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Abstract

The digital age has equipped financial institutions with vast amounts of data.

Privacy concerns have posed challenges to harnessing this data’s full potential.

Generation of synthetic data is one of the most promising solutions for allowing

analysis of the patterns and trends contained in this data without compromis-

ing privacy. Although initial methods for generating synthetic data were basic,

emerging generative models have expanded the possibilities. However, gener-

ating synthetic data for unique datasets, like bank transaction sequences, re-

mains challenging. These sequences exhibit complex variability driven by the

various customer transaction behaviors, distinguishing them from the more

predictable patterns in other data types. We propose BankGAN, an innova-

tive conditional tabular GAN architecture designed specifically for synthesiz-

ing bank transaction sequences that exhibit non-uniform date patterns. We

show that BankGAN outperforms a recurrent neural network (RNN)-based

model in achieving superior statistical resemblance to real data. Moreover,

it excels at replicating features of periodic transactions, surpassing both the

RNN and transformer-based models. BankGAN distinguishes itself by gener-

ating privacy-preserving synthetic data without compromising data quality—a

stark contrast to the existing models where adding privacy-preserving guaran-

tees typically degrades performance.
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General Summary

In this Master’s thesis, we explore the pressing issue of privacy in financial

data analysis. With the advent of digital banking, financial institutions are

flooded with data, yet the privacy of individuals remains a paramount concern.

Our research introduces a novel solution: the development of ”BankGAN,”

an artificial intelligence model designed to generate synthetic bank transac-

tion sequences. These sequences mimic the complex patterns of real transac-

tions without compromising individual privacy. Unlike traditional methods,

BankGAN excels in replicating intricate transaction details while ensuring

data remains detached from personal identities. This breakthrough offers a

safer, more ethical approach to analyzing financial data, enabling banks to

harness the power of their data for improvement and innovation while uphold-

ing the privacy of their customers. This work has the potential to reshape how

financial data is utilized, balancing the need for analysis with the imperative

of privacy.
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Chapter 1

Introduction

Financial services now have access to enormous datasets due to the develop-

ment of digital technology, but due to privacy issues, they face challenges in

exploiting the potential of their data. Concerns around privacy impede aca-

demic research and the development of cutting-edge AI-based applications [1].

Any AI-based service accessing, processing, or storing large amounts of sen-

sitive data becomes a potential vulnerability point. As the financial sectors

are among the top targets for cybercriminals [2], data breaches can occur,

which leads to direct financial losses and significant reputational damage. In

addition, as financial institutions push for cutting-edge services, they often col-

laborate with third-party tech providers. While offering advanced capabilities,

these integrations introduce another layer of potential vulnerability and com-

plexity in ensuring end-to-end privacy [1]. Generating high-quality synthetic
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data is one of the countermeasures [3]. Synthetic data is artificially gener-

ated to mimic the properties and structure of real data without copying any

of the original data [4]. By adopting this strategy, financial institutions can

amass data that mirrors real-world datasets without compromising personal

or corporate confidentiality.

While the earliest methods for generating synthetic data relied on compu-

tational simulations [5, 6, 7, 8], the rise of deep generative models (DGMs), in-

cluding generative adversarial networks (GANs) [9], Variational Auto Encoders

(VAEs) [10], diffusion models [11], and transformers [12] has revolutionized this

field. These models excel in crafting homogenous data types, such as images

or texts. However, synthesizing tabular data— the predominant data type

in the financial domain—poses unique challenges [13], including maintaining

intricate inter-feature correlations, ensuring a statistical similarity to the orig-

inal data, and adhering to the specificities of structured data [14]. In addition

to these challenges common to all tabular datasets, each type of data may also

involve unique challenges. One of the crucial datatypes in the financial domain

is bank transaction sequences, which reflect an individual’s or organization’s

financial behavior. However, generating their synthetic counterparts is a com-

plex endeavor. One primary challenge stems from the unpredictable intervals

at which transactions occur [15]. So the dataset cannot be classified as regular

time-series, even though the order of rows is essential. There have been recent
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endeavors to generate non-sequential and sequential tabular data with regular

time intervals. Of these, Banksformer [15], which is transformer-based, is the

only model designed explicitly for generating synthetic financial transaction

sequences.

The primary objective of this study is to generate high-quality synthetic

bank transaction sequences that can serve as substitutes for original data. This

allows for the sharing of data across and within organizations when protecting

data privacy is a legal requirement. To achieve this, we undertake several key

activities outlined in the subsequent chapters. In Chapter 2, we detail the

development of BankGAN alongside a baseline model for comparative analy-

sis. BankGAN is a tabular GAN-based model that stands out from existing

frameworks by integrating a sequential conditional vector and leveraging a

date generation mechanism inspired by the Banksformer model [15], which

facilitates the simulation of transaction sequences. In contrast, our baseline

model employs a Recurrent Neural Network (RNN) approach to synthesize

bank transaction sequences. This model serves a dual purpose: it offers a

point of comparison with Banksformer [15], a transformer-based model, and

establishes an additional reference for evaluating BankGAN’s performance.

Chapter 3 focuses on the evaluation and comparison of the synthetic data

generated by the three models: BankGAN, the baseline RNN model, and

Banksformer. This includes assessing the models’ ability to accurately repli-
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cate both periodic and sporadic transactions and examining the privacy in-

tegrity of the generated data. Throughout the remainder of this chapter we

begin with a literature study reviewing techniques for synthesizing tabular

data, providing context for our approach. This is followed by a detailed ex-

ploration of CTGAN, which is referenced to elucidate its role in generating

synthetic tabular data. Additionally, the chapter includes an in-depth expla-

nation of the Banksformer model to enhance understanding of its integration

and function within BankGAN.

1.1 Related Work

Synthetic data, defined as data generated via algorithms or mathematical mod-

els rather than direct real-world measurement, plays a crucial role in modern

data science [4]. Its significance is particularly pronounced in fields where real

data is scarce, sensitive, or subject to privacy concerns, such as healthcare and

finance. In these domains, synthetic data is not only supplementing [16, 17]

but, in some instances, replacing real datasets [18, 19] to safeguard privacy

while facilitating research and development. The enhancement of real datasets

using synthetic data is particularly advantageous for improving small or im-

balanced datasets in machine learning applications, offering a balanced and

enriched data environment for more effective training and analysis [20, 21].

Similarly, in the development of autonomous vehicles, synthetic data proves
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indispensable, especially for simulating rare events like accidents under ex-

treme conditions, where real data is often limited [22, 23].

The generation of synthetic data can be broadly categorized into two ap-

proaches: process-driven methods and data-driven methods [24]. Process-

driven methods are grounded in simulating physical processes, usually neces-

sitating expert knowledge and human interaction for accurate modeling. These

techniques are embodied in various forms such as numerical simulations, agent-

based modeling, discrete-event simulations, and Monte Carlo simulations [24].

Agent-based modeling (ABM) is a powerful technique used for synthesizing

payment data, particularly in the context of banking and mobile payment sys-

tems. This approach effectively captures the behaviors of real actors involved

in financial transactions. By modeling different actors in payment systems and

simulating their interactions, ABM can create realistic scenarios. Once the

agents interact realistically, the system can simulate new scenarios, thereby

producing synthetic datasets that are invaluable in studying and detecting

fraudulent patterns in financial transactions [25]. Notable ABM implemen-

tations in this field include BankSim [26], PaySim [27], AMLSim [28], and

Retsim [29], each contributing uniquely to the domain of synthetic data gen-

eration. However, these approaches have limitations: they are complex and

resource-intensive, require substantial data that is challenging to obtain, and

face issues with scalability and applicability to different contexts. Addition-
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ally, there is a risk of oversimplification, which could lead to inaccurate results.

In addition to the specific challenges of agent-based modeling, process-driven

approaches in general involve the need for domain experts to design tailored

simulators. The authenticity of the resulting data heavily depends on the simu-

lator’s design and may not always accurately reflect real-world data. However,

a significant advantage of these methods is their ability to avoid the direct use

of private data, thereby reducing the risk of exposing sensitive information [24].

More recently, data-driven methods have gained attention as big data and

deep learning algorithms gained momentum in the research community. In this

approach a machine learning model is trained to produce data that matches

the desired distribution, eliminating the need for manually creating simula-

tors. The process of selecting or developing an appropriate generative model,

while simpler than simulator design, still requires some effort. These gener-

ative models are typically more adaptable across various domains, enabling

the creation of a versatile framework for generating synthetic data that can

replicate different types of datasets. However, a potential downside is that the

model might inadvertently ’memorize’ the training data, which poses a risk of

revealing private information if not managed with caution.

In the realm of data-driven methodologies, there are four prominent types

of deep generative models (DGMs) that have gained significant attention:

Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs),
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Transformers, and Diffusion Models. These models have shown remarkable

success in generating text, audio, and images. However, their application in

synthesizing tabular data, a common data structure across various fields, is

still in its nascent stages. We divide the related studies using DGMs to gen-

erate tabular data into sequential and non-sequential data, as each category

has its own unique characteristics.

Generating non-sequential tabular data. Among DGMs, GANs have

been favored for tabular data generation due to their success in other domains,

e.g. image [30], coupled with their flexibility and ability to be customized for

specific requirements in generating tabular data. This has established GANs as

the preferred choice for crafting synthetic tabular datasets, despite the valuable

contributions of VAEs [31, 32, 33, 34] and diffusion models [35]. GAN mod-

els for tabular data have been developed for many specific use cases, including

TableGAN [36] for privacy preservation, ehrGAN [37] for realistic health record

generation, and CrGAN [38] for Passenger Name Records (PNR) creation. A

shared limitation among these models is their inability to generate specific data

categories on demand, leading to the development of conditional tabular GAN

models [32, 39, 40, 41]. Conditional tabular GANs incorporate conditional

vectors into the training and generation process, allowing for the controlled

generation of data across specified attributes. CTGAN [32], as the precursor

in this area, introduced significant innovations such as mode-specific normal-
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ization for handling continuous features with multi-modal distributions, and

a training-by-sampling strategy to guarantee comprehensive representation of

categorical features during training. These innovations significantly improved

the model’s ability to accurately capture varied data distributions and effec-

tively handle categorical variables of high cardinality.

Generating sequential tabular data. Sequential tabular data gener-

ation is divided into handling data with regular and irregular time intervals.

For regular intervals, models such as TimeGAN [42] and DoppelGANger [43]

leverage RNN and GAN integration to capture time dependencies, whereas

TimeVAE [44] utilizes a VAE approach, and recent efforts explore diffusion

models for this purpose as well [45, 46]. These approaches, however, pre-

dominantly cater to sequences with consistent timing between data points.

Conversely, Banksformer [15], based on a decoder-only transformer architec-

ture, stands as a unique solution for generating synthetic sequential tabular

data with irregular time intervals, focusing on bank transaction sequences.

Banksformer [15] employs a special conditional training and generation and

date mechanism to simulate the irregular timing patterns characteristic of

transactional data.

Integrating Banksformer’s [15] conditional training and generation tech-

niques and date mechanism into a StackedLSTM Autoencoder [47, 48], we set

a new baseline for our investigation. The StackedLSTM Autoencoder enhances
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the traditional LSTM by adding depth, enabling better handling of complex

sequences, making it suitable for multivariate multi-step time series forecasting

[47, 48]. In our study, we adopt a conditional Sequence to Sequence (Seq2Seq)

learning approach akin to Banksformer’s [15] methodology for both training

and generating bank transaction sequences. This method incorporates con-

ditional generation and the Banksformer date mechanism [15]. By mirroring

Banksformer’s [15] training and generation process, this baseline model facil-

itates a direct comparison between LSTM-based and attention-based models

in generating synthetic bank transactions.

Building upon the baseline, our research introduces BankGAN, a novel

generative adversarial network (GAN) model specifically tailored for the gen-

eration of synthetic bank transaction sequences. BankGAN represents a sig-

nificant leap forward from traditional GAN frameworks by integrating several

unique elements. Foremost among these is the adoption of the sequence condi-

tional vector, a novel component that encodes sequential information, thereby

enabling the model to maintain the intrinsic chronological order present in

transactional data. This is crucial for replicating the irregular and sporadic na-

ture of financial transactions, which are not adequately captured by standard

GANs. Furthermore, BankGAN incorporates the date generation mechanism

inspired by Banksformer, which allows it to simulate the varying intervals

between transactions. By blending the foundational principles of CTGAN
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[32] with the advanced capabilities of Banksformer, BankGAN demonstrates

competitive performance, particularly in capturing transaction amount distri-

butions, and cash flow distributions of recurring transactions. Furthermore,

BankGAN exhibits significant potential in preserving the privacy of synthetic

data, ensuring that the generation process does not affect the quality of the

produced datasets.Through this model, we aim to bridge the gap between the

need for data richness in financial analytics and the imperative for strict pri-

vacy adherence, thereby enabling safer and more robust AI-driven financial

services.

1.2 CTGAN

CTGAN [32] (Conditional Generative Adversarial Network), depicted in Fig-

ure 1.1, is a type of GAN designed to generate synthetic tabular data. Initially,

the model distinguishes between discrete and continuous features: discrete fea-

tures undergo a one-hot encoding transformation, while continuous features are

modeled using a Gaussian mixture model and mode-specific normalization to

preserve their statistical properties. The core of CTGAN’s [32] methodology

lies in the use of a conditional vector, which guides the synthetic data genera-

tion, ensuring that the output adheres to specific conditions or distributions,

thereby enhancing the utility and relevance of the generated data.

The architecture of CTGAN [32] is built upon the principles of Generative
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Adversarial Networks (GANs), where a generator and a discriminator engage

in an iterative adversarial process. The generator aims to produce synthetic

data instances that are indistinguishable from real data, informed by the con-

ditional vectors to meet specific data conditions. Meanwhile, the discriminator

evaluates the authenticity of the generated data against actual data, improving

its ability to identify real versus synthetic samples. This adversarial training

continues until the generator produces data sufficiently realistic that the dis-

criminator can no longer easily differentiate from real data.

To delve deeper into the workings of CTGAN, it is beneficial to segment our

explanation into several key areas: the processing of discrete and continuous

features as they are fed into the discriminator, the construction of the condi-

tional vector, the architecture of the generator and discriminator, generator

loss function and discriminator loss function. This comprehensive breakdown

will provide a clearer understanding of CTGAN’s intricate mechanics.

1.2.1 The Processing of Discrete and Continuous Fea-

tures

CTGAN [32] is specially tailored to handle various challenges associated with

non-image data, like mixed data types (e.g. continuous and discrete features).

CTGAN manages discrete features by converting them into one-hot encoded

vectors. Continuous data handling becomes more complex when the features
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exhibit multi-modal distributions. CTGAN utilizes a ”mode specific normal-

ization” technique to address this. The tool deploys the Variational Gaus-

sian Mixture Model (VGMM) to automatically identify the number of modes

present in the distribution of a continuous feature. In essence, VGMM is a

statistical model that aims to fit the data with multiple Gaussian distributions.

For any given continuous data point, CTGAN assesses the likelihood of that

data point originating from each Gaussian distribution determined by VGMM.

Based on these likelihoods, CTGAN decides which Gaussian distribution the

data point most likely came from. This data point then undergoes scaling, and

a one-hot encoded vector represents its corresponding Gaussian distribution.

Together, these provide the input vector for the discriminator.

For instance, if a continuous feature has three different modes or Gaussian

distributions identified by Variational Gaussian Mixture Model (VGMM), and

we take a sample value of 5.2: VGMM might assign probabilities of 0.1, 0.7,

and 0.2 to this sample belonging to the three respective Gaussian distributions.

Given these probabilities, the sample is inferred to have most likely come from

the second Gaussian distribution. If normalizing the sample value of 5.2 results

in

5.2 − η2
4ϕ2

,

where η2 and ϕ2 are mean and standard deviation of the second Gaussian
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distribution, the input vector for the discriminator becomes

[5.2 − η2
4ϕ2

,0,1,0] ,

with the latter three digits representing the one-hot encoded vector for the

second Gaussian distribution.

1.2.2 Conditional Vector

A conditional generator is a technique used to generate data samples that

match a particular condition. In the context of CTGAN, it is used to ensure

an even distribution of discrete values in generated samples.

For this purpose a conditional vector is defined, and used as input to the

generator network during training, in order to generate synthetic data that

satisfies the given conditions.

The conditional vector is a binary vector that encodes the conditions that

must be satisfied by the generated data. It is defined as the concatenation of

binary mask vectors for all discrete columns in the dataset. Each binary mask

vector corresponds to a single discrete column and has the same length as the

number of distinct categories in the column. To create the conditional vector,

we initialize all binary mask vectors with zeros. We then set the element of

the binary mask vector corresponding to the desired category in the chosen

discrete column to 1.

For example, suppose we have three discrete columns in our dataset, with

13



10, 15, and 20 categories, respectively. The dimension of the conditional vector

would be 45, which is the sum of the number of categories in each column.

Each binary mask vector would have a length corresponding to the number

of categories in its corresponding column. To encode the condition that the

first column should have a value of the sixth category, we would set the sixth

element of the first binary mask vector to 1. If we also wanted to encode the

condition that the second column should have a value of the eleventh category,

we would set the eleventh element of the second binary mask vector to 1. The

rest of the elements in the binary mask vectors would remain zero.

In the next step, to ensure that all categorical attributes are represented in

the training process, a training-by-sampling technique is used. This involves

selecting one of the categorical attributes at random and computing a prob-

ability mass function (PMF) based on the frequency of values in the training

data. The generator then samples from this PMF to select a value for the

attribute and reconstructs the conditional vector by concatenating all cate-

gorical attributes. The detailed steps of training-by-sampling technique are as

follows.

Assume that we have three discrete columns in our dataset, and let n1, n2,

and n3 be the number of categories in the three discrete columns, respectively.

We define the interval matrix, category prob = (di,j), as follows:

14



di,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

number of occurrences of category j in discrete column i

number of rows in the data frame
, if j < ni

0, otherwise

Here, i ∈ {1,2,3} and j ∈ {1,2, . . . ,max(n1, n2, n3)}. Note that the cate-

gory prob matrix contains the probabilities of each category in the discrete

columns, computed as the frequency of occurrence of each category in a dis-

crete column divided by the total number of rows in the dataframe. If a

category does not exist in a particular column, its corresponding probability is

set to zero. The purpose of this matrix is to efficiently sample the conditional

vector during training. The procedure of sampling conditional vector from the

category prob matrix (training by sampling technique) is as follows:

1. Random Column Selection: Utilize ’np.random.choice’ to randomly

select one of the discrete columns.

2. Cumulative Probability Calculation: For the chosen discrete col-

umn indexed as ’i’, extract its corresponding row from the category prob

matrix and compute the cumulative probabilities, denoted as cum probs.

3. Random Number Generation: Employ ’np.random.rand()’ to gener-

ate a random number, uniformly distributed between 0 and 1, to sample

a fresh value for the selected discrete column.
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4. Index Identification: Identify the index of the first element in cum probs

that is equal to or exceeds the random number.

5. Conditional Vector Adjustment: Set the identified element of the

conditional vector to 1 and all other elements to 0, ensuring the generated

sample adheres to the condition for the chosen discrete column.

In the training process, at each epoch, a batch of conditional vectors is

produced, which is concatenated with a noise vector to generate synthetic

data (i.e., fake data) using the generator. The generated synthetic data is then

concatenated with the conditional vector and fed into the discriminator, which

aims to distinguish between the real and synthetic data. On the other hand,

the conditional vector is also used to filter the real training data that satisfies

the given conditioning factors. A permutation of the conditional vector is then

concatenated with the corresponding real data and fed into the discriminator.

1.2.3 Generator and Discriminator Architecture

The CTGAN generator, designed to craft synthetic data, is structured with

an aim to understand and reproduce the complex relationships between the

columns of a dataset. The generator leverages fully-connected networks. These

networks are adept at capturing all potential correlations between columns, en-

suring that the relationships between different attributes of the data are main-

tained in the synthetic samples. In the architecture, both the generator and
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Figure 1.1: Architecture of CTGAN

the critic (or discriminator) of the CTGAN incorporate two fully-connected

hidden layers.

To enhance the generator’s efficacy, it integrates batch-normalization, which

stabilizes and accelerates the learning process by maintaining consistent input

means and variances for each layer. Post the inclusion of these layers, the

generator introduces non-linearity using the ReLU (Rectified Linear Unit) ac-

tivation function. Residual connections also used in generator to mitigate the

vanishing gradient problem.

17



For generating scalar values, the generator uses the tanh activation func-

tion, which scales the output to lie between -1 and 1. For generating mode

indicators and discrete values Gumbel Softmax function is used. This is a

smooth approximation to the argmax function, helping in differentiating non-

differentiable functions.

In the critic, also referred as the discriminator, there is an incorporation of

the Leaky ReLU activation function, known to mitigate the vanishing gradient

problem, especially during the earlier phases of training. Additionally, dropout

is applied on each hidden layer in the critic. Dropout is a regularization

technique, where randomly selected neurons are ignored during training, which

helps in preventing overfitting.

1.2.4 Loss Function

1.2.4.1 Discriminator Loss Function

The discriminator loss function is identical to the discriminator loss function

for WGAN-GP (Wasserstein GAN-Gradient Penalty):

Lcritic = −Ex∼Pr[D(x)] +Ez∼Pz[D(G(z))] + λ ⋅Ex̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2] (1.1)

Let us break down each term:

1. Wasserstein Loss: This term consists of two parts:

• −Ex∼Pr[D(x)] ∶ This is the expectation of the critic’s scores on real
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data. Here, x represents samples from the real data distribution Pr.

The expectation E calculates the average score the critic assigns to

real samples. The negative sign indicates that the critic aims to

maximize these scores (since in optimization, we typically minimize

loss functions, but here, we want high scores for real data, hence the

maximization is turned into minimization by negating the scores).

• +Ez∼Pz[D(G(z))] ∶ This is the expectation of the critic’s scores on

generated (fake) data. Here, z represents samples from the noise

distribution Pz, and G(z) represents the generated data samples

from the generator function G. The critic tries to minimize these

scores.

Combining these, the Wasserstein loss is represented as the difference

between the critic’s scores for real data and generated data, incentivizing

the critic to distinguish effectively between real and fake samples.

2. Gradient Penalty (GP): This is the third term in the equation:

• λ⋅Ex̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2] ∶ This term imposes the 1-Lipschitz con-

straint via the gradient penalty. The term ”1-Lipschitz constraint”

refers to a mathematical condition that a function (in this case, the

critic or discriminator function in a GAN) must satisfy to ensure

that its output does not change too abruptly for small changes in its
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input. Specifically, a function f satisfies the 1-Lipschitz condition

if, for any two inputs x1 and x2, the change in the function’s output

is no greater than the change in the inputs, scaled by a constant

(in this case, 1):

∣f(x1) − f(x2)∣ ≤ ∣x1 − x2∣ (1.2)

This condition is crucial for the stability of WGAN training be-

cause it prevents the critic’s scores from varying too wildly, which

can lead to erratic updates of the generator. The gradient penalty

method is designed to enforce this 1-Lipschitz condition indirectly.

The method involves creating interpolated samples x̂ that lie be-

tween real data points and generated data points. This is typically

done by mixing real and generated samples using a random weight.

These interpolated points help to smoothly bridge the gap between

the real and synthetic data distributions. For each of these inter-

polated samples, we compute the gradient of the critic’s score with

respect to the sample, denoted as ∇x̂D(x̂). This gradient represents

how much the critic’s evaluation changes around that sample. We

then calculate the norm (or length) of this gradient. In the ideal

case, where the critic perfectly satisfies the 1-Lipschitz condition,

the norm of this gradient should be exactly 1. This means that
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the critic’s score should change at most linearly with changes in

the input. The gradient penalty term, (∥∇x̂D(x̂)∥2 − 1)2, penalizes

any deviation from this ideal norm. If the norm is greater than 1,

indicating too steep a change (too sensitive a critic), or if it is less

than 1 (indicating too weak a critic), the penalty increases. By in-

corporating this penalty into the overall loss function, the training

process nudges the critic to adjust its parameters to maintain the

norm of the gradient close to 1 across its decision boundary. This

enforcement ensures that the critic’s function remains smooth and

well-behaved, which in turn stabilizes the GAN’s training process.

In essence, the gradient penalty serves as a regulatory mechanism,

ensuring the critic’s responses remain consistent and predictable

across its input space, thereby enforcing the 1-Lipschitz condition

without having to explicitly limit the parameters of the critic. This

leads to more stable and reliable training of generative adversarial

networks, especially in the context of WGAN-GP.

1.2.4.2 Generator Loss Function

For the generator loss function, in addition to the discriminator which provides

feedback to the generator, the cross-entropy between the given conditional

vector and the generated output classes is incorporated in the generator loss
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function in CTGAN. The aim of this term is to minimize the difference between

the generated data and the real data in terms of the distribution of discrete

columns. Let us explain how to calculate this loss with an example. Assume

that we are working with a dataset that has three discrete columns - d1, d2, and

d3. These columns have 14, 39, and 21 categories respectively. To calculate the

loss, first the generator is conditioned on a batch of conditional vectors, which

provide information about the desired distribution of the discrete columns.

Assume that a batch of 5 conditional vectors is sampled: (d3, cat3), (d2,

cat19), (d2, cat15), (d2, cat26), and (d3, cat4). Here (di, catj) indicates

that we are conditioning on the j-th category of the i-th discrete column.

To generate fake data, the batch of conditional vectors is concatenated with

a batch of noise vectors and is fed into the generator. Then the portion of

the fake data that corresponds to the third discrete column (d3) is extracted,

which results in a vector of size 21 containing logits. This vector is compared

to the true distribution specified by the conditional vector, which is a one-hot

encoded vector containing 21 elements where the third element is set to 1. For

each element in the batch, the cross entropy loss between logits and true labels

(distribution) is computed and the average is taken to arrive at the generator

loss for this batch of data.

Lgenerator = −Ez∼Pz[D(G(z))] +CrossEntropy (1.3)
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1.3 Banksformer

Figure 1.2: Overall Structure of Banksformer

Figure 1.2 illustrates the architecture of Banksformer, comprising three

primary components. The input layer processes batches of multivariate trans-

action sequences, converting them into sequences with varied feature dimen-

sions. Subsequently, the embedded sequences undergo processing by a stack of

four identical decoder layers. Finally, the output layer employs a conditional

generation mechanism to sequentially produce each feature of the sequence,

conditioning each subsequent feature on all preceding ones. The subsequent

sections provide detailed explanations of each layer within the Banksformer

architecture.
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Figure 1.3: Architecture of the Input Embedding Layer

1.3.1 Input Embedding Layer

This layer, depicted in Figure 1.3, is designed to transform input data of di-

mension ’inp feature’ into a representation of dimension ’d embedding’, which

is then consistently used throughout the decoder stack. The Input Embedding

Layer comprises two fully connected layers. The first layer outputs a repre-

sentation with a dimensionality specified by ’dff’. The incorporation of the

ReLU activation function in this layer is pivotal for introducing non-linearity,

enabling the layer to capture complex patterns in the data. Subsequent to this

initial transformation, the second dense layer linearly projects the output of

the first layer into a representation space of the dimension ’d embedding’.
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1.3.2 Positional Encoding

Positional Encodings (PEs) are indeed a crucial component in the architec-

ture of transformers, addressing one of their fundamental challenges. Since

transformers process input sequences in parallel rather than sequentially, they

initially lack any means of understanding the order of elements in a sequence.

This is unlike traditional recurrent neural networks (RNNs) or Long Short-

Term Memory networks (LSTMs), which inherently process data in a sequen-

tial manner and thus maintain an understanding of order.

Positional Encodings solve this problem by providing additional informa-

tion to the model that helps it understand the position or order of each element

in the sequence. These encodings are vectors that are added to each element

of the sequence. These vectors follow a specific pattern which helps the model

determine the position of each input vector in the sequence. The intuition here

is that adding these values to the embeddings provides meaningful distances

between the embedding vectors once they are projected to Q/K/V vectors and

during dot-product attention.

There are different ways to generate these positional encodings. One com-

mon method, used in the original Transformer model [12], involves using sine

and cosine functions of different frequencies:

For each position p and each dimension i of the encoding, the value of the
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encoding at that position and dimension is given by:

PE(p,2i) = sin( p

100002i/dmodel
)

PE(p,2i+1) = cos( p

100002i/dmodel
)

In these formulas:

• PE (p, i) represents the positional encoding at position p and dimension

i.

• p is the position in the sequence (timestep).

• i is the dimension within the positional encoding vector.

• d model is the dimensionality of the model’s embeddings.

The positional encoding vector is a vector of shape (1, Seq len, d model

= d embedding) that is added to the output of the Input Embedding Layer.

Then the resulting vector undergoes a dropout layer, where the rate of dropout

is determined by the parameter ’rate’.

1.3.3 Decoder Layer

This essential layer, illustrated in Figure 1.4, encompasses multiple compo-

nents. It begins with a Masked Multi-Head Self-Attention mechanism, as

elaborated in subsection 1.3.3.1. This layer allows the decoder to focus on rel-

evant parts of the input sequence while ensuring the autoregressive property
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Figure 1.4: Architecture of the Decoder Layer

by excluding future elements from the prediction process. Following this atten-

tion phase, a residual connection combines the attention output with its initial

input, which aids in maintaining a steady flow of gradients and reduces the

risk of diminishing gradients. Layer normalization then follows, contributing

to a more stable training process.

Afterwards, the processed data undergoes two sequential transformations.

The initial transformation applies a ReLU activation function to introduce

27



non-linearity, while the second transformation is a linear transformation. This

sequence is completed with another set of residual connection and normaliza-

tion, further enhancing the network’s learning capabilities.

To prevent overfitting, dropout [49] is strategically applied after the self-

attention mechanism and again following the linear transformations. This

technique randomly deactivates certain neurons during training, ensuring the

model generalizes well to new, unseen data.

1.3.3.1 Masked Multi-Head Attention Layer

The journey of data through the Masked Multi-Head Attention mechanism,

depicted in Figure 1.5, encompasses several critical steps, as detailed below:

1. Input Projection: First, the input sequence is converted into query

(Q), key (K), and value (V) vectors through three separate linear layers,

each with its distinct weights: WQ, WK , and WV .

2. Self-Attention Score Calculation: This step involves taking the dot

product of the query (Q) with all keys (K). It is a way to measure how

much each element in the input sequence is related to the current element

being focused on, resulting in a seq len × seq len matrix.

3. Score Scaling and Masking:

• Score Scaling: To prevent excessively large values that could impair
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Figure 1.5: Architecture of the Masked Multi-Head Attention Layer

gradient stability, scores are scaled down by the square root of the

dimension of the keys (
√
dk).

• Combined Mask Application: At this stage, the combined mask,

which merges the look-ahead mask and the padding mask, is ap-

plied. In this mask, positions requiring masking are assigned a 1,

while unmasked positions are assigned a 0. The combined mask is
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then multiplied by a large negative number (effectively applying a

large penalty) and added to the scaled self-attention scores. This

ensures that, after applying the softmax function, positions meant

to be masked will have attention scores close to zero, effectively

ignoring these positions during attention calculation.

– Look-Ahead Mask: The look-ahead mask ensures that the pre-

diction for a particular position in a sequence does not depend

on the future elements in the sequence. The look-ahead mask

is a triangular matrix where the upper part (above the main

diagonal) is filled with ones, and the lower part (including the

diagonal) is filled with zeros. This structure allows the model

to only attend to earlier positions in the sequence.

– Padding Mask: Padding masks are used to avoid the model

paying attention to padding elements. Padding is often used in

sequences to make them of uniform length. The padding mask

is created based on the actual sequence. It marks the positions

of padding elements (usually zeros in the sequence) and ensures

that the model does not treat these positions as meaningful.

The combined mask ensures two things: first, the decoder does not

peek at future positions in the sequence (thanks to the look-ahead

mask), and second, it ignores the padding tokens (thanks to the
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padding mask). This combined mask is applied to the self-attention

layer in the decoder, ensuring the attention mechanism adheres to

both constraints.

4. Softmax Normalization: Following the application of the combined

mask, the modified attention scores are normalized via softmax, so they

are all positive and add up to 1. The resulting matrix is the attention

weights that can be seen as a percentage of total focus that is given to

an element in the sequence, when encoding the current element.

5. Output Generation: In this step, each value vector (in matrix V)

is multiplied by its softmax score (in attention weights matrix). This

keeps the original value intact, but scales the overall vector in line with

its relative importance of the current element in the sequence. Finally,

all of the scaled values are summed together to produce the encoding of

the current element in the sequence.

6. Multi-Head Division: The model diversifies the context capture by

splitting Q, K, and V into h separate attention heads, each operating

within a reduced dimensional space, dmodel

h , enabling parallel processing

of multiple representation subspaces.

All of the above steps can be summerized in this formula:
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Attn(Q,K,V ) = softmax(QKT

√
dk
+Combined Mask * large negative value)V

1.3.4 Output Layer

In the Banksformer architecture, the output module comprises several dense

layers, each tasked with producing a specific feature. It employs a conditional

generation technique, where each subsequent output is sequentially generated,

influenced by both the preceding sequence elements and the actual values of

previously generated features of the current element.

1.3.5 Training Procedure

In preparing the training data for the Banksformer model, sequences of data

are first organized and then enhanced by appending an attribute row at the

start of each sequence. This attribute row, specific to Banksformer, is cre-

ated by duplicating the ’age’ attribute of the customer across every feature in

the sequence. Consequently, the training data’s dimensions are reshaped to

(batch size, seq len + 1, inp features). The initial seq len elements in each se-

quence are employed for training. The Banksformer model operates by taking

the i-th element of a sequence as input and aiming to predict the subsequent

(i+1)-th element. Therefore, the training goal is to minimize the discrepancy

between the Banksformer’s predictions, based on the i-th element as input,
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and the actual (i+1)-th element in the sequence.

Loss Function

In the training loss function for Banksformer [15], each piece of transaction in-

formation is considered an individual component, with their individual losses

summed and assigned unique weights to reflect their relative importance in the

model’s overall performance. For date-related features, except for the continu-

ous time delta (td), they are handled as categorical variables. The Banksformer

model generates outputs for these features in the form of probability distri-

butions across various possible values, utilizing categorical cross-entropy for

their evaluation. In contrast, for continuous features including time delta and

transaction amount, the loss function is based on the natural logarithm of the

probability density function (PDF) of a normal (Gaussian) distribution. This

is a common loss component in machine learning, particularly in probabilistic

models like Variational Autoencoders (VAEs). The model predicts the mean

and standard deviation, which are then used to estimate the likelihood of the

real data. The objective is to maximize this likelihood, hence, the negative

value of this probability is incorporated into the loss function.

Let us explain the mathematical formula of this loss function. Given:

• x: The real data sample for which the probability is being evaluated.

• µ: The predicted mean of the distribution.
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• σ2: The predicted variance of the distribution.

The probability density function (PDF) for a normal distribution is given

by:

p(x∣µ,σ2) = 1√
2πσ2

exp(−(x − µ)
2

2σ2
)

When working with loss functions in machine learning, we often deal with

the logarithm of the probability (log-probability), as it provides numerical

stability and simplicity in computation. The log-probability of a real sample

x from a normal distribution with predicted mean µ and variance σ2 is given

by:

log p(x∣µ,σ2) = −1

2
log(2πσ2) − (x − µ)

2

2σ2

Breaking it down:

• The term −1
2 log(2πσ2) comes from the logarithm of the normalization

factor of the Gaussian distribution.

• The term − (x−µ)
2

2σ2 results from the exponential part of the Gaussian dis-

tribution, reflecting how likely (or unlikely) the real sample x is under

the distribution defined by predicted µ and σ2.
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Chapter 2

Methodology

2.1 Dataset

In this thesis we utilize a dataset comprising genuine banking transactions that

took place in the Czech Republic during the 1990s. The dataset encompasses

over 1 million transaction records from 4500 individual accounts, spanning

a period of five years. Each transaction entry includes information such as

the transaction’s monetary value, multiple categorical codes describing the

transaction type, and a timestamp indicating when the transaction occurred.

The raw dataset consists of the following columns:

• account id: Unique identifier for accounts.

• date: Date of the transaction.

• amount: Transaction amount.
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• age: Age of the account holder.

• type: refers to the basic nature of the transaction (e.g., Credit or Debit).

• operation: describes the specific kind of transaction (e.g., Cash with-

drawal, Bank transfer).

• k symbol: is a categorization code that provides additional context to

the transaction (e.g., Interest credited, Household payment).

Preprocessing Steps

Drawing inspiration from the data preprocessing approach employed in Banks-

former [15], we adopt a similar methodology. Below is the detail of how we

generate new features:

• tcode (Transaction Code)

– Original Features: type, operation, and k symbol

– Description: The tcode is a composite feature that encapsulates

several categorical aspects of a transaction. It is created by con-

catenating three original columns from the dataset: type, operation,

and k symbol. For example, a transaction with type as ”CREDIT”,

operation as ”CASH WITHDRAWAL”, and k symbol as ”HOUSE-

HOLD” would result in a tcode like ”CREDIT CASH WITH-

DRAWAL HOUSEHOLD”.
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• month, dow (Day of Week), day (day of month), dtme (days

till month ends):

– Extracted from: date

– Description: For the date ”15th April 1995”, the month feature is

4 (April), the day is 15, the day of the week (DOW) is 6 (Satur-

day), and there are 15 days remaining until the end of the month

(DTME).

• td (time delta between transactions):

– Description: This feature represents the number of days between

consecutive transactions for each account. It is derived by calculat-

ing the difference in days between the current transaction date and

the previous transaction date for the same account.

2.2 Stacked LSTM Autoencoder

We implemented a Stacked LSTM Autoencoder [47, 48] as a baseline to eval-

uate the efficiency of recurrent neural networks (RNNs) when integrated with

the conditional training and generation approach, as well as the Date Mecha-

nism, both of which are inspired by Banksformer [15].

As depicted in Figure 2.1, the model’s structure includes an encoder and a

decoder, each consisting of two LSTM layers. The encoder’s role is to trans-
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Figure 2.1: Stacked LSTM Autoencoder

form input sequences into a context vector, specifically capturing the hidden

state from the final timestep of its second LSTM layer. This context vector

is then replicated across timesteps via a repeat vector layer and fed into the

decoder. The decoder’s first LSTM layer receives this sequence, initializing its

hidden and cell states with the final timestep states from the encoder’s first

LSTM layer. The second LSTM layer of the decoder processes the output of its

first layer, with initial states set by the final timestep of the encoder’s second

layer. The decoder’s output then proceeds through several dense layers, each

responsible for predicting a distinct feature in a manner that depends on the

previously predicted features. During the training phase, the values for fea-
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ture conditioning are sourced from the actual dataset, while during generation,

they are derived from the features predicted earlier in the sequence.

Feature Encoding. Date and categorical features are encoded as per

the methodology outlined in section 2.3.2. In contrast, continuous features

undergo normalization by scaling with their standard deviation.

Feature Decoding. For date and categorical features, we apply the soft-

max function in the dense layers, using categorical cross-entropy as the loss

function. The dimensionality of the output vector for categorical variables

aligns with the number of categories, and for date features, it matches the

temporal period’s units (e.g., 7 for day of the week). Continuous features are

handled by a ReLU-activated dense layer predicting both mean and standard

deviation. Then the loss function for these features is based on the likelihood

of a normal distribution (explained in section 1.3.5), which measures how well

the model’s predictions fit the real data.

Date Sampling. The output vectors of dense layers for date features are

directly used in Equation 2.6. Additionally, the predicted mean and standard

deviation of td is used to construct the probability of time deltas in Equa-

tion 2.6.
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2.3 BankGAN

BankGAN, developed for generating bank transaction sequences, maintains

CTGAN’s foundational architecture and training methodology [32]. Its dis-

tinct innovation lies in the strategic integration of a decoder-only transformer

for pre-generating transaction code sequences. This approach was chosen due

to the success of transformers in generating coherent text sequences, which

closely resemble the sequential dependencies found in financial transactions.

Just as the likelihood of the next word in a sentence depends heavily on its

preceding context, each transaction code in a sequence depends on the histor-

ical pattern of transactions, necessitating a model that can effectively capture

these long-term dependencies.

The use of a transformer allows BankGAN to address the limitations of tra-

ditional time-series GAN models like TimeGAN and DoppleGAN, which pre-

vious research [15] showed that they fail to generate synthetic financial trans-

actions with realistic and coherent patterns. By leveraging the transformer’s

self-attention mechanisms, BankGAN effectively understands and generates

transaction code sequences where each element is contextually tied to its pre-

decessors.

Moreover, BankGAN features strategic sequential sampling of conditional

vectors and an adapted Banksformer’s date mechanism [15], with modifications

for feature-to-probability conversion. In contrast to Banksformer, where the
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output of date-related features is represented as probabilities derived from

a softmax function, BankGAN employs a different approach. In BankGAN,

the output for date-related features is a point in a two-dimensional space,

generated through a tanh activation function. then the probabilities of date

related features are evaluated based on its distance from the reference points

within a clock-dimensional space, allowing for a more nuanced interpretation

and utilization of temporal data.

BankGAN comprises two blocks: Generator and Discriminator. The ar-

chitecture of the generator and discriminator in BankGAN is identical to that

of CTGAN [32]. In the generator, two key layers are employed. Each of these

layers is a fully connected network that incorporates batch normalization and

ReLU activation. The input of each layer is concatenated with its output,

which subsequently feeds into the next layer. The final step involves a fully

connected layer that maps the output to the dimensionality of the encoded

real data. The discriminator consists of two similar layers, each performing

a linear transformation followed by leaky ReLU activation and dropout. The

final layer is a dense layer that reduces the output to a singular value, indica-

tive of the input data’s authenticity. The model is trained using WGAN loss

with gradient penalty.

41



2.3.1 Generator’s Input

The generator requires a noise vector plus a conditional vector, which is used

for conditioning on transaction codes (Tcodes); the singular categorical at-

tribute in our dataset. Similar to CTGAN [32], a training-by-sampling tech-

nique is used for sampling transaction codes during training. This technique

is used to ensure that all Tcode categories are represented in the training

process based on their frequencies in the training data. Mirroring CTGAN’s

strategy [32], an extra term is added to the generator’s loss function. This

element measures the disparity between the prescribed condition, in this case,

the Tcode, and the Tcode generated by BankGAN. This adjustment is crucial

for guiding the generator to produce the exact Tcode as dictated by the given

condition. This capability facilitates the use of sequential conditional vectors

in the generation process, as detailed in section 2.3.3.

2.3.2 Discriminator’s Input

In BankGAN, mirroring the approach of CTGAN [32], each row of real data

is processed variable by variable, with each feature undergoing independent

encoding. These encoded features are then concatenated into a single vector,

which serves as the input for the discriminator. The output from the generator

is adjusted using specific activation functions, namely the tanh and softmax

functions, to ensure compatibility with the encoded real data, effectively gen-
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erating fake data samples for the discriminator’s evaluation. The activation

functions employed during training are the same as those used in the genera-

tion phase, as explained in subsection 2.3.3. The subsequent subsections will

elaborate on the encoding techniques employed for date, continuous, and cat-

egorical variables; the three distinct types of features identified in BankGAN.

Date Feature Encoding. For date-related variables, three encoding tech-

niques are explored: One-hot encoding, Clock encoding, and Radial Basis

Function (RBF) encoding.

• One-hot Encoding: For a temporal period, such as days of the week, with

n units (e.g., n = 7), each unit t (where t ∈ {0,1, . . . , n − 1}) is encoded

into an n-dimensional binary vector, with a 1 in the position of t and 0

for all others. This encoding approach is simple and clear but doesn’t

convey the continuity between units and struggles with large temporal

ranges due to increasing dimensions.

• Clock Encoding: For each temporal unit t, the clock encoding C(t) maps

t to a two-dimensional space [15]:

C(t) = [sin(2πt

n
) , cos(2πt

n
)] (2.1)

This encoding captures the inherent cyclical nature of time, preserving

the relationship between the end and start of a cycle, which is particu-

larly useful for patterns recurring over regular intervals.
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• RBF Encoding: The RBF encoding for each temporal unit t into a two-

dimensional space is given by1:

R(t) = [e−(min(∣ t
n−1
∣,1−∣ t

n−1
∣))

2

, e−(min(∣ t
n−1
−0.5∣,1−∣ t

n−1
−0.5∣))

2

] (2.2)

This transformation allows the model to capture the cyclical relationship

of the feature by mapping it onto two dimensions, where each dimension

reflects the closeness to a point in the cycle, represented by the two basis

functions.

Continuous and Categorical Feature Encoding. Continuous variables

use mode-specific normalization [32] from a Gaussian mixture model, repre-

senting each value as a value-mode pair.

G(τ) = [τ − µi

4σi

,one-hot(i)] where i = arg max
j

ρj(τ) (2.3)

where ρj(τ) represents the probability density of τ for the j-th mode of a

Gaussian mixture model, each with its own mean µj and standard deviation

σj. This encoding ensures that each continuous value is normalized relative to

the mode it most closely aligns with.

In the CTGAN model [32], the 1/4 scaling factor applied during the nor-

malization of continuous variables serves several potential purposes that align

with general practices in neural network training. This factor reduces each

1https://scikit-lego.netlify.app/ modules/sklego/preprocessing/repeatingbasis
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data point’s deviation to a quarter of its mode’s standard deviation, thereby

compressing the input data to within four standard deviations from the mean.

This compression likely aims to limit the range of input values to a narrower,

more manageable scale, which is crucial for stabilizing the training process of

the generative adversarial network. Such scaling can be particularly beneficial

in GANs, as it helps in mitigating the impact of outliers and ensuring that the

generator and discriminator networks focus on the most statistically significant

aspects of the data distribution. Although the specific rationale for choosing

the 1/4 factor is not detailed in the original CTGAN paper [32], it can be in-

ferred that this normalization technique aids in enhancing model convergence

and robustness by providing a consistent scale across different input features,

thus facilitating more effective learning dynamics within the GAN framework.

In addition to continuous feature encoding, categorical features undergo

one-hot encoding.

2.3.3 Synthetic Data Generation

The synthetic data generation process, illustrated in Figure 2.2, begins with

the generation of transaction code, Tcode, sequences using the transformer

model described later in this section. Each Tcode sequence is uniquely asso-

ciated with a specific bank customer’s account. To generate synthetic data

tailored to an individual customer, these Tcode sequences are fed into the
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Figure 2.2: Overview of the BankGAN Synthetic Data Generation Workflow. The process

begins with a trained Transformer that generates a sequence of transaction codes, Tcodes.

These are transformed into a conditional vector that, when combined with a noise vector,

feeds into the Generator. The output vector, V , is then decoded into transaction features,

yielding a synthetic dataset that mimics real transactional patterns.

trained generator in a sequential manner. They are combined with a noise

vector, sampled from a normal distribution. The output from the generator is

a multi-feature vector, denoted as V . In this vector, distinct segments are re-

sponsible for representing different data features. The raw outputs from these

segments are subsequently decoded through tailored processes for each seg-
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ment to construct the final synthetic dataset. The following is an explanation

of how the various segments of the vector, V , are decoded to represent distinct

data features in the synthetic dataset:

Continuous Decoder. The decoding process for the continuous variables

is the inverse of its encoding method as described in Equation 2.3. The Gaus-

sian distribution index i is identified by i = arg max(Softmax(Vcontinuous[1 ∶])).

The generated value is then tanh(Vcontinuous[0]) × 4 × σi + µi, where µi and σi

are the mean and standard deviation of the i-th Gaussian mode.

Tcode Decoder. The decoding process for the transaction code (Tcode) is

straightforward. First, the index i is determined by i = arg max(Softmax(VTcode)).

Then, the corresponding Tcode is extracted based on its original encoding

method.

Date Decoder. For a date feature represented by Vdate in the out-

put vector, we transform it into a probability vector pdate of dimension n,

where n corresponds to the total units in the date feature (e.g., n = 12

for months). The transformation method varies depending on which encod-

ing technique was used during training. For one-hot encoded date features,

pdate = Softmax(Vdate). For cyclical encoding, pdate is computed as:

pdate =
⎡⎢⎢⎢⎢⎣

1
d(t)

∑n−1
u=0

1
d(u)

⎤⎥⎥⎥⎥⎦

n−1

t=0

(2.4)

where d(t) is the squared distance between the cyclical encoding of unit t and

point pt, with pt = tanh(Vdate), and ϵ = 0.01 is a small constant for stability.

47



The distance d(t) is defined as:

d(t) =
2

∑
i=1

(E(t)i − pti + ϵ)2 (2.5)

with E(t) = C(t) from Equation 2.1 for clock encoding and E(t) =R(t) from

Equation 2.2 for RBF encoding. After calculating probability distributions

for each date component, we apply the Banksformer date mechanism [15] to

determine the probability of transaction dates. This is achieved with the

following formula [15]:

p(transaction date)∝ pmonth(m) × pDoM(d) × pDoW(w) × pDTME(e) × ptd(td)

(2.6)

where m, d, w, and e represent the values for month, day, day of the week,

and days to month end, respectively, for the transaction date. ptd is a normal

distribution with its mean as the decoded Vtd from the Continuous Decoder

and a fixed standard deviation. p(transaction date) is computed for ’max

days’ starting from the last transaction date, and the date with the highest

probability is selected for generating the transaction date.

Tcode Sequence generator. It is a decoder-only transformer, where a

fully connected embedding layer first transforms the input features, followed

by a positional encoding addition to incorporate sequence order information.

The core of the model consists of a decoder stack that applies multiple atten-

tion mechanisms. Outputs from the decoder are then passed through a final

dense layer. For the generator functionality of this model, drawing inspiration
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from Banksformer [15], a specific training and prediction strategy is adopted:

Specifically, metadata invariant across the dataset for each customer (e.g.,

customer’s age) is embedded as the initial element of the input sequence, en-

suring uniform feature dimensionality. During training, the model is designed

to forecast subsequent sequence elements based on prior ones. For predic-

tion, it employs an iterative approach, commencing with the metadata vector

and progressively appending the most recent output to the input sequence to

achieve the desired length.
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Chapter 3

Results

3.1 Hyperparameters

The Banksformer model adheres to the configurations outlined in its originat-

ing study, featuring fully connected layers each with 128 units, and employing

a dropout rate of 0.1. It is structured with four decoder layers, each equipped

with two attention heads. Training procedures specify a batch size of 64, span-

ning a maximum of 80 epochs, with an early stopping mechanism activated

if no improvement is observed over a span of 5 epochs. The optimization of

this model is facilitated by the Adam optimizer, utilizing its default parame-

ters.The StackedLSTM model adopts 128 units for its LSTM cells, maintain-

ing the same training regimen in terms of batch size, epoch count, and early

stopping criteria. It too leverages the Adam optimizer with default settings,
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ensuring consistency and efficiency in the training process of both models.

The BankGAN model introduces a nuanced variation in its transformer

configuration for generating Tcode sequences, aligning closely with the Banks-

former but adjusting the unit count in fully connected layers to 64, diverging

from the latter’s 128-unit specification. The fine-tuning of the generator’s and

discriminator’s hyperparameters in the BankGAN model emerged from exten-

sive experimentation aimed at achieving convergence between the Generator

and Discriminator. These experiments, detailed in Appendix A, led to a set

of optimal hyperparameters for BankGAN convergence. First let us describe

the hyperparameters in BankGAN:

• Embedding Dimension: This parameter defines the dimensionality of

the noise vector that’s fed into the generator.

• Generator Dimension (d1, d2, ...): This tuple determines the archi-

tecture of the generator’s fully connected layers. The length of the tuple

indicates how many layers the generator possesses, while each specific

value within the tuple denotes the number of neurons or units in that

particular layer. By varying these, one can experiment with the capacity

and complexity of the generator’s neural network.

• Discriminator Dimension (d1, d2, ...): Similar to the generator

dimension, this hyperparameter governs the architecture of the discrim-

inator.
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• Gradient Penalty Lambda: This value represents the weight or im-

portance of the gradient penalty in the discriminator’s loss function. The

gradient penalty is a technique used to stabilize the training of the GAN,

ensuring that the discriminator’s gradients are bounded and preventing

issues like mode collapse.

• Discriminator step: During the training process, the discriminator

may undergo multiple training iterations for each update of the gen-

erator. This hyperparameter defines the number of training iterations

allotted to the discriminator for each generator update. This aspect is

crucial as it helps in maintaining the balance between the discriminator

and generator during training, ensuring neither overpowers the other.

• PAC : In the context of the PAC discriminator, the PAC hyperparameter

denotes the number of datapoints grouped together in a single pack.

This parameter is crucial for training, influencing the discriminator’s

ability to effectively differentiate between real and synthetic data by

assessing them in pack rather than individually. Adjusting this value can

impact the granularity at which the discriminator analyzes data, thereby

affecting the training process and the model’s ultimate performance.

In the BankGAN model, the setup includes an embedding dimension of 100,

with the generator’s architecture defined by a dimension sequence of (256, 128),

and the discriminator’s dimension set as (128, 256). Data points are grouped
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into packs of 10 for the discriminator’s evaluation. Both the generator and

discriminator utilize the Adam optimizer, featuring a learning rate of 0.0002,

a decay rate of 0.000001, and beta values set at 0.5 for beta 1 and 0.9 for

beta 2. Training parameters are established with a batch size of 700 and a

training duration capped at 80 epochs.

3.2 Experimental Analysis

In our experimental analysis, we evaluate the effectiveness of BankGAN using

the Czech dataset and compare it with the StackedLSTM Autoencoder and

Banksformer [15]. All models employ Banksformer’s date mechanism [15] for

generating transaction dates, and are evaluated across three date encoding

methods (one-hot, clock, and RBF) as detailed in Section 2.3.2. Additionally,

we test the models without the date mechanism, focusing on three features:

transaction code (Tcode), transaction amount, and Time delta (Td), treating

the latter as continuous. Synthetic transaction dates are then derived by

assigning random start dates to each account and calculating subsequent dates

using the generated time deltas.

Experimental Setup All models were implemented using TensorFlow2,

with BanksFormer, StackedLSTM Autoencoder, and BankGAN containing

450k, 490k, and 320k trainable parameters, respectively. Experiments were

run on a system with a NVIDIA Quadro RTX 8000 GPU and 48 GB of RAM.
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Evaluation Metrics. We evaluate the effectiveness of BankGAN in terms

of the statistical similarity to the real data. Two metrics are used to quantify

the statistical similarity between real and synthetic data:

• The Jensen-Shannon Divergence (JSD) quantifies the difference between

the probability mass distributions of categorical features belonging to the

real and synthetic data. This metric is bounded between 0 and 1.

• The Wasserstein Distance (WD) quantifies the earth’s moving distance

on continuous features between real and synthetic data.

We assess our model’s performance by comparing feature distributions in syn-

thetic and real data, focusing on transaction codes (Tcode-JSD), transaction

amounts (Amount-WD), and the day of the month on which transactions occur

(Day-JSD). These comparisons gauge the models’ ability to replicate individ-

ual feature distributions independently. To evaluate the modeling of feature

interactions within the synthetic data, we examine the joint distribution of

transaction codes and transaction days (Tcode-Day-JSD) and analyze the dis-

tribution of monthly cash flow using WD (Cash Flow-WD). Monthly cash

flow, defined as the difference between credits and debits for a customer in a

month, reflects how well the model captures the interplay between transaction

type, amount, and timing. Additionally, the WD of time delta distributions

(Time delta-WD) helps assess how closely the transaction frequency behaviors

of customers in synthetic data mirror those in the real dataset. We further
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analyze 3-gram distributions of transaction codes (Tcode-3g-JSD) to evaluate

the model’s capability in capturing the sequence of transactions.

Method
Date Amt CF Td Tcode Day Tcode-3g Tcode-Day

Encoding WD WD WD JSD JSD JSD JSD

BankGAN

onehot 2627 8402 2.7 0.09 0.066 0.25 0.26

clock 2057 9542 0.73 0.09 0.06 0.25 0.26

rbf 2173 6332 1.6 0.09 0.09 0.25 0.32

None 1884 8472 1.01 0.09 0.11 0.25 0.37

StackedLSTM

onehot 3769 2500 2.86 0.089 0.13 0.29 0.25

clock 4277 3674 1.93 0.064 0.13 0.28 0.26

rbf 4039 2392 1.96 0.12 0.15 0.35 0.30

None 4376 2285 2.5 0.12 0.14 0.34 0.38

BanksFormer

onehot 5916 7162 6.1 0.17 0.028 0.42 0.21

clock 4236 4338 0.15 0.016 0.010 0.058 0.035

rbf 3383 3394 0.98 0.021 0.026 0.079 0.064

None 4931 5015 1.32 0.074 0.11 0.21 0.32

Table 3.1: The performance of BankGAN in comparison with StackedLSTM Autoencoder’s

and Banksformer’s performance, while using different mechanisms to represent date. ‘None’

means the model only uses time delta as a continuous variable.
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3.2.1 Assessing Date Encoding Techniques in Banks-

former, BankGAN, and StackedLSTM Models

Our analysis contrasts three date encoding strategies and their impacts on the

model performance, revealing notable variations across metrics. As shown in

Table 3.1, while using the Banksformer model [15], the clock encoding out-

performs in all metrics except for the Amount and Cash Flow. Similarly,

BankGAN benefits from clock encoding in all metrics except Cash Flow. In

the StackedLSTM, RBF encoding stands out for its proficiency in Cash Flow

metric yet falls short in Tcode, Tcode-3g, and Tcode-Day metrics. An analy-

sis between one-hot and clock encoding within StackedLSTM highlights clock

encoding’s marginal advantage in Time delta, Tcode, and Tcode-3g metrics,

while one-hot encoding prevails in Amount, Cash Flow, Day, and Tcode-Day.

Across the evaluated models, clock and RBF encodings surpass one-hot en-

coding in capturing the temporal dynamics of customer transaction behavior,

as indicated by Time delta distribution metrics. This highlights the effec-

tiveness of cyclical encoding in capturing temporal patterns. Moreover, clock

encoding consistently exceeds RBF encoding in all metrics except for Cash

Flow and Amount, establishing it as the superior method for further analysis.

Consequently, models utilizing clock encoding are selected for more in-depth

evaluation.

Inclusion/Exclusion Date Mechanism. In examining the effectiveness
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of the date mechanism derived from Banksformer [15], a comparison between

the optimal date encoding method for each model and the scenario where the

date mechanism is not utilized (‘None’ in Date encoding column of Table 3.1)

reveals distinct patterns across the models. For Banksformer [15], the ab-

sence of the date mechanism consistently leads to inferior performance across

all evaluated metrics, underscoring the mechanism’s crucial role in enhancing

model accuracy. For StackedLSTM, excluding the date mechanism generally

leads to worse performance compared to the clock encoding, except for Cash

Flow metrics. BankGAN demonstrates enhanced performance in metrics like

Amount and Cash Flow upon excluding the date mechanism; however, it per-

forms comparably or worse in other metrics. These outcomes suggest that

the inclusion of the date mechanism significantly contributes to capturing the

time patterns, and the overall accuracy of modeling both individual features

and their interactions.

In the overall evaluation of models utilizing clock encoding, as referenced

in Table 3.1, BankGAN outperforms StackedLSTM and Banksformer [15] in

capturing transaction Amount distribution, attributed to its mode specific nor-

malization technique, which contrasts with the single distribution assumption

of the other two models. Interestingly, BankGAN outperforms StackedLSTM

across nearly all metrics. This underscores the efficacy of incorporating a

sequential conditional vector within BankGAN’s architecture over the RNN-
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based approach. Despite these strengths, BankGAN does not surpass Banks-

former [15] across a broad range of metrics.

3.2.2 Comparative Analysis of Banksformer, BankGAN,

and StackedLSTM Models

In the evaluation of the three models, those utilizing clock encoding outper-

formed alternative encoding methods. Consequently, we specifically focused

on models incorporating clock encoding for an in-depth analysis. This exami-

nation not only compared the models’ abilities to generate synthetic data with

comprehensive transaction codes but also delved into their ability to replicate

recurring versus non-recurring transactions, which constitute approximately

58% and 42% of our dataset, respectively. Transactions were classified as re-

curring if they occurred regularly each month around the same date, and as

non-recurring otherwise. For the purpose of clarity and precision in transaction

classification, the following criteria are established:

1. Temporal Consistency: A transaction is considered recurring if it

occurs within a ±3 day window around a consistent date each month.

This range accommodates slight variations in transaction timing due to

weekends, holidays, or banking operations.

2. Frequency Threshold: A transaction must be observed for at least six

consecutive months to qualify as recurring. This threshold helps in dis-
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tinguishing genuinely regular transactions from those that are sporadic

or occasional.

Statistical similarities between synthetic and real data were then assessed

separately for recurring transactions and non-recurring transactions. This ap-

proach aims to pinpoint BankGAN’s specific areas of strength and weakness

in modeling transaction patterns.

3.2.2.1 Comparison of Univariate Distributions

In this section, we visually compare the performance of three models—BankGAN,

StackedLSTM, and Banksformer—across three distinct univariate distribu-

tions: transaction log amounts, monthly cash flows, and transaction code

(Tcode) distributions, validated using real data. Analyses are conducted for

the entire dataset and separately for subsets containing non-recurring and re-

curring transactions.

Entire Dataset. As depicted in Figure 3.1, while both BankGAN and

Banksformer exhibit proficiency in density estimation, BankGAN may have a

slight edge in mimicking the actual distribution closely. Although Banksformer

also performs well, the visual comparison suggests that BankGAN’s density

estimation aligns more closely with real data, particularly in capturing the

high-density areas. In the monthly cash flow distributions, the Banksformer

and StackedLSTM models show a sharp peak that closely mirrors the real
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data’s distribution, indicating effective simulation of typical cash flow val-

ues. BankGAN also replicates the real peak, but with slightly less accuracy

compared to Banksformer and StackedLSTM, suggesting a minor deviation in

capturing typical monthly cash flows. For the frequency distributions of trans-

action codes (Tcode), both BankGAN and StackedLSTM achieve moderate

accuracy. However, Banksformer demonstrates a better fit for the transaction

code (Tcode) distribution compared to the other two models, but still falls

short compared to the real data, indicating potential challenges in capturing

the full complexity of transaction types.

Figure 3.1: Comparison of models for all transactions.

Recurring Transactions. As Figure 3.2 shows, BankGAN excels in

replicating the real data’s patterns for recurring transactions, in transaction log
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amount and monthly cash flow. However, it exhibits a less accurate fit in Tcode

distribution, where Banksformer [15] demonstrates the closest resemblance to

the actual data. The accurate replication of recurring transactions is crucial for

financial models, as these patterns are indicative of stable customer behavior

and are essential for risk assessment. This underscores the significance of

BankGAN’s strengths in modeling these transaction types accurately.

Figure 3.2: Comparison of models for recurring transactions.
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Non-recurring Transactions. In the analysis of non-recurring trans-

actions (Figure 3.3), BankGAN’s synthetic data generation notably struggles

with Tcode distributions. The real data consists predominantly of debit trans-

actions, with a singular credit transaction category evident in the bar plots as

the second bar. BankGAN fails to replicate this credit transaction category,

resulting in exclusively negative cash flow values in the generated data, as

depicted in the cash flow distribution plot. While the peak log amounts are

comparably captured by BankGAN, the model introduces a pronounced tail

in the distribution that deviates from the actual data.

Figure 3.3: Comparison of models for non-recurring transactions.
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3.2.2.2 Comparative Analysis of PCA-Transformed Synthetic and

Real Datasets

In this section, we compare the distribution of synthetic data generated by

three distinct models against real data using Principal Component Analysis

(PCA).

Initially, we select relevant features for analysis: transaction codes (Tcodes),

transaction amounts, and time deltas between transactions. The next step in-

volves processing the real transaction data to obtain an aggregate view. The

transaction data, which is recorded on a per-transaction basis, is aggregated

at the account level by grouping the data by account id. This means that

for each unique account, the data is consolidated, and the mean (average)

value of each selected feature (Tcodes, transaction amounts, and time deltas)

is calculated. This includes transaction codes, which are presumably one-hot

encoded, transaction amounts, and time delta. This aggregation step reduces

the dataset from a list of individual transactions to a summary of average

transaction characteristics for each account. The purpose of this aggregation

is to simplify the dataset, making it easier to analyze and interpret by reduc-

ing noise and ensuring consistency across accounts. By transforming detailed

transaction data into a summary of average characteristics for each account, we

can more effectively identify patterns and differences in behavior, enhancing

the clarity and effectiveness of the analysis without the overwhelming detail
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of individual transactions.

The data is then standardized to ensure a fair comparison during PCA.

Standardization adjusts each feature so that it has a mean of zero and a

standard deviation of one. This standardization is crucial for PCA, which

relies on variance to determine the principal components. Standardizing the

data prevents any single feature from disproportionately influencing the results

due to its scale.

Following standardization, PCA is applied to the real dataset, yielding a

new set of orthogonal variables, the principal components, which systemati-

cally capture decreasing proportions of the data’s total variance. This transfor-

mation not only simplifies the data’s complexity by reducing its dimensionality

but also retains significant structural information, making it more amenable

to visualization and analysis.

The transformation derived from the real data is then consistently ap-

plied to various synthetic datasets. This procedure ensures that the real and

synthetic datasets are directly comparable, as they share the same scale and

dimensional framework.

The last step includes creating visual representations of these datasets in

the space defined by the principal components, utilizing kernel density esti-

mation plots for a continuous perspective. This method enables a thorough

examination of how well the models mimic actual data structures and trends.
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For this purpose, the distribution across the reduced-dimensionality space de-

lineated by the first two principal components (PC1 and PC2) is visualized.

To assess which model’s output is closest to the real data, we consider various

factors within the density plots. First, we examine the shape and topology,

evaluating how closely the overall shapes and the arrangements of the con-

tour lines in the generated plots align with those in the ’Real’ plot. Next, we

assess the density distribution by comparing how well the areas of dense con-

tour lines (indicating higher concentrations of data points) match between the

models and the real data in terms of both location and size. Lastly, we look

at the spread of the data, which is how well the extent or range covered by

the contour lines in the model-generated plots matches that of the real data.

By analyzing these aspects, we can determine which model best captures the

underlying structure and distribution of the real dataset.

Similar to the previous section, analyses are performed on the entire dataset

as well as on specific subsets categorized by non-recurring and recurring trans-

actions.

Entire Dataset. As shown in Figure 3.4, when comparing the models’

outputs to the real data in terms of shape and topology, the Banksformer

model stands out as having the closest resemblance. It effectively mirrors

the real data’s complex structure, with multiple peaks and valleys, although

it falls short in capturing the isolated data points present in the real dataset.
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Figure 3.4: PCA visualization of real data and synthetic data generated by the three models.

BankGAN also attempts to mimic the real data’s shape but lacks the precision

of Banksformer, particularly in replicating the isolated area. StackedLSTM,

on the other hand, shows a significant deviation, presenting a more linear and

elongated shape that strays far from the intricate design of the real data.

In assessing the density distribution, which examines the concentration and

placement of data points, the Banksformer model again proves to be superior.

It more accurately reflects the dense regions found in the real data, capturing

the essence of the data’s clustering. BankGAN provides a fair attempt but

does not offer the precision seen in Banksformer. StackedLSTM falls behind in

this category as well, with misplaced dense areas and a less accurate portrayal

of the real data’s clustering.

Regarding the spread of the data, which looks at the overall range and

distribution of the points, the Banksformer model again leads in replicating

the real data’s spread, although it does not perfectly capture the isolated areas

seen in the real plot. BankGAN offers a somewhat similar spread but does
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not fully align with the real data’s nuances. StackedLSTM displays a broader

and more linear spread, diverging significantly from the compact and varied

nature of the real data’s distribution.

Overall, the Banksformer model consistently provides the closest approxi-

mation to the real data across all evaluated aspects, including shape, topology,

density distribution, and spread, despite none of the models perfectly captur-

ing every characteristic of the real data.

Recurring Transactions. The PCA distribution of recurring transac-

tions is depicted in Figure 3.5. BankGAN seems to capture the general shape

of the data distribution but struggles with the nuances, such as the separation

between clusters and the exact shape of each cluster. This could indicate that

while BankGAN is somewhat effective in understanding the dataset’s global

structure, it may lack in capturing the finer, local details. StackedLSTM might

be capturing some linear relationships in the data but fails to model the more

complex, non-linear interactions. The significant deviation from the real data’s

distribution indicates that StackedLSTM might not be suitable for datasets

that exhibit complex, non-linear patterns or require the preservation of multi-

modal distributions. Banksformer appears to have a better grasp of the data’s

underlying structure compared to StackedLSTM but still falls short of com-

pletely capturing the real data’s complexity. It represents an improvement

in terms of understanding both linear and non-linear relationships within the
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data, although it still struggles with accurately defining the boundaries and

densities of different clusters.

Figure 3.5: PCA visualization of real data and synthetic data generated by the three models,

only focusing on recurring transactions.

Non-Recurring Transactions. As shown in Figure 3.6, the models ex-

hibit varying degrees of success in replicating the real data distribution of non-

recurring transactions. The BankGAN distribution is elongated and spans a

larger range on PC1 and PC2. Unlike the real data, it shows a single, stretched

cluster, indicating a different or more generalized data representation. The

StackedLSTM shows a very elongated, single cluster with a clear direction,

suggesting a significant variance along one principal axis. It differs from the

real data’s compact and separated clusters. The Banksformer distribution is

closer to the real data with distinct, although not completely separated, clus-

ters. However, it covers a broader area than the real data, indicating higher

variance within clusters.
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Figure 3.6: PCA visualization of real data and synthetic data generated by the three models,

only focusing on non-recurring transactions.

3.2.3 Privacy Preservability

Our analysis extends to assessing the privacy preservation capabilities of the

synthetic data generated by the models. We adopted a differentially private

version of each model, utilizing a modified training algorithm that employs

differentially private stochastic gradient descent (DP-SGD) [50]. This method

enhances privacy by clipping gradients and injecting noise into them. The

efficacy of differential privacy is quantified by two parameters: epsilon (ϵ)

and delta (δ), where lower ϵ values signify stronger privacy assurances, and

δ represents the likelihood of these assurances not being met [51]. For our

evaluation, we selected the optimal model variants employing clock encoding

from Table 3.1. The differential privacy parameters were set with δ = 10−5,

and ϵ values were calculated with the tools provided by the Tensorflow Pri-

vacy library1. The evaluation of synthetic data quality from models employing

1https://github.com/tensorflow/privacy
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Method
Differential Amt CF Td Tcode Day Tcode-3g Tcode-Day

Privacy WD WD WD JSD JSD JSD JSD

BankGAN
NO 2057 9542 0.73 0.09 0.06 0.25 0.26

YES(ϵ = 0.60) 2033 6703 0.8 0.09 0.06 0.25 0.25

Banksformer
NO 4236 4338 0.15 0.016 0.010 0.058 0.035

YES(ϵ = 1.16) 4918 5241 0.6 0.036 0.016 0.11 0.058

StackedLSTM
NO 4277 3674 1.96 0.064 0.15 0.28 0.26

YES(ϵ = 1.29) 4174 4226 10.25 0.035 0.15 0.24 0.21

Table 3.2: Performance comparison of BankGAN, Banksformer, and StackedLSTM with

and without differential privacy (DP).

differential privacy (DP) versus their original counterparts is summarized in

Table 3.2. In the Banksformer study [15], differential privacy (DP) degrades

data quality, but the StackedLSTM model under DP either matches or sur-

passes the original across most metrics, except for a notable decrease in Time

Delta, reflecting divergence from the original in its ability to replicate cus-

tomer transaction frequencies. BankGAN, with the lowest epsilon, improves

synthetic data quality in all aspects, barely affecting Time Delta, showing no

degradation in data quality. While adding privacy guarantees typically com-

promises performance [50], they can also serve as an effective regularization

mechanism and improve results [52], a phenomenon observed in BankGAN.

However, Adding DP to Banksformer degrades the quality of generated data,

it does so only to the level of the BankGAN generated data. It looks like the
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noise added by DP is similar in magnitude to the inherent generation noise of

BankGAN. That may be why these metrics are not significantly affected by

adding DP to BankGAN.

In conclusion, the robustness of our models, BankGAN, towards differential

privacy marks it as a promising candidate for future advancements in the field

of privacy-preserving synthetic data generation.
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Chapter 4

Discussion

4.1 Discussion & Future Work

Our experimentation highlights the effectiveness of BankGAN, which inte-

grates a date mechanism from Banksformer [15] and a sequential conditional

vector derived from transformer-generated sequences into a fully connected

conditional tabular GAN architecture. This fusion enables BankGAN to sur-

pass StackedLSTM, which is a sequence-specific model, on most metrics.

In our comparative analysis of BankGAN and Banksformer [15] , it becomes

evident that each model excels in different aspects of synthetic data generation.

Our exploration into differential privacy-enhanced variant of BankGAN reveals

a significant advancement in maintaining data utility while ensuring robust

privacy protections. Unlike Banksformer [15] , where the application of dif-
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ferential privacy techniques typically results in a degradation of performance,

the differential privacy-enhanced BankGAN either maintains or improves per-

formance across all metrics. This distinct characteristic of the BankGAN

model showcases its exceptional ability to balance data utility and privacy—a

critical requirement in the financial sector. The successful integration of dif-

ferential privacy without compromising data quality highlights the potential

of BankGAN to set a new benchmark for privacy-preserving synthetic data

generation in sensitive applications.

Additionally, BankGAN has demonstrated superior performance in gener-

ating transaction amount and cash flow values for recurring transactions. This

suggests that BankGAN can be particularly effective in scenarios where the

accuracy of simulating recurring transactions is critical.

However, BankGAN appears to have limitations in modeling time-based

patterns effectively, as indicated by its performance in capturing the time

delta(TD) distribution and the joint distribution of transaction code and

day(Tcode-Day). This observation points to potential weaknesses in the model’s

ability to handle non-recurring transactions and more complex temporal se-

quences.

Given these observations, BankGAN is highly effective in specific contexts,

particularly in generating high-quality data for recurring transactions. On

the other hand, Banksformer shows more robust performance in capturing the
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intricacies of time-based patterns, making it more suitable for applications

requiring detailed temporal analysis.

To enhance the utility of BankGAN, future enhancements should focus

on refining its ability to model sequences of non-recurring transactions. This

could involve improvements to the transaction code (Tcode) generator to pro-

duce more accurate and realistic sequences for non-recurring transactions.

Additionally, considering the bifurcation of BankGAN into two distinct mod-

els—one tailored for recurring and another for non-recurring transactions—could

allow for more specialized and accurate data generation, reflecting the unique

characteristics of each transaction type.

Moreover, the synthetic data generated by BankGAN could be utilized in

training machine learning models where real data is scarce or too sensitive

to use, such as in fraud detection algorithms. By training on both real and

synthetic data, these models could potentially achieve higher accuracy and

robustness.

The implications of the BankGAN model extend beyond the generation

of synthetic data for privacy preservation. In the financial sector, the ability

to replicate complex transaction patterns can enhance algorithm testing and

financial monitoring systems without compromising user confidentiality. Fur-

thermore, this model can be adapted for stress testing financial systems against

various economic scenarios by generating data under hypothetical conditions,
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thus providing insights into the resilience of financial institutions under po-

tential crises.

Future research could focus on improving the robustness and diversity of

the synthetic data generation by integrating multi-modal learning approaches,

which could help the model capture a broader range of patterns and nuances

in transaction data. Additionally, exploring hybrid models that combine the

strengths of GANs with other deep learning architectures could address some

of the training stability issues mentioned earlier.

Incorporating feedback loops from domain experts in finance to iteratively

refine the model’s output could also enhance the practical utility of the syn-

thetic data, ensuring that it meets the specific needs of financial institutions

more effectively.
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Appendix

Epoch-wise Generator Loss and Discriminator Loss in BankGAN

Experiments Training

In these experiments, we trained the BankGAN using different sets of hyper-

parameters to find ones that allow successful GAN convergence.

In the following plots, we define several key metrics to characterize the

performance and behavior of both the generator and the discriminator.

By plotting these terms we aim to characterize the performance and be-

havior of both the generator and the discriminator. Let us delve deeper into

each of these metrics to better understand their significance and the insights

they offer into the training dynamics of our GAN model:

• Discriminator Loss real (−D(x)) ∶ This term represents the average

score that the discriminator gives to real data samples. When we plot

it as is, a more negative value indicates that the discriminator assigns

higher scores (or values) to real samples. As the GAN training pro-

gresses, ideally, we want this value to be negative and become more neg-

ative, indicating that the discriminator is getting better at recognizing

and assigning higher scores to real data.

• Discriminator Loss fake (D(G(z))) ∶ This represents the average score

that the discriminator gives to fake data samples generated by the gen-
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erator. Initially, this value might be negative if the generator produces

poor samples, and the discriminator can easily distinguish them. How-

ever, as training progresses, the generator gets better, and D(G(z))

should increase. Ideally, upon convergence, this value should be close to

the Discriminator Loss real (without the negative sign) if the generator

produces realistic samples.

• Discriminator Loss ave (D(G(z)) −D(x) +Gradient penalty) ∶ This

is the overall loss for the discriminator, including the gradient penalty

to ensure the 1-Lipschitz continuity. The gradient penalty is crucial for

the theoretical properties of WGANs to hold and prevents mode collapse

and vanishing/exploding gradients. As the GAN converges, the value of

D(G(z))−D(x) should be close to 0, meaning the discriminator finds it

equally challenging to differentiate between real and fake samples.

• Generator Loss (−D(G(z)) +CrossEntropy): Initially, as the gener-

ator might produce samples that are easy for the discriminator to dis-

tinguish as fake, the generator loss might be relatively high (in terms of

absolute value). However, as the generator improves and starts produc-

ing more realistic samples, the value of this loss should decrease. The

reason being that the discriminator would find it harder to distinguish

the fake samples from real, hence it gives them a higher score.

The table below lists the hyperparameters used in various experiments, accom-
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panied by plots showing the generator and discriminator loss at each epoch

for each experiment. It’s evident from Experiment v4 that the GAN model

has successfully converged.

Emb Dim Gen Dim Disc Dim GP Lambda Disc Step pac

Experiment 1 100 (256,128) (128,256) 10 1 10

Experiment 2 100 (256,128) (128,256) 10 3 10

Experiment 3 128 (256,256) (256,256) 10 1 10

Experiment 4 100 (256,128) (128,256) 1 1 10

Experiment 5 100 (256,128) (128,256) 0.1 1 10

Experiment 6 128 (256,256) (256,256) 1 1 10

Figure 1: Experiment1
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Figure 2: Experiment2

Figure 3: Experiment3
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Figure 4: Experiment4

Figure 5: Experiment5
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Figure 6: Experiment6
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