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Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer-related death world-

wide. Despite extensive research efforts, the mechanism of CRC remains poorly un-

derstood, and genetic biomarkers discovered thus far have not provided proper insight

into the dynamics of CRC. One reason might be that most analysis methods perform

univariate analyses and do not investigate the combination of genes that lead to dis-

ease. To fill this gap, we employ SVFS (Singular-Vectors Feature Selection), as well as

several other machine learning algorithms, to identify genes associated with CRC. We

developed an ensemble classifier model using identified genes to validate our findings

and distinguish CRC tumour samples from adjacent normals. We validated our find-

ings on 13 independent datasets and achieved significant results on all of them (cor-

rectly diagnosing 1755 cases out of 1807 and 115 controls out of 119). Several identified

genes by our methodology have previously been reported to be associated with CRC,

while other genes are novel and should be further researched. Furthermore, the same

pipeline was applied to. Inflammatory Bowel Disease (IBD) since patients with IBD

are at substantial risk of developing CRC. Following significant results on validation

sets of IBD using identified genes (correctly 212 IBD cases out of 231 and 51 healthy

controls out of 54), we examined IBD-related genes in conjunction with CRC-related

genes to gain a better insight into suspected genes. A Python implementation of our

pipeline can be accessed publicly at https://github.com/AriaSar/CRCIBD-ML.
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Chapter 1

Introduction

Colorectal cancer (CRC) is one of the top three deadliest cancers worldwide, with an

estimated 1.8 million cases and 881,000 fatalities in 2018 alone [1]. Timely detection

of CRC can significantly improve prognosis and reduce mortality rates [2]. When

CRC is diagnosed in individuals below the age of 50, it is referred to as early-onset

CRC (eoCRC). Over the past few decades, the epidemiology of eoCRC has been

subject to change, as reported by numerous studies. Starting from the 1990s, there

has been a rise in the incidence of eoCRC across the world, including both high- and

low-income countries [3, 4]. The rate of increase in eoCRC incidence is accelerating

and is predicted to pose a significant public health challenge [3, 4]. Recently, the US

Preventive Services Task Force recommended lowering the average-risk population

screening age to 45 years [5, 6]. Possible justifications for the increasing incidence of

eoCRC include a westernized diet, including red and processed meats; consumption
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of monosodium glutamate, titanium dioxide, high-fructose corn syrup and synthetic

dyes; obesity; stress; and widespread use of antibiotics [7].

Due to its heterogeneity, CRC is caused by many genes and environmental fac-

tors [8]. Epigenetics refers to alterations in gene expression or function without

changes in DNA (the molecule that carries the genetic instructions used in the growth,

development, functioning, and reproduction of all known living organisms) sequence.

Primary epigenetic modifications include DNAmethylation, post-transcriptional mod-

ifications of histone and non-coding RNA-mediated (RNA is a nucleic acid involved

in protein synthesis and the transmission of genetic information from DNA to the rest

of the cell) changes of gene expression [9]. Despite its significant recognition, the con-

tribution of epigenetic events to cancer evolution needs further investigation [10, 11].

It is believed that the modifications in epigenetics and the changes in the expression

of non-coding RNAs can be utilized as biomarkers for the diagnosis, prediction of

treatment response and prognostication in the case of CRC [12]. The genetic and

epigenetic modification of cancer-associated genes occurs independently but recur-

rently in CRCs, and that epigenome alterations probably control important tumour

cell phenotypes, including escape from immune surveillance [13].

Recent studies have provided important insights into the molecular mechanisms

that underlie the formation of CRC. Approximately 75% of CRC cases are sporadic,

while the remaining cases are either linked to inflammatory bowel diseases (IBD) or

have a familial origin [14]. It is estimated that the process of CRC tumorigenesis is
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slow, taking almost two decades for a tumor to form [15]. Despite extensive research

efforts and the elucidation of some pathways and genes, there exists a substantial la-

cuna in our understanding of these diseases. In particular, the dynamics and complex

process of cancer cell invasion and metastasis is poorly understood [16, 17, 18].

Oncogenic transformation in CRC is known to be caused by the driver genes APC,

KRAS, SMAD4, and TP53, which modulate global translational capacity in intestinal

epithelial cells [19]. Given our present understanding of the intricate nature of cancer

genomes, how cancer cells evolve over time under treatment, and how inhibiting

targets affects the body, it is now advisable to move away from the one gene, one drug

approach and embrace a ‘multi-gene, multi-drug’ model for making informed decisions

regarding therapy [20]. In other words, the unidentified aspect of the disease may stem

from the cumulative effects of multiple low-penetrance genes, which together pose a

substantial risk [21]. To that end, there have been considerable interest in molecular

subtype classification of CRC using gene expression data, hierarchical clustering, and

machine learning [22, 20, 23, 24].

Machine learning (ML) techniques have demonstrated their efficacy in addressing

biological queries [25, 26]. Owing to their notable accomplishments, the application

of ML methods to biological data is expanding, revealing their considerable potential

in tackling problems involving genomic datasets such as the imputation of missing

SNPs and DNA methylation states, disease diagnosis [25, 27], antibody development

[28], and numerous other areas. The use of ML has demonstrated great potential
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in enhancing our comprehension of cancer dynamics, and it holds the possibility of

substantially transforming our understanding of cancer dynamics by revealing fresh

insights into the molecular mechanisms that drive cancer progression and impact

treatment response [29, 30].

In this thesis, our primary goal is to investigate the genetic landscape that under-

lies the progression of both CRC and IBD, with a specific emphasis on additive gene

interactions. Fig 1.1 provides a schematic representation of the research pipeline and

the various tasks executed for both IBD and CRC.

We employed novel ML algorithms trained on case-control datasets from the GEO

(Gene Expression Omnibus) database, consisting of 566 CRC cases and 262 controls.

Through this process, we identified a subset of genes capable of cumulatively dis-

tinguishing between CRC and control samples. To demonstrate the efficacy of our

selected genes, we conducted validation using the 40 most repeated genes selected by

our pipeline on multiple external and independent datasets. Our model accurately

classified 1755 CRC cases out of 1807 and 115 CRC controls out of 119, highlighting

the strength of our approach. Regarding IBD, the model could diagnose 212 IBD

cases out of 231 and 51 healthy controls out of 54. Interestingly, creating a model

using only the top genes known to cause CRC did not generate a model as accurate

as the one generated, including novel genes. This indicates that further research has

to be done to understand the genes causing CRC fully.
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Figure 1.1: Schematic representation of the research workflow. (a) Raw

datasets are retrieved from GEO, and tabular datasets are generated utilizing gene ex-

pression data and probe-gene mapping. (b) Data processing steps are performed, in-

cluding discarding unassigned genes, imputing missing values, removing non-common

genes, combining identical genes, and scaling each dataset. (c) After splitting datasets

into training and validation sets and merging training sets to form a single set, a

1000-iteration oversampling/feature selection process is applied to identify the most

prominent genes (genes with high contribution to CRC or IBD). (d) An ensemble

classifier, comprising Random Forest, Support Vector Machine, and Logistic Regres-

sion, is trained on the training set. (e) The results are validated on the validation sets

using the trained model, and four performance metrics – accuracy, F1-score, precision-

recall, and confusion matrix – are employed for the evaluation of case-control sets and

recall is employed for case-only sets.
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Additionally, recognizing the heightened risk of CRC development in IBD pa-

tients, we also set out to identify a subset of genes capable of distinguishing between

IBD cases and healthy controls. To accomplish this, we trained ML algorithms on

GEO datasets comprising 288 IBD cases and 76 controls. Using the top 100 selected

genes (most repeated genes after performing SVFS 1000 times), our validation on

external IBD datasets led to the correct classification of 212 out of 231 IBD cases

and 51 out of 54 healthy controls. We note that the misclassified samples included 9

inflamed IBD samples that were misclassified as healthy. To bridge CRC and IBD,

we constructed a gene network using the STRING (Search Tool for the Retrieval of

Interacting Genes/Proteins) platform [31], revealing direct interactions between IBD

and CRC genes, highlighting GAPDH’s pivotal role. Our study recommends a closer

examination of oncogenes TNS4, SLC7A5, and SCD within the context of the nuclear

receptors meta-pathway. Furthermore, genes SLC7A5, SCD, GAPDH, and SDF2L1

are implicated in the mTOR signalling pathway (a pathway famous for its association

with tumorigenesis [32]), underscoring the need for more investigation. These find-

ings can potentially deepen our comprehension of the genetic mechanisms underlying

CRC and IBD. The work done in this thesis has been published in the PLOS ONE

journal [33].
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Chapter 2

Background

Dorani et al. (2018) proposed a multi-variant method to find new risk variants by

deploying two ensemble algorithms of random forest and the gradient boosting ma-

chine [34]. They utilized six different feature selection algorithms and eventually

selected Tuned ReliefF (TuRF) [34]. After performing statistical interaction anal-

ysis, 17 pairwise and 16 three-way interactions were found [34]. Furthermore, two

new genes have been identified as suspected CRC genes, in addition to four known

identified genes ARRDC5, DCC, ALK, and ITGA1 [34]. Ding et al. (2019) used

ML algorithms to identify CRC biomarkers that can be detected in blood, urine, or

saliva and then created a classification model [35]. Researchers identified three genes

ESM1, CTHRC1, and AZGP1 by creating three classifier models to determine which

proteins result from gene expression in blood, urine, and saliva [35]. Then they made

classifier models using six different algorithms [35]. Zhao et al. (2019) introduced
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a three-module method for classifying CRC patients from controls [36]. In the first

module, minimum redundancy maximum relevance (mRMR) was used to decrease

the number of studied genes [36]. In the second module, they tried to tackle the

unbalanced classes problem using the RUSBoost algorithm [36]. And in the third

module, they implemented the mixed kernel function (MKF) based support vector

machine (SVM) model for classifying patients and controls (MKF-SVM) [36]. The

Whale Optimization Algorithm (WOA) was applied to find appropriate parameters

for the model [18]. They managed to find 13 novel genes [36]. Finally, the classifier

showed a geometric mean of 93.65%, which was better than other models proposed

in previous similar studies [36].

Su et al. utilized gene expression data from The Cancer Genome Atlas (TCGA)

and applied the Weighted Gene Co-expression Network Analysis (WGCNA) along

with Differential Expression Analysis (DEG) [37]. They then performed feature se-

lection to pinpoint the genes that are most closely correlated with the disease [37].

For classifying cases from controls and predicting the stages of cancer, they employed

three classification techniques: Random Forest (RF), Support Vector Machine (SVM),

and Decision Tree (DT) [37]. Among these, RF demonstrated superior performance,

achieving an accuracy of 99.88%, an F1 score of 0.9968, and a recall rate of 99.5%

[37]. Furthermore, when diagnosing stages I through IV of colon cancer, it showed

an accuracy of 91.5%, an F1 score of 0.7679, and precision of 86.94% [37]. However,

a limitation of their study was the use of a single dataset and reliance on cross-
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validation for evaluation rather than leveraging multiple datasets for training and

validation [37]. Moreover, the sequence of using WGCNA and DEG prior to feature

selection and classification might negatively impact the detection of additive genes

[37]. The genes they identified as most significant in their study included GCNT2,

GLDN, SULT1B1, UGT2B15, PTGDR2, GPR15, BMP5, and CPT2 [37].

Maurya et al. also employed DEG in conjunction with machine learning techniques

to identify genes correlated with CRC [38]. They conducted DEG and machine learn-

ing processes in parallel, subsequently utilizing the intersecting genes identified by

both methods for in-depth analysis [38]. Their research highlighted TMEM236 as a

potential novel biomarker for CRC diagnosis [38]. However, similar to the approach

taken by Su et al., there is an inherent risk in overlooking additive genes when relying

solely on the intersection of DEG and genes pinpointed by feature selection [38]. Ad-

ditionally, the use of distinct validation sets would have likely improved the study’s

robustness [38].
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Chapter 3

Methodology

3.1 Data collection

3.1.1 Gene expression

Gene expression in a cell can be compared to how a library works. A cell has many

genes, similar to how a library has many books. Each gene has instructions for

making a specific protein, just like each book has information on a specific topic.

In a cell, special proteins called transcription factors act like librarians. They choose

which genes are turned on like librarians choose which books to show. When a gene is

turned on, it’s like reading a book. This is called transcription, where the gene’s DNA

is copied into RNA. Then, the cell uses some of these RNAs to make proteins, similar

to using a recipe from a book to cook a dish. This is called translation. Also, different

cells use different genes, just like different sections in a library have different kinds
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of books. Bioinformatics data obtained from technologies such as microarrays and

RNA-seq to study gene expression by measuring RNA levels [39]. In microarrays,

DNA probes on a surface interact with RNA from a sample that’s converted into

cDNA (a form of DNA synthesized from a messenger RNA (mRNA) template in

a process called reverse transcription, used especially in cloning or when studying

gene expression) [39]. It’s important to note that not all genes are transcribed into

mRNA; there are various types of RNA, each with distinct roles in the cell. The

level of fluorescence shows how much RNA is present [39]. RNA-seq gives more detail

by sequencing all the cDNA, eliminating the need for specific probes [39]. Both

methods produce large datasets showing gene expression in different conditions [39].

These datasets are arranged in gene expression matrices, comparing expression levels

between samples from different conditions [39]. We can visualize these matrices as

heatmaps, which help analyze gene relationships and understand biological processes

[39]. In our research, we use biopsy samples instead of blood samples to study gene

expression. Biopsy samples are better for looking at specific genes in a certain tissue,

but getting these samples involves a small surgery. This can be hard depending on

where the tumor is and how the patient is doing. Blood samples are easier to get and

safer for the patient. But, they might not show all the different gene changes in the

tumor like biopsies do. We chose biopsies because they give us a clearer picture of

the genes in the tumor, which is important for our study.
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3.1.2 Colorectal cancer

The datasets used in this study are derived from the GEO (Gene Expression Om-

nibus) database. Table 3.1 provides details for each colorectal cancer dataset. We

combined 6 gene expression datasets from the GEO (Gene Expression Omnibus)

database to form a training dataset, and an additional 13 different gene expression

datasets were selected for validation. Some of the validation datasets contain only

cases. All datasets in this study consist of biopsy samples, and no blood samples are

included. We thoroughly examined all the validation datasets to ensure there was

no data leakage. Data leakage occurs when information from outside the training

dataset is used to create the model, leading to overly optimistic performance esti-

mates that may not generalize well to new data. For instance, dataset GSE32323

was omitted due to a high probability of containing identical patients (with differ-

ing expressions) as those in dataset GSE21510. Additionally, to enhance reliability,

gene expression samples were grouped based on geographical similarity (country/city)

within either the training or validation sets as much as possible. It is important to

note that datasets GSE68468, GSE103512 and GSE2109 encompass samples derived

from various organs in addition to the colon and rectum; however, in our analysis, we

only included samples derived from the colon and rectum. To be able to merge the

training datasets together and then perform the validation, we only kept genes that

are common between all training and validation datasets (10113 and 16413 genes for

CRC and IBD, respectively).
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3.1.3 Inflammatory bowel disease

We selected 5 gene expression IBD datasets from GEO for training and 6 different gene

expression IBD datasets for validation. We included only those samples who had not

undergone any specific treatment. Additionally, we excluded datasets consisting of

blood samples. Dataset GSE16879 includes pre- and post-infliximab treatment sam-

ples, of which we selected only the pre-treatment ones. In GSE59071 and GSE48958,

inactive samples were excluded. From GSE179285, we included only inflamed sam-

ples and from GSE4183, only IBD and normal samples were chosen. From GSE37283,

patients diagnosed with ulcerative colitis with neoplasia were retained. Table 3.2 con-

tains details of the datasets used for IBD. After discarding genes that are not common

between all IBD datasets, all IBD datasets had uniformly 16,413 genes.

3.2 Data preprocessing

3.2.1 Structuring the raw data

The datasets used in this study are derived from the GEO (Gene Expression Omnibus)

database. Datasets available on the GEO website are unsuitable for analyzing or

machine learning purposes. To generate a suitably formatted dataset (.CSV, .pickle,

feather, etc.), Series Matrix File (.TXT) was used. This file contains gene expression

data for each probe (Each probe corresponds to a specific gene, and multiple probes

can correspond to the same gene). Using Python language, a script was written for
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converting Series Matrix File to the pickle format.

3.2.2 Data imputation

Many machine learning algorithms rely on complete data to work effectively, and

missing values can pose problems for their function. Furthermore, incomplete data

can lead to biased results or inaccurate predictions and decreased accuracy. Before

applying most machine learning algorithms, such as some of those used in this re-

search, we must either eliminate incomplete observations from the dataset or impute

missing values. The datasets used in this research contain several missing values. By

removing a column containing a missing value, we risk losing a critical disease-related

gene. Also, removing a row with missing values weakens feature selection and the

classifier model due to the low number of samples. In order to fill in these miss-

ing values, we employed the KNN (K-Nearest Neighbors) imputation algorithm [68]

(number of neighbours=5). It is worth mentioning that columns with more than 5%

missing values were discarded.

3.2.3 Mapping probes to genes

In order to convert each probe to its corresponding gene, we need an annotation table.

GEO2R was used to retrieve this annotation table. As mentioned earlier, numerous

probes are assigned to the same genes after matching probe IDs with corresponding

genes from the GEO2R mapping file. To integrate these probes into a single gene,
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the mean gene expression values were utilized. Then, in order to integrate training

datasets and execute uniform validation on validation sets, we maintained common

genes across all datasets. Consequently, 10,113 and 16,413 genes were retained for

CRC and IBD analyses, respectively.

3.2.4 Scaling

There are significant differences between the gene expression ranges of the datasets.

This results in poor performance of the classifier model. To determine the most appro-

priate scaler, several different scalers were applied to the data. Principal component

analysis (PCA) was used to shrink the data dimension and plot each scaler’s results.

Figure 3.1 illustrates how row-wise MinMax normalization and quantile normalization

result in better scattering of CRC datasets. This enables the model to capture the

underlying data pattern of genes’ contributions more effectively. As different genome

datasets have different ranges, row-wise MinMax normalization has an advantage over

a quantile transformer when a new dataset or a sample needs to be classified. In ad-

dition, it maintains gene expression correlation as well as transforms gene expression

into a 0 to 1 range for each instance. Thus, row-wise MinMax scaling was performed

after the feature selection of all datasets. IBD datasets were also transformed using

row-wise MinMax scaling.
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Figure 3.1: Effect of different scalers on CRC training dataset and test

datasets.

3.2.5 Balancing the training set

Upon combining the training datasets to get a single dataset, the high ratio of cases

to controls leads to poor performance for both feature selection and the classification

model. To overcome this problem, we used SMOTE [69] (synthetic minority oversam-

pling technique), an efficient oversampling approach, to balance the number of cases

and controls in the training dataset.
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3.3 Feature selection

Feature selection is probably the most critical part of this research. Finding the

most disease-relevant genes among thousands of them is done by feature selection.

In order to find additive genes associated with CRC and IBD, wrapper or hybrid

feature selection techniques should be employed. However, wrapper methods can-

not be implemented with high-dimensional datasets, like those used in this study,

due to their computational complexity. In this study, we applied SVFS (Singular-

Vectors Feature Selection), a hybrid feature selection method that demonstrated sig-

nificant results recently compared to other feature selection methods on gene expres-

sion data [70, 71]. SVFS is a method designed for high-dimensional datasets. Given

a matrix A with its Moore-Penrose pseudo-inverse A², it is shown in [70, 71] that the

projector PA = I − A
²A partitions features into clusters based on their correlations.

Initially, SVFS identifies and retains only those features that correlate with the class

label, discarding others as irrelevant. In the subsequent step, it further clusters the

remaining features and selects the most significant ones from each cluster. We used

parameters suggested in the SVFS paper for biological data as parameters for our

pipeline (Thirr=3, Thred=4, α=50, β=5, and k=100) [70, 71] (Thirr used to filter

out irrelevant features, Thred eliminates redundant features, α sets the maximum

size for feature clusters, β determines the number of top features selected from each

sub-cluster, and k is the total number of features to select in the process).

When running the SVFS feature selection algorithm, it may return a different
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subset of features each time. Hence, to obtain robust results and be sure that the

genes found are related to the disease, we repeated the algorithm 1000 times for

each disease and continued the research using the top 100 most frequently repeated

genes. Oversampling is highly influential on dataset structure and, as a result, might

drastically change the subset of genes selected by the feature selection algorithm.

Hence, oversampling was performed before each round of feature selection to ensure

a more robust selection.

After performing oversampling-feature selection 1000 times, only the selected

genes were kept for further analysis, and all other genes were discarded from all

datasets.

The noteworthy point is that common genes were chosen separately for each dis-

ease, so 10113 and 16413 genes were selected for CRC and IBD, respectively.

Figure 3.2 shows the 100 most frequently repeated genes and the number of rep-

etitions of each for colorectal cancer and inflammatory bowel diseases.

3.4 Model evaluation

To ensure the classifier’s performance is due to the genes identified rather than the

model and to make the most accurate prediction, we used ensemble models of Random

Forest, Logistic Regression, and Support Vector Machine. Additionally, ensemble

models are more robust than single models and reduce the risk of overfitting. Based on

Tables 3.1 and 3.2, some of the datasets are balanced, and some others are imbalanced.
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Figure 3.2: The number of repetitions of each gene for the 100 most fre-

quently repeated genes for CRC and IBD.

The F1 score metric was used, as well as accuracy for imbalanced datasets. Also,

confusion matrices and precision-recall curves were generated to provide better insight

into model performance.
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Dataset # of Cases # of Controls Platform Country/City or State Usage # of Probes

GSE21510[40] 123 25 GPL570 Japan/Tokyo Training 54675

GSE44076[41] 98 98 GPL13667 Spain/Catalonia Training 49386

GSE44861[42] 56 55 GPL3921 USA/MD Training 22277

GSE68468[43] 186 55 GPL96 USA/MD Training 22283

GSE89287[44] 46 17 GPL4133 Netherlands/Zuid-Holland Training 45015

GSE103512[45] 57 12 GPL13158 USA/New York Training 54715

GSE25070[46] 26 26 GPL6883 USA/CA Validation 24526

GSE38026[47] 16 16 GPL11532 Germany/Kiel Validation 33257

GSE24514[48] 34 15 GPL96 Finland/Helsinki Validation 22283

GSE39582[49] 566 19 GPL570 France/Paris Validation 54675

GSE113513[50] 14 14 GPL15207 China/Fujian Validation 49395

GSE41657[51] 25 12 GPL6480 China/Beijing Validation 41076

GSE110225[40] 17 17 GPL96 Greece/Athens Validation 22283

GSE13294[52] 155 0 GPL570 Denmark/Aarhus N. Validation 54675

GSE13067[52] 74 0 GPL570 Australia/Parkville Validation 54675

GSE14333[53] 290 0 GPL570 Australia/Parkville Validation 54665

GSE17536[54] 177 0 GPL570 USA/Nashville Validation 54675

GSE2109[55] 351 0 GPL570 USA/Phoenix Validation 54675

GSE35896[56] 62 0 GPL570 UK/Macclesfield Validation 54675

Table 3.1: .

Detailed summary of CRC datasets used for training and validation.

’Cases’ are tumour samples, and ’Controls’ are adjacent normal samples from the

same patients. All samples are taken using the biopsies. The ’# of probes’ column

indicates the number of probe sets on the respective microarray platform.
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Dataset # of Cases # of Controls Platform Country/City or State Usage # of Probes

GSE16879[57] 61 12 GPL570 Belgium/Leuven Training 54666

GSE22619[58] 10 10 GPL570 Germany/Kiel Training 54675

GSE59071[59] 82 11 GPL6244 Belgium/Leuven Training 33252

GSE102133[60] 65 12 GPL6244 Belgium/Leuven Training 33252

GSE179285[61] 70 31 GPL6480 USA/South San Francisco Training 41000

GSE9452[62] 8 5 GPL570 Denmark/Copenhagen Validation 54675

GSE36807[63] 28 7 GPL570 UK/London Validation 54675

GSE37283[64] 11 5 GPL13158 USA/Chicago Validation 54613

GSE4183[65] 15 8 GPL570 Hungary/Budapest Validation 54675

GSE48958[66] 7 8 GPL6244 Belgium/Leuven Validation 33252

GSE92415[67] 162 21 GPL13158 USA/Spring House Validation 54613

Table 3.2: .

Detailed summary of inflammatory bowel disease datasets used for training

and validation. ’Cases’ are inflamed samples, and ’Controls’ are samples from healthy

patients. All samples are taken using the biopsies. The ’# of probes’ column indicates the

number of probe sets on the respective microarray platform.
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Chapter 4

Results

Colorectal cancer (CRC)

After running oversampling and feature selection 1000 times, we kept the first 100

most repeated genes in the training and testing datasets and removed all other genes.

We performed a forward feature selection where most repeated genes were added iter-

atively; for instance, first, the model was trained using the most significant (frequent)

gene, TNS4, and was evaluated on all test datasets. Following this, the second gene,

SLC7A5, was added to the training list, and the model was trained and evaluated us-

ing these two genes. The process was repeated until the training set contained all 100

genes. We considered accuracy for balanced datasets and F1 score and accuracy for

imbalanced datasets. Also, precision-recall curves were employed for a better insight

into model performance. Figure 4.1 shows the testing results for each case-control
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CRC dataset.

Figure 4.1: Evaluation of identified CRC genes on independent validation

sets. Accuracy and F1-score are plotted for the different number of prominent genes

utilized for training and validation. Confusion matrices and precision-recall curves

(including AUC) are plotted using the first 40 prominent genes.

Several of our datasets consisted of cases only. So, we used the F1-score to report

the validation results on these datasets. For case-only datasets, we adopted recall (also

known as sensitivity or true positive rate), representing the proportion of correctly

predicted case samples relative to the overall number of cases. Figure 4.2 illustrates

the results for case-only datasets.
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Figure 4.2: Evaluation of the model trained on tumor and matched normal

samples on case-only and control-only datasets.

In order to achieve reliable results from ML algorithms, it should be noted that

the validation datasets must not be utilized at any point during the training or model

generation process. Given the validation results in Figures 4.1 and 4.2, we deduce

that using 40 prominent identified genes, our model could diagnose 1755 cases out of

1807 and 115 controls out of 119. Some of the some of the most frequently-selected

genes previously known to be involved in CRC are TP53 [72], APC [72], KRAS [72],

MGMT [73], SMAD2 [74] and SMAD4 [74]. It is interesting to note that if we build a

model just based on these well-known CRC genes, we do not get acceptable validation

results. Indeed, we implemented a supplementary pipeline using only TP53, APC,

KRAS, MGMT, SMAD2, and SMAD4, and it turned out that 100 controls out of

103 were misclassified, which is a poor performance (for this experiment, we had to

exclude GSE38026 because KRAS gene does not exist in this dataset). The detailed

results are presented in Figure 4.3.
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Figure 4.3: Results of the supplementary pipeline using only TP53, APC,

KRAS, MGMT, SMAD2, and SMAD4

Inflammatory bowel disease (IBD)

The same methodology was employed for IBD, that is, SVFS was utilized on the

training IBD dataset, and the most repeated 100 significant genes were selected, as

shown in Table 5.3. As demonstrated in Figure 4.5, the ensemble classifier effec-

tively distinguished inflamed samples from healthy samples in GSE9452, GSE37283,

GSE4183 and GSE48958. In the case of GSE36807, the model accurately diagnosed all

healthy samples, though nine inflamed samples were misclassified as healthy. Overall,

the classifier exhibited strong performance, suggesting an acceptable identification of

IBD-related genes by identifying 212 IBD cases out of 231 and 51 healthy controls
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Figure 4.4: Case-control classification results using well-known genes

out of 54.

In this chapter, we presented the results of our study. For CRC, we used over-

sampling and feature selection to determine the top 100 genes, incrementally training

our model with these genes. Our results showed that by using 40 prominent genes,

the model could accurately diagnose a majority of cases and controls. An experiment

with well-known CRC genes revealed the importance of our feature selection process,

as the model performed poorly with these genes alone. For IBD, we applied a similar

approach and successfully identified the most repeated 100 significant genes. The

ensemble classifier effectively distinguished inflamed samples from healthy samples

in various datasets, demonstrating the successful identification of IBD-related genes.
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Figure 4.5: Evaluation of identified IBD genes on independent validation

sets. Accuracy and F1-score are plotted for the different number of prominent genes

utilized for training and validation. Confusion matrices and precision-recall curves

(including AUC) are plotted using the first 40 prominent genes.

Overall, our study highlights the potential of machine learning in identifying key

genes for CRC and IBD, contributing to improved diagnostics and understanding of

these diseases.
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Chapter 5

Genes and interactions

5.1 Interaction and network analysis

To find and understand the underlying interaction between identified genes, STRING

(Search Tool for the Retrieval of Interacting Genes/Proteins) [31] was employed.

The STRING is an up-to-date database containing different information such as ex-

periments, co-expressions, gene co-occurrence, gene fusion and neighbourhood. Its

knowledge comes from several sources, including MINT [75], HPRD [76], BIND [77],

DIP [78], BioGRID [79], KEGG [80], Reactome [81], IntAct [82], EcoCyc [83], NCI-

Nature Pathway Interaction Database [84] and GO [85]. We constructed a gene

network by integrating the most repeated 50 IBD genes with 50 CRC genes in the

initial step, setting the interaction score to medium confidence. Figure 5.1 illustrates

the resulting network.
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using string by counting genes with the highest number of connections to our iden-

tified genes. While single intermediary genes are more influential, other genes with

minor additive effects are overlooked. We did not use two genes acting as a bridge

because of the many combinations that those can create. Table 5.4 lists the full names

of single intermediary genes. Owing to the network’s complexity, we preserved genes

in Figure 5.1 (b) with a higher number of connections in the network for illustrative

purposes. For example, TP53 may be regarded as the most critical intermediary gene

(This gene has the most number of connections in the network). As such, this gene

and its adjacent genes might be fundamental to IBD and CRC progression. The

intermediary genes are highly likely to contribute to the disease due to their strong

connections to genes in our subset and, importantly, their bridging functions. We fur-

ther explored the COSMIC (Catalogue Of Somatic Mutations In Cancer) database to

determine if any of the genes in our subset had been previously reported as having a

strong association with CRC. Tissue selection, Sub-tissue selection, Histology selec-

tion, and Sub-histology selection were set to Large intestine, Include all, Carcinoma,

and Adenocarcinoma, respectively. TP53, SMAD4, RNF43, CTNNB1, and PTEN

ranked among the top 20 most frequently mutated CRC-related genes listed in COS-

MIC. On the other hand, several of our reported significant genes were not on the

COSMIC list and have not received adequate attention from researchers yet. We also

performed GSEA (Gene Set Enrichment Analysis) using the most repeated 50 iden-

tified CRC genes. GSEA results (Table 5.1) showed that TNS4, SLC7A5, and SCD
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are involved in the nuclear receptors meta-pathway. Genes SLC7A5, SCD, GAPDH

and SDF2L1 were involved in the mTOR signalling pathway. Also, several other gene

sets were associated with cell cycle regulation and transcription regulation. It must

be emphasized that Figure 5.1 does not encompass all prominent genes and is derived

from various experiments and prior research. Given the limited understanding of the

underlying mechanisms of CRC and IBD, we propose to consider other important

genes that are not part of the network in Figure 5.1. For instance, an in-depth inves-

tigation of TNS4, GAPDH, L1CAM, GAL, CRYAB, IRF7, GPN1, TMEM39B, EZR,

and all other genes referred to in Tables 5.2 and 5.3 is needed.

Table 5.1: Gene Set Enrichment Analysis (GSEA) of most repeated 50 CRC-related

genes

Term 1 ES NES NOM p-value FDR q-value FWER p-value Lead Genes

mTORC1 signalling 0.896 1.733 0.001 0.006 0.005 SLC7A5, SCD, GAPDH, SDF2L1

Cell cycle -0.605 -1.809 0.01 0.009 0.009 FAP, USP3, DONSON, CCND1, KLF4, GMNN, EIF4EBP1, EZR, NEK2

Nuclear receptors pathway 0.868 1.706 0.001 0.0111 0.012 TNS4, SLC7A5, SCD

Transcription regulator activity -0.681 -1.623 0.040 0.027 0.031 ZNF232, CCND1, KLF4, ZXDC, GMNN

Cell cycle regulation -0.578 -1.627 0.028 0.092 0.046 FAP, DONSON, CCND1, KLF4, GMNN, EIF4EBP1, NEK2
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5.2 Review of the first ten CRC-related identified

genes

In this section, we discuss the first ten most repeated CRC-related identified genes.

1. TNS4

According to Figure 3.2, TNS4 is the most repeated gene associated with colorectal cancer.

In Figure 4.1, we can see that regarding the datasets GSE39582 and GSE41657, the model

could make accurate decisions by just investigating this single gene. Several studies have

previously reported this gene as a related gene to colorectal cancer. For example, Kim et

al. proposed that TNS4 is crucial in CRC tumorigenesis, and TNS4 suppression might be

a promising therapy in CRC [86]. Raposo et al. argued that the TNS4 role is critical in

early-stage metastasis and, in addition, its knockdown improves sensitivity to Gefitinib [87]

(medication used for different cancer types).

2. SLC7A5

SLC7A5 is the second most most repeated gene on our list. Najumudeen et al. conducted

comprehensive research on SLC7A5’s correlation with CRC [88]. They stated that SLC7A5

might be a potential target for treatment for KRAS-mutant colorectal cancer that is resis-

tant to other therapies [88]. Huang et al. also included SLC7A5 as one of the five core

genes contributing to the ferroptosis (a type of cell death) of colon cancer cells [89].

3. HIST3H2A

HIST3H2A is one of the novel potential biomarkers on our list. There is some evidence
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that it is associated with lung cancer [90] and pancreatic cancer [91], but no studies have

demonstrated its association with colorectal cancer. Therefore, further studies are needed

to confirm its contribution to CRC.

4. HGD

HGD is another potential marker on our list. Yi et al. performed a study of rectal cancer

tumour markers [92]. Their results demonstrated a substantial correlation between HGD

and rectal cancer [92]. To our knowledge, no other studies have shown a significant corre-

lation between HGD and colorectal cancer. As a result, this gene needs to be investigated

further.

5. SCD

Cruz-Gil et al. identified SCD as a critical component of lipid metabolism in colorectal

cancer (CRC) [93]. The relationship between SCD and ACSL increases the risk of relapse

in CRC patients. [93]. Another study by Liao et al. suggests high SCD-1 expression is

associated with advanced CRC [94].

6. GAPDH

Tang et al. also examined tumour versus non-tumour pairs among 195 cases and found con-

siderable overexpression of GAPDH in CRCs [95]. In another study, Tarrado-Castellarnau

et al. conducted research regarding GAPDH and found significant upregulation of this gene

in colorectal cancer [96]. It was suggested that this gene might be helpful for early detection

of CRC.

36



7. GPN1

To our knowledge, GPN1 is one of the novel genes identified in this study. As of yet, little

is known about this gene, and more research needs to be done to understand it better.

8. COL21A1

COL21A1 is likely to be another novel biomarker. According to our research, Li et al. was

the only study that considered COL21A1 as a potential diagnostic marker [97].

9. SDF2L1

Despite studies examining the association of this gene with other cancer types, such as Na-

sopharyngeal Carcinoma [98], this gene has not been recognized as a potential CRC marker.

10. CRYAB

CRYAB has been found to have a strong association with different types of cancer [99].

Several research studies have also examined the association between CRYAB and CRC. For

instance, Deng et al. recognized CRYAB as a tumour-suppressor gene and a potential diag-

nostic marker [100]. Shi et al. also confirmed CRYAB as a prognostic CRC biomarker [99].

CRYAB has also been suggested as a valuable target for developing CRC treatments by Dai

et al [101].

In this chapter, we explored the interactions and networks of genes associated with Col-

orectal Cancer (CRC) and Inflammatory Bowel Disease (IBD) using the STRING database.

By integrating the most repeated 50 genes from each condition, we constructed a gene
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network and analyzed the direct interactions between 13 IBD-associated and 27 CRC-

associated genes. The GAPDH gene emerged as a pivotal link between the two gene subsets.

We also extended the network to include intermediary genes, which may serve as bridges

between CRC and IBD genes. Our analysis highlighted the importance of intermediary

genes like TP53 in the progression of both diseases. Additionally, we performed Gene Set

Enrichment Analysis (GSEA) on the identified CRC genes, revealing their involvement in

various pathways, including the mTOR signalling pathway and cell cycle regulation.
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Table 5.2: 100 first most repeated CRC genes in order. Pink cells are the

first 40 genes used in classification.

1) TNS4 2) SLC7A5 3) HIST3H2A 4) HGD 5) SCD

6) GAPDH 7) GPN1 8) COL21A1 9) SDF2L1 10) CRYAB

11) TNFRSF11A 12) RNF43 13) ATP6V0E2 14) CD1D 15) GAL

16) LRCH1 17) TCF20 18) L1CAM 19) GRTP1 20) FMO5

21) PPFIBP1 22) SSFA2 23) SEMA3C 24) C2orf49 25) DDX42

26) LXN 27) NEK2 28) EZR 29) CHP2 30) LRRC17

31) EIF4EBP1 32) ESM1 33) GMNN 34) CD34 35) ZXDC

36) KLF4 37) FRYL 38) CCND1 39) C2 40) CD8A

41) DONSON 42) CRYBA1 43) SLC22A6 44) USP3 45) GZMK

46) ZNF232 47) FAP 48) OR51E2 49) MAPK9 50) SLC22A2

51) MELK 52) DDX17 53) COL10A1 54) FA2H 55) GFPT2

56) AGA 57) PTPN3 58) ELF3 59) NUCKS1 60) PIM2

61) HAVCR1 62) HSD11B1 63) CHN2 64) TM4SF5 65) EFNA3

66) CCDC57 67) HOXA2 68) ENAH 69) MAP2 70) NFE2L3

71) CHL1 72) EGLN3 73) TPH1 74) VAMP8 75) PNKP

76) PMP22 77) ZNF264 78) ZNF239 79) LRMP 80) TEX10

81) EDF1 82) IRF6 83) ARHGAP5 84) YTHDC1 85) SYT13

86) KRT81 87) CHFR 88) NEDD4 89) LRRC2 90) BTNL8

91) DDX3Y 92) SEZ6L2 93) LAS1L 94) VPS4B 95) NAV2

96) COG7 97) CXCL13 98) FAM65B 99) TACC1 100) PFDN4
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Table 5.3: 100 first most repeated IBD genes in order. Pink cells are the

first 40 genes used in classification.

1) HOXB2 2) DNAAF5 3) IRF7 4) TMEM39B 5) C19orf25

6) ABCA7 7) FXYD1 8) ZNF354A 9) TRIM32 10) IGSF22

11) RNF122 12) SLC6A14 13) CIPC 14) PDCD2L 15) ABCB11

16) ADRA2C 17) PLD2 18) PPCDC 19) VEGFB 20) LANCL3

21) LRRC56 22) ABLIM3 23) TXNDC16 24) BAZ2B 25) YY1AP1

26) CCDC116 27) ATG2A 28) IFI27L1 29) WBP2 30) TOX2

31) ZSCAN29 32) KDM4C 33) GPATCH1 34) MARK2 35) MC5R

36) ODF3L2 37) KIF22 38) DHX38 39) OSCP1 40) ZSCAN22

41) SYTL1 42) CDK7 43) SPATC1L 44) JAG2 45) GLTSCR1L

46) POLG 47) DACT1 48) INPP5A 49) SDF2L1 50) GUCA2A

51) METTL1 52) REG4 53) APH1A 54) TWF2 55) NGEF

56) GCGR 57) DNTTIP1 58) RBL2 59) TMEM268 60) ARMC5

61) TAT 62) TSPAN11 63) TMEM87A 64) SLC25A13 65) PSENEN

66) DCUN1D3 67) MAPK14 68) CHRNA2 69) MOB2 70) RIF1

71) MPG 72) CD300LF 73) PRNT 74) GUCY1A2 75) S100A7A

76) GLYR1 77) CAPN5 78) APOA4 79) HLA-DQA1 80) DDX60

81) DSG2 82) SNAP29 83) PFN2 84) FEM1B 85) UTP3

86) GIMAP4 87) DDC 88) ACVRL1 89) TAGLN 90) ALDOA

91) ABHD3 92) TMEM41A 93) VPS11 94) FBN1 95) WNT5A

96) ST6GALNAC6 97) PTN 98) C4BPB 99) C2 100) HCK
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Table 5.4: 100 genes (identified using STRING) with the most number of

connections to the genes identified by our pipeline

STAT1 CCNE1 PLK1 STAT3 BUB1

SMAD4 MYC ODF3L2 RHEB STAT6

JUN NRP1 CDKN1B TP53 CCNA2

CDKN1A CCNA1 AKT1 ESR1 POLR2A

RELA MTOR HIF1A KAT2B CDC20

RHOA CTNNB1 XAB2 EP300 PTEN

AR CCND3 CENPE AURKB SMAD2

HDAC2 HDAC1 CCNH SKA1 SLC3A2

POLR2A TRAF6 SP1 PCNA EFTUD2

LGR5 CDKN2A PRPF19 MX1 NOTCH1

EPRS TCF3 SMAD3 MDM2 CCND2

STAT5A CDC5L CHUK KIF11 SPC24

ISG15 IRF3 ALDOA RPTOR CDT1

CCNE2 HSP90AA1 GATA1 SLC9A1 CDK2

NDC80 RELASMAD4 CDK6 SLC9A3R1 CREBBP

SPC25 MNAT1 MYD88 CDK4 TPI1

GSK3B CFTR PPARA NF2 BUB1B

RB1 COASY YAP1 CDK9 ATF2

NUF2 SOX2 IRF1 MAML1 SF3B1

TTK MAD2L1 CASC5 NR3C1 -41



Chapter 6

Discussion

This study aimed to identify potential genes correlated with colorectal cancer (CRC) using

multivariate machine learning methods. The study discovered several genes relevant to

identifying CRC from tissue samples, some of which have not received enough attention

in previous studies. Six independent validation sets demonstrated that a subset of 40

genes accurately diagnosed tumours and matched normal tissues. Additionally, the study

investigated Inflammatory Bowel Disease (IBD), as patients with IBD are at high risk of

developing CRC. We incorporated STRING by using identified CRC and IBD genes to

identify potentially CRC-related genes. Several genes were identified, including previously

reported causative genes and several novel ones. Machine learning methods provide a more

comprehensive approach to identifying genes that may contribute to CRC development.

However, this research has some limitations, including using single intermediary genes and

ignoring others, missing and not examining a large number of genes that might be associated

with cancer (we kept common genes across all datasets), and the risk of false positives.
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Identifying novel genes correlated with CRC and IBD provides a foundation for future

research into the underlying mechanisms of these diseases. Further studies focusing on genes’

additive functions instead of single-variate analyses are necessary to confirm these genes’

contributions. The potential significance of these findings for clinical practice includes the

possibility of developing better prevention, detection, and treatment methods for CRC and

IBD patients. In future studies, it is crucial to explore multi-gene interactions to understand

the complex genetic interplay involved in colorectal cancer (CRC) and Inflammatory Bowel

Disease (IBD). Incorporating more IBD datasets will enhance the robustness of the findings

and may reveal additional genes associated with the disease. Additionally, expanding the

analysis to include more genes, beyond those common across all datasets, could uncover

further genetic factors contributing to CRC and IBD. Laboratory experiments are essential

to validate the functional roles of these genes and their interactions, which could lead to

the development of novel therapeutic targets and strategies for patient care.
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F. Rodriguez-Moranta, X. Sanjuan, J. de Oca, R. Salazar, and V. Moreno. Dis-

50



covery and validation of new potential biomarkers for early detection of colon cancer.

PLoS One, 9(9):e106748, 2014.

[42] B. M. Ryan, K. A. Zanetti, A. I. Robles, A. J. Schetter, J. Goodman, R. B. Hayes,

W. Y. Huang, M. J. Gunter, M. Yeager, L. Burdette, S. I. Berndt, and C. C. Harris.

Germline variation in NCF4, an innate immunity gene, is associated with an increased

risk of colorectal cancer. Int J Cancer, 134(6):1399–1407, Mar 2014.

[43] G. Getz, H. Gal, I. Kela, D. A. Notterman, and E. Domany. Coupled two-way cluster-

ing analysis of breast cancer and colon cancer gene expression data. Bioinformatics,

19(9):1079–1089, Jun 2003.

[44] L. Zuurbier, A. Rahman, M. Cordes, J. Scheick, T. J. Wong, F. Rustenburg, J. C.

Joseph, P. Dynoodt, R. Casey, P. Drillenburg, M. Gerhards, A. Barat, R. Klinger,

B. Fender, D. P. O’Connor, J. Betge, M. P. Ebert, T. Gaiser, J. H. M. Prehn, A. W.

Griffioen, N. C. T. van Grieken, B. Ylstra, A. T. Byrne, L. G. van der Flier, W. M.

Gallagher, and R. Postel. Apelin: A putative novel predictive biomarker for beva-

cizumab response in colorectal cancer. Oncotarget, 8(26):42949–42961, Jun 2017.

[45] J. Brouwer-Visser, W. Y. Cheng, A. Bauer-Mehren, D. Maisel, K. Lechner, E. Ander-

sson, J. T. Dudley, and F. Milletti. Regulatory T-cell Genes Drive Altered Immune

Microenvironment in Adult Solid Cancers and Allow for Immune Contextual Patient

Subtyping. Cancer Epidemiol Biomarkers Prev, 27(1):103–112, Jan 2018.

[46] T. Hinoue, D. J. Weisenberger, C. P. Lange, H. Shen, H. M. Byun, D. Van Den Berg,

S. Malik, F. Pan, H. Noushmehr, C. M. van Dijk, R. A. Tollenaar, and P. W. Laird.

51



Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome

Res, 22(2):271–282, Feb 2012.

[47] A. Wenke, H. Armbruster, K. Balschun, J. Starmann, H. Sültmann, and C. Röcken.
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