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Abstract

Quantile regression is an extension to the traditional linear regression. It offers a flex-

ible way to assess the effects of covariates on the quantiles of the conditional distribu-

tion of a random variable for a given set of covariates. Since the effects of covariates

can be assessed at any quantile of the conditional distribution of the response vari-

able, it provides a better understanding of the effects of covariates comparing with

traditional regression models. In this study, we consider a parametric conditional

quantile regression model for survival data with time-fixed covariates. We propose

a multi-stage estimation procedure to estimate the effects of covariates on the quan-

tiles of marginal distributions of sequentially observed bivariate survival times. We

model the dependency between survival times with a Clayton copula. Our estima-

tion method is based on the martingale estimating equations. We study the bias and

precision of the parameter estimates obtained with the proposed method, as well as

investigate their large sample properties with simulation studies. Finally, the method

is illustrated by analyzing a colon cancer data set.
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Chapter 1

Introduction

In this chapter, we introduce the goal of this thesis and some concepts frequently used

throughout the thesis. The layout of this chapter is as follows. In Section 1.1, we

introduce the general concept of multistate models. Our focus is on the illness-death

model. Furthermore, we provide a general discussion of data types and introduce an

illustrative example. In Section 1.2, we examine dependence modeling using copulas.

Section 1.3 includes a summary of quantile regression. A comprehensive literature

review is presented in Section 1.4. Finally, we outline an overview of the thesis in the

concluding section of this chapter.

1.1 Multistate Models

Many processes longitudinally evolve over time in a stochastic way. Such stochastic

processes are of interest in many studies. For example, people born and die, which is a

process of interest in demography and insurance studies (Daley and Vere-Jones, 2003).

Repairable systems may subject to repeated failures over their lifetime, which is an

important subject in the field of industrial engineering (Rigdon and Basu, 2000). The

process of marriage and divorce, which may occur multiple times during the lifetime of

an individual, may be of interest in social sciences (Aalen et al., 2008). In medicine,

patients may experience cancer relapse after the removal of a tumor and then die

(Lawless, 2003). A common feature of these processes is that subjects may experience

a well-defined event or multiple events at least once during their lifetimes at random
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Figure 1.1: Multistate diagrams of (a) survival model, (b) competing risks model, (c)
the illness-death model.

time instants. If the observations are only made at equally spaced time instants, the

time is of discrete type. Otherwise, it is continuous. The event occurrence times,

or shortly the event times, define the state of a process, which means that processes

are assumed to be in a certain, well-defined state at any given time point. The set

of states is called the state space, which usually includes finite number of distinct

elements. Event history is used as a generic term to define such processes.

Multistate models provide a canonical framework for the statistical analysis of

event history data. In a multistate model, subjects can be placed in different states

during their follow-up. Moving from one state to another state is called a transition,

which is only possible at the event times. The transitions are governed by intensity

functions, which specify probabilistic characteristics of the event history processes

for making transitions in multistate models. Some well-known examples of multistate

models are depicted in Figure 1.1. For example, the multistate diagram of the classical

survival model is given in (a), where the state “0” denotes alive and the state “1”

denotes death. Individuals start at the state “0” and make a transition to the state

“1” at the time of death. Diagram (b) in Figure 1.1 shows the competing risks model

with three causes, in which the state “0” is alive and the states “1” and “2” are death

from cause 1 and death from cause 2, respectively, and the state “3” is death from

other causes.

The illness-death model, also known as the disability model, is a widely utilized

multistate model in the medical literature. The multistate diagram (c) in Figure 1.1

depicts the illness-death model. In this model, individuals begin at the state “0”

representing a healthy state. Then, they move to the state “1”, usually called the ill

state or the intermediate state, at a given time instant when they experience a well-

defined event. The state “2” is an absorbing state, called the death state. Transition
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from states “0” or “1” to state “2” are possible. If we let the notation “a → b”

denotes a transition from the state a to the state b, whole possible paths for subjects

in the illness-death model are 0 → 1 → 2 or 0 → 2, with states “0” and “1” being

transient and state “2” being an absorbing state. In this thesis, we consider the path

0 → 1 → 2 of the illness-death model. It should be noted that in some settings it is

also possible for individuals to make 1→ 0 transitions, for example, when recovering

from a sickness and regaining health. Such a model is called bidirectional illness-death

model or illness-death model with recovery (Andersen et al., 2002). Many multistate

models and statistical methods for their analysis have been discussed by Cook and

Lawless (2018).

An important issue about the statistical analysis of event history data is the cen-

soring. Typically, the entire path of all individuals included in a study is not always

observed by the end of a study because of limited follow-up times of individuals. For

instance, in certain clinical studies, within the context of the illness-death model, it

may not be possible to observe exact event times for 0 → 1, 0 → 2, or 1 → 2 transi-

tions for patients who withdraw from the study before its completion. In such cases,

the follow-up of an individual is called right censored. More details about different

censoring mechanisms can be found in Lawless (2003, Chapter 2).

In the sequentially observed bivariate survival (lifetime) data, the time and re-

lated information from the origin (study entry) to the occurrence of illness, as well

as the time from illness onset to death are examined. Specifically, the duration spent

in state “0” (prior to illness) and the subsequent time spent in state “1” are consid-

ered. There are important challenges in the analysis of sequentially observed bivariate

survival data. As aforementioned, one of the significant challenges is dealing with cen-

soring. Right censoring occurs when subjects do not experience the event of interest

during the study period, resulting in incomplete information regarding their survival

times. Particularly, in the context of sequentially observed two survival times, if the

first survival time is censored, the second survival time becomes unobservable which

may result in non-identifiability issue. An example of this issue in the context of

sequentially observed bivariate survival times is given by Lawless and Yilmaz (2011).

As a result, estimating the marginal distribution of the second gap time becomes chal-

lenging without information on the first gap time. Addressing these issues is essential

for accurate estimation and interpretation of the illness-death model with bivariate

survival data. Another challenge in the analysis of sequential survival time data is the
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dependency between two survival times. Since sequentially observed bivariate survival

times are observed from the same individual, their independence does not hold. This

dependency causes the second survival time to be subject to induced dependent cen-

soring, meaning a dependent variable censors the second gap time. The presence of

induced dependent censoring of the second survival time introduces additional com-

plexities in the analysis. Specifically, due to the longer first survival times, there is an

increased probability that the second survival time becomes censored. Consequently,

the observed second survival times will predominantly consist of shorter times, leading

to a disproportionality in the data. Failing to account for this induced dependent cen-

soring when estimating the survival time distribution using standard methods may

result in biased outcomes (Visser, 1996 ; Wang and Wells, 1998 ; Lin et al., 1999;

Lawless and Yilmaz, 2011).

In addition to the challenges mentioned above, another crucial aspect of analyzing

bivariate sequential lifetime data is understanding the effects of covariates on each

survival time. Many researchers are therefore interested in applying regression models

to make inferences on how covariates influence the timing of events and transitions

within the illness-death model. While a class of parametric survival models, called

accelerated failure time (AFT) models, are widely applied to understand how risk

factors or treatments influence event times, estimation of the parameters in the AFT

models with likelihood based methods usually provide limited information about the

conditional distribution of survival times given the values of covariates. In many

cases, the effects of covariates on a survival time are heterogeneous, meaning that

risk factors may have varying impacts at different stages of the study period. For

example, covariates tend to have a significant impact on the likelihood of survival at

the beginning of the study period but often diminish or even become insignificant as

time progresses. The Cox proportional hazards (Cox PH) model is another widely

used regression technique in survival analysis. This model assumes that the hazard

ratio remains constant over time and models the effect of covariates on the hazard

rate. To address the potential violation of the constant hazard ratio assumption

in the Cox PH model and to obtain a thorough understanding about the effects of

covariates on the distribution of survival times, an alternative approach is the use of

quantile regression (QR) models. QR model provides a dynamic perspective, offering

a relationship between covariates and survival time based on different quantiles of the

conditional distribution of the survival times given a set of covariates. This method
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is especially valuable for assessing the influence of covariates at various quantiles of

survival times. QR models are robust with respect to outliers in the estimation of

the effects of covariates, making them particularly useful for exploring heterogeneity

effects (Koenker, 2003). We provide a more detailed explanation of QR in Section

1.3 and Section 2.3 of this thesis. We would also like to note that we use the terms

survival time, gap time of lifetime interchangeably throughout this thesis. All mean

the elapsed time spend in “0” or “1” state before making a transition in the illness-

death model.

1.1.1 Data Types

Data obtained from event history processes usually include event occurrence times,

an indicator about the type of the state occupied at that time and other relevant

information about the characteristics of processes included in the study cohort, called

explanatory variables or covariates. In this context, the illness-death model provides

a comprehensive framework for capturing the progression of a disease, enabling a

thorough statistical analysis of disease processes and providing insights into the po-

tential influence of intermediate events on the probability of mortality. Data sets

employed in this model typically contain information on the times at which a specific

incident or related events occurred. Specifically, the response measurement of inter-

est within the illness-death model often involves measuring the elapsed time from a

well-defined origin to the occurrence of an event of interest. These time intervals are

commonly referred to as survival or gap times. Unless explicitly mentioned, we as-

sume these response measurements are continuous and represent observations derived

from a random sample of study participants. The time origin for each subject should

be precisely defined, ensuring all subjects are as comparable as possible at this point.

The time origin may vary depending on the study. For instance, it can be the birth

of an individual, entry into a study, the onset of a disease, or the commencement of a

treatment. Analyzing data sets often involves considering either the global time scale,

which encompasses calendar time or the time elapsed since study entry, or the local

time scale, which entails the elapsed time between occurrences of well-defined events,

commonly referred to as gap time or sojourn time. Techniques for analyzing data sets

within the illness-death model are based on either the calendar time scale or periods

of time between subsequent events. Most of the data types in illness-death model and
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other multistate models are illustrated with examples by Cook and Lawless (2018).

An important aspect of the illness-death model is to study the disease progression,

particularly through sequentially observed bivariate survival data. This type of data

captures the time and related information from the origin to the occurrence of illness

and the time from illness onset to death. The time from the origin to death without

experiencing the intermediate event in the illness-death model is disregarded in this

context. This setup is often employed when the primary interest lies in understanding

the relationship between the elapsed time for an individual to visit the ill state (State

1) after entering the study and the subsequent time until death (State 2). As a result,

the data observed from an individual potentially include the elapsed time from study

entry to entering State 1 and the time from State 1 to entering State 2, which in

essence constitutes a sequentially observed bivariate gap times for individuals in the

study cohort.

In the illness-death model and sequentially observed bivariate gap times, data

types extend beyond event times and state indicators to include explanatory vari-

ables such as demographic and clinical factors. In the context of disease progression,

regression analysis allows us to quantitatively assess the impact of the covariates on

the timing of events, providing a more comprehensive understanding of the relation-

ships between explanatory variables and gap times. In this thesis, our primary focus

is quantile regression analysis of sequentially observed bivariate gap times which are

subject to right censoring.

1.1.2 Data Example

Colon cancer is a significant public health concern, ranking forth in common cancer

types and third in cancer-related deaths in Canada (Fitzgerald et al., 2022). Treat-

ment options involve chemotherapy, radiation, and surgery, with notable drugs being

fluorouracil (5FU) or 5FU plus levamisole. Although surgical intervention during

early stages can remove an affected tissue, residual microscopic cancer may lead to

recurrence of disease and death of an individual within 5 years. A clinical trial of

colon cancer patients was executed to assess the efficacy of a drug therapy (Moertel

et al., 1990; Lin et al., 1999). In this study, levamisole with or without 5FU was

compared to a placebo concerning the recurrence and survival rates of colon cancer

patients. A total of 929 participants were included in the randomized clinical trail.
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Out of 929 patients, 315 patients were allocated to the placebo group, 310 patients

were included in the levamisole therapy group and 304 patients were included in the

5FU plus levamisole therapy group. Patients in the study were monitored for a mini-

mum of 18 months, with the maximum follow-up extending to approximately 9 years.

The average follow-up duration for participants was 6.5 years. The central objective

of this study was to assess the potential effects of levamisole therapy and 5FU plus

levamisole therapy on two critical time intervals, the interval from the surgical re-

moval of colon cancer to the onset of cancer recurrence, and subsequently, from the

recurrence of colon cancer to the occurrence of death.

The data set includes crucial information regarding several timeframes. This en-

compasses the duration from the initial event, which is the study registration with

the removal of affected tissue, to the intermediate event, which is the recurrence of

cancer, or censoring. Furthermore, it tracks the time from recurrence to either death

or censoring. Additionally, the data set includes the censoring status of patients as-

sociated with both the first and second type of events. The covariates in this data set

include the type of treatment, gender, age at the registration time, and the time from

surgery to registration, which categorizes the duration into short and long. The other

covariates are tumor-related characteristics, including presence or absence of colon ob-

struction due to a tumor, presence or absence of colon perforation, a binary variable

indicating adherence of the tumor to nearby organs, number of cancer-affected lymph

nodes, categorical variable indicating tumor differentiation grade, ordinal categorical

variable indicating the extent of local spread of the cancer, and presence or absence

of more than 4 positive lymph nodes. A comprehensive analysis of the data set and

the utilization of quantile regression are provided in Chapter 4.

1.2 Dependence Modeling with Copulas

In the analysis of event history data, the assumption of independent gap times is a

strong one, and often not valid in applications even after conditioning on the values

of the available covariates (Cook and Lawless, 2018, Chapter 6). This implies that

the occurrence time of one event can significantly impact the occurrence time of

another event, leading to a dependency between the gap times. To illustrate this

concept, consider the study of patients diagnosed with colon cancer as explained in
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the previous section. The time interval from the removal of the affected tissues to

the onset of colon cancer recurrence, and the subsequent duration from recurrence

to death are likely to exhibit a dependent relationship. Modeling the dependence

between these two gap times may provide valuable insights about the effectiveness of

treatments, and better understanding of the progression of cancer can be obtained, as

well as correct decisions regarding treatment planning and patient care can be made.

A review of methods to deal with dependency in sequentially observed gap times

in the context of recurrent event process is given by Cook and Lawless (2007, Section

4.2). These methods are based on conditional models, random effects models and

copulas. Conditional models are used to model the conditional distribution of the

second gap time, given the value of the first gap time. Such a conditional approach

generally do not provide simple forms for the marginal distributions of the gap times.

As a result, effects of covariates on the marginal distribution of the second gap time

may not be easily interpreted. Random effects models suffer from a similar problem

as well. Additionally, they require the specification of a distribution for random

effects, which is untestable. Also, they may modify the marginal distribution of the

second gap time in an unrealistic way (see Aalen et al., 2008, Section 6.7). Copulas

offer a powerful alternative to address these challenges. Copulas are a statistical

tool that separates the joint distribution of variables from their individual marginal

distributions and act as functions that link the individual marginal distributions to

their joint multivariate distribution. Copula models describe the dependence structure

between variables independently of their individual distributions, allowing for greater

flexibility in modeling various forms of dependence. We mathematically define the

copula function in Section 2.2. Many properties and technical details of copulas can

be found in Joe (1997) and Nelsen (2007).

In comparison to other techniques for evaluating dependence structures, copu-

las have a number of advantages. First, they make it possible to model non-linear

dependencies among variables, which is very helpful in studies where complex relation-

ships and interactions between the covariates and outcome variables are not linear.

Second, they are very flexible to model dependencies among variables with different

marginal distributions. This is an important feature because marginal distributions

can be specified by the modeling needs. For example, copulas can be used to simu-

late the joint distribution of two gap times in a way that the first gap time follows
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a specified distribution and the second gap time follows another specified distribu-

tion. The dependence structure between the two gap times is then modeled by a

copula function. The use of copulas allows for studying the dependence structure and

the marginal effects separately since the dependence parameters are not part of the

marginal distributions. It should also be noted that copulas remain unchanged under

transformations of the marginal distributions, which facilitates inference procedures.

There are several different types of copulas, including Gaussian, Archimedean, and

Student’s t copulas. Most of the copula families are rigorously studied by Joe (1997).

In this thesis, single parameter bivariate copula models are taken into account, which

is specifically chosen to explore and model the dependence structure between two

sequentially observed, positive-valued variables of interest. More specifically, we use

Clayton family (Clayton, 1978) of copulas, which are members of the one-parameter

Archimedean copula family. The use of Clayton family for modeling the dependency

of bivariate survival data has been suggested by Oakes (1982). This approach can

help uncover complex forms of dependence, whether linear, non-linear, or asymmetric,

and provide a comprehensive understanding of how these variables interact with each

other. It should be noted that the methods developed in this thesis can be applied

under other copula functions as well. Furthermore, the adequacy of the assumed

copula model can be tested (Genest et al., 2009; Lawless and Yilmaz, 2011).

1.3 Quantile Regression

Quantile regression (QR), introduced by Koenker and Bassett Jr. (1978), was de-

veloped to investigate the effects of explanatory variables on the entire conditional

distribution of a response variable, in relation to a given set of covariates. While the

classical least squares method estimates the conditional mean function of the response

variable across covariate values, QR estimates the conditional quantile function of the

response variable as a linear form of the covariates. This approach not only provides

a more comprehensive description of functional changes, encompassing both the tails

and the center of the distribution, but also offers a robust and flexible alternative to

traditional linear regression. Thus, it enables a thorough analysis of outcomes across

the entire range without assuming specific distribution patterns, which is particularly

useful when dealing with variable error variance or outliers. This approach provides



10

valuable insights into conditional response beyond mean regression and can serve as

a supplementary or alternative method to least squares analysis, especially in cases

where underlying assumptions are problematic (Koenker, 2003).

In various clinical and medical research studies, making inferences based on the

conditional quantiles of the outcome is often more desirable than relying solely on

analysis based on the AFT model. For instance, specific risk factors may have a

higher impact on low birth weight, which is associated with adverse outcomes such

as infant mortality and chronic diseases, compared to their effects on the mean birth

weight (Yang et al., 2019). Ignoring changing patterns of risk factor effects in the

AFT regression analysis may lead to an oversight in capturing the strong association

between risk factors and mortality among survivors of low birth weight infants. In

fact, in the survival analysis, QR provides more flexible modelling of survival data,

enabling a more thorough exploration of how different factors impact survival times

across various quantiles of the distribution. Unlike the traditional Cox proportional

hazards (PH) and AFT models, QR does not restrict the variation of the coefficients

for different quantiles of the conditional distribution of the response variable, given a

set of covariates. This approach yields robust results when assessing factors affecting

time-to-event situations (Wei, 2022). For a comprehensive understanding of the QR

model in standard settings, a detailed overview is provided by Koenker (2003).

In this thesis, our goal is to explore the impact of various covariates on specific time

intervals between the first and second events. We employ QR model to investigate

how alterations in one covariate, while keeping others constant, influence the duration

of life for a certain proportion of individuals. For example, in a data set related to

colon cancer testing the effectiveness of a drug, we inquire about how this intervention

affects the survival duration of a predetermined percentile of patients. Essentially, our

study delves into the relationships between covariates and dependent gap times across

different quantiles for a more comprehensive understanding.

1.4 Literature Review

Multistate models and illness-death models have been extensively studied for several

decades. A comprehensive review of these models, along with examples and additional

applications, can be found in the book written by Hougaard (2000) and Cook and
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Lawless (2018). These sources provide valuable insights into the complexities and

practical applications of these models with many examples, particularly in the field

of biomedicine. Ma et al. (2008) conducted a thorough examination of multistate

models from both biomedical and engineering reliability perspectives.

Analyzing multistate models are usually based on two different time scales. These

are the time since entering the study and the elapsed time since the last event, re-

ferred to as gap or sojourn times. In many applications, the gap times are the primary

time scale. However, the stochastic ordering structure of events poses challenges for

statistical analysis when the focus is on gap times. These challenges include depen-

dent censoring, which can lead to biased parameter estimation (Lawless and Yilmaz,

2011). In recent years, various statistical methods have been proposed to address the

study of gap times within the framework of multistate models. Some studies have

focused on nonparametric estimation of the gap time distribution, while others have

investigated different parametric and semiparametric regression models to analyze

the effects of covariates on gap times. Huang and Wang (2005) discussed bivariate

recurrence times, where two distinct event types alternate over time and are subject

to right censoring. They proposed nonparametric estimators for the joint distribu-

tion of bivariate recurrence times and the marginal distribution of the first recurrence

time. In their approach, it is assumed that the correlation between the bivariate re-

currence times is characterized by a latent variable. Similarly, Huang et al. (2016)

examined nonparametric estimators for the conditional bivariate cumulative incidence

distribution of the bivariate gap time. They also proposed a modified Kendall’s tau

measure to assess the association between two successive gap times in the presence

of competing risks. They concluded that nonparametric estimators and association

measures can be viewed as inverse probability censoring weighted (IPCW) estimators.

Huang and Louis (1998), Wang and Wells (1998), Lin et al. (1999), and Zeng and Lin

(2007) provided a comprehensive explanation of nonparametric and semiparametric

estimators in the analysis of gap times, most of them focus on a single gap time.

The association between survival times has been extensively studied with the de-

velopment of global dependence measures such as Spearman’s rho and Kendall’s tau

(Betensky and Finkelstein, 1999). These measures capture the overall association

pattern between dependent pairs across the entire study area and offer simplicity of

interpretation. However, they may not capture the local association structure, which

may vary over time. To assess local association in the context of correlated survival
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data, various approaches exist, including frailty models, marginal methods, and cop-

ulas. Copulas, which originated in probabilistic metric spaces, have gained popularity

in analyzing the association between dependent survival times, offering a means to

capture local association structures that may vary over time. This function has been

used to model joint distributions as a function of each marginal distribution and a

dependence parameter in various contexts, including bivariate survival data and mul-

tistate modeling. The literature on copulas has rapidly expanded in the recent years,

with studies exploring their statistical properties and applications. Many general ref-

erences on this subject can be found in Cook and Lawless (2018, Section 6.5). Some

studies have demonstrated the utility of copula-based methods in capturing com-

plex relationships between variables and accounting for dependencies among survival

times. Frees and Valdez (1998) demonstrated the statistical properties and the use of

copulas by analyzing information from insurance companies on losses and expenses.

They illustrated how copulas can be fitted to the data and discussed their utility in

calculating reinsurance costs and forecasting expenditures for specified losses. For

a more in-depth understanding of copula models, additional references include Joe

(1997), Kurowicka and Cooke (2006), and Nelsen (2007). Further insights into the

application of copulas in the context of multistate modeling for lifetime data are given

by Cook and Lawless (2018, Section 6.5).

Several studies have applied copulas to analyze illness-death model and assess the

association between consecutive gap times or sequentially observed survival times.

Lakhal-Chaieb et al. (2010) proposed nonparametric estimation of association using

inverse probability censoring weighting (IPCW), and estimated conditional gap time

distributions using Kendall’s tau and Clayton copula. Lawless and Yilmaz (2011),

using a pseudolikelihood function, employed copula-based parametric and semipara-

metric estimation methods to account for dependency between gap times. Rotolo

et al. (2013) presented a simulation method based on copulas to generate clustered

multistate survival data. Diao and Cook (2014) applied copulas to characterize com-

posites for the joint analysis of multiple multistate processes. Their study focused

on utilizing copula-based methods to model the dependence structure among various

processes simultaneously. In a similar vein, Meyer and Romeo (2015) presented a

copula-based Bayesian semiparametric analysis for recurrent failure time data. Their

research emphasized the use of copulas within a Bayesian framework to analyze the

recurrent nature of failure events over time. Barthel et al. (2019) employed D-vine
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copulas to capture the dependency between waiting times in recurrent events sub-

jected to right censoring. Bedair et al. (2021) conducted an analysis of correlated

recurrent event data utilizing copula-frailty models. They utilized the Monte Carlo

expectation-maximization (MCEM) algorithm to estimate the model parameters, con-

sidering the joint influence of frailty and copulas in capturing the correlation among

recurrent events.

Regression analysis is commonly used for modeling the relationship between pre-

dictor variables and a response variable in lifetime data settings. In the context of gap

times, a significant focus lies on modeling the hazard functions associated with gap

times. Various techniques have been developed to address these analyses and explore

the effects of covariates on complex data structures. Schaubel and Cai (2004) pro-

posed generalized estimating equations to fit proportional hazards regression models

for gap times observed sequentially. Their approach did not require specifying the

functional relationship between the gap times. However, it is worth noting that the

proportional hazards model they use might not fit data well, and their estimation

focuses on the conditional survival function of the gap times. Huang and Chen (2017)

introduced a regression model to analyze the effects of covariates on bivariate gap

time data with missing first gap time information. They developed a methodology to

account for the missing data and explore the covariate relationships in this setting.

Lee et al. (2018) developed a semiparametric regression model to estimate the effects

of covariates in settings where individuals may experience different types of recurrent

events. They treated the dependency between two alternating events and among dif-

ferent bivariate gap time pairs within each subject with random effects. They showed

that their proposed estimation method has advantages over the rank-based estima-

tion method. When considering gap time distributions in illness-death models, Huang

(2019) extended semiparametric mixture models for competing risks data and adapted

them to consider the subsequent event, incorporating a copula function to model the

dependent structure between successive events.

QR has recently emerged as a popular approach for directly modeling censored

survival times. It has been extended to handle correlated failure times. Peng and

Huang (2008) developed a QR model for survival data using martingale-based esti-

mating equations. They utilized this approach to estimate QR coefficients for survival

times, with minimization of L1-type convex functions. They used grid-based estima-

tion procedure to estimate the parameters of QR model for the first gap time, which



14

is a nonparametric method. We discuss this method in Section 3.2 in some detail.

Peng and Fine (2009) extended QR to handle competing risk data. Luo et al. (2013)

investigated QR for recurrent gap time data. They expanded the martingale-based

estimating equation method originally developed for univariate survival data to study

the gap times between successive recurrent events. They discarded the last censored

gap time for those subjects who have at least one complete gap time. Hsieh et al.

(2013) employed QR to fit semi-competing risk data with dependent censoring. To

address dependent censoring, they assumed a parametric copula model for the joint

distribution of the two event times, while leaving the marginal distributions unspec-

ified. Sun et al. (2016) generalized QR to counting processes and demonstrated

its application to recurrent events. Li et al. (2017) proposed nonparametric and

semiparametric estimators for quantile association in bivariate survival data. Their

approach captured the dynamic association between two gap times without relying

on assumptions about the marginal distributions.

Inference for QR in survival data becomes challenging when parametric assump-

tions about the marginal distributions are not feasible. To address this issue, several

researchers have proposed the use of copula functions to approximate the marginal

distributions and model QR. Wang et al. (2019) introduced a copula-based quantile

regression model for longitudinal data. Building upon this framework, Wang and

Shan (2021) developed composite QR, extending copula-based methodologies to ac-

count for intra-subject dependence in longitudinal data. They proposed constructing

the correlation matrix through copulas, enabling the incorporation of complex de-

pendence patterns between response variables within subjects. Ghasemzadeh et al.

(2022) employed the Gaussian copula to develop a QR model for correlated mixed

bivariate discrete and continuous data. They obtained maximum likelihood estimates

of the model parameters using an EM algorithm and utilized a Monte Carlo technique

to derive confidence intervals for the estimated parameters.

1.5 Overview of the Thesis

In this thesis, we develop an estimation method for quantile regression models of

bivariate survival data, where “healthy” individuals undergo sequential events of “ill-

ness” followed by “death”, in generic terms. The time to these events are subject to
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right censoring. As a result, a more detailed investigation of the covariates effects in

disease progression and insights on the timing of events based on cohort characteris-

tics can be obtained. Traditional regression models for survival data, such as AFT

and Cox PH models, have limitations in capturing the changing impacts of covariates

at different quantiles of the conditional distribution of the survival times, given a set

of covariates. On the other hand, QR models are used to estimate such effects on the

entire distribution of the survival times.

Most of the methods in the QR pertaining to the analysis of survival time focus on

the analysis of settings in which individuals can only experience a single event, such as,

death. In this study, we employ QR model to examine the direct effect of covariates

on various quantiles of the distributions of two gap times, which are sequentially

observed. There are however important challenges in analyzing such data. These

challenges include issues related to the identifiability of marginal survival distributions

for the second gap time, as well as induced dependent censoring. Ignoring dependent

censoring in the occurrence of the second event could lead to biased results. To

overcome these challenges, we employ QR approach, incorporating copula functions

to model the dependence structure between successive events. Copulas provide flexible

modeling of bivariate survival times and are well-recognized in the literature.

Our method is based on the martingale estimating equations, and can be used to

estimate covariate effects on quantiles of marginal distributions of the first and second

gap times. The estimates are obtained after an application of the Newton-Raphson

algorithm developed to solve the martingale estimating equations. We applied a multi-

stage estimation procedure to obtain the estimates of the model parameters related

to the second gap time. First, parameters related to the first gap time and copula

are estimated, and then the estimated parameters are plugged-in the martingale es-

timating equations developed for the condition distribution of the second gap time

given the first gap time and covariates. The variances of the parameters are estimated

using the sandwich method. Our extensive simulations demonstrate the effectiveness

of the proposed method, as compared with the Peng-Huang method, which provides

unbiased results only for the first gap time and under independent assumption for

the second gap time. Moreover, the practical applicability of the developed method

is showcased through the analysis of a real-world medical data set, emphasizing its

potential in clinical studies.
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The remaining part of the thesis is organized as follows. In Chapter 2, the no-

tations used in this thesis and some background information on technical terms are

introduced. A comprehensive analysis of QR model for the sequentially observed bi-

variate survival data, emphasizing the modeling of dependency between sequential gap

times using the Clayton copula are provided in Chapter 3. Furthermore, a real-world

data set from the medical field is analyzed in Chapter 4, demonstrating the practical

applicability of the developed method in a clinical study. A summary of thesis and

future extensions to our work are presented in Chapter 5.



Chapter 2

Notation and Background

In this chapter, we introduce frequently used notation in this thesis and some back-

ground information on technical terms. Section 2.1 includes important concepts in

the context of sequentially observed bivariate survival data. Copulas to model the

dependency among random variables are discussed in Section 2.2. Finally, the concept

of quantile regression is discussed in Section 2.3.

2.1 Notation and Fundamental Concepts

In this thesis, we use stochastic processes to model life history data. In particular,

we focus on sequentially observed bivariate survival (gap) times. Our goal here is to

introduce our notation and fundamental concepts frequently used in the remaining

parts of this thesis. A more detailed study of stochastic processes pertaining to point

processes can be found in point-process textbooks; e.g., Andersen et al. (1993) and

Daley and Vere-Jones (2003).

A stochastic process, denoted by {X(t), t ∈ Γ}, is a set of random variables indexed

by the element t in the index set Γ. Stochastic processes can be categorized as discrete-

time stochastic processes or continuous-time stochastic processes based on their index

parameter t, t ∈ Γ. In particular, a stochastic process, {X(t), t = 0, 1, 2, ...} is a

discrete-time stochastic process including a countable collection of random variables

with a non-negative index parameter t. A continuous-time stochastic process, denoted

by {X(t), t ≥ 0}, includes an uncountable set of random variables indexed by the
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non-negative real numbers. In general, for any index set Γ, a stochastic process

{X(t), t ∈ Γ} means that X(t) is a random variable for each t ∈ Γ and denotes the

state occupied at time t. The set of all possible states is called the state space. In this

thesis, we consider state spaces with a finite number of elements. For example, in the

illness-death model, as depicted in Figure 1.1, the state space includes the elements

0, 1 and 2. In this case, for example, we can define X(t) = 0, which means that the

process {X(t), t ≥ 0} is in the state 0 (healthy state) at time t.

Many event history models, including classical survival and illness-death models,

can be considered as a point process model. A broad survey of these models can be

found in Cox and Isham (1980) or Andersen et al. (1993). In these models, times of

event occurrences constitute point processes, which can be described by counting the

number of events as they happen during the follow-up of processes, which leads to

the term counting process. In a simple definition, counting processes are the number

of well-defined events occurred throughout the duration of the follow-up period of

processes included in a study. In this section, we discuss fundamentals of counting

processes and introduce our basic notation. More rigorous treatment of counting

processes in the context of event history analysis can be found in Andersen et al.

(1993).

In this thesis, we consider continuous-time counting processes. Let the random

variable N(t) represent the number of events that have occurred up to, and including,

t, where t ≥ 0. Also, let N(s, t) denote the number of event occurrences over the

interval (s, t] so that N(s, t) = N(t) − N(s) for all 0 ≤ s < t < ∞, where N(0) = 0

and expectation of N(t), denoted by E[N(t)], is finite for all t > 0. A counting process,

denoted by {N(t), t ≥ 0}, is a stochastic process with a collection of random variables

that indicate the number of a well-defined event over a specified period of time. The

random variable, N(t), as a function of t, is a right-continuous integer-valued step

function with jump of size one only.

Survival analysis or time-to-event analysis deals with non-negative random vari-

ables, representing the random occurrence time of a well-defined event, such as the

death of an individual or the recurrence of a disease. Suppose that the non-negative

random variable T represents the survival time in a study. In this thesis, all functions

are defined over the interval [0,∞), unless otherwise stated. The cumulative distribu-

tion function (c.d.f.) and probability density function (p.d.f.) of the random variable
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T are respectively defined as F (t) = Pr(T ≤ t) and f(t) = (d/dt)F (t), t > 0. The

survival function S(t) is then given by

S(t) = 1− F (t) = Pr(T > t) =

∫ ∞
t

f(x)dx, t ≥ 0. (2.1)

Another important concept in the survival analysis is the hazard function of the

random variable T , denoted by h(t). Given that the person has not experienced the

event of interest up until time t, the hazard function is defined as the instantaneous

conditional rate of failure (event) or death at time t (Lawless, 2003, p. 9). It is

mathematically defined as

h(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T ≥ t)

dt
, t ≥ 0. (2.2)

It can be shown that S(t) = exp
(
−
∫ t

0
h(s)ds

)
and f(t) = −(d/dt)S(t).

Counting processes are usually described by their intensity functions. Let H(t) =

{N(s), 0 ≤ s < t} denotes the history of the counting process {N(t), t ≥ 0} at time

t. Note that the history, H(t), includes all information about the counting process

{N(t), t ≥ 0} over the interval [0, t). The intensity function of the counting process

{N(t), t ≥ 0}, denoted by λ(t|H(t)), gives the instantaneous conditional probability

that an event occurs over a small time interval [t, t+∆t) in the limit as ∆t approaches

0, given the history of the process H(t). It is mathematically defined as follows.

λ(t|H(t)) = lim
∆t→0

Pr(N(t, t+ ∆t) = 1|H(t))

∆t
, t ≥ 0, (2.3)

where N(t, t + ∆t) gives the number of events in the interval (t, t + ∆t]. We assume

that at most a single event may occur at any given time instant. In the continuous

time scale, the intensity function completely defines a counting process (Cook and

Lawless, 2007).

The martingale theory is an important concept to model counting processes.

Within this concept, the Doob-Meyer decomposition theorem (Andersen et al., 1993,

pp. 66-67) states that any counting process {N(t), t ≥ 0} can be decomposed into

the sum of a martingale, denoted by M(t), and a predictable increasing process given
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by
∫ t

0
λ(s|H(s))ds; that is,

N(t) = M(t) +

∫ t

0

λ(s|H(s))ds, t ≥ 0, (2.4)

where a predictable process is a process that its value can be anticipated at any given

time based on information available up to that time (Aalen et al., 2008). This result

can be further represented as martingale increments, given by

dN(t) = dM(t) + λ(t|H(t))dt, (2.5)

where dN(t) denotes the number of jumps made by the counting process {N(t), t ≥ 0}
in the infinitesimal time interval [t, t+dt). Using (2.3), for infinitesimal time intervals

[t, t+ dt), we have

λ(t|H(t))dt = Pr(dN(t) = 1|H(t)), t ≥ 0. (2.6)

In the continuous time setting, dN(t) is a 0 − 1 valued binary variable. So, the

probability of a jump in the interval [t, t + dt) is given by the expected number of

jumps in the interval; that is,

λ(t|H(t))dt = E(dN(t)|H(t)), t ≥ 0. (2.7)

If we let dM(t) = dN(t)− λ(t|H(t))dt, from (2.5) and (2.7) we have

E(dM(t)|H(t)) = 0, t ≥ 0, (2.8)

which is the definition of a martingale with respect to the history H(t) (Aalen et al.,

2008, Section 2.2.1). Since M(t) =
∫ t

0
dM(u) and N(t) =

∫ t
0
dN(u), it is easy to see

that

M(t) = N(t)−
∫ t

0

λ(s|H(s))ds, t ≥ 0, (2.9)

is a martingale with respect to the history H(t). From this development, the re-

sult (2.9) can be interpreted as, at any time t, the counting process {N(t), t ≥ 0}
can be decomposed into summation of two parts, a zero mean random white-noise,

given by M(t) and a cumulative intensity process given by
∫ t

0
λ(s|H(s))ds, which is a
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predictable process.

We now explain how to express the survival model in terms of counting processes.

We first discuss the case in which there is no censoring present. Suppose the survival

time, represented by T , is not subject to the right censoring. In this case, we define

the counting process {N(t), t ≥ 0}, where N(t) = I{T ≤ t} and I(·) is a typical

0− 1 valued indicator function. Suppose that the individual experiences the event of

interest at time T . Then, the value of the random variable N(t) is 0 if t < T and 1 if

T ≤ t. Note that, from (2.3), we have

λ(t)dt = Pr(dN(t) = 1|H(t)). (2.10)

The result in (2.10) can be written as

Pr(dN(t) = 1|H(t)) =

h(t)dt, for T ≥ t

0, for T < t,
(2.11)

where h(t) is the hazard function of T as defined in (2.2). As discussed by Aalen et al.

(2008, Section 1.4.2), the censoring is unavoidable in survival settings. Now suppose

the survival time T , is subject to the right censoring denoted by C. In this case, we

define the counting process {N(t), t ≥ 0} where

N(t) = I{min(T,C) ≤ t, δ = 1}, (2.12)

where δ = I(T ≤ C), called the censoring indicator, and I(·) is a typical 0− 1 valued

indicator function.

To deal with censoring, we next introduce at-risk function, Y (t), as an indicator

function taking the value of 1 if the process is under observation and at-risk of observ-

ing an event at time t; otherwise, it is 0. Under the observation scheme, in which the

process is continuously observed from the time origin and subject to right censoring,

the at-risk function is given by

Y (t) = I(T ≥ t, C ≥ t)

=

1, if individual is under observation just before or at time t,

0, otherwise.
(2.13)
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Note that, under the assumption of the independent censoring (Aalen et al., 2008, p.

30), the intensity process takes the form

λ(t) = Y (t)h(t), t ≥ 0. (2.14)

With at-risk function notation, the martingale associated with the counting process

N(t) can be written as

M(t) = N(t)−
∫ t

0

Y (s)h(s)ds,

= N(t)− ΛT

(
min(t, T, C)|H(t)

)
, (2.15)

where ΛT (·|H(t)) is the cumulative hazard function of T conditional on the past.

From (2.15), we obtain that

E(M(t)|H(t)) = 0, t ≥ 0. (2.16)

In many event history studies, there are more than one event of interest. As

discussed in the previous chapter, the main data type considered in this thesis is the

sequentially observed bivariate survival data as a part of the illness-death model. We

next extend our notation to this setting. Suppose that T1 and T2 denotes survival

(gap) times, representing the elapsed time from the initial “healthy” state to the

“disease” state and from the “disease” state to the “death” state, respectively. Note

that T1 and T2 are sequentially observed and may not be independent. We therefore

need to address the dependency between T1 and T2. For t1 ≥ 0 and t2 ≥ 0, the joint

distribution function of T1 and T2 is defined as

F (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2), (2.17)

and the joint survivor function is given by

S (t1, t2) = Pr(T1 ≥ t1, T2 ≥ t2). (2.18)

The marginal distribution functions of T1 and T2 are given by F1(t1) = F (t1,∞)

and F2(t2) = F (∞, t2), and the marginal survivor functions are S1(t1) = S(t1, 0) and

S2(t2) = S(0, t2), respectively. The hazard rate of the conditional distribution of T2
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given T1 = t1 is

h2|1(t|t1) = lim
dt→0

Pr(T2 < t+ dt|T2 ≥ t, T1 = t1)

dt
, t > 0, (2.19)

and the conditional intensity function of T2 given T1 = t1 is

λ2|1(t|t1, H(t)) = lim
dt→0

Pr(N(t, t+ dt) = 1|T1 = t1, H(t))

dt
, t > 0. (2.20)

The gap time variables (T1, T2) are subject to a potential right censoring time C.

We define that (t1, t2) = (min(T1, C),min(T2, C−t1)) and (δ1, δ2) = (I[T1 = t1], I[T2 =

t2]). Note that t1 and t2 in (t1, t2) are either observed gap times T1 and T2 or the

censoring time, and δ1 and δ2 in (δ1, δ2) are event indicators of the first and second

types of events, respectively. Suppose {N1(t), t ≥ 0}, where N1(t) = I(min(T1, C) ≤
t, δ = 1), is the counting process of the first event. As explained before, for any t ≥ 0,

the martingale process associated with the counting process of the first event N1(t) is

defined as

M1(t) = N1(t)−
∫ t

0

Y1(s)hT1(s)ds,

= N1(t)− ΛT1

(
min(t, T1, C)|H(t)

)
, (2.21)

which gives

E(M1(t)) = 0, for t ≥ 0. (2.22)

The function Y1(t) = I(T1 ≥ t, C ≥ t) takes the value of one if the process is at-risk

of experiencing the first event just before time t, otherwise it is zero. The function

hT1(t) is the hazard function of T1 and ΛT1

(
· |H(t)

)
is the conditional cumulative

hazard function of T1, given H(t).

We next define the counting variable N2(t) to denote the number of transition

from state “illness” to state “death” during the time interval (0, t]. The process

{N2(t), t ≥ 0} forms the counting process associated with the second event, where

N2(t) = I(min(T2, C − t1) ≤ t, δ1 = 1, δ2 = 1). (2.23)

As explained by Yip and Lam (1997), the martingale process associated with the
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counting process {N2(t), t ≥ 0} is defined as

M2(t) = N2(t)−
∫ t

0

Y2(s)h2|1(s|t1)ds,

= N2(t)− Λ2|1
(

min(t, T2, C − t1)|T1 = t1, H(t)
)
, (2.24)

which is a zero mean martingale given the history H(t). In Equation (2.24), the

random variable

Y2(t) = I(T2 ≥ t, C − t1 ≥ t, T1 = t1, δ1 = 1), t ≥ 0, (2.25)

which takes the value of one if an individual is at-risk of having the second event

after experiencing the first event, otherwise it is zero. The function h2|1(·|t1) is the

conditional hazard rate of T2, given T1 = t1, and the cumulative hazard function of

the second gap time given the all information up to time t and T1 = t1 is given by

Λ2|1
(
· |T1 = t1, H(t)

)
.

Now suppose that we have a random sample of n processes in a survival study.

The first and second gap times of the ith individual, i = 1, 2, ..., n, are denoted by

T1i and T2i, respectively, which are subject to a right-censoring time denoted by Ci.

Additionally, event indicators for the first and second events are denoted by δ1i and

δ2i, i = 1, 2, ..., n. The maximum likelihood estimation can be applied to estimate the

parameters in a given model with the likelihood function for the sequentially observed

bivariate survival data. Let {(t1i, t2i, δ1i, δ2i), i = 1, 2, ..., n} denote the observed data.

Then, the likelihood function is given by

L =
n∏
i=1

[∂2F (t1i, t2i)

∂t1i∂t2i

]δ1iδ2i[∂F1(t1i)

∂t1i
− ∂F (t1i, t2i)

∂t1i

]δ1i(1−δ2i)[
1− F1(t1i)

](1−δ1i)
.

(2.26)

The model parameters in the c.d.f. F1 of T1 and the joint c.d.f. F of T1 and T2 can be

estimated by maximizing the log of the likelihood function (2.26). In the next section,

we will briefly discuss how to do this by using copulas, as well as how to obtain the

estimates of the parameters in the marginal c.d.f. F2 of T2.
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2.2 Modeling Dependence with Copulas

Copula is a statistical tool used to model the dependence between different variables

in a multivariate distribution. This function combines known individual distributions

and a correlation structure to create a joint distribution function, representing a

way of combining these variables into a multivariate uniform distribution. The idea

behind the copula approach is to break down the joint distribution into two parts, the

individual distributions of each variable and a special function called the copula, which

determines how the variables are related to each other. The copula function is all

about describing the dependence between variables, while the individual distributions

only describe the marginal characteristics of each variable separately. In the remaining

part of this section, we briefly introduce copula modeling and related concepts. For

a more in-depth and rigorous exploration of the subject, additional resources can be

found in Nelsen (2007) and Joe (1997).

Suppose the p-dimensional columnwise random vector (X1, X2, ..., Xp)
T , where the

notation T stands for the transpose of a vector or matrix, represents the outcomes

that we wish to analyze, with marginal cumulative distribution functions F1, F2, ..., Fp,

respectively. Then there exists a p-dimensional copula function C : [0, 1]p → [0, 1] such

that for the vector (X1 = x1, X2 = x2, ..., Xp = xp)
T in Rp, the copula function C is

defined by

C (F1(x1), F2(x2), ..., Fp(xp)) = F (x1, x2, ..., xp). (2.27)

In this thesis, we focus on bivariate random variables. So, for convenience from now

on, we take p = 2, and consider a pair of random variables, for example X1 and X2,

with marginal cumulative distribution functions, F1(x1) = P (X1 ≤ x1) and F2(x2) =

Pr(X2 ≤ x2), respectively, and a joint c.d.f., F (x1, x2) = Pr(X1 ≤ x1, X2 ≤ x2). Ac-

cording to Sklar (1959), any joint c.d.f. F (x1, x2) has a unique copula function

C(u1, u2), where 0 ≤ u1, u2 ≤ 1, such that

F (x1, x2) = C(F1(x1), F2(x2)), (2.28)

for all (x1, x2) ∈ R2. Note that any multivariate distribution function F can be

expressed in this manner, and a copula representation exists for every multivariate
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distribution function. The joint c.d.f. of X1 and X2 on the unit square C(u1, u2) is a

copula, with marginal distributions of X1 and X2 following a uniform distribution on

(0, 1).

There are some desirable properties of copulas. We listed important ones here.

More discussion can be found in Nelsen (2007) and Joe (1997). One notable benefit is

the flexibility to utilize various families as marginal distributions for the random vari-

ables. The copula construction does not constrain the choice of marginal distributions.

This result is especially useful when analyzing sequentially observed bivariate survival

gap times that are anticipated to exhibit unique characteristics. Furthermore, copulas

allow for the study of the dependence structure between random variables, separated

from the marginal distributions. This aspect provides researchers valuable insights

and a deeper understanding of the interrelationships among the variables under con-

sideration. Some subject areas that have used copulas to understand relationships

among multivariate observations include epidemiological and actuarial studies, bio-

logical, medical, epidemiological studies, industry, etc. (Frees and Valdez, 1998).

In the copula modeling, various methods exist to construct copulas, with one of

the most commonly employed approaches being the Archimedean approach (Nelsen,

2007). Archimedean copulas take on a specific form, which can be expressed as

C(u1, u2, ..., up) = ϕ−1(ϕ(u1) + ϕ(u2) + ...+ ϕ(up)), (2.29)

where ϕ(·) represents the generator of the copula. Different copula families emerge

based on the choice of ϕ(·). Each of these families possesses distinct characteristics,

making them suitable for different types of dependence patterns observed in the data.

Frequently used Archimedean families include the Clayton family, Gumbel-Hougaard

family and Frank family. In this thesis, our focus is on the Clayton copula, which is

widely used for modeling positive lower tail dependence. However, proposed method

can be applied under different copulas as well.

The Clayton copula can be expressed in the following form.

Cφ(u, v) =
(
u−φ + v−φ − 1

)− 1
φ , (2.30)

where φ > 0 is the Clayton copula parameter, and u and v are real numbers in

(0, 1). The generator function of the Clayton copula is represented as ϕφ(t) = t−φ− 1
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(Nelsen, 2007). This generator function plays a crucial role in defining the Clayton

copula and characterizes its unique dependence structure. It is essential to investigate

the connection between the Clayton copula parameter, denoted as φ, and Kendall’s

tau, represented by τφ in this thesis. Kendall’s tau is a widely used measure of rank

correlation, providing a quantification of the association between variables in copula

modeling. In the Clayton copula, this relationship is mathematically defined as

τφ =
φ

φ+ 2
, φ > 0. (2.31)

We use Clayton copula to model the dependency between the first and the second gap

times, T1 and T2, in the sequentially observed bivariate survival data. The choice of the

Clayton copula is recommended for its suitable structure in modeling the dependency

between two survival times subject to right censoring (Oakes, 1982). So the likelihood

function (2.26) can be expressed in terms of the copula function using the relationship

between the joint c.d.f. F (t1i, t2i) and the copula function, C(F1(t1i), F2(t2i)), given

by

F (t1i, t2i) = C(F1(t1i), F2(t2i)),

=
(
F1(t1i)

−φ + F2(t2i)
−φ − 1

)− 1
φ . (2.32)

Substituting this relationship, the likelihood function (2.26) becomes

L =
n∏
i=1

[∂2C(F1(t1i), F2(t2i))

∂t1i∂t2i

]δ1iδ2i
×
[∂F1(t1i)

∂t1i
− ∂C(F1(t1i), F2(t2i))

∂t1i

]δ1i(1−δ2i)
×
[
1− F1(t1i)

](1−δ1i)

=
n∏
i=1

[∂2
(
F1(t1i)

−φ + F2(t2i)
−φ − 1

)− 1
φ

∂t1i∂t2i

]δ1iδ2i
×
[∂F1(t1i)

∂t1i
−
∂
(
F1(t1i)

−φ + F2(t2i)
−φ − 1

)− 1
φ

∂t1i

]δ1i(1−δ2i)
×
[
1− F1(t1i)

](1−δ1i)

=
n∏
i=1

[
(φ+ 1)

(
F1(t1i)

−φ + F2(t2i)
−φ − 1

)− 1
φ
−2
F1(t1i)

−φ−1f1(t1i)F2(t2i)
−φ−1f2(t2i)

]δ1iδ2i
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×
[
f1(t1i) +

1

φ

(
F1(t1i)

−φ + F2(t2i)
−φ − 1

)− 1
φ
−1
F1(t1i)

−φ−1f1(t1i)
]δ1i(1−δ2i)

×
[
1− F1(t1i)

](1−δ1i)
. (2.33)

In this thesis, we use the likelihood method to estimate the parameters related to the

first gap time T1 and the copula parameter in the analysis of the second gap time. This

approach follows the methodology suggested by Lawless and Yilmaz (2011), ensuring

that our parameter estimates remain consistent and reliable throughout the analytical

process. To achieve this, we utilize the “optim” function in R software to find the

maximum likelihood estimation of these parameters.

2.3 Quantile Regression

As mentioned in Chapter 1, quantile regression (QR) assesses the effects of covariates

across the entire response distribution. Quantiles, also known as percentiles, play a

crucial role in data summarization. Among these, the median, which represents the

50th percentile, divides the ordered observations into two equal parts based on their

magnitude. In notation, we denote the τth quantile as qτ , where τ is a numeric value

within the range of 0 and 1 (0 < τ < 1).

Let Y be a random variable with the c.d.f. F (y). For any given value 0 < τ < 1,

the τth quantile of Y , denoted by F−1(τ), is defined as

QY (τ) = F−1(τ) = inf{y : F (y) > τ}, (2.34)

for any 0 < τ < 1 (Koenker, 2003). Replacing the c.d.f. F with its empirical distri-

bution function, given by

Fn(y) = n−1

n∑
i=1

I(Yi < y), (2.35)

leads to a sample quantile. The τth sample quantile is then given by

QY (τ) = F−1
n (τ) = inf{y : Fn(y) > τ}. (2.36)

Based on the conditional mean of Y given x, indicated as E(Y |x), linear regression
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describes the average relationship between a set of regressors (x) and an outcome

variable (Y ). Least squares estimation method, which minimizes the sums of squares

of the residuals, is a standard method to estimate the linear regression parameters.

However, as noted by Koenker (2003), the whole conditional distribution of Y given

x cannot be described by this conditional mean E(Y |x). When data are skewed or

heteroscedastic, for instance, classical least squares regression cannot be utilized to

effectively describe the connection between response and covariates. However, the QR

allows us to create a distinct QR line for each quantile value.

QR models are modeling conditional quantiles rather than conditional means,

extending mean regression to examine the entire conditional distribution of the re-

sponse variable. As a result, the location, scale, and shape of the distribution can

all be thoroughly studied to give a complete picture of how the covariates affect the

entire response distribution (Koenker, 2003). QR is a statistical technique used to

estimate conditional quantiles of a response variable Y given a set of explanatory vari-

ables represented by a design matrix x, which is a p-dimensional vector. For a given

quantile level τ , the τth linear conditional quantile, denoted as QY (τ |x), represents

the conditional quantile of Y given x. In the QR framework, it is expressed as

QY (τ |x) = xTβ(τ), τ ∈ (0, 1), (2.37)

where QY (τ |x) = FY
−1(τ |x) and the vector of parameters denoted by β(τ) represents

the effects of x on the τth conditional quantile of the response variable Y . Addi-

tionally, this model can also be written as a standard linear model with the formula

Y = xTβ(τ) + ε, where ε stands for a random error term such that Qε(τ) = 0.

Estimating β(τ) in QR involves minimizing a specific objective function, which

depends on the choice of τ . The loss function aims to find the values of β(τ) that

best capture the relationship between conditional quantile of Y and x. As explained

by Koenker (2003), estimate of β(τ), denoted by β̂(τ), can be obtained by solving

the following minimization problem.

β̂(τ) = arg min
β(τ)∈Rp

{ ∑
i∈{i:yi≥xTi β(τ)}

τ
∣∣yi − xTi β(τ)

∣∣+
∑

i∈{i:yi<xTi β(τ)}

(1− τ)
∣∣yi − xTi β(τ)

∣∣}

= arg min
β(τ)∈Rp

n∑
i=1

ρτ (yi − xTi β(τ)) (2.38)
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where ρτ (u) = u(τ−I(u < 0)), as a piecewise linear function, is the check loss function

in the QR model and I(·) is the indicator function.

One special case is the median regression, where the quantile level τ is equal to 0.5.

In this case, the goal is to find the value of the parameter vector β(τ) that minimizes

the sum of the absolute values of the differences between the observed response values

(yi) and the corresponding predicted values (xTi β(τ)) for all data points in the data

set. Note that

β̂(0.5) = arg min
β(τ)∈Rp

n∑
i=1

∣∣∣∣yi − xTi β(0.5)

∣∣∣∣, (2.39)

represents the estimated parameter vector for the conditional median.

QR model for survival data is complicated by censoring. In this regard, Peng and

Huang (2008) proposed a quantile regression model for survival data using martingale-

based estimating equations. Their method is explained in Section 3.2 in more detail.

This becomes even more challenging when handling gap times, especially, the second

gap time, which is dependent on the first gap time. We will propose a new method

to address this issue in Section 3.3.



Chapter 3

Estimation for Quantile Regression

of Sequential Lifetime Data

In this chapter, we discuss analyzing sequentially observed bivariate survival times.

Correlated gap times pose challenges in the analysis, including induced dependent

censoring and non-identifiability. These challenges are addressed with the estimation

method considered in this chapter. This chapter is organized as follows. Parametric

estimation of sequential gap times with copula is discussed in Section 3.1. Paramet-

ric estimation of quantile regression of sequential gap times based on the Peng-Huang

method and the proposed method are explained in Section 3.2 and Section 3.3, respec-

tively. To validate the martingale property associated with the counting process of the

gap times, both with and without covariates, we conduct Monte Carlo simulations.

The results of this study are presented in Section 3.4. Finally, Section 3.5 includes

a summary of a set of simulation studies under various settings to demonstrate the

performance of the proposed method.

3.1 Parametric Estimation of Sequentially Observed

Bivariate Gap Times: A Copula Approach

As discussed in Section 1.1 and by Lawless and Yilmaz (2011), sequentially observed

gap times may subject to dependent censoring. This issue is an important restriction

on the use of some analytical methods developed for the analysis of the marginal
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distribution of the second and subsequent gap times. Identifiability issue is another

challenge for the analysis of such data, which arises for the second and subsequent

gap times when the first gap time is censored. A parametric model for the joint distri-

bution of the first and second gap times can be adopted to address these issues with

sequentially observed bivariate gap times. In this section, we discuss the dependence

modeling of two sequentially observed gap times by using copula functions. Our dis-

cussion is based on the method developed by Lawless and Yilmaz (2011). Our goal

is to explain how copulas can be utilized to estimate the dependence parameter in

settings with sequentially observed bivariate gap times. This parameter exists in the

joint cumulative distribution and survival functions of gap times, and connects the

joint distribution function to its marginal distributions with a dependence parameter.

In many studies, there is an interest in assessing the effects of covariates on the

marginal distribution of the gap times between successive events. Many methods

require the independence of within-subject gap times, conditional on the given values

of covariates. In order to do this, either the gap times must be independent or the

covariate vector must accurately represent the relevant information. In general, the

independence assumption of the successive gap times is very strong, and does not

hold in many studies even after conditioning on the available covariates, but if they

are, then modeling, analysis and interpretation of the effects of the covariates are

straightforward. Also, majority of the available methods for analyzing gap times

concentrate on modelling the conditional hazard function of the second gap times

given the values of the first gap times and available covariates. These methods may

not provide a direct interpretation of the covariate effects on the marginal distribution

of the second and subsequent gap times. In this section, we consider a linear regression

setup for gap times on the basis of the accelerated failure time (AFT) model, which

can provide a direct assessment of covariate effects on the marginal distribution of the

gap times. We focus on the sequentially observed bivariate gap times, in which the

dependency is modeled through copulas. As discussed by Lawless and Yilmaz (2011),

the method can be extended to settings with more than two sequentially observed

gap times.

Suppose that n independent randomly chosen individuals are included in a study.

All individuals in the study cohort starts at a well-defined initial state at the beginning

of their follow-ups, and may sequentially experience two events. For the ith individual,

i = 1, 2, ..., n, we let T1i and T2i represent the elapsed time from the initial state to
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the first event and the elapsed time between the first and second events, respectively.

Since the events can only occur sequentially, the gap time T2i cannot be observed

unless the gap time T1i has already been observed for the ith individual. We next let

(t1i, t2i) = (min(T1i, Ci),min(T2i, Ci − t1i)) and (δ1i, δ2i) = (I[T1i = t1i], I[T2i = t2i]),

where Ci is the random right censoring time for the ith individual, i = 1, 2, ..., n. Note

that t1i and t2i are the observed quantities for the ith individual at the end of the

study and δ1i and δ2i are the event indicators associated with the first and second gap

times, respectively. If δ1i = 0, the second gap time T2i is unobservable. Suppose that

x̃i is a (p− 1) dimensional vector including the values of (p− 1) covariates for the ith

individual, i = 1, 2, ..., n. Let xi = (1, x̃Ti )T be a p dimensional vector. Note that, for

notational convenience, we consider time-fixed covariates in the vector xi. However,

the discussion can be extended to the settings in which covariates may depend on the

time variable as well.

We respectively denote the joint distribution and survival functions of T1i and T2i,

given xi, by

F (t1, t2|xi) = Pr(T1i ≤ t1, T2i ≤ t2|xi), (3.1)

and

S(t1, t2|xi) = Pr(T1i > t1, T2i > t2|xi), (3.2)

where 0 < t1 < ∞ and 0 < t2 < ∞ for i = 1, 2, ..., n. For a given vector of

covariates xi, the marginal distribution of T1i, denoted by F1(t1|xi), i = 1, 2, ..., n, can

be estimated by standard methods in the theory of survival analysis (see, e.g., Lawless,

2003). The formulation of the second gap time T2i, given the vector of covariates xi,

i = 1, 2, ..., n, is usually considered through the conditional cumulative distribution

function (c.d.f.) of T2i given t1i and xi, and the conditional hazard function of T2i

given t1i and xi which are given by

F2|1(t2|xi, t1i) = Pr(T2i ≤ t2|T1i = t1i,xi), (3.3)

and

h2|1(t2|xi, t1i) = lim
dt→0

Pr(T2i < t2 + dt|T2i ≥ t2, T1i = t1i,xi)

dt
, (3.4)
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respectively (Lawless, 2003, Section 11.3.1). Since T2i can only be observed if T1i is

observed; that is, T1i <∞ for i = 1, 2, ..., n, the marginal distribution function of T2i

is interpreted as

F2(t2) = Pr(T2i ≤ t2|T1i <∞,xi), (3.5)

where 0 < t2 <∞.

In this study, our goal is to estimate the effects of covariates on the marginal

distribution of T2i, for a given vector of fixed covariates xi under settings where T1i

and T2i may depend on each other. Copula models provide a strong framework for

formulating the dependence between gap times, and can be utilized to estimate the

marginal distribution of the second gap time. We therefore consider a parametric

model for the joint distribution of T1i and T2i using a copula formulation for address-

ing the dependency between them. In this case, all accelerated failure time (AFT)

regression model for Tki, k = 1, 2, can be written in the following form.

Tki = ex
T
i βk+εki , (3.6)

where p × 1 dimensional vector βk includes the regression coefficients and εki is the

random error term for the kth gap time of the ith individual. The parameters βk in

the regression Model (3.6) can be estimated by using a maximum likelihood estimation

procedure. The likelihood function pertaining to the analysis of only the first gap time

is given by

L(β1) =
n∏
i=1

f1(t1i|xi;β1)δ1i(1− F1(t1i|xi;β1))1−δ1i , (3.7)

which uses the data {(t1i, δ1i); xi; i = 1, 2, ..., n}. In this chapter, we only consider

parametric specification of models for T1 and T2. Therefore, if there is no ambiguity,

we drop the βk notation from the likelihood functions and other related functions. The

estimation of parameters in Model (3.6) can be obtained by maximizing the likelihood

function (3.7) or its log likelihood function. The asymptotic properties of the estimator

based on this method have been well-established (e.g. see Lawless, 2003, Chapter 6).

These properties include the consistency of the maximum likelihood estimators of β1,

as well as their regular asymptotic standard normal distribution results as the sample



35

size n increases. We use the log likelihood function ` = logL, where L is given in

(3.7) to obtain the estimate of parameters in the distribution of T1. To do this, we

use the “optim” function in R software, and obtain the estimates of parameters.

The likelihood function considering the data {(t1i, t2i, δ1i, δ2i); xi; i = 1, 2, ..., n}
can be expressed as follows.

L =
n∏
i=1

[∂2C(F1(t1i|xi), F2(t2i|T1i <∞,xi))
∂t1i∂t2i

]δ1iδ2i
×
[∂F1(t1i|xi)

∂t1i
− ∂C(F1(t1i|xi), F2(t2i|T1i <∞,xi))

∂t1i

]δ1i(1−δ2i)[
1− F1(t1i|xi)

](1−δ1i)
,

(3.8)

where

C(u, v) = F (F−1
1 (u), F−1

2 (v)). (3.9)

With the Clayton copula specification of (3.9); that is, Cφ(u, v) =
(
u−φ + v−φ − 1

)− 1
φ ,

the likelihood function (3.8) can be written as follows.

L =
n∏
i=1

[
(φ+ 1)

(
F1(t1i|xi)−φ + F2(t2i|T1i <∞,xi)−φ − 1

)− 1
φ
−2
F1(t1i|xi)−φ−1f1(t1i|xi)

F2(t2i|T1i <∞,xi)−φ−1f2(t2i|T1i <∞,xi)
]δ1iδ2i

×
[
f1(t1i|xi) +

1

φ

(
F1(t1i|xi)−φ + F2(t2i|T1i <∞,xi)−φ − 1

)− 1
φ
−1
F1(t1i|xi)−φ−1

f1(t1i|xi)
]δ1i(1−δ2i)

×
[
1− F1(t1i|xi)

](1−δ1i)
.

(3.10)

The derivation of the likelihood function (3.10) can be found in Lawless and Yilmaz

(2011). The parameters β2 in the marginal distribution of the second gap time and

the copula parameter φ are obtained with a two stage estimation procedure. In the

first stage, the parameters β1 in the marginal distribution of the first gap time T1

are obtained by maximizing the log of the likelihood function (3.7). In the second

stage, the estimates of the model parameters of the first gap time are plugged in
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the functions F1 and f1 given in (3.10). Then, the log of the resulting likelihood

function was maximized to obtain the estimates of the regression model parameters

β2 in the marginal distribution of the second gap time T2 and the copula parameter φ

in the Clayton copula. The consistency and asymptotic distribution of the estimators

obtained with this estimation method have been discussed by Lawless and Yilmaz

(2011). Based on an extensive simulation study, they showed that the estimators of

β2 and φ are consistent and their limiting distributions are normal as n increases.

In Section 3.3, we use this method to estimate the copula parameter in our models.

To do this, we use the “optim” function in R software to maximize the log of the

likelihood function (3.10), and obtain the estimate of the copula parameter φ.

3.2 Peng-Huang Approach for Parameter Estima-

tion in Quantile Regression

As discussed in Chapter 1, classical regression models may not provide a complete

understanding of the effects of covariates on the distribution of gap times. In contrast,

quantile regression (QR) models offer a more flexible and robust way to examine

covariate effects at various conditional quantiles of the gap times given the values of

covariates. In this section, we introduce the method by Peng and Huang (2008), which

we refer to as the Peng-Huang method, which was proposed to estimate parameters

in QR models for survival data. For technical details, we will refer to the paper by

Peng and Huang (2008), where the method was proposed. To explain this method,

we use a similar notation introduced in the previous section. We would like to note

that the Peng-Huang method is proposed for the analysis of the survival times and

may be biased if it is used for the analysis of the second gap time, where there is

dependence between the first and second gap times. In Section 3.5, we naively apply

the Peng-Huang method for the analysis of the second gap time in a simulation study

to discuss the bias in the estimates of model parameters.

As defined in Section 2.3, the conditional quantile of a random variable Y , given

x and τ , is defined as

QY (τ |x) = xTβ(τ), τ ∈ (0, 1), (3.11)
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where x = (1, x̃T )T is a p × 1 vector including the (p − 1) × 1 vector of covariates

x̃ and β(τ) = (β0(τ), β1(τ), ..., βp−1(τ))T is a p × 1 vector of regression parameters

representing the effects of covariates on the τth quantile of the response variable

Y , allowing for potential changes with varying values of τ . To proceed, we define

z1 = min(T1, C), where C is the censoring time. The observed data set consists of

n independent and identically distributed (i.i.d.) replicates of {z1, δ1,x}, denoted by

{(z1i, δ1i); xi; i = 1, 2, ..., n}, where z1i = min(T1i, C). It is assumed that the censoring

time C is independent of T1 conditional on x. Note that if we define the response

variable Y as Y = log T1, where T1 = exp
(
xTβ1(τ) + ε1

)
, the quantile regression

model given in (3.11) can be equivalently expressed as

QT1(τ |x) = exp
(
xTβ1(τ)

)
, τ ∈ (0, 1). (3.12)

Model (3.12) can also be written as a standard linear model with the formula

log T1 = xTβ1(τ) + ε1, (3.13)

where ε1 stands for a random error term such that Qε1(τ) = 0.

The application of QR model to the survival data poses challenges due to the

presence of censoring. However, one approach to estimate the parameters β1(τ) in

the quantile regression model given in (3.13) with censored data is to utilize the

martingale theory developed for the analysis of counting process. A good source on

this theorem from the survival analysis perspective is given by Aalen et al. (2008).

Let hT1(t1|x), t1 > 0, denotes the hazard function of the first gap time T1 conditional

on x, where ∫ t1

0

hT1(u|x)du = − log S(t1|x),

= − log(1− Pr(T1 ≤ t1|x)),

= − log(Pr(T1 > t1|x)). (3.14)

Following the discussion given in Section 2.1, we next define the counting process

{N1(t), t ≥ 0}, where N1(t) = I(min(T1, C) ≤ t, δ1 = 1) and the at-risk indicator

function Y1(t) = I(T1 ≥ t, C ≥ t). We assume that the value of Y1(t) is known at

time t. The martingale process associated with the counting process {N1(t), t ≥ 0}
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is denoted by {M1(t), t ≥ 0}, where M1(t) = N1(t) − ΛT1(t|x) and dΛT1(t|x) =

Y1(t)hT1(t|x)dt.

Suppose that there are n independent such processes included in a study, each

denoted by {N1i(t), t ≥ 0}, i = 1, 2, ..., n, with the associated intensity functions

ΛT1i(t|xi), where xi = (1, xi1, xi2, ..., xi,p−1)T . Note that, in this case, ΛT1i(t|xi) can

be written as ΛT1i(min(t, z1i)|xi). Consequently, M1i(t) is a martingale associated

with the counting process {N1i(t), t ≥ 0}, i = 1, 2, ..., n. It can be shown that

E[M1i(t)|xi] = 0 for t ≥ 0 (Aalen et al., 2008). We then obtain

E

{
n−

1
2

n∑
i=1

xiM1i(t)
∣∣∣xi} = 0, t ≥ 0. (3.15)

Since exp
(
xTi β

∗
1(τ)

)
> 0, where β∗

1(τ) denotes the true value of β1(·) in Model (3.12),

we have

E

{
n−

1
2

n∑
i=1

[
xiM1i

(
ex

T
i β

∗
1(τ)
)∣∣∣xi]} = 0, τ ∈ (0, 1). (3.16)

Therefore, for a given τ , τ ∈ (0, 1), we obtain a p × 1 system of unbiased estimating

equations given by n
1
2 S1(τ,β1) = 0, where 0 is a p× 1 vector of zeros and

S1(τ,β∗
1) = n−1

n∑
i=1

xi

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)]. (3.17)

Consequently, the following unbiased estimating equations, forming a p× 1 system of

equations, can be simultaneously solved to obtain the estimate of β∗
1(τ).

n−
1
2

n∑
i=1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

n−
1
2

n∑
i=1

xi1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

n−
1
2

n∑
i=1

xi2

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

...

n−
1
2

n∑
i=1

xi,p−1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0. (3.18)
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Note that using the definition of the cumulative hazard function of T1,∫ t

0

hT1(u|x)du = − log(1− F1(t|x)), (3.19)

we can write the p× 1 vector of unbiased estimating functions given in (3.17) in the

following form.

S1(τ,β∗
1) = n−1

n∑
i=1

xi

[
N1i

(
ex

T
i β

∗
1(τ)
)

+ log
(

1− F1(min
{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi))]. (3.20)

Peng and Huang (2008) proposed to use the functions defined in (3.20) to estimate

the parameters β∗
1(τ) of the QR model given in (3.12). They developed an algorithm

based on the martingale estimating equations to minimize an L1-type convex function.

We next explain this method in more detail.

From the definition of QR, we have

F1

(
ex

T
i β

∗
1(τ)
∣∣xi) = τ, (3.21)

where τ ∈ (0, 1). From the relation given in (3.14), we have

ΛT1

(
min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi) = − log

{
1− Pr

(
T1 ≤ min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)}. (3.22)

Note that, in the probability given on the right hand side of (3.22), if ex
T
i β

∗
1(τ) ≤ z1i,

we have

Pr
(
T1 ≤ ex

T
i β

∗
1(τ)
)
≤ Pr(T1 ≤ z1i), (3.23)

which gives

− log
(

1− Pr
(
T1 ≤ ex

T
i β

∗
1(τ)
∣∣xi)) ≤ − log

(
1− Pr

(
T1 ≤ z1i

∣∣xi)). (3.24)

On the other hand, when z1i ≤ ex
T
i β

∗
1(τ), we have

Pr(T1 ≤ z1i) ≤ Pr
(
T1 ≤ ex

T
i β

∗
1(τ)
)
, (3.25)
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which gives

− log
(

1− Pr
(
T1 ≤ z1i

∣∣xi)) ≤ − log
(

1− Pr
(
T1 ≤ ex

T
i β

∗
1(τ)
∣∣xi)). (3.26)

By incorporating (3.24) and (3.26) into (3.22), we obtain the following result.

ΛT1

(
min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi) = min
{
− log

(
1− Pr

(
T1 ≤ ex

T
i β

∗
1(τ)
∣∣xi)),

− log
(

1− Pr
(
T1 ≤ z1i

∣∣xi))},
= min

{
− log

(
1− τ

)
,− log

(
1− FT1(z1i

∣∣xi))},
= min

{
G(τ), G(FT1(z1i

∣∣xi))},
=

∫ min{τ,F1(z1i

∣∣xi)}
0

dG(u),

=

∫ τ

0

I[u ≤ F1(z1i

∣∣xi)]dG(u),

=

∫ τ

0

I[z1i ≥ F1
−1(u

∣∣xi)]dG(u),

=

∫ τ

0

I[z1i ≥ QT1(u
∣∣xi)]dG(u),

=

∫ τ

0

I[z1i ≥ ex
T
i β

∗
1(u)]dG(u), (3.27)

where G(x) = − log(1− x) for 0 ≤ x < 1. Note that G(x) is a strictly increasing

function of x. Substituting (3.27) into (3.17), the p× 1 vector of unbiased estimating

functions becomes

S1(β∗
1, τ) = n−1

n∑
i=1

xi

[
N1i

(
ex

T
i β

∗
1(τ)
)
−
∫ τ

0

I[z1i ≥ ex
T
i β

∗
1(u)]dG(u)

]
, (3.28)

which can be used to estimate β∗
1(τ).

To deal with censored data, the Peng-Huang method uses the grid-based estima-

tion procedure to estimate β1(τ). This procedure involves discretizing the covariate

space into a grid of values, and estimating the regression quantiles at these grid

points. In this method, the attention is to the estimation of {β1(τ); τ ∈ (0, τu)},
where τu ∈ (0, 1), instead of attempting to estimate β1(τ) for all value of τ ∈ (0, 1).
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The quantity τu, τu ∈ (0, 1), is a deterministic constant subject to certain identifiabil-

ity constraints due to censoring. In other words, with the Peng and Huang method,

the parameters in Model (3.12) are identifiable up to a certain quantile point τu. The

value of τu can only be determined from a given data set. It should be noted that

the crq() function in the package quantreg in R software provides the estimation of

β̂1(τ) only up to the quantile τu. Under this constraint, the Peng-Huang method

utilizes a grid-based estimation method to estimate β1(τ) at discrete points, specifi-

cally {τj; j = 0, 1, ..., L(n)}, on the grid ||SL(n)
|| = {0 = τ0 < τ1 < τ2 < ... < τL(n)

}.
Their approach initiates by solving for β1(0) using the equation exp

(
xTi β1(0)

)
= 0.

Subsequently, for each τj within {τj; j = 0, 1, ..., L(n)}, a set of unbiased estimating

equations is constructed as follows.

n−
1
2

n∑
i=1

xi

[
N1i(e

xTi β
∗
1(τ1))−

∫ τ1

0

I[z1i ≥ ex
T
i β

∗
1(u)]dG(u)

]
= 0,

n−
1
2

n∑
i=1

xi

[
N1i(e

xTi β
∗
1(τ2))−

∫ τ2

0

I[z1i ≥ ex
T
i β

∗
1(u)]dG(u)

]
= 0,

...

n−
1
2

n∑
i=1

xi

[
N1i(e

xTi β
∗
1(τL(n)

)
)−

∫ τL(n)

0

I[z1i ≥ ex
T
i β

∗
1(u)]dG(u)

]
= 0. (3.29)

Consequently, the unbiased estimating functions for j = 1, 2, ..., L(n) are formulated

as

S1(β1, τj) = n−1

n∑
i=1

xi

[
N1i(e

xTi β1(τj))−
∫ τj

0

I[z1i ≥ ex
T
i β1(u)]dG(u)

]
. (3.30)

Note that the integral in (3.30) can be written as

∫ τj

0

I[z1i ≥ ex
T
i β1(u)]dG(u) =

j−1∑
k=0

∫ τk+1

τk

I[z1i ≥ ex
T
i β1(u)]dG(u),

≈
j−1∑
k=0

∫ τk+1

τk

I[z1i ≥ ex
T
i β1(τk)]dG(u),

=

j−1∑
k=0

I[z1i ≥ ex
T
i β1(τk)]

(
G(τk+1)−G(τk)

)
. (3.31)
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Thus, a sequence of unbiased estimating equations can be established by setting

n
1
2 S1(β1, τj) = 0, j = 1, 2, ..., L(n), (3.32)

which implies that the equations in

n−1

n∑
i=1

xi

{
N1i(e

xTi β1(τj))−
j−1∑
k=0

I[z1i ≥ ex
T
i β̂1(τk)]

(
G(τk+1)−G(τk+1)

)}
= 0, (3.33)

are solved in a sequential manner for β1(τj). As discussed by Peng and Huang (2008),

due to the non-continuity of the equations in (3.33), an exact root of (3.33) might

not exist. Thus, β̂1(τj), j = 1, 2, ..., L(n), is defined as a generalized solution of the

system of equations with components given in (3.29). Furthermore, all functions in

S1(β, τj) are monotonically non-decreasing, and thus, they represent the gradient of

a convex function. Consequently, the root of the vector S1(β1, τj) corresponds to the

minimizer of the vector of convex functions (Peng and Huang, 2008).

Convex optimization is obtained as follows. Since the absolute function f(x) = |x|
is convex, we have

N1i(e
xTi β1(τ)) = I(z1i ≤ ex

T
i β1(τ), δ1i = 1),

= I(log z1i ≤ xTi β1(τ), δ1i = 1),

= I(log z1i − xi
Tβ1(τ) ≤ 0, δ1i = 1), (3.34)

which allows us to express the convex function for N1i(e
xTi β1(τ)) by considering β1(τ) =

h as

|δ1i log z1i − δ1ix
T
i h|. (3.35)

Taking this result into account and assuming a very large constant R∗, the convex

function for S1(β1, τ) becomes

Lj(h) =
n∑
i=1

|δ1i log z1i − δ1ix
T
i h|+ |R∗ +

n∑
i=1

δ1ix
T
i h|

+ |R∗ − 2
n∑
i=1

xTi h

j−1∑
k=0

I(z1i ≥ ex
T
i β̂1(τk))[G(τk+1)−G(τk)]|. (3.36)
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In the case where R∗ is a large constant, Lj(h) given in (3.36) is simplified to

Lj(h) =
n∑
i=1

{
δ1i| log z1i − xTi h|+ δ1ix

T
i h

− 2xTi h

j−1∑
k=0

I(z1i ≥ ex
T
i β̂1(τk))[G(τk+1)−G(τk)]

}
,

=
n∑
i=1

{
δ1i| log z1i −

p∑
r=1

xirhr|+ δ1i

p∑
r=1

xirhr

− 2

p∑
r=1

xirhr

j−1∑
k=0

I(z1i ≥ ex
T
i β̂1(τk))[G(τk+1)−G(τk)]

}
. (3.37)

Next, for r = 1, 2, ..., p, we can differentiate (3.35) as follows.

∂

∂hr
| log z1i − xTi h| = ∂

∂hr

log z1i − xTi h, if z1i ≥ ex
T
i h,

− log z1i + xTi h, if z1i < ex
T
i h,

=

−xir, if z1i ≥ ex
T
i h,

xir, if z1i < ex
T
i h,

= −xirI(z1i ≥ ex
T
i h) + xirI(z1i < ex

T
i h), (3.38)

and

∂

∂hr
xTi h = xir. (3.39)

From the results given in (3.38) and (3.39) for r = 1, 2, .., p, we find

∂

∂hr

[
δ1i| log z1i − xTi h|+ δ1ixi

Th
]

= −δ1ixirI(z1i ≥ ex
T
i h) + δ1ixirI(z1i < ex

T
i h) + δ1ixir,

= −δ1ixirI(z1i ≥ ex
T
i h) + δ1ixirI(z1i < ex

T
i h)

+ δ1ixirI(z1i ≥ ex
T
i h) + δ1ixirI(z1i < ex

T
i h),

= 2δ1ixirI(z1i < ex
T
i h),

= 2xirN1i(e
xTi h). (3.40)
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So, when we replace h with β1(τ) in (3.40), we obtain

∂

∂hr

[
δ1i| log z1i − xTi h|+ δ1ix

T
i h
]∣∣∣∣

h=β1(τ)

= 2xirN1i(e
xTi β1(τ)). (3.41)

As a result, we obtain that

∂

∂hr
Lj(h)

∣∣∣∣
h=β1(τ)

=
n∑
i=1

{
2xirN1i(e

xTi β1(τ))

− 2xir

j−1∑
k=0

I(z1i ≥ ex
T
i β̂1(τk))[G(τk+1)−G(τk)]

}
,

= 2
n∑
i=1

xir

{
N1i(e

xTi β1(τ))

−
j−1∑
k=0

I(z1i ≥ ex
T
i β̂1(τk))[G(τk+1)−G(τk)]

}
. (3.42)

Consequently, the root of the derivative of the convex function Lj(h) with respect to

hr corresponds to the root of S1(β1, τj). This result implies that the minimizer of

the L1-type convex objective function Lj(h) serves as the root of S1(β1, τj), which is

given by β̂1(τj).

To estimate the variance of the estimators, Peng and Huang (2008) apply the

resampling approach based on the technique developed by Jin et al. (2001). This

resampling approach allows them to estimate the asymptotic variance of the estima-

tors, providing insights into the precision and uncertainty associated with the estima-

tors in the context of regression quantile processes. The consistency and asymptotic

distribution of the estimators obtained with the Peng-Huang method have been also

discussed by Peng and Huang (2008). They showed the uniform consistency and weak

convergence of the estimated regression quantile process by providing four regularity

conditions. It is worth noting that estimates of model parameters β1(τ), variance

estimates of them, and coverage probabilities can be obtained with the crq() function

in the package quantreg in R software.

In section 3.5.2, we naively apply the Peng-Huang method for the analysis of

second gap time. In the last part of this section, we extend our notation to deal with

this setting. To initiate our analysis, we define z2 as the minimum of T2 and C − T1;

that is, z2 = min(T2, C − T1), where C represents the censoring time. In this context,
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the observed data set includes n i.i.d. replicates denoted by {(t1i, z2i, δ1i, δ2i); xi; i =

1, 2, ..., n}. The QR model for the second gap time T2 is given by

QT2(τ |x) = exp
(
xTβ2(τ)

)
, for τ ∈ (0, 1), (3.43)

where β2(τ) = (β02(τ), β12(τ), ..., βp−1,2(τ)) represents the effect of covariates on

log T2. Specifically

log T2 = β02(τ) + β12(τ)x1 + β22(τ)x2 + ...+ βp−1,2(τ)xp−1 + ε2, (3.44)

where ε2 is the error term such that Qε2(τ |x) = 0.

Next we define the counting process for the second event as {N2(t), t ≥ 0}, where

N2(t) = I(z2 ≤ t, δ1 = 1, δ2 = 1), which counts the second type of events. The

martingale process associated with the counting process of the second event is denoted

as {M2(t), t ≥ 0}, where

M2(t) = N2(t)− Λ2|1(min(t, z2)|T1 = t1,x). (3.45)

We discuss this martingale structure in the next section in more detail. Similar to the

first gap time, we derive functions for estimating β2(τ). The p×1 system of unbiased

estimating functions is given by

S2(τ,β∗2) = n−1

n∑
i=1

xi

[
N2i(e

xTi β
∗
2(τ))− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)], (3.46)

where β∗2(τ) is the true value of β2(τ) and E(n
1
2 S2(τ,β∗2)) = 0. Similar to the Peng-

Huang method explained for T1, the system of estimating functions for solving β∗2(τ)

can be expressed as

S2(τj, β̂2) = n−1

n∑
i=1

xi

{
N2i(e

xTi β2(τj))−
j−1∑
k=0

I
(
z2i ≥ ex

T
i β̂2(τk)

)
[GT2(τk+1)−GT2(τk)]

}
,

(3.47)

for j = 1, 2, ..., L. Once again the task of finding solutions for S2(τj, β̂2) is equivalent
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to locating the minimizer of the following L1-type convex objective function given by

Lj(h) =
n∑
i=1

|δ2i log z2i − δ2ix
T
i h|+ |M∗ +

n∑
i=1

δ2ix
T
i h|

+ |M∗ − 2
n∑
i=1

xTi h

j−1∑
k=0

I(z2i ≥ ex
T
i β̂2(τk))[GT2(τk+1)−GT2|(τk)]|, (3.48)

where M∗ represents a significantly large value. The solution to this minimization

problem can be easily obtained using the crq() function in R package quantreg.

We would like to note that solving the system of unbiased equations given in (3.46)

with the Peng-Huang method gives the estimates of parameters in the conditional

cumulative intensity function

Λ2|1(t|T1 = t1,x), t > 0. (3.49)

In this case, the interpretation of the estimates is not straightforward as it is based

on the value of a given T1 = t1. However, if the goal is to estimate the effect of

covariates x on the quantile of the marginal distribution of the second gap time T2,

the Peng-Huang method only provides unbiased results of

Λ2|1(t|T1 = t1,x) = Λ2(t|x), (3.50)

for all t > 0. In essence, the result (3.50) holds true if T1 and T2 are independent. In

the next section, we discuss a method that can address this issue even when T1 and T2

are not independent. In Section 3.5.2, we naively apply the Peng-Huang method to es-

timate the effects of covariates on the conditional quantile of the marginal distribution

of T2, given the value of the covariates x, when T1 and T2 are not independent.

3.3 Parametric Estimation for Quantile Regression

of Sequential Gap Times with Copulas

The theory of martingales associated with counting processes provides powerful tools

to estimate model parameters in QR. For example, as discussed in the previous section,

parameters related to the distribution of the first gap time in sequentially observed
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bivariate gap times can be estimated with the Peng-Huang method. However, this

method may result in biased estimates of the parameters in the marginal distribution

of the second gap time when the two gap times are not independent. In this section, we

introduce an approach to estimate the parameters in the marginal distribution of the

first and second gap times for the quantile regression method. This method is based

on the theory of generalized estimating equations, which is similar to the Peng-Huang

method in a way that it provides a system of estimating equations. Different from the

Peng-Huang method, we utilize the Newton-Raphson algorithm to solve the system of

equations to obtain the estimates of model parameters and their variance estimates.

The Newton-Raphson algorithm is a widely-used iterative numerical technique for

approximating solutions to equations (Lange et al., 2010, Chapter 14). It should be

noted that the application of the Newton-Raphson algorithm for estimation purposes

is a major change comparing with the Peng-Huang method, which is based on a grid

type estimation procedure. We also apply the Newton-Raphson algorithm to the

marginal distribution of the second gap time in our estimation procedure.

We first explain our parameter estimation method for the marginal distribution

of the first gap time. More specifically, our goal here is to estimate the parameters

β1(τ) in the conditional QR model for the marginal distribution of the first gap time,

given a set of covariate values; that is,

QT1(τ |x) = exp
(
xTβ1(τ)

)
, τ ∈ (0, 1), (3.51)

where x = (1, x̃T )T is a p × 1 vector including the (p − 1) × 1 vector of covariates x̃

and β1(τ) = (β01(τ), β11(τ), ..., βp−1,1(τ))T is a p × 1 vector of regression parameters

representing the effects of covariates on the τth quantile of the log of the first gap

time T1, allowing for potential changes with varying values of τ .

We assume n independent individuals subject to at most two sequentially observed

events. We let ΛT1i(t|xi) be the cumulative intensity function of the counting process

{N1i(t), t ≥ 0}, i = 1, 2, ..., n, in which N1i(t) takes the value of 1 if the first type

of the event occurs in (0, t]. Otherwise, it is equal to 0. Note that, as in the Peng-

Huang method, the martingale structure is preserved for the quantities M1i(t) =

N1i(t) − ΛT1i(min(t, z1i)|xi), where z1i = min(T1i, Ci) and i = 1, 2, ..., n. It follows
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from this result that

E

{
n−

1
2

n∑
i=1

[
xiM1i(e

xTi β
∗
1(τ))

∣∣∣xi]} = 0, (3.52)

where β∗
1(τ) denotes the true value of β1(·) in Model (3.51), τ ∈ (0, 1) and 0 is a

p × 1 vector of zeros. From the above result and the martingales M1i(t), we obtain

the p× 1 vector of unbiased estimating functions

S1(τ,β∗
1) = n−1

n∑
i=1

xi

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)], (3.53)

which provides a p× 1 system of unbiased estimating equations with the components

n−
1
2

n∑
i=1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

n−
1
2

n∑
i=1

xi1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

n−
1
2

n∑
i=1

xi2

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0,

...

n−
1
2

n∑
i=1

xi,p−1

[
N1i

(
ex

T
i β

∗
1(τ)
)
− ΛT1(min

{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi)] = 0. (3.54)

Since

ΛT1(t|x) =

∫ t

0

hT1(u|x)du = − log(1− F1(t|x)), t > 0, (3.55)

we can write the p× 1 vector of estimating functions given in (3.53) as follows.

S1(τ,β∗
1) = n−1

n∑
i=1

xi

[
N1i

(
ex

T
i β

∗
1(τ)
)

+ log
(

1− F1(min
{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi))]. (3.56)

Therefore, for a p-dimensional problem, the system of unbiased estimating equa-

tions S1(τ,β∗
1) = 0 includes p functions, where S1(τ,β∗

1) = [S11(τ,β∗
1), S12(τ,β∗

1), ...,
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S1p(τ,β
∗
1)]T and each component S1j(τ,β

∗
1), for j = 0, 1, .., p− 1, is defined as

S1j(τ,β
∗
1) = n−1

n∑
i=1

xij

[
N1i

(
ex

T
i β

∗
1(τ)
)

+ log
(

1− F1(min
{
ex

T
i β

∗
1(τ), z1i

}∣∣∣xi))], (3.57)

where xi0 = 1.

The goal is to simultaneously solve the equations in S1(τ,β∗
1) = 0 for the elements

in the p-dimensional vector β1(τ) = (β01(τ), β11(τ), ..., βp−1,1(τ))T . To achieve this,

we apply the Newton-Raphson algorithm, which iteratively updates the estimation

of β1(τ) as follows. Let β1(τ)0 be an initial value of β1(τ). The iterative scheme

includes updating β1(τ)k, for k = 0, 1, 2, ..., using the equation

β1(τ)k+1 = β1(τ)k − [J(β1(τ)k)]
−1S1(τ,β1(τ)k), (3.58)

where β1(τ)k and β1(τ)k+1 are the parameter estimates in the kth and (k + 1)st

iterations, respectively. The p × p matrix J(β1(τ)) is the derivative of the vector

S1(τ,β1), which is given by

J(β1(τ)) =
∂S1(τ,β1)

∂β1
T (τ)

, (3.59)

where

∂S1(τ,β1)

∂β1
T (τ)

= −n−1

n∑
i=1

xi

(f1

(
ex

T
i β1(τ)

∣∣xi)xTi exTi β1(τ)

1− F1

(
ex

T
i β1(τ)

∣∣xi)
)
I{exTi β1(τ) < z1i}. (3.60)

This iterative technique is based on the differentiation of the estimating functions and

requires the derivative of the vector of estimating functions given in (3.56) with respect

to the p× 1 vector β1(τ). The stopping criterion for the Newton-Raphson algorithm

in the proposed method employed in this thesis is based on the convergence criterion

|β1(τ)k+1 − β1(τ)k| < ε, where ε > 0 is a prespecified vector of error terms used to

stop the algorithm. If the convergence criterion is satisfied in the (k + 1)st iteration,

the values in β1(τ)k+1 are used for the corresponding values of the estimators in β̂1(τ).

To calculate the model-based variance estimates of the estimated parameters in the

vector β̂1, we employ the sandwich estimator (Lawless, 2003, p. 553). Let Cov(β̂1)
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be the p× p variance-covariance matrix of β̂1 with the elements Cov(β̂1i, β̂1j), i, j =

0, 1, 2, ..., p− 1. The estimator of the p× p covariance matrix of β̂1 is given by

ˆCov(β̂1) =
1

n
[An(β̂1)]−1[Bn(β̂1)]

[
[An(β̂1)]−1

]T
, (3.61)

where the p× p matrix An is

An(β1) = − 1

n

∂S1(τ,β1)

∂β1
T (τ)

, (3.62)

and the p× p matrix Bn is

Bn(β1) =
1

n

n∑
i=1

[
xi

[
N1i

(
ex

T
i β1(τ)

)
+ log

(
1− F1(min{exTi β1(τ), z1i}|xi)

)]]

×

[
xi

[
N1i

(
ex

T
i β1(τ)

)
+ log

(
1− F1(min{exTi β1(τ), z1i}|xi)

)]]T
. (3.63)

In Section 3.5, we used this method to estimate β1(τ) in a simulation study and

compare our results to those obtained with the Peng-Huang method.

We next discuss the estimation of the parameters in the conditional QR model,

given a vector of covariates, for the second gap time in sequentially observed bivariate

gap times setting. The marginal distributions of the first and second gap times can

be of different types. In this case, our main goal is to estimate the parameters β2(τ)

in the conditional QR model for the marginal distribution of the second gap time;

that is, to estimate β2(τ) in the model

QT2(τ |x) = exp
(
xTβ2(τ)

)
, τ ∈ (0, 1), (3.64)

where x = (1, x̃T )T is a p × 1 vector including the (p − 1) × 1 vector of covariates

x̃ and β2(τ) = (β02(τ), β12(τ), ..., βp−1,2(τ))T is a p × 1 vector of regression parame-

ters representing the effects of covariates on the τth quantile of the log of the second

gap time T2. An important aspect of our estimation method is that we do not as-

sume the independence of the first and second gap times, T1 and T2, respectively.

We model the dependency between the first and second gap times using a Clayton

copula, which defines the joint distribution of the two gap times, accounting for their

interdependence.
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For n independent individuals, suppose that the counting process {N2i(t), t ≥ 0},
i = 1, 2, ..., n, has the associated cumulative intensity function Λ2i(t|Hi(t)), where

Hi(t) = {N1i(s), N2i(s), xi; 0 ≤ s < t}. The counting random variable N2i(t)

takes the value of 1 if the ith individual experiences the second type of event in (0, t].

Otherwise, its value is zero. Note that, since the first and second types of events are

sequentially observed, it is necessary that N1i(t) = 1 if N2i(t) = 1. As discussed by

Yip and Lam (1997), the martingale structure is preserved for the quantities M2i(t) =

N2i(t)−Λ2|1(min(t, z2i)|T1i = t1i,xi), for i = 1, 2, ..., n, where z2i = min(T2i, Ci − T1i).

We investigate this structure in an empirical study in Section 3.4 through a Monte

Carlo simulation study.

Similar to the previous discussion, since the M2i(t) are martingales, we have

E

{
n−

1
2

n∑
i=1

[
xiM2i

(
ex

T
i β

∗
2(τ)
)∣∣∣xi]} = 0, (3.65)

where β∗
2(τ) denotes the true value of β2(τ) in Model (3.64), τ ∈ (0, 1) and 0 is a

p × 1 vector of zeros. As a result, for a given τ , we obtain p × 1 vector of unbiased

estimation functions n
1
2 S2(τ,β∗

2), where

S2(τ,β∗
2) = n−1

n∑
i=1

xi

[
N2i

(
ex

T
i β

∗
2(τ)
)
− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)]. (3.66)

Therefore, n
1
2 S2(τ,β∗

2) = 0 provides a p× 1 system of unbiased estimating equations

with the components

n−
1
2

n∑
i=1

[
N2i

(
ex

T
i β

∗
2(τ)
)
− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)] = 0,

n−
1
2

n∑
i=1

xi1

[
N2i

(
ex

T
i β

∗
2(τ)
)
− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)] = 0,

n−
1
2

n∑
i=1

xi2

[
N2i

(
ex

T
i β

∗
2(τ)
)
− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)] = 0,

...

n−
1
2

n∑
i=1

xi,p−1

[
N2i

(
ex

T
i β

∗
2(τ)
)
− Λ2|1(min

{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi)] = 0. (3.67)
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We use these unbiased estimating equations to estimate the parameters in the vector

β∗
2(τ). Note that from the definition of the cumulative hazard function, we have

Λ2|1(t|t1,x)) =

∫ t

0

h2|1(u|t1,x))du = − log
(
1− F2|1(t|t1,x)

)
. (3.68)

Also, as discussed in Section 2.2, the Clayton copula is given by

Cφ(u, v) =
(
u−φ + v−φ − 1

)− 1
φ , (3.69)

where φ > 0 is the Clayton copula parameter, and u and v are standard uniformly

distributed random variables. From (3.68) and (3.69), we can show that

Λ2|1(min
{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi) =
0, if δ1 = 0,

− log
(

1− F1(t1)−φ−1[F1(t1)−φ + F2(ex
T
i β

∗
2(τ))

−φ − 1]−
1
φ
−1
)
, if t = ex

T
i β

∗
2(τ) < z2i,

− log
(

1− F1(t1)−φ−1[F1(t1)−φ + F2(z2i)
−φ − 1]−

1
φ
−1
)
, if z2i < t = ex

T
i β

∗
2(τ),

(3.70)

where F1 and F2 are the c.d.f. of the first and the c.d.f. of the second gap times,

respectively, and δ1 = I(T1 < C), which is the event indicator for the first event. For

brevity, we do not explicitly show the dependency of the functions F1 and F2 to the

parameters in (3.70). However, note that F1(t) = F1(t;β1), where β1 are the p × 1

vector of parameters in the model log T1 = x̃Tβ1 + ε1, and ε1 is the random error

term. We explain the computation of Λ2|1(min
{
ex

T
i β

∗
2(τ), z2i

}∣∣∣t1i,xi) for a given data

set in more detail in Section 3.4.3.

It should be noted that the parameters β1 in the marginal distribution of the first

gap time T1 and the copula parameter φ appear in the conditional cumulative intensity

function (3.70). We apply a two-stage estimation procedure for the estimation of them.

In the first stage, the estimates of the parameters β1 are obtained by maximizing the

log of likelihood function `1(β1) = logL(β1), where L(β1) is given in (3.7). Let β̂1

denote the vector of these estimates, which are the maximum likelihood estimates of

the parameters in β1. In the second stage, the estimates in β̂1 are plugged in the



53

functions F1 and f1 in the log likelihood function L(β1,β2, φ) given in (3.10); that is,

`2(β̂1,β2, φ) = logL(β̂1,β2, φ), which is a profile log likelihood function for β2 and φ.

Then, the function `2(β̂1,β2, φ) is maximized to obtain the estimate of the Clayton

copula parameter φ given in (3.70). Let φ̂ denotes the value of this estimate. We then

replace β1 and φ with β̂1 and φ̂ in (3.70). It should be noted that both estimators β̂1

and φ̂ obtained in this approach are consistent under some regularity conditions. The

regularity conditions and asymptotic properties of the maximum likelihood estimates

β̂1 are well-established. The regularity conditions for φ̂ can be found in Shih and

Louis (1995) and Andersen (2005). The maximum likelihood estimates of β1 and φ

can also be obtained by directly maximizing `2(β1,β2, φ). However, the two-stage

estimation method is computationally more efficient than the direct maximization

method. Our simulation results show that the estimates are very close in both methods

for sufficiently large sample sizes.

Another point worth noting is that the estimating equations given in (3.67) are

not bona fide unbiased estimating equations after replacing β1 and φ with β̂1 and

φ̂, respectively. However, as the sample size n approaches infinity, the expectation

given in (3.65) converges to 0. Therefore, the estimating functions given in (3.67)

are unbiased in the limit as n → ∞, after plugging-in β̂1 and φ̂ in place of β1 and

φ, respectively. We investigated this result in empirical settings with a Monte Carlo

simulation study in Section 3.4.3.

We first replace β1 and φ in (3.70) with β̂1 and φ̂, respectively, and then incor-

porating (3.70) into (3.66). We then employ the Newton-Raphson method to the p

estimating equations given in (3.67), to estimate β2(τ) in Model (3.64). As explained

before, the proposed method using the Newton-Raphson algorithm takes the form

β2(τ)k+1 = β2(τ)k −
(
J(β2(τ))

)−1

S2(τ,β2(τ)k), (3.71)

where β2(τ)k and β2(τ)k+1 are the parameter estimates in the kth and (k + 1)st

iterations, respectively. With the Clayton copula (3.69), the conditional p.d.f. and

c.d.f. of T2i, given T1i = t1 and xi = xi, are respectively given by

f2|1
(
t
∣∣t1,xi) =

∂2

∂t1∂t
Cφ(F1(t1), F2(t))

f1(t1)
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=
∂2

∂t1∂t
(F1(t1)−φ + F2(t)−φ − 1)−

1
φ

f1(t1)

=

∂
∂t

(− 1
φ
)(F1(t1)−φ + F2(t)−φ − 1)−

1
φ
−1(−φ)f1(t1)F1(t1)−φ−1

f1(t1)

= (φ+ 1)F1(t1)−φ−1
[
F1(t1)−φ + F2(t)−φ − 1

]− 1
φ
−2
F2(t)−φ−1f2(t), (3.72)

and

F2|1
(
t
∣∣t1,xi) = F1(t1)−φ−1

[
F1(t1)−φ + F2(t)−φ − 1

]− 1
φ
−1
. (3.73)

For z2i = min(T2i, Ci−T1i) and with replacing t = exp
(
xTi β2(τ)

)
in (3.72) and (3.73),

the p× p matrix J(β2(τ)) is defined by

J(β2(τ)) =
∂S2(τ,β2)

∂β2
T (τ)

, τ ∈ (0, 1), (3.74)

where

∂S2(τ,β2)

∂β2
T (τ)

= −n−
1
2

n∑
i=1

xi

(f2|1
(
ex

T
i β2(τ)

∣∣t1,xi)xTi exTi β2(τ)

1− F2|1
(
ex

T
i β2(τ)

∣∣t1,xi)
)
I{exTi β2(τ) < z2i}. (3.75)

Convergence in the algorithm with (3.71) is assessed based on the absolute difference

between the calculated value of β2(τ) parameters at the kth and (k + 1)st steps.

Specifically, the algorithm is stopped when |β2(τ)k+1 − β2(τ)k| < ε, where ε > 0 is

a prespecified number. If the convergence criterion is met, the estimated parameters

in the (k + 1)st iteration are returned as the estimated values of the parameters in

β2(τ). This iterative process effectively estimates the parameters in the vector β2(τ).

Once again, we employ the sandwich estimator to calculate the model-based vari-

ance estimates of the estimated parameter β̂2. In this case,

ˆCov(β̂2) =
1

n
[An(β̂2)]−1[Bn(β̂2)]

[
[An(β̂2)]−1

]T
, (3.76)

where the p× p matrix An is given by

An(β2) = − 1

n

∂S2(τ,β2)

∂β2
T (τ)

, (3.77)
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and the p× p matrix Bn is

Bn(β2) =
1

n

n∑
i=1

[
xi

[
N2i

(
ex

T
i β2(τ)

)
+ log

(
1− F2|1(min{exTi β2(τ), z1i}|xi, t1i)

)]]

×

[
xi

[
N2i

(
ex

T
i β2(τ)

)
+ log

(
1− F2|1(min{exTi β2(τ), z1i}|xi, t1i)

)]]T
.

(3.78)

It should be noted that the estimate of Cov(β̂2) given in (3.76) does not take into

account the estimation of β1 and φ in the previous stages. This approach works fine

for large sample sizes like the ones considered in our simulation studies presented

in Section 3.5 and the data analysis given in Section 4.2. However, it may provide

conservative values in some cases with small sample sizes. In such cases, a bootstrap

procedure can be used to calculate the standard errors of the estimates of parameters

in β2 (Casella and Berger, 2002, Section 10.1.4). We further discuss this issue in

Section 5.2.

The asymptotic properties of the estimators obtained with this method are not an-

alytically investigated in this thesis. However, we conducted a Monte Carlo simulation

study to discuss the accuracy of the standard normal approximations for the quantity
√
n(β̂2k(τ)−β∗2k(τ))/

√
ˆV ar(β̂2k(τ)), k = 0, 1, 2, ..., p−1, with normal quantile-quantile

(Q-Q) plots. The results of this study are presented in Section 3.5 and suggest that

the standard normal approximations for
√
n(β̂2k(τ) − β∗2k(τ))/

√
ˆV ar(β̂2k(τ)) are ad-

equate for sufficiently large sample sizes. Furthermore, the results of the simulation

studies given in Section 3.5 show that the estimators β̂2k(τ) are consistent. Details of

this simulation study can be found in Section 3.5.

3.4 Martingale Structure for Sequentially Observed

Two Events: A Simulation Study

In this section, we first introduce how to simulate sequentially observed bivariate gap

times with copulas. Then, we presented the results of two Monte Carlo simulation

studies. The primary objective of the simulation studies is to investigate whether the
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counting processes associated with events constitute a zero-mean martingale struc-

ture in settings with sequentially observed gap times. This result is important for

the development of the estimation methods discussed in Sections 3.2 and 3.3. Specif-

ically, we aimed to investigate the expectation of the martingales associated with the

counting processes of the first and the second event times in some empirical settings.

We first explain how to generate sequentially observed bivariate gap times in the next

section. Then, we present our simulation study conducted to investigate this for the

first event in Section 3.4.2. Then, in Section 3.4.3, we discuss the simulation study

conducted to incorporate the second event while considering the dependency between

the two gap times using the Clayton copula structure.

3.4.1 Simulation of Sequentially Observed Bivariate Gap Times

In this section, we explain how to generate sequentially observed bivariate survival

(gap) times from n independent subjects. Let T1i and T2i be survival times of two

sequentially observed events, where T1i is the time to the first event and T2i is the

time between the first and second events for the ith subject, i = 1, 2, ..., n. In the

illness-death model framework, T1i and T2i represent the elapsed times for the ith

individual staying in the healthy state before moving to the ill state and staying in

the ill state before moving to the death state, respectively.

The algorithm to generate sequentially observed bivariate survival data in this

thesis is given as follows:

1. Generate U1i = u1i from a standard uniform distribution for i = 1, 2, ..., n.

2. Set T1i = t1i, where t1i = F−1
1 (u1i) and F1 is the marginal c.d.f. of the first gap

time, T1i, for i = 1, 2, ..., n.

3. For i = 1, 2, ..., n, generate censoring time Ci = ci for the ith individual from

the Uniform(ψ1, ψ2) distribution, where the values of ψ1 and ψ2 are selected so

that the desired censoring proportion in the data is achieved.

4. If t1i ≤ ci , let t∗1i = t1i and δ1i = 1, for i = 1, 2, ..., n. Otherwise, set t∗1i = ci,

δ1i = 0, t2i = 0, and δ2i = 0, for i = 1, 2, ..., n.

5. Generate U2i = u2i from a standard uniform distribution for i = 1, 2, ..., n.
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6. For i = 1, 2, ..., n, if δ1i = 1, calculate T2i = t2i as the solution of

u2i = F2|1(t2i|t1i), (3.79)

where F2|1(t2i|t1i) is the conditional c.d.f. of T2i given T1i = t1i.

7. For i = 1, 2, ..., n, if δ1i = 1 and t2i ≤ ci − t1i, let t∗2i = t2i and δ2i = 1. If δ1i = 1

and t2i > ci − t1i, set t∗2i = ci − t1i and δ2i = 0.

The above algorithm generates the data {(t∗1i, t∗2i, δ1i, δ2i); i = 1, 2, ..., n} for n

independent individuals. It should be noted that if the first gap time T1i is censored

then the second gap time T2i is unobservable. In this generated data set such a

situation corresponds to the cases in which δ1i = 0, which gives (t∗1i, 0, 0, 0) as the

generated datum. In the remaining sections of this chapter, we applied similar steps

given above to generate data in Monte Carlo simulations with R software. It should

also be noted that the conditional c.d.f. of F2|1 given in the right-hand side of (3.79)

can be written as

F2|1(t|t1i) =
∂
∂t1i

F (t1i, t)
∂
∂t1i

F1(t1i)
, t ≥ 0, (3.80)

where F is the joint c.d.f. of T1i and T2i and F1 is the marginal c.d.f. of T1i, i =

1, 2, ..., n. As discussed in Section 2.2, the joint c.d.f. F can be represented with the

copula C(F1(t1i), F2(t2i)), where F2 is the marginal c.d.f. of T2i. With the bivariate

Archimedean copulas (Genest and Rivest, 1993), the conditional c.d.f. given in (3.80)

therefore takes the form of

F2|1(t|T1i = t1i) =
∂
∂t1i

C(F1(t1i), F2(t))
∂
∂t1i

F1(t1i)
,

=
∂
∂t1i

ϕ−1(ϕ(F1(t1i)) + ϕ(F2(t)))
∂
∂t1i

ϕ−1(ϕ(F1(t1i)))
,

=
ϕ−1(1)(ϕ(F1(t1i)) + ϕ(F2(t)))

ϕ−1(1)(ϕ(F1(t1i)))
, (3.81)

where ϕ is the generator of the Archimedean copula and ϕ−1(1) = (∂/∂t1i)ϕ
−1. In this

thesis, we use the Clayton copula to model the dependency between two gap times.
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As mentioned in Section 2.2, the generator function of the Clayton copula is

ϕ(t) = t−φ − 1, φ > 0, (3.82)

which generates

Cφ(u, v) =
(
u−φ + v−φ − 1

)− 1
φ , 0 ≤ u, v ≤ 1, (3.83)

where φ is the copula (dependence) parameter. The inverse of the generator function

of the Clayton copula is

ϕ−1(z) = (z + 1)−
1
φ , φ > 0, (3.84)

and

ϕ−1(1)(z) =
∂ϕ−1(z)

∂z
= −1

φ
(z + 1)−

1
φ
−1, φ > 0. (3.85)

In (3.79), we have u2i = F2|1(t2i|t1i) and from (3.81), we can write

u2i =
ϕ−1(1){ϕ[F1(t1i)] + ϕ[F2(t2i)]}

ϕ−1(1){ϕ[F1(t1i)]}
. (3.86)

From the results given in (3.82), (3.84) and (3.85), we can show that

F2(t2i) =
[
u2i
− φ
φ+1u1i

−φ − u1i
−φ + 1

]− 1
φ
, φ > 0, (3.87)

which gives

t2i = F2
−1
([

1− u1i
−φ(1− u2i

− φ
φ+1 )

]− 1
φ

)
, (3.88)

where F2
−1 is the inverse of marginal c.d.f. of T2i, for i = 1, 2, ..., n. Note that the value

of t2i in (3.88) depends on the value of t1i trough the Clayton copula structure. We

use the result (3.88) to generate the dependent gap times t1i and t2i for i = 1, 2, ..., n

in the simulations.
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3.4.2 Martingale Associated with the Counting Process of

the First Event

Formation of the zero-mean martingale associated with the counting process of the

first event is well established (see, for example, Aalen et al., 2008, Andersen et al.,

1993; Daley and Vere-Jones, 2003). We conducted a simulation study to investigate

this property in an empirical setting. We present the results of this study in this

section. Our goal is to get some insight about the amount of variability around the

zero-mean martingale in an empirical setting. This investigation is also useful to

understand the martingale structure associated with the second event, which is dis-

cussed in Section 3.4.3. In particular, we are interested in the investigation of whether

or not E{M1(t|x)} = 0, for t ≥ 0, where M1(t) = N1(t) − ΛT1(min(t, T1, C)|H(t)),

{N1(t), t ≥ 0} is a counting process of the first event with the associated cumula-

tive intensity function ΛT1(t|H(t)) defined in Equation (2.21) given in Section 2.1,

H(t) = {N1(s),x; 0 ≤ s < t}, T1 is the event time of the first event and C is the

censoring time.

In the simulation study, we considered a sample size of 200 individuals (i.e. n =

200) and approximately 20% right censoring. For each individual, we generated two

covariates:

a. Covariate 1 (X1): A continuous covariate drawn from a standard normal distri-

bution.

b. Covariate 2 (X2): A discrete covariate drawn from a Bernoulli distribution with

the probability of success set at 0.5.

In each simulation run r, r = 1, 2, ..., R, we obtained the survival data Dr =

{(t∗1i, δ1i); i = 1, 2, ..., n} as follows:

a. We set the simulation index r = 1.

b. For i = 1, 2, ..., n, we generated the error term ε1i = e1i from a standard extreme

value distribution, and X1i = x1i and X2i = x2i as explained above.

c. Then, we calculated

y1i = β01 + β11x1i + β21x2i + e1i , for i = 1, 2, ..., n. (3.89)
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d. The observed values of the survival times of individuals were then t1i = exp(y1i),

i = 1, 2, ..., n.

e. For i = 1, 2, ..., n, we then generated the right-censoring time Ci = ci from

Uniform(0, ψ) distribution, where the parameter ψ was selected so that approx-

imately 20% of the processes were right censored.

f. We then set t∗1i = min(t1i, ci) and δ1i = 1 if t1i ≤ ci; otherwise δ1i = 0, for

i = 1, 2, ..., n. The data set in the rth simulation run was then given by Dr =

{(t∗1i, δ1i), x1i, x2i; i = 1, 2, ..., n}.

g. For the process i, i = 1, 2, ..., n, we set N1i(t) = 1 if t∗1i ≤ t and δ1i = 1; otherwise

N1i(t) = 0 at various time points t.

h. Then, we calculated the cumulative hazard function of the ith process, i =

1, 2, ..., n, at each time point t as follows.

ΛT1i(t|x1i, x2i) =

∫ t

0

Y1i(s) hT1i(s|x1i, x2i)ds, (3.90)

where hT1i(s) is the hazard function of the ith individual and Y1i(s) is the at-risk

function of the ith individual as defined in Section 2.1.

i. For i = 1, 2, ..., n, we then calculated the martingale M1i(t) = N1i(t) −ΛT1i(min

(t, t1i, ci)|Hi(t)) at each time point t. Subsequently, we computed M̄1r(t) =
1
n

∑n
i=1 M1i(t) at each time point t.

j. We then increased r by 1 and repeated the previous steps R− 1 times.

We conducted R = 1000 iterations of the simulation process to estimate the mar-

tingale expectation at various time points t. At each time point t, we computed the

mean of the martingale M̄1r(t) based on 1000 runs, and obtained the empirical means

of martingales at each time point t. That is, we calculated M̄1(t) = 1
R

∑R
r=1 M̄1r(t) at

various t points.

The results are presented in Figure 3.1 and Figure 3.2 as pointwise dot plots

of M̄1(t) at various time points t. The dots are connected with straight lines for

an easy visual interpretation. The plot in Figure 3.1 shows the results of M̄1(t)

when the values of the parameters β01, β11 and β21 in the model were all set to
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Figure 3.1: Empirical mean of the martingale M1(t) associated with the counting
process of the first event without covariates (i.e. β01 = β11 = β21 = 0 in (3.89)) at
various time points t.

zero (i.e. β01 = β11 = β21 = 0 in Model (3.89)). It is clear from the plot that

the empirical setting supports that the mean-zero martingale structure is present for

the case considered in our simulation setting. The results are close to the zero line

with a random occurrence pattern above and below the zero line, which is, a typical

white-noise pattern of a martingale difference sequence.

The plots given in Figure 3.2 include the values of M̄1(t) when the data were

generated with Model (3.89) where β01 = 0, β11 = 3.5 and β21 = 2. The pattern in

plots (a), (b) and (c) suggest that the martingale structure is preserved for M1i(t),

x1iM1i(t) and x2iM1i(t), respectively, for i = 1, 2, ..., n. This empirical evidence sug-

gests that it is reasonable to assume that the estimating functions in xiM1i(t), where

xi = (1, x1i, x2i)
T , are unbiased; that is, E(xiM1i(t)

∣∣∣xi) = 0, where 0 = (0, 0, 0)T ,

for i = 1, 2, ..., n. This result suggests that the expectation of the martingales arising

from the counting processes for the first event are mean-zero valued. As a result, the

estimating equations based on them can be used for the estimation of the coefficients

β01(τ), β11(τ), and β21(τ) at different values of quantile τ in our survival model. To

achieve this, as discussed in Section 3.3, we employ the Newton-Raphson algorithm

in the proposed method, an efficient iterative numerical technique used to find the

roots of the system of equations with respect to β01(τ), β11(τ), and β21(τ) at different

values of a given quantile τ , τ ∈ (0, 1).
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(a) Empirical mean of martingale M1(t)

(b) Empirical mean of the function x1M1(t)

(c) Empirical mean of the function x2M2(t)

Figure 3.2: Empirical martingale structures xM1(t), where x = (1, x1, x2)T , associated
with the counting process of the first event at various time points t. The data were
generated where β01 = 0, β11 = 3.5 and β21 = 2 in Model (3.89).
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3.4.3 Martingale Associated with the Counting Process of

the Second Event

In this section, we consider the martingale structure related to the counting process

of the second event observed after the occurrence of the first event. We would like

to note that the first and second events can be of different types. Our aim is to

investigate whether the expectation of the martingale associated with the counting

process of the second event time is a mean-zero structure in an empirical setting. To

do this, we modeled the dependency between the first and second gap times using a

Clayton copula, which defines the joint distribution of the two gap times, accounting

for their interdependence.

To investigate the martingale structure in an empirical setting, we conducted a

simulation study. The generation of the gap times of the first event was similar to

that of explained in the previous section. To do this, we generated n i.i.d. error

terms ε1i for the first gap times from the standard extreme value distribution. We

then proceeded the algorithm explained in the previous section to obtain the data

D1r = {(t∗1i, δ1i), x1i, x2i; i = 1, 2, ..., n} in the rth simulation run, where r = 1, 2, ..., R.

The regression model to generate this data was given in the step c of the previous

data generation algorithm; that is, for i = 1, 2, ..., n, y1i = β01 + β11x1i + β21x2i + e1i,

where y1i = log(t1i), t1i is the observed value of T1i and e1i is the generated value of

ε1i.

To generate the data for the second event, we first obtained the data D1r in

the rth simulation run. We then applied the algorithm given below. Note that, to

establish the dependency between T1i and T2i, we generated error terms ε2i using a

Clayton copula, taking into account the relationship with the previously generated

error terms ε1i.

a. We set r = 1, and obtained e1i and ci, for i = 1, 2, ..., n, as well as D1r =

{(t∗1i, δ1i), x1i, x2i; i = 1, 2, ..., n}.

b. We defined u1i = F1(e1i), i = 1, 2, ..., n, where F1 represents the c.d.f. of the

distribution of ε1i.

c. We generated U2i = u2i, i = 1, 2, ..., n, from a standard uniform distribution,
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and calculated ε2i = e2i, where

e2i = F−1
2

([
1− u−φ1i (1− u

− φ
φ+1

2i )
]−1
φ

)
, (3.91)

where F−1
2 represents the inverse of the c.d.f. of ε2i, for i = 1, 2, ..., n, which

was the standard extreme value distribution; that is F−1
2 (x) = − log(− log(x)),

where 0 < x < 1.

d. We then calculated

y2i = β02 + β12x1i + β22x2i + e2i, (3.92)

and t2i = exp(y2i), i = 1, 2, ..., n.

e. For i = 1, 2, ..., n,

• if δ1i = 0, we let t∗2i = 0 and δ2i = 0,

• if δ1i = 1 and t1i + t2i ≤ ci, we let t∗2i = t2i and δ2i = 1, and

• if δ1i = 1 and t1i + t2i > ci, we let t∗2i = ci − t1i and δ2i = 0.

Then, we obtained the data set D2r = {(t∗1i, t∗2i, δ1i, δ2i), x1i, x2i; i = 1, 2, ..., n}
in the rth simulation run.

The above steps of the algorithm generates the data D2r = {(t∗1i, t∗2i, δ1i, δ2i),

x1i, x2i; i = 1, 2, ..., n} for n independent individuals. This procedure was also used

to obtain the results of the simulation study presented in Section 3.5. To obtain the

results of the simulation study of this section, we further applied the following steps

from f to i. These steps were used to calculate the martingale values associated with

the second event at various time points t.

f. For a given value of t, we set the value of Y2i(t) and N2i(t), i = 1, 2, ..., n, using

the following conditions. For i = 1, 2, ..., n,

• if δ1i = 0 or t < t∗1i, we set Y2i(t) = 0 and N2i(t) = 0,

• if δ1i = 1, δ2i = 0 and t < t∗1i + t∗2i, we set Y2i(t) = 1 and N2i(t) = 0,

• if δ1i = 1, δ2i = 1 and t < t∗1i + t∗2i, we set Y2i(t) = 1 and N2i(t) = 0,
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Figure 3.3: Mean of the martingale M2(t) associated with the counting process of
the second event without covariates (i.e. β01 = β11 = β21 = 0 in Model (3.89) and
β02 = β12 = β22 = 0 in Model (3.92)) at various time points t.

• if δ1i = 1, δ2i = 0 and t ≥ t∗1i + t∗2i, we set Y2i(t) = 0 and N2i(t) = 0, and

• if δ1i = 1, δ2i = 1 and t ≥ t∗1i + t∗2i, we set Y2i(t) = 0 and N2i(t) = 1.

g. Then, we calculated the cumulative hazard function of the ith process, i =

1, 2, ..., n, at each time point t as follows.

Λ2|1(t|t∗1i, x1i, x2i) =

∫ t

0

Y2i(s) h2|1(s|t∗1i, x1i, x2i)ds, (3.93)

where h2|1 is the conditional hazard function, given t∗1i, x1i, and, x2i, and Y2i(s)

is the at-risk function of the second event for the ith individual as defined in

Step f.

h. We then calculated the martingale M2i(t) for i = 1, 2, ..., n at each time point t,

whereM2i(t) =N2i(t)−Λ2|1(t|t∗1i, x1i, x2i). Subsequently, we computed M̄2r(t) =
1
δ1.

∑n
i=1 M2i(t), where δ1. =

∑n
i=1 δ1i, for each time point t.

i. We then increased r by 1 and repeated the previous steps R− 1 times.

We fitted the simulation runs R at 1000, and estimated the martingale expectation

at various time points t. At each time point t, we computed the mean of the martingale

for 1000 iterations and obtained the empirical means of martingales at each time point

t. That is, we calculated M̄2(t) = 1
R

∑R
r=1 M̄2r(t) for various t points. It should be
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noted that

h2|1(t|t∗1i, x1i, x2i) = − log
(

1− F1(t∗1i)
−φ−1

[
F1(t∗1i)

−φ + F2(t)−φ − 1
]− 1

φ
−1
)
, (3.94)

where F1(t∗1i) = F1(t∗1i, β01, β11, β21) is the c.d.f. of T1i evaluated at t∗1i and F2(t) =

F2(t, β02, β12, β22) is the c.d.f. of T2i

The results are presented in Figure 3.3 and Figure 3.4 as pointwise dot plots of

M̄2(t) for various values of t. Once again, the dots are connected with straight lines

for an easy visual interpretation. The plot in Figure 3.3 shows the results of M̄2(t)

when the values of the parameters β01, β11 and β21 in Model (3.89) and β02, β12 and

β22 in Model (3.92) were all set at zero (i.e. β01 = β11 = β21 = β02 = β12 = β22 = 0).

Our conclusion is similar to that given in the previous section. It is clear from the

plot that the empirical setting supports the mean-zero martingale structure for the

case considered in our simulation study. The results are close to the zero line with

a random occurrence pattern above and below the zero line, which is similar to a

white-noise pattern.

The plots given in Figure 3.4 include the results of M̄2(t) at various time points t

when the data were generated with β01 = 0, β11 = 2, and β21 = 1 in Model (3.89) and

with β02 = 0, β12 = 3.5 and β22 = 2 in Model (3.92). The patterns in these plots reveal

that the martingale structure associated with the second event is preserved for M2i(t),

x1iM2i(t) and x2iM2i(t) as well. This empirical evidence suggests that the estimating

functions in xiM2i(t), where xi = (1, x1i, x2i)
T , are reasonably unbiased; that is, for

i = 1, 2, ..., n, E(xiM2i(t)) = 0. In other words, the empirical results showed that it is

reasonable to assume that the expectation of the martingales arising from the counting

processes for the second event are mean-zero valued, and the estimating equations

based on them can be used for the estimation of the coefficients β02(τ), β12(τ), and

β22(τ) at different values of quantile τ . Since our proposed estimation method of β2(τ)

is based on the expectation given in (3.65), the result of this simulation study gives

some insight about the validity of this martingale structure in an empirical setting.
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(a) Empirical mean of martingale M2(t)

(b) Empirical mean of function x1M2(t)

(c) Empirical mean of function x2M2(t)

Figure 3.4: Empirical martingale structures xM2(t), where x = (1, x1, x2)T , associated
with the counting process of the second event at various time points t. The data were
generated where β01 = 0, β11 = 2 and β21 = 1 in Model (3.89) and β02 = 0, β12 = 3.5
and β22 = 2 in Model (3.92).
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3.5 Monte Carlo Simulations

In this section, we present the results of Monte Carlo simulations conducted to assess

and compare the performance of the Peng-Huang and proposed methods for the esti-

mation of the model parameters in the marginal distributions of the first and second

gap times. We also show the result of a simulation study conducted to investigate

the asymptotic normality of the estimators based on the proposed method for the

estimation of parameters related to the second gap time.

3.5.1 Comparative Analysis: Proposed and Peng-Huang Meth-

ods for Parameter Estimation in Quantile Regression

Model for the First Gap Time

The goal of our first simulation study in this section is to estimate the model parame-

ters related to the first gap time in sequentially observed bivariate gap times settings.

This case corresponds to the regular survival analysis with quantile regression. The

Peng-Huang method discussed in Section 3.2 provides estimates of the model param-

eters, which possesses the uniform consistency and standard weak convergence to a

normal distribution properties as the sample size increases. Details of these results

are given in Peng and Huang (2008). Since we do not analytically investigate these

properties for the proposed method, it is important to compare its performance with

that of the Peng-Huang method. To do this, we conducted a Monte Carlo simulation

study based on R = 1000 runs, and examined the bias and precision of estimators

obtained from the Peng-Huang method and proposed method.

For i = 1, 2, ..., n, we generated the first gap time t1i from the model

log t1i = β01 + β11x1i + β21x2i + ei, (3.95)

where ei is the value of the error terms εi independently generated from the standard

extreme value distribution, and x1i and x2i are the values of covariates X1i and X2i.

The former covariate was generated from the standard normal distribution N(0, 1) and

the latter covariate was generated from a Bernoulli distribution with the probability

of success set at 0.5; i.e. Ber(0.5). We took β01 = 0, β11 = 3.5 and β21 = 2. The

details of the data generation process are given in Section 3.4.2.
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We generated the censoring times of individuals independently from the Uniform(0,

ψ) distribution, where ψ was selected to obtain the desired approximate censoring

proportion. For this simulation study, we set the value of ψ so that we obtained

approximately 20% censoring out of n = 200 subjects. The data set generated in

the rth simulation run then consisted of D1r = {(t∗1i, δ1i), x1i, x2i; i = 1, 2, ..., n} where

t∗1i = min(t1i, ci), δ1i = I(t1i ≤ ci) and r = 1, 2, ..., R.

We fitted the model

QT1(τ |x1, x2) = exp{β01(τ) + β11(τ)x1 + β21(τ)x2}, (3.96)

where τ ∈ (0, 1), and β1(τ) = (β01(τ), β11(τ), β21(τ))T are the parameters estimated

with the generated data D1r, for r = 1, 2, ..., R. We used the Peng-Huang method

of Section 3.2 and the proposed method of Section 3.3 to estimate the parameters

in Model (3.96) using the same generated data D1r, r = 1, 2, ..., R. The estimates

are obtained at τ = 0.1, 0.3, 0.5 and 0.7 quantile points. For k = 0, 1 and 2, we let

β̃k1,r(τ) and β̂k1,r(τ) be the estimates of the parameter βk1(τ) based on the Peng-

Huang and proposed methods, respectively, obtained at the rth run of the simulation.

At each τ point, we calculated the empirical bias (EmpBias) in the estimation of the

parameter βk1(τ), k = 0, 1 and 2, using the formula

EmpBiask1(PH) =
1

R

R∑
r=1

(
β̃k1,r(τ)− βk1,r(τ)

)
, (3.97)

where EmpBiask1(PH) is the calculated bias using the Peng-Huang method. Simi-

larly, we calculated

EmpBiask1(PM) =
1

R

R∑
r=1

(
β̂k1,r(τ)− βk1,r(τ)

)
, (3.98)

which gives the calculated bias based on the proposed method. Note that the param-

eter β01(τ) in Model (3.96) denotes the τth quantile of the error term ε, which follows

a standard extreme value distribution, and β11(τ) and β21(τ) are the values of β11 and

β21 given in Model (3.95).

The calculation of the empirical standard deviations of the estimates β̃k1(τ), where
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¯̃βk1(τ) = 1
R

∑R
r=1 β̃k1,r(τ), for k = 0, 1 and 2, was based on the formula

EmpSD(β̃k1(τ)) =

√√√√ 1

R

R∑
r=1

(
β̃k1,r(τ)− ¯̃βk1(τ)

)2
. (3.99)

A similar formula was used for the calculation of EmpSD(β̂k1(τ)), for k = 0, 1 and 2,

where
¯̂
βk1(τ) = 1

R

∑R
r=1 β̂k1,r(τ). We also calculated an estimate of the variance of

β̃k1(τ) and β̂k1(τ), for k = 0, 1 and 2 as follows. In each simulation run r, r =

1, 2, ..., R, we obtained ˆV ar(β̃k1,r(τ)) using the crq() function in the quantreg package

of the R software. For k = 0, 1 and 2, we then obtained

AveSE(β̃k1(τ)) =

√√√√ 1

R

R∑
r=1

ˆV ar(β̃k1,r(τ)). (3.100)

To obtain ˆV ar(β̂k1,r(τ)), we used the 3 × 3 sandwich estimator of the variance-

covariance matrix given in (3.61), and took its corresponding diagonal element to

find ˆV ar(β̂k1,r(τ)) for k = 0, 1 and 2. We then reported

AveSE(β̂k1(τ)) =

√√√√ 1

R

R∑
r=1

ˆV ar(β̂k1,r(τ)). (3.101)

Finally, we obtained the proportion of the estimated 95% standard normal distribution

based confidence intervals for βk1(τ), k = 0, 1 and 2, using the values of β̃k1,r(τ) and
ˆV ar(β̃k1,r(τ)), as well as the values of β̂k1,r(τ) and ˆV ar(β̂k1,r(τ)). Since our simulation

study was based on R = 1000 simulation runs, an empirical coverage rate below 0.9365

or above 0.9635 would indicate that the coverage rate is significantly different than

the normal value of 0.95 (0.95± 1.96
√

(0.05× 0.95)/100).

We presented the results of our simulation study in Table 3.1. The results based

on the Peng-Huang method show that, for all τ values, the magnitude of biases in the

estimates of β01(τ), β11(τ) and β21(τ) are small. For example, the absolute values of

EmpBias in all scenarios are less than 0.06. We also observe a similar pattern with the

proposed method. Overall, the values of the EmpBias obtianed with two methods are

close to each other under the same scenarios. In all scenarios, the values of AveSE and

EmpSD are similar in the Peng-Huang method. We also observe a similar result for



71

Table 3.1: Simulation results for the first gap time when approximately 20% of the
first gap time is censored.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 -0.004 0.224 0.233 0.943 -0.001 0.211 0.225 0.947

β̂1 0.012 0.315 0.317 0.940 0.011 0.316 0.333 0.916

β̂2 -0.009 0.179 0.189 0.937 -0.008 0.196 0.179 0.966

0.3 β̂0 0.005 0.298 0.279 0.961 -0.004 0.209 0.217 0.928

β̂1 0.054 0.473 0.459 0.976 0.054 0.346 0.323 0.952

β̂2 -0.006 0.163 0.181 0.932 -0.007 0.192 0.173 0.956

0.5 β̂0 0.033 0.259 0.239 0.955 0.033 0.253 0.239 0.905

β̂1 -0.003 0.403 0.371 0.959 -0.003 0.401 0.372 0.917

β̂2 0.003 0.238 0.216 0.967 0.003 0.229 0.217 0.907

0.7 β̂0 0.029 0.288 0.243 0.970 0.036 0.386 0.343 0.965

β̂1 -0.002 0.446 0.485 0.928 -0.003 0.549 0.555 0.948

β̂2 0.031 0.201 0.259 0.940 0.032 0.308 0.330 0.936

the proposed method. For the cross comparison of the values of AveSE and EmpSD

obtained from two methods, we observe that both methods provided similar results

when τ = 0.1 and τ = 0.5 for all βk1(τ), k = 0, 1, 2, parameters. When τ = 0.3,

the values of AveSE and EmpSD are similar with the Peng-Huang method comparing

with those values obtained with the proposed method. We observe an opposite pattern

when τ = 0.7. As explained in Section 3.2, this result is probably caused by the grid-

based method used by the Peng-Huang method. The proposed method produced

more scenarios where the empirical coverage rates (i.e., Cov95 values in Table 3.1) of

βk1(τ) within the threshold values (7 out of 12) comparing with those obtained with

the Peng-Huang method (4 out of 12). However, most of the Cov95 values are very

close to the interval (0.9365, 0.9635).

To sum up, the simulation study considered in this section reveals that the pro-

posed method provides similar estimates of the model parameter βk1(τ) and their

variance estimates, to those obtained with the Peng-Huang method in all scenarios

considered in Table 3.1. Finally, it should be noted that our simulation results pre-

sented in Table 3.1 for the Peng-Huang method are consistent with the simulation

results given by Peng and Huang (2008).
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3.5.2 Comparative Analysis: Proposed and Peng-Huang Meth-

ods for Parameter Estimation in Quantile Regression

Model for the Second Gap Time

In this section, we focus on the quantile regression model for the second gap time

after the occurrence of the first event. We do not assume independence of the first

and second gap times. As noted before, the first and second events can be of different

types. We conducted a Monte Carlo simulation study to assess the magnitude of the

bias and precision of estimators with QR model based on the proposed method and

the naive Peng-Huang method.

We conducted R = 1000 Monte Carlo simulation runs. As explained in the

previous section, to generate gap time t1i, we considered the following model. For

i = 1, 2, ..., n,

log t1i = β01 + β11x1i + β21x2i + e1i, (3.102)

where x1i and x2i are the values of the covariates generated from N(0, 1) and Ber(0.5)

distributions, respectively. We used the following model to generate the second gap

time t2i. For i = 1, 2, ..., n,

log t2i = β02 + β12x1i + β22x2i + e2i, (3.103)

where the same values of x1i and x2i were used. In Models (3.102) and (3.103), we

specified β01 = 0, β11 = 2, β21 = 1, β02 = 0, β12 = 3.5 and β22 = 2, and generated

the values of the error terms ε1i = e1i and ε2i = e2i from the standard extreme value

distribution. To create the dependency between ε1i and ε2i values, we used the Clayton

copula model with the dependence parameter φ so that the dependence between the

gap times T1 and T2 was established. Note that the Kendall’s tau parameter τφ and

the Clayton copula parameter φ have the relation τφ = φ
φ+2

. We also generated

a censoring value for each individual from a Uniform(0, ψ) distribution, where the

value of ψ was chosen so that an approximate proportion of censoring of the first

gap times was obtained. Then in each simulation run, r = 1, 2, ..., R, we obtained

the data set D2r = {(t∗1i, t∗2i, δ1i, δ2i), x1i, x2i; i = 1, 2, ..., n}, where t∗1i = min(t1i, ci),

δ1i = I{t1i ≤ ci}, t∗2i = min(t2i, ci − t1i), δ2i = I{δ1i = 1 and t2i ≤ ci − t1i}, for

i = 1, 2, ..., n. The details of data generation is explained in Section 3.4.3.
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The factors of this simulation study included the sample size n (n = 200, 500),

the approximate censoring proportion of the first gap time (c% = 20%, 40%) and the

Kendall’s tau coefficient τφ (τφ = 0.2, 0.4, 0.6). We applied a full factorial simulation

design with these factors, and presented the results in 12(= 2 × 2 × 3) tables each

defined by a combination of (n, c%, τφ) as a simulation scenario.

At each simulation run r, r = 1, 2, ..., R, we fitted the conditional QR model

QT2(τ |x1, x2) = exp{β02(τ) + β12(τ)x1 + β22(τ)x2}, (3.104)

using the generated data set D2r and obtained the estimates of model parameters

β02(τ), β12(τ) and β22(τ), and their variance estimates using the Peng-Huang and

proposed methods at four different quantile values of the distribution of ε2 (τ = 0.1,

0.3, 0.5 and 0.7). It should be noted that the estimated parameters obtained from

the naive Peng-Huang method are considered as the initial values for estimating the

parameters βk2(τ), k = 0, 1, 2, in the Newton-Raphson algorithm in the proposed

method given in (3.71). For each k, where k = 0, 1, and 2, β̃k2,r(τ) and β̂k2,r(τ) denote

the estimates of the parameter βk2(τ) obtained from the Peng-Huang and proposed

methods in the rth simulation run, respectively. At each τ point, we computed the

empirical bias (EmpBias) in estimating the parameter βk2(τ), k = 0, 1 and 2, using

the formula

EmpBiask2(PH) =
1

R

R∑
r=1

(
β̃k2,r(τ)− βk2,r(τ)

)
, (3.105)

where EmpBiask2(PH) represents the bias calculated using the Peng-Huang method.

Similarly, we calculated

EmpBiask2(PM) =
1

R

R∑
r=1

(
β̂k2,r(τ)− βk2,r(τ)

)
, (3.106)

which gives the empirical bias calculated using the proposed method. Note that the

parameter β02(τ) in Model (3.104) denotes the τth quantile of the error term ε2,

following a standard extreme value distribution, and β12(τ) and β22(τ) are the values

of β12 and β22 given in Model (3.103).

We computed the empirical standard deviations of the estimates β̃k2(τ), where
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¯̃βk2(τ) = 1
R

∑R
r=1 β̃k2,r(τ), for k = 0, 1 and 2, using the formula

EmpSD(β̃k2(τ)) =

√√√√ 1

R

R∑
r=1

(
β̃k2,r(τ)− ¯̃βk2(τ)

)2
. (3.107)

We applied a similar formula to compute EmpSD(β̂k2(τ)), for k = 0, 1 and 2, where
¯̂
βk2(τ) = 1

R

∑R
r=1 β̂k2,r(τ). Additionally, we calculated the estimates of the vari-

ance for β̃k2(τ) and β̂k2(τ), for k = 0, 1 and 2 as follows. In each simulation run r,

r = 1, 2, ..., R, we obtained ˆV ar(β̃k2,r(τ)) utilizing the crq() function in the quantreg

package in R software. Subsequently, for k = 0, 1, and 2, we then calculated

AveSE(β̃k2(τ)) =

√√√√ 1

R

R∑
r=1

ˆV ar(β̃k2,r(τ)). (3.108)

This computation provided the average of the estimated standard deviation for β̃k2(τ)

across the simulation runs. As for the proposed method, we calculated ˆV ar(β̂k2,r(τ))

by utilizing the 3 × 3 sandwich estimator of the variance-covariance matrix as ex-

plained in (3.76). Extracting the corresponding diagonal element provided the value

of ˆV ar(β̂k2,r(τ)) for k = 0, 1 and 2. Subsequently, we reported

AveSE(β̂k2(τ)) =

√√√√ 1

R

R∑
r=1

ˆV ar(β̂k2,r(τ)). (3.109)

Finally, we determined the proportion of the estimated 95% confidence intervals for

βk2(τ), k = 0, 1 and 2. These intervals were based on the regular standard normal

approximations and computed using the values of β̃k2,r(τ) and ˆV ar(β̃k2,r(τ)), as well

as the values of β̂k2,r(τ) and ˆV ar(β̂k2,r(τ)). Given that our simulation study was based

on R = 1000 simulation runs, an empirical coverage rate below 0.9365 or above 0.9635

would indicate a significant deviation from the expected normal value of 0.95 for the

coverage rate.

The results for scenario (n = 200, c% = 0.2, τφ = 0.2) is given in Table 3.2 for the

values of τ = 0.1, 0.3, 0.5 and 0.7. Upon comparing the magnitude of the empirical

bias of the two methods, the results given in Table 3.2 indicate that the estimates

of the model parameters based on the proposed method typically exhibit lower bias
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when compared to those obtained with the Peng-Huang method. Furthermore, the

proposed method consistently outperforms the naive Peng-Huang method, yielding

more accurate coverage probabilities across various quantiles and parameters. These

results, along with the calculated coverage probabilities, indicate that the estimation

of the model parameters with the proposed method is more precise and reliable,

effectively capturing the true parameter values within the specified 95% standard

normal approximation based confidence intervals, comparing with the naive Peng-

Huang method.

It is noteworthy that, with both methods, as censoring increases, the empirical bias

also increases, accompanied by an increase in the average of the estimated standard

error (AveSE) and empirical standard deviation (EmpSD). Additionally as empiri-

cal coverage rates (Cov95) indicates, the confidence level becomes less accurate as

censoring increases. Conversely, with an increase in the sample size n, the empirical

bias decreases. This reduction in bias is accompanied by a decrease in the average

estimated standard error (AveSE) and empirical standard deviation (EmpSD). Im-

portantly, as the sample size n increases, the confidence level becomes more accurate,

contributing to a more reliable estimation of the parameters.

The results in all tables indicates that the naive Peng-Huang method produced

the values of the average estimated standard errors (AveSE) and empirical standard

deviations (EmpSD) closely aligned. However, the absolute values of the empirical

bias computed using this method yielded higher values, and less accurate values of the

confidence level, compared with the proposed method. On the other hand, the values

of the average estimated standard errors (AveSE) and empirical standard deviations

(EmpSD) may not always be close to each other in the proposed method. Nevertheless,

the empirical bias computed using this method is lower, and the empirical coverage

rates (Cov95) are closer to the nominal 0.95 level in most of the scenarios, compared

with the naive Peng-Huang method. This suggests that the effect of variability in

estimation of the model parameters is not as significant when utilizing the proposed

method, emphasizing its robustness in providing accurate parameter estimates.
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Table 3.2: Simulation results for the second gap time when approximately 20% of the
first gap time is censored, Kendall’s Tau equals 0.2 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.055 0.175 0.166 0.973 -0.062 0.163 0.182 0.906

β̂1 -0.012 0.140 0.125 0.969 0.013 0.122 0.135 0.842

β̂2 -0.029 0.263 0.249 0.969 -0.048 0.239 0.265 0.920

0.3 β̂0 0.075 0.178 0.157 0.962 -0.083 0.155 0.160 0.845

β̂1 -0.001 0.145 0.121 0.959 0.002 0.117 0.124 0.872

β̂2 -0.044 0.278 0.249 0.961 -0.073 0.245 0.246 0.904

0.5 β̂0 -0.088 0.193 0.216 0.938 -0.129 0.165 0.182 0.819

β̂1 -0.006 0.126 0.135 0.942 -0.011 0.124 0.141 0.908

β̂2 -0.010 0.254 0.227 0.944 -0.066 0.251 0.274 0.916

0.7 β̂0 -0.105 0.206 0.215 0.933 -0.191 0.205 0.210 0.753

β̂1 -0.015 0.147 0.157 0.938 -0.055 0.146 0.156 0.887

β̂2 -0.070 0.289 0.301 0.943 -0.119 0.283 0.311 0.889

Table 3.3: Simulation results for the second gap time when approximately 20% of the
first gap time is censored, Kendall’s Tau equals 0.4 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.028 0.156 0.146 0.957 -0.108 0.143 0.163 0.799

β̂1 -0.003 0.134 0.117 0.963 0.003 0.115 0.117 0.838

β̂2 -0.004 0.215 0.164 0.968 -0.069 0.212 0.244 0.894

0.3 β̂0 0.037 0.211 0.194 0.961 -0.167 0.147 0.158 0.748

β̂1 -0.004 0.100 0.115 0.948 0.013 0.109 0.116 0.885

β̂2 0.016 0.221 0.212 0.955 -0.067 0.211 0.229 0.920

0.5 β̂0 -0.172 0.190 0.196 0.949 -0.201 0.162 0.174 0.720

β̂1 -0.007 0.135 0.124 0.955 0.0082 0.123 0.135 0.910

β̂2 -0.017 0.230 0.231 0.946 -0.121 0.229 0.258 0.890

0.7 β̂0 -0.183 0.157 0.166 0.938 -0.310 0.186 0.206 0.598

β̂1 -0.008 0.122 0.108 0.968 -0.009 0.140 0.157 0.878

β̂2 -0.018 0.195 0.172 0.963 -0.169 0.274 0.309 0.886
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Table 3.4: Simulation results for the second gap time when approximately 20% of the
first gap time is censored, Kendall’s Tau equals 0.6 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.083 0.138 0.149 0.936 -0.156 0.138 0.162 0.716

β̂1 0.007 0.091 0.103 0.945 0.017 0.097 0.110 0.809

β̂2 0.005 0.206 0.223 0.938 -0.063 0.207 0.231 0.893

0.3 β̂0 0.200 0.104 0.112 0.941 -0.224 0.134 0.138 0.569

β̂1 -0.002 0.101 0.095 0.960 0.006 0.097 0.105 0.899

β̂2 -0.003 0.125 0.151 0.930 -0.104 0.185 0.206 0.906

0.5 β̂0 -0.303 0.091 0.106 0.948 -0.355 0.148 0.158 0.392

β̂1 0.002 0.113 0.116 0.939 0.004 0.110 0.120 0.884

β̂2 0.002 0.175 0.120 0.960 -0.128 0.215 0.234 0.876

0.7 β̂0 -0.430 0.144 0.152 0.946 -0.480 0.183 0.194 0.312

β̂1 -0.001 0.110 0.138 0.948 0.004 0.137 0.147 0.881

β̂2 -0.002 0.182 0.172 0.961 -0.196 0.249 0.280 0.865

Table 3.5: Simulation results for the second gap time when approximately 40% of the
first gap time is censored, Kendall’s Tau equals 0.2 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.081 0.227 0.261 0.937 -0.301 0.237 0.263 0.667

β̂1 -0.016 0.246 0.219 0.970 0.022 0.212 0.242 0.848

β̂2 -0.037 0.418 0.394 0.974 -0.126 0.402 0.434 0.857

0.3 β̂0 0.165 0.223 0.243 0.963 -0.395 0.227 0.231 0.534

β̂1 -0.027 0.169 0.207 0.926 -0.036 0.194 0.208 0.904

β̂2 -0.045 0.403 0.349 0.968 -0.174 0.364 0.385 0.878

0.5 β̂0 -0.369 0.196 0.227 0.929 -0.501 0.206 0.308 0.326

β̂1 -0.036 0.171 0.197 0.933 -0.060 0.174 0.178 0.875

β̂2 -0.056 0.309 0.346 0.925 -0.282 0.311 0.345 0.843

0.7 β̂0 -0.414 0.234 0.275 0.931 -0.744 0.222 0.327 0.154

β̂1 -0.076 0.171 0.162 0.968 -0.145 0.184 0.189 0.820

β̂2 -0.108 0.294 0.309 0.941 -0.352 0.312 0.346 0.784
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Table 3.6: Simulation results for the second gap time when approximately 40% of the
first gap time is censored, Kendall’s Tau equals 0.4 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.084 0.178 0.196 0.935 -0.393 0.178 0.230 0.513

β̂1 -0.003 0.181 0.159 0.980 0.008 0.159 0.214 0.885

β̂2 -0.005 0.351 0.331 0.975 -0.143 0.303 0.364 0.894

0.3 β̂0 0.099 0.222 0.197 0.971 -0.585 0.195 0.244 0.207

β̂1 -0.005 0.197 0.161 0.965 0.011 0.161 0.169 0.895

β̂2 -0.019 0.294 0.314 0.922 -0.185 0.295 0.321 0.877

0.5 β̂0 -0.356 0.220 0.198 0.966 -0.722 0.191 0.203 0.137

β̂1 -0.010 0.194 0.165 0.971 -0.917 0.165 0.174 0.892

β̂2 0.021 0.292 0.314 0.924 -0.257 0.292 0.321 0.846

0.7 β̂0 -0.402 0.216 0.236 0.936 -0.926 0.210 0.214 0.055

β̂1 -0.020 0.173 0.166 0.974 -0.057 0.167 0.180 0.874

β̂2 0.027 0.314 0.301 0.969 -0.345 0.302 0.324 0.766

Table 3.7: Simulation results for the second gap time when approximately 40% of the
first gap time is censored, Kendall’s Tau equals 0.6 and n = 200.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.085 0.169 0.152 0.970 -0.407 0.172 0.199 0.354

β̂1 0.008 0.143 0.109 0.963 0.028 0.149 0.155 0.790

β̂2 -0.007 0.231 0.271 0.932 -0.149 0.297 0.306 0.819

0.3 β̂0 0.209 0.131 0.120 0.963 -0.634 0.153 0.182 0.108

β̂1 -0.008 0.134 0.105 0.971 -0.017 0.114 0.135 0.834

β̂2 -0.009 0.171 0.190 0.926 -0.200 0.228 0.271 0.872

0.5 β̂0 -0.335 0.148 0.126 0.964 -0.876 0.168 0.270 0.013

β̂1 -0.009 0.135 0.120 0.965 0.011 0.126 0.148 0.819

β̂2 -0.011 0.206 0.218 0.930 -0.238 0.227 0.268 0.876

0.7 β̂0 -0.452 0.162 0.153 0.957 -1.119 0.171 0.282 0.021

β̂1 -0.010 0.130 0.153 0.937 -0.016 0.139 0.163 0.896

β̂2 -0.015 0.218 0.234 0.928 -0.302 0.230 0.267 0.735
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Table 3.8: Simulation results for the second gap time when approximately 20% of the
first gap time is censored, Kendall’s Tau equals 0.2 and n = 500.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.020 0.086 0.097 0.939 -0.056 0.101 0.106 0.851

β̂1 -0.005 0.073 0.065 0.961 0.011 0.078 0.084 0.865

β̂2 -0.002 0.141 0.123 0.960 -0.048 0.152 0.162 0.902

0.3 β̂0 0.066 0.083 0.089 0.937 -0.096 0.100 0.104 0.767

β̂1 -0.009 0.040 0.037 0.958 0.010 0.075 0.080 0.908

β̂2 -0.008 0.106 0.118 0.944 -0.058 0.149 0.156 0.896

0.5 β̂0 -0.074 0.072 0.088 0.939 -0.113 0.106 0.110 0.754

β̂1 -0.010 0.048 0.043 0.953 -0.014 0.081 0.084 0.884

β̂2 -0.011 0.103 0.094 0.957 -0.091 0.159 0.167 0.884

0.7 β̂0 -0.105 0.059 0.092 0.935 -0.172 0.128 0.133 0.695

β̂1 -0.013 0.061 0.043 0.960 -0.049 0.090 0.099 0.875

β̂2 -0.014 0.059 0.099 0.945 -0.128 0.180 0.195 0.871

Table 3.9: Simulation results for the second gap time when approximately 20% of the
first gap time is censored, Kendall’s Tau equals 0.4 and n = 500.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.018 0.057 0.036 0.952 -0.125 0.096 0.130 0.680

β̂1 -0.002 0.043 0.052 0.939 0.056 0.067 0.074 0.894

β̂2 -0.002 0.174 0.162 0.960 -0.059 0.138 0.152 0.898

0.3 β̂0 0.037 0.058 0.053 0.958 -0.192 0.089 0.094 0.440

β̂1 -0.005 0.044 0.059 0.947 0.013 0.070 0.073 0.887

β̂2 -0.003 0.121 0.126 0.944 -0.091 0.133 0.143 0.872

0.5 β̂0 -0.085 0.084 0.093 0.949 -0.249 0.102 0.148 0.361

β̂1 -0.007 0.088 0.052 0.951 0.011 0.075 0.084 0.900

β̂2 0.010 0.133 0.117 0.951 -0.131 0.152 0.161 0.843

0.7 β̂0 -0.103 0.132 0.117 0.959 -0.314 0.129 0.162 0.361

β̂1 -0.007 0.046 0.041 0.957 -0.021 0.088 0.099 0.902

β̂2 -0.013 0.166 0.144 0.959 -0.189 0.181 0.189 0.803
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Table 3.10: Simulation results for the second gap time when approximately 20% of
the first gap time is censored, Kendall’s Tau equals 0.6 and n = 500.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.033 0.085 0.048 0.964 -0.144 0.086 0.094 0.612

β̂1 -0.001 0.061 0.043 0.951 0.036 0.065 0.070 0.879

β̂2 0.004 0.120 0.092 0.958 -0.060 0.131 0.139 0.896

0.3 β̂0 0.096 0.101 0.110 0.947 -0.254 0.083 0.086 0.203

β̂1 -0.002 0.099 0.079 0.957 0.010 0.063 0.064 0.893

β̂2 -0.002 0.124 0.119 0.958 -0.102 0.119 0.128 0.853

0.5 β̂0 -0.136 0.087 0.070 0.953 -0.341 0.089 0.095 0.106

β̂1 -0.002 0.093 0.101 0.940 0.091 0.067 0.071 0.905

β̂2 0.001 0.117 0.092 0.957 -0.143 0.126 0.141 0.803

0.7 β̂0 -0.143 0.142 0.151 0.948 -0.493 0.111 0.116 0.064

β̂1 -0.001 0.097 0.074 0.953 0.007 0.081 0.088 0.906

β̂2 0.003 0.157 0.131 0.960 -0.204 0.160 0.172 0.749

Table 3.11: Simulation results for the second gap time when approximately 40% of
the first gap time is censored, Kendall’s Tau equals 0.2 and n = 500.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.079 0.161 0.196 0.939 -0.246 0.148 0.155 0.559

β̂1 -0.009 0.137 0.142 0.937 0.014 0.127 0.129 0.848

β̂2 -0.004 0.152 0.135 0.961 -0.110 0.241 0.267 0.872

0.3 β̂0 0.157 0.135 0.099 0.968 -0.327 0.128 0.137 0.346

β̂1 -0.010 0.119 0.126 0.935 -0.017 0.106 0.114 0.894

β̂2 -0.016 0.291 0.273 0.965 -0.183 0.202 0.225 0.850

0.5 β̂0 -0.303 0.084 0.077 0.964 -0.434 0.134 0.138 0.190

β̂1 -0.031 0.170 0.151 0.963 -0.057 0.109 0.115 0.867

β̂2 -0.015 0.111 0.128 0.940 -0.240 0.193 0.219 0.787

0.7 β̂0 -0.406 0.106 0.144 0.934 -0.667 0.131 0.136 0.027

β̂1 -0.055 0.171 0.152 0.963 -0.126 0.109 0.115 0.733

β̂2 -0.019 0.158 0.173 0.942 -0.329 0.187 0.208 0.618
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Table 3.12: Simulation results for the second gap time when approximately 40% of
the first gap time is censored, Kendall’s Tau equals 0.4 and n = 500.

Proposed Method Peng-Huang Method
τ EmpBias AveSE EmpSD Cov95 EmpBias AveSE EmpSD Cov95

0.1 β̂0 0.082 0.139 0.183 0.938 -0.347 0.117 0.128 0.278

β̂1 -0.007 0.073 0.058 0.963 0.065 0.100 0.105 0.863

β̂2 0.005 0.182 0.176 0.960 -0.130 0.178 0.211 0.855

0.3 β̂0 0.179 0.186 0.190 0.937 -0.510 0.111 0.119 0.146

β̂1 -0.007 0.049 0.067 0.941 0.070 0.090 0.098 0.882

β̂2 0.008 0.127 0.138 0.931 -0.192 0.174 0.188 0.773

0.5 β̂0 -0.311 0.115 0.098 0.963 -0.691 0.117 0.123 0.115

β̂1 -0.008 0.149 0.116 0.964 -0.031 0.099 0.103 0.879

β̂2 0.008 0.173 0.130 0.961 -0.245 0.180 0.198 0.727

0.7 β̂0 -0.393 0.152 0.172 0.941 -0.883 0.130 0.140 0.111

β̂1 -0.009 0.087 0.115 0.938 -0.043 0.105 0.113 0.878

β̂2 0.018 0.175 0.198 0.960 -0.323 0.187 0.211 0.626

3.5.3 Normal Quantile-Quantile (Q-Q) Plots of the Estimated

Parameters

In this section, we present the results of our last simulation study conducted to inves-

tigate the adequacy of the asymptotic normality of the estimators based the proposed

method. To do so, we generated the data set D2r, r = 1, 2, ..., R = 1000, as ex-

plained before and obtained the standard normal quantile-quantile (Q-Q) plots of

the estimates of parameters in Model (3.103) using the proposed method. When

τ = 0.5 and approximately 20% of the first gap times are censored, the Q-Q plots

of (β̂k2(τ) − βk2(τ))/

√
ˆV ar(β̂k2(τ)), k = 0, 1 and 2, with a sample size of 150, 250

and 500 are given in Figure 3.5, Figure 3.6 and Figure 3.7, respectively. The Q-Q

plots in these figures indicate the plausibility of the normal distribution approximates

of the estimates of β02(τ), β12(τ), and β22(τ) with the proposed method. Conse-

quently, we can use the standard normal approximation to make decisions regarding

the significance of covariates for sufficiently large sample sizes.

When τ = 0.5 and approximate 40% of the first gap times are censored, the

Q-Q plots for the investigation of the estimates of β02(τ), β12(τ), and β22(τ) are

presented in Figure 3.8, Figure 3.9, and Figure 3.10 for sample sizes of 150, 250,
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and 500, respectively. These standard normal probability (Q-Q) plots indicate that,

under heavy right-censoring (40% censoring), the normal approximations are off in

the extreme upper and lower tails of the distribution when n = 150 and τ = 0.5 for

the distribution of β̂0, β̂1 and β̂2. However, the normal distribution is more plausible

when n = 250 and 500.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.5: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 150
and 20% censored data when τ = 0.5.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.6: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 250
and 20% censored data when τ = 0.5.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.7: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 500
and 20% censored data when τ = 0.5.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.8: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 150
and 40% censored data when τ = 0.5.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.9: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 250
and 40% censored data when τ = 0.5.
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(a) Normal Q-Q plots of β02(τ)

(b) Normal Q-Q plots of β12(τ)

(c) Normal Q-Q plots of β22(τ)

Figure 3.10: Normal Q-Q plots of β02(τ), β12(τ) and β22(τ) with a sample size of 500
and 40% censored data when τ = 0.5.



Chapter 4

Analysis of Colon Cancer Data Set

In this chapter, we apply our proposed method to analyze a colon cancer data set,

which consists of survival times and several covariates obtained from patients diag-

nosed with Duke’s Stage C colon cancer. The data set can be found in survival

package in R software, encompassing individuals distributed among the Observa-

tion (placebo control), Levamisole (treatment), and Levamisole plus 5FU (treatment)

groups.

The rest of this chapter is organized as follows. In Section 4.1, we provide a

descriptive analysis of the data set. Subsequently, in Section 4.2, we apply quantile

regression models to the data set and employ the proposed method and the Peng-

Huang method to make inference on the parameters of these models.

4.1 Descriptive Analysis of Colon Cancer Data Set

The Colon Cancer data set given in the survival package in R, comprises data on

929 patients who received surgery of removal of tumors. We introduce that data set

in Section 1.1.2. It consists of 14 variables, which are listed below.

1. rx: Treatment type (Obs = Observation(placebo), Lev = Levamisole, Lev+5FU=

Levamisole+Fluorouracil)

2. sex: Gender (0=Female, 1=Male)

3. age: Age in years at the registration time
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4. obstruct: Presence or absence of colon obstruction due to a tumor (0=Absence,

1=Presence)

5. perfor: Presence or absence of colon perforation (0=Absence, 1=Presence)

6. adhere: Adherence of the tumor to nearby organs (0=Not adherence, 1=Ad-

herence)

7. nodes: Number of cancer-affected lymph nodes

8. time: Days until an event or censoring

9. status: Censoring status (0=Censored, 1=Not censored)

10. differ: Tumor differentiation grade (1=Well, 2=Moderate, 3=Poor)

11. extent: Extent of local spread of the cancer (1=Submucosa, 2=Muscle, 3=Serosa,

4=Contiguous structures)

12. surg: Time from surgery to registration (0=Short, 1=Long)

13. node4: Presence of more than four positive lymph nodes (0=Absence, 1=Pres-

ence)

14. etype: Event type (1=Recurrence, 2=Death)

The patients have an average age of around 60 years, ranging from 18 to 85 years.

Out of these patients, 43 individuals died without facing a recurrence of colon cancer,

resulting in their exclusion from our analysis. Consequently, we focus on analyzing

the data of 886 patients who either experienced the first event or were censored in

terms of their first gap time. In this cohort of patients, a total of 463 individuals

experienced a recurrence of colon cancer, whereas 423 patients remained cancer-free

and alive throughout the duration of the study. Additionally, 409 patients experienced

a recurrence of colon cancer and ultimately died. Furthermore, there were 54 patients

who, despite experiencing a recurrence of colon cancer, were still alive at the end of

the study. The second gap times of those patients were censored. Therefore, a total

of 477 patients have censored gap times.

The mean of the first gap times, denoting the time until recurrence of colon cancer,

was approximately 1418 days. In terms of treatments, patients received either placebo
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Table 4.1: Descriptive Analysis of Colon Cancer Data.

Obs Lev Lev+5FU Overall
(N=300) (N=300) (N=286) (N=886)

T1

Mean(SD) 1285 (984) 1328 (1014) 1653 (981) 1418 (1005)
Median[Min, Max] 1056 [20, 3192] 1040 [19, 3329] 2060 [8, 3309] 1625 [8, 3329]

status 1
Censored 125 (41.67%) 128 (42.7%) 170 (59.4%) 423 (47.7%)
Not Censored 175 (58.33%) 172 (57.3%) 116 (40.6%) 463 (52.3%)

T2

Mean(SD) 335 (479) 309 (476) 185 (371) 278 (450)
Median[Min, Max] 130 [0, 2725] 110 [0, 2515] 0 [0, 2184] 34 [0, 2725]

status 2
Censored 147 (49%) 149 (49.7%) 181 (63.3%) 477 (53.8%)
Not Censored 153 (51%) 151 (50.3%) 105 (36.7%) 409 (46.2%)

Age
Mean(SD) 59 (12) 60 (12) 60 (12) 60 (12)
Median[Min, Max] 60 [18,85] 61 [27, 83] 62 [26, 81] 61 [18, 85]

(300 patients), Lev (300 patients), or Lev+5FU (286 patients). Comparing the treat-

ments, patients who received Lev+5FU exhibited the longest average first gap time

(1653 days), followed by those who received Lev (1328 days) and then placebo (1285

days). However, it is important to note that more patients had censored data for the

first gap time in the Lev+5FU group (170 patients) compared to the placebo (125

patients) and Lev (128 patients) groups. When considering the recurrence of colon

cancer, the placebo group had the highest number of patients experiencing the first

event (175 patients), followed by the Lev group (172 patients) and then the Lev+5FU

group (116 patients). However, the Lev+5FU group included more patients who did

not observe either the first or second event (181 patients) compared to the placebo

(147 patients) and Lev (179 patients) groups at the end of the study. Furthermore,

a comparison of deaths among patients who experienced a recurrence of colon cancer

revealed that the Lev+5FU group had the lowest number of deaths (105 patients),

followed by the Lev group (151 patients), and then the placebo group (153 patients).

Also, the patients in the placebo group lived longer on the average after the recur-

rence of colon cancer compared to the treatment groups. Table 4.1 shows the summary

statistics for the control (Obs) and treatment groups (Lev and Lev+5FU).

We next present the results of our analysis conducted to investigate the statistical



92

significance of the effects of covariates within the context of the analysis concerning

the recurrence of colon cancer and the mortality of patients experienced colon cancer

recurrence. This analysis encompasses separate investigations of the first and second

gap times. Subsequently, we present a comprehensive summary of findings derived

from both the log-rank test and Kaplan-Meier analysis in the following paragraphs.

(a) (b)

(c)

Figure 4.1: Plots of the Kaplan-Meier survival function estimates for the duration time
(in days) from surgery to recurrence of colon cancer; (a) all patients, (b) breakdown
with respect to treatment groups, (c) breakdown with respect to the sex covariate.

The plot (a) given in Figure 4.1 depicts the Kaplan-Meier estimates of the survivor

function for the first gap time of all the patients included in the study. At time

365 days (after one year), 667 patients were at risk and 220 patients experienced the

recurrence of colon cancer. The Kaplan-Meier estimate was 0.752 with an approximate

95% CI given by (0.724,0.781), indicating that around 75% of the patients had not

yet experienced the recurrence of colon cancer by the end of the first year. After two

years, 531 patients were at risk and 355 patients experienced the recurrence event.
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The estimated survival probability was 0.599 (approximate 95% CI: 0.568-0.632),

indicating that around 60% of the patients had not yet experienced the recurrence of

colon cancer by the end of the second year. At the end of the study, more than half

of the patients in the cohort have not experienced the recurrence of colon cancer. We

also present the plots of the Kaplan-Meier estimates of the survival probability for

each treatment group (Obs, Lev, and Lev+5FU), which are given in Figure 4.1(b).

Patients treated with Lev+5FU showed the highest survival rates at all time points,

indicating that this treatment was more effective in prolonging the time to recurrence

of colon cancer compared to Lev alone and Obs (i.e. placebo group). The log-rank test

indicates that there is a significant difference (p-value < 0.0001) between the survival

probabilities of time to colon cancer recurrence for patients in the Lev+5FU group

compared with those in Lev and Obs groups, whereas there is no significant difference

for the comparison of Lev and Obs groups (p-value= 0.8). The last plot in Figure 4.1

shows the Kaplan-Meier estimates of time to cancer recurrence for male and female

patients, separately. The plot indicates that there is not significant difference between

male and female patients (p-value= 0.4).

We also analyzed the time from recurrence of colon cancer to death (i.e. the second

gap time) by using the Kaplan-Meier estimates of the survival probabilities and log-

rank test. It should be noted that, even though these tools produce unbiased results in

the analysis of the first gap times, they may induce significant bias for the analysis of

the second and subsequent gap times when the gap times are not independent (Lin et

al., 1999; Lawless and Yilmaz, 2011). We therefore refer to the Kaplan-Meier estimate

as the naive Kaplan-Meier estimate in this case. The graphical representations of

survival probabilities of the time from colon cancer recurrence to death over time are

depicted as plots of the naive Kaplan-Meier estimates in Figure 4.2; for all patients in

plot (a), separately for patients in specific treatment groups in plot (b), and separately

for patients with respect to the sex covariate in plot (c). From the plot (a), we observe

that the median survival time to death after cancer recurrence is 374 days with an

approximate 95% CI (341, 448) and the naive Kaplan-Meier estimate of the survival

probability is less than 0.25 at the 1000 day (approximate 95% CI: 0.121 − 0.19). A

comparison of the plots given in Figure 4.2(b) reveals that the lowest survival rates

are in the Lev+5FU group in most of the time points. Notably, patients in the Obs

(placebo) group exhibited the highest survival rates for the second gap time, followed

by the Lev treatment group, indicating an adverse effect of the Lev and Lev+5FU
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(a) (b)

(c)

Figure 4.2: Plots of the naive Kaplan-Meier survival function estimates for the du-
ration time (in days) from recurrence of colon cancer to death; (a) all patients, (b)
breakdown with respect to treatment groups, (c) breakdown with respect to the sex
covariate.

treatments on the patients. The plot of the naive Kaplan-Meier estimates given in

Figure 4.2(c) denotes that the estimated survival probabilities of female patients are

higher than those of male patients in most of the time.

We present the scatter plots of the first gap times T1 and the second gap times

T2 in Figure 4.3 under different settings. The plots (a), (c), (e) and (g) are based on

patients with complete T1 and T2 observations. Patients with censored observations

are discarded. The other plots in Figure 4.3 are based on patients with complete T1

observations and complete or censored T2 observations. In all settings, the scatter

plots reveal a positive but relatively weak association between the two gap times (the

estimated Kendall’s tau coefficients are 0.168 and 0.172, respectively), an important

aspect to consider in our analysis. Due to the exclusion of patients with censored

first gap times, there is a substantial proportion of patients (47.7%) who are not

represented in the plots given in Figure 4.3. This exclusion may lead to a misleading
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Scatter plots of the first gap time against the second gap time under
different settings.
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Table 4.2: The results of the log-rank tests for the first and second gap times in colon
cancer patients.

Patients p-value p-value
(n) (T1) (T2)

Sex
Male 459
Female 427 0.4 0.2

Treatment
Observation 300

Lev 300 0.8 0.4
Lev+5FU 286 8e-06* 0.02*

Age
≤ 60y 438
> 60y 448 0.9 0.01*

Obstruction
Yes 171

No 715 0.03* 0.1
Perforation

Yes 27
No 859 0.2 0.2

Adherence to nearby organs
Yes 129

No 757 0.005* 0.5
Involved nodes

1− 4 644
> 4 242 < 2e− 16* 9e-07*

Differentiation
Well 90

Moderate 631 0.6 0.5
Poor 143 0.01* 0.1

Extent
Submucosa 20

Muscle 101 0.5 0.1
Serosa 726 0.02* 0.06*

Contiguous structure 39 4e-04* 0.1
Time from surgery to registration

Short 654
Long 232 0.01* 0.6

*Significant at 0.05 level.
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interpretation of dependency. To address this issue, we investigate the dependency

through dependence modeling with copulas in the next section. Also, the plots in

Figure 4.3 indicate that the Clayton copula might be an appropriate model for the

dependency between T1 and T2.

Table 4.2 provides a comprehensive summary of the results of the log-rank tests

applied for testing the statistical significance of various covariates related to the first

and second gap times in colon cancer patients. The goal of the analysis is to assess

the significance of these factors on the recurrence of colon cancer and survival of

patients after the cancer recurrence. In Table 4.2, the significant covariates (p-value<

0.05) are denoted by “*” notation. In the analysis of the first gap time T1, the

covariates sex, age and perforation are not significant (p-value> 0.05). However,

the treatment Lev+5FU is strongly significant comparing with the treatment group

(Lev) and the placebo group (Obs) in the analysis of the first gap times (both p-

values< 0.0001). Furthermore, obstruction (p-value= 0.03), adherence to nearby

organs (p-value= 0.005), nodes (p-value< 0.0001), differentiation (p-value= 0.002),

extent (p-value< 0.0001), and time from surgery to registration (p-value= 0.01) are

significant covariates in the analysis of the first gap time. In the examination of the

second gap time, age (p-value= 0.01) and nodes (p-value< 0.0001) are significant

factors in the duration from the cancer recurrence to death. As aforementioned, the

log-rank test may lead to wrong results in the analysis of the second gap times, when

there is dependency between the first and second gap times. Because of this reason,

all covariates are included in the analysis given in the next section for a comprehensive

assessment.

4.2 Quantile Regression Model for Colon Cancer

Data Set

In this section, we employ quantile regression (QR) to analyze the colon cancer data

set, aiming to understand the effects of the covariates on the time from the study

entry to cancer recurrence as well as time from cancer recurrence to death. We first

focus on the time until the recurrence of colon cancer (i.e. the first gap time T1). The

conditional QR model for log of the first gap time T1, given the values of covariate x,
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is given by

Qlog(T1)(τ |x) = (1,xT )Tβ(τ), τ ∈ (0, 1), (4.1)

where β denotes a vector of regression parameters and x is a vector of observed

covariates including sex, age, obstruction, perforation, adherence to nearby organs, the

number of involved nodes, differentiation, extent, time from surgery to registration,

presence of more than 4 positive lymph nodes and treatment. Thus, the regression

model of log(T1) for the analysis of the first gap time is given by

log(T1) = β01 + β11sex + β21age + β31obstruct + β41perfor + β51adhere

+ β61nodes + β71differ + β81extent + β91surg + β10,1node4

+ β11,1rx Lev + β12,1rx Lev5FU + ε1,

(4.2)

where ε1 follows the logistic distribution. The covariate rx Lev takes the value of 1 if

a patient is under Lev treatment, otherwise it is 0. Similarly, rx Lev5FU is 1 if the

patient is under Lev+5FU treatment, otherwise it is 0. The values of other covariates

are given in the previous section.

We fit Model (4.1), where log(T1) is given in (4.2) with the proposed method

and the Peng-Huang (PH) method for the quantile value τ , where τ = 0.1, 0.3 and

0.5. The estimates of the parameters and their estimated standard deviations, as

well as p-values for testing H0 : βk1 = 0 against H1 : βk1 6= 0, k = 1, 2, ..., 12, are

presented in Table 4.3. Lawless (2003) demonstrated the adequacy of the log-logistic

distribution for both the first and second gap times in analyzing this colon cancer

data set. Consequently, we used the log-logistic models with the c.d.f.

F (t) = 1−
[
1 + (

t

α
)γ
]−1

, t > 0, α > 0, γ > 0, (4.3)

for both first and second gap times. The parameters α and γ were estimated using

the maximum likelihood estimation method.

The parameter estimates and their estimated standard deviations are given in

Table 4.3. The results show that the estimated standard deviations derived from the

proposed method closely aligns with those obtained from the Peng-Huang method.

In the majority of cases, the estimates of the standard deviations acquired through

the proposed method are lower than those obtained with the Peng-Huang method. It
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should be noted that, for this data set, the Peng-Huang method provided reasonable

estimates of the model parameters when the quantile τ is less than 0.5 (i.e. median

of the distribution of log T1). The inability to estimate the regression coefficients

for higher quantiles in the Peng-Huang method may be attributed to the substantial

number of censored observations in the tails of the survival function. We discussed this

issue in Section 3.2. For all quantiles τ = 0.1, 0.3 and 0.5, the covariates extent, node4

and the treatment Lev+5FU are found to be significant with both methods. When

τ = 0.1, in addition to the mentioned covariates, the covariates age and obstruct are

also significant. When τ = 0.5, alongside the mentioned covariates, the covariate sex

and obstruct are identified as other significant factors.

In the analysis of the time from the recurrence of colon cancer to the death, we

employed QR to gain deeper insights into the relationship between various covariates

and the duration until the death occurrence. The regression model for the second gap

time is formulated as follows.

log(T2) = β02 + β12sex + β22age + β32obstruct + β42perfor + β52adhere

+ β62nodes + β72differ + β82extent + β92surg + β10,2node4

+ β11,2rx Lev + β12,2rx Lev5FU + ε2,

(4.4)

where T2 represents the time from the recurrence of colon cancer to the death and ε2

is the error term from the logistic distribution with the c.d.f. given in (4.3). In the

proposed method, we employed the log-logistic models for both gap times and used

the Clayton copula for modeling the dependency between the gap times. Because of

its one-to-one relation with the gamma frailty model (Goethals et al., 2008) and its

flexibility in modeling bivariate survival data (Oakes, 1989), the Clayton copula model

has been used to model the dependency in other studies. Since we analyze this data

set to illustrate the method developed in this thesis, we did not check the adequacy

of the Clayton copula model. However, an approach given in Lawless and Yilmaz

(2011) can be used for this purpose. We estimated the parameters of the log-logistic

models with the two-stage maximum likelihood estimation method as explained in

Section 3.3. This approach involved optimizing the log-likelihood function for the

parameters in the distribution of error terms and the copula model. The dependency

between two gap times is considered in the analysis of the second gap time using the

proposed method, but ignored in the naive Peng-Huang method. It should be noted

that maximum likelihood estimate of the Kendall’s Tau coefficient for this data set
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is 0.182, indicating a lower level of dependency between the gap times. Table 4.4

provides parameter estimates across various quantiles of the time from recurrence of

colon cancer to death, with the proposed method and naive Peng-Huang method.

Notably, the table reveals that standard deviation of estimated parameters derived

from the proposed method is lower compared to the Peng-Huang method, suggesting

enhanced precision and stability with the proposed method.

The results presented in Table 4.4 indicate the significance of Lev+5FU treatment

for the quantiles τ = 0.3, 0.5 and 0.7 of the marginal distribution of the second gap

time; that is, the time from recurrence of colon cancer to death, in both methods.

For example, the proposed method yields β̂12,2 = −0.399 when τ = 0.5. The result

can be interpreted as follows. The median survival time for the individuals in the

Lev+5FU treatment group is exp(−0.399) = 0.677 times shorter than those in the

placebo comparison group, while keeping other covariates the same. Comparing this

result with the result given in Table 4.3, we observe that the effect of the Lev+5FU

treatment changes its direction. That is, while it was significantly beneficiary in terms

of extending the time from the tumor removal to the recurrence of the colon cancer,

it significantly decreases the time from cancer recurrence to death. Such result may

be interpreted as an adverse effect of the Lev+5FU treatment for the distribution

of the second gap time, suggesting that across various patient percentiles, Lev+5FU

treatment is associated with a reduction in the time from colon cancer recurrence to

death compared to the placebo group (Obs), while controlling for other covariates.

Note that the Lev treatment is not significant at all τ values, compared with the

placebo group.

Moreover, the results presented in Table 4.4 show that, in addition to treatment

Lev+5FU, the age covariate is significant at quantiles τ = 0.1 and 0.3, in both meth-

ods. Additionally, at τ = 0.5, the covariate node4 is also identified as significant.

Further analysis reveals that at τ = 0.7, covariates obstruct and adhere are also

identified as significant factors, alongside Lev+5FU treatment. Additionally, the es-

timation of the coefficients of QR model for the second gap time is close for both the

proposed method and the Peng-Huang method in some cases, as shown in Table 4.4,

which is due to the small dependency between the two gap times in this data set.
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Chapter 5

Summary and Future Work

This chapter includes a summary and conclusion of the thesis in Section 5.1 and future

work in Section 5.2.

5.1 Summary and Conclusion

The research conducted in this thesis focuses on the analysis of sequentially observed

bivariate survival data, where individuals may experience two same or different types

of events sequentially. An application of such a setting is given in the illness-death

model. An important issue in the illness-death model is to understand the effects of

treatments, interventions and some certain covariates on the marginal distributions

of time-to-events associated with the ill state as well as the death state observed after

the ill state. Quantile regression (QR) provides a more comprehensive understand-

ing of the effects of covariates on the response variable compared with the classical

regression models. The effects of covariates can be measured on various quantiles of

the distribution of the response variable for a given set of covariates. Because of this

reason, QR has received a considerable attention recently. The applications of QR

in the context of classical survival analysis, in which the occurrence time of a single

event is of interest, has been well investigated. However, inference about the effects of

covariates on the marginal distribution of the second and subsequent gap (survival)

times has not been discussed thoroughly, when the gap times are dependent. Statis-

tical methods that cannot address this dependency may lead to biased results for the
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estimation of covariate effects for the marginal distribution of the second gap time.

In this thesis, we considered an estimation method which can be applied to es-

timate the effects of covariates on the marginal distribution of sequentially observed

two gap times. We address the dependency between two gap times with copulas.

Major challenges include issues related to the non-identifiability of marginal survival

distributions for the second gap time and the complexities introduced by the issue of

induced dependent censoring. If the first survival time is censored, the second sur-

vival time becomes unobservable, which may result in non-identifiability issue. As a

result, estimating the marginal distribution of the second gap time becomes challeng-

ing without information on the first gap time. Additionally, dependency between two

gap times causes the second gap time to be subject to induced dependent censoring,

meaning a dependent variable censors the second gap time.

Our estimation method is based on the martingale estimating equations. We

introduce this method in Section 3.3, first for QR of the first gap time and then for

that of the second gap time. In the case of the first gap time, our method is similar

to the Peng-Huang method, which is discussed in Section 3.2. However, instead of a

grid-based estimation tool, on which the Peng-Huang method is based, we utilize the

Newton-Raphson algorithm to solve the system of unbiased estimating equations to

obtain the parameter estimations in QR model for the distribution of the first gap

time. Our simulation results presented in Section 3.5.1 indicate that the proposed

method is competitive with the Peng-Huang method for the simulation scenarios

considered in this case.

In the second part of Section 3.3, we extend our discussion to the estimation of

the parameters in QR model of the marginal distribution of the second gap time

with the proposed method. In this case, martingale estimating equations include

parameters related to the first gap time and dependence parameters in the copulas.

The estimation of these parameters is carried out with a two-stage procedure proposed

by Lawless and Yilmaz (2011). In the first stage, we maximize the log likelihood

function for the parameters related to the first gap time using an accelerated failure

time (AFT) survival regression model. Then, we plug in these estimates to the log

likelihood function of the parameters related to the copula and an AFT model for the

second gap time. In particular, we focus on the Clayton copula model, which belongs

to one-parameter Archimedean copula family. For the marginal distribution of the
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gap times, we consider AFT type regression models where the error terms follow the

standard extreme value distribution. It should be noted that the other models for

copula and error terms can be used in a similar way in the proposed method.

In Section 3.5.2, we apply both the proposed method and the naive Peng-Huang

method to estimate QR for the second gap time. Subsequently, we present the results

of a Monte Carlo simulation study and compare these two methods. Our findings

reveal that parameters estimated using the naive Peng-Huang method are affected by

dependency, resulting in high bias and lower precision compared with the estimators

obtained with the proposed method.

Additionally, we also investigate the martingale structure related to the second gap

time in an empirical setting in Section 3.4.3. Also, we present the results of another

Monte Carlo simulation study conducted to discuss the accuracy of the standard

normal approximations for the estimators of model parameters using the proposed

method. To do this, we utilize the normal quantile-quantile (Q-Q) plots. The results

are given in Section 3.5 and show that the standard normal approximations for the

estimators of parameters using the proposed method are adequate for sufficiently large

sample sizes. Finally, we illustrate the proposed method by analyzing the colon cancer

data set in Chapter 4.

5.2 Future Work

In this final section of the thesis, we discuss some future extensions to our work.

The proposed method given in Section 3.3 can be extended to address some of the

limitations of this study. For example, the estimation of Cov(β̂2) is based on the

sandwich type estimator given in (3.76). As discussed in Section 3.3, this estimator

ignores the variability caused by the estimation of β1 and φ in the previous stages

and may provide conservative values in settings with small sample sizes. Other than

applying a nonparametric bootstrap procedure, an estimator of Cov(β̂2) which takes

into account the estimation of β1 and φ in the previous stages can be developed. This

approach requires the extension of the estimator (3.76) to include likelihood equations

for the parameters in the regression model of the first gap time and copula model. As

a result, the method may become computationally less efficient. We list this extension

as a future work and investigate it in more detail by comparing this approach with
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the one given in Section 3.3 as well as bootstrapping method. Other future works are

listed below.

First, throughout the thesis we considered only time-fixed covariates. As a future

work, we intend to take into account the case in which covariates change over time.

Because time-varying covariates are of interest in some epidemiological and public

health research with bivariate sequences of gap times, such an extension of the pro-

posed method to such settings will be investigated as a future work. It should be

noted that the settings on which the values of time-varying covariates are fixed over

each gap time can be handled in a straightforward way with the proposed method.

For example, models log T1 = β01+β11x1+β21x2+ε1 and log T2 = β02+β12y1+β22y2+ε2

can be specified for the first and second gap times, respectively. Then, the proposed

estimation method given in Section 3.3 can be directly applied. The settings in which

the gap times may vary over each gap time are more complicated. Therefore, it is

important to carefully consider the role of covariates in the analysis and to fit models

that appropriately account for the relationship between the gap times and the co-

variates. The use of advanced modeling techniques, such as time-varying covariate

models, can help to better capture the relationship between the gap times and the

covariates, and will be investigated as a future work.

Second, in this thesis, it is supposed that the first gap time and all covariate values

are observable and not missing. It could be interesting to extend the proposed method

to deal with QR model of bivariate sequential gap time to include the situations where

the first gap times and/or values of covariates are missing. The situation in which the

first gap times are missing in classical survival analysis settings has been discussed by

Huang and Chen (2017). They considered the analysis of HIV-infected subjects, and

defined the first gap time as the time from the initial contraction of HIV to diagnosis

of HIV and the second gap time as the time between HIV and AIDS diagnoses. In

practice, the initial HIV contracting time is usually not available; hence, the first gap

time is missing. We will investigate such setting as a future work.

Third, unidirectional sequential gap times are considered in this thesis. It can

be useful to evaluate bidirectional sequential gap times. In the regression model,

forward and backward gap times and covariates can be considered to fit the linear

or QR models to predict the mean or quantile of the distribution of the next gap

time. For example, in medical studies, alternative sequential gap times could be used
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to analyze the time between hospital readmissions and the covariates that influence

them. Therefore, as the third future work, we will investigate the illness-death model

with recovery, and extend the proposed method to analyze data from this model.
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