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Abstract 

The evolution of autonomous ships marks a significant stride in maritime operations, promising 

applications across a wide range of industries. These innovations enhance shipping and marine 

operations by improving safety through the reduction of human error and by enhancing the 

quality of life for mariners by alleviating tedious or difficult workloads. Whether in commercial 

shipping, passenger transport, or scientific research, autonomous ships are set to revolutionize 

the way we navigate the seas, making maritime activities more efficient and safer. Central to 

advancing this domain is the precise trajectory tracking of Autonomous Surface Vessels (ASVs), 

which is vital for their safe and efficient navigation. It is simultaneously required to operate 

within specified timeframes while adhering to maritime regulations and safely maneuvering 

amidst dynamic marine conditions such as waves, currents, and winds, which pose formidable 

technical challenges to autonomous trajectory tracking. 

Presently, both model-based and data-driven controllers are pivotal in navigating Autonomous 

Vessels, emphasizing the critical need for accuracy and reliability in trajectory following. 

However, achieving precise trajectory tracking under real-world conditions remains intricate due 

to varying ship dynamics and environmental disturbances, necessitating tailored controller 

designs. 

In this study, our principal aim is to develop a controller that comprehensively addresses these 

challenges while upholding safety constraints. We leverage Nonlinear Model Predictive Control 

(NMPC) for its suitability in handling nonlinear ship models, accommodating unmodeled 

dynamics, managing diverse constraints, and ensuring course stability amidst multivariable 
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systems. An Unscented Kalman Filter (UKF) is integrated with NMPC to mitigate wave-induced 

disturbances and enhance robustness. 

Our NMPC controller with UKF, implemented with mechanistic and Neural Network (NN) ship 

models, is evaluated through trajectory tracking simulations and experimental trials using the 

Magne Viking ship model at the National Research Council (NRC) in Canada. Incorporating an 

Artificial Neural Network captures intricate ship dynamics, exhibiting promising results in 

simulations and practical experiments. We compare the performances of mechanistic and NN 

models to validate their efficacy, proposing further enhancements through deep neural network 

training with natural data. 

Integrating NMPC with neural network structures represents a core aspect of this research, 

aiming to advance autonomous ship trajectory tracking capabilities in real-world scenarios. 
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Chapter 1 

1.0 Introduction 

1.1 Background and motivation  

An autonomous ship, also known as an un-crewed ship or autonomous vessel, is a type of 

watercraft that can at least partially operate and navigate without human intervention or with 

minimal human supervision. These vessels use various technologies, including sensors, cameras, 

radar, GPS, artificial intelligence, and advanced control systems to perform the tasks usually 

carried out by the ship crews. The concept of autonomous ships is similar to that of more 

established autonomous vehicles, such as self-driving cars and aerial drones, but applied to the 

maritime industry. Autonomous ships have the potential to revolutionize various aspects of 

maritime transportation and operations, offering benefits such as increased safety, reduced 

operational costs, improved efficiency, and the ability to operate in challenging or hazardous 

conditions without risking human lives. The maritime industry is highly interested into the 

potential integration of Autonomous Surface Vessels (ASVs) into its operation. As an example, 

Rolls-Royce stated in their 2017 announcement that they will be introducing a fully autonomous 

surface vessel within 2035 [1]. 

Ensuring that a ship follows a predefined trajectory is essential for safe navigation. The ship can 

avoid collisions with other vessels, obstacles, and navigational hazards by adhering to a planned 

path. This is especially critical in busy waterways and areas with heavy maritime traffic. 

Depending on the ship's mission or objectives, it may need to follow specific trajectories for 

scientific research, data collection, military operations, or other specialized tasks. Trajectory 

tracking allows the ship to meet these mission-specific requirements.  
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Figure 1-1: Conceptual overview of an Autonomous Ship's Core Systems 

Advanced control systems are responsible for the autonomous operation of the ship, including 

making decisions about navigation, route planning, collision avoidance, and responding to 

various situations and environmental conditions. The goal is to allow these vessels to navigate, 

make decisions, and respond to the environment with a high degree of autonomy and safety.  

Trajectory tracking involves following a predefined path or trajectory with precision. Advanced 

control systems use sophisticated algorithms to calculate the optimal control inputs, such as 

steering and throttle, needed to maintain the ship on the desired trajectory. The marine 

environment is dynamic, with factors like wind, waves, currents, and tides affecting a ship's 

movement. An advanced control system can continuously analyze sensor data and make real-

time adjustments to ensure that the ship stays on course, accounting for these environmental 

variations.  
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In addition to staying on course, advanced control systems can optimize the ship's trajectory for 

various factors, such as fuel efficiency, speed, or avoiding adverse weather conditions. Several 

hurdles must be surmounted before fully operational autonomous ships become a reality. These 

challenges include automatic path planning, navigation and trajectory tracking, cooperation with 

other vessels, power and energy management, fault detection, isolation, and reconfiguration. To 

tackle these obstacles, academia and the maritime industry have been actively conducting 

research efforts, with ongoing endeavors to find viable solutions. In [2], [3] an adaptive approach 

is proposed to govern an autonomous vessel's movement and path tracking. This method 

incorporates neural networks to estimate the propeller dynamics and manage uncertainties 

related to hydrodynamics. The [4], [5], [3] introduces a Nonlinear Model Predictive Control 

(NMPC) approach designed to precisely track position and velocity in surface vessels.  

Our research focussed on building an advanced controller for the autonomous ship maneuvering. 

Advanced control systems ensure that autonomous ships can accurately follow predefined 

trajectories while adapting to changing environmental conditions and maintaining safety. These 

systems rely on sophisticated algorithms, sensor fusion, and real-time data processing for precise 

trajectory tracking in complex maritime environments. In our study, we employed NMPC using 

two distinct models—Mechanistic and Neural Network of the Magne Viking Ship model. These 

controllers’ trajectory tracking performances were evaluated in both simulations, and a 

controlled experimental setup at the National Research Council Canada. 

Controlling vessel motion has been a challenging task due to the intricate and nonlinear 

dynamics of vessels, along with the influence of changing environmental disturbances. As a 

result, it has drawn significant attention in the field. Despite numerous research endeavors, 

implementing adaptive control strategies within the maritime sector remains in its early stages of 
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development. Most research was limited to the simulation works and focused on the one working 

model. Thus, comparing the performance of the different working models of the ship needed to 

be clarified. The previous research works were neither implemented on the complex trajectories 

nor on the trajectories required to follow tight radius. Including the intricacies of a complex 

trajectory in the simulation and the experiments are necessary. Previous works did not meet the 

challenges posed by the tight radius trajectories which are characterized by demanding turning 

paths. It requires a high level of control precision to get a successful tracking performance in the 

experiments for these trajectories. Also as mentioned above, majority of the studies were 

predominantly centered around simulation studies, for example, a mathematical model integrated 

with a model predictive controller. This limitations in studies have led to a gap in understanding 

the efficiency of different control strategies for maneuvering.  

 

1.2 Aim and Objective  

The primary goal of this thesis is to develop a Nonlinear Model Predictive Controller 

(NMPC) for Autonomous Surface Vehicles (ASVs). This controller should possess the 

capability to adapt to various model structures effectively, ensuring accurate trajectory 

predictions. To achieve this, we utilized both mechanistic models and Neural Network 

models that integrate with the NMPC. 

The research objectives for this work are outlined as follows: 

 Develop a NMPC controller for tracking ship trajectories, capable of adapting to 

any ship model. The controller should provide precise trajectory tracking and 

consistently meet the desired accuracy requirements. 
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 Create a Feedforward Neural Network-based ship model capable of capturing 

unmodeled ship dynamics in a mechanistic ship model. 

 Assess the NMPC controller's performance by testing it with complex trajectories 

using mechanistic, neural network ship models in both simulation and real-life 

experimental setup at the NRC Canada facilities.  

 Evaluate the controller's applicability in real-life scenarios through 

experimentation, with a focus on its potential implementation in actual maritime 

operations. 

 

1.3 Thesis Structure 

In this thesis, the research focuses on the application of NMPC for the trajectory tracking of 

ships. The investigation is carried out through simulation and real-life experiments conducted at 

the National Research Council Canada (NRC). To achieve the research objectives, several 

critical research tools and methodologies have been employed, primarily based on MATLAB. 

Chapter 1 of the thesis sets ground for the research providing the background and the underlying 

motivations and delineates the research objectives. This chapter further provides an overview of 

the research issue that forms the focal point of this thesis. 

Chapter 2 of the thesis provides a comprehensive literature review. This phase involves an in-

depth analysis of existing literature, case studies, and scholarly work related to ship trajectory 

tracking and NMPC. The insights gained from this review inform the selection of appropriate 

models, methodologies, and tools for the subsequent chapters. 
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In Chapter 3, the primary focus is on the development and evaluation of the NMPC controller 

and the use of mechanistic model. The research tools and methodologies employed in this 

chapter include: 

NMPC Optimization: MATLAB-based fmincon is utilized for NMPC optimization. This tool 

enables the fine-tuning of the controller parameters to achieve precise trajectory tracking. 

Mechanistic Model: A mechanistic model is developed to describe the ship's dynamics. This 

model forms the basis for the control system and trajectory prediction. 

Simulation and real-life experiments: The expected outcomes from Chapter 3 include 

simulation results that demonstrate the performance of the NMPC controller in the presence of 

wave as an environmental disturbance. For states estimations and wave filtering an Unscented 

Kalman Filter (UKF) is employed. The real-life experiment results at NRC Canada using the 

mechanistic model are also presented here in this chapter. The performance of the controller in 

simulation and real-life environment is also analyzed.  

Chapter 4 represents the culmination of the research efforts, where the NMPC controller is tested 

in a real-life experimental setup at NRC Canada with different ship models. This phase involves 

the use of the established tools and models in a practical maritime environment. The primary 

research tools used in this chapter include: 

Feedforward Neural Network Model: Utilizing MATLAB's deep learning toolbox, a 

Feedforward Neural Network (FFNN) model is constructed. This neural network captures some 

of the difficult to model system dynamics that are neglected in the mechanistic model. 

Real-Life Experiments: Actual vessel experiments are conducted to validate the NMPC 

controller's performance under real-world conditions with the three different ship models, 

providing insights into the effectiveness of each model in trajectory tracking. 
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Data Collection and Analysis: Data collected during experiments are analyzed to assess the 

accuracy of trajectory tracking and the controller's adaptability to environmental factors. 

Evaluating the NMPC controller's effectiveness through simulations and a practical maritime 

scenario demonstrates its potential for real-world applications.  

Chapter 5 provides a brief recapitulation of the thesis's main attributes. Additionally, within this 

chapter, a set of recommendations for potential future research endeavors is presented. 

In summary, this thesis employs a combination of MATLAB-based optimization, deep learning 

tools, and real-life experimentation to investigate the application of NMPC in ship trajectory 

tracking. The outcomes include improved trajectory tracking performance and insights into the 

adaptability and effectiveness of various ship models in both simulated and real-life settings. 
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Chapter 2 

 
2.0 Literature Review 

 

 

Trajectory tracking is a fundamental and critical aspect of autonomous maritime operations, as it 

directly influences the vessel's ability to navigate accurately, efficiently, and safely. Trajectory 

tracking involves precisely following a predefined path or trajectory by a vessel, ensuring it 

adheres to its intended route. In this context, a path refers to a series of waypoints or coordinates 

that outline the desired route the vessel should follow. At the same time, a trajectory includes not 

only the path but also the dynamic aspects of navigation, such as speed and timing at each 

waypoint. Trajectory tracking involves precisely following this predefined trajectory by a vessel, 

ensuring it adheres to its intended route in both spatial and temporal dimensions. This capability 

is essential for maritime applications, such as cargo transportation, scientific research, offshore 

operations, and defense. Accurate trajectory tracking is pivotal for safe navigation and avoiding 

collisions with other vessels or obstacles, especially in congested maritime environments. The 

importance of an advanced control system for the trajectory tracking of a ship cannot be 

overstated, and it is crucial for various reasons. The foremost importance of advanced control 

systems in trajectory tracking lies in their role in ensuring the safety of ships and the maritime 

environment. These systems are instrumental in making real-time adjustments to the ship's 

course and speed to prevent collisions with other vessels, obstacles, and navigational hazards, 

reducing the risk of accidents and protecting lives and property. 

2.1 Trajectory Tracking of Autonomous Surface Vessels 

Autonomous Surface Vessels (ASVs) have become a focal point of interest within the realm of 

control theory and engineering due to the immense commercial and military importance. The 
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commercial applications of ASVs are evident in their contributions to oceanographic data 

collection, resource exploration, construction, hydrographic and environmental surveys. ASVs 

also play a crucial role in shipping and marine operations, including offshore transfers, ice 

clearing, and refueling. Meanwhile, their military roles encompass intelligence, surveillance, 

reconnaissance, mine countermeasures, and antisubmarine warfare [6]. Summarized in [7], the 

functions of ASVs are primarily categorized into three key areas: Dynamic Positioning (DP), 

path-following, and trajectory tracking. A DP system, in its essence, manages the control of an 

ASV during fully actuated, low-speed operations. DP system’s primary objective is maintaining 

the ASV's position and heading at a fixed point or a designated waypoint along a track despite of 

disturbances. Notable applications of DP include pipeline laying and oil/gas exploration. Recent 

DP research endeavors have addressed model uncertainties and disturbances intrinsic to ASV 

systems, aiming to enhance control performance [8], [9]. The pursuit of path-following control 

revolves around guiding the ASV along a predefined route with a suitable speed profile. In 

scenarios where ASVs operate at high speeds, most lack direct actuation in the sway direction 

[1]. Consequently, the foremost challenge in path-following control pertains to the 

underactuation of ASVs. In this configuration the degrees of freedom were higher than the 

control vector’s dimensions.  This challenge has been effectively met by employing 

methodologies such as backstepping and Lyapunov's direct approach where the lateral position 

of the ship (sway direction) cannot be directly controlled because of the under actuation.  [10]. 

The backstepping method was used to stabilize the nonlinear systems by decomposing the 

system in a series of interconnected small subsystems. Trajectory tracking involves an ASV's 

precise following of a spatial and temporal trajectory, with strict timing requirements. This is 

particularly vital in offshore applications, ensuring safe navigation, emission reduction, and 
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energy conservation [11]. Distinct from path-following, trajectory tracking necessitates 

incorporating a specific speed control law, alongside the steering control law. 

 

2.2 Controllers for Trajectory Tracking  

Robust control methods ([12],[13],[14]) aim to make a ship's position error very close to zero 

where they have used composite nonlinear feedback path following controllers and Lyapunov 

method and finite time leader follower formation. However, they cannot precisely determine how 

close it gets, which affects how accurately the ship follows its path. Some methods achieve a 

specific level of accuracy or get very close to zero, but they take a very long time to do so using 

adaptive finite time fault tolerant controller [15]. Others are quicker ([16], [17]) where motion 

planning was used. But in this case, they needed to be more precise to predict how long it will 

take to converge. Also, they depend on initial conditions and unknown factors like control limits 

or uncertainties in the ship's model. In simple terms, the challenge of making a ship follow its 

path very accurately within a fixed and known time frame is still a problem that still needs to be 

fully solved, even though it is crucial in marine control. Advanced control systems are pivotal in 

ensuring the safety, precision, and efficiency of trajectory tracking in ships and the maritime 

environment. They are instrumental in making real-time adjustments to prevent collisions, 

protect lives and property, and optimize trajectories for cost savings and reduced environmental 

impact. These systems can adapt to dynamic environmental conditions, ensuring ships stay on 

course while offering redundancy and fail-safes for continued operation during system failures. 

Additionally, they help vessels comply with maritime regulations, promote predictability for 

safer navigation, and can be customized to meet specific mission requirements, whether in 

research, military operations, or other specialized tasks. 
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2.2.1 Most used control methods for trajectory tracking  

It is imperative to employ a suitable tracking controller alongside specific control methodologies 

to ensure both robust tracking performance and vehicle stability based on the chosen model. 

Over the years, extensive research has yielded many control methods tailored for the trajectory 

tracking of autonomous vehicles. This section presents some of the most widely employed 

techniques, complemented by cutting-edge research findings. Furthermore, we delve into various 

optimization strategies to mitigate the identified weaknesses and further enhance performance 

[59]. 

 

 

PID controller  

The PID controller, a linear feedback control system, is extensively used in autonomous vehicles 

for its straightforward design. Notably, it offers ease of operation and adjustment while 

maintaining a degree of robustness. A significant advantage lies in its independence from precise 

knowledge of mathematical models or the specific plant, setting it apart from other controllers. 

This feature enhances its broad applicability across diverse applications, as highlighted in the 

work of [18]. However, vehicles equipped with a PID (Proportional-Integral-Derivative) 

controller tend to exhibit subpar performance when they commence their operations from 

varying initial conditions, as observed by [19]. In response to this issue, [20] introduced a fuzzy 

PID controller designed to address this challenge. This novel controller not only adapts 

effectively to diverse starting conditions but also offers the benefit of faster convergence without 

the presence of steady-state tracking errors. However, the inherent linearity of traditional PID 
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controllers introduces certain complexities when dynamically adjusting PID control gains in real-

time.  

 

Fuzzy Logic Controller  

To address this issue, a proposed controller based on fuzzy logic principles offers a promising 

solution. Fuzzy controllers excel in scenarios where a complete mathematical model is 

unavailable, thanks to their adaptability and approximate reasoning capabilities. Furthermore, 

fuzzy logic is adept at handling imprecise and uncertain circumstances, making it a suitable 

choice. Fuzzy logic controllers exhibit excellent convergence to reference paths, ensuring safe 

and smooth autonomous driving. Additionally, these controllers offer real-time operation, 

enhancing computational efficiency, as emphasized by [21]. Consequently, the application of 

fuzzy-logic-based steering control in autonomous vehicles benefits from these advantages. We 

can find relevant fuzzy controllers in the studies by [22]. However, it's important to note some 

limitations of the fuzzy-logic-based controller. One such limitation is an increased tendency for 

steering command oscillations, as observed by [23]. Moreover, establishing the stability and 

performance analysis of these controllers can be challenging. 

 

Sliding Mode Controller  

Sliding mode control (SMC) techniques are widely employed in the field of nonlinear control 

systems due to their distinctive attributes. SMC offers remarkable performance against parameter 

uncertainties, disturbances arising from pronounced nonlinearity, external disruptions, and the 

intricate operating conditions encountered by autonomous vehicles, as demonstrated in the works 
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in [24]. Furthermore, the SMC controller facilitates swift convergence of the vehicle to its 

intended path, as evidenced in the work of [25]. 

SMC boasts several advantages, including rapid response, insensitivity to variations in 

parameters and disturbances, and straightforward physical implementation, among others. 

Moreover, SMC can be effectively combined with other control algorithms to address each 

other's limitations, as highlighted by [26]. But SMC's practical utilization in vehicles presents 

certain challenges. The need for continuous linearization to maintain controlled variables close to 

the reference path, as discussed by [27], poses a significant hurdle. Additionally, when 

employing the SMC approach for trajectory tracking, it can result in substantial lateral 

acceleration, particularly in scenarios involving rapid changes in the curvature of the reference 

path, such as in a severe double lane change scenario, as pointed out in [28]. 

 

Model Predictive Controller  

 

Model predictive control (MPC) is a powerful state feedback controller. It leverages the 

mathematical model of vehicles to anticipate their future behavior within a limited forecast 

horizon, MPC demonstrates exceptional aptitude in addressing control issues involving uncertain 

and nonlinear systems, largely due to its inherent capabilities. Given the significance of 

constraints in autonomous vehicle operation, MPC plays a crucial role in maintaining vital limits, 

such as rollover prevention, slip control, and lateral stability. Its constraint-handling capacity has 

made MPC the preferred algorithm for managing scenarios that push the boundaries of vehicle 

dynamics. For instance, [29] successfully resolved the challenge of adhering to tire-road friction 

limits using an MPC controller. 

Furthermore, MPC excels at managing multi-input and multi-output (MIMO) systems with 

intricate input-output interactions, a task that often proves challenging for PID controllers. 
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Additionally, MPC is regarded as an evolution of optimal control strategies. It solves an 

optimization problem, involving cost functions, to determine inputs that meet desired objectives 

and constraints over a specified time horizon at each time step, as outlined in the works of [30] 

and [31]. Given these advantages, MPC emerges as a natural choice for trajectory tracking 

control in autonomous vehicles, capable of computing optimal solutions while accommodating 

both soft and hard constraints. 

In a broader context, MPC can be categorized into linear MPC (LMPC), nonlinear MPC 

(NMPC), adaptive MPC, and robust MPC. LMPC excels at tracking fixed operating points 

attainable with a linear model, as described by [30]. However, LMPC relies on predictions based 

on a linear time-invariant (LTI) model, making it more sensitive to prediction errors. As a result, 

its tracking performance deteriorates in the presence of strong nonlinearity, given the 

degradation in LTI prediction accuracy, a point emphasized by [32]. On the other hand, NMPC 

employs cost functions and nonlinear mathematical plant models to compute optimized inputs 

while adhering to specified constraints, making it especially well-suited for handling the high 

degree of nonlinearity inherent in dynamic vehicle models. Despite its advantages, a significant 

limitation of MPC, in general, is its difficulty in implementation. Solving the optimization 

problems in MPC often requires significant computational effort and the solution of complex 

functions with numerous local minima. This computational complexity can make real-time 

implementation challenging, particularly for systems with fast dynamics or limited 

computational resources. 

 

2.3 Models for NMPC  
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To enclose a broader spectrum of working models with NMPC for the complex trajectories we 

have used the mechanistic, Feed Forward Neural Network (FNN) and hybrid model. The FNN is 

discussed in this chapter. The latter two models will be discussed in the Chapters 3 and 4.  

Artificial neural networks are robust when solving complex problems that involve non-linear 

relationships and the manipulation of multiple parameters. Their ability to learn from data and 

adapt to various tasks makes them a versatile and widely used technology in machine learning 

and artificial intelligence. An artificial neural network (ANN), often referred to as a neural 

network (NN), employs interconnected mathematical nodes or neurons to construct a network 

capable of representing intricate functional relationships. This technique is especially well-suited 

for addressing problems that entail the manipulation of numerous parameters and non-linear 

interpolation. Consequently, it offers an effective solution for scenarios where traditional 

theoretical and mathematical methods may fall short [33]. To create a high-performing neural 

network, having a substantial amount of experimental data is crucial. Throughout the training 

and testing phases, it is essential to fine-tune the network's structure, learning algorithm, and 

various parameters to align with the specific problem being studied. Once the neural network is 

finely tuned and trained on this data, it becomes capable of yielding favorable results when 

provided with new input data, even if it hasn't encountered it before. The Figure 2-1 shows the 

fundamental concept of Neural Network [34]. Artificial Neural Networks (ANNs) are the models 

inspired by the functioning of human neural networks. They aim to process and make sense of 

vast and intricate datasets. ANNs accomplish this by leveraging mathematical connections 

between their constituent processing units, collectively forming the network's architecture. 

Through this interconnection, ANNs have the capability to categorize data by assigning 

numerical weight values to each input, enabling the analysis and classification of cases [35]. 
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ANNs excel at recognizing and learning complex patterns in data. In the context of autonomous 

ships, various factors like  

 

 

Figure 2-1: Workflow Diagram of Artificial Neural Network Algorithm 

 

ocean currents, weather conditions, other vessels, and navigation regulations contribute to 

trajectory planning. ANNs can analyze historical data and adapt to these intricate patterns. 

 

2.3.1Feedforward neural network model for NMPC 

 

Artificial Neural Networks (ANNs) combined with NMPC can offer a powerful and flexible 

solution for various application. Potentially it can outperform the control strategies based on 

mechanistic models. ANNs can approximate complex, nonlinear systems more accurately than 

traditional linear models. By using ANNs to represent the dynamic system, NMPC can account 

for intricate and time-varying system behaviors, making it a suitable choice for systems where 

linear models may be inadequate. ANNs can enhance the predictive accuracy of NMPC by 
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capturing system dynamics and disturbances effectively. This leads to more precise future state 

predictions, enabling better control decisions. As the system evolves or faces unmodeled 

variations, ANNs can adjust their predictions, allowing NMPC to maintain high performance and 

robustness. The flexibility of Neural Network based models allows for encoding and handling 

various constraints, including state bounds, input constraints, and safety constraints, which is 

essential in many control applications. It can also reduce the computation cost associated with 

the NMPC optimization problem solving. The combination of Artificial Neural Network and 

NMPC can lead to suitable operation in real time environment where fast control responses are 

necessary, such as robotics, autonomous vehicles, and process controls. By handling the system 

uncertainty and measurement noise the neural network model can create a robust NMPC 

controller. The neural network model can handle multi-objective optimization for NMPC, such 

as tracking the reference trajectory as well as minimizing the energy consumption. In some 

cases, the neural network can continuously the update the model based on the recent data which 

in turns improves the control performance. In recent research, learning based solutions for 

modelling the non-linear behaviour of autonomous vehicles have been proposed ([36] ,[37],[38]). 

Artificial Neural Networks (ANNs) models are very useful in the field of ship control due to 

their ability to model and provide effective solutions for various nonlinear systems in predictable 

situations [39].  

The early research involved using ship position, course, and speed as inputs in the neural 

network and the controller provided the following outputs, rudder angle and propeller speed. A 

minimum-time ship maneuvering method utilizing a neural network controller and model 

predictive compensator was introduced by. An artificial neural network was used for real-time 

control by interpolating pre-calculated minimum time solutions [40]. These solutions, however, 
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did not consider environmental disturbances and they did not maintain consistent training data. 

The controller proposed in [42], adaptive backstepping based controller was proposed which can 

move slowly at wind disturbances. But at this point the longitudinal velocity of the ship was 

considered zero. A study in [43], used a feedforward neural network along Proportional -

Derivative (PD) controller. It was difficult work with PD controllers for multivariate systems. 

While exploring the literature, applications of neural networks (NN) for vessel control in the 

maritime domain appeared to be a relatively under-explored area. So, to overcome these 

problems a precisely trained neural network is used along with NMPC in this paper’s chapter 4.  

 

2.4 Use of Filters in Ship Control    
 

Wave filtering is a vital component in trajectory tracking control systems, directly impacting the 

performance of the final control system.  Effectively controlling a vessel's position and heading 

presents a unique challenge in dynamic sea states. While intuitively, reacting to every wave 

disturbance might seem desirable, there are compelling reasons why this approach could be more 

practical. Continuously adjusting course corrections to counter high-frequency wave motions 

would be incredibly energy-intensive. Ships, huge ones, have inherent inertia. They can't react 

instantaneously to high-frequency wave disturbances. Trying to do so would result in jerky, 

unstable motions, potentially compromising safety and maneuverability. This is where wave 

filtering comes in. It acts like an intelligent separator, isolating the high-frequency wave 

disturbances from other, lower-frequency control signals. The control system focuses on these 

slower signals, allowing the ship to respond to critical factors like currents, wind, and the desired 

course. 
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The Extended Kalman Filter (EKF) is a widely adopted method in numerous nonlinear 

estimation and machine learning scenarios. Its applications perform tasks such as estimating the 

state of nonlinear dynamic systems, determining parameters for identifying nonlinear systems, 

and engaging in dual estimation (e.g., using the Expectation Maximization (EM) algorithm) 

where both states and parameters are simultaneously estimated.  

In [62] researchers use EKF and Particle Filter-based sensor fusion algorithms to address 

dynamic ship positioning. The proposed method combines onboard sensor measurements of a 

ship’s position and heading with distance data from coastal sensors (e.g., radar) to accurately 

estimate the ship’s state vector. The offshore autonomous industry widely uses Kalman Filter for 

velocity estimation and wave filtering. The article in [57] explores vessel response models for 

Kalman filter design, touching on parameter and noise covariance estimation for filter tuning. 

The provided case study demonstrates the application of Kalman filters in ship autopilots, 

aligning with contemporary offshore industry practices. The EKF was also utilized in 

Autonomous Underwater Vessel’s tracking [63]. In this proposed method the EKF is employed 

to handle uncertainties in localization and ocean currents. The Extended Kalman Filter is 

suggested as an adaptive algorithm in [64] for estimating position, velocity, and acceleration. 

This estimation is crucial for predicting the trajectory of maneuvering ocean vessels. This paper 

in [66] introduces globally asymptotically stable time-varying kinematic filters for estimating 

linear motion quantities (position, linear velocity, and acceleration) in three dimensions for 

mobile platforms. The filters, derived from Kalman and optimal filters for linear time-varying 

systems, provide explicit optimal filtering solutions through coordinate transformations. 

The EKF linearizing the system locally and uses the linear system for predicting the system 

states. However, this simplification can lead to significant errors in the predictions, resulting in 
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less accurate results and, in some cases, filter failures. The EKF leverages the well-established 

Kalman Filter framework, which operates efficiently with linear systems. The problem arises 

when dealing with highly nonlinear systems. In these cases, the actual system behavior can 

deviate significantly from the linearized model, mainly when operating away from the chosen 

linearization point. In extreme scenarios, the linearization error can accumulate over time. These 

accumulating errors can cause the EKF's state estimates to diverge significantly from the true 

system state. 

The Unscented Kalman Filter (UKF) offers a solution to this problem by using a different 

approach. It approximates the distribution of the states by choosing a small number of specific 

points within that distribution. These carefully selected points, called sigma points, are passed 

through the nonlinear system, they provide more accurate predictions up to the third order of the 

distribution. In contrast, the EKF only provides predictions up to the first-order accuracy. 

Despite its enhanced accuracy, the UKF doesn't significantly increase computational complexity 

compared to the EKF, making it a practical choice for many applications. The UKF provides a 

more accurate approximation of the nonlinear probability distribution for the solution versus the 

propagation function. This generally results in better convergence and a more precise capture of 

nonlinear dynamics. Additionally, the UKF eliminates the need to calculate the Jacobian. 

In [46], The significant improvements in performance achieved by the Unscented Kalman Filter 

(UKF) in the estimation of state for nonlinear control was shown. In linear systems, the finite 

dimensional Kalman filter can advance using Gaussian distributions. In contrast, for nonlinear 

systems, approximations of probability distributions must be made at each step of the process 

[47]. In this research we have utilized the Unscented Kalman Filter to filter out the waves while 

the trajectory tracking of the ship.  In the study [65], a novel Adaptive Unscented Kalman Filter 
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(AUKF) is applied to the ships' dynamic positioning (DP) system. The AUKF addresses model 

uncertainties, encompassing time-varying noise statistics, model mismatch, and slow-varying 

drift forces. The adaptive algorithm is designed to dynamically adjust real-time process and 

measurement noise covariances, utilizing the critical principle of covariance matching. The study 

in [67] suggests a tracking controller for underactuated nonlinear autonomous ships to navigate 

along a reference path amidst constant disturbances from waves, wind, and ocean currents. The 

controller, developed using an unscented Kalman filter (UKF) and backstepping techniques, 

employs UKF to update uncertain parameters dynamically online. This approach prevents 

parameter drift caused by time-varying added mass matrices. The UKF in collaboration with 

neural networks also provided great results for autonomous vessels. The outcomes in [68] 

demonstrated that the autopilot, based on the UKF and Radial Basis Function Neural Network 

(RBFNN), effectively fulfilled course keeping, course changing, and trajectory tracking. The 

study in [69] a comparison between EKF and UKF was demonstrated in the field of underwater 

robotics. The study shows the better performance of UKF using the same sensors and processes 

for the UAV for the two filtering methods. The computational load was well handled by the UKF 

and provided more accuracy for better navigation of the UAV.  
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Chapter 3 

3.0 NMPC-Based Trajectory Tracking with Mechanistic Model for 

Autonomous Maritime Navigation in Presence of Disturbances.  

 

 
Abstract  

Autonomous ships represent the future of maritime operations, with applications ranging from 

military missions, search and rescue operations, oil and gas exploration, and various other fields. 

Ensuring the safe and efficient trajectory tracking of Autonomous Surface Vessels (ASVs) is a 

paramount concern for advancing this industry. Precisely following paths while adhering to 

maritime rules and regulations within specific time constraints play a crucial role in autonomous 

ship operations. This challenge becomes even more significant in the marine environment, given 

unavoidable factors such as waves, currents, wind, and other environmental disturbances. 

Currently, both model-based and data-driven controllers are equally used for navigating 

Autonomous Vessels. An indispensable aspect of these controllers is their ability to keep 

autonomous ships on the intended trajectory accurately and reliably. Achieving precise trajectory 

following under real-world conditions remains a complex challenge. The varying dynamics of 

different ships and environmental conditions hinder a one-size-fits-all controller design. The 

controller's role becomes even more intricate when dealing with tight and complex trajectories. 
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In this research, our primary objective is to design a controller with a comprehensive 

consideration of these factors while adhering to essential safety constraints. We employed 

Nonlinear Model Predictive Control (NMPC) to address these concerns, particularly well-suited. 

NMPC allowed us to work with nonlinear ship models, account for unmodeled dynamics, satisfy 

diverse constraints, and maintain the ship's course, all while managing multivariable systems 

effectively. Additionally, we integrated an Unscented Kalman Filter (UKF) alongside NMPC to 

filter out wave-induced disturbances, enhancing the controller's robustness. This combined 

NMPC controller with UKF, implemented with three distinct models, was employed to conduct 

trajectory tracking operations in simulation and experimental setups at the National Research 

Council (NRC) in Canada with the Magne Viking ship model.  

 

3.1 Introduction  

Various aspects of marine transportation and operations has been revolutionized by the 

emergence of Autonomous Surface Vessels (ASVs). The significant advantages of ASVs include 

safer operation, decreased operational expenses, enhanced efficiency, and the capacity to 

undertake tasks in demanding or perilous environments while safeguarding human lives. The 

marine industry is very much interested to add the Autonomous Ships in their operations. By 

adapting and following a planned path precisely the applicability of ASVs can move one step 

further. Ships are employed for different activities, like scientific research, gathering data, or 

military operations.  Controller for trajectory tracking is one of the key elements of ASV. Route 

planning, proper navigations, collision avoidance and maintaining stability in various difficult 

environmental conditions are the main objective of designing a controller for autonomous ship.  
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Over the years, many controllers are designed for the trajectory following of the ASVs. It is very 

crucial function of the controller to ensure the robust tracking performance while taking the 

environmental conditions into account. In Proportional Integral Derivative (PID) controllers 

there are advantages because it does not require precise knowledge of the mathematical model of 

the system. We can see the widespread use of the PID controllers [18]. Varying initial conditions 

can provide mediocre performance for the trajectory tracking problems for the vehicles [19]. 

Also, PID requires substantial adjustments of its parameters if any changes occur while the 

system is operating whereas NMPC is highly robust when multiple changes occur in the system 

[48]. The fuzzy PID controllers provides faster convergence and effective functionality in 

different initial conditions [20]. But the inherent linearity of PID controllers produce complexity 

when the dynamic control of gains is required in real time. Some Fuzzy Logic Controllers can be 

used as a good controller for autonomous vehicle, but they have limitations in the steering 

command because they can produce substantial amount of oscillation [23]. Sliding Mode 

Controller (SMC) is well suited for the nonlinear control systems. It offers noticeable 

performance while facing external disruptions and critical operating conditions encountered by 

the ASVs [24]. But they need to maintain continuous linearization for getting appropriate control 

variables to keep the vehicle in its course [27]. Robust control methods in ([12],[13],[14]) tries 

that a ship’s position tracking error gets very close to zero where they implemented Lyapunov 

method, composite nonlinear feedback path following controllers and finite time leader 

following formations. But ultimately the convergence was slow and could not determine 

precisely how close it can go.  Methods in [15] using finite fault tolerant controller produced 

good accuracy but the convergence rates were slow. The quicker solutions presented in [16] and 
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[17] using motion planning but were dependent on the initial conditions, control limits and 

uncertainties in the ship models.  

The [49] shows good results for trajectory tracking of the ship with a NMPC controller 

integrated with genetic algorithm. But in this case the simulation did not involve any 

disturbances. Model Predictive Control (MPC) inherently offers a solution for managing 

constrained systems, showcasing its ability to explicitly handle system constraints. MPC has 

found widespread use in industrial processes [50]. Lately, The MPC has been applied to control 

the path of surface vessels [51] and heading control [52]. In [53] MPC is utilized for vessel path 

following with Line of Sight (LOS) guidance algorithm where a linear model of the ship is 

utilized showing the improvement of the performance in the simulations. However, this 

Lyapunov- based design techniques it is difficult to incorporate constraints. Moreover, the 

applications of MPC in vessel systems mentioned above are primarily limited to path following 

problems whereas the trajectory tracking has a wide range of applications with the applications 

of advanced methodology.  

 

In the literatures [3], [4], [5] a Nonlinear Model Predictive Control (NMPC) algorithm was used 

to track the position and velocity of the ships. Vessel motion controlling is a challenging task due 

to the nonlinear dynamics of the vessel and the presence of the environmental conditions like 

waves, currents, and wind. Implementing adaptive control in the marine environment was 

proposed in [2], [3]. Even though the research work is done extensively the implementation of 

adaptive approach is still in rudimentary level.  

It is also important that the controller is tested with different trajectories and conditions to make 

it applicable for the real time testing. Most of the works were confined within the simulations. 
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The previous research works did not capitalize on the ship following the complex trajectories 

with tight radius. This thesis aims to develop a Nonlinear Model Predictive Controller (NMPC) 

for Autonomous Surface Vessels (ASVs). The objective is to create a controller that can 

effectively adjust its features for different ship models, providing precise predictions for ship 

trajectories. To accomplish this, we employed a combination of mechanistic model and 

Unscented Kalman Filter (UKF) models seamlessly integrated into the NMPC. Apparently, 

within a fixed time frame making a ship to follow its trajectory accurately and efficiently is still 

very challenging. The advanced control is pivotal and essential for safety, precision, prevention 

of collision in a marine environment. In this section the following table shows the 

comprehensive comparisons of the different controllers used in different studies along with their 

advantages and disadvantages.  

 

Table 3-1: Controller Comparison Matrix: A Comprehensive Overview of Studies 

Controller 

Type 

Study 

Reference 

Application 

Domain 

Advantages Disadvantages 

PID  Lu´cia 

Moreira 

, Thor I. 

Fossen  

, C. Guedes 

Soares,  

Path 

following 

control 

system for a 

tanker ship 

model 

Automatic 

path 

following 

control 

system for an 

autonomous 

marine 

surface 

vessel.  

 Easier 

implementatio

n of the 

controller.  

 

 LOS guidance 

methods were 

used which 

can be later 

incorporated 

with weather 

routing, 

collision and 

obstacle 

avoidance.  

 Only 

simulation 

results are 

presented.  

 

 Path following 

was the main 

focus not 

trajectory 

tracking  

Dinh Due Vo 

et al. 

Designing a 

Ship autopilot 

system for 

trajectory 

 Easy to 

implement 

controller with 

 Simulation 

and 

experimental 
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PID 

Controller for 

Ship 

Autopilot 

System 

 

tracking  less 

dependence on 

the ship model.  

 Experimental 

results were 

presented.  

results did not 

show any 

involvement 

of the 

disturbances in 

the system.  

 The 

experiment 

was done in a 

swimming 

pool which is 

might not be a 

good 

experimental 

setup.  

 The 

experimental 

results for path 

tracking and 

heading 

control were 

far away from 

the calculated 

path and 

headings.  

 Adinath Jain 

et al.  

 PD 

CONTROLL

ER BASED 

UNMANNE

D SHIP 

NAVIGATI

ON 

 

Autonomous 

Ship 

Navigation 

 Simple 

formulation 

and application 

of the 

controller.  

 Six degrees of 

freedom ship 

dynamics is 

used for 

formulating 

the problem  

 Linearized 

model is used 

which may not 

be able to 

capture all the 

characteristics 

of the ship.  

 Only 

simulation was 

the means to 

test the 

performance 

of the 

controller and 

disturbance 

model was 

introduced in 

the simulation 

with Gaussian 

random 

process.  
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 It is assumed 

that the waves 

are generated 

due the wind 

only.   

Fuzzy PID Sin-Der Lee; 

Ching-Yaw 

Tzeng; Ber-

Jin Chen, 

Design and 

experiment of 

a fuzzy PID 

track-keeping 

ship 

autopilot. 

 

Track keeping 

of the 

autonomous 

ships 

 Simulations 

and 

Experiments 

were 

conducted to 

show the 

effectiveness 

of the 

controller. The 

test was 

conducted in 

open water.  

-Tuning of the PID 

and Fuzzy 

membership functions 

are complex.  

 

- Simple straight 

forward trajectory 

was used. It is not 

clear how it will 

perform in the 

complex trajectories.  

  

Minh-Duc Le 

et al, A new 

and effective 

fuzzy PID 

autopilot for 

ships 

 

  Easy to 

construct 

controller. 

 Better 

performance 

than PID.  

 Not efficient 

in handling the 

nonlinear 

systems.  

 Only 

simulation 

was done as a 

controller’s 

performance 

evaluation 

criteria.  

 Doesn’t 

mention much 

about the 

speed control, 

thrust 

allocation.  

 Not much 

knowledge 

about the 

trajectories 

used in the 

simulation.  

NMPC Bruno J. 

Guerreiro et 

al.  

Tracking 

Nonlinear 

Model 

Trajectory 

tracking 

control for 

autonomous 

surface craft 

(ASC) in the 

 The 

simulations 

were done 

with modeled 

constant 

currents.  

- Use of a wave filter 

would have been a 

better addition. There 

was no filter used.  

https://ieeexplore-ieee-org.qe2a-proxy.mun.ca/author/37087506998
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Predictive 

Control for 

Autonomous 

Surface Craft 

 

presence of 

ocean 

currents 

Mohamed 

Abdelaal et 

al.  

NMPC-based 

trajectory 

tracking and 

collision 

avoidance of 

unmanned 

surface 

vessels with 

rule-based 

colregs 

confinement. 

 

Trajectory 

tracking and 

collision 

avoidance of 

the ASVs 

 Collision 

avoidance was 

also shown 

along with the 

trajectory 

tracking 

problems.  

 The ACADO 

toolbox in 

MATLAB was 

utilized to solve 

the NMPC 

problem which 

makes the 

iteration time 

much faster. 

The execution 

time of the 

algorithm was 

less than 20ms.  

 What kind of 

disturbances were 

simulated that 

was not clearly 

mentioned but a 

disturbance 

observer is used.  

 Only simulation 

results were 

added to show 

the study for the 

trajectory 

tracking and 

collision 

avoidance.  

 The optimum 

prediction 

horizon was not 

mentioned for 

trajectory 

tracking.  

 Though the 

multiple shooting 

optimization was 

used there was 

only two 

thrusters (surge 

and yaw 

moment) used for 

the model 

generation. No 

sway force was 

mentioned.  

 Instead of a 

straight-line 

trajectory a 

complex or 

irregular shaped 

trajectory could 

be used to show 
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the versatility of 

the controller.  

Martin Kosch 

et al.  

Hardware-in-

the-Loop 

Trajectory 

Tracking and 

Collision 

Avoidance of 

Automated 

Inland 

Vessels 

Using Model 

Predictive 

Control 

 

Trajectory 

tracking and 

collision 

avoidance of 

the ASVs 

 Hardware used 

in this study 

takes the 

influence of the 

communication 

delays.  

 CaSadi toolbox 

utilization 

provides a better 

computational 

time.  

 Collision 

avoidance and 

trajectory 

tracking is 

combined.  

 Artificial white 

noise was 

introduced as a 

disturbance in the 

simulation which 

is not a good 

method to 

replicate waves.  

 EKF was used to 

filter the 

disturbances. 

EKF involve 

linearization of 

the system which 

may produce 

inaccurate 

results.  

 In the model of 

the ship no 

Coriolis 

component were 

added which can 

make the model 

less accurate.  

 

3.2 Methodology  

The trajectory tracking of autonomous ships involves tracking their position, analyzing heading 

angles, observing velocity, and allocating thruster forces. A robust and precise controller must 

handle all these elements effectively, ensuring they stay within acceptable limits for both 

simulation and experimental setups.  In this section we will discuss about the methods and 

techniques used for the trajectory tracking of the Autonomous Surface Vessel. Our developed 

controller was implemented on the Magne Viking Ship simulated model as well as on scaled 

physical model. The following steps will be discussed in this part of the study:  

 Design of Nonlinear Model Predictive Controller. 
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 Vessel Model for Magne Viking.  

 Disturbance Models. 

 Implementation of Unscented Kalman Filter. 

 

3.2.1 Design of Nonlinear Model Predictive Controller 

An NMPC scheme is used for trajectory tracking of the surface vessel Magne Viking. A 3 – DOF 

model is used with three control variables Surge force, Sway force and Yaw moment. In ship 

maneuvering control, it's typical to represent a ship's motion with a 3-degree-of-freedom (DOF) 

model, combining surge, sway, and yaw movements, while disregarding heave, roll, and pitch 

motions [54]. We used a quadratic cost function. A real time efficient MATLAB code is 

generated using the Optimization Toolbox and fmincon solver. Nonlinear Model Predictive 

Control (NMPC) utilizes the vessel's nonlinear dynamics model directly as the prediction model. 

It iteratively solves a nonlinear optimization problem online at each time step [55]. The 

fundamental components of an NMPC include the cost function, prediction model, state 

constraints, and input constraints. In this section, we elaborate on the design of each of these 

elements. The NMPC utilizes an output feedback control architecture and implements the offset-

free formulation as proposed in [56]. The state space model f represents the nominal six state 

model of the trajectory tracking. The predicted states can be descried by the equation (3.1).  

𝑥(𝑘 + 𝑇) = 𝑥(𝑘) +  ∫ 𝑓(𝑥(τ))𝑑τ,
𝑘+𝑇

𝑘

 
(3.1) 

  

                                                                         

Where x (𝑘) is the current state and T is the sampling time.  
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In this equation: 

𝑥(𝑘) is the state vector at the current time step 𝑘,  

𝑥(𝑘 + 𝑇)is the state vector at the next time step 𝑘 + 𝑇 

𝑇 is the time increment, 

𝑓(𝑥(τ)) represents the dynamic model of the system, describing how the state vector evolves 

over time, 

𝜏 is the variable of integration over the interval from 𝑘 to 𝑘 + 𝑇 

This equation models the continuous-time dynamics of the ship, integrating the dynamic function 

𝑓(𝑥(τ))  over the time interval to update the state vector from the current time step to the next. 

In this study, the state vector 𝑥(𝑡)) is defined as: 

𝑥(𝑡) = [𝑥, 𝑦, 𝜓, 𝑣𝑥, 𝑣𝑦, 𝑣𝜓] 

where: 

𝑥, and 𝑦 represent the position coordinates, 

 𝜓 denotes the yaw angle, 

 𝑣𝑥, 𝑣𝑦 are the surge and sway velocities, respectively, 

𝑣𝜓 is the yaw rate. 

 

To create an offset free NMPC, we use the findings from the [56] and [57]. As a starting point, 

we introduce a disturbance model and a disturbance integrator into the prediction model, forming 

an augmented model denoted as faug. This augmented state space model combines the states with 

the disturbance model d as expressed in Equation (3.2). During state prediction, the initial 

estimate of the disturbance remains constant, like a step disturbance, as outlined in Equation 
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(3.3). The prediction model is numerically integrated using the explicit Euler’s Method. The 

forecasted state is determined by Equation (3.2). 

             𝑥(𝑘 + 𝑇) = 𝑥(𝑘) +  ∫ 𝑓𝑎𝑢𝑔(𝑥(τ), 𝑑(𝑘))𝑑τ,
𝑘+𝑇

𝑘
 (3.2) 

 

             𝑑(𝑘 + 𝑇) = 𝑑(𝑘),                                                                                                         (3.3) 

                                                                       

The predicted output is given by equation (3.4) where gaug is the output model.  

 

             𝑦(𝑘 + 𝑇) = 𝑔𝑎𝑢𝑔(𝑥(τ), 𝑑(𝑘)) (3.4) 

 

 

3.2.2 Optimization Scheme  

 

The objective of the cost function is to minimize the discrepancy between the desired 

equilibrium state targets �̅� and the actual system states 𝑥(𝑘). This includes aligning the 

equilibrium input target �̅� with the current input 𝑢(𝑘) as well to ensure precise tracking of the 

reference signal, denoted as 𝑟(𝑘) which is the desired trajectory properties for the ship. The goal 

is to achieve offset-free tracking, meaning that the system maintains alignment with the desired 

reference over time. 

𝐽 =
𝑚𝑖𝑛

𝑢
 ∑ (�̂�(𝜅) − �̅�)𝑇𝜆1(�̂�(𝜅)𝑘+𝑚

𝜅=𝑘 −  �̅�) +𝜆2(𝑢(𝜅) − �̅�)2) (3.5) 

 

�̅� = 𝑓𝑎𝑢𝑔(�̅�, �̅�, �̂�(𝑘))  (3.6) 

 

�̅� = 𝑔𝑎𝑢𝑔(�̅�, �̂�(𝑘))  (3.7) 
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Here the 𝜆1 𝑎𝑛𝑑 𝜆2 are the cost function weights and m is the prediction horizon. The 

optimization problem is solved within defined constraints for the different trajectories. The cost 

function calculates the cost of the optimal control problem using the running and the terminal 

cost over the prediction horizon. In this research fmincon function was used to solve constrained 

optimization problem and we get the new states from the Euler integration method. Fmincon 

finds the minimum of constrained nonlinear multivariate function. It has active set method, 

interior point method and trust region reflective method for optimization. In our study we used 

the interior point method for optimization. Equation (3.8) shows the state and input constraints. 

The states and input variable sets will be discussed in the vessel model section. 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥; 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 (3.8) 

   

3.2.3 Vessel Model  

 

For our simulation and experiments we have used the Magne Viking ship model.  MAGNE 

VIKING (IMO: 9423839) is a Tug/Supply Vessel sailing under the flag of Norway. The vessel 

has an overall length (LOA) of 85.2 meters and a width of 22.84 meters. The full-scale vessel is 

shown in Figure 3-1. .  
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Figure 3-1: Full scale Magne Viking ship 

The ship model [59] is represented as follows and 3 DoF motion is considered here:  

 

�̇�(𝑡) = 𝑅(𝜂(𝑡))𝑉(𝑡) (3.9) 

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡) =  𝜏 (3.10) 

 

 

 

Figure 3-2: Motion Variables of marine vessel [74] 

 

where  𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)]𝑇 represents the position and the orientation of the ship at time t, 

and 𝑉(𝑡) = [𝑣𝑥(𝑡), 𝑣𝑦(𝑡), 𝑣𝜓(𝑡)]
𝑇
 is the speed for the vessel,  𝜏 is the vector that denotes the 

forces applied to the ship center of gravity. The elements of the position-orientation vector 𝜂 are 

the north-east positions ((𝑥(𝑡), 𝑦(𝑡)) are relative to local geographical frame and the yaw rate 𝜓 

is relative to the north. The components of the velocity vectors are the surge and sway velocities 

and the yaw moment or the yaw rate. 𝑣𝑥 𝑎𝑛𝑑 𝑣𝑦 are the body fixed velocities. Similarly, the yaw 

rate is a component of the angular velocity of the body fixed frame with respect to local 
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geographical frame. Due to the assumption that the translational motion is confined only to the 

horizontal plane, the angular velocity only has one component.  

Table 3-2: Summary of ship motion variables for maneuvering applications  

 

Variable Name Frame Units 

𝑥 North Position Earth fixed m 

𝑦 East Position Earth fixed m 

𝜓 Heading or Yaw angle Body fixed rad 

𝑣𝑥 Surge Speed Body fixed m/s 

𝑣𝑦 Sway Speed Body fixed m/s 

𝑣𝜓 Yaw rate Body fixed rad/s 

𝜏𝑥 Surge Force Body fixed N 

𝜏𝑥 Sway Force Body fixed N 

𝜏𝑥 Yaw moment Body fixed N-m 

𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)]𝑇 Generalized position   

𝑉(𝑡) = [𝑣𝑥(𝑡), 𝑣𝑦(𝑡), 𝑣𝜓(𝑡)]
𝑇
 Generalized velocity   

𝜏 = [𝜏𝑥, 𝜏𝑦, 𝜏𝜓]
𝑇
 Generalized force   

 

Here the M represents the inertial Mass Matrix consisting of two components Rigid Body Matrix 

(MRB) and Added Mass Matrix (MA). 

𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴 (3.11) 

Where  
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𝑀𝑅𝐵 = [

𝑚 0 0
0 𝑚 𝑚𝑥𝑔

0 𝑚𝑥𝑔 𝐼𝑧

];            𝑀𝐴 = [

−𝑋�̇� 0 0
0 −𝑌�̇� −𝑌�̇�

0 −𝑁�̇� −𝑁�̇�

] 

(3.12) 

 

Here 𝑚 is the mass of the ship, 𝑥𝑔 represents the distance from the vessel's center of gravity to 

the center of the body-fixed coordinate frame. 

𝐶 represents matrices for Coriolis and Centrifugal effects, incorporating both rigid-body 

components and additional contributions from Coriolis and centripetal forces. 

𝐶(𝑉) = 𝐶𝑅𝐵(𝑉) + 𝐶𝐴(𝑉) (3.13) 

 

Where,  

𝐶𝑅𝐵 (𝑉) = [

0 0 −𝑚(𝑥𝑔𝑣𝜓 + 𝑣𝑦)

0 0 𝑚𝑣𝑥

𝑚(𝑥𝑔𝑣𝜓 + 𝑣𝑦) −𝑚𝑣𝑥 0

] 

𝐶𝐴(𝑉) = [

0 0 𝑐13(𝑉)
0 0 𝑐23(𝑉)

−𝑐13(𝑉) −𝑐23(𝑉) 0
], 

(3.13) 

 

Here 𝑐13(𝑉) = 𝑌�̇�𝑣𝑥 +
1

2
(𝑁�̇� + 𝑌�̇�) and 𝑐23(𝑉) =  −𝑋�̇�𝑣𝑥  

The Damping matrix is formed by combining two matrices, one linear and the other nonlinear. 

 

𝐷(𝑉) = 𝐷𝐿 + 𝐷𝑁𝐿(𝑉) 

Where, 

𝐷𝐿 = [

−𝑋𝑢 0 0
0 −𝑌𝑣 −𝑌𝑟

0 −𝑁𝑣 −𝑁𝑟

] 
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𝐷𝑁𝐿(𝑉) = [

−𝑑11(𝑉) 0 0

0 −𝑑22(𝑉) −𝑑23(𝑉)

0 −𝑑32(𝑉) −𝑑33(𝑉)
] 

With 𝑑11(𝑉) = 𝑋|𝑢|𝑢|𝑣𝑥| + 𝑋𝑢𝑢𝑢𝑣𝑥
2  , 𝑑22(𝑉) = 𝑌|𝑣|𝑣 |𝑣𝑦| + 𝑌𝑟|𝑣| |𝑣𝜓| ,  

𝑑23(𝑉) = 𝑌|𝑣|𝑟|𝑣𝑌| + 𝑌𝑟|𝑟||𝑣𝜓| ,  𝑑32(𝑉) = 𝑁𝑣|𝑣||𝑣𝑦|  + 𝑁𝑟|𝑣||𝑣𝜓| and  

𝑑33(𝑉) = 𝑁𝑣|𝑟||𝑣𝑦| + 𝑁𝑟|𝑟| |𝑣𝜓|   

More details on models and parameters can be found in the literatures [54] and [58].  

The matrix 𝑅(𝜂) is a rotation matrix responsible for converting the vessel's velocity from body-

fixed coordinates to inertial velocities. It is defined as:  

𝑅(𝜂) = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

]  

 

(3.14) 

The 𝜓 is the ship heading and 𝜏 is the vector of forces applied to the ship.  

𝝉 = [

𝜏𝑥

𝜏𝑦

𝜏𝜓

] 
(3.15) 

Where 𝜏𝑥 and 𝜏𝑦 are the surge and sway forces and  𝜏𝜓 is the yaw moment.  

The proposed controller's performance was evaluated using mathematical model and physical 

model of the Magne Viking ship. The physical model is a 1:14.7 scale replica of the Magne 

Viking. The Figure 3-3 below shows the Magne Viking ship model used for the trajectory 

tracking experiment in NRC testing facility. Essential vessel parameters as reported in Table 3-2 

were obtained through various experiments conducted by NRC for system identification 

[74].These identified parameters form the basis for constructing an accurate mechanistic model 

essential for simulating the ship's behavior and conducting trajectory tracking experiments.  
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Figure 3-3: Magne Viking model ship (NRC, St. John’s, NL, Canada)  

 

Table 3-3: Magne Viking Vessel Identified Parameters 

Parameters Value Parameters Value 

𝑚 1290.45 𝑌|𝑟|𝑣 0 

𝑥𝑔  0.0184 𝑁|𝑟|𝑣 0 

𝐼𝑧 1.57765x103  𝑁𝑟 26 

𝑋�̇� 158.23 𝑌|𝑣|𝑟 0 

𝑌�̇� 1087.3 𝑁|𝑣|𝑟 0 

𝑌�̇� 0 𝑌|𝑟|𝑟 0 

𝑁�̇� 0 𝑁|𝑟|𝑟 3913.5 

𝑁�̇� 1.55992𝑥103 𝑁𝑣 0 

𝑋|𝑢|𝑢  194 𝑋𝑢𝑢𝑢 -112 

𝑌|𝑣|𝑣 0 𝑋𝑢 41.788 

𝑁|𝑣|𝑣 0 𝑌𝑣 336.055 
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𝑌𝑟 0   

 

Here the hydrodynamic coefficients { 𝑋(.), 𝑌(.), 𝑁(.)} are refer to as hydrodynamic derivatives. 

These are the partial derivatives of forces moments with respect to corresponding velocities. 

 

3.2.4 Disturbance Model  

 

This section discusses how to control the path of marine surface vessels when facing 

unpredictable changes in the environment. To address the issue of unknown disturbances, an 

observer is created to estimate these disturbances. This estimation is then used to design a new 

and strong controller for accurately following a desired trajectory. The disturbances induced by 

the wind, waves and currents are main obstacles for the ship to be remain in its course. From 

equation (3.10), a model for vessel dynamics can be expressed as  

 

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡)  + 𝑑(𝑉𝑟𝑐𝛾𝑐) =  𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑤𝑎𝑣𝑒𝑠 (3.16) 

 

The term 𝑑(𝑉𝑟𝑐𝛾𝑐) represents the current forces which reflects the transfer of the energy from the 

vessel to the water. It depends on the speed and direction of the current with respect to the vessel. 

Here,  

𝑉𝑟𝑐 =  √𝑣𝑥𝑟𝑐
2 + 𝑣𝑦𝑟𝑐

2 =  √(𝑣𝑥 − 𝑣𝑥𝑐
)

2
+ (𝑣𝑦 − 𝑣𝑦𝑐

)
2

 
(3.17) 

𝛾𝑟𝑐 =  −𝑎𝑡𝑎𝑛2(𝑣𝑦𝑟𝑐
, 𝑣𝑥𝑟𝑐

) (3.18) 

 

The 𝑣𝑥𝑐
 and 𝑣𝑦𝑐

 are the current velocity measured in the vessel body fixed frame and the angle 

of the current 𝛾𝑟𝑐 is measured relative to the bow of the vessel. It is very common to express the 
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current forces as a function of non-dimensional current coefficients in the directions of surge, 

sway, and yaw, which is expressed as –  

𝑑(𝑉𝑟𝑐𝛾𝑐) =
1

2
𝜌𝑉𝑟𝑐

2   [

𝐴𝐹𝑐 𝐶𝑋𝑐(𝛾𝑟𝑐)

𝐴𝐿𝑐 𝐶𝑌𝑐(𝛾𝑟𝑐)

𝐴𝐿𝑐𝐿𝑜𝑎 𝐶𝑁𝑐(𝛾𝑟𝑐)
] 

(3.19) 

Here 𝜌 is the water density. The formula includes variables like frontal area (𝐴𝐹𝑐), lateral area 

(𝐴𝐿𝑐) of the underwater part of the hull, and ship length (𝐿𝑜𝑎). For dynamically positioned 

vessels, typical current coefficients are determined through experiments or computational fluid 

dynamic models [60]. Estimating current coefficients (𝐶𝑋𝑐, 𝐶𝑦𝑐, 𝐶𝑁𝑐) accurately is challenging 

unless there's an extensive hydrodynamic analysis and scale-model testing for the specific vessel. 

In such cases, it's common to simplify the model (as in equation 3.19) by using a linear damping 

term and a bias term [61] and can be expressed as-  

𝑑(𝑉𝑟𝑐𝛾𝑐)  ≈ 𝐷𝑣 − 𝑅𝑇(𝜓)𝑏 (3.20) 

 

So the vessel model from (3.9) and (3.10) becomes  

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡) =  𝑅𝑇(𝜂(𝑡))𝑏 + 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑤𝑎𝑣𝑒  () 

 

The bias is constant in earth fixed coordinates when it is assumed that the currents are slowly 

varying. Thus, to include the bias term in the equation of the ship motion (3.21) it must be 

rotated so that it captures the effects of the current forces change along with the heading change 

of the ship. The bias is estimated using the Unscented Kalman Filter (UKF).  

Similarly, the wind forces can be expressed by means of nondimensional force coefficients 

which are shown in the following equation [58], 
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𝜏𝑤𝑖𝑛𝑑 =  
1

2
𝜌𝑎𝑉𝑟𝑤

2   [

𝐴𝐹𝑤 𝐶𝑋𝑤(𝛾𝑟𝑤)

𝐴𝐿𝑤 𝐶𝑌𝑤(𝛾𝑟𝑤)

𝐴𝐿𝑤𝐿𝑜𝑎 𝐶𝑁𝑤(𝛾𝑟𝑤)
] 

(3.21) 

 

Here, 𝜌𝑎 is the air density.  

 States and Optimization Variable Weights 𝐴𝐹𝑤
 and 𝐴𝐿𝑤

 are the frontal and lateral projected 

wind areas respectively. The 𝐿𝑜𝑎
 is the ship length. The wind speed and directions 𝑉𝑟𝑤 and 𝛾𝑟𝑤 

with respect to the vessel is given by the following equations where 𝛽𝑤 is the wind direction in 

earth fixed co ordinates.  

𝑉𝑟𝑐 =  √𝑣𝑥𝑟𝑤
2 + 𝑣𝑦𝑟𝑤

2  
(3.22) 

𝛾𝑟𝑤 =  −𝑎𝑡𝑎𝑛2(𝑣𝑦𝑟𝑤
, 𝑣𝑥𝑟𝑤

) (3.23) 

𝑣𝑥𝑟𝑤
= 𝑣𝑥 − 𝑉𝑤𝑐𝑜𝑠𝛽𝑤 (3.24) 

𝑣𝑦𝑟𝑤
= 𝑣𝑦 − 𝑉𝑤𝑠𝑖𝑛𝛽𝑤 (3.25) 

 

However, the wind coefficients in (3.21) can be determined from the computational fluid 

dynamics or the model testing or from the scaling coefficients from the similar vessel. But from 

the control design perspective the wind speed and the direction are generally used for 

approximate feedforward compensation. The errors associated because of this compensation are 

modelled in the bias term in (3.21). Therefore, the bias takes into account the simplified current 

as well as the wind forces.  

The wave forces are modelled as a sum of nonlinear and linear wave components.  

𝝉𝒘𝒂𝒗𝒆 =  𝜏𝑤𝑎𝑣𝑒
𝑙𝑖𝑛 + 𝜏𝑤𝑎𝑣𝑒

𝑛𝑙𝑖𝑛  (3.26) 

 



 43 

The linear and the low frequency nonlinear components are very much relevant to the ships 

motion control. The high-frequency nonlinear wave forces are generally considered as input 

disturbances and modeled as bias term. So, the bias represents combination of nonlinear wave 

drift and current. However, the linear wave forces usually behave like an equivalent output 

disturbance. In this study environmental forces waves, wind, and currents are external factors 

that can disrupt the motion-control system of a vessel. These forces are categorized in wave and 

low-frequency components. Waves create pressure changes on the hull, generating forces with 

both oscillatory (wave-frequency) and nonlinear components. The oscillatory forces align with 

the wave frequency, while nonlinear forces result from the quadratic relationship between 

pressure and fluid-particle velocity induced by wave motion. Nonlinear forces encompass 

frequencies both lower and higher than the waves. Mean wave forces induce vessel drift, and 

forces at the difference of wave frequencies may lead to resonance in vessel motion [58].   

 

3.2.5 Unscented Kalman Filter  

 

The Unscented Kalman Filter (UKF) employs a deterministic sampling method to calculate mean 

and covariance estimates using a minimal set of sigma points. In comparison to the Extended 

Kalman Filter (EKF), the UKF demonstrates greater effectiveness in handling nonlinear systems 

across diverse applications like railways, ships, aircraft, solar probes, and other fields [62]. The 

UKF involves the prediction and update steps. The steps for filtering the waves and to estimate 

the states from the UKF are described in this table below. 

 

Table: 3-4 UKF algorithm for state estimation  
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Step Description 

Initialization  Set initial state estimate x0 and covariance P0. Set process noise covariance Q0 

and measurement noise covariance R0. 

 

 

 

 

 

Prediction 

Step 

Generate Sigma Points:  

(𝜒𝑘−1)0 = �̂�𝑘−1 

(𝜒𝑘−1)𝑖 = �̂�𝑘−1 + √𝑛 + 𝜆(√𝑃𝑘−1)
𝑖
 

(𝜒𝑘−1)𝑖 = �̂�𝑘−1 − √𝑛 + 𝜆(√𝑃𝑘−1)
𝑖
, 

i = 1, …., n 

Propagate Sigma Points through Dynamic Model: 

(�̂�𝑘)𝑖 = 𝑓((𝜒𝑘−1)𝑖), 𝑖 = 0, … . . ,2𝑛     

Calculate Predicted Mean: 

�̂�𝑘
− = ∑ 𝑊𝑖

𝑚(�̂�𝑘)𝑖

2𝑛

𝑖=0

 

Calculate Predicted Covariance: 

𝑃𝑘 = ∑ 𝑊𝑖
𝑐((�̂�𝑘)𝑖 − �̂�𝑘

−)((�̂�𝑘)𝑖 − �̂�𝑘
−)𝑇 + 𝑄𝑘−1 

2𝑛

𝑖=0

   

Update Step  Generate Sigma points:  

(𝜒𝑘−1)0 = �̂�𝑘−1 

(𝜒𝑘−1)𝑖 = �̂�𝑘−1 + √𝑛 + 𝜆(√𝑃𝑘−1)
𝑖
 

(𝜒𝑘−1)𝑖 = �̂�𝑘−1 − √𝑛 + 𝜆(√𝑃𝑘−1)
𝑖
, 

i = 1, …., n 

Calculate Predicted Measurement Mean:  
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𝜇𝑘 =  ∑ 𝑊𝑖
𝑚(�̂�𝑘

𝑖 − 𝜇𝑘)(�̂�𝑘
𝑖 − 𝜇𝑘)

𝑇
2𝑛

𝑖=0

+ 𝑅𝑘 

Calculate Predicted Measurement Covariance: 

𝑆𝑘 =  ∑ 𝑊𝑖
𝑐(�̂�𝑘

𝑖 − 𝜇𝑘)(�̂�𝑘
𝑖 − 𝜇𝑘)

𝑇
2𝑛

𝑖=0

+ 𝑅𝑘 

Calculate Cross-Covariance: 

𝐶𝑘 =  ∑ 𝑊𝑖
𝑐((𝜒𝑘

−)𝑖 − �̂�𝑘
−)((𝜒𝑘

−)𝑖 − �̂�𝑘
−)𝑇 

2𝑛

𝑖=0

 

Calculate Kalman Gain: 

𝐾𝑘 = 𝐶𝑘𝑆𝑘
−1 

Update State Estimate:  

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝜇𝑘) 

Update Covariance:  

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝑆𝑘𝐾𝑘

𝑇 

Iterate  Repeat Prediction and Update steps for each time step. 

 

Where, 𝜆 = 𝛼2(𝑛 + 𝑘) − 𝑛 is a scaling parameter and the parameters 𝛼 𝑎𝑛𝑑 𝑘 define the 

distribution or extent of the sigma points around the mean. In this case, the 𝜆 is chosen as 3. The 

covariances are determined as follows:  

Pk is chosen as a 15x15 identity matrix as the number of states for UKF was 15 mentioned in 

equation 3.37. For determining Qk for different matrices were chosen. They are:  

Q1 = 1*diag ([1,1,1,10,10,10]) 

Q2 = 0.001*eye (3) 
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Q3 = 0.01*diag([40,50,40]) 

Q4 = 0.005*diag([10,10,10])  

And Qk is block diagonal matrix consisting of Q1, Q2, Q3 and Q4.  

And the is chosen as  Rk = [
0.005 0 0

0 0.005 0
0 0 0.0005

]  

The matrices were selected through a tuning process based on sample data to achieve the desired 

response of the system. Q1 is chosen as a diagonal matrix with relatively high values (e.g., 1) on 

the diagonal. This indicates a higher uncertainty in the position estimates due to factors like 

sensor noise or external disturbances. Q2 is a small diagonal matrix (e.g., 0.001*eye (3)) with a 

non-zero value only in the element corresponding to yaw (ψ). This suggests a relatively low 

uncertainty in the orientation measurement compared to the position. Q3 (with higher diagonal 

elements compared to Q2) and Q4 (with lower diagonal elements) represent the uncertainties in 

the velocity estimates. 

 

 

For the estimation of the vessel’s state using the UKF the state vector consists of the waves, 

positions, orientations velocities and the biases. The states vector 𝑥𝑠 represented as follows:  

 

𝑥𝑠(𝑡) = [𝐹𝑤1, 𝐹𝑤2, 𝐹𝑤3, 𝐹𝑤4, 𝐹𝑤5, 𝐹𝑤6, 𝑥, 𝑦, 𝜓, 𝑣𝑥 , 𝑣𝑦, 𝑣𝜓, 𝑏1, 𝑏2, 𝑏3]
𝑇
 (3.37) 

 

So,  

�̂��̇�(𝑡) = 𝑓(�̂�, 𝑈) + 𝑤 

 

(3.38) 

 

�̂�(𝑡) = ℎ(�̂�, 𝑈) + 𝑣 
 

(3.39) 
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�̂��̇�(𝑡) and �̂�(𝑡) are the estimated states. In these equations w and v are respectively the process 

and the measurement noises. So 𝑄(𝑡) = 𝐸(𝑤𝑤)𝑇 and 𝑅(𝑡) = 𝐸(𝑣𝑣)𝑇 are respectively the 

process-noise covariance matrix and measurement-noise covariance matrix. The UKF uses the 

Magne Viking Ship model, detailed in Section 3.2.3, to estimate the states. This model 

incorporates the dynamics of the ship, including surge, sway, yaw velocities, and the 

corresponding forces. By accurately representing the physical behavior of the Magne Viking, the 

UKF can provide precise state estimations critical for effective control and navigation. 

The figures 3-4 and 3-5 below demonstrates the impact of the Unscented Kalman Filter (UKF) 

on trajectory tracking. A simulation using the same wave model is run with the UKF disabled 

(UKF-OFF) and enabled (UKF-ON). The results show significant differences in tracking 

performance between the two scenarios. 

 

Figure 3-4: Tracking performance with UKF disabled   
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Figure 3-5: Tracking performance with UKF enabled  

 

3.2.6 Trajectory Generation and Implementation  

 

Various trajectories were generated using different schemes for the initial testing and validation 

of the controller's feasibility. These trajectories were designed to explore the controller's 

performance under various conditions and to assess its robustness. Key factors considered during 

this phase included constraints imposed on the trajectories and the discrete points along the 

paths. 

Exploring trajectories with diverse characteristics was crucial in refining the NMPC. We gained 

valuable insights into adaptability and responsiveness by subjecting the controller to trajectories 

of varying complexities. 

A significant aspect of this process involved: 

 Establishing constraints on the trajectories. 

 Defining specific points along the paths. 

 Observing the controller's behavior in response to these variations. 

The goal was to fine-tune the controller's parameters and determine optimal weights for the cost 

function in the NMPC. 
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For trajectory generation we kept the average velocity constant at 0.2 m/s which is a 

recommended value for the ship model we used. And for the oval shaped trajectory the surge 

velocity 0.2 m/s was maintained by using the proper constraints for the velocity. The heading 

angle was calculated from the trajectories with discretization of the equations expressing the 𝑥 

and y. So,  

𝑑𝑥 = 𝑥2 − 𝑥1 

𝑑𝑦 = 𝑦2 − 𝑦1 

And  𝜓 = 𝑎𝑡𝑎𝑛2
𝑑𝑦

𝑑𝑥
 

Later, for the comparison of performance of the controller with regular shaped and complex 

shape we adapted the circular trajectory and complex shaped figure eight trajectory which were 

then tested at NRC. Here’s a sample trajectory that we used for the simulation and experiment.  

 

Figure 3-6: Sample Trajectory Generation  
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3.3 Results and Discussion   

In addressing the critical challenge of precise trajectory tracking for Autonomous Surface 

Vessels (ASVs), this research contributes significantly to this aspect of autonomous ship 

operations. The complexity of maritime environments, characterized by unpredictable factors 

such as waves, currents, and wind, necessitates the development of a robust controller capable of 

navigating diverse conditions. While model-based and data-driven controllers have shown 

promise, existing literature reveals a persistent need for improvements, especially in respect of 

efficiency and improved performance in terms of accuracy tolerance. This study focuses on 

designing and implementing a NMPC for ASVs, leveraging its capability to accommodate 

nonlinear ship models, handle unmodeled dynamics, and effectively manage multivariable 

systems. Integrating an UKF further enhances the controller's robustness by filtering out wave-

induced disturbances. The comprehensive testing of this combined NMPC controller with UKF 

involved three distinct models, with simulations and experimental setups conducted at the 

National Research Council (NRC) in Canada, utilizing the Magne Viking ship model. 

In the subsequent Results and Discussion section, we present and analyze the outcomes of our 

experimentation, shedding light on the controller's performance under different conditions. This 

analysis includes examining the controller's ability to precisely follow trajectories, mitigate 

effect of disturbances, and adhere to safety constraints. Through this exploration, we aim to 

contribute valuable insights to the ongoing discourse on advancing autonomous ship 

technologies, emphasizing the practical applicability of the developed controller in real-world 

scenarios. To analyze the performance of our trajectory tracking controller we have used the 

circular trajectory and the figure-eight trajectory. A circular trajectory might test the model's 
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ability to maintain a consistent path, while a figure-eight trajectory introduces more complexity 

and challenges the model's ability to handle changes in direction and speed. Also using two 

distinct trajectories enables a comprehensive comparison of the physics-based model with other 

models which will be discussed in the 4
th

 chapter of this thesis. It allows us to demonstrate which 

model performs better under uniform motion (circular trajectory) versus a motion with varying 

dynamics (figure-eight trajectory). 

3.3.1 Simulation Results 

 A circular trajectory with a 5-meter radius and a figure-eight shape trajectory with a 7-meter 

radius were employed for the ship's navigation. The figure-eight trajectory, being more complex, 

better simulates real-world navigation scenarios where a ship must make frequent course 

adjustments. This complexity helps demonstrate the robustness and adaptability of the control 

models under study. The circular trajectory is more suited for steady state tracking performance, 

while the figure-eight could be more suited for evaluating transient response and precision in 

more dynamic conditions. For this simulation part we have used the physics based mode 

described in Section 3.2 as the system. In addition to the ship kinematics this model includes the 

external forces like the waves. Below the tracking performance of the controller under the effect 

of the wave forces is shown. We have used DM to express the Dynamic Model in the figures. 

DM5, DM10 and DM20 respectively shows the performance of the controller with prediction 

horizons 5, 10 and 20.  
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Figure 3-7: Trajectory Tracking of two different trajectories in the presence of disturbances. 
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Figure 3-8: Wave model used for simulating disturbance  

The wave induced forces plays a significant role in affecting the velocities of an autonomous 

ship during trajectory tracking. These disturbances can introduce variations and uncertainties that 

the ship's control system must adapt to maintain the desired trajectory and velocity. 

 

3.3.1.1 Trajectory Tracking Analysis for Simulation Results  

 

  

Figure 3-9: Comparison of X and Y positions for the circular trajectory 
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decreasing trend with the prediction horizon for both trajectories. This suggests that the 

relationship between prediction horizon and position error is non-linear and may depend on other 

factors like model configuration or external disturbances. A shorter prediction horizon (N = 5) 

might not provide sufficient time for the model to anticipate and adjust for upcoming changes in 

the trajectory, while a longer horizon (N = 20) slows down the controller and could introduce too 

much uncertainty, leading to less accurate position control. 

 

  

Figure 3-10:  Comparison of X and Y positions for the Figure-eight trajectory 

 

  

Figure 3-11: Comparison of heading angles for the 

circular trajectory 

Figure 3-12: Comparison of heading angles for the 

Figure-eight trajectory 
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desired heading in the short term. This could be due to the immediate responsiveness required for 

heading control, which is better addressed with a shorter prediction horizon. At N = 20, the 

increased heading angle error could result from the models' difficulty in accurately predicting 

and adjusting for the heading far into the future, where uncertainties and external disturbances 

(such as wave forces) have a more significant impact. The Figures 3-11 and 3-12 show a 

comparison of the heading angle tracking for all the three prediction horizons for the two 

trajectories.  

  

Figure 3-13: The error for positions the different prediction horizons for circular and figure eight 

trajectory. 
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accurate trajectory tracking even in the presence of the disturbance like wave forces. The 
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0.1381 meters and 0.0214 radians respectively. The Figure 3-14 shows that shorter prediction 
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horizon has lowest heading error. With the shorter prediction horizon there is less accumulation 

of model inaccuracies and disturbances. In shorter horizons, the predictions are more accurate as 

they are less susceptible to the compounding effects of dynamic uncertainties and external 

factors. Additionally, the control algorithm can make more frequent corrections, maintaining 

closer adherence to the desired trajectory and heading. 

  

Figure 3-14: The heading error for different prediction horizons for circular and figure eight trajectory. 
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Figure 3-15(A): Comparison of velocity components for the circular trajectory for different N. 

 

Figure 3-15(B): Comparison of velocity components for the Figure-eight trajectory for different N. 
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Figure 3-16A: The error for surge velocities for the different prediction horizons for circular and figure 

eight trajectory. 

 

  

Figure 3-16B: The error for sway velocities for the different prediction horizons for circular and figure 

eight trajectory. 

 

Mean Absolute Vx Errors (Circle)

N = 5 N = 10 N = 20

N Values

0

0.005

0.01

0.015

0.02

0.025

0.03
M

e
a
n
 A

b
s
o
lu

te
 V

x
 E

rr
o

r 
[m

/s
]

Mean Absolute Vx Errors (Figure 8)

N = 5 N = 10 N = 20

N Values

0

0.005

0.01

0.015

0.02

0.025

0.03

M
e

a
n
 A

b
s
o
lu

te
 V

x
 E

rr
o

r 
[m

/s
]

Mean Absolute Vy Errors (Circle)

N = 5 N = 10 N = 20

N Values

0

0.005

0.01

0.015

0.02

0.025

0.03

M
e

a
n
 A

b
s
o
lu

te
 V

y
 E

rr
o

r 
[m

/s
]

Mean Absolute Vy Errors (Figure 8)

N = 5 N = 10 N = 20

N Values

0

0.005

0.01

0.015

M
e

a
n
 A

b
s
o
lu

te
 V

y
 E

rr
o

r 
[m

/s
]



 59 

  

Figure 3-16C: The error for yaw rates for the different prediction horizons for circular and figure eight 

trajectory. 

 

For all prediction horizons (N = 5, 10, 20), the actual velocities maintained by the NMPC seem 

to closely follow the reference, suggesting good performance in maintaining the desired surge 

velocity despite the wave disturbances (Figure 3-15). The wave disturbances, as modeled by the 

disturbance model, would typically cause fluctuations in the surge velocity due to the forces 

exerted on the ship. However, the close tracking performance indicates that the NMPC 

controllers are effectively compensating for these disturbances. The prediction horizon's impact 

on the velocity control can be assessed by looking at the tightness of the tracking around the 

reference velocity. When comparing the figure-eight to the circular trajectory, one would expect 

more variability in the velocity for the figure-eight due to its more complex shape. However, the 

consistent tracking across the figure-eight suggests that the NMPC model with UKF is 

adequately accounting for this complexity. The surge velocity control demonstrated here 

suggests that the NMPC model is robust against the wave disturbances simulated in this scenario. 

For practical applications, it would be important to validate this robustness across a wider range 

of conditions, including varying wave intensities and directions. The error for the velocities for 

Mean Absolute Vpsi Errors (Circle)

N = 5 N = 10 N = 20

N Values

0

0.005

0.01

0.015
M

e
a
n
 A

b
s
o

lu
te

 V
p
s
i 
E

rr
o
r 

[r
a
d

/s
]

Mean Absolute Vpsi Errors (Figure 8)

N = 5 N = 10 N = 20

N Values

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

M
e
a
n

 A
b
s
o

lu
te

 V
p

s
i 
E

rr
o
r 

[r
a

d
/s

]



 60 

the two trajectories shows the variation of error with the different prediction horizons. But the 

errors are significantly low in this case as shown in Table 3-5 and 3-6. For circular trajectory 

maximum surge, sway and yaw velocity errors are 0.028 m/s, 0.0228 m/s and 0.015 rad/s 

respectively. For eight shaped trajectory maximum surge, sway and yaw velocity errors values 

are 0.02269 m/s, 0.015 m/s and 0.0134 rad/s respectively. These low error values suggest the 

high precision of the control algorithm. The minimal errors could be attributed to the 

effectiveness of the UKF in accurately estimating the ship's states and the robust design of the 

control algorithm, which may efficiently compensate for model inaccuracies and external 

disturbances. However, these possibilities need to be explored further to confirm their impact on 

error reduction. 

For the simulation, all the tested prediction horizons showed low errors, indicating effective 

performance. However, future work could explore the impact of using shorter or longer 

prediction horizons to determine if further improvements in accuracy can be achieved. 
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Figure 3-17A: Comparison of Forces for the circular trajectory for different N.  
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Figure 3-17B: Comparison of Forces for the Figure 8 trajectory for different N.  
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forces, especially in 𝜏𝑥, which indicates the NMPC controller is adapting to the more complex 

trajectory requirements.  

 

3.3.2 Experimental Results 

This section presents the experimental findings from the tests done to understand the 

effectiveness of the controller developed.  
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Figure 3-18: Trajectory Tracking of two different trajectories in the testing bay (NRC, Canada) 

To validate the accuracy of the NMPC in trajectory tracking, experimental tests were conducted 

at the NRCs wave tank. Similar to the simulations, we examined the controller's performance 

through two trajectories: a circular path and a more intricate figure-eight shape. Figure 3-18 

shows the performance of the controller for the trajectory tracking of the Magne Viking in the 

testing facility. These tests offered valuable insights into the controller's ability to adjust to 

different trajectory patterns and adapt to changes in the desired paths. The comparison of two-

trajectory tracking performances, as illustrated in the figure 3-18, reveals a noticeable difference 

between simulation results and real-life testing. While the simulations showed more precise 

tracking, the actual implementation of the model exhibited deviations, underscoring the 

disparities between simulated predictions and real-world outcomes.  

The analysis clearly shows a divergence between the simulated and experimental results. Factors 

that seemed insignificant during the simulations emerged as impactful during the actual 

experiments, significantly influencing the outcomes.  

Comparison of simulation and experimental results 

There are significant deviations from the projected path which is visible in Figure 3-19 and 

Figure 3-20. The error analysis is also presented in Table 3-5 and Table 3-6 which shows the 

clear comparisons between the simulation and the experimental values. A comparison of the 

errors for the experimental results are also presented in the Figures 3-23. The reasons for the 

deviation from the simulated results can be conglomerated. NMPC highly relies on model-based 

prediction. Simulation relies on mathematical models to represent the real-world environment. It 

is only possible to capture some of the complex dynamics for the model; hence, some dynamics 

are omitted, resulting in differences when the controller is tested in real environments. 
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Environment variability also affects the performance. However, the real-world environment 

cannot be fully captured in the simulations. One of the most critical factors considered for the 

deviation is the sensor and actuator imperfections. The testing facility uses the Qualisys motion 

capture system. Even though this system is known for its high accuracy and precision, different 

tests may require calibration for different applications each time. The calibration of this 

equipment is not easy and requires a lot of work and time. Testing a controller within a time slot 

and calibrating the equipment with high precision was challenging. For this type of optical 

tracking technology, the calibration and positioning of the camera are essential. Tuning the 

tracking system to achieve uniform coverage across the entire basin is challenging and not 

always feasible. As a result, certain orientations of the model and areas within the tank may 

exhibit lower tracking performance or occasional dropouts, which can significantly impact 

feedback and overall tracking performance. 

 

The system operates primarily in a digital mode. Noise is minimal, and mechanical issues have 

not posed significant problems. However, inherent lag and delays arising from multiple PC-

based software programs within the control loop represent a more substantial source of 

unmodeled error compared to the simulation environment. The OPC communication with the 

ship was achieved through the Wi-Fi system from window PC. The wireless connectivity always 

has some lag and interference from other devices.  But delays caused by software timing, both 

within the Windows operating system and the control software, are more significant than delays 

due to WIFI. 

The real-world setup's scale and complexity are unmatchable with the simulations. Finally, the 

idealized version of the simulation differs from the testing environment, where wear and tear, 
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manufacturing tolerances and flexibility, human interaction, and intervention significantly 

influence. 

A comparison of the error for the simulation and the experimental results for the different 

parameters significant for the trajectory control is presented in Table 3-5 and 3-6.  

 

Table 3-5: Error comparisons for simulation vs experimental results for the Circular Trajectory 

Parameters Simulation  Experiment 

Prediction 

Horizon, N 
5 10 20 5 10 20 

Sum of root mean 

squared position 

error, 𝒆𝒙𝒚 (m)  
0.3367 0.1865 0.2386 0.28 0.2548 0.3152 

Heading Angle 

error, 𝒆𝝍 (rad) 
0.003 0.0399 0.0883 0.005 0.036 0.0691 

Surge velocity 

error, 𝒆𝒗𝒙
 (m/s) 

0.0266 0.0267 0.028 0.0221 0.0275 0.0318 

Sway Velocity 

error, 𝒆𝒗𝒚
 (m/s) 0.0123 0.0146 0.0228 0.0228 0.0382 0.0428 

Yaw rate error, 

𝒆𝒗𝝍
(rad/s) 0.0147 0.015 0.015 0.002 0.0164 0.0307 

Average Execution 

Time per 

iteration,𝑻𝒔(s)  

0.1204 0.3348 0.8552 0.2182 0.4985 0.8272 

 

Table 3-6: Error comparisons for simulation vs experimental results for the Figure 8 Trajectory 

Parameters Simulation  Experiment 

Prediction 

Horizon, N 
5 10 20 5 10 20 

Sum of root mean 

squared position 

error, 𝒆𝒙𝒚 (m) 
0.2181 0.1381 0.1387 0.2248 0.3005 0.1862 

Heading Angle 

error, 𝒆𝝍 (rad) 
0.0214 0.0282 0.0633 0.0532 0.0601 0.0813 

Surge velocity 

error, 𝒆𝒗𝒙
 (m/s) 

0.0255 0.0255 0.0269 0.0214 0.0257 0.0274 
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Sway Velocity 

error, 𝒆𝒗𝒚
 (m/s) 0.0106 0.0112 0.015 0.0219 0.0303 0.0322 

Yaw rate error, 

𝒆𝒗𝝍
(rad/s) 0.0132 0.0133 0.0134 0.0079 0.0111 0.0146 

Average Execution 

Time per 

iteration,𝑻𝒔(s)  

0.1019 0.3862 0.8418 0.0918 0.3899 0.8339 

 

. In the experimental analysis, both the circular and figure-eight trajectories showed improved 

performance at a lower prediction horizon of N = 5. Position error deviations for the circular path 

were measured at 0.28 m, 0.2548 m, and 0.3152 m for prediction horizons of 5, 10, and 20, 

respectively. The figure-eight trajectory, which is more complex, had position error deviations of 

0.2248 m, 0.3005 m, and 0.1862 m for the same respective prediction horizons. 

 

  

Figure 3-19: Comparison of X and Y positions for the circular trajectory 
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Figure 3-20: Comparison of X and Y positions for the Figure-eight trajectory 

  

Figure 3-21: Comparison of heading angles for the 

circular trajectory 

Figure 3-22: Comparison of heading angles for the 

Figure-eight trajectory 

 

  

Figure 3-23: The error for positions the different prediction horizons for circular and figure eight trajectory. 
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inaccuracies in modeling or minor deviations can build up over time, resulting in considerable 

errors. This effect is more pronounced in complex trajectories, where even negligible errors in 

heading or position can amplify into large deviations from the planned route. The higher 

prediction horizon takes high computational times which is not desired in the trajectory tracking 

problem. For trajectory tracking problem a smaller prediction horizon is well suited.  

An observation worth noting was the asymmetry in the error along one side of the figure-eight 

trajectory. This discrepancy stemmed from a calibration error in the feedback camera. Another 

potential contributing factor to this disparity could be the inconsistent feedback received from 

the sensors. The calibration of the mechanical structure supporting the sensor mount may also 

have played a role in causing this deviation or error. 

 

  

Figure 3-24: The heading error of the different prediction horizons for circular and figure eight trajectory. 
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better heading control at this horizon. The average execution time per iteration increases with the 

prediction horizon, which is expected due to the higher computational load for longer horizons. 

In both trajectories, the experimental results generally favor a prediction horizon of N = 5 for 

most error metrics, indicating that a shorter horizon allows the NMPC controller to better cope 

with the complexities of the real world, which is a dynamically changing environment. This 

could be due to the quicker adaptability and responsiveness of the NMPC controller at a shorter 

horizon, which is critical for dealing with rapidly changing wave patterns. The longer 

computation times for larger horizons could lead to a delay in response, which may not be ideal 

in an environment where quick adjustments are necessary.  

When optimizing NMPC for autonomous ships, it's important to balance prediction accuracy 

with computational efficiency and responsiveness to disturbances. The data suggests that for the 

conditions tested, a smaller prediction horizon (N = 5) is more effective for managing the ship's 

trajectory and orientation.  

 

0 20 40 60 80 100 120 140 160

T [s]

-0.2

0

0.2

0.4

V
x
 [
m

/s
]

Vx Comparison

V-ref DM5 DM10 DM20

0 20 40 60 80 100 120 140 160

T [s]

-0.2

-0.1

0

0.1

0.2

V
y
 [
m

/s
]

Vy Comparison

0 20 40 60 80 100 120 140 160

T [s]

-0.2

-0.1

0

0.1

0.2

V
p
s
i 
[r

a
d

/s
]

Vpsi Comparison

Velocity component Comparison for Different N (Circle)



 71 

Figure 3-25(A): Comparison of velocity components for the circular trajectory for different N. 

 

Figure 3-25(B): Comparison of velocity components for the Figure-eight trajectory for different N. 

 

  

Figure 3-26A: The error for surge velocities for the different prediction horizons for circular and figure 

eight trajectory. 
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Figure 3-26B: The error for sway velocities for the different prediction horizons for circular and figure 

eight trajectory. 

 

  

Figure 3-26C: The error for yaw rates for the different prediction horizons for circular and figure eight 

trajectory. 
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balance between responsiveness and overcorrection. Prediction horizons of N = 10 and N = 20, 

exhibit more aggressive ranges of control forces and moments that could be less efficient and 

potentially lead to increased wear and energy consumption. The optimal prediction horizon is N 

= 5 for maintaining efficiency in control efforts, especially when handling complex trajectories 

and dynamic environmental disturbances. This horizon allows for a responsive yet not overly 

aggressive control strategy, which is advantageous for operational efficiency and system 

durability. Exploring even shorter prediction horizons could provide insights into whether further 

improvements in responsiveness or efficiency can be achieved in the control strategy. 

 

Table 3-7: comparison of the forces for different prediction horizon for the two trajectories  

 

Trajectory 

Surge force (𝝉𝒙) range Surge force (𝝉𝒚) range Yaw moment (𝝉𝝍) range 

N =5 N =10 N=20 N =5 N =10 N=20 N =5 N =10 N=20 

Circular min -10.19 -46.69 -23.24 -20.38 -50 -49.99 -53.68 -85 -85 

max 20.12 50 49.99 -6.59 50 32.35 26.34 100 99.99 

Figure 

eight 

min -36.55 -50 -49.99 -50 -50 -34.26 -10.72 -61.60 -77.45 

max 50 50 50 33.48 50 50 13.42 33.47 45.36 
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Figure 3-27A: Comparison of Forces for the circular trajectory for different N.  
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Figure 3-27B: Comparison of Forces for the Figure 8 trajectory for different N.  

 

After observing all the results, it can be concluded that with a shorter prediction horizon the 

controller works better because it allows the controller to be more responsive to immediate 

changes, making quick adjustments as needed. It also required less computational time, allowing 

for more frequent updates and potentially more accurate real-time control. The interior-point 

method is effective at handling constraints, which are critical in maintaining control performance 

at lower speeds like 0.2 m/s. Tighter control over these constraints helps prevent the ship from 

violating physical and operational limits. But the large prediction horizons were violating the 

0 20 40 60 80 100 120 140 160

T [s]

-100

-50

0

50

100

=
x

=x Com parison forDi,erentN

DM5 DM10 DM20

0 20 40 60 80 100 120 140 160

T [s]

-100

-50

0

50

100

=
y

=y Com parison forDi,erentN

0 20 40 60 80 100 120 140 160

T [s]

-100

-50

0

50

100

=
A

=A Com parison forDi,erentN

= Com parison forDi,erentN (Figure8)



 76 

operational limits frequently which was observed in the Figure 3-23. The overall performance of 

the controller in a real-life environment was pretty good. The trajectory was followed very well 

and the errors were numerically very small.   

3.4 Conclusion  

The proposed NMPC was evaluated in both simulation and experimental settings. Simulation 

results demonstrate significant potential for the controller's effectiveness, particularly under 

harsh environmental conditions. However, experimental results were conducted in calm water 

due to the unavailability of the wave generator at the NRC testing facility. 

From the simulation findings, a moderate control horizon was found to provide favorable results. 

Conversely, experimental studies indicated that a smaller prediction horizon (N=5) yielded the 

best performance. This is attributed to the slower controller response with larger control 

horizons, resulting in deviations from the trajectory and occasional oscillatory behavior. 

Moreover, larger control horizons were observed to lead to accumulation of errors and model 

inaccuracies over time. 

The controller aims to achieve two objectives: maintaining trajectory and constant speed. There 

appears to be an interaction between response speed and tracking accuracy, highlighting the need 

for tuning in ship navigation to optimize performance. 

Additionally, challenges such as drop-offs in feedback, delays from Windows PC and control 

software, and associated errors were identified as significant factors affecting system 

performance. Addressing these issues is crucial for enhancing overall control effectiveness and 

reliability in practical maritime operations.  
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Chapter 4 
 

4.0 Comparative Study of Physics-Based and Neural Network 

NMPC Models for the Autonomous Ship Trajectory Tracking.  
 

Abstract 

Autonomous Surface Vessels (ASVs) are rapidly emerging as a cutting-edge technology in 

maritime operations. Their safe and efficient trajectory-tracking capability is essential for the 

growing autonomous ship industry. Adhering to stringent maritime regulations especially in the 

unpredictable marine environment, poses considerable challenges. Environmental elements such 

as waves, currents, and winds introduce complexities that demand a robust control system for 

ASVs to navigate effectively. This research aimed to conceive a controller that addresses these 

multifaceted challenges while conforming to all safety standards. Nonlinear Model Predictive 

Control (NMPC) emerged as the optimal solution, adept at managing the nonlinear dynamics of 

ships, accounting for unmodeled behavior, and adhering to multiple constraints. The NMPC 

controller, augmented by an Unscented Kalman Filter (UKF) to counteract wave effects, 

demonstrated its robustness in simulated and real-world trials conducted at the National Research 

Council (NRC) of Canada. Incorporating Machine Learning (ML) with NMPC has significantly 

advanced our trajectory-tracking objectives. Achieving precise trajectory following in real-world 

maritime conditions continues to be an intricate endeavor, with the complexity further amplified 

by diverse ship dynamics and environmental settings. An Artificial Neural Network (ANN) 

could capture intricate ship dynamics, showing impressive results in simulations and hands-on 

experiments. The performances of mechanistic and neural network models were meticulously 

compared in both simulated environments and experimental basins to validate their effectiveness 
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and practicality. Finally, an improvement in the model is suggested using a deep neural network 

trained with natural data. The implementation of NMPC with neural network structures was one 

of the core objectives of the thesis.  

 

4.1 Introduction  

The marine industry is keenly interested in integrating ASVs into their operations, recognizing 

their capacity to operate autonomously. These vessels serve diverse purposes, including 

scientific research, data collection, and military operations, necessitating accurate trajectory 

tracking to fulfill their specific missions. Robust control methodologies detailed in [12], [13], 

[14] aim to minimize a ship's tracking error, employing techniques like the Lyapunov method, 

composite nonlinear feedback controllers, and finite-time leader-following formations. Despite 

these efforts, the convergence rate towards minimal error remains slow, and the exact limits of 

error reduction are indeterminate. Research in [15] utilizing a finite fault-tolerant controller 

achieved commendable accuracy but similarly suffered from sluggish convergence rates. More 

rapid solutions discussed in [16] and [17], which rely on motion planning, are often contingent 

on specific initial conditions, the precise calibration of control variables, and the uncertainties 

inherent in ship models. Some of the research papers worked extensively for the implementation 

of the adaptive control approach for the autonomous ships. In the presence of the environmental 

disturbances, it is very difficult to control the motion of the vessel due to the nonlinear dynamics 

of the ship. Proposals for implementing adaptive control within such a fluctuating marine 

environment have been put forth in [2], [3], yet implementing it in the practical level is to be 

confirmed. The functions of the autonomous vessels are primarily consisted of the three main 

tasks: dynamic positioning, path following and trajectory tracking [7]. By far path planning and 
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trajectory tracking requires the most robust controller. It is very significant in the offshore 

applications where safe navigation is the most important concern.  The trajectory tracking 

involves following a defined path with the suitable speed profile. To enhance the control 

performances the ship model addressing the uncertainties and disturbances is important [8], [9]. 

Under actuation of the ships play a vital role because at high-speed operations the autonomous 

surface vessels struggle to provide direct actuation in the sway direction. The backstepping and 

Lyapunov’s approach has been proved useful in correcting this issue [10].  

Artificial Neural Networks (ANNs) are strong machine learning technique to deal with complex 

problems with strong nonlinearities. It can identify the relationships between the multiple 

parameters to manipulate them. In autonomous shipping, ANNs have the potential to 

significantly enhance trajectory planning by learning from past data on ocean currents, weather 

patterns, maritime traffic, and navigational regulations, thereby adapting to the multifaceted 

variables affecting a vessel's path. Integrating ANNs with Nonlinear Model Predictive Control 

(NMPC) forms a potent and adaptable control framework that has the potential to surpass 

traditional mechanistic model-based strategies. ANNs are adept at modeling complex and 

nonlinear relationships, thus empowering NMPC to handle unpredictable and evolving system 

behaviors where linear models might fall short. By embedding difficult to model system 

dynamics within ANNs, NMPC gains enhanced predictive capabilities, leading to more accurate 

anticipation of future states and informed control actions. ANN-based models have the capacity 

to incorporate a variety of constraints, from input limitations to state and safety parameters, 

which are crucial across numerous control applications. Additionally, they can streamline the 

computational demands of NMPC's optimization process.  This combination of Artificial Neural 

Networks (ANN) and Nonlinear Model Predictive Control (NMPC) works well for tasks that 
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require quick responses, like in robotics, autonomous vehicles, and process control systems. 

ANNs contribute to NMPC's robustness by managing uncertainties and noise in system 

measurements. Moreover, they enable NMPC to tackle multi-objective optimizations, balancing 

trajectory adherence with other objectives like energy efficiency. In specific scenarios, 

reinforcement learning has been used to refine the control model in real-time using fresh data, 

thereby continuously enhancing control quality. 

Recent explorations in the realm of autonomous vehicle control have unveiled learning-based 

methodologies for capturing nonlinear behaviors ([36], [37], [38]). ANNs have shown promise in 

maritime control due to their ability in modelling nonlinear systems under predictable conditions 

[39]. Initial research utilized ship position, heading, and velocity as neural network inputs to 

determine control outputs like rudder angle and propeller speed. In [40] a minimum-time 

maneuvering approach employing an ANN controller and predictive compensator was devised, 

interpolating pre-computed minimum-time solutions for real-time control. In another instance, 

ANNs were deployed to simultaneously manage rudders, bow thrusters, and tugs [41]. However, 

these approaches did not account for environmental factors and lacked robust training datasets. 

The control mechanism in [42] introduced an adaptive backstepping controller that performed 

adequately under wind disturbances, albeit assuming the ship's longitudinal velocity was nil. 

Further, a study in [43] implemented a feedforward neural network alongside a Proportional-

Derivative (PD) controller, which proved challenging for multivariable system management. 

Vehicles operating with a Proportional-Integral-Derivative (PID) controller often display less-

than-ideal performance when initiating tasks from different starting points, a limitation noted in 

[19]. To mitigate this shortcoming, [20] proposed an enhanced version of the fuzzy PID 

controller, which is engineered to adapt more fluidly to a range of initial conditions. However, 
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one must consider that the fundamental linearity of standard PID controllers can complicate the 

dynamic tuning of control gains during live operation. Fuzzy logic controllers are commended 

for their swift alignment with reference paths, promoting safe and efficient autonomous 

navigation, as detailed in [21]. These controllers are also known for their real-time 

responsiveness, which optimizes computational tasks. Despite their effectiveness, as documented 

in [22], they are not without drawbacks. A notable concern is their propensity to induce 

oscillations in steering commands, a phenomenon highlighted in [23], which can complicate 

stability and performance evaluations. Sliding Mode Control (SMC) is a robust technique for 

managing non-linear control systems. It is particularly effective in handling uncertainties and 

external disturbances in autonomous vehicles, as evidenced by researchers in [24]. It enables 

vehicles to quickly align with their designated paths with a high degree of reliability, a benefit 

confirmed by [25]. Advantages of SMC include its quick reaction time, robustness to system 

variations, and ease of implementation. Additionally, it can be integrated with other controls for 

enhanced performance [26]. However, challenges arise in its application, such as the necessity 

for ongoing linearization [27] and the potential for high lateral acceleration during abrupt 

trajectory changes [28]. Model Predictive Control (MPC) is highly effective for managing 

uncertain and nonlinear systems, particularly in autonomous vehicle operations where constraint 

adherence, such as rollover prevention and lateral stability, is crucial. Its proficiency in constraint 

management is highlighted in [29], where MPC adeptly maintained tire-road friction limits. 

MPC's strength lies in handling multi-input and multi-output (MIMO) systems. As an advanced 

optimal control strategy, it continually solves optimization problems, balancing objectives, and 

constraints over a defined time horizon, as detailed in [30] and [31]. These attributes make MPC 

an ideal solution for trajectory tracking in autonomous vehicles, adept at navigating complex 
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constraints with an Artificial Neural Network or mechanistic model. The study in [70] shows that 

the NMPC controller with disturbances in the form of current ocean currents provided promising 

results.  But the simulation-based results are not enough to understand the adaptability and 

versatility of the NMPC controller. Also, incorporation of wave disturbances is important. The 

research in [71] uses NMPC to solve trajectory tracking and collision avoidance problems. They 

utilized disturbance filter to showcase the simulation results. But the study does not involve the 

experimental results. The trajectory used for tracking was a straight line. Irregular or complex 

trajectories in an real experimental setup fully shows the utility of the controller. An improved 

Nonlinear Disturbance Observer (INDO) based NMPC was utilized in [72]. The research showed 

good results in Dynamic Positioning (DP) of the ship and is expected to track the trajectories 

with almost zero offset. But in this work the DP of the ship was shown in simulations and no 

trajectory tracking task was done. In the paper in [73] a backstepping controller is compared with 

the MPC based controller for comparing the tracking results. Apparently the MPC showed much 

better tracking results. But still, simulation results without disturbance modelling cannot express 

the model’s full potential.  

This thesis seeks to develop a robust NMPC for Autonomous Surface Vessels capable of 

adapting to different ship models and environmental conditions, ensuring precise and efficient 

trajectory tracking.  

4.2 Methodology   

The key areas of focus in our study include: 

 Development and Design of the Nonlinear Model Predictive Controller. 

 Development of the Magne Viking Vessel model using Neural Network technique.  

 Disturbance models and Unscented Kalman Filter methods. 
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4.2.1 Nonlinear Model Predictive Controller (NMPC) 

In this section, we focus on the trajectory tracking of the Magne Viking surface vessel using a 

Nonlinear Model Predictive Control (NMPC) scheme. The ship's motion is modeled using a 3-

degree-of-freedom (DOF) framework, emphasizing surge, sway, and yaw movements, while 

excluding heave, roll, and pitch [54]. The NMPC, leveraging the vessel's nonlinear dynamics as 

its prediction model, operates in real-time by iteratively solving nonlinear optimization problems 

at each time step, as detailed in [55]. Key elements of NMPC include a quadratic cost function, 

prediction model, state and input constraints, and output feedback control architecture 

incorporating an offset-free formulation [56]. The state space model, denoted as 𝑓, captures the 

nominal six-state model essential for accurate trajectory tracking, expressed through equation 

(4.1). 

𝑥(𝑘 + 𝑇) = 𝑥(𝑘) +  ∫ 𝑓(𝑥(τ))𝑑τ,
𝑘+𝑇

𝑘

 
(4.1) 

Where x (𝑘)   represents the current state and T is the sampling time.  

             𝑥(𝑘 + 𝑇) = 𝑥(𝑘) +  ∫ 𝑓𝑎𝑢𝑔(𝑥(τ), 𝑑(𝑘)𝑑τ,
𝑘+𝑇

𝑘
 (4.2) 

 

             𝑑(𝑘 + 𝑇) = 𝑑(𝑘),                                                                                                         (4.3) 

                                                                       

Equation (4.4) gives the predicted output, where gaug is the output model.  

 

             𝑦(𝑘 + 𝑇) = 𝑔𝑎𝑢𝑔(𝑥(τ), 𝑑(𝑘)) (4.4) 

Utilizing insights from [56] and [57], we construct an offset-free NMPC by integrating a 

disturbance model and integrator into the prediction model. This results in an augmented model, 

labeled as 'f', which merges the original state space (faug) with a disturbance model 'd', as 

formulated in Equation (4.2). For state predictions, the initial disturbance estimate is treated as 
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constant, resembling a step disturbance, in line with the methodology described in Equation 

(4.3). The prediction model's numerical integration is executed using explicit Euler’s Method, 

with the predicted state outcomes defined by Equation (4.2). 

4.2.2 Cost Function   

The cost function minimizes the gap between the desired equilibrium state targets and the actual 

system states It focuses on aligning the desired equilibrium state targets �̅�  and the current system 

states 𝑥(𝑘), as well as synchronizing the equilibrium input target �̅�  with the present input 𝑢(𝑘). 

This alignment is key for accurately tracking the reference signal 𝑟(𝑘) which outlines the ship's 

desired trajectory characteristics. The overarching goal is to ensure offset-free tracking, 

maintaining consistent alignment with the desired reference trajectory over time. 

𝐽 =
𝑚𝑖𝑛

𝑢
 ∑ (�̂�(𝜅) − �̅�)𝑇𝜆1(�̂�(𝜅)𝑘+𝑚

𝜅=𝑘 −  �̅�) +𝜆2(𝑢(𝜅) − �̅�)2) (4.5) 

 

�̅� = 𝑓𝑎𝑢𝑔(�̅�, �̅�, �̂�(𝑘))  (4.6) 

 

�̅� = 𝑔𝑎𝑢𝑔(�̅�, �̂�(𝑘))  (4.7) 

 

The cost function, influenced by weights  𝜆1 𝑎𝑛𝑑 𝜆2and operating over a prediction horizon (m), 

computes the cost of optimal control by considering both running and terminal costs. The 

optimization, constrained by the trajectories, is addressed using the fmincon function for solving 

constrained optimization problems, as shown in Equation (4.8). The fmincon found the minimum 

of the constrained nonlinear multivariate function. The optimization scheme involved the active 

set method, the interior point method and trust region reflective method for optimization. Our 

study involved the interior point optimization techniques because of its robustness in handling 

the nonlinear constraints and solving large scale problems. After getting each states the new state 
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is obtained through Euler’s Integration.  Details on the states and input variables will be further 

explored in the vessel model section.  

 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥; 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 (4.8) 

   

4.2.3 Vessel Model for NMPC  

 

The proposed NMPC was implemented on the simulated model and physical model of the 

Magne Viking ship. The Magne Viking model ship is a 1:14.7 scale replica of the actual ship. 

Key vessel parameters were determined through a series of experiments conducted by the 

National Research Council (NRC).  

Mechanistic Model 

�̇�(𝑡) = 𝑅(𝜂(𝑡))𝑉(𝑡) (4.9) 

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡) =  𝜏 (4.10) 

Here,  

𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)] represents the position and orientation.  

𝑉(𝑡) = [𝑣𝑥(𝑡), 𝑣𝑦(𝑡), 𝑣𝜓(𝑡)]
𝑇
 denotes the vessel’s velocity.  

𝜏 symbolizes the forces exerted on the ship’s center of gravity. For 𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)], the 

components 𝑥(𝑡), 𝑦(𝑡) indicate the ship's position in the north-east direction relative to the local 

geographical frame, while 𝜓(𝑡)]  represents the yaw rate aligned with the north. Given our 

model's focus on horizontal plane motion, the angular velocity is described by a singular 

component. The variables related to ship motions and their corresponding measurement frames 

are concisely presented in the following table. 
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Table 4-1: Summary of ship motion variables for maneuvering applications  

Variable Name Frame Units 

𝑥 North Position Earth fixed m 

𝑦 East Position Earth fixed m 

𝜓 Heading or Yaw angle Body fixed rad 

𝑣𝑥 Surge Speed Body fixed m/s 

𝑣𝑦 Sway Speed Body fixed m/s 

𝑣𝜓 Yaw rate Body fixed rad/s 

𝜏𝑥 Surge Force Body fixed N 

𝜏𝑥 Sway Force Body fixed N 

𝜏𝑥 Yaw moment Body fixed N-m 

𝜂(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝜓(𝑡)]𝑇 Generalized position   

𝑉(𝑡) = [𝑣𝑥(𝑡), 𝑣𝑦(𝑡), 𝑣𝜓(𝑡)]
𝑇
 Generalized velocity   

𝜏 = [𝜏𝑥, 𝜏𝑦, 𝜏𝜓]
𝑇
 Generalized force   

 

Here in the equation (4.9) The symbol M denotes the Inertial Mass Matrix, which is composed of 

two distinct elements: the Rigid Body Matrix 𝑀𝑅𝐵 and the Added Mass Matrix 𝑀𝐴. 

𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴 (4.11) 

Where, 

𝑀𝑅𝐵 = [

𝑚 0 0
0 𝑚 𝑚𝑥𝑔

0 𝑚𝑥𝑔 𝐼𝑧

];            𝑀𝐴 = [

−𝑋�̇� 0 0
0 −𝑌�̇� −𝑌�̇�

0 −𝑁�̇� −𝑁�̇�

] 

(4.12) 
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𝐶(𝑉) = 𝐶𝑅𝐵(𝑉) + 𝐶𝐴(𝑉) (4.13) 

In this context, ' 𝑚 ' refers to the mass of the ship, while 𝑥𝑔 indicates the distance between the 

ship's center of gravity and the center of the body-fixed coordinate frame. '  'represents matrices 

that account for Coriolis and Centrifugal forces, encompassing effects from both the rigid body 

dynamics and additional forces due to Coriolis and centripetal actions. 

Where,  

𝐶𝑅𝐵 (𝑉) = [

0 0 −𝑚(𝑥𝑔𝑣𝜓 + 𝑣𝑦)

0 0 𝑚𝑣𝑥

𝑚(𝑥𝑔𝑣𝜓 + 𝑣𝑦) −𝑚𝑣𝑥 0

] 

𝐶𝐴(𝑉) = [

0 0 𝑐13(𝑉)
0 0 𝑐23(𝑉)

−𝑐13(𝑉) −𝑐23(𝑉) 0
], 

(4.14) 

 

Here 𝑐13(𝑉) = 𝑌�̇�𝑣𝑥 +
1

2
(𝑁�̇� + 𝑌�̇�) and 𝑐23(𝑉) =  −𝑋�̇�𝑣𝑥  

The Damping matrix is a combination of two matrices having linear and non-linear damping 

parameters.  

𝐷(𝑉) = 𝐷𝐿 + 𝐷_𝑁𝐿(𝑉) 

Where, 

𝐷𝐿 = [

−𝑋𝑢 0 0
0 −𝑌𝑣 −𝑌𝑟

0 −𝑁𝑣 −𝑁𝑟

] 

𝐷𝑁𝐿(𝑉) = [

−𝑑11(𝑉) 0 0

0 −𝑑22(𝑉) −𝑑23(𝑉)

0 −𝑑32(𝑉) −𝑑33(𝑉)
] 

With 𝑑11(𝑉) = 𝑋|𝑢|𝑢|𝑣𝑥| + 𝑋𝑢𝑢𝑢𝑣𝑥
2  , 𝑑22(𝑉) = 𝑌|𝑣|𝑣 |𝑣𝑦| + 𝑌𝑟|𝑣| |𝑣𝜓| ,  

𝑑23(𝑉) = 𝑌|𝑣|𝑟|𝑣𝑌| + 𝑌𝑟|𝑟||𝑣𝜓| ,  𝑑32(𝑉) = 𝑁𝑣|𝑣||𝑣𝑦|  + 𝑁𝑟|𝑣||𝑣𝜓| and  
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𝑑33(𝑉) = 𝑁𝑣|𝑟||𝑣𝑦| + 𝑁𝑟|𝑟| |𝑣𝜓|   

The matrix 𝑅(𝜂) serves as rotation matrix, crucial for transforming the vessel's velocity from 

body-fixed coordinates to inertial velocities. It is defined as:  

𝑅(𝜂) = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

]  

 

(4.15) 

In this matrix, 𝜓 represents the ship's heading, and 𝜏 is the vector denoting the forces applied to 

the ship. 

𝝉 = [

𝜏𝑥

𝜏𝑦

𝜏𝜓

] 
(4.16) 

Where 𝜏𝑥 and 𝜏𝑦 are the surge and sway forces (N) and  𝜏𝜓 is the moment in N-m.  

For our performance assessment in both simulations and experiments, we chose the Magne 

Viking model ship as the Autonomous Surface Vessel (ASV). This model is a scaled-down 

version of the actual vessel. Critical parameters of the vessel were ascertained through a series of 

tests conducted by the National Research Council (NRC). These identified parameters are crucial 

for the creation of a precise mechanistic model, pivotal for accurately simulating the ship's 

dynamics and conducting trajectory tracking experiments. Figure 4-1 below depicts the Magne 

Viking ship model that was employed in the trajectory tracking experiment at the NRC's testing 

facility. 
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Figure 4-1: Magne Viking model ship (NRC, St. John’s, NL, Canada)  

Table 4-2: Magne Viking model Vessel Parameters  

Parameters Value Parameters Value Parameters Value 

𝑚 1290.45 𝑌|𝑟|𝑣 0 𝑁|𝑣|𝑣 0 

𝑥𝑔  0.0184 𝑁|𝑟|𝑣 0 𝑌𝑟 0 

𝐼𝑧 1.57765x103  𝑁𝑟 26 𝑌𝑣 336.055 

𝑋�̇� 158.23 𝑌|𝑣|𝑟 0 𝑁�̇� 1.55992𝑥103 

𝑌�̇� 1087.3 𝑁|𝑣|𝑟 0 𝑋|𝑢|𝑢  194 

𝑌�̇� 0 𝑌|𝑟|𝑟 0 𝑌|𝑣|𝑣 0 

𝑁�̇� 0 𝑁|𝑟|𝑟 3913.5 𝑁𝑣 0 

𝑋𝑢𝑢𝑢 -112 𝑋𝑢 41.788   

 

Neural Network Model Development 

The Neural Network model for predicting the ship velocities was developed using MATLAB 

deep learning toolbox was utilized. Training data was generated based on the available 

mechanistic model of the ship. This data is crucial as it captures the ship's behavior under various 
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conditions and scenarios. The Magne Viking ship model was used to generate data sets for 

Neural Network. The generated data set helped the Neural Network to generalize and act 

according to the trajectory to be followed. Randomly generated forces provided the data set from 

the Magne Viking model which were then used to train the NN model.  

Neural Network Architecture  

A feedforward Neural Network (ANN) was chosen to create the NN model. This type of network 

is well-suited for pattern recognition tasks like predicting ship movements based on historical 

data. The network was trained using a dataset consisting of 40,000 data points which were 

generated from the ship’s existing model. These data points were carefully selected to represent a 

wide range of possible scenarios and conditions the ship might encounter. It was tested with a 

completely different data set to ensure the model’s accuracy and generalizability. The testing 

data was completely unseen to the neural network and hence it prevented information leakage to 

the trained model. This step is critical to validate that the model performs well with new, unseen 

data, indicating its reliability in real-world applications.  

 

Figure 4-2: Feedforward Neural Network framework for training the dataset for Magne Viking.  

 

In the training process of the neural network using Bayesian regularization, the dataset was 

strategically divided training and testing sets.  
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Training Data (80%): A significant majority, 80% of the data, was allocated for training the 

network. This substantial portion allows the model to learn and adapt to a different scenario, 

ensuring a thorough understanding of the dynamics involved in ship motion. 

Testing Data (10%): Another 10% of the dataset was used for testing. This phase is crucial for 

assessing the model's performance on data it hasn't seen during training, which is critical for 

evaluating its predictive capabilities. 

Validation Data (10%): The remaining 10% of the data was reserved for validation. This step is 

essential to fine-tune the model, check for overfitting, and confirm that it generalizes well to new 

data. Validation helps in making any necessary adjustments to the model before its final 

deployment. 

To accurately capture the dynamics of the ship, the neural network is designed to process 

specific input and output data. The neural network receives a total of 6 input variables. These 

inputs consist of the velocity and forces of the ship from the previous time step (t-1). This 

information includes components such as surge (𝑣𝑥), sway (𝑣𝑦), yaw velocities (𝑣𝜓), and the 

corresponding forces  

𝜏𝑥, 𝜏𝑦, 𝜏𝜓 acting on the ship at that moment. Based on these inputs, the neural network predicts 

three output variables: the ship's velocities at the current time step (t).  

Table 4-3: Neural Network Training Data  

Inputs for training NN Outputs 

𝑣𝑥𝑡−1 
 𝑣𝑦𝑡−1 

 𝑣𝜓𝑡−1 
 𝜏𝑥𝑡−1

 𝜏𝑦𝑡−1
 𝜏𝜓𝑡−1

 𝑣𝑥𝑡 
 𝑣𝑦𝑡 

 𝑣𝜓𝑡
 

 

These output velocities provide critical information about the ship's surge, sway, and yaw 

movement. During the training phase, the NN understands the relationship between the forces 
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and velocities at the one-time step and how they influence the ship's velocities in the subsequent 

time step. This learning process involves adjusting the network's internal parameters to minimize 

prediction errors. The trained neural network becomes a predictive tool that can estimate the 

future state of the ship's velocities based on the current and past states. This capability is crucial 

for the dynamic modeling of the vessel, as it provides a more accurate representation of how the 

ship will move and react to various forces. By incorporating these inputs and outputs, the neural 

network forms an integral part of the dynamic modeling process, offering enhanced predictive 

capabilities essential for effective navigation and control of the ship. 

For the testing phase of the neural network, a specific methodology was employed to evaluate its 

predictive accuracy: The output velocity predicted by the neural network for the current time step 

(t) was utilized as part of the input for the next time step (t+1). This approach simulates a 

continuous prediction scenario, where the network's output feeds directly into its subsequent 

input, mirroring real-world conditions. Along with the output velocity used as input, the forces 

calculated for the next time step were also included in the input dataset. These forces, crucial in 

determining the ship's movement, ensure that the network considers both the immediate past 

state and the expected external influences in its prediction. This process was repeated 

sequentially, creating a chain of predictions where each step's output becomes the following 

step's input. This testing approach closely mirrors how the neural network would function in 

real-time operation, providing insights into its effectiveness in dynamic environments.  

Table 4-4: Neural Network Testing Data arrangement (Only first steps are shown)  

Steps Inputs for testing NN Outputs 

1 𝑣𝑥𝑡−1 
 𝑣𝑦𝑡−1 

 𝑣𝜓𝑡−1 
 𝜏𝑥𝑡−1

 𝜏𝑦𝑡−1
 𝜏𝜓𝑡−1

 𝑣𝑥𝑜𝑡 
 𝑣𝑦𝑜𝑡 

 𝑣𝜓𝑜𝑡
 

2 𝑣𝑥𝑜𝑡 
 𝑣𝑦𝑜𝑡 

 𝑣𝜓𝑜𝑡
 𝜏𝑥𝑡

 𝜏𝑦𝑡
 𝜏𝜓𝑡

 𝑣𝑥𝑜𝑡+1
 𝑣𝑦𝑜𝑡+1 

 𝑣𝜓𝑜𝑡+1
 



 93 

 

The key focus of this testing was to assess how accurately the neural network could predict 

future velocities based on past data and immediate inputs. The accuracy of these predictions is 

critical for the successful implementation of the network in real-world maritime navigation and 

control systems. This testing methodology was essential in validating the neural network's 

capability to effectively predict ship dynamics, an integral part of its role in enhancing maritime 

navigation and control. So, after testing the trained NN model with the newly generated different 

set of data from the ship model it was ready to be used with the NMPC. For testing the trained 

model only require the initial velocities and the forces from the data set. From the next time steps 

the velocities are replaced by the generated output velocities from the trained model.  

4.2.3.1 Training algorithm of Neural Network 

The Bayesian regularization method was employed to train the neural network. Bayesian 

regularization prevents overfitting, ensuring the neural network generalizes well to new, unseen 

data. This is crucial for a model used in dynamic environments like maritime navigation, where 

conditions vary significantly. It works by adjusting the network weights, finding a balance 

between fitting the training data accurately and keeping the weights small. This balance is 

critical to creating a robust model that performs reliably under different scenarios. Bayesian 

regularization inherently controls the complexity of the neural network. It does this by 

considering the probability of the data in the model, which helps determine the most probable 

weights. This method results in models that generalize better, making them more reliable when 

applied to real-world situations, such as predicting the dynamics of a ship based on various 

inputs. Using Bayesian regularization for training thus ensures that the neural network is accurate 
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with the training data and capable of performing well with new, real-world data in the context of 

ship dynamics and control. 

The trained ANN model was then integrated into the NMPC framework. This integration allows 

the NMPC to utilize the ANN model's predictions for efficient and accurate trajectory tracking of 

the ship. The final model, a combination of ANN and NMPC, is designed explicitly for trajectory 

tracking. It allows for enhanced control and prediction capabilities, enabling the ship to navigate 

effectively while accounting for various dynamic environmental factors. This approach 

demonstrates a sophisticated application of artificial intelligence in maritime navigation, 

enhancing the capabilities of traditional control systems with the predictive power of neural 

networks. 

 

 

4.2.4 Disturbance Model  

 

This research delves into managing the navigation of marine surface vessels amidst unforeseen 

environmental variations. The employed ship movement model incorporates elements such as the 

Coriolis and centripetal matrix, alongside nonlinear damping factors. To tackle the challenge of 

undetected disturbances, we implement an observer to approximate these disruptions. This 

estimated data aids in devising a robust controller, optimized for precise trajectory adherence. 

Key challenges in maintaining the vessel's course stem from disturbances caused by wind, 

waves, and currents. As depicted in Equation (4.10), a dynamic model for the vessel is 

formulated to address these factors. 

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡)  + 𝑑(𝑉𝑟𝑐𝛾𝑐) =  𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑤𝑎𝑣𝑒𝑠 (4.17) 
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The term 𝑑(𝑉𝑟𝑐𝛾𝑐) shows the current forces. It depends on the speed and direction of the current 

with respect to the vessel. It shows the transfer of the energy from the vessel to the water. Here,  

𝑉𝑟𝑐 =  √𝑣𝑥𝑟𝑐
2 + 𝑣𝑦𝑟𝑐

2 =  √(𝑣𝑥 − 𝑣𝑥𝑐
)

2
+ (𝑣𝑦 − 𝑣𝑦𝑐

)
2

 
(4.18) 

𝛾𝑟𝑐 =  −𝑎𝑡𝑎𝑛2(𝑣𝑦𝑟𝑐
, 𝑣𝑥𝑟𝑐

) (4.19) 

The variables 𝑣𝑥𝑐
 and 𝑣𝑦𝑐

 represent the current velocity as measured in the vessel's body-fixed 

frame, while 𝛾𝑟𝑐 denotes the angle of the current, measured in relation to the vessel's bow. 

Typically, the forces exerted by the current are expressed through nondimensional coefficients, 

which correspond to the surge, sway, and yaw directions of the vessel. 

Which is expressed as –  

𝑑(𝑉𝑟𝑐𝛾𝑐) =
1

2
𝜌𝑉𝑟𝑐

2   [

𝐴𝐹𝑐 𝐶𝑋𝑐(𝛾𝑟𝑐)

𝐴𝐿𝑐 𝐶𝑌𝑐(𝛾𝑟𝑐)

𝐴𝐿𝑐𝐿𝑜𝑎 𝐶𝑁𝑐(𝛾𝑟𝑐)
] 

(4.20) 

In this context, 𝜌 represents the density of water. The formula we use incorporates factors such 

as the frontal area (𝐴𝐹𝑐), and lateral area (𝐴𝐿𝑐) of the vessel's submerged hull, as well as the 

overall length of the ship (𝐿𝑜𝑎). For vessels equipped with dynamic positioning systems, typical 

current coefficients are usually derived from experimental data or computational fluid dynamics 

models, as referenced in [60]. Accurately estimating the current coefficients (𝐶𝑋𝑐, 𝐶𝑦𝑐, 𝐶𝑁𝑐) is a 

complex task, often requiring in-depth hydrodynamic analysis and scale-model tests tailored to 

the specific vessel. In certain scenarios, as mentioned in [61], it's common to simplify the model 

(as per Equation 4.19) by incorporating a linear damping term alongside a bias term. This can be 

expressed as follows: 
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𝑑(𝑉𝑟𝑐𝛾𝑐)  ≈ 𝐷𝑣 − 𝑅𝑇(𝜓)𝑏 (4.21) 

 

So the vessel model from (4.9) and (4.10) becomes  

𝑀�̇�(𝑡) + 𝐶(𝑉(𝑡))𝑉(𝑡) + 𝐷(𝑉(𝑡))𝑉(𝑡) =  𝑅𝑇(𝜂(𝑡))𝑏 + 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑤𝑎𝑣𝑒  (4.22) 

 

If currents change gradually, the bias term remains constant in earth-fixed coordinates. To 

accurately represent this in the ship motion equation (4.22), the bias term is rotated to reflect how 

current forces vary with changes in the ship's heading. The estimation of the bias involves the 

use of the Unscented Kalman Filter (UKF). Likewise, the impact of wind forces on the vessel is 

characterized using nondimensional force coefficients, as detailed in the subsequent equation. 

𝜏𝑤𝑖𝑛𝑑 =  
1

2
𝜌𝑎𝑉𝑟𝑤

2   [

𝐴𝐹𝑤 𝐶𝑋𝑤(𝛾𝑟𝑤)

𝐴𝐿𝑤 𝐶𝑌𝑤(𝛾𝑟𝑤)

𝐴𝐿𝑤𝐿𝑜𝑎 𝐶𝑁𝑤(𝛾𝑟𝑤)
] 

(4.23) 

 

In this scenario, 𝜌𝑎  denotes the density of air. The variables 𝐴𝐹𝑤
 and 𝐴𝐿𝑤

 represent the frontal 

and lateral areas of the ship exposed to the wind, respectively. The term 𝐿𝑜𝑎
refers to the length 

of the ship. The wind speed and direction relative to the vessel are indicated by 𝑉𝑟𝑤 and 𝛾𝑟𝑤, 

respectively. 

 

𝑉𝑟𝑐 =  √𝑣𝑥𝑟𝑤
2 + 𝑣𝑦𝑟𝑤

2  
(4.23) 

𝛾𝑟𝑤 =  −𝑎𝑡𝑎𝑛2(𝑣𝑦𝑟𝑤
, 𝑣𝑥𝑟𝑤

) (4.24) 

𝑣𝑥𝑟𝑤
= 𝑣𝑥 − 𝑉𝑤𝑐𝑜𝑠𝛽𝑤 (4.25) 
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𝑣𝑦𝑟𝑤
= 𝑣𝑦 − 𝑉𝑤𝑠𝑖𝑛𝛽𝑤 (4.26) 

 

The wind coefficients in Equation (4.23) can be determined through computational fluid 

dynamics, model testing, or by applying scaling coefficients from similar vessels. However, from 

a control design standpoint, wind speed and direction are typically utilized for approximate 

feedforward compensation. The inaccuracies stemming from this compensation are factored into 

the bias term of Equation (4.22). Therefore, this bias accounts for both the simplified 

representations of current and wind forces. 

The wave forces are determined as a sum of nonlinear and linear wave components.  

𝝉𝒘𝒂𝒗𝒆 =  𝜏𝑤𝑎𝑣𝑒
𝑙𝑖𝑛 + 𝜏𝑤𝑎𝑣𝑒

𝑛𝑙𝑖𝑛  (4.27) 

 

Linear and low-frequency nonlinear components are crucial in the motion control of ships. The 

low-frequency nonlinear wave forces are typically treated as input disturbances and are 

incorporated into the model as a bias term, representing a combination of nonlinear wave and 

current effects. On the other hand, linear wave forces often act as equivalent output disturbances. 

In this research, environmental forces such as waves, wind, and currents are identified as 

external elements that can impact a vessel's motion control system. These forces are divided into 

wave and low-frequency components. Waves exert pressure on the ship's hull, leading to forces 

that have both oscillatory (aligned with wave frequency) and nonlinear aspects. The oscillatory 

forces correspond to the wave frequency, while the nonlinear forces emerge from the quadratic 

relationship between pressure and fluid particle velocity caused by wave motion. These 

nonlinear forces cover a spectrum of frequencies, both above and below the wave frequencies. 

Mean wave forces can cause vessel drift, and forces at differing wave frequencies might induce 
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resonance in the vessel's motion. While high-frequency wave-induced forces are generally too 

significant for direct ship motion control, they can contribute to hull vibrations. 

 

4.2.5 Unscented Kalman Filter  

 

The Unscented Kalman Filter (UKF) utilizes a deterministic sampling technique to obtain mean 

and covariance estimations with a limited number of sigma points. This approach is particularly 

effective in nonlinear systems, outperforming the Extended Kalman Filter (EKF) in a variety of 

applications, including railways, ships, aircraft, solar probes, and more, as noted in [62]. The 

UKF operates through two primary phases: prediction and update. These steps in the table 4-5 

were employed for filtering wave effects and for state estimation using the UKF. 

Table 4-5: The steps involved in Unscented Kalman Filter implementation.  

Step Description 

Initialization  Set initial state estimate x0 and covariance P0 . Set process noise covariance Q0 

and measurement noise covariance R0. 

 

 

 

 

 

Prediction 

Step 

Generate Sigma Points:  

 

 

 

i = 1, …., n 

Propagate Sigma Points through Dynamic Model: 

 

Calculate Predicted Mean: 
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Calculate Predicted Covariance: 

 

Update Step  Generate Sigma points: 

 

 

 

i = 1, …., n 

Calculate Predicted Measurement Mean:  

 

Calculate Predicted Measurement Covariance: 

 

Calculate Cross-Covariance: 

 

Calculate Kalman Gain: 

 

Update State Estimate:  
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Update Covariance: 

 

Iterate  Repeat Prediction and Update steps for each time step. 

 

The scaling parameter, λ, in the Unscented Kalman Filter (UKF) is defined as , 𝜆 = 𝛼2(𝑛 + 𝑘) −

𝑛 , where α and k determine the distribution or extent of sigma points around the mean. In this 

case, λ is set to 3. The covariances are computed as follows: 

Pk is a 15x15 identity matrix, reflecting the 15 states for the UKF as mentioned in the table 4-5. 

For determining Qk, different matrices are chosen:  

Q1 = 1*diag ([1,1,1,10,10,10]) 

Q2 = 0.001*eye (3) 

Q3 = 0.01*diag([40,50,40]) 

Q4 = 0.005*diag([10,10,10])  

And Qk is block diagonal matrix consisting of Q1, Q2, Q3 and Q4.  

And the is chosen as Rk = [
0.005 0 0

0 0.005 0
0 0 0.0005

]  

For the state estimation using the UKF the following state vector is used.  

𝑥𝑠(𝑡) = [𝐹𝑤1, 𝐹𝑤2, 𝐹𝑤3, 𝐹𝑤4, 𝐹𝑤5, 𝐹𝑤6, 𝑥, 𝑦, 𝜓, 𝑣𝑥 , 𝑣𝑦, 𝑣𝜓, 𝑏1, 𝑏2, 𝑏3]
𝑇
 (4.28) 

So, the dynamic equation for the state estimation is given by:  
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�̂��̇�(𝑡) = 𝑓(�̂�, 𝑈) + 𝑤 

 

(4.29) 

And the measurement equation is: 

�̂�(𝑡) = ℎ(�̂�, 𝑈) + 𝑣 
 

(4.30) 

 

Here, 

 

�̂��̇�(𝑡) and �̂�(𝑡) represent the estimated states. The terms w and v denote the process and 

measurement noises, respectively. The covariance matrices for process noise 𝑄(𝑡) = 𝐸(𝑤𝑤)𝑇  

and measurement noise (𝑡) = 𝐸(𝑣𝑣)𝑇are utilized in the UKF. The Magne Viking Ship model is 

employed for state estimation in the UKF. Diagrams in Figure 4-3 and Figire 4-4 showing the 

trajectory tracking with and without UKF is demonstrated in the Figure. Here in the simulation 

with the same wave model UKF-OFF   and UKF-ON shows significant changes in the tracking.  

 

Figure 4-3: Tracking performance with UKF-OFF  
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Figure 4-4: Tracking performance with UKF-ON  

 

 

 

4.2.6 Planning the Trajectory 

To test the controller’s feasibility the diverse schemes were utilized to generate the different 

trajectories. The robustness of the controller was assessed by evaluating the controller’s 

performance under different conditions for different trajectories. The discrete points of the 

trajectories were to be followed by the controller along the path. The specified points of the 

trajectory were to be followed while remaining within the defined constrained. And the 

behaviour of the controller was observed in response to these variations. While following the 

different trajectories the response from the NMPC helped to refine the controller’s performance. 

Throughout this phase, the goal was to fine-tune the controller's parameters and determine 

optimal weights for the cost function in the NMPC. 

For trajectory generation, a constant average velocity of 0.2 m/s was maintained, aligning with 

the recommended value for the ship model used. In the case of the oval-shaped trajectory, surge 

velocity was constrained appropriately to ensure a consistent 0.2 m/s. The heading angle was 
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calculated based on the trajectories, involving the discretization of equations expressing the 

changes in x and y coordinates: 

𝑑𝑥 = 𝑥2 − 𝑥1 

𝑑𝑦 = 𝑦2 − 𝑦1 

And  𝜓 = 𝑎𝑡𝑎𝑛2
𝑑𝑦

𝑑𝑥
 

Subsequently, for comparing the controller's performance with regular and complex shapes, 

circular and figure-eight trajectories were adapted. These trajectories were then tested at the 

NRC (National Research Council). A sample trajectory used for simulation and experimentation 

is provided for reference. 

 

Figure 4-5: Final Generated Trajectory in a Figure-8 Shape 
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4.3 Results and Discussion   

This section focuses on evaluating the performance of the Nonlinear Model Predictive Controller 

(NMPC) when integrated with two distinct models: mechanical and neural network. The 

assessment encompasses both simulation and experimental settings. The controllers’ 

effectiveness in maintaining consistent paths and adapting to changing dynamics were evaluated 

for a circular trajectory and figure 8-shaped trajectory.  

4.3.1 Training the Neural Network Model 

A significant part of this study was preparing the neural network model for the NMPC which 

was then used for the simulation and experiments for the Magne Viking ship. The Training 

progress, data division, Mean Squared Errors and other aspects of the training is described in this 

section.  

Table 4-6: Training with MATLAB Neural Network toolbox 

Unit Initial Value Stopped Value Target Value 

Epoch 0 1000 1000 

Elapsed Time - 00:2:33 - 

Performance 0.115 4.3e-11 0 

Gradient 0.238 1.23e-07 1e+10 

Mu 0.005 5e+04 1e+10 

Effective# Pattern 103 103 0 

Sum Squared Pattern 69.2 249 0 

 
 

The table 4-6 summarizes the training progress for a neural network. The training stopped after 

1000 epochs, which took 2 minute and 33 seconds, indicating a relatively swift process. The 
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mean squared error decreased progressively decreased from 0.115 to 4.3e-11 showing the 

convergence of the algorithm as shown in Figure 4-6.  

 
 

Figure 4-6: Mean Squared Error for NN training.  

 

The gradient, which reflects the steepest descent in the loss landscape, began at 0.238 and 

decreased to 1.23e-07. The target gradient value is 1e-07, and the stopping value is very close to 

this target. This suggests that the training likely stopped because the gradient reached a value 

indicating minimal loss improvement with further training steps. 

The sum of squared parameters increased from 69.2 to 249, which may suggest an increase in the 

magnitude of the weights, possibly leading to a more complex model with a greater risk of 

overfitting. However, with further context on the acceptable range for this metric, it's easier to 

draw a definitive conclusion. The summary of convergence results are shown in Figure 4-6.  
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Figure 4-7: Gradient, Learning rate, ssX and validation for NN.  

 

Table 4-7 shows the data division, training algorithm and performance of the training session.  

 
Table 4-7 : Summary of the Neural Network Training Algorithm 

Data 

Predictors – 39999 observations with 6 features  

Responses – 39999 observations with 3 features  

Training set - 80%  

Testing and validation – 20%  

Algorithm 

Data division – Random 

Training Algorithm – Bayessian Regularization  

Performance – Mean Squared Error  

Training Results  

Layer size – 10  

 Observations MSE R 

Training 35999 4.3046 ×  10−11 1.0 

Testing 4000 4.3961 ×  10−11 1.0 

 

The neural network was trained successfully, with a final performance indicating an excellent fit 

to the training data. The training stopped due to the gradient reaching a plateau, a common 

stopping criterion to prevent overfitting and unnecessary computations. The performance of this 
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well-trained model is further noticed in the testing with unseen new data sets and the simulation 

and experimental results with NMPC. 

 

Error Histogram Analysis: 

The histogram shows the distribution of errors (the difference between the targets and the neural 

network outputs) for training and test datasets. Most errors cluster around zero, indicated by the 

vertical 'Zero Error' line in figure 4-8, suggesting that the network predictions are generally 

accurate. The distribution of errors is slightly skewed, which might indicate a bias in prediction 

or an asymmetry in the dataset. However, the skewness is minimal, and the network performs 

consistently across training and testing. 

Regression Plot Analysis: 

Combining the training progress table analysis, we can conclude that the neural network has 

been trained effectively with a high degree of accuracy. The network's performance on the test 

data suggests that it can generalize well to new data, and the errors are mostly centered around 

zero with a minimal spread, indicating high precision in predictions. This is consistent with the 

low-performance value and gradient at the stopping point, demonstrating successful training and 

good potential for practical application. This distribution of data into training, testing, and 

validation sets ensures a robust and reliable model. It allows the neural network to learn 

effectively, be tested against unfamiliar data, and be validated for overall performance, which is 

key for its application in precise maritime navigation and control. 
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Figure 4-8: Error Histogram in NN training. 

 

 

 

 

Testing Neural Network Model with Unseen Data set  

 

The previously trained neural network model underwent further evaluation using a completely 

new dataset derived from a randomly selected trajectory. This dataset encompassed both the 

necessary velocities and forces for the ship to adhere to the chosen path. Upon testing, the neural 

network model demonstrated impressive performance, indicated by a low error margin. Figures 

4-9 illustrate the efficacy of the neural network model in accurately predicting the ship's 

dynamics. Similarly, when using with NMPC the model will predict the velocities and from the 

Euler’s integration the position and the heading angles can be determined.  
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Figure 4-9: Neural Network model testing with a data set unseen to the trained model 

 

The predicted and measured velocities are closely aligned most of the time, demonstrating the 

neural network's ability to capture the dynamics of the ship's motion. There are instances where 

the predicted values diverge from the measurements, but these deviations are relatively brief, and 

the model quickly returns to close alignment with the measurements. The model performs 

similarly well across all three variables, maintaining a tight correspondence with the measured 

valued, indicative of a well-trained neural network. The close alignment of predicted and 

reference values confirms the model's reliability and potential for practical application in 

Autonomous Surface Vessel Magne Viking trajectory tracking. 

4.3.2 Simulation Results for Trajectory Tracking  

The simulation featured two trajectories for ship navigation: a circular path with a 5-meter radius 

and a more complex figure-eight trajectory with a 7-meter radius. The figure-eight trajectory's 
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complexity closely mirrors real-world maritime conditions, requiring frequent navigational 

adjustments and thus serving as a robust test for the controller's adaptability. Conversely, the 

circular trajectory is ideal for assessing steady-state performance. Employing NMPC, the study 

demonstrated the controller's effectiveness across different prediction horizons and in the 

presence of wave disturbances. This part of the simulation utilized a traditional physics-based 

model and a neural network model.  This section will analyze the controller's performance in 

relation to critical parameters for ship trajectory tracking. 

The wave disturbance that is used in the simulation for all the trajectories are shown in Figure4- 

10 

 

Figure 4-10: Wave model used in simulation.  

The forces induced by waves play a crucial role in influencing the velocities of an autonomous 

ship during trajectory tracking. These disturbances introduce variations and uncertainties that 

necessitate adaptation from the ship's control system. The control system must dynamically 

adjust to these external influences to effectively maintain the desired trajectory and velocity of 

the ship. 
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4.3.2.1 Circular Trajectory Results analysis 

 

Figure 4-11: Trajectory Tracking of circular path in the presence of simulated disturbance. 

The Figure 4-11 demonstrates the trajectory tracking performance of the mechanistic model and 

Neural Network model. In the following sections the position, velocity, and the consumed power 

for all the three models will be discussed.  
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Figure 4-12: Comparison of X and Y positions for the circular trajectory 

 

From the comparison of the position in the Figure 4-12 and from the position error diagram in 

Figure 4-14 it is visible that the Neural Network model has the lowest error amongst the two 

model in the prediction horizon of 20. For the trajectory tracking analysis the position and the 
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heading angle management are the two most important factors. Hence, from the Figure 4-13 and 

the 4-15 we can observe that the neural network model provides the best heading following for 

the circular trajectory in the prediction horizon of 10. In this simulation result the position and 

orientation error are high in the lower prediction horizon but gets reduced in the N =10. But there 

is an increased error in the N = 20 prediction horizon and the neural network model works best in 

a higher prediction horizon than the mechanistic model. So, a moderate control horizon was able 

to capture the immediate responses required for the trajectory to be followed. In the meantime, 

the higher prediction horizon could present higher uncertainty which can lead to less accurate 

calculation. The relationship between the prediction horizon and the error of the position is 

nonlinear and mainly depends on the model configuration and the disturbances. It is also evident 

that the higher prediction horizon can accumulate more errors over the period. It is observed that 

the mechanistic model did not perform a well for position and orientation at prediction horizon 

20 due to higher computational cost, higher computational time, and more uncertainty.  

 

Figure 4-13: Comparison of heading angles for the circular trajectory 
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Figure 4-14: Position error at different prediction horizons for circular trajectory 

 

Figure 4-15: Heading angle error at different prediction horizons for circular. 
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the wave disturbances affecting the surge, sway, and yaw velocities. For all the prediction 

horizons, the three models achieved the velocities required to track the path on time. The NMPC 

controller was able to compensate for the disturbances effectively. The consistency in the 

velocity tracking also suggests the effectiveness of the UKF applied. 

 

Figure 4-16: Comparison of X-velocity component 𝑣𝑥for the circular trajectory 
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Figure 4-17: The error in 𝑣𝑥 at different prediction horizons for circular trajectory 

 

From the Figures 4-17 and 4-21 it is seen that the difference between performance for the velocity 

tracking is almost similar for all the models. But for tracking the 𝑣𝑦 the hybrid model produced a better 

outcome which can be concluded from the figure 4-19.  

 

Figure 4-18: Comparison of Y-velocity components 𝑣𝑦 for the circular trajectory 
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Figure 4-19: The error in 𝑣𝑦 at the different prediction horizons for circular 

 

Figure 4-20: Comparison of yaw rate 𝑣𝜓 for the circular trajectory 
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Figure 4-21: The error in 𝑣𝜓 at  different prediction horizons for circular 
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Figure 4-22: Forces applied for the circular trajectory.  
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Figure 4-23: Trajectory Tracking of Figure 8 in the presence of simulated disturbance. 

Figure 4-23 depicts the trajectory tracking performance of the Figure 8 trajectory.  
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Figure 4-24: Comparison of X and Y positions for the Figure 8 trajectory 
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performance for the heading angle psi error, particularly at the prediction horizon of N = 10. 

Selecting the best model for ship trajectory tracking depends on the specific performance criteria 

deemed most critical. If minimizing position error is the priority, especially over longer 

prediction horizons, the NN is the most effective model. Meanwhile, the NN model at N = 10 

would be the optimal choice if heading accuracy is more crucial at mid-range prediction 

horizons. 

Given that the NN model demonstrates strong performance in both position and heading error 

metrics, it would generally be considered a good candidate for ship trajectory tracking, assuming 

it also performs well across other essential parameters not depicted in the images. Considering 

the overall system requirements, including computational efficiency, response time, and 

robustness to disturbances, is essential before finalizing the controller choice. Selecting a 

controller requires careful consideration of response time and computational expense. If 

trajectory tracking is the sole objective, a lower prediction horizon paired with an efficient model 

may suffice. However, a longer prediction horizon could be necessary for functionalities like 

obstacle avoidance. 

The increased prediction horizon potentially offering a broader scope for adjustments like the 

purpose of obstacle avoidance, but it can also introduce greater uncertainty as we have seen in 

the circular trajectory results. A longer prediction horizon can aggregate more errors over time. 

After looking at the figure eight trajectory other than the mechanistic model, all the other models 

managed to perform well for position and heading angle effectively. Here, the data driven 

approach like neural networks offered more flexibility and better handling of the intricacies of a 

figure eight trajectory. It adapted more successfully to its demand while the performance of the 

other models was also acceptable.  
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Figure 4-25: Comparison of heading angles for the Figure 8 trajectory 

 

Figure 4-26: Position error at different prediction horizons for Figure 8 

0 50 100 150 200 250 300 350 400 450

T [s]

0

2

4

P
s
i 
[r

a
d

]

Psi Comparison N = 5

Psi-ref

DM5

NN5

0 50 100 150 200 250 300 350 400 450

T [s]

0

2

4

P
s
i 
[r

a
d
]

Psi Comparison N = 10

Psi-ref

DM10

NN10

0 50 100 150 200 250 300 350 400 450

T [s]

0

1

2

3

4

P
s
i 
[r

a
d
]

Psi Comparison N = 20

Psi-ref

DM20

NN20

Psi Comparison for Different N (Fig8)

Mean Linear Position Errors for Different N Values (Fig8)

N = 5 N = 10 N = 20

N Values

0

0.05

0.1

0.15

0.2

0.25

M
e
a

n
 L

in
e
a
r 

P
o
s
it
io

n
 E

rr
o
r 

(m
)

DM

NN



 124 

 

Figure 4-27: Heading angle error at different prediction horizons for Figure 8 
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Figure 4-28: Comparison of X-velocity component 𝑣𝑥for the Figure 8 trajectory 

  

Figure 4-29: The error in 𝑣𝑥 at different prediction horizons for Figure 8 trajectory 
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From the Figures 4-28 and 4-33 it is seen that the difference between performance for the 

velocity tracking is following a trend. For all the cases 𝑣𝑥 , 𝑣𝑦, 𝑣𝜓 are showing less error for the 

neural network model at a prediction horizon of N =10.  

 

Figure 4-30: Comparison of Y-velocity components 𝑣𝑦 for the Figure 8 trajectory 
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Figure 4-31: The error in 𝑣𝑦 at different prediction horizons for Figure 8 

 

Figure 4-32: Comparison of yaw rate 𝑣𝜓 for the Figure 8 trajectory 

 

Figure 4-33: The error in 𝑣𝜓 at different prediction horizons for Figure 8 trajectory 
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In this trajectory the forces are stable (Figure 4-34) for most of the part for all the models for all 

the prediction horizons. The 𝜏𝑥 and 𝜏𝑦 shows some peaks at the starting which may be the result 

of the complexity involved in the tracking of figure eight path. It is also to be mentioned that 

initial alignment of the ship and the starting from stationary position can likely represent the 

initial control efforts required to align the ship in the trajectory. Moreover, the control strategy is 

to converge with the trajectory, and it is programmed to prioritize the quick convergence which 

may result in higher initial forces to overcome the less accurate predictions at the beginning.  
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Figure 4-34: Forces applied for the Figure 8 Trajectory.  
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4.3.3 Experimental Results  

 

For evaluating the NMPC controller the Magne Viking ship model at the National Research 

Council (NRC), Canada was used as the testing ground. Similar to the simulation studies, the 

performance of the NMPC with different models was evaluated using the circular trajectory of 5 

m radius and a figure 8 shaped trajectory of 7m radius. The experiments were instrumental in 

assessing controller’s ability to work in real world scenarios. The Figure 4-35 show the 

experimental setup and the Magne Viking ship model.  Here is summary of the testing conditions 

at NRC:  

Ship Model: Magne Viking (1:14 scaled ship model)  

Controller Used: NMPC  

Software Running Environment: MATLAB 2022 

NRC PC used: AMD Ryzen 9 7950X 16 core Processor (4.50 GHz) with 128 GB memory 

running in Windows 11.  

The feedback system used to track the performance of the controller is Qualisys Camera 

feedback. The test was performed in calm water in the testing basin inside the NRC facility.  

 

 

Figure 4-35: Magne Viking Ship model at NRC, Canada 
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4.3.3.1 Experiment with Circular Trajectory  

 

Figure 4-36: Results of trajectory tracking of a circle at the experimental setup at NRC, Canada. 

Figure 4-36 and 4-37 shows the results of the trajectory tracking with all the NMPC models 

incorporated. There are visible differences between the simulation and the experimental results 

which is expected to happen when the controller is tested in a real-world scenario. The model 

accuracy, sensor noise and accuracy, computational limitations and many uncertainties can cause 

these differences.  The decreasing performance with an increasing prediction horizon may be due 

to a poor ship model. 
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Figure 4-37: Comparison of X and Y positions for the Figure 8 trajectory 

 

Figure 4-37 shows the X and Y position comparison for all two models with different prediction 

horizons for the circular trajectory. From the Figures 4-36 to 4-40 it is observed that the models 

worked well for the low and moderate prediction horizons. For prediction horizon N = 5 and N = 

10 all the models showed good results. Amongst them the mechanistic model worked better for 

minimizing the position errors (Figure 4-39). For the heading angle comparison, it is noticeable 

that for both the prediction horizons (5 and 10) the mechanistic model was showing better 

heading control than the other two models.  The higher prediction horizons were neither suitable 

for position nor the orientation. So, for low to moderate prediction horizons any of the models 

can work with the Magne Viking ship according to the specific goal to be achieved by the ship. 

The mechanistic model and the neural network model worked well with the lower prediction 

horizon which means that the NMPC controller was able to properly utilize the model to get a 

good prediction. It may be mentioned that when the prediction horizon is increased small 

inaccuracies in the modeling build up over time. This phenomenon is more dominant in the case 

of experimental setup. In the simulation the errors were identical for both mechanistic and neural 

network model. But in the experiment the neural network was showing poor performance.  
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Figure 4-38: Comparison of heading angles for the circular trajectory 

 

Figure 4-39: Position error at different prediction horizons for circular trajectory 
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Figure 4-40: Heading angle error at different prediction horizons for circular trajectory 
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Figure 4-41: Comparison of X-velocity component 𝑣𝑥for the circular trajectory 

 

Figure 4-42: The error in 𝑣𝑥 at different prediction horizons for circular trajectory 
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Figure 4-43: Comparison of Y-velocity components 𝑣𝑦 for the circular trajectory. 

 

 

Figure 4-44: The error in 𝑣𝑦 at different prediction horizons for circular trajectory. 
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Figure 4-45: Comparison of yaw rate 𝑣𝜓 for the circular trajectory 

 

Figure 4-46: The error in 𝑣𝜓 at different prediction horizons for circular trajectory 
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In this trajectory the forces are more stable (Figure 4-47) for the lower prediction horizons. 

When the higher prediction horizon is used the thruster forces were saturated.   
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Figure 4-47: Forces applied for the circular trajectory.  

Table 4-8 shows the summary of the errors for the different models for the different ship 

maneuvering parameters. Table 4-8 shows the range of the forces required to keep the ship on its 

desired trajectory.  

Table 4-8: Error comparisons for circular trajectory for all the models 

Parameters Mechanistic model Neural Network model 

Prediction 

Horizon, N 

5 10 20 5 10 20 

Sum of root 

mean squared 

position error, 

𝒆𝒙𝒚 (m) 

0.28 0.2548 0.3152 0.3963 0.2663 0.5252 

Heading Angle 

error, 𝒆𝝍 (rad) 
0.05 0.036 0.0691 0.0062 0.0468 0.1434 

Surge velocity 

error, 𝒆𝒗𝒙
 (m/s) 

0.0221

  

 

0.0275 0.0318 0.0215 0.0284 0.0850 
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error, 𝒆𝒗𝒚
 (m/s) 

Yaw rate error, 

𝒆𝒗𝝍
(rad/s) 

0.0020     

         
0.0164     0.0307     0.0011     0.0104     0.0475     

Average 

Execution Time 

per 

iteration,𝑻𝒔(s)  

0.2182 0.4985 0.8272 0.2568 1.0471 2.0262 

 
Table 4-9: comparison of the forces for different prediction horizon for the circular trajectory  

Models used with NMPC Surge force (𝝉𝒙) range (N) Surge force (𝝉𝒚) range (N) Yaw moment (𝝉𝝍) range (N-m) 

N =5 N =10 N=20 N =5 N =10 N=20 N =5 N =10 N=20 

 

Mechanistic Model  

min -10.19 -46.69 -23.24 -20.38 -50 -49.99 -53.68 -85 -85 

max 20.12 50 49.99 -6.59 50 32.35 26.34 100 99.99 

Neural Network 

Model 

min -3.4727 -49.99 -49.99 -21.55 -50 -49.99 -11.89 -85 -85 

max 17.21 50.00 50.00 -5.87 50.00 50.00 0.3819 28.85 99.99 

 

 

4.3.3.2 Experiment with Figure 8 Trajectory  

 

Figure 4-48: Trajectory Tracking of Figure 8 at experimental setup at NRC, Canada. 
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Figure 4-49: Comparison of X and Y positions for the Figure 8 trajectory 
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Figure 4-48 shows the trajectory tracking results for the figure 8 shaped trajectory. In the figure 

4-49 the X and Y position tracking for the different prediction horizons with three different 

models are shown. From the error diagram it is noticed that like the previous cases the 

mechanical or neural network model with a lower prediction horizon works well. On the other 

hand, the higher prediction horizon is more prone to higher errors for these models. For position 

and heading angle the neural network and the mechanistic model are well suited in this case 

when a prediction horizon of 5 is being used. If we observe the Figure 4-52 the mechanistic 

model is showing a lesser error for both the position and heading angle calculation. But it may 

not be suitable because of the less consistent tracking. The sum of error is smaller but the 

tracking performance from the figure 4-48 shows that it has a lot of points which are out of the 

track which is not useful.   
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Figure 4-50: Comparison of heading angles for the Figure 8 trajectory 

 

Figure 4-51: Position error at different prediction horizons for Figure 8 

 

Figure 4-52: Heading angle error at different prediction horizons for Figure 8 
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Figure 4-53: Comparison of X-velocity component 𝑣𝑥for the Figure 8 trajectory 

 

Figure 4-54: The error in 𝑣𝑥 at different prediction horizons for Figure 8 trajectory 
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Figure 4-55: Comparison of Y-velocity components 𝑣𝑦 for the Figure 8 trajectory 

 

Figure 4-56: The error in 𝑣𝑦 at different prediction horizons for Figure 8 
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Figure 4-57: Comparison of yaw rate 𝑣𝜓 for the Figure 8 trajectory 

 

Figure 4-58: The error in 𝑣𝜓 at different prediction horizons for Figure 8 trajectory 
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From the figure 4-59 we get a similar type of trend for the force distribution. For figure 8 

trajectory the lower prediction horizon produced the smoothest control action. The table 4-10 

shows the summary of the errors and the table 4-11 shows the force distribution for all the ship 

models used in the NMPC.  
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Figure 4-59: Forces applied for the Figure 8 Trajectory 

0 50 100 150 200 250 300 350 400 450

T [s]

-100

0

100

=
y

=y Com parison N = 5

DM5

NN5

0 50 100 150 200 250 300 350 400 450

T [s]

-100

0

100

=
y

=y Com parison N = 10

DM10

NN10

0 50 100 150 200 250 300 350 400 450

T [s]

-100

-50

0

50

100

=
y

=y Com parison N = 20

DM20

NN20

=y Com parison forDi,erentN (Figure8)

0 50 100 150 200 250 300 350 400 450

T [s]

-100

0

100

=
A

=A Com parison N = 5

DM5

NN5

0 50 100 150 200 250 300 350 400 450

T [s]

-100

0

100

=
A

=A Com parison N = 10

DM10

NN10

0 50 100 150 200 250 300 350 400 450

T [s]

-100

-50

0

50

100

=
A

=A Com parison N = 20

DM20

NN20

=A Com parison forDi,erentN (Figure 8)



 151 

Table 4-10: Error comparisons for Figure 8 trajectory for all the models 

 

Parameters Mechanistic model Neural Network model 

Prediction Horizon, 

N 

5 10 20 5 10 20 

Sum of root mean 

squared position 

error, 𝒆𝒙𝒚 (m) 
0.2248 0.3005 0.1862 0.2396 0.2473 0.4009 

Heading Angle 

error, 𝒆𝝍 (rad) 
0.0601 0.0813 0.0532 0.0428 0.0943 0.1296 

Surge velocity error, 

𝒆𝒗𝒙
 (m/s) 

0.0257

  

 

0.0274 0.0214 0.0242 0.0264 0.0486 

Sway Velocity error, 
𝒆𝒗𝒚

 (m/s) 
0.0303    0.0322     0.0219    0.0239     0.0347     0.0345    

Yaw rate error, 

𝒆𝒗𝝍
(rad/s) 

0.0079   

         
0.046     0.0111   0.0056     0.0199     0.0290     

Average Execution 

Time per 

iteration,𝑻𝒔(s)  

0.0918 0.3899 0.8339 0.1973 0.9518 2.0024 

 

Table 4-11: comparison of the forces for different prediction horizon for the Figure 8 trajectory  

Models used with NMPC Surge force (𝝉𝒙) range (N) Surge force (𝝉𝒚) range (N) Yaw moment (𝝉𝝍) range (Nm) 

N =5 N =10 N=20 N =5 N =10 N=20 N =5 N =10 N=20 

 

Mechanistic Model  

min -36.55 -50.00 -49.99 -34.36 -50.00 -50.00 -10.73 -61.61 -77.45 

max 50 50 49.99 33.49 50.00 50.00 13.43 33.47 45.36 

Neural Network 

Model 

min -37.42 -50.00 -49.99 -29.10 -50.00 -50.00 -10.27 -85.00 -84.99 

max 25.62 50.00 50.00 19.58 50.00 50.00 14.86 84.95 93.49 

 

 

Overall observation of the experiment 

The experimental results clearly show that all the models are performing well for lower 

prediction horizon for this ship model. Looking at tables 4-9 to 4-11, we get a clear idea of how 

the models have worked. The neural network work exceptionally well for a low prediction 

horizon, given that the real-life experiments are far more critical than the simulation results. The 

factors that affect the experimental results are mainly- (i) Accuracy of the model; (ii) the time 

required for the application of the control action; (iii) the sensor noise and disturbances while 
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experimenting with the testing base; and (iv) the computational limitations were observed on the 

higher prediction horizons. These differences can undermine the controller’s performance. But 

overall performance for the trajectory tracking was satisfactory.  

 

Improving the model using the Real Data set 

In the preceding section, a mechanistic model was employed to generate a dataset for developing 

and observing the NMPC (Nonlinear Model Predictive Control) with a neural network structure. 

Despite the availability of previous experimental data for the Magne Viking, utilizing this dataset 

was unfeasible due to its insufficient data points and poor training outcomes. The time 

constraints of the experiment prevented thorough training of the dataset with various options. 

Consequently, the same methods outlined in section 4.3.1 were applied to the real dataset prior to 

the experiment. However, these training efforts failed to yield satisfactory results necessary for 

creating a well-functioning model compatible with NMPC. The figure 4-60 shows the validation 

results using the real dataset. The results were not satisfactory when NN model was trained with 

real data set.  
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Figure: 4-60 Initial validation results by training the neural network with natural data 

 

To enhance the neural network model, a deep learning technique was implemented. While the 

shallow neural network initially produced a model closely resembling the mechanistic model, it 

was eventually refined to a satisfactory level for utilization in experiments and simulations. 

Moving forward, the trained model utilizing real dataset can serve as a high-quality model for 

NMPC, offering promising outcomes for future research and application.  
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Figure: 4-61 Improved model by training with deep neural network 

The neural network structure used here for the training with this real data set consists of 7 hidden 

layers. All the layers except the output layers used hyperbolic tangent activation functions with 

different number of nodes in them. The neural network structure is shown in the figure 4-62.  

 

Figure 4-62: Deep Neural Network structure for training with the real data set 

30000 data points from the real data set were selected to train the model. And 6000 data points 

were used for model validation which is presented in figure 4-61. A summary of the structure 

used for deep learning method is described here.  
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Table 4-12 : Summary of the Deep Neural Network Training Algorithm 

 

Data 

Predictors – 30000 observations with 6 features  

Responses – 30000 observations with 3 features  

Training set - 70%  

Testing and validation – 30%  

Algorithm 

Data division – Random 

Training Algorithm – Bayessian Regularization  

Performance – Mean Squared Error  

 

4.4 Conclusion  

In this study, the simulation results as well as the experimental results were presented in details. 

From the simulation results we can conclude that neural network structure worked very well with 

the NMPC. Even in some cases the neural network model worked better than the mechanistic 

model. For different trajectory different models worked well having the same cost function 

weights in NMPC in the presence of same wave disturbance models.  The feedback of the 

experimental ship model is dependent on the Qualisys motion capture system. It involved some 

dropouts which involved feedback errors. Even though the experimental setup does not provide 

ideal conditions like simulation the results obtained from the experiment was showing effective 

tracking with a shorter prediction horizon. The longer prediction horizon showed poor 

performance with all ship models.  

When trained and tested with real datasets, the enhanced neural network model is promising for 

advancing NMPC applications. Unfortunately, we could not thoroughly test the neural network 

model trained with real data due to time constraints and insufficient convincing results. 

However, it's crucial to acknowledge that when subjected to testing with the Magne Viking ship 

in future studies, this model could yield compelling and convincing results. 
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The potential of this neural network model lies in its ability to learn from real-world data, 

offering a more accurate representation of the system dynamics compared to purely mechanistic 

models or those trained on synthetic data. By leveraging the rich information captured in real 

datasets, the neural network can better capture the intricacies and complexities of the system 

under consideration. 

Although we couldn't explore its full potential in this instance, the groundwork laid by training 

the neural network with real data sets the stage for future investigations. Once time allows for 

thorough testing and validation, this model will demonstrate its efficacy in NMPC applications 

with the Magne Viking ship. As we continue to refine and validate this neural network model, it 

promises to significantly enhance our ability to control and optimize complex systems like the 

Magne Viking ship. 
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Chapter 5 

5.0 Conclusions and Recommendations  
 

5.1 Conclusions 
 

In this study, an NMPC-based controller was designed and tested for trajectory tracking of 

autonomous vessels. This study's objective was designing a robust controller that can overcome 

harsh environmental situations and follow the path within the required time. For designing and 

testing a NMPC trajectory tracking controller the Magne Ship model was used. Starting from the 

conventional mechanistic model, the controller used a neural network model. After getting 

satisfactory simulation results, the controller was tested at NRC, Canada's testing facility, for 

further validation of the controller's performance. In all cases, to check the versatility of the 

controller, two different types of trajectories were used for the ship to track. The circular 

trajectory was used as it was one of the most conventional forms of trajectory tracking path. On 

the other hand, the controller followed a complex figure eight-shaped trajectory to check its 

adaptability and dynamic abilities for different paths. From the simulation and the experiments, 

we can come to these conclusions.   

 The simulation and experimental setup may follow different trend for the different 

trajectories. For example, the circular trajectory tracking in simulations and experiments 

concluded that the hybrid model showed better results. In the case of Figure eight shaped 

trajectory, the neural network, and the mechanistic model both showed promising results. 

It was also seen that a moderate trajectory tracking prediction horizon worked better for 

all the cases. The simulation results were smooth even in the presence of the disturbances 
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model, which indicates that the Unscented Kalman Filter did an excellent job of filtering 

the first order waves frequencies and estimating the states.  

 A higher prediction horizon may not work when the purpose is merely trajectory 

tracking. A smooth trajectory tracking performance requires fast control actions. But 

when the prediction horizon is a large, the computational time increases. As a result, a 

delayed control action may provide a delayed response to the ship. This type of control 

action is not desired in real-life scenarios. A big prediction horizon accumulates errors 

with time, which compromises some accuracy. A higher prediction horizon is more 

suitable for obstacle avoidance tasks.  

 The neural network model was trained to be generalized and follow any given trajectory 

to the controller. It showed the model's versatility and adaptability even with the 

simulated wave disturbances. The controller design provided a foundation for testing the 

autonomous vessel in real oceans.  

 Integrating this neural network structure within the NMPC framework offers several 

notable advantages. Firstly, by encapsulating complex system dynamics, the neural 

network enhances the controller's ability to predict future states and optimize control 

actions accurately. This predictive capability is essential for navigating dynamic and 

uncertain environments, such as those encountered by autonomous vessels in real oceans. 

Furthermore, the neural network's adaptability enables it to learn and adjust to varying 

operating conditions, ensuring optimal performance across various scenarios. This 

adaptive nature is precious for NMPC, where system dynamics may evolve or exhibit 

nonlinear behavior that conventional control methods struggle to accommodate. 
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5.2 Recommendations  

 

 While doing experiments at the NRC, the wave generators were not functional. Any new 

experiments for trajectory tracking with the same controller can be tested in the presence 

of a wave generator.  

 Different machine-learning techniques can be used to build models for NMPC. The 

LSTM model can be a good choice if it can provide quick control actions. In this case, 

reinforcement learning can also be utilized for trajectory tracking.  The neural network 

model trained with real dataset can be used in the future for getting tracking results with 

lower or higher prediction horizons.  

 At the time of the experiment, the feedback system used for the trajectory tracking is 

vital. We experienced intermittent feedback errors that caused some issues. However, we 

also had extended periods of reliable feedback, which allowed us to effectively test the 

controller. 

 To optimize trajectory tracking performance, the impact of an adaptive dynamic control 

horizon demands further exploration. 

 An auto-learning dynamic neural network model that can learn and update the predictions 

from the collected data can be another great addition to the machine learning-based 

trajectory tracking system.  
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