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Abstract 

Understanding wildlife density and abundance is perhaps the most important and universal 

concept across facets of wildlife management, conversation, and research. Despite the 

significance of understanding species densities in ecology, methods for estimating density for 

large terrestrial mammals in Canada continue to have high levels of inaccuracy in addition to 

being a costly, exclusive practice. From the mass use of remote camera traps in wildlife life 

science came a series of camera trap-based density estimation models, known as viewshed 

density estimators, which could allow practitioners to estimate wildlife density from camera trap 

data. Despite the cost-effective and accessible framework, viewshed density estimators remain 

analytically challenging to parameterize and implement. To accurately estimate density, 

viewshed density estimators require a precise metric of the physical area camera traps monitor, a 

highly variable number that can be challenging to quantify. Here, I tested a field and analytical 

framework that can be used to accurately estimate the spatial footprint of camera traps with a 

100% capture probability, the Effective Capture Area. Next, I use the Effective Capture Area to 

parameterize the Random Encounter Staying Time model of density estimation for generating 

density and abundance estimates for moose (Alces alces) and elk (Cervus canadensis) across 

camera trap grids in Riding Mountain National Park, Canada. I show that, given adequate spatial 

and temporal sampling periods, the Random Encounter Staying Time model produces density 

and abundance estimates that correlate well with historic aerial flight surveys on both fine- and 

coarse-spatial scales. Finally, I comment on how viewshed density estimators can improve our 

understanding of wildlife density and abundance estimation, as well as provide novel insights in 

many areas of ecological study.   
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Chapter 1: Theoretical framework 

1.1 — Density estimation for terrestrial mammals   

There is perhaps no concept more important to wildlife management than density, the number of 

animals per unit area, and abundance, the total number of animals in a delineated area. 

Understanding how wildlife density fluctuates has management implications that affect natural 

ecological functioning, and for human uses of wildlife (Wang et al. 2006; Vander Wal et al. 

2013; van Beest et al. 2014). For example, in Canada, some wildlife harvest quotas are set using 

estimates of density. Additionally, many governmental and non-governmental organisations 

communicate about population health to the public in terms of density, i.e., a wildlife population 

is increasing or decreasing (e.g., see Environment and Climate Change Canada, 2021). Despite 

the importance and prevalence of density estimation in wildlife sciences, density estimation 

techniques for larger-bodied mammalian species (e.g., moose, elk, wolves) remains a difficult, 

costly, and often inaccurate practice (Rönnegård et al. 2008; Gable et al. 2018; Lamb et al. 2018; 

Nakashima et al. 2018). 

Density estimation in wildlife sciences is represented as the number of animals per unit 

area. For terrestrial wildlife sciences, however, a clear bias of density estimation exists. It seems 

intuitive that we should be able to count the number of animals in a given area but density 

estimation remains challenging because of heterogenous habitat cover as well as clumped 

distributions of animals (Liberg et al. 2011; Burton et al. 2015). The accepted uncertainty due to 

habitat influences underappreciates error associated with density estimation, as we tend to 

assume certainty with any estimate. For example, aerial flight surveys to estimate ungulate 

density often use correction factors to account for overstory forest cover. In one study estimating 

moose density, forests with cover exceeding 80% had a sightability correction of 70%. This 
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means that during the survey if 5 moose are observed in the high-cover strata, the correction 

factor will estimate 4 additional moose that were never observed (Liberg et al. 2011; Burton et 

al. 2015). Conversely, many programs do not employ correction factors (e.g., Vander Wal et al. 

2013), leaving the potential for high variability in density estimates, and a lack of repeatability 

across geography. Despite the numerous habitat-based uncertainties, such density estimates act 

as a basis for many conservation and management decisions.  

Currently, the most frequently employed methods of density estimation depend on one 

large assumption—the ability to differentiate individuals—which has implications with ethical, 

logistical, and financial concerns (Rönnegård et al. 2008; Stephens and Anderson 2014; Burton 

et al. 2015; Gable et al. 2018). The mark-recapture method is relatively common for species with 

relatively small ranges (Jolly, 1965). Mark-recapture, however, can impact the survival of 

individuals captured and as such have ethical implications (Stephens and Anderson 2014). 

Additionally, the logistical constraints of continually marking and monitoring individuals make 

the method unrealistic for many programs. For species with larger ranges and habitat, financial 

and logistical constraints dominate. For example, a common way to estimate bear density is 

through hair DNA analyses with non-invasive barbed-wire hair snares (Woods et al. 1999; Beth 

Gardner et al. 2010). Yet, such apparatuses need frequent maintenance and can be used to 

represent density estimates at vast geographic scales. Large ungulate species (e.g., moose, elk, 

caribou), occupy a wide variety of habitats, and thus aerial flight surveys are the dominant 

method of abundance estimation. Aerial flight surveys typically employ distance sampling 

methods (Buckland 2004), or stratified random block surveys (Quayle et al. 2001) to count 

individuals in a large geography within a short period of time. The high cost and large amount of 

training associated with aerial surveys make them impractical for temporally frequent or 
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consistent estimation (Rönnegård et al. 2008). As a result, tracking density beyond infrequent, 

single points in time remains difficult. Further, dissimilarity in geography, habitat, and 

implementation of density survey can contribute to high variance in density estimates, lowering 

our confidence in their outcomes. 

1.2 — Modern approaches to density estimation 

Starting in the early 2000s, advances in statistics and technology have allowed 

researchers to generate likelihood-based density estimates through the use of remote camera 

traps (Karanth 1995; Karanth and Nichols 1998; Rowcliffe et al. 2008; Chandler and Royle 

2013; Howe et al. 2017; Moeller et al. 2018; Nakashima et al. 2018). Currently, around a dozen 

likelihood-based models are adapted to use camera-trap data. These models fall into four general 

categories based on the methods they use: 1) Capture-recapture based models, 2) distance 

sampling-based models, 3) encounter rate-based models, and 4) space-to-event models. Capture-

recapture based models (1) (Karanth and Nichols 1998) adapt traditional mark-recapture 

methods paired with marked individuals or species with distinct, identifiable markings (e.g., 

Choo et al. 2020). Camera-based capture-recapture models require a high level of investment to 

mark or identify individuals, and as such are only practical to implement for a small number of 

species. Adaptations to the traditional point-transect distance sampling method (2) (Buckland 

2004) were proposed for use with camera traps (Howe et al. 2017). Much like their predecessor, 

camera-based distance sampling requires a measurable distance, and associated detection 

probability, for each species photographic capture at a camera trap. Although a useful model, the 

many logistical constraints of implementing distance sampling model have limited its growth 

while implementing camera traps. A novel viewshed density estimator, the Random Encounter 

Model (REM), was proposed by Rowcliffe et al. (2008). The REM method estimates density 
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through encounter rates (3), the cumulative amount of time a species spends in front of a camera 

trap, given the species movement rate. The REM has been shown to produce unbiased, accurate 

estimates of wildlife density (Rowcliffe et al. 2008), however, requires substantive external data, 

i.e., telemetry, GPS, behavioural observations, to parameterize a species movement rate. The 

REM has seen numerous adaptations to help ameliorate its assumption of knowing a species 

movement rate. The Space-to-Event model (4) (STE; Moeller et al. 2018) built upon the REM 

model, however, STE replaces time as the sampling unit with space. By sampling an 

instantaneous point in time across spatially distinct cameras, i.e., using time-lapse photography, 

the STE method can provide reliable density estimates when compared with other encounter rate 

models.  

1.3 — The Random Encounter Stay Time model to estimate density   

A relatively new, popular adaptation of the Random Encounter Model, is the Random 

Encounter Staying Time (REST) model, proposed by Nakashima et al. (2018). The REST model 

removes the need to estimate animal movement speed by incorporating the length of time a 

species stays in a cameras viewshed. The original REST model uses videos taken from remote 

camera traps, trapping effort, and cameras viewshed to generate unbiased density and abundance 

estimates (Nakashima et al. 2018). Some researchers have further reformed Nakashima’s REST 

model to be more broadly applicable to a wider range of camera trap programs. For example, the 

Time In Front of Camera (TIFC) method was adapted to use photographs instead of videos from 

cameras (Warbington and Boyce 2020; Becker et al. 2022; Huggard 2018). 

The most recent adaptation of the REST model was proposed by Hogg (2021). Hogg 

(2021) reconstructed the original REST model to generate mean and theoretical variance 

estimates of species density and abundance. Hogg’s formulation: 
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𝜌 =  
∑ 𝑇𝑠

𝑇𝑎 ∗ 𝐴𝑐
∗

𝜋2

8
     Equation 1  

Estimates species density (𝜌) as a function of the cumulative time a species spends in front of a 

camera trap (∑ 𝑇𝑠), the total time a camera trap was active (𝑇𝑎 ), and the spatial footprint of a 

camera with a 100% capture rate (𝐴𝑐). Hogg’s model has an additional qualifier (
𝜋2

8
), which 

arises from an assumption that the spatial footprint with perfect capture probability is circular. 

The theoretical variance estimator is a bit more complicated: 

𝑉𝑎𝑟(𝜌) = 𝜌2 ∗ (
𝜋2

8
− 1 +

𝜋2

16∗𝑟∗𝑇∗𝑠∗𝜌
)   Equation 2 

Where 𝜌  represents the species density at a camera, r  represents the radius of the assumed 

circular viewshed, 𝑇 represents the duration of the observation period, and 𝑆 represents the 

species average displacement rate assuming ballistic movement. Hogg’s (2021) REST adaptation 

to calculate mean and theoretical variance density estimates provides a unique opportunity to 

compare the robustness of viewshed density estimators to more traditional survey types.  

1.4 — Camera trap viewshed  

Camera trap-based density models provide freedom from many challenging assumptions 

implicit with traditional density methods. All camera trap models, however, require an estimate 

of the spatial footprint camera traps monitor. The spatial footprint a camera monitors is 

henceforth referred to as a cameras viewshed. Precision in estimating the viewshed area is 

critical when employing camera-based density estimators, especially considering no research 

currently provides a standardized method to estimate a cameras viewshed area. For example, 

assuming all other variables are constant, if we assume a cameras viewshed is 100 m2, that 

camera will produce density estimates an order of magnitude lower than if its actual monitoring 
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area was 10 m2. Despite the importance of a cameras viewshed when using camera trap-based 

methods, there is no consistent or standardized approach to precisely measure camera trap 

viewshed. 

1.5 — Riding Mountain National Park  

  The land currently known as Riding Mountain National Park (RMNP) is a Canadian 

National Park, located in southwest Manitoba, on Treaty 2 territory, the traditional lands of the 

Anishinabewaki, Očhéthi Šakówiŋ, Cree, Oji-Cree, and the Homeland of the Métis peoples. 

Despite the parks turbulent colonial history, RMNP is currently delineated as an ~3000 km2 area 

located within the transition zone of the Prairie Parkland and Boreal Plains ecotones (Olson et al. 

2001). Riding Mountain has been conducting aerial surveys for ungulates, i.e., moose, elk, and 

deer, since the 1970s (Prokopenko 2022). Though aerial survey methods have slightly changed 

throughout their history, they have remained consistent since the mid-2000s (Parks Canada, 

Unpublished data). Fixed-wing aerial surveys take place in late winter (late January–March) each 

winter and are split into two portions. The central and eastern portions of the park, ~2500 km2, 

has 400 m wide transects flown 1.6 km apart, at an altitude of 120 m at ~ 120 km/hr. The central 

and eastern flight surveys represent 25% aerial coverage. The western portion of the park, 

~500km2, has the same 400 m wide transects, but flown 400m apart. The western area of the 

park represents 100% coverage aerial coverage (Parks Canada, Unpublished data; Vander Wal 

2011). The long-standing and consistent aerial surveys at RMNP provide a detailed chronology 

of the changes in ungulate populations. In addition, the reliability of the aerial flight surveys in 

RMNP provide an excellent fine and coarse-scale benchmark to which novel density estimation 

techniques can be compared to and improved upon. 
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In this thesis, I will parameterize Hogg’s (2021) REST adaptation to generate mean and 

theoretical variance density and abundance estimates for large ungulates in a geography located 

on Treaty 2 territory, the traditional lands of the Anishinabewaki, Očhéthi Šakówiŋ, Cree, Oji-

Cree, and the Homeland of the Métis peoples, presently known as Riding Mountain National 

Park. In Chapter 2, using a novel field and analytical framework, I will generate a standardized, a 

priori, estimator for the viewshed area of camera traps with a 100% capture rate—the Effective 

Capture Area. In Chapter 3, I will generate mean and variance density estimates for moose 

(Alces alces, from Algonquian moswa) and elk (Cervus canadensis, from Algonquian, Cree 

waapiti) from the Hogg-REST model, and compare those estimates to historical aerial-flight 

surveys conducted by Parks Canada. Finally, I will provide a framework to integrate both density 

estimation methods to provide a more robust, accessible form of density estimation for diverse 

stakeholders that may be interested in wildlife management. 
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Chapter 2: Dead zones, obstructions, and missed captures: a novel 

approach for determining the Effective Capture Area for remote 

camera traps 
 

2.1 — Abstract  

1. Camera traps have become cemented as an important tool of wildlife research, yet, their 

utility is now extending beyond researchers, as cameras can contribute to more inclusive 

methods of place-based wildlife management. From recent advances in analytics and 

technology, camera trap-based density estimates of wildlife is an emerging field of 

research. Most camera trap-based density methods require an estimate of the area 

monitored by each camera, a relatively novel parameter that may be highly variable and 

is rarely quantified in literature.  

2. Here, we developed and tested a standardized field and analytical method allowing us to 

predict the probability of photographic capture as it varies within the camera viewshed. 

We investigated how capture probability changes due to environmental influences, i.e., 

vegetation structure, ambient temperature, speed of subject, time of day, in addition to 

internal factors from cameras themselves, i.e., sensitivity settings, number of photos 

taken, and camera trap brand. We then use our method to gain standardized, accurate, and 

predictable estimates of the area a camera monitors, the Effective Capture Area (ECA).  

3. We found that ECAs in our study areas are heavily influenced by location-specific 

environmental factors, i.e., vegetation structure, technological delays associated with 

cameras themselves, i.e., refractory period, and custom internal camera settings, i.e., 

sensitivity, number of photographs taken. We also found that the ECAs computed using 

our methodology are substantially smaller than reported values in the literature.  



 18 

4. Imprecision surrounding camera trap viewshed areas can create propagating bias when 

implementing viewshed-based density estimators. Our method and Effective Capture 

Area calculation may help increase the reliability of camera trap-based density estimation 

methods, provide a framework to help improve camera-trap occupancy modeling, and 

contribute to more accessible wildlife management practices. 

2.2 — Introduction  

In recent history, camera traps have become an established method of studying and monitoring 

wildlife populations (Fisher, 2023; Sollmann, 2018). Camera traps are an easy-to-operate, 

accessible, relatively affordable, and low-impact method of monitoring wildlife. Camera traps 

have become an integral part of wildlife management allowing researchers to answer location-

based questions of occupancy (e.g., Tobler et al. 2015; Neilson et al. 2018), movement (e.g., 

Tape and Gustine 2014), and behaviour (e.g., Caravaggi et al. 2017). As a result, camera traps 

are heavily used among wildlife researchers in general and North American colonial 

governments in particular. Recently, camera traps are becoming an important tool for Indigenous 

nations and other interested stakeholders to monitor and manage wildlife on their own lands 

(Fisher et al., 2021; Kemp, 2023). 

Despite their common use, ambiguities around camera trap performance lead to 

uncertainty and decreasing the quality of inference made from some camera trap-based science. 

Among their limitations (e.g., Burton et al., 2015; Foster & Harmsen, 2012; Kolowski et al., 

2021; Urbanek et al., 2019), empirically estimating the viewshed area a camera trap can monitor 

is perhaps the least studied, yet, most critical when considering wildlife space use and 

occupancy. Some research, however, has used animals in captivity to estimate the distances 

directly perpendicular to cameras where various species will have at least one photograph taken  
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(Rowcliffe et al. 2011; Becker et al. 2022). Camera trap data are frequently analyzed using 

occupancy models or similar frameworks (Burton et al., 2015; MacKenzie et al., 2002, 2017). 

Such approaches attempt to account for false negatives, i.e., when a species is present in an area 

but not captured by a camera, by integrating both the detection probability of a species in a broad 

study area and the capture probability of a camera photographing a species. Occupancy models 

can be fit many ways; however, most commonly use post-hoc methods such as constructing the 

detection history of a species across time at each camera trap (MacKenzie et al., 2017). 

Occupancy models have been shown to be capable of accommodating imperfect detection, i.e., 

of a species within the broader study area, at camera traps; however, occupancy models are 

limited in creating a standardized, apriori method to assess capture probability, i.e., of an 

individual in front of a camera trap. 

Numerous density and abundance estimators of wildlife species have recently emerged as 

a novel analysis of camera trap data (e.g., Rowcliffe et al. 2008; Moeller et al. 2018; Nakashima 

et al. 2020; Becker et al. 2022). Camera trap-based methods, henceforth referred to as viewshed 

density estimators (Moeller et al., 2023), are a family of statistical models incorporating different 

processes to estimate wildlife density. For example, Nakashima et al. (2018) developed the 

Random Encounter Staying Time (REST) model, which measures the amount of time a species 

spends in front of a camera trap to generate density estimates. Using camera traps to estimate 

wildlife density may, long term, help lower financial and logistic barriers currently in place for 

other traditional density estimation methods, e.g., aerial surveys. In addition, the accessibility of 

implementing camera traps may allow viewshed density estimators to become more popular 

among Indigenous nations or other groups. Some viewshed density estimators do not require the 

identification of individual animals and thus may constrain less (e.g., no need to mark 
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individuals or census a population) than their traditional counterparts, such as physical mark-

recapture methods or aerial flight surveys. Each viewshed density estimator, however, comes 

with its own set of assumptions and require novel parameters that we lack precision in 

estimating.  

Although viewshed density estimators free us from identifying individual animals, they 

require a precise estimate of the sampling area that each camera trap monitors (Becker et al., 

2022; Moeller et al., 2023; Nakashima et al., 2020; Rowcliffe et al., 2008). Imprecise estimation 

of the viewshed area is problematic because camera traps, even a large number being used 

together, monitor a relatively small area—often a minute percentage of a study region. As a 

result, small errors in the determining the sampling area can lead to large biases in abundance 

estimates when extrapolating fine-scale density estimates (Moeller et al., 2023). In addition, the 

theoretical area camera traps monitor often does not align with the realised area. Camera trap 

manufacturers report an ideal area a camera can monitor given perfect conditions and assuming 

the camera triggers a photo for every possible activation. For example, Reconyx Hyperfire 

camera traps, a very popular brand in wildlife research, market a viewshed area extending up to 

30 m from the camera trap and 40 angle perpendicular to the camera’s lens, an area 

approximating 315 m2 (Reconyx 2022; Figure 2.1A). In reality, environmental factors such as 

habitat structure, topography, and vegetation (Moeller et al., 2023; Moll et al., 2020; Sultaire et 

al., 2023), will dictate a camera’s viewshed area for each unique location where cameras are 

placed (Apps and McNutt 2018; Urbanek et al. 2019; Figure 2.1B). 

Researchers also need to account for the probability a photo will be taken given an 

animal is located within the camera’s viewshed, henceforth referred to as capture probability 

(Findlay et al., 2020; Moeller et al., 2023). Capture probability is more complicated and depends 
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on numerous, likely interacting conditions caused by the physical environment in which cameras 

are placed, and the internal camera settings. Variation in capture probability is influenced by 

camera traps Passive Infrared (PIR) motion detectors. PIR motion detectors require recognition 

of movement within pre-programmed zones, that vary between camera brands and models 

(Urbanek et al., 2019), as well as a heat signature that contrast ambient temperature, for a 

photograph to be taken (Reconyx, 2022; Welbourne et al., 2016). PIR motion detector 

performance influences capture probability. Yet, how PIR performance contributes to camera 

monitoring area and thus larger ecological processes remains unknown. Variability in PIR sensor 

performance may contribute to reports of differential performance throughout the literature, even 

among similar geography (Apps & McNutt, 2018; Heiniger & Gillespie, 2018).  

Internal camera functioning and settings also dictate the viewshed area and how 

effectively cameras take photos (Apps & McNutt, 2018; Becker et al., 2022; Lepard et al., 2019; 

Urbanek et al., 2019). For example, even on rapid fire modes, many camera trap user manuals 

report a 1–2 s refractory period from the time the PIR motion detector is triggered until that 

photograph can be written to the memory storage device (Del Bosco, 2021; Paula et al., 2014; 

Reconyx, 2022). Because a camera must reset and register another trigger for subsequent photos 

to be taken, this phenomenon would be sequential across the entire period an animal is in a 

camera’s viewshed. Thus, the trigger-to-photo delay could create a ‘shutter-like’ effect where an 

animal is present in the viewshed but, because of a refractory period, missing in photos for 

specific locations (Figure 2.1C). Additionally, to decrease the large number of false triggers, e.g., 

from vegetation moving, researchers often lower camera trap sensitivity settings, influencing the 

space a camera trap can monitor. To aid in the identification of species from camera photos, it is 

common practice to set camera traps to capture multiple rapid-fire photos. When doing this, 
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researchers often consider a photo series (i.e., all 3, 5, 10 photos) as a single event. As it takes 

camera traps more time to capture more photographs, however, increasing the number of photos 

per trigger will reduce the total viewshed area. The effects of internal camera settings have not 

been empirically incorporated into camera trap literature yet will have compounding influences 

on how effective camera traps are at photographing wildlife. 

Though camera trap data can describe broader trends in population size well (Kenney et 

al. 2024), viewshed based density estimators are often criticized for density estimates that 

inconsistently align with traditional density estimation methods (e.g., Palencia et al. 2021; 

Becker et al. 2022; Fisher et al. 2023; Koetke et al. 2024). Although there may be many 

explanations for inconsistent results from viewshed density estimators, a lack of accuracy in, or 

entirely absent incorporation of viewshed area is undoubtedly one reason behind these 

discrepancies (Moeller et al., 2023). Here, we tested a standardized field protocol to 1) determine 

the unique bounds of independently placed camera-trap viewsheds (Figure 2.1B), 2) account for 

cameras refractory period when sequential photographs are taken (Figure 2.1C), 3) enumerate a 

kernel-based photographic capture probability and how it changes with space in front of cameras 

(Figure 2.1D), and 4) summarize these capture probability kernels into an Effective Capture 

Area—the scaled area in a cameras viewshed with a 100% capture rate.  

2.3 — Methods 

2.3.1 — Field methods  

To assess capture probability, we tested a standardized field method in two separate case 

studies. We applied this method to each camera trap to calculate a novel capture probability 

metric, unique to each camera trap in our study that in Case Study A) accounts for differences 
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due to habitat and other location-specific influences and in Case Study B) incorporates variation 

resulting from internal camera settings. 

2.3.2 — Case Study A  

We tested 45 camera traps actively deployed as a part of a long-term monitoring program 

located on Treaty 2 territory, the traditional lands of the Anishinabewaki, Očhéthi Šakówiŋ, 

Cree, Oji-Cree, and the Homeland of the Métis peoples (Riding Mountain National Park, 

Canada; RMNP). Adapting methods from other researchers (Apps & McNutt, 2018; Del Bosco, 

2021; Palencia et al., 2021), we established six 20 m long transects, perpendicular to and centred 

at the camera’s optical axis at distances of 3, 5, 10, 12, 15, and 20m (Figure 2.2) from the lens. 

These transects were designed to extend past cameras’ viewshed to determine the spatial bounds 

of where the cameras could capture photos. We then performed a ‘jog-test’ where one researcher 

attempted to jog at a speed of approximately 2 m/s along each transect, six times, for a total of 36 

jogs per camera. With a timer, another researcher initiated each jog-test by triggering the camera 

using a hand motion to take a photo and recorded the time in seconds it took to jog across the full 

20 m. We conducted jog-tests on two different camera brands deployed at our research sites: 

Reconyx Ultrafire (n = 9; Reconyx, Holmen, USA) and Cuddeback H-1453 (n = 36; Cuddeback, 

Green Bay, USA). We did not vary any internal settings between trials in Case Study A—all 

cameras were set to a high sensitivity setting and a single photograph taken for each trigger. 

Instead, we measured external factors known to affect capture probability. These included: 

distance from camera trap (McIntyre et al., 2020), vegetation cover in front of cameras (Moeller 

et al., 2023; Moll et al., 2020), ambient temperature (C) at time of survey (Urbanek et al., 2019), 

speed (m/s) of jog for each transect (McIntyre et al., 2020), and camera trap model (Apps and 

McNutt 2018). In addition, to account for a refractory period after a photographic capture (Del 
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Bosco, 2021; Paula et al., 2014; Reconyx, 2022), we recorded whether cameras captured a photo 

in the previous two seconds. To measure vegetation cover, we conducted two surveys. (1) a 

shrub cover survey counting multi-stemmed woody species 10m in front of each camera by using 

the Daubenmire method on a 4 m radius plot (Daubenmire, 1959); and, (2) horizontal cover via a 

cover pole, placed 10m in front of cameras to quantify vegetation height. 

2.3.3 — Case Study B 

We conducted a series of jog-tests in an open, non-vegetated, flat field in a local park located on 

traditional unceded territories of the Beothuk and Mi’kma’ki peoples (St. John’s, Canada). The 

trial used a controlled habitat to isolate the effect of internal camera settings on capture 

probability. In total, we surveyed 27 Reconyx Hyperfire 2 (Reconyx, Holem, USA) camera traps 

across 3 trials: two during daylight (~1400h) and one after sunset (~2300h). These trials were 

conducted to measure the influences of the internal camera sensitivity settings (Heiniger & 

Gillespie, 2018), the number of photos taken per motion trigger and refractory period following a 

photograph capture (Paula et al., 2014). In addition, we wanted to measure the deterioration of 

camera trap performance during the nighttime. We held camera settings constant across trials 

using specific combinations of settings (see Table 1 for all combinations). Due to the lack of 

visual obstructions during the daytime trials in the open field, we observed a higher-than-

expected capture probability on the 20 m transect. Thus, for the two daytime trials we jogged an 

additional two transects at 30 and 40 m parallel to cameras to fully enumerate the decay of 

capture probability with distance (Figure 2.2). 

2.3.4 — Analytical methods  

To calculate a capture rate, we determined the time elapsed (s) between the transect start times 

and the time when each photograph was taken. Next, we calculated the speed of each transect jog 
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as the time taken to cross each transect divided by transect distance (m/s). We calculated spatial 

locations where all photographs were taken, i.e., used locations, by multiplying the time elapsed 

at each photograph by jog velocity to calculate the distance traveled along the transect. For trials 

where more than one photo were taken per trigger, we filtered photo series down to the first 

instance when a photograph of the jogger was taken. By using the same jog velocities, and 

transect start and end time, we calculated all spatial locations where photographs could have 

occurred, i.e., available locations. We excluded locations where photographs did occur from the 

available data thus, creating a 1-m grid-system along each transect where each cell had a binary 

outcome, whether a photographic capture occurred or not.  

2.3.5 — Statistical models 

We fit the binary capture data using Generalized Additive Mixed Models (GAMMs) using the 

mgcv package in Program R (Wood 2017) for each case study, separately. We used GAMMs to 

allow for a non-linear viewshed, that changes with space in front of cameras, by implementing a 

Gaussian Process spline on the parallel and perpendicular locations from cameras (Wood, 2017). 

For Case Study A, we created a single, saturated model including covariates measured in the 

field, i.e., parallel and perpendicular distances from camera trap, percent shrub, and vegetation 

cover in front of camera, ambient temperature (C), velocity (m/s) of each jog, camera trap 

model (categorical), and whether a photograph had occurred in the previous 2 seconds (binary). 

Additionally, we implemented unique camera trap ID as a random factor smoother (Wood, 2017, 

2023). For cameras assessed in Case Study B, in addition to the smoothed parallel and 

perpendicular locations (McIntyre et al., 2020), we included categorical covariates for each of 

the variables of interest: camera sensitivity setting, number of photos taken per motion trigger, 

time of day, and whether a capture had been taken in the previous two seconds (Table 2).  
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We used both GAMM models, along with covariate data from each trial, and the 

predict_gamm() function (Wood 2023) to predict the probability of photographic capture 

occurring across a 1x1-m extrapolated spatial grid both between transect lines and beyond the 

cameras’ field of view, 10 m in both directions of the focal axis 40 m from the lens (e.g., 2.1D). 

We further applied these models to also predict capture probability at any cameras where data 

were collected (e.g., vegetation cover, ambient temperature) but that were not included in the 

trial tests.  

Our primary goal was to determine the area that camera traps monitor with 100% capture 

probability: the Effective Capture Area (ECA). To achieve this, we multiplied the average 

probability of photographic capture in each of 800 predicted grid cells by their area (1m2). Our 

approach assumes equivalency between predicted probabilities of photographic capture and the 

percent area monitored in each cell (discussed more below). Thus, the resulting values represent 

the equivalent area within each cell that a photograph would be captured with certainty. For 

example, a capture probability of 0.33 in a 1 m2 cell is equivalent to having 0.33 m2 of area with 

a perfect capture probability. We then took the sum of predicted values across all cells, 

representing the adjusted space in front of cameras with a 100% capture probability (Figure 

2.1E), which we defined as the ECA. In addition, we determined standard error and confidence 

bounds for all ECA calculations. Because the ECA was determined through prediction, we 

wanted to ensure sufficient predictive accuracy of our analysis for our Case Study A field trial. 

Because a camera’s monitoring area is unknown, we employed k-folds cross validation on the 

probability of photographic capture for spatial locations in front of each camera (Geisser, 1975). 

Using unique camera ID as a blocking variable, we withheld entire cameras to assess the 

predictive accuracy of each 1x1-m cell across camera traps and thus the validity of our method at 
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cameras where jog-tests were not conducted (Fielding & Bell, 1997). We generated Receiver 

Operating Characteristics (ROC) Area Under Curve (AUC) scores for each of these validations. 

To determine how strongly the numeric covariates in Case Study A influence a cameras 

ECA, we calculated a post-hoc effect size through prediction. We ran separate predictions for 

each numeric covariate of interest—percent shrub cover, percent horizontal cover, velocity of 

jog, and ambient temperature—and generated ECA values across the observed range of each 

covariate while holding all other variables at their mean values. For example, horizontal cover 

ranged from 42–99%, thus we ran an ECA prediction for each unit (percent) value in that range. 

Next, we calculated the mean of all unit-change differences in ECA predictions. The resulting 

values represent the mean influence of a 1-unit change by a covariate on a camera’s ECA. For 

Case Study B, we ran similar predictions, but for each level in the categories of interest, i.e., 

sensitivity setting and number of photos per trigger, while holding all other variables at constant 

values.  

2.4 — Results 

2.4.1 — Case Study A 

We determined the predicted probability of a successful photographic capture occurring within a 

camera viewshed at a 1x1-m resolution (Figure 2.3A). For all cameras where we collected local 

site data, we calculated their unique capture probability distributions and scaled them to an ECA. 

For example, Figure 3A represents a Reconyx Ultrafire camera within our Riding Mountain 

National Park field site, with an average 62 % shrub cover, 79% horizontal cover, and an 

ambient air temperature of 1.5C during survey time. Assuming a subject moving at a velocity of 

2 m/s in the cameras viewshed area, we scaled these probabilities to an ECA of 15 m2 and a 

standard error ranging from 8–27 m2 (Figure 2.3A). Ambient temperature at time of jog-test 



 28 

surveys ranged from -2–10C, velocity of each jog from 0.76–2.86 m/s, percent shrub cover 

from 0–176 %, and percent horizontal cover from 42–98 %.  

Covariates in the model showed varying levels of significance (Table 2). The parallel and 

perpendicular locations from camera traps, fit in a Gaussian process spline, was highly 

significant (F = 42.655, p <0.001). In addition, the binary refractory period variable showed a 

significant negative relationship with photographic capture ( = -0.955, p <0.001). Other 

covariates showed varying effects on ECAs (see Table 2). Percent unit changes in shrub (x̅ = 

0.211m2) and horizontal cover (x̅ = 0.213 m2) had a relatively small influence on ECA. Absolute 

differences between the largest and smallest ECA prediction, however, were larger. The 

difference between the largest and smallest ECA was 86 m2 for shrub cover and 50 m2 for 

horizontal cover (Figure 2.6). A unit change in temperature (C) had a larger influence on ECA, 

with a mean of 2.546m2, and a maximum of 79m2 difference between the maximum and 

minimum ECA predictions (Figure 2.6). Finally, unit changes in velocity (m/s) of each jog had 

the largest influence of ECA prediction, with a mean of 34.630m2 and a maximum of 69m2 

between the largest and smallest predictions (Figure 2.6). The predictive accuracy of the model, 

assessed at each 1x1 m cell between camera traps, was good (AUC=0.76; Boyce et al. 2002).  

2.4.2 — Case Study B 

Our controlled, open field trials suggested that predetermined sensitivity settings have a large, 

significant influence on the probability of photographic capture and thus the ECA (Table 2). For 

example, our model estimated a maximum difference of approximately 250 m2 in ECAs between 

the lowest and highest sensitivity settings on the Reconyx Hyperfire 2 cameras (Figure 2.4). The 

number of photos taken per trigger had a significant negative influence on ECA, where 3 and 5 

photographs per capture produced significantly lower ECAs than 1 photo but were not different 
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from each other (Table 2, Figure 2.4). Jog-tests conducted in the daytime produced significantly 

higher ECAs (x̅ = 151 m2, SE =122–191 m2) than the post-sunset jog-tests (x̅ = 73 m2, SE = 51–

101 m2, Table 2, Figure 2.5). The smoothed terms of the Case Study B model, i.e., parallel and 

perpendicular locations fit in a Gaussian process spline (F = 39.969, p <0.001), and refractory 

period variable ( = 1.669, p <0.001) were both highly significant. 

2.5 — Discussion  

Our study provides a tested field and analytical framework for determining the Effective Capture 

Area (ECA) of camera traps, an accurate viewshed area with a 100% capture probability, that 

incorporates capture probability and how it is influenced by local environmental variables and 

internal camera settings. We determined the ECA through a spatially predictive kernel-based 

photographic capture probability analysis, providing new insight into how capture probability 

varies within a camera’s viewshed. Our metric to determine ECA, relied on the assumption of 

equivalency between predicted probability of photographic capture and percent area monitored 

in viewshed space. Though this assumption of equivalency may have varying validity depending 

on the study, we think here our assumption is robust as we rely heavily on the average effect of 

covariates. Additionally, our study design, which assessed locations multiple times in quick 

succession, has been shown to reduce bias in similar space-for-time equivalencies (Kendall and 

White, 2009). Our analysis, however, suggested that capture probabilities and the associated 

ECA are sensitive metrics and can vary substantially depending on both environmental 

influences and user-defined settings. Understanding and accurately estimating the ECA is crucial 

when implementing viewshed density estimators and may also contribute how researchers 

interpret camera-based occupancy analyses.  
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2.5.1 — Case Study A 

In Case Study A, our goal was to develop an accurate metric to estimate the physical space 

camera traps monitor, specifically for use with viewshed density estimators. Though not 

statistically significant, our environmental covariates, i.e., shrub cover, horizontal cover, 

temperature, and jog velocity, still contributed considerable variability in ECA. For example, 

when holding other covariates at mean values, average per-unit changes in vegetation structure, 

shrub cover and horizontal cover can influence ECA by ~0.2 m2. Although changes are small 

over single percentage changes, if we consider cameras with 50% differences in either shrub or 

horizontal cover, ECA could be influenced by over 10 m2. Vegetation influences are likely even 

greater in affecting ECA, considering shrub and horizontal cover are additive, resulting in a 

compounded effect on ECA. 

 Though our jog-tests were conducted at relatively consistent velocities, we detected a 

large difference in ECA between unit (m/s) changes in jog velocity, with a mean of ~35 m2. 

Further, our predictions show that slower jog speeds lead to higher ECAs. Our jog velocity 

results stand in contrast to previous findings (e.g., Del Bosco, 2021) who found that faster jog 

velocities generally lead to higher capture rates at camera traps. This discrepancy may be 

explained by the habitat in which jog-tests were conducted. Specifically, our tests took place in 

primary and secondary conifer and mixed forests whereas Del Bosco's (2021) work occurred in 

more open, sagebrush-mountain habitat. We suggest researchers consider both habitat 

composition as well as effective movement speed of the species of interest when implementing 

the jog-test method. 

 We detected a relatively small influence of unit changes of temperature on ECA, with a 

mean of ~2 m2 per C. This small influence is intuitive given the short duration when we 
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conducted jog-tests. For example, we conducted our Case Study A jog-tests on the edges of 

winter (April and November 2023). The time of year allowed us to safely access remote field 

sites, in addition to providing conditions consistent with when traditional density estimation 

surveys take place (e.g., aerial flight surveys in late winter) for future applications of this work. 

As a result, many of our covariates show little range. Ambient air temperatures at time of survey 

only ranged from -2–10C, and total shrub was measured after leaf senescence in the fall, 

limiting observed variability. Although we would not expect camera traps to decrease 

performance until -20C or below (Reconyx, 2022), it is worth noting that other research has 

observed camera traps performing best around 0C, where higher false-negatives occur in 

positive temperature ranges (Jacobs & Ausband, 2018), and negative temperature ranges and 

associated weather can contribute to decreased performance (Maile et al., 2023). Conducting jog-

tests during other seasons and within a greater range of forest types and habitat will likely 

contribute to detecting statistical differences in environmental covariates and help determine if a 

cameras ECA varies more substantially across space and time (e.g., as in McIntyre et al., 2020; 

Moeller et al., 2023; Moll et al., 2020; Sultaire et al., 2023; Urbanek et al., 2019).  

ECA values generated from our Case Study A model are substantially smaller than other 

published literature. For example, an average Reconyx Ultrafire camera in our study was 

estimated to monitor an area of 16m2 (ranging from 12–22m2) with a perfect capture probability. 

Our average Reconyx ECA, in the Case Study A field trial, was less than 10% of the total 

possible area the camera trap advertises (Reconyx, 2022) and still smaller than other published 

monitoring areas (Becker et al., 2022; Garland et al., 2020). This indicated that implementing 

these detection areas on viewshed density estimators could produce density estimates that differ 

by an order of magnitude. Although cameras’ capture probability area cannot be unilaterally 
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applied across different studies in varying geography and with different external influences, our 

work highlights the importance of conducting a standardized test on all cameras of a study when 

attempting to estimate monitoring areas. 

Cross-validation of the probability of photographic capture occurring in each 1x1-m cell 

assessed during jog-tests highlighted that our ECA modeling framework has useful predictive 

accuracy. In addition, environmental covariates explained substantial variation in our model, as 

determined through average unit-changes. This result, along with our cross-validation results, 

suggest that, in our geography, we can predict ECA well at cameras where we did not conduct 

jog-tests, but did collect vegetation data.  



 33 

2.5.2 — Case Study B 

Overall, sensitivity settings on Reconyx Hyperfire II cameras greatly influenced the predicted 

ECA. Differences between lower sensitivity settings were smaller but became more pronounced 

as the sensitivity settings became higher. Model results on sensitivity settings show how 

drastically a camera traps monitoring zone can change with sensitivity settings, e.g., from ~75m2 

to ~350m2 in open conditions, reinforcing the importance of consistency and assessing cameras 

in each location they are placed. Our results highlight the balance researchers need to consider 

when altering sensitivity settings to decrease false negative photographic captures, while risking 

tremendous loss of area in photographable space. 

 Predicted ECAs for trials set to take 3 or 5 photos per trigger were significantly smaller 

than trials with 1 photo per trigger, but not different from each other. As we take more 

photographs per event, the camera trap will be less able to capture future photographs. This is 

simply because, even on rapid fire modes, it takes longer for to capture and write 3 or 5 

photographs than a single photograph. When considering a refractory period as well (discussed 

below) setting cameras to take more photos will greatly reduce the available time a camera has to 

take a photo and thus, the ECA. Though additional photos per trigger can be very useful in the 

identification of species, additional photos have an overall negative influence on a cameras 

viewshed area. Intuitively, trials conducted in the daytime had significantly higher detection, and 

thus ECA, compared to post-sunset trials. This is likely because the visible range of the camera 

trap will be reduced during nighttime, in addition to a reduced contrast from the subject to the 

background. Nighttime ECAs will be particularly important on camera trap studies for species 

that are predominately nocturnal, as viewshed area may be lower than anticipated. 
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2.5.3 — Camera refractory period 

Our two case studies observed opposite effects of the refractory period variable. In Case 

Study A, we observed a significant negative relationship between capture probability within a 

1x1-m cell and whether a photo was captured in the previous two seconds. This result met our 

null expectations that, due to a refractory delay, our cameras deployed in the field were less able 

to capture photos immediately after a previous photo had been taken. Our Case Study B model, 

however, exhibited the opposite trend and the refractory period variable was significantly 

positively correlated with capture probability, i.e., photos were more likely to be taken 

immediately following a previous capture. Contrasting results between the two Case Study 

models were likely due to the way we structured the Case Study B trials, where many trials took 

more than one photo per trigger. For example, in trials where cameras took 3 or 5 images per 

trigger, by artifact of camera trap shutter speed, the time it takes to capture 3 or 5 images is 

longer than 1 image. Thus, the refractory period of a camera would be longer if the camera trap 

is set to capture more images per trigger, e.g., potentially 3–6 seconds after the first photo in the 

series is captured.  

The elongated refractory period caused by trials with more than 1 photograph taken per 

trigger is also likely responsible for the divergence in capture probability observed in our 

graphical representation of ECA in Case Study B (Figure 2.5). During trials where cameras were 

set to take multiple photos, if captures were registered at the start and end of transects, where a 

refractory period occurred near the midpoint of the trial, the pattern we observe of decreased 

capture probability directly perpendicular to cameras past ~14m could be explained (Figure 2.5). 

The gap in photograph captures would not be observed at closer distances to cameras because of 
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camera lens angle—there is physically less space within a camera’s viewshed, explaining the gap 

in detection probability for trials with multiple photos per activation (Figure 2.5).  

2.5.4 — Limitations and future directions 

The functioning and performance of camera traps remains a heavily understudied facet of 

the field that certainly influences occupancy and density-based camera analyses and thus 

interpretation of camera trap-based research. In our work, how PIR sensors perform across 

temperature and seasonal gradients is particularly important. PIR detectors in camera traps 

function by sensing a difference in temperature of a subject from ambient temperature, in 

addition to movement, to capture a photograph (Reconyx, 2022; Welbourne et al., 2016). The 

interacting effects of ambient temperature and seasonality will influence the amount of heat 

wildlife subjects will emit. For example, in winter, ungulates have thick winter coats that allow 

them to retain heat and survive harsh conditions and as such, less heat may be escaping the coat 

(Parker and Robbins 2018). A lack of heat emission has been previously observed in thermal 

imaging studies, where thermal cameras have a difficult time picking up certain species during 

certain temperature ranges (Kuhn & Meyer, 2009; Zabel et al., 2023). As a result, capture 

probability may be even lower during mid-winter months for some wildlife species.  

Camera traps are influenced, to some degree, by the size of the subject they are capturing 

(DeWitt & Cocksedge, 2023). For example, Urbanek et al. (2019) observed that raw number of 

photographs at camera traps were similar for species groups that were generally the same size. 

The pattern in Urbanek et al. (2019) data suggests a potential trigger threshold where above 

certain body sizes, the number of photographs taken (and thus ECA) may increase. We think that 

our approach will work well for some species, particularly ungulates, based on height, but would 

not work well for others, such as species generally smaller than humans.  
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Our GAMM model was developed to incorporate important predictor variables 

specifically at our field site in Riding Mountain National Park (MB, Canada). We hypothesized 

the largest influencing factor to cameras would be vegetation, specifically shrub cover. Although 

vegetation cover in our study had a relatively lower influence on ECA (Table 2, Figure 2.6), the 

importance of different predictor variables, will likely depend on the geography and habitat 

conditions of the study. For example, topography (Sultaire et al., 2023) and weather (Madsen et 

al., 2020) have been found to influence camera trap capture probabilities in some geographies. 

Thus, if implementing our method, researchers should consider all potential important predictor 

variables that may influence capture probability at their study sites. 

2.5.5 — Conclusion 

We use a standardized, apriori field and analytical protocol to predict the variable probability of 

photographic capture at camera traps while incorporating internal and environmental influences 

on camera performance. We use our predictions of capture probability to estimate the Effective 

Capture Area (ECA), a novel estimator that represents the scaled area in front of cameras with a 

100% capture probability. Our results highlight how variable camera trap performance can be 

and provide a framework for researchers and other camera trap users to account for variable 

viewshed areas and capture probabilities for some taxa of wildlife. ECA may contribute to 

increasing the reliability and precision of camera-based occupancy modeling as well as viewshed 

density estimators and thus forward the growing branch of camera trap research.   
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Table 2.1 The combinations of camera sensitivity settings, number of photos taken for each 

passive infrared motion trigger, and time of day we implemented on to Reconyx Hyperfire 2 (n = 

26) camera traps during Case Study B, in a controlled, open field setting, in St. John’s Canada.  

Trial type Number of 

cameras 

Sensitivity 

setting 

Number of photos 

per trigger 

Time of day 

Sensitivity 3 Low 1 Day 

3 Medium 1 Day 

3 Very high 1 Day 

Number of 

photos 

3 High 1 Day 

3 High 3 Day 

3 High 5 Day 

Night  9 High 1 Night 
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Table 2.2 Binary Generalized Additive Mixed Models (GAMMs) used in determining the Effective Capture Areas of (a) camera traps 

(n = 46) in Riding Mountain National Park, Canada and (b) camera traps (n = 27) in a non-vegetated local park near St. John’s, 

Canada. Showing different predictor variables used in each model, with their respective explanations, coefficient values, and 

probability values. Both models contain the parallel and perpendicular locations in front of each camera trap with splines 

implemented, in addition to unique camera identification implemented as a random intercept.  
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Riding Mountain National Park field data (Case Study A) 

model:  

Controlled setting data Case Study B) model: 

 

Covariate Explanation Coefficient 

(2 for 

smoothed 

terms) 

p-

value 

Covariate Explanation Coefficient 

(2 for 

smoothed 

terms) 

p-value 

s(parallel 

distance, 

perpendicular 

distance) 

Gaussian process 

spline of the 

parallel (locations 

in front) and 

perpendicular 

(locations to the 

side) of camera 

traps  

829.978 <0.001 s(parallel 

distance, 

perpendicular 

distance) 

Gaussian 

process spline 

on parallel (in 

front) and 

perpendicular 

locations (to 

the side) of 

camera traps  

1009.3 <0.001 

te(shrub cover, 

horizontal 

cover) 

Tensor product 

spline of percent 

shrub cover 

(determined by 

Daubenmire 

plots) and 

horizontal cover 

(determined from 

cover pole) 

1.435 0.707 Low camera 

sensitivity  

Categorical 

variable for the 

sensitivity 

setting chosen 

on each camera 

trap for a 

specific trial 

Set as intercept 

Medium 

camera 

sensitivity 

1.076 <0.001 

High camera 

sensitivity 

1.837 <0.001 

Very high 

camera 

sensitivity 

3.479 <0.001 

Photo taken 

in previous 2 

seconds  

Binary variable 

of whether the 

camera took a 

photo in the 

previous two 

seconds 

-1.064 <0.001 1 photo per 

trigger 

Categorical 

variable for the 

number of 

photos taken 

per trigger 

setting chosen 

on each camera 

Set as intercept 

3 photos per 

trigger 

-1.266 <0.001 

5 photos per 

trigger 

-1.186 <0.001 
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trap for a 

specific trial 

Jog velocity Velocity of each 

transect jog 

during the field 

surveys 

0.211 0.126 Nighttime trial Whether or not 

trials occurred 

during daylight 

or night hours  

Set as intercept 

Day-time trial 1.072 <0.001 

Ambient 

temperature  

Ambient 

temperature (C) 

measured from 

camera traps at 

time of survey 

0.082 0.428 Photo taken 

in previous 2 

seconds 

Binary variable 

of whether the 

camera took a 

photo in the 

previous two 

seconds 

0.173 0.047 

Camera model Categorical 

variable for the 

brand of camera 

trap (Reconyx or 

cuddeback) used 

in the field trials  

-0.370 0.527 

s(unique 

camera ID) 

Random factor 

smooth 

implemented on 

each unique 

camera trap  

358.793 <0.001 s(unique 

camera ID) 

Random factor 

smooth 

implemented 

on each unique 

camera trap 

24.7 <0.001 
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Figure 2.1 Viewshed areas for camera traps (grey shading) A. theoretical viewshed based on 

Reconyx Hyperfire 2 specification, e.g., 40 angle and 30 m distance, B. theoretical viewshed 

that might account for vegetation obstruction C. a theoretical viewshed that addresses refractory 

period in a camera trap, e.g., a camera could be triggered in the entire viewshed, but lacking 

photos for certain locations D. differential capture probabilities in a viewshed, where darker dots 

indicate a higher probability of photographic capture occurring and E. differential capture 

probabilities scaled down into our Effective Capture Area—an estimated area in front of a 

camera with 100% capture probability. 

  

A. B. C. D. E.
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Figure 2.2 Transects and distances assessed on ‘jog-tests’ during A. field trials in Riding 

Mountain National Park, Canada (n = 45 cameras) at 3, 5, 10, 12, 15, and 20 m perpendicular to 

each camera trap and B. additional transects assessed at our daytime controlled setting trials in 

St. John’s, Canada (n = 26 cameras) at 3, 5, 10, 12, 15, 20, 30, and 40 m perpendicular to camera 

traps. All transects were assessed 6 times at an approximate velocity of 2 m/s. 
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Figure 2.3 Predicted probabilities of photographic capture, determined by Generalized Additive 

Mixed Models, on a 1x1 m grid for an average Reconyx Ultrafire camera in Case Study A, with 

62 % shrub cover, a subject moving at a 2 m/s velocity, and an ambient air temperature of 1.5C. 

The predicted Effective Capture Area ( 1 standard error) for this camera was determined to be 

15 m2 (8–27m2). The camera traps is located at position [0,0] on the grid. 
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Figure 2.4 Effects of different sensitivity settings (low, medium, high, very high) and number of 

photos taken per each Passive Infrared Motion trigger (one, three, five) on the predicted 

Effective Capture Areas (m2  standard error) of Reconyx Hyperfire 2 camera traps (n = 26) 

predicted from Generalized Additive Mixed Models during our controlled setting trials for Case 

Study B. 
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Figure 2.5 Predicted probabilities of photographic capture, predicted with Generalized Additive 

Mixed Models, on a 1x1 m grid for Reconyx Hyperfire 2 cameras, assuming a “medium” 

sensitivity setting, and a single photo taken for each Passive Infrared motion detector trigger 

during A. daytime trials and B. nighttime trials. Cameras are located at position [0,0] on each 

figure. The Adjusted Detection Areas ( standard error) were determined to be 151 m2 (122–191 

m2) for daytime (A) and 73 m2 (53–101 m2) for nighttime (B). 
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Figure 2.6 The predicted influence of unit changes of numerical covariates across their measured 

range in Case Study A, i.e., percent shrub cover, percent horizontal cover of vegetation, ambient 

air temperate (C) at time of survey, and velocity (m/s) of each jog, on the Effective Capture Area 

at a given camera trap. For each numerical covariate of interest, all other covariates are held at 

their mean value for all predictions.  
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2.7 — Supplementary materials Chapter 2 

Supplement S.2.1 Data collection on environmental covariates in Riding Mountain 

National Park, Case Study A 
 

During our jog-tests in the field, we collected data on several environmental covariates in front 

of cameras. For the purposes of the Effective Capture Area in Case Study A, we wanted a 

comprehensive measure of vegetation in front of camera traps. We created a central point for all 

camera traps assessed 10 m directly in front of the camera lens.  To account for vegetation 

height, we collected an average horizontal cover at each camera trap. We placed a cover pole at 

the central marker, and took four readings (A.1, A.2, A.3, A.4), each 10 m away from the pole in 

each cardinal direction (Robel et al. 1970). We also established a 3.99 m radius plot at the central 

marker and conducted a Daubenmire plot, where we measured the species and respective cover 

of all woody-stemmed species in the plot (Daubenmire 1959). These surveys combined were 

designed to account for both the vegetation height (horizontal cover) and vegetation thickness 

(shrub cover) at each camera trap.  
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Figure S.2.1.1 How vegetation covariates were collected at camera traps (n = 54) within Riding 

Mountain National Park, for our Case Study A analysis. Showing (A), locations where horizontal 

cover measurements were taken with a cover pole, and (B), location where 3.99 m vegetation 

surveys were conducted. Note: the red, central point, was located 10 m directly in front of 

camera traps.  

 

Daubenmire, R. 1959. A canopy-coverage method of vegetational analysis. Northwest Science. 

33, 43-64.  

 

Robel, RJ., JN. Briggs, Dayton, AD., and Hulbert, LC. 1970. Relationships between visual 

obstruction measurements and weight of grassland vegetation. Journal of Range 

Management, 23(4), 295–297. https://doi.org/10.2307/3896225 
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Supplement S.2.2 Determining the potential temporal footprint of a camera trap 

image  
 

As a result of technological delays, even on the fastest firing settings, remote camera traps may 

not be able to capture photographs at every possible second they are active (Reconyx, 2022). 

This technological delay phenonenom, referred to here as a refractory peroid, is a result of the 

cumulative time it takes for a camera trap to 1) register a motion with its PIR motion detector, 2) 

capture a photograph, 3) write a photograph to its Secure Digital (SD) card, and 4) reset before 

registering a subsequent motion. Previous works (e.g., Paula et al., 2014) have noted delays in 

camera trap sensors contributing to a loss of data, and one work (i.e., Del Bosco, 2021) 

suggested this refractory peroid may be ~2 s in time. Enumerating a camera refractory peroid 

will influence the temporal footprint of a cameras photograph, i.e., how much time a single 

photograph represnets. In addition, a refractory peroid may influence what is considered 

‘available’ in our jog-test analysis.  

 To determine an images temportal footprint, we investigated the range of times between 

subsequent photographs for each (n = 36) jog during our jog-tests at all cameras for both Case 

Study A and B (Table S.2.2.1). The mean and maximum values of this metric are inherently  

flawed, as they represent the infleunce of both a refractory peroid or a missed photographic 

capture due to other infuences (e.g., vegetation cover). The mininum value, however, will 

represent the fastest possible time, in seconds, that a camera is able to capture subsequent 

photographs. For our Case Study B jog-tests, where some cameras were set to capture multiuple 

rapid-fire photos, we calculated the time between the first photo in the photoseries. This decision 

reflects the commonality of researchers setting cameras to take multiple, rapid-fire photos for 

species identification purposes, yet only considering a single photo in the series.  
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 Table S.2.2.1 and Figure S.2.2.2 shows that in both Case Study A and B, the mininum 

possible time for subsequent photographs in our jog-tests is 1 s. In addition, the mean time 

between subsequent photos is 2.33 s, and 1.53 s in Case Study A and B respectively. This 

proposes that photographic captures could be possible every second of the jog-test, however, the 

mean time between subsequent images sugggest that technolgical delays put a photographs 

temporal footprint at ~2 s. This result forms the basis of our decision to only exclude locations 

where photographs were taken from the available set in the jog-test analysis, but model the 

infleunce of a 2 second refractory peroid as a covariate in the GAMM model (see Chapter 2 

methods).  

Table S.2.2.1 Determining the range (mininum, maximnum, and mean) of time between 

subsequent photographic captures for our jog-tests in Case Study A and B. The mininum and 

mean time between subsequent photographs suggests camera traps refractory peroid, and aids in 

delineating the temporal footprint of a single photograph. 

 Case Study A Case Study B 

Mean time between 

subsequent images (seconds) 

2.33 1.53 

Maximum time between 

subsequent images (seconds) 

8 7 

Mininum time between 

subsequent images (seconds) 

1 1 
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Figure S.2.2.2 Distribution of the calculated difference in time between sequential photographs 

taken during individual transect jogs (n = 36), for each camera trap (n = 45) in Case Study A, 

i.e., the Riding Mountain National Park field trial.  
 

Del Bosco, T. (2021). An eulerian perspective on spring migration in mule deer [MSc. thesis]. 

Utah State University. 
 

Paula, J. J. S., Bispo, R. M. B., Leite, A. H., Pereira, P. G. S., Costa, H. M. R. G., Fonseca, C. M. 

M. S., Mascarenhas, M. R. T., & Bernardino, J. L. V. (2014). Camera-trapping as a 

methodology to assess the persistence of wildlife carcasses resulting from collisions with 

human-made structures. Wildlife Research, 41(8), 717. https://doi.org/10.1071/WR14063 

 

Reconyx. (2022). Reconyx Hyperfire 2 high performance camera instruction manual. 

https://www.reconyx.com/img/file/HyperFire_2_User_Guide_2018_07_05_v5.pdf 
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Supplement S.2.3 Effective Capture Area sensitivity to out-of-sample prediction  
 

During our Case Study B, controlled setting, field trails, due to the extremely open nature of the 

setting, we witnessed higher-than-expected capture rates at the 20 m transect. Because of this, we 

did not appropriately capture the decay of capture probability with distance away from the 

camera trap. Thus, when extrapolating our model to 40 m, our initial Effective Capture Area 

(ECA) predictions were much higher than a realistic situation would predict (Figure S.2.2.1). 

These unrealistically large predictions are because our method utilized generalized additive 

models, which, are generally poor with out-of-sample predictions due to their highly non-linear 

relationships (Figure S.2.2.2). Thus, the distance that practitioners predict to when implanting 

our ECA method may be a highly sensitive parameter. We recommend that either a) jog-tests 

fully encapsulate the decay of capture probability with distance at sites where they are conducted 

or b) predictions extend no further than the furthest distance where jog-tests occurred. Otherwise, 

situations like in Figure S.2.2.1 may arise, where ECA estimates become unrealistically large. 
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Figure S.2.3.1 Predicted probabilities of photographic capture determined from Generalized 

Additive Mixed Models from Case Study B when we only assessed up to 20 m parallel to camera 

traps. Due to the structure of the model, probability of photographic capture is predicted nearing 

100% at distances not assessed, i.e., 30+m parallel to the camera. 
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Figure S.2.3.2 The degree of the non-linear relationship between locations parallel and 

perpendicular to camera traps and how it changes with space, fit in a gaussian process spline, and 

modelled using generalize additive mixed models for our Case Study B analysis.  

 

 

 

 

 

 

 

 

 

    



 60 

Chapter 3: At what scales—if any—does the relationship between 

camera trap-based and aerial survey estimates of density hold? 
 

3.1 — Introduction 

Generating precise and reliable density and abundance estimates are of high interest to 

researchers, wildlife managers, and governments alike. Understanding density can aid 

researchers in a myriad of ecological questions such as species distributions (Becker et al. 2021; 

Ramirez et al. 2021), social interactions (Vander Wal et al. 2013; Webber and Vander Wal 

2020), competition (Corlatti et al. 2019), and predation dynamics (Marrotte et al. 2022; 

Prokopenko 2022). Wildlife managers and various levels of government aim to understand how 

wildlife densities change with time to implement and adapt different conservation practices. 

Regardless, high uncertainty plagues many forms of density estimation, decreasing our 

confidence with any method, particularly when researchers attempt to implement a novel 

method.  

Researchers and wildlife managers typically use estimates of species abundance to 

describe general trends in wildlife populations, i.e., an increasing, decreasing, or stable 

population, as uncertainty and inconsistency are very well documented for any method 

(Buckland 2004; Morellet et al. 2007; Moll et al. 2022; Fisher et al. 2023). Despite the 

limitations of any abundance estimator, much research uses large-scale abundance estimates to 

answer fine-scale questions of density-dependent processes for a given species. For example, 

many studies use winter aerial flight surveys for ungulates, which represent distributions and 

total abundance at a single point in time, to comment on habitat-specific density-dependent 

population and community dynamics (e.g., Latham et al. 2013; Vander Wal et al. 2013; van 

Beest et al. 2014). As such, having confidence in fine-scale densities is just as crucial as 
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population level abundancies for our understanding and conclusions drawn from numerous 

ecological studies. 

 As methods and analytics advanced, many density estimate techniques favoured visual 

observations over physically marking or handling individuals. With the increase in use of remote 

camera traps for wildlife research came the development of camera trap-based methods of 

density estimate, henceforth referred to as viewshed density estimators (Moeller et al. 2023). At 

their core viewshed density estimators are the same as their traditional counterparts, a metric of 

animal occurrence intensity divided by a spatial unit of sampling effort. Despite their relatively 

simple framework, parameterizing viewshed density estimators is not an easy endeavour. For 

example, camera traps can be set to photographs, videos, or time-lapse settings, all of which will 

influence how animal use is measured (e.g., Royle 2004; Nakashima et al. 2018; Warbington and 

Boyce 2020; Moeller and Lukacs 2022). In addition, sampling effort, i.e., area monitored by 

cameras, can be highly variable and influenced by cameras used, broad-scale geography, and 

fine-scale habitat (Moll et al. 2020; Moeller et al. 2023). As a result, viewshed density estimators 

have seen infrequent application in many monitoring programs. However, because viewshed 

density estimators monitor fixed space over prolonged temporal intervals, their novel insights 

can be complementary to traditional, density estimation methods that span broader geographies 

over a short temporal period. 

 The few works that have implemented viewshed density estimators have seen mixed 

results when compared to traditionally employed methods. In simulation studies, and some field 

trials, viewshed density estimators have been shown to produce accurate and unbiased density 

estimates (Nakashima et al. 2018; Nakashima et al. 2020). In addition, in highly controlled 

settings with human volunteers, one viewshed estimator produced reliable density estimates 
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throughout a variety of experimental conditions (Garland et al. 2020). Viewshed density 

estimators in natural settings, however, have seen less application and consistency. For example, 

one large-scale study found viewshed abundance estimates were, on average, 1.3–2.5 times 

higher than traditional aerial surveys for moose density depending on the modeling framework 

implemented (Becker et al. 2022). When comparing two different viewshed density methods, 

one study found that certain methods produce consistently biased results with a low degree of 

precision (Fisher et al. 2023). As many viewshed density estimators are relatively novel, the 

inconsistencies in their parameterization may be a large reason behind discrepancies in their 

answers. 

 Here, I explore the spatial and temporal sensitivities of a unique adaptation of the 

Random Encounter Staying Time (REST) viewshed density model (Hogg 2021). I overview how 

I parameterized the REST model, including a novel metric of the spatial footprint a camera trap 

monitors, to estimate densities of moose (Alces alces) and elk (Cervus canadensis) across 

multiple years, in a highly managed area, i.e., Riding Mountain National Park (RMNP), 

Manitoba, Canada. I then compare REST-generated density estimates to traditional aerial flight 

surveys across spatial scales. First (Objective 1), I investigate the similarity of fine-scale camera 

and flight density estimates, at location surrounding camera traps. Second (Objective 2), I 

compare total abundance estimates from camera traps to long-term, historic abundance data 

derived from aerial flight surveys. Finally, I comment on how viewshed density estimators may 

be used complementary with traditional aerial flight surveys to increase our understanding of 

species densities and increase the reliability of long-term population monitoring. 
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3.2 — Methods  

3.2.1 — Study Area 

The land known as Riding Mountain National Park (RMNP), is an approximately 3000 km2 

Canadian National Park, located in Treaty 2 territory, on the traditional lands of Anishinabewaki, 

Očhéthi Šakówiŋ, Cree, Oji-Cree, and the Homeland of the Métis peoples. RMNP is situated in 

the transition zone of two ecotones, the Prairie Parklands and Boreal Plains (Olson et al. 2001). 

As a result, mixed deciduous-conifer forests and conifer dominate forests are connected by a 

matrix of grasslands and wetlands. RMNP is home to five large ungulate species: moose (Alces 

alces), elk (Cervus canadensis), white tailed deer (Odocoileus virginianus), mule deer 

(Odocoileus hemionus), and plains bison (Bison bison). 

3.2.2 — Aerial flight surveys 

Every year since the 1970s, Parks Canada has conducted consistent, standardized aerial flight 

surveys in RMNP to obtain abundance estimates for moose, elk, and white-tailed deer (Rounds 

1981; Vander Wal et al. 2013; van Beest et al. 2014, Parks Canada, Unpublished data). Most of 

the park (~2000 km2) is surveyed at 25% coverage, where 400 m wide transects (n = 50) are 

flown every 1.6 km, at 120 m altitude, and at a speed of 120 km/hr. The remainder of the park 

(~1000 km2) is surveyed at 100% coverage, with transects (n = 50–69 depending on the year) 

flown 400 m apart (Figure 3.1). Flight surveys are flown in late winter every year (late January 

to March) over the course of a few days to a week, depending on weather conditions. 

 Density and abundance estimates from aerial surveys are derived from two 

complementary methods. First, the 100% coverage area is treated as a census of all visible 

animals, where all counted individuals are assumed to represent the total number within the 

~1000 km2. Second, the 25% coverage area uses a simple line transect method to estimate 
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density (Burnham et al. 1980; Vander Wal et al. 2013). Despite the analytical improvements on 

the line transect method, Parks Canada’s consistent use of line transect estimation on the 25% 

coverage area provides a dependable and comparable abundance record across 5 decades. RMNP 

derives theoretical variance for all abundance estimates conducted in the 25% coverage area 

(Trottier 1987; Tarleton 1992; Vander Wal et al. 2013). Variance estimates are based on the 

variation between the number of animals on each transect and the variation between the sampling 

area on each transect (see Supplement S.3.2 for variance formulation).  

3.2.3 — Camera trap layout 

In February 2020, camera traps (n = 81) were deployed in RMNP in grid layouts by researchers 

at the Memorial University of Newfoundland and Labrador and Parks Canada staff. Candidate 

grid locations were determined using the camtrapmonitoring R package (Robitaille 2024). 

Deployments followed a stratified-random grid design, where nine grids of nine cameras each 

were randomly chosen based on a priori moose densities. Using old aerial survey data when 

moose were purportedly at a high density in RMNP, three strata of moose density, each 

containing three camera trap grids, were created from 400 m cells along flight transects, 1) low 

density if no moose were observed, 2) medium density if one moose was observed, and 3) high 

density if 2 or more moose were observed. Once candidate locations were chosen, camera trap 

grids were established in a 3x3 grid design, with 250 m between neighbouring cameras (Figure 

3.1). The central camera in each grid (n = 1) was always a Reconyx Ultrafire XR6 (Reconyx, 

Holmen, USA), and the surrounding cameras (n = 8) were always Cuddeback H-1453 

(Cuddeback, Green Bay, USA). Cameras were fixed on trees, stumps, or snags, at a height of 

approximately 1.5 m from the ground. Cameras were positioned facing directly north or south, 

depending on location, to minimize glare from the sun. Camera traps were maintained 
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approximately every 4 months, or as access conditions allowed, to change batteries and SD 

cards. See Supplement S.3.1 for additional details on camera location selection criteria.  

3.2.4 — Random Encounter Staying Time model 

In this thesis, I use an adapted form of the Random Encounter Staying Time (REST) model 

(Nakashima et al. 2018), proposed by Hogg (2021). The adaptation allows for the estimation of 

mean and variance animal densities at individual cameras, within camera grids, and across larger 

spatial scales, i.e., all RMNP. Below, I describe how I parameterized the REST model from 

Equation 3.1 to generate density and abundance estimates for moose and elk in RMNP.  

𝜌 =  
∑ 𝑇𝑠

𝑇𝑎 ∗ 𝐴𝑐
∗

𝜋2

8
   Equation 3.1 

3.2.5 — Ts: Time species was captured by photos 

Our program used camera traps set to capture photographs. To calculate cumulative time that 

species were in front of cameras, I summed the cumulative number of photos at each camera trap 

for each species and multiplied by 2 s, the assumed temporal footprint of a photograph in 

Chapter 2 (see Supplement S.2.2). Because I did not need to differentiate individuals with the 

Hogg-REST adaptation, I did not consider the time between subsequent photographs, or gaps 

within a certain time threshold (e.g., as in the Time in Font of Camera adaptation; Warbington 

and Boyce 2020; Becker et al. 2022, which implement a 120 s cutoff between subsequent photos 

to differentiate indepdent events). Photographs containing two or more individuals were 

duplicated to reflect the total number of distinct individuals in the photo. I did not ignore the 

presence of juvenile or young animals in photos with adults, as it is impossible to determine if 

the adult or juvenile triggered the camera trap, thus, all estimates contain the presence of juvenile 

animals. 



 66 

3.2.6 — Ac: Viewshed area with 100% capture probability 

To estimate viewshed area with a perfect capture probability, I used the Effective Capture Area 

(ECA) modeling approach in Chapter 2. Out of 81 camera traps, I conducted jog-tests at 37, and 

vegetation surveys at 59 cameras. I constructed an ECA model using the jog-test data from 37 

cameras following the same framework and covariates as Case Study A in Chapter 2 (see Table 

2.2, Case Study A). For the 59 cameras traps where I collected vegetation data, I predicted ECAs 

using the local site covariate data. Because I did not have jog-test or vegetation data for every 

camera trap, I excluded the random effect, i.e., unique camera ID, from ECA predictions. In 

addition, I excluded the binary covariate for camera refractory period from predictions due to 

difficulty in parameterizing the variable. Finally, for camera traps where no jog-tests or 

vegetation data were collected, I generated a single ECA value applying the mean values of all 

covariates in the model, while excluding camera ID and refractory period from the prediction.  

3.2.7 — Ta: Time camera traps were active  

Aerial flight surveys in RMNP take place in late winter each year, usually mid-February to mid-

March. To generate unbiased comparisons, I first tested the sensitivity of REST density estimates 

at varying temporal intervals around aerial flight survey dates (see Supplement S.3.3). I used this 

sensitivity analysis to determine the minimum time interval around flight surveys that produced 

stable density estimates, ~16 weeks on both sides of the flight survey. I calculated the total time 

that each camera trap was active during the 32-week interval. When camera traps were 

operational the entire period between maintenance checks, I calculated the time difference 

between the last photograph of researchers leaving, and the first photograph of researchers 

returning to each camera site. Calculating the time between researcher visits estimates the total 

time a camera was active while excluding the time when camera trap maintenance were being 
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conducted. If camera traps failed prior to researchers returning for maintenance, I assumed that 

the camera trap died one minute after the last recorded photograph.  

3.2.8 — Fine- and coarse-scale comparisons 

To assess both the fine and coarse scale validity of REST estimates, I compared park-level 

abundance, and within camera grid density estimates from camera traps and aerial flight surveys.  

For fine-scale REST estimates (Objective 1), I calculated mean species density at each of the 

nine camera grids for the 32-week monitoring period surrounding flight surveys. To generate 

park-level abundance estimates from the REST model (Objective 2) I averaged the mean 

densities from the 32-week monitoring period at all nine camera grids (above) to represent mean 

species density across the entire park, and multiplied park-level mean density by RMNPs area, 

3089 km2. I calculated theoretical REST variance for total abundance and fine-scale density 

estimates by taking the sum of ECAs and camera operation time across grouped cameras, i.e., 

grouped across camera grids, or the entire park (Equation 3.2).  

   𝑉𝑎𝑟(�̅�) = �̅�2 ∗ (
𝜋2

8
− 1 +

𝜋2

16∗(∑ 𝑟𝑖∗𝑇𝑖)𝑛
𝑖=1 ∗𝑠∗�̅�

)         Equation 3.2 

For flight survey abundance estimates, I used a simple line transect estimator (Seber 

1973; Burnham et al. 1980) for the 25% coverage area and added this number to the total count 

from the 100% survey area (Objective 2). I calculated the theoretical variance for the 25% survey 

area (See Supplement S.3.2), but because the 100% coverage area represents a small census, the 

calculated variance represents the total population variation. Because aerial surveys represent a 

single point in time, species locations during the time of survey are likely not reflective of 

distributions throughout the winter season or the entire year. Thus, I used the aerial survey data 

to generate fine-scale densities from different spatial resolutions surrounding camera trap grid 

locations (Objective 1). I produced multiple square polygons from 5–11 km2 (Figure 3.2) around 
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all camera trap grids. I calculated fine-scale density and variance for flight surveys using the 

same line transect estimator (Seber 1973; Burnham et al. 1980), as a ratio from the area surveyed 

by transects in each polygon size. Using linear regression models with the y-intercept set to 0, I 

predicted fine-scale flight survey densities from each polygon size by fine-scale camera trap 

densities as a predictor. I used the regression model with the best fit, i.e., the highest R2, from 

which to base my subsequent inferences. 

In this chapter, I generated and compared fine-scale density (Objective 1) and park wide 

abundance (Objective 2) estimates for moose and elk in RMNP in 2022. Although a flight survey 

did occur in the park in 2021, due to safety issues from the COVID-19 pandemic, the 2021 

survey covered a small fraction of previous years, i.e., only 18 survey lines at 25% coverage. As 

such, the 2021 survey has a higher risk of being inaccurate and cannot produce unbiased 

comparisons. In addition, because camera traps were only established in February 2020, REST 

density and abundance estimates for 2020 were generated using 6 months of data post camera 

setup. See supplement S.3.4 for details on when camera traps were operational and aerial flight 

survey dates from 2020–2022. Thus, because of two years of unfavourable data, I only estimated 

park-level abundance for moose and elk in 2020 and 2021 to broadly comment on population 

trends through time. 

3.3 — Results   

3.3.1 — Fine-scale comparisons (Objective 1) 

 Fine-scale density estimates for moose in 2022, between flights and cameras, had the 

highest correlation (R2 = 0.89) at a spatial scale of 10 km2 surrounding camera grid locations 

(Figure 3.3). The slope (m = 1.15  0.1331 SE) of the linear regression of mean camera trap grid 

densities and fine-scale flight survey densities, suggests that, at the fine-scale, camera traps 
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typically estimate more moose than aerial flight surveys (Figure 3.4). At a scale of ~10 km2, 

however, Figure 3.4 suggests that at relatively higher moose densities, camera traps generally 

estimate more individuals, whereas, at relatively lower moose densities, flight surveys tend to 

estimate more individuals. In addition, the fine-scale density estimates at each camera grid 

largely agreed with the a priori moose density strata generated from old flight surveys (Figure 

3.5).  

3.3.2 — Park abundance comparisons (Objective 2) 

Moose abundance estimates from the REST model were lower than flight survey 

estimates in 2022, though their confidence intervals almost fully overlapped, 1430  144 moose 

for camera traps and 1747  437 moose for flight surveys (Figure 3.6). The camera trap 

abundance estimate of moose, however, were significantly lower for camera traps (1514  152) 

than flight surveys (2545  355) in 2020 (Figure 3.6). Moose abundance estimates generated 

with the REST model are consistently lower than flight survey estimates for 2020 and 2021, with 

overlap in 2022 (Figure 3.6). Although lower, and non-significant for the camera trap-based 

density estimates, the camera trap estimates seem to capture the same trends observed with flight 

surveys, i.e., a decreasing moose population into 2022. REST generated density and abundance 

estimates showed little sensitivity to spatial variation, however, were highly sensitive to the 

varying temporal windows (See Supplement S.3.3). Park-level elk abundance estimates were 

comparable in 2022 between viewshed and aerial survey estimators, 972  98 elk for camera 

traps and 773  409 elk for flight surveys. In 2020, park-level abundance estimates for elk were 

smaller but again comparable between camera traps (964  97, 95% CI) and flight surveys (1302 

 834, 95% CI). See Supplement S.3.5 for additional information and analyses on elk densities in 

RMNP.  



 70 

3.4 — Discussion 

3.4.1 — Fine-scale comparisons (Objective 1) 

My fine-scale analysis suggested that at the camera grid level, moose density estimates are well 

correlated with flight survey data at a scale of ~10 km2. The linear regression of fine-scale flight 

survey data and mean camera grid moose densities provides interesting insight to some 

assumptions of both survey methods. For example, the REST model seems to estimate more 

moose in areas with higher relative density, i.e., on the west end of RMNP where 100% survey 

lines are flown. Conversely, flight surveys seem to estimate more moose in areas with relatively 

lower density, i.e., the east end of RMNP where only 25% surveys are flown. These relative 

comparisons at the fine-scale suggest that the line transect method used by Parks Canada may be 

overestimating animal density when 25% survey lines are flown, particularly when animal 

density is lower.  

The fine-scale comparisons also suggest the line transect method may underestimate 

density, compared to camera traps, in areas of relatively higher abundance. Underestimating 

density from the line transect method could be because it becomes more difficult for surveyors to 

accurately count animals as their numbers increase (Southwell and Weaver 1993). For example, 

it may be more difficult to count multiple groups of animals simultaneously during flight 

surveys. Additionally, heterogeneous habitat cover across RMNP, i.e., the western and eastern 

proportions of RMNP are relatively more open than the central portion, as they contain more 

open deciduous forests, and grasslands (Olson et al. 2001), add uncertainty as individuals can be 

missed during counts. Moose in RMNP tend to primarily occupy mixed conifer-hardwood 

forests (van Beest et al. 2014), which could contribute to sightability issues from aerial surveys 
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that are not incorporated for in the line transect method (Burnham et al. 1980; Vander Wal et al. 

2011; Peters et al. 2014). 

Despite potential location specific biases, my results show that mean REST moose 

densities at the camera grid level largely agree with a priori moose strata—which were generated 

from old aerial survey data when moose were at a high density. In addition, moose density 

estimates from flight surveys and the REST model are highly correlated at multiple spatial scales 

surrounding camera grids. Together, these results provides a validation for many works that use 

aerial flight surveys for ecological questions of density dependence (e.g., van Beest et al. 2014; 

Prokopenko 2022; Zabihi-Seissan et al. 2022).  

3.4.2 — Coarse-scale comparisons (Objective 2) 

Estimates for moose abundancies in RMNP, between the REST method and aerial flight surveys, 

were comparable and highly overlapping in 2022 but not 2020. The significantly lower REST 

abundance estimates in 2020 were likely due to the limited sampling time in the 2020 winter. For 

example, flight surveys in 2020 occurred from 3–9 February, yet camera traps were first 

established on 21 February 2020. As such, I likely did not have sufficient camera trap 

observations to produce reliable REST abundance estimates. Considering my temporal 

validations (Supplement S.3.3) suggested 16 weeks of data before and after flight surveys 

occurred are needed to generate stable REST estimates, the 2020 comparison may not have 

enough camera trap data to be reliable. Although confidence intervals of estimate types did 

overlap for elk in 2020, the REST method did estimate fewer animals. Because of the limited 

camera trap operation time for winter 2020, these results should be interpreted cautiously. 

 The 2022 study period had more consistent camera trap data, both before and after flight 

surveys occurred in late February. In addition, both moose and elk comparisons in 2020 were 
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highly comparable and with overlapping confidence intervals. Moose abundance estimates were 

~300 individuals lower and elk estimates ~200 individuals higher for camera traps over flight 

surveys. The 2022 comparisons highlights that given an adequate camera sampling period, the 

REST equation used here can provide comparable abundance and density estimates to traditional 

survey types. The most consistent and reliable camera trap data were collected in the 2021 study 

year. Unfortunately, the 2021 aerial flight survey was heavily reduced (only 18 survey lines all at 

25% coverage; See Supplement S.3.6), and as such cannot be used to make a valid comparison. 

Although moose abundance estimates were always higher for aerial flight surveys, the fine-scale 

regression results for 2022 suggest that, overall, aerial flight surveys overestimate moose in the 

park by a factor of 1.15. 

3.4.3 — Viewshed density estimators 

 REST-adapted density estimates, implemented on field data, have rarely shown 

consistency in literature. For example, many studies have shown that REST estimates are 

considerably higher to both traditional methods and other viewshed density estimators (Becker et 

al. 2022; Fisher et al. 2023). Here, I found that REST density estimates were comparable to flight 

surveys, given an adequate monitoring period, or significantly lower in years with reduced 

camera monitoring time and partial flight surveys. The deviation in my results from other 

published works could be from two differences in parameterization of the REST model. First, I 

used the novel Effective Capture Area (ECA) to estimate the perfect monitoring zone of camera 

traps. As described in Chapter 2, the ECA is determined from a standardized survey that derives 

monitoring zone estimates at each unique camera trap. Second, I only considered single 

photographs, and their assumed temporal footprint, to determine the time species spent in front 

of camera traps, whereas other studies include all time in between subsequent photographs. The 



 73 

combination of the previous differences in REST parameterization could contribute to producing 

more reliable REST density and abundance estimates.   

3.4.4 — Limitations 

  Despite having two years, 2020 and 2021, of unfavourable comparisons between REST 

and flight survey density estimates, both survey types still exhibit similar trends. Aerial flight 

surveys exhibit a decline in moose abundance of nearly 1000 individuals over 7 years. Because 

of the partial flight survey in 2021 and potential overestimate of moose in low density areas, 

however, we do not know exactly when the decline, observed by aerial fight surveys, started. 

Although camera trap estimates start with low moose estimates due to limited sampling period, 

they still exhibit the same declining trend into 2022. Elk estimates between both survey types 

again follow the same trends of a slight decline in elk numbers (Supplement S.3.5), but the 

inaccuracy of the 2021 partial flight survey is even more pronounced. Maintaining aerial flight 

surveys consistently on a yearly basis is an unattainable for most wildlife monitoring programs.  

Changes in flight survey design have occurred numerous times over their history in 

RMNP, making absolute comparisons between different implementations difficult (Prokopenko 

2022). In addition, most provincial and federal governments in Canada conduct flight surveys 

infrequently, once every 5–10 years, in wildlife management areas throughout their jurisdiction 

(e.g., Manitoba Fish and Wildlife 2020; 2022). Though flight surveys are generally meant to 

represent changes in populations through time, it is clear all metrics of abundance and density 

hold sensitivities and biases. Having a camera-trap based monitoring program, in addition to 

infrequent aerial surveys, can help provide accurate abundance estimates, with a sufficient 

monitoring period, and contribute to describing population trends in years when aerial surveys do 

not happen or are unreliable. 



 74 

3.4.5 — Conclusion 

At the fine-scale (Objective 1), REST moose density estimates are highly correlated with 

aerial flight moose estimates at numerous spatial scales from 6–11km2. Overall, at the 10km2 

scale, when compared to REST estimates, flight surveys may overestimate animals by a factor of 

1.15, especially in locations with lower relative moose density. Given a sufficient temporal 

monitoring period for remote camera traps and an extensive spatial extent of aerial flight 

surveys, my results show that in Riding Mountain National Park, abundance estimates from the 

camera trap-based Random Encounter Staying Time model and aerial flight-based methods 

largely agree (Objective 2). Implementing a camera trap monitoring program and estimating 

species density with the REST model, can help increase the reliability of inferences drawn from 

aerial flight surveys in addition to providing better information on a population with infrequent 

or unreliable flight surveys.  
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Figure 3.1 Aerial flight transects (black) flown by Parks Canada staff in Riding Mountain 

National Park in February 2022 for ungulate surveys. The central and eastern transects, 

representing 25% coverage, are flown 1.6 km apart. The western transects, representing 100% 

coverage, are flown 400 m apart. All transects are 400 m wide, i.e., assumed perfect detection on 

200 m for both sides, flown at 120 m altitude, and at a speed of 120 km/hr. Including locations of 

camera traps (n = 81) deployed in a priori moose densities. Each grid contains 9 camera traps, 

each placed 250 m from its neighbouring cameras. The central camera in every grid is always a 

Reconyx Ultrafire XR6 camera trap and the surrounding cameras are always Cuddeback H-1453 

camera traps. 
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Figure 3.2 Various ‘fine-scale’ polygons, 5km2–10km2, left to right, top to bottom, surrounding 

camera trap grids (red dots) and showing moose observations (black dots) from the 2022 aerial 

flight survey (blue lines) in Riding Mountain National Park.
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Figure 3.3 Slope ( SE) and R2 values of the linear regressions that predicted fine-scale moose 

density estimates, at various spatial scales (5–11km2), from aerial flight surveys conducted in 

Riding Mountain National Park in February 2022. Fine-scale flight densities were predicted by 

mean Random Encounter Staying Time density estimates at camera trap grids (n = 9) for the 

2022 study year.  
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Figure 3.4 The best fit and highest correlated linear regression model predicting fine-scale moose 

density estimates from the 2022 aerial flight survey and 2022 study year with 10km2 polygons 

surrounding each camera trap grip (n = 9). Horizontal error bars represent the 95% confidence 

intervals generated from the theoretical REST variance equation, whereas vertical error bars 

represent the 95% confidence intervals from aerial flight surveys. The slope of the linear 

regression was 1.15 ( 0.1331 SE), and with an R2 of 0.89.  
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Figure 3.5 Mean moose densities (), per km2, at all camera trap grids (n = 9), showing density 

trends of individual camera traps (n = 81) throughout the 2022 study year, deployed across a 

priori strata, high density (top row), medium density (middle row), and low density (bottom 

row), in Riding Mountain National Park. 
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Figure 3.6 Comparison of trends in elk (left) and moose (right) abundance estimates ( 95% 

confidence intervals) generated from camera traps using the Random Encounter Staying Time 

model (blue) and from line transect estimation based off aerial flight surveys (green) across six 

years in Riding Mountain National Park.
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3.6 — Supplementary materials Chapter 3 

Supplement S.3.1 — Selection of camera trap grid candidate locations using 

camtrapmonitoring 

 

Code Written by Alec Robitaille, adapted by Brendan Carswell 

 

Convert flight transects to moose density 

Flight transects have full coverage in the West and reduced coverage in the East 

Cells in raster have 400m resolution 

 

Density classes: 

“1” - 0 moose 

“2” - 1 moose 

“3” - >1 moose 

 

# Packages 

 

library(data.table) 

library(sf) 

 

## Linking to GEOS 3.10.2, GDAL 3.4.2, PROJ 8.2.1; sf_use_s2() is TRUE 

 

library(raster) 

 

## Loading required package: sp 

# Load density and flight transects 

 

flight <- st_read('./survey_lines/Flightlines.shp') 

 

## Geometry type: LINESTRING 

## Dimension:     XY 

## Bounding box:  xmin: 352900.3 ymin: 5594682 xmax: 461600 ymax: 5654031 

## Projected CRS: NAD83 / UTM zone 14N 

 

dens <- fread('./Ungulate_survey_2016.csv') 

 

# Rasterize flight transects with specific resolution (400) 

 

res <- 400 

buf <- st_buffer(flight, res) 

 

ras <- raster(buf, resolution = c(res, res)) 

 

fcells <- cellFromPolygon(ras, as_Spatial(buf)) 
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# Preserve true zeroes 

 

ras[unlist(fcells)] <- 1 

# Fill point counts into cells 

moose <- dens[Species == 'm'] 

mcells <- cellFromXY(ras, moose[, .(X, Y)]) 

 

# Reclass counts 

 

moose[Count == 1, countClass := 2] 

moose[Count > 1, countClass := 3] 

 

ras[mcells] <- moose[, countClass] 

plot(ras) 

 

#writeRaster(ras, 'data/derived-data/rmnp-density-rst.tif') 
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Supplement S.3.2 — Abundance size and variance calculations for aerial flight surveys in 

Riding Mountain National Park 

 

        Density estimate  

 

     Variation between area sampled on transects 

 

 Variation between number of animals 

counted on transects    

   

    Covariance between area sampled and 

number of animals counted on transects 

  

 Theoretical variance estimate  

 

Where:  

 

R = Density estimate 

yi = Number of counted individuals on transect i 

zi = Area of transect i 

Sz
2 = variance between sampling unit area 

n = number of transects sampled  

N = Total number of sample units in population (269 transects) 

Z = Total area surveyed  

Y = total number of animals counted  

R = Ratio of animals counted to area searched  
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Supplement S.3.3 — Sensitivity of the Random Encounter Staying Time density estimates 

to spatial and temporal variability. 

 

To assess the sensitivity of moose density estimates produced by the Random Encounter Staying 

Time model to different spatial and temporal scales, I conducted a series of validations using 

bootstrapping as well as theoretical variance calculations. To investigate the similarity of moose 

density estimates across time, I generated mean moose density estimates for all of Riding 

Mountain National Park in each Julian calendar month from September 2021 to July 2022. I 

randomly sampled with 1000 bootstrap iterations from all camera traps across RMNP (n = 81). I 

used probability sampling to preferentially select cameras with a higher effort, i.e., cameras that 

were operational for more time and with higher Effective Capture Areas. In Figure S.3.3.1, I 

show the mean and variance of 1000 bootstrapped iterations at each calendar month. Next, using 

the actual data from the same Julian months, I calculated the mean and variance density 

estimates for all RMNP using the Hogg (2021) equations (Figure S.3.3.2). My investigations into 

temporal sensitivity show that, in my study, park-level density estimates are highly sensitive to 

the Julian month that I use data from. Due to generation and recruitment intervals of moose (i.e., 

years), density cannot realistically fluctuate to the extent viewed in my temporal validations. 

Thus, the high variability seen are likely an influence of species movement rate, a limitation of 

the spatial distribution of camera traps, or an inadequate monitoring period at many cameras.  

 Given the high temporal variability observed in density, I wanted to use a temporal 

period in my park-level abundance estimates that were a) long enough to produce stable density 

estimates and b) short enough to not encompass actual biological changes in density. To 

enumerate this temporal window, I calculated park-level density, and 95% confidence intervals 

using Hogg (2021) equations, at increasing biweekly intervals surrounding the aerial flight 

survey (Figure S.3.3.3). For example, staring with one week before and one week after the 2022 
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flight survey occurred, I increased the temporal interval by adding one week before and after the 

survey date, ending at 6 months, or 28 weeks. This analysis suggests that my park-level density 

estimates stabilize at a temporal window of ~ 16 weeks before and after aerial flight surveys 

occurred. This result was the basis of my decision to use a 32-week interval around aerial survey 

dates to compare density and abundance estimates. Next, I wanted to investigate the spatial 

sensitivity of REST density estimates, i.e, which camera traps are used in density estimation. I 

generated 500 bootstrap estimates on the 2022 park-level density estimate, randomly removing 

half (n = 40) of all camera traps from each iteration. I then compared the bootstrapped spatial 

sensitivity to the theoretical 95% confidence intervals generated by the Hogg-REST variance 

equation (Figure S.3.3.4). 

 

Hogg J. 2021. The precision and accuracy of the Random Encounter Staying Time model’s 

estimation of species population density [MSc. thesis]. [St. John's, NL]: Memorial 

University of Newfoundland and Labrador.
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Figure S.3.3.1 Mean and variance moose density estimates, per km2, generated from 1000 

bootstrapped iterations sampled by weighted effort, from all camera traps (n = 81) in Riding 

Mountain National Park across different Julian months in late 2021 and early 2022. 
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Figure S.3.3.2 Mean and theoretical 95% confidence intervals of moose density, per km2, 

estimated from the Hogg-Random Encounter Staying Time Model, from all camera traps (n = 

81) in Riding Mountain National Park across different Julian months in late 2021 and early 2022.
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Figure S.3.3.3 Mean and theoretical 95% confidence intervals of moose density, per km2, 

estimated from the Hogg-Random Encounter Staying Time Model, from all camera traps (n = 

81) in Riding Mountain National Park at increasing biweekly time intervals surrounding aerial 

flight surveys in February 2022.
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Figure S.3.3.4 Boxplot of observed spatial variability of park-level moose density estimates, per 

km2, compared to the theoretical mean and 95% confidence intervals from the Hogg-REST mean 

and variance equation from all camera traps (n = 81) in the 2022 study year. 
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Supplement S.3.4 — Monitoring time of all camera traps in Riding Mountain National 

Park from establishment in February 2020 until the end of 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.3.4.1 The total operation time of each camera trap (n = 81) deployed across Riding 

Mountain National Park from February 2020 until November 2022, highlighting the temporal 

periods used in the 2020 and 2022 study years to density estimates with the Random Encounter 

Staying Time model (purple), and dates when aerial flight surveys occurred (orange).
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Supplement S.3.5 — Additional figures and analyses for elk density estimation in RMNP  

Similarly to the moose density estimate validations in Supplement S.3.3, I conducted a series of 

spatial and temporal validations using bootstrapping as well as theoretical variance calculations 

for elk density estimates. For the similarity of elk density estimates through time, I generated 

mean and 95% confidence intervals around density (Hogg 2021) throughout Riding Mountain 

National Park in each Julian calendar month from September 2021 to July 2022. Much like the 

moose density estimates, monthly elk densities are highly variable to the Julian month used 

(Figure S.3.5.1).  

Next, to see the temporal window when elk densities stabilized, I calculated park-level 

density, and 95% confidence intervals using Hogg (2021) equations, at the same increasing 

biweekly intervals surrounding the aerial flight survey (Figure S.3.5.2). For elk, the analysis 

suggests that park-level density estimates stabilize slightly sooner than moose density estimates, 

at a temporal window of ~ 14 weeks before and after aerial flight surveys occurred. 

For spatial sensitivity of elk density estimates, I generated 500 bootstrap estimates on the 

2022 park-level density estimate, randomly removing half (n = 40) of all camera traps from each 

iteration. I then compared the bootstrapped spatial sensitivity to the theoretical 95% confidence 

intervals generated by the Hogg-REST variance equation (Figure S.3.5.3). Much like the moose 

density estimates, elk estimates showed little sensitivity to spatial variation. 

Our camera trap grid locations were initially deployed following a priori moose densities 

(determined from previous aerial survey data). Despite this, I wanted to investigate whether fine-

scale densities from camera trap grids and aerial surveys correlated for elk as well as moose. 

Following the same approach as moose, outlines in Chapter 3 methods, I investigated on which 

spatial scale camera grid and flight survey fine-scale densities best correlated, and how linear 
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that correlation was. Similar to moose, elk densities best correlated at a spatial scale of 10 km2. 

Unlike moose however, the slopes of correlations were much lower than one (Figure S.3.5.5). 

When regressed, elk densities were very poorly correlated (R2= -0.05), and with a low slope 

(m=0.29; Figure S.3.5.6). Although elk abundancies match at the coarse spatial scale, across 

RMNP, they do elk densities are very poorly correlated at the fine-scale. This poor correlation 

between fine-scale camera and flight densities is likely because our camera traps were never 

deployed explicitly to monitor elk, and do not represent a stratified distribution of elk at the time 

of the aerial survey.  

Hogg J. 2021. The precision and accuracy of the Random Encounter Staying Time model’s 

estimation of species population density [MSc. thesis]. [St. John's, NL]: Memorial 

University of Newfoundland and Labrador.
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Figure S.3.5.1 Mean and theoretical 95% confidence intervals of elk density, per km2, estimated 

from the Hogg-Random Encounter Staying Time Model, from all camera traps (n = 81) in Riding 

Mountain National Park across different Julian months in late 2021 and early 2022.
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Figure S.3.5.3 Mean and theoretical 95% confidence intervals of elk density, per km2, estimated 

from the Hogg-Random Encounter Staying Time Model, from all camera traps (n = 81) in Riding 

Mountain National Park at increasing biweekly time intervals surrounding aerial flight surveys in 

February 2022. 
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Figure S.3.5.4 Boxplot of observed spatial variability of park-level elk density estimates, per 

km2, compared to the theoretical mean and 95% confidence intervals from the Hogg-REST mean 

and variance equation from all camera traps (n = 81) in the 2022 study year. 
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Figure S.3.5.5 Slope (95% confidence intervals) of the linear regressions that predicted fine-

scale elk density estimates, at various spatial scales (5–11km2), from aerial flight surveys 

conducted in Riding Mountain National Park in February 2022. Fine-scale flight densities were 

predicted by mean Random Encounter Staying Time density estimates at camera trap grids (n = 

9) for the 2022 study year. 
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Figure S.3.5.6 The linear regression model predicting fine-scale elk density estimates from the 

2022 aerial flight survey and 2022 study year with 10km2 polygons surrounding each camera 

trap grip (n = 9). Horizontal error bars represent the 95% confidence intervals generated from the 

theoretical REST variance equation, whereas vertical error bars represent the 95% confidence 

intervals from aerial flight surveys. 
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Supplement S.3.6 — Partial aerial flight survey lines in Riding Mountain National Park in 

2021 

 

 

 
Figure S.3.6.1 The partial aerial flight survey lines (n = 18) that occurred in Riding Mountain 

National Park in 2021 due to the COVID-19 pandemic.  
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Chapter 4: Summary and Conclusions 

4.1 — Summary  

In my thesis, I developed and tested a novel field and analytical framework to produce 

standardized estimates of the spatial footprint camera traps monitor with perfect, 100%, capture 

probability, the Effective Capture Area (ECA; Chapter 2). The ECA is a reproducible, precise, 

and predictable metric of a camera traps spatial footprint and will contribute to camera trap 

research, particularly with occupancy modeling and viewshed density estimators. I used the ECA 

method to estimate the spatial footprint of camera traps in a long-term monitoring program 

distributed across Riding Mountain National Park (RMNP; Chapter 3). I showed that, when 

using the ECA with the  Random Encounter Staying Time (REST) viewshed density estimator 

(Hogg 2021), camera trap-based density estimates can correlate well with a traditional density 

estimator at multiple spatial scales. 

 In Chapter 2, I showed that a camera traps spatial footprint, though ECA estimation, is a 

sensitive and unique parameter that varies by individual camera trap. The ECA was influenced 

by external biotic and abiotic characteristics where camera traps were placed, i.e., shrub and 

horizontal cover, temperature, the movement speed of focal individual, and the time of day. In 

addition, ECAs were highly influenced by camera traps internal settings and functioning, i.e., 

camera trap model, camera refractory period, sensitivity settings, and number of photos taken per 

PIR motion trigger. In the RMNP monitoring program, ECAs varied by nearly 40 m2, from ~5 

m2 to 39 m2 at different camera traps. 

 When using ECAs to parameterize the REST model for estimating moose and elk density 

and abundance across RMNP, fine- and coarse-scale estimates compared well given an adequate 

temporal interval for camera data and a broad enough spatial scale for aerial flight surveys. I 
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demonstrated that camera traps, and the REST viewshed density estimator, can be used as a 

supplement to traditional aerial surveys for ungulates to validate population level abundance, 

population trends, and fine-scale density dependent processes.  

4.2 — Management considerations 

 Understanding species densities and distributions are the pinnacle for all rightsholders 

interested in wildlife conservation and management. Despite the long-standing history of 

traditional survey types, i.e., aerial flight surveys for ungulates, uncertainty in species density 

estimation underpins all wildlife management in Canada (Buckland 2004; Morellet et al. 2007; 

Rönnegård et al. 2008; Liberg et al. 2011; Burton et al. 2015; Moll et al. 2022). In addition, in 

Canada, traditional survey methods such as aerial flights for ungulates, are incredibly difficult 

and costly to implement, resulting in long gaps between surveys and exclusion of non-colonial 

governments from participating in population monitoring (Nature United 2018). Wildlife 

management in Canada needs new, accurate, reliable, and inclusive methods to monitor wildlife 

species.  

 Camera traps are a relatively affordable, accessible, and an ever-increasing method of 

wildlife management and monitoring (Burton et al. 2015; Fisher 2023). Their utility has 

contributed to a growing field of decolonizing science in Canada by allowing many Indigenous 

nations to participate in wildlife population monitoring (Nature United 2018; Fisher et al. 2021). 

The utility of my ECA modeling and application of the REST model can stretch far beyond 

academic exercise and comparison to traditional estimators. Considering the increasing interest 

of Indigenous nations to participate in wildlife management (e.g., Menzies et al. 2022; Lamb et 

al. 2023), the REST model and framework set out in this thesis provides an opportunity for 

diverse shareholders to participate in wildlife management. For example, in Manitoba, Canada, 
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where much of my research took place, the Provincial government flies aerial surveys for 

ungulates in small management units inconsistently, i.e., once every 5–10 years (Manitoba Fish 

and Wildlife Division 2020; Manitoba Fish and Wildlife Division 2022). Yet, numerous 

Indigenous communities in Manitoba have initiated their own camera trap-based wildlife 

monitoring programs in addition to collaborations with institutionalized researchers. Having 

camera trap-based abundance data for wildlife will help supplement infrequent and unreliable 

abundance data throughout Canada. I hope to see, and will continue to work towards, making the 

contents of my thesis accessible to Indigenous-lead wildlife management in Canada. 

4.3 — Future directions 

 Unfortunately, numerous years of data from Chapter 3 of my thesis were limited due to 

external circumstances. For example, the 2020 and 2021 years of camera trap data and aerial 

flight survey were incomparable due to safety concerns from the COVID-19 pandemic. If 

multiple year of reliable camera trap and aerial flight survey were available, I would have liked 

to integrate the two density estimate methods more meaningfully. For example, both camera and 

flight survey methods have fine- and coarse-scale mean and variance estimates. Neither method 

produces the true or exact number of moose or elk in RMNP, however, both methods provide an 

estimate that we have varying levels of confidence in. To describe population levels trends with 

more evidence towards the true population size, I would have liked to integrate both aerial flight 

survey and camera trap-based methods. For example, using a Bayesian modeling approach, one 

could model population abundancies for a given year from the mean and uncertainty values from 

camera trap and flight surveys (Ellison 2004; McElreath 2018). In theory, we would have more 

confidence in an integrated value, as opposed to either flight survey or camera methods 

separately. 
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 Viewshed density estimators can provide an entirely novel perspective on density 

estimation in wildlife—how density changes in fixed locations throughout time. The temporal 

fluctuations in density estimation are an outcome of camera traps Eulerian, i.e., place-based, 

perspective. Given an adequate spatial distribution of grouped camera traps, that are continually 

operational, species density could be estimated at fine temporal intervals such as at weekly, 

biweekly, or monthly scales. Currently, most traditional density estimate methods represent a 

single point, or a short period in time, resulting a loss of temporal precision. Using camera traps 

to estimate density at a fine temporal scale could provide researchers with novel perspectives on 

how species distributions (Wevers et al. 2021), habitat occupancy (Carswell et al. 2021), 

spatiotemporal patterns (Carswell et al. 2023), sociality (Wong et al. 2019), and behaviour 

Caravaggi et al. 2017) change throughout different times of the year.  

 Using viewshed density estimators to generate density estimates at fine temporal scales, 

however, come with added layers of complexity in parameterization. In my research, I generated 

density estimates during the winter season, i.e., after leaf senescence in the fall and before green 

up in the spring. This decision was largely to align with the timing of aerial flight surveys in 

winter, however, the ECAs of camera traps are consistent during the winter. ECA values of 

camera traps will be different in the summer, due to complex interactions of vegetation cover 

(Moll et al. 2020; Moeller et al. 2023), ambient air temperature (Apps and McNutt 2018; 

Urbanek et al. 2019), and temperatures emitted by wildlife species (Welbourne et al. 2016; 

Reconyx 2022). In addition, during periods of time of rapid environmental change, e.g., leaf fall 

or green up within a very short window, ECA values at individual cameras could change within 

days. Before implementing viewshed density estimators at fine temporal intervals, studies need 

to first investigate how the ECA changes at camera traps within through various seasons and 
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environmental conditions. Failure to account for these changes in ECA could result in highly 

biased fine-scale density estimates. 

  



 108 

4.4 — Literature cited   

Apps P, McNutt JW. 2018. Are camera traps fit for purpose? A rigorous, reproducible and 

realistic test of camera trap performance. African Journal of Ecology. 56(4):710–720. 

doi:10.1111/aje.12573. 

 

Buckland ST. 2004. Advanced distance sampling: estimating abundance of biological 

populations. Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L, editors. 

Oxford, UK: Oxford University Press. 

 

Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S. 2015. 

Wildlife camera trapping: a review and recommendations for linking surveys to 

ecological processes. Stephens P, editor. Journal of Applied Ecology. 52(3):675–685. 

doi:10.1111/1365-2664.12432. 

 

Caravaggi, A., Banks, P. B., Burton, A. C., Finlay, C. M. V., Haswell, P. M., Hayward, M. W., 

Rowcliffe, M. J., & Wood, M. D. (2017). A review of camera trapping for conservation 

behaviour research. Remote Sensing in Ecology and Conservation, 3(3), 109–122. 

https://doi.org/10.1002/rse2.48 

 

Carswell BM, Boyle SP, Brook RK, Van Beest FM, Vander Wal E. 2023. Variation in 

spatiotemporal activity may reduce competitive interactions between invasive wild pigs 

(Sus scrofa) and native mammal species. Canadian Journal of Zoology. doi:10.1139/cjz-

2022-0145. 

 

Carswell BM, Rea RV, Rusch D, Johnson CJ. 2021. The influence of the root diseases 

Armillaria solidipes and Inonotus sulphurascens on the distribution of mule deer during 

winter. Forestry: An International Journal of Forest Research. 94(4):492–501. 

doi:10.1093/forestry/cpab002. 

 

Considerations and recommendations for initiating Indigenous-led moose monitoring and 

research. 2018. Canada: Nature United. 

 

Ellison AM. 2004. Bayesian inference in ecology. Ecology Letters. 7(6):509–520. 

doi:10.1111/j.1461-0248.2004.00603. 

 

Fisher JT. 2023. Camera trapping in ecology: A new section for wildlife research. Ecology and 

Evolution. 13(3):e9925. doi:10.1002/ece3.9925. 

 

Fisher JT, Grey F, Anderson Nelson, Sawan J, Anderson Nicholas, Chai S-L, Nolan L, 

Underwood A, Amerongen Maddison J, Fuller HW, et al. 2021. Indigenous-led camera-

trap research on traditional territories informs conservation decisions for resource 

extraction. Facets. 6:1266–1284. doi:10.1139/facets-2020-0087. 

 



 109 

Hogg J. 2021. The precision and accuracy of the Random Encounter Staying Time model’s 

estimation of species population density [MSc. thesis]. Memorial University of 

Newfoundland and Labrador. 

 

Lamb CT, Willson R, Menzies AK, Owens-Beek N, Price M, McNay S, Otto SP, Hessami M, 

Popp JN, Hebblewhite M, et al. 2023. Braiding Indigenous rights and endangered species 

law. Science. 380(6646):694–696. doi:10.1126/science.adg9830. 

 

Liberg O, Aronson Å, Sand H, Wabakken P, Maartmann E, Svensson L, Åkesson M. 2011. 

Monitoring of wolves in Scandinavia. Hystrix, the Italian Journal of Mammalogy. 23(1). 

doi:10.4404/hystrix-23.1-4670. https://doi.org/10.4404/hystrix-23.1-4670. 

 

Manitoba Fish and Wildlife division. 2020 big game surveys. 2020. Winnipeg, MB: Manitoba 

Fish and Wildlife division 

 

Manitoba Fish and Wildlife division. 2022 big game surveys. 2022. Winnipeg, MB: Manitoba 

Fish and Wildlife division 

 

McElreath R. 2018. Statistical rethinking: A Bayesian course with examples in R and Stan. USA: 

Chapman and Hall/CRC. 

 

Menzies AK, Bowles E, Gallant M, Patterson H, Kozmik C, Chiblow S, McGregor D, Ford A, 

Popp JN. 2022. “I see my culture starting to disappear”: Anishinaabe perspectives on the 

socioecological impacts of climate change and future research needs. Facets. 7:509–527. 

doi:10.1139/facets-2021-0066. 

 

Moeller AK, Waller SJ, DeCesare NJ, Chitwood MC, Lukacs PM. 2023. Best practices to 

account for capture probability and viewable area in camera‐based abundance estimation. 

Remote Sensing in Ecology and Evolution. 9(1):152–164. doi:10.1002/rse2.300. 

 

Moll RJ, Ortiz-Calo W, Cepek JD, Lorch PD, Dennis PM, Robison T, Montgomery RA. 2020. 

The effect of camera-trap viewshed obstruction on wildlife detection: implications for 

inference. Wildlife Research. 47(2):158. doi:10.1071/WR19004. 

 

Moll RJ, Poisson MKP, Heit DR, Jones H, Kantar L. 2022. A review of methods to estimate and 

monitor moose density and abundance. Alces. 58:31–49. 

 

Morellet N, Gaillard J, Hewison AJM, Ballon P, Boscardin Y, Duncan P, Klein F, Maillard D. 

2007. Indicators of ecological change: new tools for managing populations of large 

herbivores. Journal of Applied Ecology. 44(3):634–643. doi:10.1111/j.1365-

2664.2007.01307 

 

Reconyx. 2022. Reconyx Hyperfire 2 high performance camera instruction manual. 

https://www.reconyx.com/img/file/HyperFire_2_User_Guide_2018_07_05_v5.pdf. 

 



 110 

Rönnegård L, Sand H, Andrén H, Månsson J, Pehrson Å. 2008. Evaluation of four methods used 

to estimate population density of moose Alces alces. Wildlife Biology. 14(3):358–371. 

doi:10.2981/0909-6396 

 

Urbanek RE, Ferreira HJ, Olfenbuttel C, Dukes CG, Albers G. 2019. See what you’ve been 

missing: An assessment of Reconyx® PC900 Hyperfire cameras. Wildlife Society 

Bulletin. 43(4):630–638. doi:10.1002/wsb.1015. 

 

Welbourne DJ, Claridge AW, Paull DJ, Lambert A. 2016. How do passive infrared triggered 

camera traps operate and why does it matter? Breaking down common misconceptions. 

Rowcliffe M, Disney M, editors. Remote Sensing in Ecology and Evolution. 2(2):77–83. 

doi:10.1002/rse2.20. 

 

Wevers J, Beenaerts N, Casaer J, Zimmermann F, Artois T, Fattebert J. 2021. Modeling species 

distribution from camera trap by‐catch using a scale‐optimized occupancy approach. 

Rowcliffe M, Sollmann R, editors. Remote Sensing in Ecology and Evolution. 7(3):534–

549. doi:10.1002/rse2.207. 

 

Wong ST, Belant JL, Sollmann R, Mohamed A, Niedballa J, Mathai J, Street GM, Wilting A. 

2019. Influence of body mass, sociality, and movement behavior on improved detection 

probabilities when using a second camera trap. Global Ecology and Conservation. 

20:e00791. doi:10.1016/j.gecco.2019.e00791. 

 


