survey of
the Australian Yampi Shelf seeps shows varying methane concentration levels within the same
area [19]. This stands in contrast to the distinct plume boundary observed at the DWH site.
Furthermore, ship-based geochemical surveys of seeps on the north-west Australian continental
margin show pockets with higher hydrocarbon concentrations rather than a continuous plume
[40]. In the absence of distinct plume boundaries and the presence of multiple hydrocarbon
peaks at seep sites, autonomous methods developed to track spill plume boundaries may not be
successful. It would consequently be more viable to focus on testing detection and sampling

methods.

13

This thesis focuses on automated acoustic detection of submerged plumes to address the
challenges faced when using spill detection methods at seep sites. The challenges presented by
the presence of multiple sources and lower hydrocarbon levels are addressed by integrating a
sonar as it detects the higher concentration sources where methane saturation causes bubble
ebullition. Furthermore, automating the acoustic detection addresses challenges stemming from
spatiotemporal variability by enabling more rapid adaptation. The focus here is specifically on

detection, and not tracking, to allow for the method to be tested at seep sites.

2.6 Automated Acoustic Plume Detection

Research involving automated acoustic detection of subsurface oil and gas plumes is directed
toward detecting spilled oil, natural seeps, or pipeline leaks (see Table 2.1 for an analytical
summary of the relevant research papers). Since the detection of submerged spill plumes using
sonars is a relatively new field, the literature in the area is sparse. Furthermore, existing
algorithms for tracking spilled oil plumes [38], [41] are not suitable for seep sites; they are not
designed for the smaller acoustic footprint of seep plumes, and their detection and tracking
mechanisms are very tightly coupled.

Research focusing on automated detection of seep bubbles and gas leaks utilizes bottom-
facing sonars to detect the characteristic acoustic flare shape (Fig. 2.1). These approaches rely
on the detection of long vertically-oriented shapes or edges [42], [43], [44], [45], [46], or data
patterns produced by rising gas bubbles [47], [48], [49]. They cannot, however, be utilized for
neutrally buoyant spill plumes which do not have the same vertical flare shape or rising

bubbles. Furthermore, mounting the sonar in a forward-looking orientation is better suited for

14

spill delineation as the plume forms one or more horizontal intrusion layers in the stratified

ocean [50].

Fig. 2.1: Illustration of a seep plume’s rising flare shape in bottom-facing sonar data

Research using machine learning approaches tends to be limited in subsea applications due
to the absence of sufficient training data, which results in model over-fitting. To work around
this issue, Speck et. al generated synthetic MBES images of bubble plumes using a
Computational Fluid Dynamics (CFD) simulator and style-transfer algorithm [51]. These
images were then used to train a YOLOv3 neural network, and the resulting object detector
successfully detected compressed air bubbles in real MBES data. The process of developing a
CFD simulator, however, introduces a level of complexity that is not required here where the
primary goal is simply to distinguish real targets from noise. Similarly, networks designed to
suppress the model-overfitting issue caused by small sample sets are also relatively complex
[52].

In summary, existing automated seep and gas leak detection methods would not transfer
well to spill detection. Given the absence of research on automated seep plume detection using
a forward-looking sonar, some of the research on more generic automated target detection
algorithms for sonars was reviewed. In general, detection algorithms tend to require some

knowledge about the object; for example, template matching algorithms utilize the object’s size

15

and shape, whereas statistical classifiers expect a distribution for the highlight or shadow [53].
Thus, the literature on non-model-based object detection is more relevant to plume detection.
The work of Johannsson et al. [54], which utilizes a simple computer vision pipeline of
smoothing, gradient thresholding, and clustering, provides valuable insight. Based on this
literature review, the following chapter develops a plume detection algorithm which identifies

the plume as a dense cluster of points in forward-looking sonar data.

16

Table 2.1: Summary of research involving the automated acoustic detection of subsurface oil and gas plume

Sonar Reason for not
Title Citation | Sonar Type . . Objective Algorithm Approach .
Orientation selecting approach
Oil Plume Mapping: Identifies scan lines with high
Adaptive Tracking and . Spill intensity detections and then
. . Scanning Forward . o . .
Adaptive Sampling from an [38] . Plume identifies oil patches as consecutive)
Sonar Facing))) o . Not designed for the
Autonomous Underwater Tracking scan lines with the high intensity .
. . smaller footprint of
Vehicle detections. | Detecti
seep plumes. Detection
. Utilizes the stalled continuity PP)
Bubble Plume Tracking))))) and tracking methods
])) Spill method to identify scan lines with)
Using a Backseat Driver on Scanning Forward L) . are tightly coupled.
[41]) Plume high intensity detections and then
an Autonomous Sonar Facing .) . , ,
. Tracking | uses Gaussian blurring to identify
Underwater Vehicle)
oil patches.
Automatic Detection and Detects vertically oriented edges
Segmentation on Gas 49) Multibeam Bottom Seep using a Haar classifier and richer
Plumes from Multibeam Sonar Facing Detection texture features using a Local
Water Column Images Binary Patterns (LBP) detector
Subsea pipeline leak Pipeline Relies on the detection
i i PP Multibeam Bottom P Detects edges in the sonar image)
inspection by autonomous [43]) Leak ,) i of long vertically
) Sonar Facing) using morphological edge detection)
underwater vehicle Detection oriented shapes or
Comprehensive Detection edges
of Gas Plumes from Multib Bott S Uses morphological features such as
ultibeam ottom ee
Multibeam Water Column [44] i p height, area, and width to
Sonar Facing Detection

Images with Minimisation
of Noise Interferences

distinguish gas plumes from noise

17

Extended Detection of
Shallow Water Gas Seeps

Detects large clusters with a certain

Multibeam Bottom See
from Multibeam [45] S Paci Det f height /width ratio and distance
onar acin etection
Echosounder Water & from the seafloor Relies on the detection
Column Data of long vertically
Segments the image into foreground oriented shapes or
Pipeline and background sections usin edges
Automatic gas leak Multibeam Bottom b i & ‘g &
letecti ; [46] S Faci Leak maximum entropy segmentation
detection system onar acin
v & Detection | and then uses the Hough transform
to detect linear features
Utilizes a scale-invariant feature
A method for undersea gas Pipeline
) & Multibeam Bottom P transform (SIFT) flow algorithm to
bubbles detection from [47]) Leak)) o
L Sonar Facing . estimate the motion characteristics
acoustic image Detection .
of gas leaks Relies on data
Automatic Detection of . Detects regions of high intensity patterns produced by
) . Interferometric
Marine Gas Seeps Using an 48] Sid Bottom Seep and low interferometric (spatial) rising gas bubbles, and
idescan
Interferometric Sidescan S Facing Detection | coherence in the images formed by requires the sonar to
onar
Sonar the two receiver arrays be in a bottom-facing
Technical Note: Detection Detects data patterns produced by orientation
of gas bubble leakage via 9] Multibeam Bottom Seep rising gas bubbles using a cross-
correlation of water column Sonar Facing Detection | correlation technique from particle
multibeam images imaging velocimetry
Requires CFD
) Trained a YOLOv3 object detector . d . .
Supervised Autonomy for o . . . simulations, which
)) Pipeline using synthetic MBES images of ,
Advanced Perception and Multibeam Bottom introduces a level of
[51] . Leak bubble plumes generated by a .
Hydrocarbon Leak Sonar Facing)))) complexity not
Detection Computational Fluid Dynamics

Detection

(CFD) simulator.

required for this
application

18

2.7 Bubble Ebullition at the Scott Inlet Seeps

In [55] Nikolovska et. al presented scanning sonar images of single and clustered bubble
streams from gas seeps in the eastern Black Sea. These images revealed that it may not be
possible to distinguish the acoustic backscatter of a single bubble stream from noise, but the
backscatter from a cluster of streams produces distinctive features in the data. Given the plan
to test the developed algorithm at the Scott Inlet seeps, video data of these seeps was analyzed
to determine if the bubble plumes were sufficiently large for detection.

The Scott Inlet seeps are located in Baffin Bay, primarily along the south wall of Scott
Trough, and have been active for at least 45 years [56], [57]. A 2018 research expedition
located a prominent methane seep in the area at 71.37812° N, -70.07452° W (Stn0) using a
Remotely Operated Vehicle (ROV) (see Fig. 2.2) [58]. Video recordings from this expedition'
were reviewed to identify seep locations based on the presence of microbial mats and bubble
plumes, and these locations are mapped out in Fig. 2.3. Approximately 18 seepage locations
were observed during the survey, most evidenced only by microbial mats (see Fig. 2.4). Bubble
ebullition occurred at three sites in the south-west region of the survey area, all within 30 m of
each other. While only a single bubble stream was observed at one of these sites, the remaining
two sites presented large fields of bubbles (see Supplementary Video for [58]); the more active

sites should be detectable using a forward-looking sonar.

! Video data collected using SuMo ROV aboard CCGS Amundsen. Funding source for acquiring the video data:
ArcticNet Hidden Biodiversity project, Amundsen Science CFI funding, and NSERC Ship Time grant to E. Edinger

et al.

19

During the expedition, water samples were collected at Stn0 where bubble streams were
observed, as well as from eight sites within a 5km radius of it. Although the bottom water
methane concentration was highest at Stn0, samples taken over a 24-hour period reveal a high
degree of variability, with concentrations ranging from 4 nM to 610 nM [58]. This suggests a

large daily variation in methane flux and bubble ebullition activity.

§ 3
! Legend
{

1 @ ScottInlet Seep

Fig. 2.2: Location of the seep identified by the ROV during the CCGS Amundsen 2018 cruise to Scott
Inlet. The nautical chart is published by the Canadian Hydrographic Service [59].

20

Legend

© Bubble Ebullition & Microbial Mat
® Microbial Mat

® ROV Track

Fig. 2.3: ROV track along with seep locations identified by microbial mats and bubble ebullition®

Fig. 2.4: White microbial mats indicating methane seepage through the seafloor at Scott Inlet

2.8 Conclusion

In conclusion, this literature review has identified that developing acoustic detection methods
would expand the scope of AUV spill detection technology and enable testing at seep locations.
Automated acoustic detection addresses seep-site challenges stemming from the presence of
lower hydrocarbon concentrations and multiple sources with spatiotemporally varying flow; the

focus is solely on detection, as tracking methods may not be successful at seep sites. The

21

literature review has also demonstrated that existing plume detection algorithms do not apply

to both seep and spill plumes. It has subsequently motivated the development of a clustering-

based approach to plume detection using a forward-looking sonar and has verified that this

approach would be viable at the Scott Inlet seeps.

22

Chapter 3

Plume Detector Design

3.1 Introduction

This chapter focuses on the development of a novel plume detection algorithm for a forward-
looking scanning sonar. The algorithm is designed for a multi-sensor approach to plume
detection in which its output is combined with data from in-situ hydrocarbon sensors. Its
objective is to enable rapid adaptation by processing the sonar scans during the mission and
identifying areas of interest in which more detailed surveys are required. Due to the inherent
limitations of commercial sonars which result in a low discriminative capacity, the algorithm
differentiates only between real targets and noise. The task of specifically identifying
hydrocarbons in the water column is left to the in-situ sensors. The plume detection algorithm
identifies the plume as high-density regions in the sonar data and returns the georeferenced
center coordinates of these regions. It consists of five steps: range-gating, segmentation, grid
conversion, clustering, and georeferencing.

This chapter begins with a description of the factors which have shaped the plume detector’s
design decisions (Section 3.2) and then covers the operation of the Ping360 sonar (Section 3.3),

the scanning sonar for which the algorithm was designed. Following a brief overview of the

23

algorithm in Section 3.4, each step is described in a separate section. The source code for the
plume detection algorithm is provided in an online GitHub repository [60], as well as in

Appendix A and Appendix B.

3.2 Design Considerations

The plume detector’s design was shaped by several factors, which are listed here:

1. Real-time performance: Given the plan to use the plume detector at the Scott Inlet seeps,
achieving real-time performance was a high priority. The data must be processed faster
than the rate at which it is received to enable an adaptive response to a dynamic
environment.

2. Configurability: The algorithm needed to be configurable not only for seep and spill plumes
of different sizes but also for different platforms, as processing capabilities vary
significantly from one system to another.

3. Sensor availability: The plume detector was designed for the Ping360 scanning sonar
because it had already been integrated on Memorial University’s Explorer AUV. While
some of the algorithm’s details are consequently specific to the Ping360, they can be easily
adapted for any scanning sonar.

4. Automation before autonomy: In this application, a truly autonomous system would need
to combine data from different sensors to identify the plume without prior knowledge of
the sensor signatures. However, even the most advanced algorithm for hydrocarbon plume
identification using multiple sensors remains semi-autonomous as it relies on an operator to
assign meaning to the processed data [8]. Additionally, the method is limited to in-situ

sensors which produce 1D timeseries data and is not applicable to remote sensing sonars,

24

which generate 2D acoustic data. Thus, substantial research is required to achieve truly
autonomous detection using sonars, and is beyond the scope of this thesis. The focus here is
consequently on automating acoustic detection as a first step towards autonomous

detection.

3.3 Ping360 Sonar Operation

The Ping360 (Fig. 3.1) is a mechanical scanning sonar (MSS) that can scan the complete 360°
area around it, within a 50 m range. It transmits acoustic pulses into the water and then
measures the intensity of acoustic reflections over a period to detect objects in the water
column. Each of these acoustic transmit and receive cycles is referred to as a ‘ping’. The
intensity of the reflection produced by an object depends on the density difference between the
object and water; gas bubbles, rocks, and metal produce strong acoustic reflections [61].

The beam generated by a scanning sonar ensonifies a narrow area in front of the sonar,
much like how a flashlight illuminates the dark. To scan a sector, the sonar mechanically
rotates the transducer head which produces the beam [61]. An image of the scanned sector is
then produced by compositing the individual ‘slices’ from each beam, as in Fig. 3.2. The data
presented is from a test which was conducted at Lake Barrington, Tasmania, Australia. During
the test, the Ping360 sonar was secured to the dock, and scanned an area containing a small
micro-bubble plume created by a bubble generator; the test is described in detail in [62].

Warmer colours in the sector scan image (Fig. 3.2) indicate higher intensity acoustic reflections

25

Fig. 3.1: Ping360 Scanning Sonar Fig. 3.2: Ping360 sector scan of a micro-bubble

plume

The Ping360 is not calibrated by the manufacturer; it provides non-dimensional intensity
measurements which do not correspond to any physical quantity, such as the acoustic
backscatter intensity [63]. Following each ping, the Ping360 returns an array of intensities
representing the strength of the acoustic reflections over the range of the beam. The Ping360
has a relatively slow ping rate, and takes 35 seconds to scan the complete 360° area around it
when operating with a 50 m range [64]. As a result, it is more effective for the sonar to scan

only a sector in front of the vehicle with a sweeping back-and-forth motion.

3.4 Algorithm Overview

The plume detection algorithm consists of the following five steps:
1. Range-gating: Removes high-intensity noise in the sonar data close to the transducer
head.
2. Segmentation: Partitions the dataset into background data and positive detections.
Intensity samples that exceed a threshold are considered positive detections.
3. Grid Conversion: Transforms the data storage format from a polar grid to a Cartesian

grid. This conversion simplifies subsequent processing because when the data is stored

26

in the Cartesian grid format, the storage locations correspond to the sampling
locations. The data is also down-sampled during the transformation to prepare for the
computationally intensive clustering step.

4. Clustering: Identifies high-density groups of positive detections and categorizes them as
clusters; detections in low-density areas are considered noise and are discarded. The
output is the center and radius of each cluster.

5. Georeferencing: Computes the real-world coordinates of the cluster centers.

The algorithm’s execution flow is illustrated in Fig. 3.3. The first two steps are applied to each
beam return, while the remaining three steps require the whole sector scan. As a result, the
range-gating and segmentation steps are executed as soon as the beam data from each ping is
received. Execution stops following segmentation if the sonar is in the process of scanning a
sector, and the segmented data is stored. Once the beam data from the port or starboard edge
of the sector is received, all five steps of the algorithm are executed, and the whole sector scan
is processed.

The algorithm’s configurable parameters are identified in Fig. 3.3 using italics. These
parameters control the algorithm’s output and allow the algorithm to be configured to detect
seep or spill plumes. While each of the following sections describes a step in the plume
detection algorithm along with its’ configurable parameter(s), directions on how to tune the
parameters are provided in the following chapter. The tuning method is based on a visual
analysis of how parameter changes affect the algorithm’s output. It is important to note that
the emphasis on automated detection, as opposed to autonomous detection, justifies the

manual selection of the algorithm’s parameters.

27

(start |
Y /

Noise Range 4>| Range-gating

Segmentation Threshold 4>| Segmentation |

Sector Scan
Complete?

Image Width —_>| Grid Conversion |

Clustering Block Width, .
Minimum Fill Threshoid | Clustering |
instrument Offse rE,ad_.‘. _)| Georeferencing |
I St \
I‘ op JI

Fig. 3.3: Plume Detection Algorithm Flowchart. The algorithm’s configurable parameters are italicized.

3.5 Range-Gating

Sonar data typically contains high intensity noise in the region close to the transducer head.
The noise is visible at the bottom of Fig. 3.2 as a completely red region touching the sonar and
extending approximately half a meter from it. This high intensity data is an artifact of the
sonar’s operation; when the transducer emits the acoustic pulse, it causes the sonar itself to
vibrate, and these vibrations take some time to die out. The sonar subsequently picks up its
own vibrations when it measures the acoustic reflections [65].

Range-gating removes the high-intensity noise close to the transducer head. More
specifically, it zeroes intensity samples within a configurable noise range from the sonar. An
appropriate value for the noise range can be determined based on a visual inspection of the
sonar's acoustic return. If the sonar settings or the sonar itself is changed, a re-inspection of

the data is required to determine if the noise range requires adjustment. The noise range

28

Ry is.) is input to the algorithm in meters, and the following equation is utilized to
Noise p

determine the equivalent number of samples within the noise range:

R .
= 2 Ny (3.1)

NNoise R
Total

Nyoise = the number of samples within the noise range

Ry,ise = the noise range, measured meters

Rrp.+ = the total ping range, measured in meters

Nyt = the total number of samples in the ping
The Ping360 data message does not directly indicate the total ping range (Rrp,,,;) referenced in
(3.1) but provides parameters from which it can be calculated. Referencing the source code for

the Ping360 Ping-Viewer software [65], Ry, is calculated as:

25 x 10~ TeNyypur (3.2)
RTotal = 2

where:
T = the sample period, measured in 25 nano-second increments
¢ = the speed of sound, measured in m/s
Fig. 3.4 contains a plot of the acoustic intensity data from a single beam containing 1200
samples. In the example, it is assumed that 120 samples (highlighted yellow) fall within the
noise range; these samples are zeroed during the range-gating process and the resulting dataset
is plotted in Fig. 3.5. Note that since the sonar is not calibrated, the acoustic intensity is a

non-dimensional 8-bit measurement, which has a maximum value of 255.

29

200+

-

o

=)
T

Acoustic Intensity

-
=3
=]
T

v
S
T

o°

Sample Number

o0 o o®°

Fig. 3.4: Acoustic Intensity data from a single beam. The region within the noise range is highlighted

yellow.

200

o
a
=]

Acoustic Intensity

o
o
S

50 -

OJLM“M-A—L

° 2

o0

& &°

o o
,\'00 8’10
Sample Number

Fig. 3.5: Range-gated acoustic intensity data from a single beam.

3.6 Segmentation

Segmentation partitions the range-gated intensity samples into background data and positive
detections; it produces a basic binary dataset which aids subsequent processing. A simple
threshold is applied to each intensity measurement along the beam to segment the data (Fig.
3.6). Medium-high intensity measurements above the threshold are considered positive
detections, and the corresponding segmented data point is set to ‘1’; low-intensity samples are

indicated by a value of ‘0’ in the segmented dataset (Fig. 3.7).

30

200

-

o

=)
T

Acoustic Intensity

o

=3

=)
T

. , '\1@;"“1‘ MMA il wm;mnﬂ!@u MMJ @M MJ s @03‘4‘1 L1 0. G@l

Sample Number

Fig. 3.6: Range-gated data for a single beam (blue) and the segmentation threshold (red).

Positive Detection
=
(=]

: s

) N N o o N
2° 80 Y ® 4o 0°
Sample Number

Fig. 3.7: Segmented data for a single beam.

The segmentation threshold is a configurable parameter and is specified as a percentage of
the sonar’s full-scale range (0-255). A threshold of 30% is utilized for the example in the

figures above.

3.7 Grid Conversion

Sonar data is collected in polar coordinates, with a range of intensity values along each angular
position of the transducer head (Fig. 3.9(a)). Following segmentation, the data is still stored in
the polar format, and the grid conversion step maps it onto a Cartesian grid to facilitate real-
time processing (Fig. 3.9(b)). The re-mapping is accomplished using an image transformation
function which converts from polar to Cartesian coordinate space. Fig. 3.8 illustrates the

transformation using a minimal dataset consisting of 8 beams with 4 samples along each beam;

31

each colour block represents an individual data sample. The input image (Fig. 3.8(a)) is the
two-dimensional array of polar data in its storage format - with each beam’s angular position
along one axis, and the range from the sonar along the other. The input image is ‘wrapped’
around itself to produce an image that stores the data in Cartesian coordinates (Fig. 3.8(b)).
This output image measures range along both axes, and the data storage locations correspond
to the data sample locations in physical space. The output image width is a configurable

parameter and should be selected based on the system’s processing capabilities.

Range

Angle

(a) Input image: data stored in polar (b) Output image: data stored in Cartesian

coordinates coordinates

Fig. 3.8: Input and output images of a polar to Cartesian coordinate space transformation.

More specifically, the OpenCV warpPolar function [66] was selected for the polar to
Cartesian transformation. For each pixel in the output image, the warpPolar function
computes the range and angle to identify the source location in the input image. Typically,
this location is not a discrete value and lies between pixels. Accordingly, the function

interpolates between pixels surrounding the source location to compute the output image pixel

32

value. Several interpolation options are available, and although nearest neighbour interpolation
is the fastest, it also has the highest signal-to-noise ratio. The selected bilinear interpolation
method is only marginally slower than nearest neighbour interpolation but produces an image
with a significantly better signal to noise ratio [67].

The motivation for converting the data into an image with a Cartesian pixel grid is two-
fold. First, the clustering process involves locating data points that lie within defined areas,
and these operations are straightforward with a Cartesian grid. To illustrate this, Fig. 3.9(b)
shows that the number of data points within a square area of a Cartesian grid is fixed,
regardless of the location of the square. In contrast, a square area of a polar grid contains a
variable number of data points, determined by the location of the square. This variability
exists because the polar grid spacing increases with distance from the center. Thus, locating
data points in an area of a polar grid is not a trivial operation, and converting to a Cartesian

grid simplifies processing.

(b) Polar Grid (¢) Cartesian Grid

Fig. 3.9: Finding data points within square areas in two types of grids

The second advantage of re-gridding is that it allows for simultaneous downsampling of the

data before the computationally intensive clustering step. Downsampling is especially

33

important because sonars generate large amounts of data. For example, a single Ping360 sonar
scan of a 90° sector can contain 120,000 samples (1200 samples/beam x 100 beams). In
comparison, a 400x400 pixel image produced through the re-gridding process would contain
around 31,000 data pixels; this reduces the dataset size by a factor of 4. Note that here, ‘data
pixels’ refers to pixels in the image that lie in the sonar swath, whose values are derived from
the sonar data. The area containing the data pixels for a 90° sonar swath is shown in black in
Fig. 3.10. The number of data pixels provides an effective measure of the dataset size, as only
these pixels have a significant impact on the clustering computations.

Thus, the pixel grid format of an image allows for simpler and faster processing at the

clustering stage, thereby enabling real-time processing.

Fig. 3.10: Image data pixels for a 90° swath. The data pixels are shown in black.

3.8 Clustering

3.8.1 Introduction

The objective of the clustering process is to identify high-density groups of positive detections
in the segmented image, and simultaneously filter out noise. The scikit library [68] provides
several options for clustering algorithms, but only a few discard outliers as noise. Among these,

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is the

34

fastest [69]. DBSCAN’s worst-case O(n®) time complexity, however, makes it unsuitable for
real-time applications, and a custom ‘block clustering’ algorithm is consequently developed.
Nevertheless, this clustering section also focuses on DBSCAN as it is the benchmark against
which the block clustering algorithm will be compared.

Section 3.8.2 defines the plume detector’s clustering interface, while Section 3.8.3 provides
an overview of DBSCAN and describes how it can be configured to match the defined
interface. Section 3.8.4 describes the scenario which produces DBSCAN’s worst-case time
complexity and explains why workarounds are not suitable for this application. Thus, the
motivation for a faster and more stable clustering algorithm is provided, and a customized
block clustering algorithm is described in Section 3.8.5. Finally, Section 0 presents a

comparison of the two clustering algorithms.

3.8.2 Plume Detector Clustering Interface

The clustering interface defined here establishes a set of rules to determine which clustering
algorithms can be utilized for the plume detector. More specifically, any algorithm which
identifies cluster pixels based on the following definitions is suitable:
1. Positive detection pixel: A pixel in the segmented image that has a value of ‘1’ (i.e. a
medium/high acoustic intensity point).
2. Clustering block: A square subset of pixels in the segmented image, centered on a
positive detection pixel.
3. High-density block: A clustering block in which the number of positive detection pixels
exceeds a minimum fill threshold.

4. Cluster pixels: Pixels in the segmented image that lie in high-density blocks.

35

The plume detector requires two input parameters for the clustering algorithm:

1. The clustering block width, which determines the size of the clustering block. It is
input to the algorithm in meters and converted to pixels based on the number of pixels
per meter in the input image.

2. The minimum fill threshold, which determines whether a clustering block is a high-
density block. It is input to the algorithm as a percentage, allowing it to be specified
without any dependence on the size of the clustering block. It is converted to a pixel
value through multiplication with the total number of pixels in the clustering block.

The definitions above are illustrated in Fig. 3.11, where each cell in the images represents a
pixel, and the black pixels are positive detection pixels. Each image represents a 3x3 pixel
clustering block (i.e. the clustering block width is set to 3 pixels). With the minimum fill
threshold set to 50% (4.5 pixels), the first clustering block containing 4 black pixels (Fig.
3.11(a)) is not a high-density block, while the second clustering block containing 5 black pixels

(Fig. 3.11(Db)) is a high-density block.

0 0o (0 00
0 1 1 1 1 1
0 1 1 g
(a) Low-density clustering block (b) High-density clustering block

Fig. 3.11: Tllustration of the two types of clustering blocks. A 3-pixel clustering block width and 50%

minimum fill threshold are utilized.

3.8.3 Clustering with DBSCAN

DBSCAN identifies clusters as high-density groups of points separated by areas of lower

density and can be configured to match the plume detector’s clustering interface.

36

DBSCAN refers to the area around a point as its ‘neighbourhood’. The shape of the
neighbourhood is defined by the selected distance metric, and the frequently utilized Euclidean
distance produces a ball-shaped neighbourhood [70] (Fig. 3.12(a)). The Chebyshev distance,
however, is selected here as it produces a square neighbourhood that matches the shape of the
plume detector’s clustering block (Fig. 3.12(b)). Formally, the Chebyshev distance is the
maximum distance measured over any of the axes. It is also known as the “chessboard”
distance, as it corresponds to the minimum number of moves for a chess king to go from one

square to another [71] (Fig. 3.13).

(a) Euclidean Neighbourhood (b) Chebyshev Neighbourhood

Fig. 3.12: Neighbourhood shapes produced by two different distance metrics

(a) Euclidean distance (b) Chebyshev distance

Fig. 3.13: Euclidean and Chebyshev distance measurements

The DBSCAN algorithm takes two parameters.

37

1. Epsilon (¢): A range value defining the size of the neighbourhood around a point. It is
measured from the point to the edge of the neighbourhood.
2. MinPts : the minimum number of points in a neighbourhood that is required for the
formation of a cluster.
DBSCAN defines clusters based on ‘core points’, which are points that have more than MinPts
neighbours in their & neighbourhood. Core points that are within an & range from each other
belong to the same cluster, and all points that are within an & range of a core point belong to
the core point’s cluster. Points that are not within an & range of a core point are considered
‘noise’ [70].

Fig. 3.14 illustrates the plume detector’s clustering process, with DBSCAN as the selected
clustering algorithm. The 10x10 pixel segmented image which is the input to the clustering
step is shown in Fig. 3.14(a). DBSCAN, however, cannot operate directly on the image and
requires the data to be provided as a list of coordinates. Thus, the input to the DBSCAN
algorithm is the center coordinates of the positive detection pixels (Fig. 3.14 (b)). Fig. 3.14(c)
shows DBSCAN’s classification of the data points with € set to 1.5 pixels and MinPts set to 4.
The red points are core points and have at least 4 points in their neighbourhood. The blue
points are cluster points and are within the neighbourhood of core points. The grey points are
noise points and are outside the neighbourhood of the core points. Areas with a diagonal fill
indicate the ¢ neighbourhood of core points; overlapping neighbourhoods have a darker cross-
hatch fill. The last image in Fig. 3.14(d) identifies the points in the three resulting clusters
with unique colours. The green and purple clusters contain two core points within an ¢ range

of each other, while the orange cluster contains one core point.

38

0|0

0 ® o o ® o o
0 o o] L
0|0

0|0

0|0 o o
0|0 e o o o
0|0 L L
0|0 L
o|jojo|lo|j0|O]|O

. %//////////% : e o o
(¢) DBSCAN Classification of Points (d) DBSCAN Clusters

Fig. 3.14: The plume detector’s clustering process with DBSCAN as the selected clustering algorithm

Thus, DBSCAN can be configured to match the plume detector’s clustering interface using
the Chebyshev distance metric. Only the terminology is slightly different: DBSCAN’s ¢ is half
the clustering block width; DBSCAN’s MinPts parameter corresponds to the minimum fill
threshold; and DBSCAN’s core pixels’ neighbourhoods correspond to the high-density blocks.
Consequently, DBSCAN'’s cluster points which lie in the core points’ neighbourhoods

correspond to the plume detector’s cluster pixels which lie in the high-density blocks.

3.8.4 The Motivation for a Novel Clustering Algorithm

This section illustrates why DBSCAN is not well suited for this real-time image processing

application and thereby provides the motivation for a novel clustering algorithm. The concept

39

of cluster degeneration is also introduced; it plays an important role in the following chapter,
where the performance tests create the worst-case scenario by causing the clusters to
degenerate.

Generic implementations of the DBSCAN algorithm have a worst-case O(n°) time
complexity. Improving DBSCAN’s time complexity is a large and active area of research
because the computation time becomes infeasible for large datasets [72]. The running time of
DBSCAN depends on the number of invocations of the range query function, which determines
which points are in the neighbourhood of a given point [73]. As a result, DBSCAN’s runtime
increases significantly with larger values of €, which produce larger neighbourhoods and
consequently require searches through greater portions of the dataset. As ¢ is increased, fewer
and fewer clusters are formed, and the worst-case scenario occurs when all or most of the data
points are contained within a single cluster; this is referred to as cluster ‘degeneration’ [74].

In most applications, degenerated clusters are not very useful, and the original developers of
DBSCAN suggest tuning the & parameter based on the data to avoid degenerate clusters [74].
However, this is not a viable approach in this application for several reasons. First, since the
data is not known beforehand, the algorithm should be robust enough to work on a wide range
of datasets, rather than require tuning based on the data. Second, approaches that require an
operator’s oversight are not suitable for real-time automated applications. Finally, not only is
the formation of a single cluster a valid outcome in this application, but it can be expected in
the presence of a large spill plume.

The worst-case O(n®) time complexity applies to generic implementations of the DBSCAN
algorithm, which are not constrained by the dimensionality of the data. If the data is 2-

dimensional, as it is here, a faster grid-based DBSCAN algorithm can be utilized; it simplifies

40

the range query by organizing the data into a grid and has an improved O(nlogn) time
complexity [73]. However, the algorithm is relatively complex, and implementations of it are
not readily available. Furthermore, since the data to be clustered here is already stored in a
grid format, the initial steps of the algorithm that partition the data into a grid would be
redundant. A novel clustering algorithm that operates directly on the image data is

consequently developed in the following section.

3.8.5 A Novel Block Clustering Algorithm

The proposed block clustering algorithm combines density-based clustering and image
processing methods. It is based on Blomberg et. al’s method for automatic detection of gas
seeps using interferometric side-scan sonars [48]; they consider a potential seep pixel to be a
positive detection if three of the four nearest neighbouring pixels are also potential seep pixels.
However, like Hwang et. al’s spill plume tracking algorithm [41], the block clustering algorithm
is designed to look at a larger area as spill plumes have a larger acoustic footprint.
The block clustering algorithm builds upon the plume detector’s interface outlined in Section
3.8.2. It defines the following terms, which determine how the clusters are formed:
1. Cluster Region: A set of connected high-density blocks. It determines the spatial extent
of a cluster.
2. Cluster: A high-density group of positive detection pixels that lie within a single cluster
region.
The algorithm’s final output is the center coordinates and radius of each cluster. Fig. 3.15
provides a graphical introduction to the block clustering algorithm through images that are

created during the clustering process for a small 8x8 pixel image. In this example, the

41

clustering block width is set to 3 pixels, and the minimum fill threshold is set to 50%. The
following is a summary of each image:

1. Input Image (Fig. 3.15(a)): The image created during the preceding grid conversion
step, in which positive detection pixels identify medium-high intensity acoustic
returns.

2. Padded Input Image (Fig. 3.15(b)): The input image, padded with a zero-valued
pixel border. It is created to aid subsequent processing.

3. High-Density Blocks Image (Fig. 3.15(c)): Identifies the high-density blocks in the
padded input image. Recall that a high-density block is a clustering block in which
the number of positive detection pixels exceeds the minimum fill threshold.

4. Cluster Regions Image (Fig. 3.15(d)): Identifies sets of connected high-density blocks
as cluster regions. The pixels in each cluster region are labelled with a unique pixel
value and are also displayed with a unique colour.

5. Clusters Image (Fig. 3.15(e)): Identifies the cluster pixels, which are the positive
detection pixels that lie within the high-density blocks. Their pixel values correspond
to the cluster region in which they lie, and consequently identify the cluster to which

they belong.

42

o D|
[=JN =]
HH

(=2 =R I = i =}

(=1 [= = (== = = (= [= R = B = |

olo|lo|lo|o|o|o

(b) Padded Input Image

(a) Input Image

0 1 1 1] 1] 1 1 1] 0 2 2 1]
0 1 1 1] 1] 1 1 1] 0 2 2 1]
0 1 1 1] o 1 1 o 0 2 2 o
0 1 1 1] o 0 0 o 0 0] o
0] o 0 1 1 1 0 0 o 0 0] o 0] o
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 o 0 1 1 1) o o 0 0 0 o 0 0 o
0 0 o 0 1 1 1) o o 0 0 0 o 0 0 o
0 0 1] 0 0 1] 0 0 0 1] 0 0 0 1] 0 0 1] 0 0 1]
0] 1] 0] 1] 0 0 0 1] 0 0] 1] 0] 1] 0] 1]
(¢) High-Density Blocks Image (d) Cluster Regions Image

0 o 0 0 o 0 0 o o 0

] 1] 0 2 2 2 0

]] 1] 0 2 0 2 0

] 1] 0] 1] 0] 0 1] 0

] o 0] o 0] 0 o 0

] o 0] o 0 o 0

] o 0] 0 o 0

0 o 0 0 o 0 0 0 o 0

0 o 0 0 o 0 0 o o 0

0 o 0 0 o 0 0 o o 0

(e) Clusters Image

Fig. 3.15: Images created during the clustering process for a small 8x8 pixel image, when using a 3x3
pixel clustering block and 50% minimum fill threshold. In (b) the border padding cells are indicated
with a grey background, and the clustering block for the first positive detection pixel is highlighted with

an orange border.

The details of each step in the clustering process are as follows:
1. Calculate clustering block width in pixels.
The clustering block width is input to the algorithm in meters and converted to pixels based

on the number of pixels per meter in the input image. This calculated floating-point block

43

width must then be converted to an integer value to ensure that the clustering block
encompasses a discrete number of pixels. Additionally, selecting an odd-valued block width
allows for the block to be centered on the selected positive detection pixel, with an equal
number of pixels on either side of it. Thus, the calculated floating-point block width is rounded

up to the nearest odd integer.

2. Created Padded Input Image.

The padded input image is created to ensure that clustering blocks centered on the positive
detection pixels at the edge of the input image can be extracted. For example, it is not possible
to extract a 3x3 pixel block centered on the positive detection pixel at the top left corner of
the input image in Fig. 3.15(a). To address this issue, a zero-valued pixel border is added to
the input image and is referred to as the ‘border padding’. Within the created padded input
image, clustering blocks for all the positive detection pixels can be identified. The clustering
block for the first positive detection pixel is highlighted with an orange border in (Fig.
3.15(b)).

The width of the border padding is equal to the number of pixels on one side of the central
positive detection pixel in the clustering block. It is calculated as half the clustering block
width, rounded down to the nearest integer. In the padded input image (Fig. 3.15(b)), the
border pixels are highlighted with a grey background; the 1-pixel border width is computed
based on the 3-pixel clustering block width. This step of adding border padding reflects a
typical image filtering workflow [75], which involves operations similar to the clustering block

evaluation.

44

3. Create High-Density Blocks Image.

The high-density blocks image (Fig. 3.15(c)) identifies regions corresponding to high-density
blocks in the padded input image with a pixel value of ‘1’. In other words, when it is overlaid
on the padded input image, it identifies all the clustering blocks in which the number of
positive detection pixels exceeds the minimum fill threshold (Fig. 3.16). The high-density

blocks image is created as a first step towards identifying the cluster regions.

Fig. 3.16: The padded input image overlaid with the high-density blocks image; pixels that do not lie
within the high-density blocks are greyed out.

The high-density blocks image is initialized to a two-dimensional array of zeroes the same
size as the padded input image. To identify the high-density blocks, the following evaluation is
carried out for each positive detection pixel in the padded input image: first, the clustering
block centered on the selected positive detection pixel is identified; if it is a high-density block,
the pixels within the same set of coordinates in the high-density block image are then set to
‘1.

Fig. 3.17 illustrates the high-density blocks image creation process for the first two positive
detection pixels. In Fig. 3.17(a) the first positive detection pixel is highlighted with an orange
border, and all the pixels except for those in the clustering block around it are greyed out. The

block contains 4 positive detection pixels, which is less than the minimum fill threshold of 4.5

45

pixels. Thus, the clustering block for the first positive detection pixel is not a high-density
block. In Fig. 3.17(b), the corresponding pixels in the high-density blocks image are indicated
with a white background; their pixel values are left at ‘0’. Fig. 3.17(c) indicates the clustering
block for the second positive detection pixel. This is a high-density block as there are 5
positive detection pixels, which exceeds the 4.5 pixels threshold. Consequently, the

corresponding pixels in the high-density blocks image are set to ‘1’ (Fig. 3.17(d)).

o | o o
o
o
o

oo o | o |o ©O

o|lo o
[=RN=1 — ~ N=}
HHQ

[=BN-NN-RE- — ~ N=]

0

0

0 [}
o000 0 0 0
oflofo]o 0 0 0
oflo|o]o 0 0
ofo|o 0 0
oo 0 0
oo 0 0
oo 0 0

(a) Clustering block for the first positive (b) High-density blocks image after the first
detection pixel clustering block evaluation

o|o oloflofloflo]o]o]o
0 RN : : : [
0 0]] 1 n 1 0
o|o|o|lo|lo|lo|o]o|o]o
o|lofoflofo|lo|lo|o|o]o0
0 0 0 0 0 0 0 0
o|o]fo o|lo|o
0o) 0
0o 0 0
0o 0 0

(¢) Clustering block for the second positive (d) High-density blocks image after the second

detection pixel clustering block evaluation

Fig. 3.17: Illustration of the high-density blocks image creation process for the first two positive
detection pixels. In each image, the pixels that do not lie within the selected clustering block are greyed

out.

46

4. Create Cluster Regions Image.

The cluster regions image (Fig. 3.15(d)) identifies the pixels in each cluster region with a
unique pixel value. A cluster region is formed by a set of connected high-density blocks and
defines the spatial extent of a cluster. Here, two pixels are considered ‘connected’ if any of
their edges or corners are touching. Fig. 3.18 provides a visual example of connectivity; the

central black pixel could be connected to any of the eight grey pixels surrounding it.

Fig. 3.18: Illustration of connectivity - the black pixel could be connected to any of the eight grey pixels

surrounding it.

The problem of uniquely labelling sets of connected regions in images has been well
researched. Algorithms that solve the problem are referred to as connected-component labelling
algorithms, and implementations are readily available in any image processing library.
Accordingly, the high-density blocks image is input to the ‘label’ function from the scikit-

image library [76] to generate the cluster regions image.

5. Create Clusters Image.
The clusters image (Fig. 3.15(e)) contains the cluster pixels, labelled with the pixel value
corresponding to the region in which they lie. The cluster pixels are the positive detection
pixels that lie within the high-density blocks.

The clusters image is created by multiplying each pixel in the padded input image with the
corresponding pixel in the cluster regions image. In mathematical terms, this is an element-

wise multiplication of two image arrays. The multiplication is effectively a masking process, as

47

illustrated in Fig. 3.19. The padded input image is first visualized as a mask in Fig. 3.19(a) by
inverting the pixel colours. When this mask is overlaid on the cluster regions image (Fig.
3.19(Db)), the cluster pixels are identified as those with non-zero pixel values. Thus, the padded

input image is masked with the cluster regions image to retain and label the cluster pixels.

(a) The padded input image, visualized as a (b) The padded input image mask overlaid on

mask the cluster regions image

Fig. 3.19: Generation of the clusters image, visualized as a masking process

6. Calculate cluster centers and sizes.

The block clustering algorithm’s final output is the center and radius of each cluster, measured
in pixels with respect to the image frame (see Fig. 3.21 for an illustration of the image frame).
The center of each cluster is calculated as the average of the x and y coordinates of the n

pixels in the cluster.

n

1

Center, = — x; 3.3
n1§: 1 (’)
1 T

Center, = - 2 v (3.4)

j =

48

The radius of the cluster is the Euclidean distance between the center of the cluster and the

cluster pixel which is furthest away from it:

Cluster Radius = Max(\/ Center, — xz; 2 + (Center, —y;)? (3.5)

The block clustering algorithm is summarized as pseudo code in Algorithm 1.

49

Algorithm 1 BlockCluster(input_img, range,,, block_width,,, ,min_fill,.,..c..;)

{ input_img identifies the positive detections }

is the sonar's configured range, measured in meters }

{ ra’ngem,

{ block_width,, is the clustering block width, measured in meters }

{ min_fill ; 1s the minimum fill threshold for a high-density block }

percen

’width(input_img)piavcls

block_width <« block_width,, x

piwels 2 X range,

m
block_withhp,iIdS) +1

block_width +— 2 X floor (

pixzels

block_width,;,..;«
padding <—floor< - . pzrde)

] i1l percent
— blockfwidthmmlf > mm_fllo_g(’rcen
padded_img < CopyMakeBorder (input_img, border_ width = padding, border_value = 0)

min_fill ;.o

Initialize hd_blocks to 2D array of zeroes the same size as padded_img
for each col = in padded_img ¢ border padding do
for each row y in padded_img ¢ border padding do
selected_pixzel < pixel in padded_img at (z,y)
if selected_pixel is a positive detection then
lower_left «+ (x — padding, y — padding)
upper_right < (x + padding, y + padding)
clustering_block < pixels in padded_img from lower_le ft to upper_right
fill « sum(clustering_block)
if fill > min_fill then

pizels
for each pixel p in hd_blocks from lower_left to upper_right do
p «—1

Initialize cluster_regions and clusters to 2D array of zeroes the same size as padded_img
cluster_regions < LabelledConnectedComponents(hd_blocks)

clusters < padded_img o clusters

for each cluster 7 in clusters do

center; < Average(coordinates of pixels € cluster 7)

radius; < Max(Range(center,;,coordinates of pixels € cluster i))

return (center;, radius;) for each cluster i in clusters

50

3.8.6 Clustering Comparison

The plume detector’s clustering definitions do not specify which pixels should belong to the
same cluster. As a result, while DBSCAN and the block clustering algorithm identify the same
cluster pixels, they group these pixels into clusters differently (see Fig. 3.20). DBSCAN uses
the core points to define the extent of each cluster, whereas the block clustering algorithm uses
the high-density blocks for this purpose. For example, the block clustering algorithm groups
the green pixels in Fig. 3.20(a) into a single cluster because the high-density blocks in which
they are contained are connected. However, these pixels form two different clusters in the
DBSCAN output Fig. 3.20(b) as the core points in the green cluster are not within the & range
of the core points in the purple cluster. In other words, while DBSCAN requires significant
overlap in the high-density blocks to merge clusters, the block clustering algorithm does not
require any overlap, only connectivity, of the high-density blocks. The block clustering
algorithm consequently produces a better clustering output for this application; this will be

shown through the data-based clustering output comparison in Section 4.4.1.

o(ojof0|f0|j0|j0|0O|0O]|O o|lojofojo0oj0o|j0O0|0O|j0O0]|O
0 0|0 2(22|0 0 0|0}|2|2 2|0
0 o(ojof2|0}2|0 0 o|jojof2(0}2]|0
o(ojofo0ofo0ojo0j0jojoj|oO o|jojo0ofojojo0|j0o|j0j0O0]|oO
o(ojofo0ofo0ojo0j0jojoj|oO o|jojo0ofojojo0|j0o|j0j0O0]|oO
o(ojo|0]|0O 0|00 o|oj0f0|O o|0]o0
o(ojo|oO 0|00 o|oj0foO o|0]o0
o(ojofo0o|fo0ojo0j0j0OojoOoj|oO o|jojo0ofojojo0|j0o|j0j0O0]|oO
o(ojofo0o|fo0oj0j0jOoj0Oo]|oO o|jojo0ofojo|j0|j0|0j0O0]O
o(ojofo0o|fo0oj0j0jOoj0Oo]|oO o|jojo0ofojo|j0|j0|0j0O0]O
(a) Block Clustering Output (b) DBSCAN Clustering Output

Fig. 3.20: Clustering Output Comparison

The processing method of the two algorithms is also fundamentally different. When the

segmented image data is input to DBSCAN as a list of coordinates, spatial information

51

regarding the location of the positive detection pixels with respect to each other is lost.
DBSCAN’s range query is consequently an expensive operation that involves computing
distances between coordinates to identify a point’s neighbours. The block clustering algorithm,
however, is designed specifically for 2D image data and operates directly on the segmented
image. As a result, it can take advantage of the fact that the data storage locations correspond
to the real-world locations. Its range query is consequently trivial; it only involves identifying
the pixels that are stored around the selected pixel. Furthermore, the block clustering
algorithm leverages existing tools for the connected-component-labelling problem, which has
already been optimized and is solvable in O(n) time [77]. As a result, the block clustering
algorithm proves to be consistently faster than DBSCAN during the computation time test in

Section 4.4.2.

3.9 Georeferencing

To determine the real-world location of the cluster centers, the cluster center coordinates are
georeferenced using three successive transformations. The reference frames utilized in these
transformations are illustrated in Fig. 3.21. The local frame’s origin is located at a geographic
coordinate in the mission area; the frame’s x-axis points east while the y-axis points north. The
body frame is located at the center of the AUV’s Inertial Navigation System, while the
instrument frame is located at the center of the Ping360 sonar. The image frame is centered on
the top left pixel in the clusters image. The x-axes of the body, instrument, and image frames
are parallel to the vehicle’s longitudinal axis and rotate with the vehicle.

The clustering algorithm outputs the center coordinates of each cluster measured in the

image frame. Thus, the georeferencing algorithm starts with the cluster center coordinate in

52

the image frame of reference, and first transforms to the instrument frame, next to the body
frame, and finally to the local frame. The algorithm assumes that the vehicle is operating and

collecting data at a fixed depth, and consequently only computes the 2D transformations.

Lhnage
.
>

J
<
X nstrupent

Yinstrume

=

Fig. 3.21: The local, body, instrument, and image reference frames

Given the cluster center coordinates in the image frame (Clustery,,,,.), the equivalent
coordinate in the instrument frame (Clustery,, ;) is computed using (3.6). The same
transformation is expressed in the expanded form in (3.7), where all variable values are
measured in pixels. The 180° rotation inverts the axes’ directions, while the added offset is the

location of the image frame origin in the instrument frame (Image Origing,,):

Cluster,,,, = R (180°) x Cluster Image + Image Origin Inst (3.6)
i idth —1

CZUSterx,msL |:—1 0 i| CluSterzl;,l?magn + % (37)

cluster, ;o 0 =11 [cluster, ;... w

53

The transformation of the cluster coordinates from the instrument frame to the body frame
(Clusterp,,,) involves only scaling and translation operations as the axes of the two frames
are parallel to each other (3.8), (3.9). Since the cluster coordinates in the instrument frame
(Clustery,,;) is measured in pixels, it is first multiplied by the meters per pixel ratio (k) to
convert the units to meters. The location of the sonar, measured in meters with respect to the

body reference frame (Instrument Offsetp,y,) is then added as an offset:

Clustery,,, = k x Cluster,, + Instrument OffsetBOd!/ (3:8)
cluster, .., cluster, ;o instrument Offsetxﬁ,,ody (3.9)
cluste?“y_’budy a Cluswry-ﬁmt instrument off, set;r/-,bod;f/

= 2 X sonar range (3.10)

image width

Finally, the position of the cluster center in the local frame (Clustery,,.,;) is computed. The
transformation from the body frame to the local frame consists of a rotation by 6, and offset

by the position of the AUV in the local frame (AUV},,..;):

_ 3.11
Clusteer, =R : (9) X CZUSte?"BOdy =+ AUVL()(:(JI ()
CZUSteT:I:,I{)(:(Ll i [cos 9 sin 9] CZUSteT:r,,hody [auvfﬂ,l()(i(],li| (3 12)
cluster, .| — l—sin® cosf cluster, .4, AUy jocal
(3.13)

0 =90° — AUV Heading

Since the AUV is simultaneously travelling and collecting data, it is in a different location

when the data for each beam is collected. Accordingly, the (AUV,,.,;) position in (3.11) is

54

defined as the location of the AUV when the cluster center was scanned. During operations,
the beam angle and the AUV’s location at the time of the ping are recorded together each time
the acoustic return for a beam is received. The georeferencing algorithm utilizes this data when
determining (AUV,,.,;); it first computes the beam angle by converting the (Cluster,,,)
coordinate to polar form, and then looks up the AUV position recorded with the computed
beam angle.

In addition to the cluster center coordinates, the cluster radius is also output. The pixel
value produced by the clustering algorithm is converted to meters following the equation

below:

Cluster Radius,

meters

= k x Cluster Radiusp'i,:l;cls (314)

3.10 Conclusion

This chapter has presented a novel plume detection algorithm which identifies the plume as
high-density clusters in the sonar data. The algorithm is designed for the Ping360 sonar, with
an emphasis on real-time performance and configurability. It consists of five steps: range-
gating, segmentation, grid conversion, clustering, and georeferencing. The algorithm can be
configured to detect both seep and spill plumes, and its output is determined by the input
parameters which are summarized in Table 3.1. Detailed directions on how to tune these
parameters are provided in the following chapter.

A block clustering algorithm designed specifically for the segmented image data has also
been developed. It identifies high-density blocks in the input image and labels a set of

connected blocks as a cluster region. The cluster pixels are then pixels in the input image

55

which lie in the high-density blocks and are labelled based on the region in which they lie. The
block clustering algorithm leverages the fact that the locations of the pixels in the input image
directly correspond to the real-world sampling locations. As a result, while processing the

range query is complex in DBSCAN implementations, it is trivial for the block clustering

algorithm.
Table 3.1: Summary of the Plume Detection Algorithm Parameters
Algorithm
8 Parameter Description
Step
Range within which acoustic intensity samples are
Range-Gating Noise Range 5 . Y i R :
zeroed due to the presence of high-intensity noise.
Intensity samples above this threshold are
. Segmentation | considered positive detections. A lower threshold
Segmentation . e
Threshold increases the sensitivity of the plume detector, but
also makes it more susceptible to noise.
Width of the image that is created by the grid
Grid conversion process. A larger width produces a
ri
. Image Width | higher resolution image which allows the plume
Conversion)
detector to detect smaller targets, but also increases
the processing time.
Defines the size of the square neighbourhood around
Clustering a pixel. A smaller clustering block width allows the
Block Width plume detector to detect smaller targets, such as
seep plumes, but also makes it less resilient to noise.
Clustering
The minimum fill required for a clustering block to
Minimum Fill | be considered a high-density block. Lower settings
Threshold for the minimum fill threshold allow the plume
detector to identify less dense targets.
G ¢ . Instrument Distance from the the origin of the body frame to
eoreferencin
8 Offsetpoay the sonar, measured in the body frame of reference.

56

Chapter 4

Plume Detector Performance

4.1 Introduction

In this chapter, the performance of the plume detection algorithm is evaluated using data
collected by Memorial University’s Explorer AUV in Holyrood Bay, Newfoundland, Canada.
The Ping360 sonar data was collected during field trials for a spill plume delineation algorithm
[41] and has also proven to be useful for testing the algorithm presented here. Section 4.2
describes the test equipment and setup, as well as the software applications utilized for the
experiment and data playback test. The plume detection results from the playback test are
then presented in Section 4.3. The final analysis in Section 4.4 consists primarily of a

performance comparison between DBSCAN and the block clustering algorithm.

4.2 Experiment Setup

4.2.1 Explorer AUV Navigation and Control

Memorial University’s Explorer (Fig. 4.1) is a large survey class AUV measuring 5.3m in
length and capable of running 16-hour missions. Its primary navigation instrument is the

IXSEA PHINS III, which serves as an Inertial Navigation System (INS) and integrates

57

measurements from other sensors. In a submerged GPS-denied environment, the PHINS is
primarily aided by the Paroscientific depth transducer. During the field trials, the AUV was
also equipped with an RDI Workhorse 600 kHz Doppler Velocity Log (DVL) which provides
additional bottom tracking when the vehicle is within 90m from the bottom. When operating
the Explorer in the shallow waters of Holyrood Bay, the DVL typically maintains a constant
bottom lock, allowing the PHINS to compute a more reliable estimate of the vehicle’s position.
This estimate can then be used to georeference the sensor measurements. The Explorer also

has a single beam sonar mounted in the nose cone, which it uses for bottom avoidance.

Fig. 4.1: Memorial University’s Explorer AUV Fig. 4.2: The Nikuni KTM65S2 bubble generator
setup at the Holyrood wharf

The Explorer’s Vehicle Control Computer (VCC) interfaces with the navigation instruments
and directly controls the vehicle’s trajectory by actuating the planes and thruster. While the
VCC executes pre-planned missions, adaptive missions are the domain of the onboard Payload
Control Computer (PCC). The PCC is the ‘backseat driver’ [78] and realizes autonomous
control using the MOOS-IvP (Mission Oriented Operating Suite - Interval Programming)
software suite. The MOOS-Ivp software suite contains tools for communication, control, and

mission planning [79]. Using these tools, the PCC can interface with mission-specific payload

58

sensors and can adaptively respond to the sensor data in real-time to autonomously control the
mission. Accordingly, a Ping360 scanning sonar was mounted on the Explorer AUV and

configured to interface with the PCC.

4.2.2 Micro-bubble Plume

A micro-air-bubble plume was utilized as an acoustically similar, environmentally friendly
proxy for oil droplets and methane bubbles. A previous study identified micro-air-bubble
plumes as a viable proxy for testing an AUV’s capability to acoustically detect oil droplets
[10]. In the study, several systems were tested, and the Nikuni Karyu Turbo Mixer (KTM)
bubble generator was found to successfully discharge pressurized water enriched with a high
concentration of micro-bubbles. The micro-bubbles persisted in the water column for several
minutes and appeared like oil patches in the Ping360 sonar images.

To create a larger plume, the Nikuni KTM65S2 bubble generator (Fig. 4.2) was utilized
since it has a higher flow rate than the model used in [10]. The bubble generator was set up at
the edge of the wharf at Holyrood; the hose connected to its outlet extended 100m into the
bay, where the bubbles were released from the discharge nozzle at a depth of approximately 20

m (Fig. 4.3).

4.2.3 Mission Description

The Explorer’s VCC executed a pre-planned lawnmower mission around the location of the
discharge nozzle. The mission was run at 5 m altitude, with a 20 m spacing between each of
the 200 m long lines. During the mission, the Ping360 sonar continuously scanned the area for
the bubble plume. Since the Ping360 cannot provide complete 360° areal coverage while the

AUV is travelling at a speed of 1.5 m/s, the sonar was configured to scan only a 120° sector,

59

with a 50 m range. The positioning of the sector on the port side of the vehicle reflects the
original plume-delineation objective of the trials. The Ping360 ensonifies a large vertical sector
of the water column due to its 25° vertical beam width, thereby expanding the search area well
beyond the horizontal plane defined by the depth of the vehicle.

The white track-line in Fig. 4.3 indicates the INS’ estimate of the AUV’s position during the
mission; it shows that despite DVL aiding, a significant amount of INS drift occurred. The 120
m drift is apparent after the AUV surfaces as the difference between the INS position when
the GPS fix is received, and the GPS corrected position. The INS is typically calibrated on
land when the vehicle is powered up. However, due to an INS error that occurred prior to the
mission, an in-water INS reset and calibration were required and may have been the cause of

the drift.

.’GPS Corrected Position

4 :&Surfaced
GRS Fix Receive

Alssion Start

Google Earth

Fig. 4.3.AUV trajectory during the lawnmower mission (white track line), and the approximate

locations of the bubble generator and discharge nozzle.

60

4.2.4 Data Acquisition and Playback Setup

The data acquisition and processing software components were implemented as MOOS
applications to ensure that they could be utilized by the PCC for future adaptive missions.
MOOS uses a publish-subscribe communication model, with the MOOS database (MOOSDB)
at the center of the messaging system. Applications subscribe to the MOOSDB for updates on
specific variables and publish generated data to the database. Note that although the MOOS-
IvP software suite contains several processes for mission control, they are not relevant here
since the test is only concerned with data collection and processing.

During the field trials, the Ping360 sonar was controlled by a custom iPing360Device MOOS
application [80] running on the PCC. Sonar data received by the application was stored in the
MOOS Database (MOOSDB) along with the navigation data (Fig. 4.4). All data written to

the MOOSDB was also saved in the MOOS asynchronous log file.

Vehicle Control Computer (VCC) Payload Control Computer (PCC)
Navigationand | Nawigation Dat 5/ MoosDB
Control System ‘ ‘

iPing360Device %—Smar Dalz-—[Ping360 Sonar

Fig. 4.4.Navigation data from the VCC and sonar data from the Ping360 is stored in the MOOSDB on
the PCC

The plume detection algorithm presented in this thesis was implemented as a MOOS
application called pPlumeDetector, and its interface is described in Appendix C. Although the
pPlumeDetector code is implemented primarily in Python (Appendix A), the computationally
expensive clustering step is implemented in Cython (Appendix B), which features Python-like

syntax with the performance of C/C++.

61

pPlumeDetector was tested using uPlayback, a built-in MOOS-IvP software module that
enables simulation testing through the replaying of logged data. The MOOS applications
running during the playback test and the dataflow between them are shown in Fig. 4.5.
uPlayback reads from the asynchronous log created during the mission and writes the logged
values to the MOOSDB in the same order with which they were originally written. As a result,
the pPlumeDetector application receives the navigation and sonar data as it would if it were

running on the vehicle during the mission.

—) —) —)
Asynchronous Log *{ uPlayback }—)[MOOSDB }—){ pPlumeDetector
- - -

Fig. 4.5.Data flow between MOOS applications in the playback setup

4.3 Results

The proposed plume detection algorithm successfully identified high-density features in several
scans of the sonar data during the playback test. Fig. 4.6 provides a visualization of the
processing steps for a single sector scan from the experiment. Although the sonar range was set
to 50 m, only the data within a 20 m range from the sonar is displayed as it contains all of the
significant features in the scan. The parameter settings utilized for the playback test are listed
in Table 4.1.

The sonar data collected with a resolution of 24 samples/meter is shown in Fig. 4.6(a); this
high resolution data is used as-is for the initial computationally inexpensive steps. First, the
range-gating process zeroes all data within 2 m of the sonar head as it typically contains
significant noise (Fig. 4.6(b)). Next, segmentation retains samples with intensity values greater

than 30% of the sonar’s full-scale range. Note that the algorithm stores and processes the data

62

in the polar grid format for the steps in Fig. 4.6(a), (b) and (c). It is displayed in the Cartesian
grid format, measuring range along both axes, for clarity.

Prior to clustering, the segmented data is warped into a Cartesian grid and simultaneously
downsampled to a resolution of 4 pixels/meter. The downsampling is evident from the
pixelation in Fig. 4.6(d). From Fig. 4.6(d) onwards, the images are a direct representation of
the data, which is stored in the Cartesian grid format.

The clustering process begins with the creation of the high-density blocks image (Fig.
4.6(e)); it identifies 1 m x 1 m blocks in which the fill exceeds 30%. Next, the cluster regions
image identifies four sets of connected high-density blocks (Fig. 4.6(f)). Finally, the clusters
image is created (Fig. 4.6(g)); it contains only the cluster pixels for the four clusters, labelled
with the pixel value corresponding to the region in which they lie.

The output of the clustering process is the center and radius of each cluster. These are
illustrated in Fig. 4.6(h), where each grey circle is centered on a cluster center, and has a

radius corresponding to the cluster’s radius.

20m 20m 20m 20m

(a) Raw Data (b) Range-gated (¢) Segmented (d) Re-gridded

63

(e) High-Density (f) Cluster Regions (g) Clusters (h) Cluster Centers
Blocks and Radii

Fig. 4.6: Visualization of the plume detection algorithm processing steps for a single sector scan from the

experimental data

Table 4.1: Plume detection algorithm parameter setting for the playback test.

Algorithm Step Parameter Value
Range-Gating noise range 2m
Segmentation segmentation threshold 30%
Grid Conversion image width 400 pixels
clustering block width 1m
Clustering
minimum fill threshold 30%
instrument of fset%bo " 3 m
Georeferencing
instrument of fset%bo i 0 m

The location of each cluster center in the local coordinate frame was computed by the

georeferencing algorithm, and is plotted in Fig. 4.7. The plot shows that most of the plume-like

feature detections occurred on the last leg of the mission, more than 50 m from the discharge

64

nozzle. Unfortunately, due to the significant INS drift, the position of the detections cannot be
used to verify that the features were indeed produced by the bubble plume. Nevertheless, since
the data looks similar to scanning sonar images of a seep plume collected by an ROV [55], it

still forms a valid test dataset.

Cluster Detections

150
*
*
. <+
**
100 L Mission End
Y 4
50 F *
£
wm
)
£ 0
=
+
=
7z
50 F
-1000 F
Mission Start
7150 1 1 1 1
0 50 100 150 200 250

Eastings (m)

——AUV Track ¢ Cluster Center @® AUV Position at Detection M Discharge Nozzle

Fig. 4.7: AUV trackline during the mission, along with the cluster detections and location of the AUV at

the time of the detections

65

4.4 Analysis

This section consists primarily of a comparison between the block clustering algorithm and
DBSCAN, in terms of their clustering outputs and computation times. It also provides

direction on how to tune the algorithm’s parameters for different use cases.

4.4.1 Clustering Output Comparison

The block clustering and DBSCAN outputs for two scans from the playback test are shown in
Fig. 4.8 and Fig. 4.9 below; for both algorithms, the parameter settings listed in Table 4.1
were utilized. A visual inspection of the generated clusters shows that they are similar. Since
the plume detector’s interface explicitly defines which positive detection pixels are cluster
pixels, the number of cluster pixels identified by the two algorithms is the same in both scans.
Due to the different definitions for cluster connectivity, however, DBSCAN produces five
clusters in Scan A while the block clustering algorithm produces four clusters. DBSCAN
requires significant overlap between two high-density blocks for the positive detection pixels
within them to belong to the same cluster. The block clustering algorithm, in contrast, does
not require any overlap of the high-density blocks to merge clusters; the high-density blocks
must only be connected (see Section 0). As a result, the block clustering algorithm merges
clusters more readily, and it can be seen from Fig. 4.8 that the output is more visually

intuitive.

66

20m 20m 20m 20m

10m 10m 10m
s K,
T
i
(a) Raw Data (b) Re-gridded (¢) Block Clustering (d) DBSCAN Output

Output

Fig. 4.8: Comparison of DBSCAN and Block Clustering Outputs for Scan A

20m 20m 20m 20m

20 \10m 10m 10m

(a) Raw Data (b) Re-gridded (¢) Block Clustering (d) DBSCAN Output
Output

Fig. 4.9: Comparison of DBSCAN and Block Clustering Outputs for Scan B

DBSCAN and the block clustering algorithm are both capable of generating clusters with
arbitrary shapes, which is advantageous when working with datasets featuring non-flat
geometry. In these datasets, the clusters often have curved or irregular shapes and cannot be

partitioned effectively using flat, linear boundaries (see Fig. 4.10). While the ability to identify

67

arbitrarily shaped clusters is beneficial, it also allows for an overlap in the circular cluster
boundaries. For example, in DBSCAN’s clustering output for Scan A (Fig. 4.8), the yellow
cluster at the bottom lies within the boundary of the green cluster and vice-versa.

It is important to be aware of the possibility of overlapping cluster boundaries when
utilizing the algorithm’s output in an adaptive mission. For example, if the total cluster area is
calculated as a sum of the clusters’ radii-based areas, the computed value may not be an
accurate representation of the data; any overlap would produce an overestimate of the total

area.

. o%
* :o.z. c.-.:
. a0t

Fig. 4.10: Dataset containing clusters with non-flat geometry

4.4.2 Computation Time Comparison

This computation time analysis studies how the clustering time of DBSCAN and the block
clustering algorithm increases with clustering complexity. It uses data from an experiment in
[62] since the dataset is more difficult to cluster, and consequently creates a better test
environment for performance testing. During the experiment, the Ping360 sonar was secured to
a lakeside dock and configured to scan the complete 360° sector around it. A micro-bubble
generator positioned in the sonar’s field of view generated a bubble plume, which the sonar
captured in its acoustic scans (Fig. 4.11(a)). In the scan selected for this test, the plume

occupies a large portion of the sonar’s field of view despite its small size because the sonar’s

68

range is set to only 5 m. The result is a larger number of positive detections, similar to what

might be expected for a spill plume.

(¢) Block Clustering Output (d) DBSCAN Output

Fig. 4.11: Comparison of DBSCAN and Block Clustering outputs for a Ping360 scan of a micro-bubble
plume. A 10% segmentation threshold, 1% minimum fill threshold and 0.5m clustering block width are

utilized.

The computation time analysis tests were carried out on a laptop with an Intel Core i7

processor. While both clustering algorithms were implemented primarily in Python, the

69

computationally expensive sections were implemented in Cython. The algorithm parameters
were selected to generate a large number of cluster pixels; a 10% segmentation threshold
produced significant positive detections (Fig. 4.11(b)), while a minimum fill threshold of 1%
ensured that most of these detections were categorized as cluster pixels (Fig. 4.11(c)). The
clustering complexity was then gradually increased by successively increasing the clustering
block width, causing the clusters to merge and triggering cluster degeneration. Fig. 4.11(c) and
Fig. 4.11(d) show the clustering output for the block clustering algorithm and DBSCAN
respectively, with a small clustering block width of 0.5 m. It is evident that the clusters have
already begun to degenerate, as most of the cluster pixels are contained within the central
cluster. Once the block width is increased to 2 m, both algorithms generate only one cluster

containing all the cluster pixels (Fig. 4.12).

Comparison of Clusters Formed

16
14
12
2 10 -
f, 8
o6 F
ERE
Z 5 \

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Clustering Block Width (m)
—a— DBSCAN —e— Block Clustering

Fig. 4.12. Number of clusters formed by DBSCAN and the block clustering algorithm, with increasing

clustering block widths

The computation times for both algorithms are plotted in Fig. 4.13 as a function of the

clustering block width, where the highest block width of 10 m spans the whole image; each

70

data point in the plot represents the average of 10 test runs. The results show that the
developed block clustering algorithm is consistently faster than DBSCAN. On average, it is 2.5
times faster, with the most significant difference observed at a block width of 2 m, where it is
approximately 4 times faster than DBSCAN. Notably, this is the same point where the clusters
first degenerate.

Due to its faster computation times, the block clustering algorithm offers more flexibility
when selecting the clustering block width. For example, if we require this data to be processed
within 0.5 seconds, DBSCAN’s block width would have to be under 1.5 m, while values up to
4.5 m could be utilized for the block clustering algorithm. Furthermore, the block clustering
algorithm’s computation time increases at a much slower rate within the most likely operation
range, which is when the clustering block width is less than 5 m, or 50% of the image width.
This stability is desirable in a real-time application because it means that if the algorithm is

tuned with a certain dataset, similar computation times can be expected with similar data.

Computation Time Comparison

Average Computation Time (s)

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Clustering Block Width (m)

—&— Block Clustering —&—DBSCAN

Fig. 4.13: Impact of increasing clustering complexity on the DBSCAN and block clustering computation

times

71

4.4.3 Parameter Selection

The plume detector’s parameters can be configured based on a visual analysis of how changes
to the parameters affect the algorithm’s output. Since selecting the segmentation and
clustering parameters requires some consideration, this section provides direction on how they
can be configured for different types of plumes.

The segmentation threshold should be configured to retain medium and high intensity
returns. A lower and more sensitive threshold is especially important in the seep environment
where the bubbles rise quickly forming vertical plumes with a small horizontal footprint.
Setting the threshold too low, however, may result in the unwanted detection of artifacts in
the sonar data. For example, with the segmentation threshold as low as 10%, the radial lines
in Fig. 4.14 are also considered positive detections even though they are most likely produced
by electrical noise or acoustic interference from other devices on the AUV. Conversely, a
higher threshold produces sparse detections and consequently inhibits the formation of clusters,
as evidenced by Fig. 4.15 where the threshold is set to 50%. An effective approach is to use the

lowest possible threshold which will discard obvious noise and artifacts.

72

(a) Raw Data (b) Segmented

Fig. 4.14: Segmentation with the threshold set to 10%. In (a), an artifact in the sonar data is outlined

with a yellow box.

20m 20m 20m 20m

10m 10m 10m

(a) Input (b) Segmented (¢) Re-gridded (d) Clustered

Fig. 4.15: Block clustering steps with a 50% segmentation threshold, 1 m clustering block width, and

30% minimum fill threshold.

The clustering block width should be selected based on the expected size of the plume and
can be increased for larger spill plumes to decrease the likelihood of noise being detected as a
target. For example, while four clusters are detected in Fig. 4.16(b) with the block width set to

1 m, only the two larger clusters are detected when the block width is increased to 2 m (Fig.

73

4.16(c)). The benefit of noise resistance provided by a larger block width should, however, be
weighed against the possibility of computation time increases. As a result, the block width is
best set to the largest reasonable value which maintains real-time performance during tests

with the onboard processor.

20m _20m 2om

(a) Re-gridded Image (b) Clustering Output with 1 m (¢) Clustering Output with 2 m
block width block width

Fig. 4.16: Clustering of a segmented image with different block widths. The minimum fill percent is
constant (30%).

The nature and density of the plume determine what is an appropriate setting for the
minimum fill threshold. A 30% minimum fill was selected for the field trials data because it
identifies features similar to those in scanning sonar images of gas seeps [55] (Fig. 4.17(c)). A
lower setting of 10% creates a large cluster containing very low-density regions which could, on
their own, be noise (Fig. 4.17(b)). With a higher setting of 50%, the generated clusters are not
representative of the original data as the medium-density clusters are classified as noise (Fig.
4.17(d)). Higher values for the minimum fill threshold, can, however, be used for spill plumes

since the neutrally buoyant micro-bubbles spread out laterally forming a large dense plume.

74

20m 20m 20m 20m

(a) Re-gridded Tmage (b) Clustering Output (c¢) Clustering Output (d) Clustering Output
with 10% minimum with 30% minimum with 50% minimum
fill fill fill

Fig. 4.17: Clustering of a segmented image with different minimum fill thresholds. The clustering block

width is constant (1 m)

4.5 Conclusion

This chapter has demonstrated using field trials data, that the plume detection algorithm

accomplishes its primary goal of identifying high-density regions in sonar data. While it is
uncertain as to whether the high intensity acoustic reflections were created by the bubble

plume, the data is similar to what might be expected for a seep plume and is consequently
useful for testing.

A comparative analysis of the block clustering algorithm and DBSCAN shows that they
identify the same pixels as cluster pixels, but form the clusters differently due to differences in
definitions of connectivity; the block clustering algorithm merges clusters more readily,
producing an output that is more visually intuitive. With regards to processing time, the block
clustering algorithm is consistently faster than DBSCAN and is consequently a better option

than DBSCAN for real-time applications. Finally, the clustering algorithm can be configured

75

based on the expected characteristics of the plume. Thus, this chapter has also demonstrated

that the design considerations related to real-time processing and configurability were

addressed.

76

Chapter 5

Conclusions and Future Work

This thesis has been directed towards exploring how the oil spill detection capability of an
AUV can be enhanced to facilitate testing at a natural seep location. The Literature Review in
Chapter 2 identifies challenges at seep sites stemming from the presence of multiple sources
with spatiotemporally varying flow and lower hydrocarbon concentrations. It subsequently
proposes automated acoustic detection as a method that can address these challenges. Finally,
by demonstrating that existing algorithms are not applicable to both seeps and spills, it
provides the motivation for a novel plume detection algorithm.

Chapter 3 presents a novel plume detection algorithm for a forward-looking scanning sonar.
The algorithm identifies the plume as dense clusters of points in the sonar data and returns
the georeferenced center coordinates of each cluster. It consists of five steps: range-gating,
segmentation, grid conversion, clustering, and georeferencing. For the clustering step,
DBSCAN is identified as an existing algorithm that can be configured to match the plume
detector’s clustering interface. However, since available DBSCAN implementations show
significant run-time increases when the clustering degenerates, a block clustering algorithm

designed specifically for the segmented image data was developed.

7

The proposed block clustering algorithm is the most significant contribution of this thesis.
By directly processing the segmented image, it works around the issue that causes the increase
in DBSCAN’s computation time. It first identifies cluster pixels, which lie in high-density
blocks, and then forms clusters, which lie in connected blocks. The developed clustering
algorithm is not limited to detecting submerged plumes, or even to subsea applications. It can
be utilized in any image processing application where density-based clustering is required.

In Chapter 4, the plume detection algorithm is validated using data collected by a Ping360
sonar mounted on the Explorer AUV. The data was collected during a mission in which the
AUV surveyed an area containing a submerged micro-bubble plume. The plume detection
algorithm successfully identified high-density features in the sonar data during a playback test.
However, since the cluster centers are more than 50 m away from the bubble generator’s
outlet, it is difficult to be certain that the sonar detected the plume during the mission.

Chapter 4 also contains a data-based comparison of the block clustering algorithm and
DBSCAN. Comparing the clustering output shows that both clustering algorithms identify the
same cluster pixels, but the block clustering algorithm sorts these pixels into clusters in a
manner that is more visually intuitive. When comparing processing time, block clustering is
faster and more stable than DBSCAN, and is consequently better suited for real-time
processing. Finally, Chapter 4 provides direction on how to tune some of the plume detection
algorithm’s parameters and demonstrates that the algorithm can be configured for a smaller
seep plume or a larger spill plume.

The plume detection software was installed on Memorial University’s Explorer AUV and
utilized during the Scott Inlet trials (see Section 1.4). It should be noted that for these trials,

DBSCAN was utilized for the clustering step because it was the faster option at the time; the

78

block clustering algorithm had not yet been implemented in Cython, and its original Python
implementation was slower than scikit’s Cython-based DBSCAN implementation. It was
possible, however, to ensure real-time processing by configuring DBSCAN with a smaller
clustering block width value for the smaller seep plumes.

A natural next step for this research would be to collect more test data, as the current
dataset is relatively small, and there is uncertainty as to whether the plume was detected.
However, the trials at Holyrood with the Ping360 sonar proved to be challenging; there were
several missions in which the sonar may have missed the plume due to its slow scan rate,
producing a relatively empty dataset. It would consequently be worthwhile to conduct future
tests with a Multi-beam Echo Sounder (MBES), which is more likely to capture the plume as
it can complete multiple scans within one second [81]. The plume detection algorithm can also
be easily adapted for use with an MBES.

The primary limitation of sonars lies in their inability to distinguish between plumes and
other objects in the water column. To address this limitation during the Scott Inlet project, a
fluorometer was selected to complement the Ping360 and provide more specific information
regarding hydrocarbons in the water column. The project took a modular approach, processing
the data from the two sensors separately during different phases of the mission. It would be
beneficial, however, for future research to explore how sonar data can be fused with in-situ
sensor data for plume detection, as it would maximize the data usage. Existing sensor fusion
algorithms for AUV-based plume detection are limited to use with in-situ sensors since they
correlate the time-series data based on their timestamps [8]. Further research is consequently

required to integrate sonar data which requires position-based correlation.

79

The plume detection algorithm focuses purely on detection, and not tracking, to facilitate
testing at natural seep sites. It is worth noting that this decoupling also makes the algorithm
more modular, allowing for more varied uses. For example, the georeferenced cluster center
data can be easily added to a map containing data from other sensors, and tracking decisions
can then be made based on this integrated sensor data map. In contrast, detection and
tracking are tightly coupled in existing sonar-based plume tracking algorithms, which does not
leave much flexibility for integration with other sensors [38], [41]. The proposed plume
detection algorithm is consequently well suited for an integrated multi-sensor approach to

plume tracking.

80

Appendix A

Plume Detector Code

The following is the Python implementation of the plume detector algorithm presented in this thesis; it calls

the block clustering function in Appendix B. The git repository is also available online [60].

import os

import csv

import copy

import time

import pymoos

import math

import numpy as np

from datetime import datetime

from brping import PingParser

from brping import definitions

from collections import OrderedDict
from skimage import measure

import cv2 as cv

from matplotlib import pyplot as plt
import os

import pyproj

from pPlumeDetector.src.block_cluster import block_cluster_fn
import timeit

class Cluster():
def __init__(self):
Cluster radivus is the distance from the cluster center to the furthest point from it
self.radius_pixels = 0
self.radius_m = 0
self.num_points = 0

Sonar beam angle at cluster center
self.angle_degs = 0

Vehicle nav data at time that the sonar pinged the cluster center
self.nav_x = 0

self.nav_y = 0

self.nav_heading = 0

Cluster center in pixel coordinates
self.center_row 0
self.center_col 0

Cluster center in the different reference frames
self.instrument_x = 0

self.instrument_x = 0

self.body_x = 0

self.body_y = 0

self.local_x = 0

self.local_y = 0

self.lat = 0

self.long = 0

81

def serialize(self):
return OrderedDict([

("center_row_pixels", self.center_row),
("center_col_pixels", self.center_col),
("num_points", self.num_points),
("radius_pixels", self.radius_pixels),
("center_local_x_m", self.local_x),
("center_local_y_m", self.local_y),
("radius_m", self.radius_m),
("center_lat", self.lat),
("center_long", self.long),
("nav_x_m", self.nav_x),
("nav_y_m", self.nav_y),
("nav_heading_deg", self.nav_heading)

D

class PPlumeDetector():
def __init__(self):

Algorithm Parameters

self.threshold = 0.3 * 255

self.window_width_m = 1.0 #71.0 # Clustering window size

self.cluster_min_fill_percent = 30 #50

self.noise_range_m = 2# Range within which data is ignored (usvally just noise)
self.image_width_pixels = 400# Width in pixels of sonar images

Distance between the Ping360 and INS center, measured along the vehicle's longitudinal axis
self.instrument_offset_x_m = 3

self.num_cluster_outputs = 5

Constants

self.grads_to_rads = np.pi/200 #4000 gradians per 360 degs
self.rads_to_grads = 200/np.pi

self.max_angle_grads = 400

self.window_width_pixels = None
self.cluster_min_pixels = None

self.comms = pymoos.comms()

Vars for storing data from MOOS DB

self.num_samples = None

self.num_steps = None

self.start_angle_grads = None

self.stop_angle_grads = None

self.transmit_enable = None

self.speed_of_sound = None

self.binary_device_data_msg = None # Encoded PING360_DEVICE _DATA message
self.device_data_msg = None # Decoded PING360_DEVICE DATA message
self.range_m = None # Sonar range

self.lat_origin = None

self.long_origin = None

Angles at which to processs the sector scan data. Gets set to the start & stop angles
self.scan_processing_angles = None

Matrix containing raw intensity data for a complete scan of pings between the start and stop angles
self.scan_intensities = None
self.scan_intensities_denoised = None # Scan intensities with the central noise data removed

Matrix containing segmented data (i.e. result from thresholding) from the scan of the entire sonar swath.
Row indexes define the sample number and each column is for a different scan angle

self.seg_scan = None

self.seg_scan_snapshot = None # Copy of seg scan, taken at start/stop angle

self.seg_img = None # self.seg_scan warped into an image (re-gridded to cartesian grid)
self.clustered_cores_img None # Image with core cluster pixels (percentage of pixels in surrounding > threshold)
self.cluster_regions_img = None # Image wth all pixels in clustering windows set to 1 (used for labelling)
self.labelled_regions_img = None # Cluster regions image, with unigue label (pixel valuve) applied to each region
self.labelled_clustered_img = None # seg_image # labelled_regions_img

self.clustered_img = None # Flack and white version of labelled_clustered_img

self.output_img = None

self.clustered_img_view = None

self.num_scans = 0
self.first_scan = True
self.clustering_pending = False

Cluster information for the clusters detected in the current scan

self.num_clusters = 0
self.clusters = [] # List of Cluster data structures

82

self.sorted_clusters = [] # List of Cluster data structures, sorted based on cluster radius (largest to smallest)
self.cluster_centers_string = ""

Cluster information of clusters detected since the start
self.cluster_centers = []

self.clustering_time_secs = None
self.total_processing_time_secs = None

self.data_save_path = None
self.orig_images_path = None
self.viewable_images_path = None

Most recent nav data
self.current_nav_x = 0
self.current_nav_y = 0
self.current_nav_heading = 0

Nav data is saved every time a ping message is received. There is storage for each position of the sonar head,
allowing for the nav data at the time of each ping to be stored.

self.nav_x_history = np.zeros(self.max_angle_grads)

self.nav_y_history = np.zeros(self.max_angle_grads)

self.nav_heading_history = np.zeros(self.max_angle_grads)

#plt.rcParams['figure.constrained_layout.use'] = True
plt.rcParams['font.family'] = 'serif’

self.state_string= 'DB_DISCONNECTED'
self.states = {
'DB_REGISTRATION_ERROR': -1,
'DB_DISCONNECTED': O,
'DB_CONNECTED': 1,
'STANDBY': 2,
'"ACTIVE': 3,
I

self.status_string = 'G00OD'
self.statuses = {

'GooD': 1,
'DB_REGISTRATION_ERROR': -1,
'TIMEOUT': -2,

'PROCESSING_ERROR': -3
b

def run(self):

Setup pymoos comms

print("Initial State: {0}".format(self.state_string))
self.comms.set_on_connect_callback(self.on_connect)
self.comms.set_on_mail_callback(self.on_mail)
self.comms.run('localhost', 9000, 'p_plume_detector')
#self.comms.run('192.168.56.104"', 9000, 'p_plume_detector')

Create folder for saving images. Save in /log directory if it exists, otherwise use current directory
date_time = datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S')
folder_name = "plume_detector_data_" + date_time
if os.path.exists("/log"):
log_dir = "/Tlog"
else:
log_dir = os.path.dirname(__file__)
self.data_save_path = os.path.join(log_dir, folder_name)
self.orig_images_path = os.path.join(self.data_save_path, "orig_images")
self.viewable_images_path = os.path.join(self.data_save_path, "viewable_images")

try:
os.mkdir(self.data_save_path)
os.mkdir(self.orig_images_path)
os.mkdir(self.viewable_images_path)

except OSError as error:
print(error)

while True:

Process scan when ping data from start/end of scan is received
if self.clustering_pending:

start_time = time.time()

Warp data into image with cartesian co-ordinates, then cluster
self.seg_img = self.create_sonar_image(self.seg_scan_snapshot)
self.cluster()

83

def

def

def

def

self.calc_cluster_centers()
self.get_cluster_center_nav()
self.georeference_clusters()
self.output_sorted_cluster_centers()
self.save_images()

Calculate and output the total processing time

end_time = time.time()

self.total_processing_time_secs = end_time - start_time

print_str = 'Scan ' + str(self.num_scans) + ": Processing time is " + \
str(self.total_processing_time_secs) + " secs"

print(print_str)

self.comms.notify('PLUME_DETECTOR_TOTAL_PROCESSING_TIME_SECS', self.total_processing_time_secs,

pymoos.time())

self.save_text_data()
self.clustering_pending = False

time.sleep(0.02) # 504z

return

on_connect(self):

'"'Registers vars with the M0OOS DB'''

success = self.comms.register('SONAR_NUMBER_OF_SAMPLES', 0)

success = success and self.comms.register('SONAR_NUM_STEPS', 0)

success = success and self.comms.register('SONAR_START_ANGLE_GRADS', 0)
success = success and self.comms.register('SONAR_STOP_ANGLE_GRADS', 0)
success = success and self.comms.register('SONAR_RANGE', 0)

success = success and self.comms.register('SONAR_PING_DATA', 0)

success = success and self.comms.register('SONAR_TRANSMIT_ENABLE', 0)
success = success and self.comms.register('SONAR_SPEED_OF_SOUND', 0)
success = success and self.comms.register('NAV_X', 0)

success = success and self.comms.register('NAV_Y', 0)

success = success and self.comms.register('NAV_HEADING', 0)

success = success and self.comms.register('LAT_ORIGIN', 0)

success = success and self.comms.register('LONG_ORIGIN', 0)

success = success and self.comms.register('PLUME_DETECTOR_CSV_WRITE_CMD', 0)

if success:
self.set_state('DB_CONNECTED')
self.set_status('G0O0D"')

else:
self.set_state('DB_REGISTRATION_ERROR"')
self.set_status('DB_REGISTRATION_ERROR')

return success

set_state(self, state_string_local):

"1 Sets the state_string class var, and updates the PLUME_DETECTOR_STATE_STRING and PLUME_DETECTOR_STATE_NUM
MOOS DB vars if the DB is connected’'''

self.state_string = state_string_local

print("State: {0}".format(self.state_string))

if self.states[self.state_string] > self.states['DB_DISCONNECTED']:
self.comms.notify('PLUME_DETECTOR_STATE_STRING', self.state_string, pymoos.time())
self.comms.notify('PLUME_DETECTOR_STATE_NUM', self.states[self.state_string], pymoos.time())

return

set_status(self, status_string_local):

' Sets the status_string class var, and updates the PLUME_DETECTOR_STATUS_STRING and PLUME_DETECTOR_STATUS_NUM
MOOS DB vars if the DB is connected'''

if self.status_string != status_string_local:
print("Status: {0}".format(self.status_string))

self.status_string = status_string_local

if self.states[self.state_string] > self.states['DB_DISCONNECTED']:
self.comms.notify('PLUME_DETECTOR_STATUS_STRING', self.status_string, pymoos.time())
self.comms.notify('PLUME_DETECTOR_STATUS_NUM', self.statuses[self.status_string], pymoos.time())

return

on_mail(self):

""'"Handles incoming messages - calls functions to configure the class and process the ping data. The num steps,

start angle, stop angle and number of samples can only be set on startup. Once the class 1is configured, changes
to these vars in the M0OOS DB do not have any effect.'''

84

Save all new input data
msg_list = self.comms.fetch()

for msg in msg_list:
self.save_input_var(msg)

Fvalvate state machine, call function to process any new ping data
if self.state_string in ['DB_DISCONNECTED', 'DB_REGISTRATION_ERROR']:
Do nothing if all vars not registered with the DB
Also, should not get here if state is 'DB_DISCONNECTED'
pass

elif self.state_string == 'DB_CONNECTED':
if self.configure():
if self.transmit_enable:
self.set_state('ACTIVE')
else:
self.set_state('STANDBY')

elif self.state_string == 'STANDBY':
if self.transmit_enable:
self.set_state('ACTIVE")

elif self.state_string == 'ACTIVE':
if self.binary_device_data_msg is not None:
if self.process_ping_data():
self.set_status('G00D")
else:
self.set_status('PROCESSING_ERROR')

return True

def save_input_var(self, msg):
'"'Saves message data in correct class var.'''

Save message data
name = msg.name()
if name == 'SONAR_PING_DATA':
self.binary_device_data_msg = msg.binary_data()
else: # Numeric data type
val = msg.double()
#print("Received {0}F: {1}".format(name, val))

if name == 'SONAR_NUMBER_OF_SAMPLES':
self.num_samples = int(val)

elif name == 'SONAR_NUM_STEPS':
self.num_steps = int(val)

elif name == 'SONAR_START_ANGLE_GRADS':
self.start_angle_grads = int(val)

elif name == 'SONAR_STOP_ANGLE_GRADS':
self.stop_angle_grads = int(val)

elif name == 'SONAR_RANGE':
self.range_m = val

elif name == 'SONAR_TRANSMIT_ENABLE':
self.transmit_enable = int(val)

elif name == 'SONAR_SPEED_OF_SOUND':
self.speed_of_sound = int(val)

elif name == 'NAV_X':
self.current_nav_x = val

elif name == 'NAV_Y':
self.current_nav_y = val

elif name == 'NAV_HEADING':
self.current_nav_heading = val

elif name == 'LAT_ORIGIN':
self.lat_origin = val

elif name == 'LONG_ORIGIN':
self.long_origin = val

elif name == 'PLUME_DETECTOR_CSV_WRITE_CMD':
if val == 1:

self.write_cluster_centers_csv()
return

def configure(self):
11 Initialize class data storage arrays if all config variable have been set''’

required_vars = [self.num_samples, self.range_m, self.num_steps, self.start_angle_grads, self.stop_angle_grads,
self.speed_of_sound, self.lat_origin, self.long_origin]

Class can be configured if all the config vars have been set

85

def

def

def

if all(item is not None for item in required_vars):

self.scan_intensities = np.zeros((self.num_samples, self.max_angle_grads), dtype=np.uint8)
self.scan_intensities_denoised = np.zeros((self.num_samples, self.max_angle_grads), dtype=np.uint8)
self.seg_scan = np.zeros((self.num_samples, self.max_angle_grads), dtype=np.uint8)

self.scan_processing_angles = [self.start_angle_grads, self.stop_angle_grads]

print("Config vars:samples: {0}, range: {1}, steps: {2}, start: {3}, stop: {4}, speed of sound: {5}, "
"lat origin: {6}, long origin: {7}".format(self.num_samples, self.range_m, self.num_steps,
self.start_angle_grads, self.stop_angle_grads, self.speed_of_sound, self.lat_origin, self.long_origin))

return True

else:
return False

process_ping_data(self):
"1'Calls functions to decode the binary ping data and save nav data. If the transducer head is at the start/stop
angle, it creates a copy of the sector scan data and sets a flag to indicate that the clustering can be run''’

if not self.decode_device_data_msg():
return False

if not self.update_scan_intensities():
return False

self.save_nav_data()

#print(str(self.device_data_msg.angle))

Process the data when at the start/stop angles

if self.device_data_msg.angle in self.scan_processing_angles:
self.num_scans = self.num_scans + 1
self.comms.notify('PLUME_DETECTOR_NUM_SCANS', self.num_scans, pymoos.time())

Copy data and set flag for clustering to be completed in the run thread
self.seg_scan_snapshot = copy.deepcopy(self.seg_scan)
self.clustering_pending = True

return True

decode_device_data_msg(self):
'"'Decodes the Ping360 device data message stored in self.binary_device_data_msg, and stores the decoded
message in self.device_data_msg '''

ping_parser = PingParser()

Decode binary device data message
for byte in self.binary_device_data_msg:
If the byte fed completes a valid message, PingParser.NEW_MESSAGE is returned
if ping_parser.parse_byte(byte) is PingParser.NEW_MESSAGE:
self.device_data_msg = ping_parser.rx_msg

Set to MNone as an indicator that the data has been processed
self.binary_device_data_msg = None

if self.device_data_msg is None:
print("Failed to parse message")
return False

if self.device_data_msg.message_id != definitions.PING360_DEVICE_DATA:
print("Received {0} message instead of {1} message".format(self.device_data_msg.name, 'device_data'))
return False

return True

update_scan_intensities(self):
' Stores the intensity data, removes the noise close to the transducer and segments the data''’

Ensure that dataset is the correct size
intensities = np.frombuffer(self.device_data_msg.data, dtype=np.uint8) # Convert intensity data bytearray to numpy
array
if intensities.size != self.num_samples:
print("Intensities array length ({8}) does not match number of samples ({1}). Data not
stored".format(intensities.size, self.num_samples))
return False

Save the intensity data
scanned_angle = self.device_data_msg.angle

86

self.scan_intensities[:, scanned_angle] = intensities

Remove noise data close to the head

noise_range_samples = int(self.noise_range_m / self.range_m * self.num_samples)

self.scan_intensities_denoised[:,scanned_angle] = intensities

self.scan_intensities_denoised[0:noise_range_samples, scanned_angle] = np.zeros((noise_range_samples),
dtype=np.uint8)

Apply a threshold to segment the data
self.seg_scan[:,scanned_angle] = (self.scan_intensities_denoised[:,scanned_angle] >
self.threshold).astype(np.uint8)

return True

def save_nav_data(self):
'"'Stores the current nav data in the nav data history arrays, at the index location defined by the scanned angle'’’

scanned_angle = self.device_data_msg.angle

self.nav_x_history[scanned_angle] = self.current_nav_x
self.nav_y_history[scanned_angle] = self.current_nav_y
self.nav_heading_history[scanned_angle] = self.current_nav_heading

return

def create_sonar_image(self, sector_intensities):
""'First rearrages sector intensities matrix to match OpenCV reference - includes reference frame conversion as
Ping 360 reference uses O towards art while OpenCV uses O towards right. Then re-grids to cartesian co-ordinates
using the OpenCV warpPolar function'''’

Transpose sector intensities to match matrix format required for warping
sector_intensities_t = copy.deepcopy(sector_intensities)
sector_intensities_t = sector_intensities_t.transpose()

Rearrange sector_intensities matrix to match warp co-ordinates (0 is towards right)
sector_intensities_mod = copy.deepcopy(sector_intensities_t)
sector_intensities_mod[0:100] = sector_intensities_t[300:400]
sector_intensities_mod[160:400] = sector_intensities_t[0:300]

Warp intensities matrix into circular image
radius = int(self.image_width_pixels/2)
warp_flags = cv.WARP_INVERSE_MAP + cv.WARP_POLAR_LINEAR + cv.WARP_FILL_OUTLIERS + cv.INTER_LINEAR
warped_image = cv.warpPolar(sector_intensities_mod, center=(radius, radius), maxRadius=radius,
dsize=(2 * radius, 2 * radius),
flags=warp_flags)

return warped_image

def cluster(self):
""'"Applies a square window clustering method to self.seg_img, and stores the image with the labelled clustered
pixels as labelled_clustered_img'''

Reset class vars
self.num_clusters = 0
self.clusters = []

Convert window width from meters to pixels

image_width_pixels = self.seg_img.shapel[l1l] # Assumes square image

self.window_width_pixels = self.window_width_m * image_width_pixels / (2 * self.range_m)
self.window_width_pixels = 2*math.floor(self.window_width_pixels/2) + 1 # Window size should be an odd number

Ensure widow width is at least 3 pixels
if self.window_width_pixels < 3:
print('Clipping clustering block with to 3 pixels (minimum)')
self.window_width_pixels = 3
self.comms.notify('PLUME_DETECTOR_CLUSTERING_BLOCK_WIDTH', self.window_width_pixels, pymoos.time())

Convert minimum fill from percentage to pixels

window_rows = self.window_width_pixels

window_cols = self.window_width_pixels

area = window_rows*window_cols

self.cluster_min_pixels = self.cluster_min_fill_percent*area/100

Add border padding to image

row_padding = math.floor(window_rows / 2)

col_padding = math.floor(window_cols / 2)

self.seg_img = cv.copyMakeBorder(self.seg_img, row_padding, row_padding, col_padding, col_padding,
cv.BORDER_CONSTANT, None, value=0)

#self.seg_img = self.seg_img.astype(np.uvint8)

87

def

start = time.time()

Call block clustering function

self.clustered_cores_img, self.cluster_regions_img, self.labelled_regions_img, self.labelled_clustered_img,

self.num_clusters = block_cluster_fn(self.seg_img, self.window_width_pixels, row_padding, col_padding,
self.cluster_min_pixels)

Save clustering time

end = time.time()

self.clustering_time_secs = end - start

print("Plume Detector Clustering time is ", self.clustering_time_secs)
self.comms.notify('PLUME_DETECTOR_CLUSTERING_TIME_SECS', self.clustering_time_secs, pymoos.time())

Compute number of cluster pixels

binary_clusters = np.zeros_like(self.labelled_clustered_img)

binary_clusters[self.labelled_clustered_img > 0] = 1 # Pixel valves > 0 are set to 1 in the binary image
num_cluster_pixels = binary_clusters.sum()

num_clusters = self.labelled_clustered_img.max()
num_seg_pixels = self.seg_img.sum()
num_noise_pixels = num_seg_pixels - num_cluster_pixels

print("Plume Detector block width pixels, min pixels, clusters, num points, cluster points, noise points, clustering
time: %.2f, %.1f, %d, %d, %d, %d, %.3f "
% (self.window_width_pixels, self.cluster_min_pixels, num_clusters, num_seg_pixels, num_cluster_pixels,
num_noise_pixels, self.clustering_time_secs))

return

calc_cluster_centers(self):
""'Calculates the cluster centers and radii, and draws them on the ouvtput image'''

self.clusters = [Cluster() for i in range(self.num_clusters)]

Calculate cluster centers and radii
for cluster_idx in np.arange(self.num_clusters):

Get indices of cluster pixels.
indices = np.nonzero(self.labelled_clustered_img == (cluster_idx+1))

Calculate center coordinates
center_row = indices[0].mean()
center_col = indices[1].mean()

Find furthest point & calculate cluster radius
radius = 0
center = np.array([center_row, center_col])
for i in range(len(indices[0])):
point = np.array([indices[0][i], indices[1][il1)
dist = np.linalg.norm(point - center)
if dist > radius:
radius = dist

Save valuves in clusters data structure
self.clusters[cluster_idx].center_row = center_row
self.clusters[cluster_idx].center_col = center_col
self.clusters[cluster_idx].radius_pixels = radius

return

def get_cluster_center_nav(self):

""'Gets the vehicle nav data at time that the sonar pinged the cluster center’'’'’
num_rows = num_cols = self.labelled_clustered_img.shapel[0] # Assumes square image

for i in np.arange(self.num_clusters):
Cluster center coordinates relative to the top left corner of the image
row = self.clusters[i].center_row
col = self.clusters[i].center_col

Cluster center coordinates relative to the center of the image
X = row - (num_rows - 1)/2
y = -1 x (col - (num_cols - 1)/2)

Calculate sonar transmit angle at the time that the cluster center was scanned
theta_rads = math.atan2(y,x)
theta_grads = round(theta_rads * self.rads_to_grads)

Retrieve nav data at the time that the cluster center was scanned, using the sonar transmit angle

self.clusters[i].nav_x = self.nav_x_history[theta_grads]
self.clusters[i].nav_y = self.nav_y_history[theta_grads]

88

def

def

self.clusters[i].nav_heading = self.nav_heading_history[theta_grads]
return

georeference_clusters(self):
""'For each cluster center, transforms from image coordinates to instrument, body, local and earth coordinates.
Also converts each cluster radius from pixels to meters. Coordinates are stored in self.clusters. '''

num_rows = num_cols = self.labelled_clustered_img.shapel[0] # Assumes square image
meters_per_pixel = (2 % self.range_m) / self.image_width_pixels

for i in np.arange(self.num_clusters):

Retrieve cluster center and radius in image coordinates
center_row = self.clusters[i].center_row

center_col = self.clusters[i].center_col

radius_pixels = self.clusters[i].radius_pixels

Calculate cluster radius in meteres
self.clusters[i].radius_m = radius_pixels * meters_per_pixel

Calculate cluster center in instrument coordinates
instrument_x = (num_rows - 1)/2 - center_row
instrument_x = instrument_x * meters_per_pixel
instrument_y = (num_cols - 1)/2 - center_col
instrument_y = instrument_y * meters_per_pixel

Calculate cluster center in body coordinates
body_x = instrument_x + self.instrument_offset_x_m
body_y = instrument_y

Calculate cluster center in local coordinates

theta = (self.clusters[i].nav_heading - 90) * np.pi/180

local_x = self.clusters[i].nav_x + (body_x * math.cos(theta) + body_y * math.sin(theta))
local_y = self.clusters[i].nav_y + (body_x * -math.sin(theta) + body_y * math.cos(theta))

Calculate cluster center in earth (lat,long) coordinates

dist = math.hypot(local_x, local_y)

fwd_azimuth = math.degrees(math.atan2(local_x, local_y)) # Use x/y becavse azimuth is wrt y axis

long, lat, back_azimuth = (pyproj.Geod(ellps='WGS84').fwd(self.lat_origin, self.long_origin,
fwd_azimuth, dist))

Save calculations
self.clusters[i].instrument_x = instrument_x
self.clusters[i].instrument_y = instrument_y
self.clusters[i].body_x = body_x
self.clusters[i].body_y = body_y
self.clusters[i].local_x = local_x
self.clusters[i].local_y = local_y
self.clusters[i].lat = lat
self.clusters[i].long = long

self.cluster_centers.append((local_x,local_y,self.clusters[i].nav_x,self.clusters[i].nav_y))
return

output_sorted_cluster_centers(self):
"11Sorts the clusters in order of radiuvs (largest to smallest) and sets the cluster outputs for the app'''

self.cluster_centers_string = ""

Sort list of clusters based on radivs (largest to smallest)
self.sorted_clusters = sorted(self.clusters, key=lambda cluster_i: cluster_i.radius_m, reverse=True)

Assemble string with cluster centers list
Sample format: <cluster 1 x>,<cluster 1 y>,<cluster 1 radius>:<cluster 2 x>,<cluster 2 y>,<cluster 2 radius>
centers = ""
for i in np.arange(self.num_clusters):
cluster = self.sorted_clusters[i]
Add cluster <local_x,local_y,radivus_m> to string
centers = centers + "{:.2f}".format(cluster.local_x) + ", "
centers = centers + "{:.2f}".format(cluster.local_y) + ", "
centers = centers + "{:.2f}".format(cluster.radius_m)

Add colon delimiter between info for each cluster
if i < (self.num_clusters-1):
centers = centers + ":"
self.cluster_centers_string = centers
#print(self.cluster_centers_string)

Output number of clusters and cluster centers list

89

def

def

self.comms.notify('PLUME_DETECTOR_NUM_CLUSTERS', self.num_clusters, pymoos.time())
self.comms.notify('PLUME_DETECTOR_CLUSTER_CENTERS_LIST', self.cluster_centers_string, pymoos.time())

Output the center coordinates and radius of each cluster. If there are more outputs than detected clusters,
those outputs are set to 0.
for i in range(self.num_cluster_outputs):

Construct variable name using cluster number

cluster_num = i+1 #Numbering of cluster ovtputs starts at 1

cluster_x_name = 'PLUME_DETECTOR_CLUSTER_'+ str(cluster_num)+ '_X_M'
cluster_y_name = 'PLUME_DETECTOR_CLUSTER_' + str(cluster_num) + '_Y_M'
cluster_radius_name = 'PLUME_DETECTOR_CLUSTER_' + str(cluster_num) + '_RADIUS_M'

if i < self.num_clusters:
Output the center coordinates and radius of each cluster.
cluster = self.sorted_clusters[il
self.comms.notify(cluster_x_name, cluster.local_x, pymoos.time())
self.comms.notify(cluster_y_name, cluster.local_y, pymoos.time())
self.comms.notify(cluster_radius_name, cluster.radius_m, pymoos.time())

else:
Outputs which number more than the detected clusters are set to 0
self.comms.notify(cluster_x_name, 0, pymoos.time())
self.comms.notify(cluster_y_name, 0, pymoos.time())
self.comms.notify(cluster_radius_name, 0, pymoos.time())

save_images(self):
""'Saves a set of original clustering images, as well as modified high-contrast viewable images'''

Save original images
dir = self.orig_images_path

filename = "Scan_" + str(self.num_scans) + "_Iml_Segmented_Unwarped.png"
cv.imwrite(os.path.join(dir, filename), self.seg_scan_snapshot)

filename = "Scan_" + str(self.num_scans) + "_Im2_Segmented_Warped.png"
cv.imwrite(os.path.join(dir, filename), self.seg_img)

filename = "Scan_" + str(self.num_scans) + "_Img3_ClusteredCores.png"
cv.imwrite(os.path.join(dir, filename), self.clustered_cores_img)

filename = "Scan_" + str(self.num_scans) + "_Img4_LabelledRegions.png"
cv.imwrite(os.path.join(dir, filename), self.labelled_regions_img)

filename = "Scan_" + str(self.num_scans) + "_Img5_Clustered.png"
cv.imwrite(os.path.join(dir, filename), self.labelled_clustered_img)

Increase image contrast and save
dir = self.viewable_images_path

warped = self.create_sonar_image(self.scan_intensities)
filename = "Scan_" + str(self.num_scans) + "_Imgl_Input.png"
cv.imwrite(os.path.join(dir, filename), warped)

filename = "Scan_" + str(self.num_scans) + "_Img2_Segmented.png"
cv.imwrite(os.path.join(dir, filename), 255%self.seg_img)

filename = "Scan_" + str(self.num_scans) + "_Img3_ClusteredCores.png"
cv.imwrite(os.path.join(dir, filename), 255%self.clustered_cores_img)

filename = "Scan_" + str(self.num_scans) + "_Img4_ClusterRegions.png"
cv.imwrite(os.path.join(dir, filename), 255%self.cluster_regions_img)

Convert labelled clustered image to a black and white image

filename = "Scan_" + str(self.num_scans) + "_Img5_Clustered.png"

self.clustered_img = np.zeros_like(self.labelled_clustered_img)
self.clustered_img[self.labelled_clustered_img > 0] = 255 # Pixel valves > 0 are set to 255
cv.imwrite(os.path.join(dir, filename), self.clustered_img)

save_text_data(self):
""" Create test file with summary info for the scan, as well as detailed info for each cluster '''

Save text file with the viewable images
filename = "Scan_" + str(self.num_scans) + "_Data.txt"
file_path = os.path.join(self.viewable_images_path, filename)
with open(file_path, "w") as file:

Write summary data

date_time = datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S"')
file.write("Timestamp: " + date_time + "\n")

90

file.write("Num Clusters: " + str(self.num_clusters) + "\n")
file.write("Total processing time: " + str(self.total_processing_time_secs) + " secs\n")
file.write("Clustering time: " + str(self.clustering_time_secs) + " secs\n\n")

Write data for each cluster

for i in np.arange(self.num_clusters):
data = self.sorted_clusters[i].serialize()
file.write(str(data) + "\n")

if __name__ == "__main__":

plume_detector = PPlumeDetector()
plume_detector.run()

91

Appendix B

Block Clustering Code

The following is the Cython implementation of the block clustering algorithm presented in this thesis. It is

available online in the pPlumeDetector git repository [60].

import numpy as np
from skimage import measure
cimport numpy as cnp

cnp.import_array()
DTYPE = np.uint8
ctypedef cnp.uint8_t DTYPE_t

def block_cluster_fn(cnp.ndarray[DTYPE_t, ndim=2] seg_img, int window_width_pixels, int row_padding, int col_padding,
cluster_min_pixels):

window_rows = window_width_pixels

window_cols = window_width_pixels

Initialize image matrices
cdef int rows = seg_img.shape[0]
cdef int cols = seg_img.shape[1]
cdef cnp.ndarray clustered_cores_img = np.zeros((rows, cols), dtype=DTYPE)
cdef cnp.ndarray cluster_regions_img = np.zeros((rows, cols), dtype=DTYPE)
cdef cnp.ndarray labelled_clustered_img = np.zeros((rows, cols), dtype=DTYPE)
cdef cnp.ndarray window_ones = np.ones((int(window_rows), int(window_cols)), dtype=DTYPE)

cdef int start_row, end_row, start_col, end_col

Create clustered_cores_img, identifying pixels at the center of high density windows.
Also create cluster_regions_img, identifying high density regions. Note: output matrices are zero padded
for row in range(row_padding, rows-row_padding, 1):
for col in range(col_padding, cols-col_padding, 1):
if seg_img[row, coll:
start_row = row - row_padding

end_row = row + row_padding + 1
start_col = col - col_padding
end_col = col + col_padding + 1

filled = (seg_img[start_row:end_row, start_col:end_col]).sum()
if filled > cluster_min_pixels:
clustered_cores_img[row,col] = 1
cluster_regions_img[start_row:end_row, start_col:end_col] = window_ones

Identify and label separate regions
labelled_regions_img, num_clusters = measure.label(cluster_regions_img, return_num=True, connectivity=2)

Mask input image with the labelled regions image to create the labelled clustered image
labelled_clustered_img = labelled_regions_img * seg_img

return clustered_cores_img, cluster_regions_img, labelled_regions_img, labelled_clustered_img, num_clusters

92

Appendix C

Scott Inlet Project Software

C.1 Introduction

This appendix contains the documentation for the Scott Inlet Project’s software developed for
Memorial University’s Explorer AUV. It is not intended to be a stand-alone document, and
should be read along with [13], which contains the higher-level system and mission
descriptions.

The Explorer AUV was equipped with a Ping360 Sonar, and two UviLux fluorometers
measuring PAH and CDOM fluorescence. The comprehensive mission used data from these
sensors to determine the optimal sampling location, and consisted of three main phases:
Search, Survey, and Sample. During the search phase, a coarse pre-planned search of the
mission area was conducted. Data collected by the Ping360 sonar during this phase was used
to adaptively identify areas of interest where detailed lawnmower surveys were required.
Similarly, data collected by the UviLux PAH fluorometer during the search and survey phases
was used to adaptively identify the optimal sampling waypoint. The final sample phase

involved collection of the water samples at this location.

C.2 Overview

This section contains brief descriptions of each application in the Scott Inlet Project’s software

suite. It assumes that the reader is familiar with the MOOS-IvP software suite [79], and how

93

the backseat driver system is realized on Memorial University’s Explorer AUV [82]. Fig. C.1

contains a simplified diagram of the applications and how they interact with each other.

e PCC -
/ \
Ping 360 Ping360 Data—' iPing360Davice MQOS Mission

Ping360 Data

pPlumeDetector Search
Clusters Search Status
I vcc N pSurveyPlanner Survey Waypaints Survey

ACE Search & Survey Statu:
Uvilux > UviLux UviLux Data pProbMapper Sample\Waypoint— Sample
Interface

Water . (Sampier ,
Sampler | Interface |] Water SamplerTrigger

\ | Y ’
A, h g / N

o

-
“
/
M,

Fig. C.1: Simplified diagram of the software applications and how the interact with each other

The following modules were added to the manufacturer’s Automated Control Engine (ACE)
software on the Vehicle Control Computer (VCC):

e UviLux Interface: Interface for the UviLux CDOM and PAH fluorometers. It extracts
and outputs the information in each sensor’s data message.

o Water Sampler Interface: Controls the water sampler. When the water sampler trigger
is received, it sequentially actuates the eight sampling syringes to collect water
samples.

The following MOOS apps run on the PCC and work together to adaptively control the
mission. All the apps except for pMoosCrossing and pBSDOverride are newly developed
software modules for the Scott Inlet project:

e pMoosCrossing: The communication bridge between the VCC and PCC. It allows
MOOS applications on the PCC to communicate with the VCC through the
MOOSDB.

e pBSDOverride: Sets flags to activate the MOOS mission once the VCC indicates that

the PCC is allowed to take control.

C.3

iPing360Device [80]: The Ping360 sonar interface. It controls the sonar’s pinging,
receives the acoustic data, and publishes it to the MOOSDB.

pPlumeDetector [60]: An implementation of the plume detection algorithm presented in
this thesis. It identifies the plume as high-density clusters in the Ping360 sonar data
and publishes the geo-referenced cluster centers.

pSurveyPlanner: The survey waypoint generator. It organizes surveys that target areas
in which the pPlumeDetector has identified clusters of interest. It generates the survey
waypoints at the end of the search phase, where each survey waypoint corresponds to
the center of a survey area.

pProbMapper: The sampling waypoint generator, and backup survey waypoint
generator. Once the survey phase is complete, it constructs a probability map based on
the measured PAH fluorescence, and generates a sampling waypoint, corresponding to
the location where oil is most likely to be found. It also generates a survey waypoint at
the end of search phase if the pPlumeDetector did not detect any clusters; this
waypoint waypoint corresponds to the location where the highest PAH fluorescence

was measured.

Mission Modes

The built-in MOOS-Ivp application, pHelmlIvp, is configured to execute the custom MOOS

mission. The comprehensive mission has five modes: Search, Survey, Sample, Loiter, and

Return. Each mode activates a different set of behaviours to achieve the goal:

Search: Performs a pre-planned search of the mission area. During this phase, the AUV
visits a series of waypoints and performs a bowtie pattern at each waypoint.

Survey: Performs surveys at locations which are determined adaptively based on data
collected in the search phase. During this phase, the AUV visits the adaptively
generated waypoints and performs a lawnmower survey pattern at each waypoint.
Sample: Transits to the adaptively generated sampling waypoint and triggers the water
sampler upon arrival. Conducts a bowtie maneuvering pattern while the water samples

are being collected.

95

e Loiter: Circles around the current location, allowing time for the data to be processed
after the search and survey phases. It also ensures that the mission always ends
correctly; if an app fails to publish the required variables, the loiter times-out and
causes a switch to return mode.

e Return: Returns to a known safe location and relinquishes control to end the mission.

Fig. C.2 below shows the mode transitions for the comprehensive mission; details of the

transitions are outlined in the following section.

START /,4 SURVEY | —SURVEY_COMPLETE = true & SAMPLE_REQ = tue——» SAMPLE |
. P - "
H - <0 T L &
e b &
B o g 3 &
o o = o o
g e 5 W &
z P e x w7
5 S T W &
= e > 2 [=
7] 3 wE =
& £ 2 P 2
I :
A / ER=N- & o
o = E
y 1 g W @ =
y \ w8 m & z
| SEARCH | wyl oy 2a =
\ Le g & &
s 52 2 &)
) o
Frey Sa N H
o | &
~COup, . T S &
e g ¢
L Sug E @f‘;
L @ 5
5F e 5

/.

| LOImER OITER_COMPLETE = rue—» RETURN .)—MISSION:cUmp\ele—b END

Fig. C.2: Mode transitions for the comprehensive mission

C4 Application Interactions

Since there are quite a few software elements interacting with each other, the following
procedure does not show all possible interactions, but is a starting point to follow along and
understand the code.
1) Starting the MOOS mission
a) The VCC indicates that the PCC can take control by setting
AUV_OVERRIDE ALLOW = true
b) The pBSDOverride app sets the following variables, which activate the MOOS mission:
i) AUV_BSD_STATE = 1, which indicates to the VCC that the PCC has taken

control

96

ii) MOOS_MANUAL_OVERRIDE = true, which changes the Helm state from ‘Park’
to ‘Drive’

iii) DEPLOY = true, which causes the Helm to set the mode to ACTIVE

2) Search mode

a)

By default, SEARCH__REQ is set to true. The Helm processes this request for search
mode, and sets the mode to ACTIVE: SEARCH:SEARCH_WAYPOINT

While the mode is ACTIVE: SEARCH, the search_ active behaviour sets the
SEARCH__ACTIVE flag to true. This causes:

i) pSurveyPlanner to record clusters detected by pPlumeDetector

ii) pProbMapper to record the fluorescence readings

When the mode is set to ACTIVE: SEARCH:SEARCH WAYPOINT the
search_waypoint behaviour is activated

Upon reaching the waypoint, the search_waypoint behaviour sets
SEARCH_BOWTIE_REQ = true, which places a request for a search bowtie. It also
updates SEARCH_BOWTIE_UPDATE to specify a bowtie around the current
position.

The Helm sets the mode to ACTIVE: SEARCH: SEARCH_BOWTIE, which activates
the search bowtie behaviour. The search bowtie behaviour uses the
SEARCH_BOWTIE_UPDATE.

Upon completion of the bowtie, the search bowtie behaviour sets
SEARCH_BOWTIE_REQ=false, which places a request to end the search bowtie
The Helm sets the mode to ACTIVE: SEARCH:SEARCH WAYPOINT

Steps ¢ to g are repeated, alternating between waypoint and bowtie behaviours, until
the last waypoint is reached

When the last waypoint is reached, the search waypoint behaviour sets
SEARCH_WAYPOINT_ COMPLETE to true

When the subsequent search_bowtie sets SEARCH_BOWTIE_COMPLETE to true,

the search__complete behaviour sets SEARCH COMPLETE to true

3) Survey Waypoint Generation during LOITER mode

97

a)

In the absence of a request to activate survey or sample mode, the Helm sets the mode

to LOITER, which activates the waypt_ loiter behaviour, causing the vehicle to circle

around its current position.

While the vehicle is loitering, the pSurveyPlanner computes the survey waypoints. This

computation is triggered when the SEARCH_COMPLETE flag is set to true.

If the pSurveyPlanner has recorded at least one cluster detection during the search

phase, it computes the survey waypoints and updates:

i) The SURVEY_UPDATES variable with the survey waypoints

ii) The NUM_SURVEY_WAYPOINTS variable with the number of survey
waypoints

iii) The SURVEY__REQ variable to true, to request survey mode

If the pSurveyPlanner has not recorded any clusters during the search phase, it sets

GEN_FLUOR,_ SURVEY_ WAYPOINTS_ CMD to true.

i) This triggers the pProbMapper to generate one survey waypoint, and update the

same variables as in step c.

Survey Mode

a)

The Helm processes the survey mode request (SURVEY REQ=true), and sets the
mode to ACTIVE: SURVEY:SURVEY WAYPOINT

While the mode is ACTIVE: SURVEY, the survey_ active behaviour sets the
SURVEY__ACTIVE flag to true.

i) This causes pProbMapper to record the fluorescence readings

When the mode is set to ACTIVE: SURVEY:SURVEY WAYPOINT the
search_waypoint behaviour is activated

Upon reaching the waypoint, the survey waypoint behaviour sets

SURVEY_ LAWNMOWER_REQ = true, which places a request for a search bowtie.
It also updates SURVEY_LAWNMOWER,_ UPDATE to specify a lawnmower pattern
around the current position.

The Helm sets the mode to ACTIVE: SURVEY: SURVEY_LAWNMOWER, which
activates the survey_ lawnmower behaviour. They survey lawnmower behaviour uses

the SURVEY LAWNMOWER UPDATE.

98

Upon completion of the lawnmower, the survey lawnmower behaviour sets

SURVEY_ LAWNMOWER_REQ to false, which places a request to end the survey
lawnmower.

The Helm sets the mode to ACTIVE: SURVEY:SURVEY WAYPOINT

Steps ¢ to g are repeated, alternating between waypoint and bowtie behaviours, until
the last waypoint is reached

When the last waypoint is reached, the search waypoint behaviour sets

SURVEY_ WAYPOINT_ COMPLETE to true

When the subsequent survey lawnmower sets

SURVEY LAWNMOWER_COMPLETE to true, the survey_complete behaviour sets

SURVEY COMPLETE to true

Sample Waypoint Generation during LOITER MODE

a)

In the absence of a sample The Helm sets the mode to LOITER, which activates the
waypt_ loiter behaviour, causing the vehicle to circle around its current position.

While the vehicle is loitering, the pProbMapper computes the sample waypoints. This
computation is triggered when the SURVEY COMPLETE flag is set to true.

If the pProbMapper successfully computes the sampling waypoint, it updates:

i) The FLUORESCENCE WAYPOINTS variable with the sampling waypoint

ii) The SAMPLE_REQ variable to true, to request sample mode

If the pProbMapper fails to compute the sampling waypoint, it sets RETURN__REQ to

true, to request return mode (Go to Step 7).

Sample Mode

a)

The Helm processes the sample mode request (SAMPLE_REQ=true), and sets the
mode to ACTIVE: SAMPLE:SAMPLE WAYPOINT. This activates the

sample_ waypoint behaviour.

Upon reaching the waypoint, the sample_waypoint behaviour sets

SAMPLE BOWTIE_REQ = true, which places a request for a sample bowtie. It also
updates SAMPLE_BOWTIE_UPDATE to specify a bowtie pattern around the

current position.

99

When the first waypoint is reached, the sample waypoint_ complete behaviour sets
SAMPLE_WAYPOINT_COMPLETE to true

The Helm processes the sample bowtie request and sets the mode to ACTIVE:
SAMPLE: SAMPLE_BOWTIE, which activates the sample bowtie behaviour. The
sample_bowtie behaviour uses the SAMPLE_BOWTIE_UPDATE.

While the sample_bowtie behaviour is active, it sets

WATER_SAMPLER. TRIGGER to 1. This trigger is sent to the VCC to initiate
water sampling.

Upon completion of the bowties, the sample bowtie behaviour sets
SAMPLE_BOWTIE_COMPLETE to true.

The sample_complete behaviour then sets SAMPLE COMPLETE to true, as
SAMPLE_WAYPOINT_COMPLETE is true

The set_ return_ req behaviour sets RETURN__REQ to true when

SAMPLE COMPLETE is set to true

Return Mode

a)

The Helm processes the return mode request (RETURN_REQ=true), and sets the

mode to ACTIVE:RETURN

The return behaviour, which transits to the return waypoint, is activated in return

mode.

When the return waypoint is reached, the behaviour ends the MOOS mission by

updating:

i) DEPLOY to false, which changes to mode to INACTIVE

ii) MOOS MANUAL OVERRIDE to true, which changes the Helm state from
‘Drive’ to ‘Park’

iii) MISSION to complete, which indicates to the VCC that the PCC has relinquished

control.

100

C.5

Application Interfaces

The following sections lists the relevant publication and subscription variables for the PCC’s MOOS applications.

C.5.1 pMoosCrossing

Variables published by pMoosCrossing;:

UVILUX_ PAH_ FLUORESCENCE

Variable Name Type | Unit Description

AUV_OVERRIDE ALLOW Integer | - Set to ‘1’ when MOOS is allowed to take control. Otherwise ‘0’.

AUV_BSD_CTRL Integer | - Set to ‘1’ when a MOOS mission is running and MOOS has control of the vehicle’s
trajectory. Otherwise ‘0’.

NAV LAT Double | Degrees | The vehicle’s current latitude

NAV_LONG Double | Degrees | The vehicle’s current longitude

NAV_SPEED Double [m/s The vehicle’s current speed

NAV HEADING Double | Degrees | The vehicle’s current heading

NAV_DEPTH Double | Meters | The vehicle’s current depth

NAV ALTITUDE Double | Meters | The vehicle’s current altitude

UVILUX CDOM_FLUORESCENCE, | Double | QSU Fluorescence measured by the CDOM and PAH UviLux sensors. Fluorescence is

reported in Quinine Sulphate Units (QSU), where 1 QSU is equivalent to the

101

fluorescence intensity recorded from 1 ppb quinine sulphate at an excitation
wavelength of 347.5 nm and an emission wavelength of 450 nm

UVILUX_ CDOM__EHT, Double | - The UviLux handbook [83] does not provide any description of what this is.
UVILUX_ PAH EHT

UVILUX_ CDOM_ VIN, Double | Volts Internal 15V rail Voltage of the CDOM and PAH UviLux sensors

UVILUX_ PAH_VIN

UVILUX_ CDOM_ VREF, Double | Volts Sensor reference voltage

UVILUX_ PAH VREF

UVILUX_ CDOM_TEMP, Double | °C Onboard Temperature of the CDOM and PAH UviLux sensors
UVILUX_ PAH_ TEMP

UVILUX_ CDOM__QUALITY_FLAG | Integer | - Bit-packed data quality flags. The UviLux handbook [83] does not provide a

UVILUX_ PAH_ QUALITY_FLAG

detailed breakdown of what each of the bits mean. However, it appears that if any
of the bits are set to ‘1’, it indicates that the sensor is operating outside of ‘normal’
conditions.

Bit 0 = ADC Clipping

Bit 1 = EHT Changed

Bit 2 = Low Signal

Bit 3 = High Signal,

Bit 5 = Negative Fluorescence,

Bit 6 = Sampling Error

102

C.5.2 pNodeReporter

Variables published by pNodeReporter:

Variable Name Type Unit Description

NAV_X Double [Meters | Vehicle’s position measured in eastings (NAV__X) and northings (NAV_Y) from the local frame
origin. The origin is defined by the LatOrigin & LongOrigin parameters in the *.moos file.

NAV Y Double | Meters

The pNodeReporter app subscribes to the NAV_LAT and NAV__LONG variables, and converts them

from the global frame to the local frame.

103

C.5.3 iPing360Device

The iPing360Device app is configured using the Ping360.ini configuration file, which must be in the same directory as the iPing360Device.py file.

The Ping360.ini file parameters are as follows:

Parameter

Description

port__type

requirec e por e to connect to, must be one of ‘udp’ or ‘seria
(required) The port type t t to, t b f ‘udp’ or ‘serial’

serial _port

(optional, default: /dev/ttyS0) The serial port to connect to, if the PORT_TYPE is set to ‘serial’

baudrate (optional, default: 115200) Serial communications baud rate, must be one of 2400, 4800, 9600, 19200, 38400, 57600, or 115200.
sonar__ip (optional, default: 192.168.0.100) IP address of the sonar for connecting via a UDP link
udp_ port (optional, default: 12345) Port number for connecting via a UDP link

(optional, default = ’) Message names subscribed for published by iPing360Device will be prefixed by this string. If not
prefix included, an underscore will inserted as the last prefix character. If a blank value is provided, no prefix or underscore will

precede variable name in the publication.

log_file dir

(optional, default = *./”) Directory for saving log files

104

The iPing360Device application subscribes to the MOOS messages listed in the table below and responds to run-time changes. The Ping360.ini file
parameter prefix defines the [prefix] text in the MOOS messages. For example, if prefix=PING360, the app subscribes for the

PING360_TRANSMIT ENABLE variable.

Input Variable Type Range Description
Upon enable, initializes communication with the sonar & configures it.
[PREFIX_|DEVICE_COMMS_ENABLE | Integer | 0-1 _
The default is 0.
[PREFIX_|TRANSMIT_ ENABLE Integer | 0-1 Enables pinging when set to 1. The default is 0.
0 to 400 Scan sector start angle (inclusive). The scan sector is defined by a
[PREFIX |START ANGLE GRADS Integer (11_ clockwise rotation from the start angle to the stop angle. The default is
radians
& 350 gradians (i.e. 315 degrees)
0 to 400 Scan sector stop angle (inclusive). The scan sector is defined by a
0
[PREFIX |STOP_ANGLE GRADS Integer di clockwise rotation from the start angle to the stop angle. The default is
radians
& 50 gradians (i.e 45 degrees)
1to 10 Number of 0.9 degree motor steps between pings for auto scan (1 to 10
[PREFIX_ |]NUM_STEPS Integer _ _ _ ,
gradians gradians is 0.9 to 9.0 degrees). The default is 1.
0: low, 1:
[PREFIX |GAIN Integer | normal, Analog gain setting.The default is ‘normal’
2: high
Om ¢ Distance from the sonar to scan signals. Smaller ranges will scan faster
m to
[PREFIX |RANGE Float 50 as the receiver does not have to wait as long to receive a response. The
m
default is 15m.

105

Input Variable Type Range Description
1450m/s The speed of sound to be used for distance calculations. This should be
[PREFIX |SPEED OF SOUND Float to 1550 1500 m/s in salt water, 1450 m/s in fresh water. The default is
m/s 1500m/s.
5 00KH Acoustic operating frequency. Although the frequency range is 500kHz
z
to 1000kHz, h it is onl tical t y 650kHz to 850kH
[PREFIX_]TRANSMIT FREQUENCY | Integer | to © 7, HOWEVEL T 15 OIy Practical to Use say 2 10 SuTKEE
due to the narrow bandwidth of the acoustic receiver. The default is
1000kHz
750kHz
[PREFIX |NUMBER OF SAMPLES Integer 1-1200 Number of samples per reflected signal. The default is 600
When set to 1, creates a new log file in LOG__FILE_DIR and logs
[PREFIX_|LOG_ENABLE Integer | 0-1 ping data to it. The file can be replayed with PingViewer. The file
name format is ping360__YYYMMDD_HHMMSS.bin
(PREFIX |DEBUG ENABLE Integer 0.1 Enables printing of verbose debug information, such as the complete

ping data message

106

The table below lists the output variables which the iPing360Device app publishes to the MOOSDB.

Output Variable Type Description

[PREFIX |PING DATA Binary 2301 auto_ device data’ message containing the most recent ping intensity data.

IPREFIX |STATE String Indicatgs the state of. tlile app: DB Disconnected, DB Connected, Ready to
Transmit or Transmitting

[PREFIX |LAST ERROR String Indicates the most recent error that occured

[PREFIX |LOG_STATUS String Indicates logging status. For example: Disabled, Logging, Error (failed to open file)

[PREFIX JTRANSMIT ANGLE GRADS Float The current transmit angle, in gradians

[PREFIX |JTRANSMIT ANGLE_ DEGS Float The current transmit angle, in degrees

107

C54 pPlumeDetector

Variables published by pPlumeDetector:

Variable Name Type | Unit Description

PLUME DETECTOR NUM SCANS Integer | - Number of Ping360 sector scans completed. Incremented every
time the start or stop angle is reached.

PLUME_DETECTOR, CLUSTERING BLOCK_ WIDTH | Integer | Pixels [Width of the clustering block

PLUME DETECTOR CLUSTER <NUM> X M Double | Meters | Center coordinates and radius of the 5 largest clusters. The
clusters are sorted by radius, with the largest clusters first.

PLUME DETECTOR_CLUSTER <NUM> Y M If less than 5 clusters are detected, the extra outputs are all set
to 0. The center coordinates are measured in the local frame.

PLUME DETECTOR_ CLUSTER <NUM> RADIUS M | Double | Meters

PLUME_DETECTOR_NUM__ CLUSTERS Integer | - Number of detected clusters in the sector scan

PLUME_DETECTOR_CLUSTER_CENTERS_ LIST String | - String with a list of all the cluster centers (local frame) and
radii. The information for each cluster is separated by a colon.
Format for three clusters:
X1,Y1,Radiusl:X2,Y2,Radius2:X3,Y 3,Radius3
The clusters are sorted by radius, with the largest clusters
first.

PLUME_DETECTOR, STATE_STRING String | - Indicates what the app is currently doing. It is set to:

108

DB_CONNECTED once the app connects to the MOOS DB.
Indicates that the app is waiting for all the configuration
variables to be set.

STANDBY once the app is configured, but transmit is not
enabled on the Ping360. Indicates that the app is ready, but
not processing data.

ACTIVE once the app is configured and transmit is enabled on
the Ping360. Indicates that the app is processing data.

PLUME DETECTOR STATE NUM Integer | - Numeric state, set to:

‘1’ if the state is DB. CONNECTED

‘2" if the state is STANDBY

‘3’ if the state is ACTIVE
PLUME DETECTOR STATUS STRING String | - Indicates any errors, otherwise set to ‘GOOD’
PLUME DETECTOR STATUS NUM Integer | - Numeric status, set to:

‘1’ if the status is GOOD

17 if the status is DB_REGISTRATION_ERROR
-2’ if the status is TIMEOUT

-3’ if the status is PROCESSING__ERROR

109

C.5.5 pHelmlIvp

Variables published by pHelmIvP, as per the mission’s behaviour file configuration:

Variable Name Type Unit | Description
MODE String | - o ROOT
|--o INACTIVE
|--o ACTIVE
|--o SEARCH
|--o SEARCH_WAYPOINT
|--o SEARCH_BOWTIE
|--o SURVEY
|--o SURVEY_WAYPOINT
|--o SURVEY LAWNMOWER
|--o SAMPLE
|--o SAMPLE WAYPOINT
|--o SAMPLE_BOWTIE
|--o LOITER
|--o RETURN
SEARCH_ACTIVE String - Set to ‘true’ while the search phase is in progress
SURVEY_ACTIVE String | - Set to ‘true’ while the survey phase is in progress
SAMPLE_ACTIVE String - Set to ‘true’ while the sample collection phase is in progress
SEARCH_COMPLETE String - Set to ‘true’ once the search phase is complete

110

SURVEY COMPLETE

String

Set to ‘true’ once the survey phase is complete

SAMPLE_COMPLETE

String

Set to ‘true’ once the sample collection phase is complete

Variables subscribed for by pHelmIvP, as per the behaviour file configuration:

Variable Name

Type

Unit

Description

SURVEY_REQ

String | -

Once the search phase is completed, this flag is set to ‘true’ by an app (pSurveyPlanner) if
at least one survey waypoint is identified. Otherwise set to ‘false’.

NUM_ SURVEY WAYPOINTS

Integer | -

Number of computed survey waypoints.

SURVEY_UPDATES

String | -

The survey waypoints for the waypoint behaviour, determined using data collected in the
search phase. The format should be as follows:
“polygon = X1,Y1 : X2)Y2 : X3,Y3”

For example:
“polygon = 50,150 : 60,160 : 70,170”

SAMPLE REQ

String | -

Once the survey phase is completed, this flag is set to ‘true’
by an app if at least one water sample collection waypoint has been identified. Otherwise
set to ‘false’.

FLUORESCENCE WAYPOINTS

String

The updated sample waypoints for the waypoint behaviour. The format should be as
follows:
“polygon = X1,Y1 : X2)Y2 : X3,Y3”

111

For example:
“polygon = 50,150 : 60,160 : 70,170”

RETURN_REQ

String

If this flag is set to ‘true’ the vehicle returns to a preset waypoint and the mission
completes.

112

C.5.6 pSurveyPlanner

The pSurveyPlanner organizes surveys that target areas in which the pPlumeDetector has identified clusters of interest; each survey area contains

one or more detected clusters. The survey planner minimizes the number of surveys by using agglomerative clustering to group together

pPlumeDetector clusters which are near each other.

It generates the survey waypoints at the end of the search phase, where each survey waypoint corresponds to the center of a survey area. The

mission’s survey module then generates a lawnmower pattern around each survey waypoint to execute the survey.

Variables subscribed for by pSurveyPlanner:

Variable Name Type | Unit Description

PLUME_DETECTOR, CLUSTER_CENTERS_ LIST | String | - A list containing the center coordinates and radius of the clusters
detected in the most recent sector scan.

If the detections occur during the search phase, the information is
added to an internal list of clusters.

SEARCH__ACTIVE String | - While this flag is set to to ‘true’, all detected clusters are recorded.
Ensures that clusters detected while the vehicle is diving or surfacing
are not recorded.

SEARCH_COMPLETE String | - When this mission status flag is set to ‘true’, the app is triggered to
compute and output the survey waypoints.

SURVEY AREA WIDTH Double | Meters | Width of the area covered by the survey pattern.

113

Used as the cut-off for merging groups in the agglomerative
clustering algorithm. If the distance between two points/groups is
more than the survey area width, merging is not performed.

NAV_X Double | Meters | Vehicle’s current position measured in eastings (NAV__X) and
northings (NAV_Y) from the local frame origin.
NAV' Y Double | Meters
Variables published by pSurveyPlanner:

Variable Name Type | Unit | Description

GEN_FLUOR,_ SURVEY_WAYPOINTS_CMD | String | - If no clusters were detected by the pPlumeDetector
during the search phase, this variable is set to ‘true’ when the search phase is
complete.
It indicates to the pProbMapper that the survey waypoint should be
generated based on the fluorescence data.

NUM_SURVEY_ WAYPOINTS Integer | - Number of computed survey waypoints.

SURVEY_ UPDATES String | - A list of the computed survey waypoints. The format is as follows:
“polygon = X1,Y1 : X2,Y2 : X3,Y3”
For example:
“polygon = 50,150 : 60,160 : 70,170”

114

A greedy algorithm is used to determine the waypoint order. The first
waypoint is the one closest to the vehicle’s current position. Each subsequent
waypoint is then the waypoint which is closest to the last waypoint.

If only one survey waypoint is identified, two waypoints are output in the
SURVEY__UPDATES string. This is to work-around the bug in the
waypoint behavior where it does not update the waypoint flags correctly if
there is only one waypoint.

SURVEY REQ

String

Set to ‘true’ when a survey waypoint is generated.

SURVEY_ PLANNER_STATE_STRING

String

Indicates what the app is currently doing. It is set to:

DB__CONNECTED once the app connects to the MOOS DB. Indicates that
the app is waiting for all the configuration variables to be set.

STANDBY once the app is configured, but the search phase is not active.
ACTIVE once the search phase is active. In this state, the app saves all
cluster data.

SURVEY PLANNER STATE NUM

Integer

Numeric state, set to:

‘1’ if the state is DB CONNECTED
‘27 if the state is STANDBY

‘37 if the state is ACTIVE

SURVEY PLANNER STATUS STRING

String

Indicates any errors, otherwise set to ‘GOOD’

SURVEY PLANNER STATUS NUM

Integer

Numeric status, set to:

‘17 if the status is GOOD

-1’7 if the status is DB. REGISTRATION_ERROR
-2’ if the status is PROCESSING__ERROR

115

C.5.7 pProbMapper

Variables subscribed for by pProbMapper:

Variable Name Type | Unit Description

UVILUX_CDOM__FLUORESCENCE, Double | QSU Fluorescence measured by the CDOM and PAH UviLux sensors.

UVILUX_ PAH FLUORESCENCE

SEARCH__ACTIVE, String | - When either of these flags are set to ‘true’, the fluorescence data is

SURVEY ACTIVE recorded in the map.

Ensures that data measured while the vehicle is diving or surfacing is not
recorded.

GEN_FLUOR,_ SURVEY_WAYPOINTS_CMD | String | - If this flag is set to true, the app generates a survey waypoint
corresponding to the location where the highest fluorescence was detected
during the search phase.

SURVEY_ COMPLETE String | - When this mission status flag is set to ‘true’, the app is triggered to
compute and output the sample collection waypoint(s) based on the
probability map.

NAV_X Double | Meters | Vehicle’s current position measured in eastings (NAV__X) and northings
(NAV_Y) from the local frame origin.

NAV_Y Double | Meters

116

Variables published by pProbMapper:

Variable Name Type [Unit [Description

SURVEY_REQ String | - Set to ‘true’ if a survey waypoint is generated.

SAMPLE_REQ String | - Set to ‘true’ if at least one sample waypoint is identified. Otherwise set to ‘false’.

RETURN_REQ String | - Set to ‘true’ if no survey or sample waypoints are identified.

SURVEY_UPDATES String | - The survey waypoint corresponding to the location where the highest fluorescence was
detected during the search phase.

NUM_SURVEY WAYPOINTS String | - Set to ‘1’ when the SURVEY_UPDATES variable is published.

FLUORESCENCE_WAYPOINTS | String | - The updated sample waypoints for the waypoint behaviour. See below for the waypoint

string format.

The format of the waypoint strings is as follows:

“polygon = X1,Y1 : X2)Y2 : X3,Y3”

For example:

“polygon = 50,150 : 60,160 : 70,170”

The app outputs two waypoints. However, the expectation is that only the first one is used. This is to work-around the bug in the waypoint

behavior where it does not update the waypoint flags correctly if there is only one waypoint.

117

References

1]

J. Beyer, H. C. Trannum, T. Bakke, P. V. Hodson, and T. K. Collier, “Environmental
effects of the Deepwater Horizon oil spill: A review,” Marine Pollution Bulletin, vol. 110,
no. 1, pp. 28-51, Sep. 2016, doi: 10.1016/j.marpolbul.2016.06.027.

Y. Zhang et al., “A peak-capture algorithm used on an autonomous underwater vehicle in
the 2010 Gulf of Mexico oil spill response scientific survey,” Journal of Field Robotics,
vol. 22, no. 4, pp. 484-496, 2011, doi: 10.1002/rob.20399.

Joint Analysis Group, “Deepwater Horizon Oil Spill. Review of Subsurface Dispersed Oil
and Oxygen Levels Associated with the Deepwater Horizon MC252 Spill of National
Significance,” Silver Spring, MD, USA, NOAA Technical Report NOS OR&R 27, Aug.
2012.

R. N. Conmy et al., “Advances in Underwater Oil Plume Detection Capabilities,”
presented at the International Oil Spill Conference, 2021, p. 1141330.

D. Gomez-Ibanez, A. L. Kukulya, A. Belani, R. N. Conmy, D. Sundaravadivelu, and L.
DiPinto, “Autonomous Water Sampler for Oil Spill Response,” Journal of Marine Science
and Engineering, vol. 10, no. 4, p. 526, 2022, doi: 10.3390/jmse10040526.

C. Ji, C. J. Beegle-Krause, and J. D. Englehardt, “Formation, Detection, and Modeling of
Submerged Oil: A Review,” Journal of Marine Science and Engineering, vol. 8, no. 9, p.
642, 2020, doi: 10.3390/jmse8090642.

J. C. Kinsey, D. R. Yoerger, M. V. Jakuba, R. Camilli, C. R. Fisher, and C. R. German,
“Assessing the Deepwater Horizon oil spill with the sentry autonomous underwater
vehicle,” presented at the IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, 2011, pp. 261-267. doi: 10.1109/TR0OS.2011.6095008.

M. V. Jakuba et al., “Toward automatic classification of chemical sensor data from
autonomous underwater vehicles,” presented at the IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE, 2011, pp. 4722-4727. doi:
10.1109/TR0OS.2011.6095158.

P. Winsor, H. Simmons, and R. Chant, “Arctic Tracer Release Experiment (ARCTREX):
Applications for Mapping Spilled Oil in Arctic Waters,” University of Alaska Fairbanks,
Fairbanks, AK, Final Report to Bureau of Ocean Energy Management,M13AC00008,
OCS Study BOEM 2017- 062.

118

Y. Wang, W. Thanyamanta, C. Bulger, and N. Bose, “Experimental study to make gas
bubbles as proxies for oil droplets to test AUV detection of oil plumes,” Applied Ocean
Research, vol. 121, 2022, doi: 10.1016/j.apor.2022.103080.

L. DiPinto, H. Forth, J. Holmes, A. Kukulya, R. N. Conmy, and O. Garcia, “Three-
Dimensional Mapping of Dissolved Hydrocarbons and Oil Droplets Using a REMUS-600
AUV,” Bureau of Safety and Environmental Enforcement (BSEE), 2020. [Online].
Available: https://www.bsee.gov /sites/bsee.gov /files /research-reports//1100aa.pdf
“Investigating Scott Inlet seeps with autonomous underwater vehicles,” Nunavut Impact
Review Board (NIRB). Accessed: Feb. 11, 2024. [Online]. Available:
https://www.nirb.ca/portal /pdash.php?appid=125689

J. Hwang, N. Bose, G. Millar, C. Bulger, G. Nazareth, and X. Chen, “Adaptive AUV
Mission Control System Tested in the Waters of Baffin Bay,” Drones, vol. 8, no. 2, p. 45,
Feb. 2024, doi: 10.3390/drones8020045.

J. Kallmeyer, Ed., Life at vents and seeps, vol. 5. Boston: Walter de Gruyter GmbH &
Co, 2017.

R. G. Gillespie and D. A. Clague, Encyclopedia of islands. Berkeley: University of
California Press, 2009.

H. K. White, R. N. Conmy, I. R. MacDonald, and C. M. Reddy, “Methods of Oil
Detection in Response to the Deepwater Horizon Oil Spill,” Oceanography, vol. 29, no. 3,
pp. 76-87, 2016.

S. B. Joye, “The geology and biogeochemistry of hydrocarbon seeps,” Annual Review of
Earth and Planetary Sciences, vol. 48, pp. 205-231, 2020, doi: 10.1146/annurev-earth-
063016-020052.

“What is an oil seep?,” National Oceanic and Atmospheric Administration. Accessed:
Dec. 16, 2022. [Online|. Available: https://oceanservice.noaa.gov /facts/oilseep.html

L. M. Russell-Cargill, B. S. Craddock, R. B. Dinsdale, J. G. Doran, B. N. Hunt, and B.
Hollings, “Using autonomous underwater gliders for geochemical exploration surveys,”
The APPEA Journal, vol. 58, no. 1, p. 367, 2018, doi: 10.1071/AJ17079.

J. R. Boles, J. F. Clark, 1. Leifer, and L. Washburn, “Temporal variation in natural
methane seep rate due to tides, Coal Oil Point area, California,” J. Geophys. Res., vol.
106, no. C11, pp. 27077-27086, Nov. 2001, doi: 10.1029/2000JC000774.

R. G. Jenkins, “Cold Seeps,” Encyclopedia of geobiology. Springer, Dordrecht, 2011.

M. K. Rogener, A. Bracco, K. S. Hunter, M. A. Saxton, and S. B. Joye, “Long-term
impact of the Deepwater Horizon oil well blowout on methane oxidation dynamics in the
northern Gulf of Mexico,” Elementa: Science of the Anthropocene, vol. 6, p. 73, Jan.
2018, doi: 10.1525/elementa.332.

A. Bracco et al., “Transport, Fate and Impacts of the Deep Plume of Petroleum
Hydrocarbons Formed During the Macondo Blowout,” Front. Mar. Sci., vol. 7, p. 542147,
Sep. 2020, doi: 10.3389/fmars.2020.542147.

R. Camilli et al., “Tracking Hydrocarbon Plume Transport and Biodegradation at
Deepwater Horizon,” Science, vol. 330, no. 6001, pp. 201-204, Oct. 2010, doi:
10.1126/science.1195223.

S. Mau, D. L. Valentine, J. F. Clark, J. Reed, R. Camilli, and L. Washburn, “Dissolved
methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil

119

Point, California,” Geophysical Research Letters, vol. 34, no. 22, Nov. 2007, doi:
10.1029/2007G1L031344.

“Natural Oil Seeps: Oil in the Ocean,” Woods Hole Oceanographic Institution. Accessed:
Oct. 30, 2023. [Online]. Available: https://www.whoi.edu/oilinocean /page.do?pid=51880
S. M. Petillo and H. Schmidt, “Autonomous and Adaptive Underwater Plume Detection
and Tracking with AUVs: Concepts, Methods, and Available Technology,” IFAC
Proceedings Volumes, vol. 45, no. 27, pp. 232-237, Jan. 2012, doi: 10.3182/20120919-3-
IT-2046.00040.

Ocean Studies Board and Marine Board, National Research Council (U.S.), Oil in the sea
III: Inputs, Fates, and Effects. Washington, D.C: National Academy Press, 2003.

A. Seward, “Hydrocarbon Sensors for Oil Spill Prevention and Response,” Alliance for
Coastal Technologies: Solomons, MD, USA, 2008.

J. Hwang, N. Bose, B. Robinson, and H. Nguyen, “Assessing hydrocarbon presence in the
waters of Port au Port Bay, Newfoundland and Labrador, for AUV oil spill delineation
tests,” Journal of Ocean Technology, vol. 15, no. 3, pp. 100-112, 2020.

IPIECA-IOGP, “In-Water Surveillance of Oil Spills at Sea,” London, UK, 2016. [Online].
Available: https://www.ipieca.org/resources/in-water-surveillance-of-oil-spills-at-sea

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity
observations in sediment transport,” Marine Geology, vol. 168, no. 1-4, pp. 89-114, Aug.
2000, doi: 10.1016/S0025-3227(00)00044-X.

J. Hwang, N. Bose, H. D. Nguyen, and G. Williams, “Acoustic search and detection of oil
plumes using an autonomous underwater vehicle,” Journal of Marine Science and
Engineering, vol. 8, no. 8, p. 618, 2020, doi: 10.3390/JMSES8080618.

A. Balsley, K. Hansen, and M. Fitzpatrick, “Detection of oil within the water column,”
presented at the International Oil Spill Conference Proceedings, American Petroleum
Institute, 2014, pp. 2206-2217.

R. Kubilius, “Multi-frequency acoustic discrimination between gas bubble plumes and
biological targets in the ocean,” Ph.D dissertation, University of Bergen, Bergen, Norway,
2015.

M. V. Jakuba et al., “Exploration of the gulf of mexico oil spill with the sentry
autonomous underwater vehicle,” presented at the Proceedings of the International
Conference on Intelligent Robots and Systems (IROS) Workshop on Robotics for
Environmental Monitoring (WREM), San Francisco, CA, USA, 2011, pp. 25-30.

A. L. Kukulya et al., “Autonomous Chemical Plume Detection and Mapping
Demonstration Results with a COTS AUV and Sensor Package,” in OCEANS 2018
MTS/IEEE Charleston, Oct. 2018, pp. 1-6. doi: 10.1109/OCEANS.2018.8604524.

J. Hwang, N. Bose, H. D. Nguyen, and G. Williams, “Oil Plume Mapping: Adaptive
Tracking and Adaptive Sampling From an Autonomous Underwater Vehicle,” IEEE
access, vol. 8, pp. 198021-198034, 2020, doi: 10.1109/ACCESS.2020.3032161.

A. Jayasiri, R. G. Gosine, G. K. [. Mann, and P. McGuire, “AUV-Based Plume Tracking:
A Simulation Study,” Journal of Control Science and Engineering, vol. 2016, pp. 1-15,
2016, doi: 10.1155/2016/1764527.

D. J. Wilson, “AGSO Marine Survey 176 Direct Hydrocarbon Detection North-West
Australia: Yampi Shelf, Southern Vulcan Sub-Basin and Sahul Platform (July/September

120

[41]

[42]

[43]

[44]

[51]

[52]

[53]

[54]

1996) - Operational Report & Data Compendium,” Australian Geological Survey
Organisation, Canberra, Australia, AGSO Record 2000/42, 2000.

J. Hwang, N. Bose, G. Millar, C. Bulger, and G. Nazareth, “Bubble Plume Tracking
Using a Backseat Driver on an Autonomous Underwater Vehicle,” Drones, vol. 7, no. 10,
p. 635, Oct. 2023, doi: 10.3390/drones7100635.

J. Zhao, D. Mai, H. Zhang, and S. Wang, “Automatic Detection and Segmentation on
Gas Plumes from Multibeam Water Column Images,” Remote Sensing, vol. 12, no. 18, p.
3085, Sep. 2020, doi: 10.3390/rs12183085.

H. Zhang et al., “Subsea pipeline leak inspection by autonomous underwater vehicle,”
Applied Ocean Research, vol. 107, p. 102321, Feb. 2021, doi: 10.1016/j.apor.2020.102321.
J. Zhao, J. Meng, H. Zhang, and S. Wang, “Comprehensive Detection of Gas Plumes
from Multibeam Water Column Images with Minimisation of Noise Interferences,”
Sensors, vol. 17, no. 12, p. 2755, Nov. 2017, doi: 10.3390/s17122755.

A. W. Nau, B. Scoulding, R. J. Kloser, Y. Ladroit, and V. Lucieer, “Extended Detection
of Shallow Water Gas Seeps From Multibeam Echosounder Water Column Data,”
Frontiers in Remote Sensing, vol. 3, p. 839417, Jul. 2022, doi: 10.3389/frsen.2022.839417.
S. Wang, B. Gong, Y. Liu, and W. Li, “Automatic gas leak detection system,” IOP
Conference Series: Earth and Environmental Science, vol. 514, no. 2, p. 022020, May
2020, doi: 10.1088/1755-1315/514/2/022020.

W. Zhang, T. Zhou, W. Du, S. Xu, M. Liu, and Y. Wang, “A method for undersea gas
bubbles detection from acoustic image,” presented at the 178th Meeting of the Acoustical
Society of America, San Diego, California, 2019, p. 070003. doi: 10.1121/2.0001263.

A. E. A. Blomberg, T. O. Saebo, R. E. Hansen, R. B. Pedersen, and A. Austeng,
“Automatic Detection of Marine Gas Seeps Using an Interferometric Sidescan Sonar,”
IEEE Journal of Oceanic Engineering, vol. 42, no. 3, pp. 590-602, Jul. 2017, doi:
10.1109/JOE.2016.2592559.

J. Schneider von Deimling and C. Papenberg, “Technical Note: Detection of gas bubble
leakage via correlation of water column multibeam images,” Ocean Sci., vol. 8, no. 2, pp.
175-181, Mar. 2012, doi: 10.5194 /0s-8-175-2012.

S. A. Socolofsky, E. E. Adams, and C. R. Sherwood, “Formation dynamics of subsurface
hydrocarbon intrusions following the Deepwater Horizon blowout,” Geophysical Research
Letters, vol. 38, no. 9, p. 2011GL047174, May 2011, doi: 10.1029/2011GL047174.

A. Speck et al., “Supervised Autonomy for Advanced Perception and Hydrocarbon Leak
Detection,” in Global Oceans 2020: Singapore — U.S. Gulf Coast, Biloxi, MS, USA: IEEE,
Oct. 2020, pp. 1-6. doi: 10.1109/IEEECONF38699.2020.9389434.

Y. Chen, H. Liang, and S. Pang, “Study on Small Samples Active Sonar Target
Recognition Based on Deep Learning,” Journal of Marine Science and Engineering, vol.
10, no. 8, p. 18, 2022, doi: 10.3390/jmse10081144.

P. Tueller, R. Kastner, and R. Diamant, “Target detection using features for sonar
images,” IET Radar, Sonar & Navigation, vol. 14, no. 12, pp. 1940-1949, Dec. 2020, doi:
10.1049/iet-rsn.2020.0224.

H. Johannsson, M. Kaess, B. Englot, F. Hover, and J. Leonard, “Imaging sonar-aided
navigation for autonomous underwater harbor surveillance,” in 2010 IEEE/RS.J
International Conference on Intelligent Robots and Systems, Taipei: IEEE, Oct. 2010, pp.
4396-4403. doi: 10.1109/TR0OS.2010.5650831.

121

[55]

A. Nikolovska, H. Sahling, and G. Bohrmann, “Hydroacoustic methodology for detection,
localization, and quantification of gas bubbles rising from the seafloor at gas seeps from
the eastern Black Sea,” Geochemistry, Geophysics, Geosystems, vol. 9, no. 10, Oct. 2008,
doi: 10.1029/2008GC002118.

K. A. Blasco, S. M. Blasco, R. Bennett, B. MacLean, W. A. Rainey, and E. H. Davies,
“Seabed geologic features and processes and their relationship with fluid seeps and the
benthic environment in the Northwest Passage,” Geological Survey of Canada, Open File
6438, 2010. doi: 10.4095/287316.

R. K. Falconer and B. D. Loncarevic, “An Oil Slick Occurrence Off Baffin Island,”
Geological Survey of Canada, Darthmouth, Canada, Paper 77-1A, 1977. doi:
10.4095/102743.

M. A. Cramm et al., “Characterization of marine microbial communities around an
Arctic seabed hydrocarbon seep at Scott Inlet, Baffin Bay,” Science of The Total
Environment, vol. 762, pp. 143961-143961, 2021, doi: 10.1016/j.scitotenv.2020.143961.
“Clyde Inlet to Cape Jameson,” Canadian Hydrographic Service, Chart 7565, Oct. 04,
1996.

G. Nazareth, “pPlumeDetector.” Feb. 08, 2024. [Online]. Available:
https://github.com/GinelleNazareth /pPlumeDetector

K. Klemens, “Understanding and Using Scanning Sonars,” BlueRobotics. Accessed: Feb.
18, 2024. [Online|. Available: https://bluerobotics.com/learn/understanding-and-using-
scanning-sonars/

J. Hwang, “Adaptive Sampling of a Discrete Underwater Plume Using an Autonomous
Underwater Vehicle,” Ph.D. dissertation, University of Tasmania, Tasmania, Australia,
2021.

“Access Ping360 data for post processing, Python,” Blue Robotics Community Forums.
Accessed: Sep. 07, 2022. [Online|. Available: https://discuss.bluerobotics.com/t/access-
ping360-data-for-post-processing-python /10416

“Ping360 Scanning Imaging Sonar,” Blueye Robotics. Accessed: Jan. 31, 2024. [Online].
Available: https://www.blueyerobotics.com/products/ping360-scanning-sonar
“Ping-Viewer.” Blue Robotics, Jul. 08, 2022. Accessed: Sep. 06, 2022. [Online|. Available:
https://github.com/bluerobotics/ping-viewer

“Geometric Image Transformations,” OpenCV. Accessed: Apr. 14, 2023. [Online].
Available:

https://docs.opencv.org/3.4/da/d54/group imgproc_transform.html#ga49481ab24fd
aalffadd3e63d14c0d5e4

D. Han, “Comparison of Commonly Used Image Interpolation Methods,” presented at the
2nd International Conference on Computer Science and Electronics Engineering (ICCSEE
2013), Paris, France: Atlantis Press, 2013, pp. 1556-1559.

F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

“Clustering,” scikit-learn. Accessed: Jan. 23, 2024. [Online]. Available: https://scikit-
learn.org/stable/modules/clustering.html

M. Ester, H.-P. Kriegel, and X. Xu, “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise,” kdd, vol. 96, no. 34, pp. 226-231, 1996.

122

[71]

[72]

P. Cichosz, Data mining algorithms: explained using R. Chichester, England: Wiley,
2015.

T. Boonchoo, X. Ao, Y. Liu, W. Zhao, F. Zhuang, and Q. He, “Grid-based DBSCAN:
Indexing and inference,” Pattern Recognition, vol. 90, pp. 271-284, Jun. 2019, doi:
10.1016/j.patcog.2019.01.034.

A. Gunawan, “A Faster Algorithm for DBSCAN,” Master’s Thesis, Eindhoven University
of Technology, Eindhoven, Netherlands, 2013.

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN Revisited,
Revisited: Why and How You Should (Still) Use DBSCAN,” ACM Trans. Database
Syst., vol. 42, no. 3, pp. 1-21, Sep. 2017, doi: 10.1145/3068335.

R. Szeliski, Computer Vision: Algorithms and Applications. London: Springer London,
2011. doi: 10.1007/978-1-84882-935-0.

“skimage.measure,” scikit-image. Accessed: Sep. 16, 2022. [Online|. Available:
https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.label
F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti Labeling: Directed Acyclic
Graphs for Block-Based Connected Components Labeling,” IEEE Trans. on Image
Process., vol. 29, pp. 1999-2012, 2020, doi: 10.1109/TTP.2019.2946979.

M. L. Seto, Ed., Marine robot autonomy. New York, NY: Springer New York, 2013.

M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested autonomy for
unmanned marine vehicles with MOOS-IvP,” Journal of Field Robotics, vol. 27, no. 6,
pp. 834-875, Nov. 2010, doi: 10.1002/rob.20370.

G. Nazareth, “iPing360Device.” Jul. 21, 2023. [Online|. Available:
https://github.com/GinelleNazareth /iPing360Device

“A Smooth Operator’s Guide to Underwater Sonars and Acoustic Devices,” BlueRobotics.
Accessed: Jan. 12, 2024. [Online|. Available: https://bluerobotics.com/learn/a-smooth-
operators-guide-to-underwater-sonars-and-acoustic-devices/

N. Ehrenholz, “MUN Explorer AUV: MOOS Backseat Driver Manual.” International
Submarine Enginering Ltd., Aug. 21, 20109.

“UviLux Handbook.” Chelsea Technologies Ltd, Jul. 07, 2016.

123

	Chapter 1
	1.1 Background and Motivation
	1.2 Research Questions
	1.3 Organization of Thesis
	1.4 The Scott Inlet Seeps Project
	1.5 Research Contributions

	Chapter 2
	2.1 Introduction
	2.2 Seep and Spill Plumes
	2.3 Hydrocarbon Plume Detection Sensors
	2.4 AUV Tracking of Submerged Oil Plumes
	2.5 Utilizing Spill Detection Methods at Seeps
	2.6 Automated Acoustic Plume Detection
	2.7 Bubble Ebullition at the Scott Inlet Seeps
	2.8 Conclusion

	Chapter 3
	3.1 Introduction
	3.2 Design Considerations
	3.3 Ping360 Sonar Operation
	3.4 Algorithm Overview
	3.5 Range-Gating
	3.6 Segmentation
	3.7 Grid Conversion
	3.8 Clustering
	3.8.1 Introduction
	3.8.2 Plume Detector Clustering Interface
	3.8.3 Clustering with DBSCAN
	3.8.4 The Motivation for a Novel Clustering Algorithm
	3.8.5 A Novel Block Clustering Algorithm
	3.8.6 Clustering Comparison

	3.9 Georeferencing
	3.10 Conclusion

	Chapter 4
	4.1 Introduction
	4.2 Experiment Setup
	4.2.1 Explorer AUV Navigation and Control
	4.2.2 Micro-bubble Plume
	4.2.3 Mission Description
	4.2.4 Data Acquisition and Playback Setup

	4.3 Results
	4.4 Analysis
	4.4.1 Clustering Output Comparison
	4.4.2 Computation Time Comparison
	4.4.3 Parameter Selection

	4.5 Conclusion
	4.6

	Chapter 5
	Appendix A
	Appendix B
	Appendix C
	C.1 Introduction
	C.2 Overview
	C.3 Mission Modes
	C.4 Application Interactions
	C.5 Application Interfaces
	C.5.1 pMoosCrossing
	C.5.2 pNodeReporter
	C.5.3 iPing360Device
	C.5.4 pPlumeDetector
	C.5.5 pHelmIvp
	C.5.6 pSurveyPlanner
	C.5.7 pProbMapper

