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Abstract 

 

This thesis presents a comprehensive study on reservoir simulation and machine learning 

techniques for improved understanding and prediction of reservoir behavior. The research focuses 

on the Sarir C-Main field and utilizes various data sources including seismic cubes, well logs, base 

maps, check shot data, and production history. The methodology involves the development of 

static and dynamic models through processes such as data quality control, log interpretation, 

seismic interpretation, horizon and surface interpretation, fault interpretation, gridding, domain 

conversion, property and petrophysical modeling. Additionally, well completion, fluid model 

definition, and rock physics functions are established. History matching and prediction are 

performed using simulation cases, and machine learning techniques including data gathering, 

cleaning, dynamic time warping (DTW), long short-term memory (LSTM), and transfer learning 

are applied. The results obtained through Petrel simulation demonstrate the effectiveness of 

depletion strategy, history matching, and completion in capturing reservoir behavior. Furthermore, 

machine learning techniques, specifically DTW and LSTM, exhibit promising results in predicting 

oil production. The study concluded that machine learning approaches, such as the LSTM model, 

offer distinct advantages. They require significantly less time and can yield reliable predictions. 

By leveraging the power of transfer learning, accurate predictions can be achieved efficiently when 

limited data are available, offering a more streamlined and practical alternative to traditional 

reservoir simulation methods. 
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1. Introduction 

 

Reservoir simulation is a tool that gives insight into dynamic rock and fluid properties for 

evaluation of past reservoir performance, reserve estimation that can be used to understand past 

reservoir behavior for future prediction including prediction of future reservoir performance. The 

basic role for reservoir simulation is to generate a reservoir geological model, which is a 3D 

software representation of an actual reservoir layers that exists beneath the earthôs surface. Itôs 

derived by extending localized core and log measurements to the full reservoir using many 

technologies such as geophysics, mineralogy, and depositional environment. In addition, one of 

the most important reservoir simulation activities during the development and management of 

petroleum reservoirs is History Matching. History matching is the process of adjusting the 

reservoir geological model to match the field production data. Matched models are necessary to 

ensure reliable production forecasts and to increase confidence in understanding the geological 

and reservoir models. Reservoir production performance greatly determines the economic 

feasibility of oil and gas recovery and also the future sustenance of production operations. Thus, 

for efficient reservoir management, a thorough analysis of past, present and future reservoir 

performance is required, and history matching is a very handy tool for this. 

The main objective of this work is to establish complete reservoir engineering study by building a 

3D reservoir geological model and then simulate different parameters in order to end up with a 

dynamic model. This model will illustrate the production, history matching and forecasting of the 

target formation along with predicting the behavior of the reservoir at different production 

scenarios. This will be an important tool in planning the future production and development 

strategy, the geological model incorporates and integrates all geological information, 

interpretations and defines the most important data necessary for reservoir engineering and 

simulation. 

Another important tool that will be used in this study is machine learning. Machine learning is a 

rapidly evolving field at the intersection of computer science, mathematics, and artificial 

intelligence (AI). It is revolutionizing the way we approach complex problems and enabling 

systems to learn from data, improve performance, and make predictions or decisions without being 

explicitly programmed. The fundamental principle of machine learning is to create mathematical 

models or algorithms that can generalize from known examples to make accurate predictions or 
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decisions on new, unseen data. This process involves training the machine learning model with 

labeled examples, known as training data, and optimizing its parameters to minimize errors and 

maximize performance. 

Machine learning and reservoir simulation are complementary approaches in reservoir 

engineering. Machine learning is data-driven, focuses on discovering patterns and making 

predictions, and can handle complex relationships. Reservoir simulation, on the other hand, relies 

on mathematical models and physics-based principles to simulate fluid flow and predict reservoir 

behavior. Both techniques have their strengths and are used in different contexts, depending on the 

specific objectives, data availability, and computational resources. However, with machine 

learning itôs less time consuming and requires less reservoir characterization data to predict the 

production of a reservoir, therefore it is more cost effective rather than using expensive resources 

and reservoir simulation software and tools. Nonetheless, machine learning can be pursued with 

various objectives, these objectives include prediction, classification, clustering, anomaly 

detection, optimization, recommendation, pattern recognition, and generative modeling. These 

objectives offer researchers and students a wide array of possibilities to explore in their machine 

learning studies, depending on the specific research context and problem domain. The focus of 

present study is prediction of reservoir production. Prediction involves developing models to 

accurately forecast outcomes based on input data.  

 

1.1 Objectives 

The main objectives of this work is illustrated as shown below: 

¶ To develop a comprehensive reservoir characterization and simulation model for the 

candidate reservoir using various software tools like Petrel and data-driven techniques . 

The first step involves creating a Static model by integrating log correlation, seismic 

interpretation, fault analysis, and domain conversion based on the available data. Log 

correlation will be employed to define well tops and determine the water-oil contact within 

the reservoir. Seismic interpretation will track and extract surfaces in a 3D environment, 

aiding in defining the reservoir's structural features. Fault interpretation will be conducted 

to outline the boundaries of the study area and identify distinct segments. Additionally, 

domain conversion will transform the interpreted project from the time domain to the depth 
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domain, facilitating a more accurate representation of the reservoir. Subsequently, a 

Reservoir simulation model (Dynamic model) will be constructed by incorporating field 

and well data. This dynamic model will allow for the simulation of fluid flow and reservoir 

behavior, enabling a comprehensive analysis of reservoir performance and supporting 

decision-making for effective reservoir management. 

¶ Develop a complete reservoir management strategy for the candidate reservoir through 

history matching, production scenario creation, and time series forecasting. The first 

objective is history matching, where historical reservoir performance will be replicated by 

adjusting various properties in the model. Next, a production scenario will be designed, 

considering different well completion options, to optimize hydrocarbon recovery and well 

productivity. Time series forecasting techniques will be applied to handle missing 

production data, enabling a more accurate representation of reservoir performance. By 

integrating these approaches, the study seeks to enhance reservoir management decision-

making, offering valuable insights into reservoir behavior and supporting the development 

of effective strategies. 

¶ The focus of this study is to leverage cutting-edge machine learning techniques, 

specifically long short-term memory (LSTM) time series analysis and Dynamic Time 

Warping (DTW). The first aim is to utilize LSTM for training and predicting future 

production data. By employing LSTM, the study will leverage its capability to capture 

temporal dependencies and patterns within time series data, leading to more accurate 

predictions of reservoir production behavior. Furthermore, Dynamic Time Warping 

(DTW) will be integrated into the LSTM model to enhance its performance and effectively 

handle missing production data. DTW is well-suited for aligning and comparing time series 

data with varying temporal scales, making it valuable in filling gaps and improving the 

completeness of production records. Through the integration of LSTM and DTW 

techniques, the study aims to offer a robust and reliable approach to predict future 

production behavior and address data gaps effectively. 

¶ Lastly, the implementation of transfer learning stands out as a novel approach to predict 

future reservoir production and performance in case of limited data availability. By 

leveraging knowledge gained from existing well data, this technique empowers the model 

to adapt and generalize effectively to new well conditions, resulting in more accurate and 
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reliable predictions. The final contribution centers on the comparison of all results and 

scenarios obtained through the integration of LSTM and DTW, the implementation of 

transfer learning, and the comprehensive history matching. The meticulous evaluation and 

comparison of these different approaches will provide valuable insights into their 

respective strengths and limitations, ultimately guiding the selection of the most effective 

strategies for reservoir management. 

 

Flowchart shown in (Figure 1.1) outlines the thesis chapters and the construction of the research 

work:  
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Figure 1.1: Flowchart of the thesis outline 
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2. Literature Review 

 

In this literature review, we explore into the evolution of reservoir simulation as the predominant 

method utilized in the oil and gas industry for predicting hydrocarbon production. Initially, 

reservoir simulation heavily relied on techniques such as history matching, which aimed to 

improve the fidelity of predictions by calibrating simulation models with observed field data. Over 

time, significant advancements have occurred both within the industry and the field of computer 

science, leading to notable improvements in processing time and cost-efficiency. As a result, 

reservoir simulation methods have become less complicated, allowing for more widespread 

adoption and utilization. Recently, the emergence of artificial intelligence (AI) has steered in a 

new era of possibilities. AI technologies, such as machine learning, have made substantial progress 

and offer promising tool to enhance the traditional reservoir simulation approaches. These 

advancements have paved the way for more efficient and accurate prediction models. In this study 

we aim to highlight the differences between reservoir simulation and machine learning through a 

comprehensive comparison. By examining the strengths and limitations of both approaches, we 

can assess the potential benefits that machine learning brings to the table. Notably, machine 

learning techniques often require significantly less time and data to produce high-quality 

predictions, thus reducing the reliance on resource-intensive and expensive simulators. 

Additionally, a robust transfer learning model will be developed to allow the model to retain 

knowledge from prior training, making it capable of generating accurate predictions even when 

new data is introduced. By showcasing the efficiency, cost-effectiveness, and improved prediction 

quality offered by machine learning techniques, this research contributes to the ongoing efforts to 

optimize reservoir management and decision-making processes in the oil and gas industry. 

 

2.1 Reservoir Simulation 

Odeh in 1969 began by highlighting the historical context of reservoir simulation, emphasizing its 

roots in well-established reservoir engineering equations and techniques. The author asserted that 

reservoir simulation builds upon these existing foundations and expands its capabilities through 

the use of digital computers. The paper acknowledged that while reservoir simulation itself is not 

a new concept, advancements in computer technology have enabled engineers to develop more 
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detailed and accurate simulations. This advancement has led to a revolution in the petroleum 

industry, with reservoir simulators becoming increasingly prevalent and essential tools for 

reservoir characterization and performance evaluation. Odeh explained that reservoir simulation 

involves the representation of fluid behavior within cells, with interactions between cells governed 

by the material balance equation (MBE) and Darcy's law. Different models, ranging from zero-

dimensional tank models to one-, two-, and three-dimensional representations, are discussed, 

highlighting their applicability in capturing the variations in reservoir properties and pressure. He 

also touched on the challenges associated with reservoir simulation, particularly the complexity of 

the mathematical expressions involved and the potential for misuse of simulators. Furthermore, 

the author emphasized the need for engineers to gain competence in setting up simulation 

problems, selecting appropriate input data, and accurately evaluating simulation results. 

Throughout the study he underlined the significance of data preparation and discussed the 

importance of dividing the reservoir into cells by assigning rock properties, fluid properties, and 

initial fluid distribution for each cell. The concept of history matching involves comparing 

simulated results with actual field data to improve the accuracy and reliability of the simulator. 

Odehôs insights contribute to the broader body of knowledge in reservoir engineering and provide 

a foundation for further research and development in the field of reservoir simulation. 

The multicell reservoir simulation models have reached a stage of development where they are 

being transferred from scientists and mathematicians to reservoir engineers for practical 

implementation. Stags & Herbeck (1971) discussed the development, applications, and 

considerations associated with multicell reservoir simulation models from an engineer's 

perspective. These models are regarded as powerful tools for comprehending reservoir behavior, 

as they allow for the division of a reservoir into cells, enabling engineers to analyze various field 

operations and assess fluid propertiesô sensitivity. These considerations include assigning specific 

properties to each cell, such as elevation, pressure, size, porosity, permeability, and fluid 

saturations. Additionally, well data, including location, production/injection rates, and limiting 

conditions, must be incorporated into the model. The selection of representative rock and fluid 

properties, as well as determining relative permeability and cell size are critical for accurate model 

results. Multicell models employ mathematical equations derived from the continuity equation, 

Darcy's law, porous media principles, and the fluid distribution within the reservoir. The Finite-

difference method is commonly used to solve these equations, although it introduces inherent 
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errors. The authors acknowledged the wide range of valid applications for multicell models in 

reservoir engineering, (Figure 2.1). 

 

Figure 2.1: Multicell in one-, two-, and three-dimensional models, (Stags & Herbeck, 1971) 

 

Harris (1975) described reservoir simulation models, including their dimensions, fluid phases, and 

the technological advancements that have enabled the development of more detailed and complex 

computer programs for simulating fluid flow. It highlights the ability of these models to handle 

vertical variations in porosity, permeability, and capillary properties for a certain area. The 

heterogeneity of the rock framework in most reservoirs must be recognized and quantitatively 

expressed to incorporate it into the simulation models accurately. Geologists are responsible for 

conducting various geological activities throughout the reservoir description phase which includes 

rock studies, framework studies, reservoir-quality studies, and integration studies. Rock studies 

involve establishing lithology, determining the depositional environment, and distinguishing 

reservoir rock from non-reservoir rock. Framework studies focus on determining the structural 

style, continuity, and gross thickness trends of the reservoir rock. Reservoir-quality studies aim to 

understand the variability of reservoir rock in terms of porosity, permeability, and capillary 

properties. Integration studies involve developing three-dimensional patterns of hydrocarbon pore 
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volume and fluid transmissibility. Geologists collaborate with engineers who provide assistance 

and guidance for core analysis measurements, well testing, and pressure-production history 

matching to validate the physical model against real-world performance. To illustrate the 

application of geological methods in a simulation study, Harris presented a case study conducted 

in the Loudon field in central Illinois which involved a pilot-test site that included core data, well 

logs, and rock description information. The author also highlighted the importance of recognizing 

the depositional environment to understand the quality and distribution of the reservoir rock. 

Odeh (1982) reported an overview of the research and advancements in mathematical modeling 

techniques used to describe the behavior of hydrocarbon reservoirs. The focus was on 

understanding the flow equations, nonlinearity, solution methods, and modeling of complex 

processes. Additionally, he highlighted the existing numerical challenges that require further 

investigation and outlined the functional relations among variables that give rise to the nonlinearity 

of these equations. Odeh highlighted the importance of selecting appropriate solution methods 

based on the complexity of the reservoir system and the desired level of accuracy. In addition to 

the basic flow equations, he briefly described the mathematical modeling of more intricate 

processes such as chemical injection and heat injection. These processes have a significant impact 

on reservoir behavior and require specialized modeling techniques. Despite the progress made in 

mathematical modeling, several numerical challenges remain unsolved. Identifying and resolving 

these issues are crucial for developing robust and reliable reservoir models, and hence the need for 

further research and innovation to overcome these numerical challenges. 

Geologic models and flow simulation studies play a crucial role in understanding and predicting 

the behavior of reservoirs in the oil and gas industry. Larue et al. (2005) reported valuable insights 

into the impact of stratigraphy on flow simulation and history matching studies. Three main steps 

in the simulation have been conducted. Firstly, the geology of the reservoir was carefully 

interpreted, leading to the generation of various cross-section correlations and maps that yield a 

geostatistical characteristic such as variogram type and range. Secondly, a suite of 50 geologic 

models were constructed, representing both simple and complex interpretations by employing 

various modeling techniques which resulted in visually distinct models from each other. Lastly, 

flow simulation studies were performed in three stages. Initially, all models were simulated under 

unconstrained flow conditions, followed by simulating fixed flow rates based on observed data. 
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Finally, a subset of models was modified to match historical data using adjusted rock properties. 

Some key findings were: 

¶ Simple and complex geologic models can provide similar predictions of flow performance. 

This suggests that overly complex models may not necessarily lead to more accurate 

predictions. 

¶ Geologic models that appear visually different can still perform in a similar manner. This 

highlights the importance of considering performance measures rather than relying solely 

on visual interpretations. 

¶ Reservoir volume is the most uncertain characteristic in the reservoir. Accurate estimation 

of reservoir volume remains a challenge, impacting predictions of reservoir behavior and 

performance. 

¶ Unconstrained flow simulations which do not rely on historical data, can be useful 

predictors of future reservoir behavior. These simulations can be particularly valuable in 

development studies where historical data may not be available. 

By understanding the impact of stratigraphy on flow simulation and history matching, reservoir 

engineers and geoscientists can make more accurate predictions of oil and gas production.  

Petroleum reservoir simulations face the challenge of lacking real-time data verification due to the 

inaccessibility of the reservoir. As a result, significant research efforts have been dedicated to 

developing sophisticated mathematical models and simulators to overcome this limitation 

(Mustafiz & Islam, 2008). The development of a reservoir simulator involves several major steps. 

The formulation step establishes the fundamental assumptions and translates them into 

mathematical terms, which are then applied to control volumes within the reservoir. Nonlinear 

partial differential equations (PDEs) describing fluid flow through porous media are derived and 

discretized using numerical methods. The most common approach is the finite-difference method, 

which converts the PDEs into a set of nonlinear algebraic equations. Linearization techniques are 

employed to solve these equations, incorporating fluid production and injection. The validation 

step ensures the accuracy and reliability of the simulator before its practical application in field 

studies (Figure 2.2). Advancements in reservoir simulation has been reported by Mustafiz & Islam 

as shown below: 

¶ Integration of 3-D Imaging and Reservoir Models: The coupling of 3-D imaging 

technologies with comprehensive reservoir models have the potential to create real-time 
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reservoir monitoring systems. By using drilling data as input information, this integration 

enables accurate reservoir characterization and performance prediction. 

¶ Virtual Reservoir and Production Schemes: The integration of virtual reservoirs, advanced 

data acquisition systems, and digital/analog converters introduces exciting opportunities 

for diverse production schemes. By leveraging virtual reality techniques within reservoir 

models, engineers can visualize and analyze reservoir behavior, providing valuable insights 

to inform decision-making processes. 

¶ Intelligent Reservoir Simulators: Reservoir simulators are evolving to incorporate 

intelligent features that integrate environmental impacts of EOR processes into the 

technical and economic feasibility analysis. This broader perspective ensures sustainable 

petroleum production by considering both short-term and long-term impacts. 

¶ Advanced Modeling Techniques: Advancements in geomechanical modeling, thermal 

modeling, and fluid flow equations have contributed to enhanced accuracy and reliability 

in reservoir simulation. These techniques enable the simulation of complex reservoirs with 

varying formation and fluid properties. 

The future of petroleum reservoir simulation holds tremendous promise. The ongoing integration 

of cutting-edge technologies, such as remote sensing and sonic-while-drilling, has the potential to 

revolutionize reservoir monitoring and data acquisition.  

 

 

Figure 2.2: Development of a reservoir simulator, (Odeh, 1982. Mustafiz & Islam, 2008) 

Hossain et al. (2009) revealed the challenges and complexities inherent in reservoir simulation 

within the petroleum industry. They underlined the significance of grasping the concepts of 

mystery and uncertainty and their profound impact on decision-making in reservoir management. 

In addition, highlighted the intricate nature of petroleum field development, which is fraught with 
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various sources of mysteries and uncertainties. These uncertainties arise from factors such as 

limited data availability, inherent subsurface complexities, and the need to make approximations 

and assumptions when characterizing the reservoir. The study presented a comparative analysis 

between a newly developed model and an existing risk analysis model, demonstrating how the 

former eliminates false assumptions. However, the accuracy and efficacy of reservoir simulation 

are heavily contingent upon the quality and precision of input and output data through the history 

matching process, (Figure 2.3). The complexity arising from variations in formation and fluid 

properties across time and space is also underscored. Advanced technologies and further research 

are deemed crucial in tackling the challenges posed by reservoir complexity. As a result, (Hossain, 

2010) reported the importance of properly addressing these challenges to enhance the accuracy a 

nd reliability of simulation results. One of the key factors contributing to uncertainties in reservoir 

simulation is the geologic and fluid models. Proper understanding and modeling of these 

uncertainties are essential for accurate predictions. Additionally, the development of theories and 

laws related to reservoir behavior is critical for reaching a closer representation of real phenomena, 

also eliminate false assumptions and incorporate new models to improve the accuracy of reservoir 

simulations. The conventional approach to reservoir simulation often relies on linearization of 

mathematical models and inherent assumptions, which can lead to inaccurate solutions. Hossain 

emphasized the challenges associated with capturing the nonlinear and chaotic behavior of 

reservoirs. Many researchers have attempted to address these challenges through modifications 

and advancements in mathematical and computational tools. He provided a comprehensive 

overview of the existing challenges and the need for a pattern shift in the approach of reservoir 

simulation. Hossain & Islam (2010) introduced a new perspective by incorporating the knowledge 

dimension into reservoir simulation, and they argued that reservoir simulation equations have 

embedded variability and multiple solutions that align with physics rather than spurious 

mathematical solutions. It offers solutions and demonstrates that proper reservoir simulation 

should be transparent and empower decision-makers rather than creating a black box. The authors 

developed a new governing equation based on an in-depth understanding of the factors influencing 

fluid flow in porous media under different flow conditions. In addition, they introduced the concept 

of the fluid memory factor and presents mathematical developments of new governing equations 

without linearization. Then they compared their approach to currently available reservoir 
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simulators, and provided examples of how the knowledge-based approach extends the range of 

solutions and offers a useful tool for prediction models.  

 

 

Figure 2.3: A schematic description of history matching and geological activities regarding to a reservoir, (Islam et 

al., 2008. Hossain et al., 2009) 

  

Reservoir history matching is an essential process in the field of reservoir engineering, where 

observed reservoir behavior is used to estimate the variables of a mathematical model that 

accurately represents the reservoir. This process enables the prediction of future reservoir 

performance and the optimization of reservoir management strategies. Oliver & Chen (2011) 

provided an overview of the advancements made in reservoir history matching over the past 

decade. The authors highlighted several key developments in history matching that have 

contributed to significant progress in the oil field. One important factor is the increase in 

computational power, which has allowed for the generation of reservoir simulation models that 

can match large amounts of production data. Additionally, the widespread adoption of geostatistics 

and Monte Carlo methods has played a crucial role in improving history matching techniques. The 
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paper discussed the advancements in reparameterization techniques for model variables, which 

involves transforming these variables to more suitable forms that facilitate accurate history 

matching. Various approaches have been developed to address the challenge of nonlinearity and 

improve the efficiency of the history matching process. Methods for computing sensitivity 

coefficients, which quantify the relationship between model variables and reservoir behavior, have 

also seen significant progress. These coefficients are essential for adjusting the model variables to 

match observed data. An important aspect of history matching is the quantification of uncertainty 

in reservoir properties and predictions. The authors discussed the advancements in uncertainty 

quantification methods, such as the combination of Kalman filter and Bayesian approaches. These 

methods provide a means to assess the range of possible outcomes and estimate the associated 

risks. They also compared representative procedures in history matching and identify their 

limitations. This comparative analysis helps researchers understand the strengths and weaknesses 

of different techniques and choose the most appropriate approach for their specific reservoir 

modeling and history matching needs. However, challenges remain, and further research is needed 

to address the complexities of nonlinearity, high-dimensional inverse problems, and the 

incorporation of various types of data in the history matching process. 

Singh et al. (2013) provided valuable insights into the challenges and solutions associated with 

achieving accurate production forecasts in reservoir engineering, by emphasizing the integration 

of data, improved understanding of geostatistics, and comprehensive evaluation of uncertainties. 

The authors proposed practical approaches to enhance the accuracy and reliability of 3D reservoir 

modeling. key findings and contributions of the study: 

¶ Three-dimensional reservoir interpretation, modeling, and flow-simulation studies are 

essential for accurate production forecasts and supporting value-based exploration and 

production decisions.  

¶ Advances in computing power and software have significantly improved the efficiency and 

accuracy of 3D reservoir modeling. Improved parallel networking algorithms and reduced 

CPU run times enable the creation of more detailed and larger-scale reservoir models. 

¶ Several factors contribute to production forecast uncertainty, including sparse and 

unrepresentative data, biased estimates of original hydrocarbon in place volume, 

inadequate static and dynamic models, poor use of seismic data, and improper utilization 

of uncertainty workflows and tools. 



15 

 

¶ Conventional modeling workflows have limitations, such as misused geostatistical 

techniques, insufficient integration between static and dynamic models, and a lack of focus 

on delivering uncertainty at each step of the modeling process. These limitations hinder the 

investigation of how static model uncertainty impacts dynamic outcomes. 

The study proposed several practical solutions to address the limitations of conventional modeling 

workflows and enhance production forecasts. Firstly, improved integration of diverse data sets, 

technologies, and tools from various disciplines. Closed-loop modeling workflows are 

recommended to consider the impact of modeling parameters and uncertainties on decision 

outcomes. Secondly, the importance of a better understanding and application of geostatistical 

techniques, particularly in complex reservoirs. It suggests considering multiple seismic attributes 

and cautioning against relying solely on porosity as a modeling constraint in such settings. Lastly, 

the significance of conducting a comprehensive evaluation of reservoir uncertainties at each step 

of the modeling process is essential. Integrated quality assurance-quality control (QA-QC) 

procedures are deemed necessary to identify and address issues related to static and dynamic 

reservoir modeling. The findings presented in this paper contribute to the ongoing efforts in the 

industry to improve production forecast accuracy and support effective decision-making in 

exploration and production operations. 

Despite significant advancements in reservoir simulation, numerous challenges and uncertainties 

persist. Traditionally, reservoir simulations have heavily relied on the expertise of geologists to 

construct models and the judgment of engineers to validate them. However, the appeal of 

predictive models lies in their speed and cost-effectiveness. With the continuous advancements in 

computer technology and computational power, machine learning has emerged as a promising tool 

that requires less data, thereby reducing uncertainty and generating more accurate predictions in 

less time. This introduces a new dimension to the field, presenting the potential to enhance or serve 

as a substitute in situations where field data is limited. 

2.2 Machine Learning 

In recent years, machine learning has experienced significant growth and adoption within the oil 

and gas industry, primarily due to its diverse range of tools and capabilities. Shirangi (2012) 

proposed the use of fast proxy models and net present value calculations as an alternative to full 

physics simulators, offering a simpler and faster approach. By employing artificial neural networks 
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or support vector regression, a proxy model is generated and optimized by repeating the process 

with using the most recent optimal point. The main objective is to determine the optimal well 

control point that maximizes production, using well bottom hole pressure, oil rate, or total liquid 

rate as the controlling factor. The study focuses on using well bottom hole pressure (BHP) with 

simple boundary considerations. The utilization of support vector regression and artificial neural 

network models presented significant time and cost savings compared to water flood optimization 

without the use of proxy models. Foroud et al. (2014) reported that history matching is a technique 

employed to minimize discrepancies between field production data and simulated results, but it 

can be time-consuming and costly. To address this challenge, an artificial neural network (ANN) 

is utilized in the context of an Iranian fractured oil reservoir. A comparison between the manual 

history matching results and the ANN data reveals that the manual data provides superior matching 

quality. However, the ANN results demonstrate the ability to achieve multiple matches while 

requiring less simulation time (Figure 2.4). Therefore, this study provides evidence that ANN can 

serve as a viable alternative to computational reservoir simulation, offering a satisfactory level of 

accuracy and significantly faster execution times. 

 

Figure 2.4: Classification of network architecture. (a) Singlelayer network and (b) multilayer network, (Foroud et 

al., 2014) 
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Maschio & Schiozer (2014) presented a novel approach that utilizes a proxy model, in the form of 

an artificial neural network (ANN), to replace the flow simulator for the purpose of history 

matching. The proposed methodology combines Markov Chain Monte Carlo (MCMC) and ANN 

training, and it demonstrates promising results when applied to a realistic reservoir model with 16 

unknown features. The research methodology involved the iterative application of MCMC 

sampling and ANN training for Bayesian history matching. Each iteration consists of two stages: 

the sampling stage using MCMC and the training stage for the ANN. These stages are performed 

sequentially, with the sampling stage preceding the ANN training and vice versa. The authors 

concluded that this method offers a simple yet effective solution that reduces computational 

efforts. Additionally, they suggested exploring alternative types of artificial neural networks in 

future research. Furthermore, alternative approaches to applying MCMC methods, such as parallel 

tempered Markov chains, should be investigated to leverage distributed computing and improve 

the exploration of complex subsequent distributions with multiple modes. These enhancements 

would improve the method's capability to handle more challenging scenarios. In the other hand 

(Q. Cao et al., 2016) developed artificial neural networks (ANN) to forecast production in 

unconventional reservoirs, utilizing inputs such as pressure, production history, and geological 

maps. The neural network approach in machine learning excels at learning from large datasets and 

adapting to new data as it becomes available. Consequently, the ANN model is employed to 

forecast production for existing wells and leverage their historical data to predict production for 

new wells by analyzing nearby historical well data. This method requires a greater amount of data 

inputs compared to decline curve analysis, but it offers increased consistency and accuracy in 

production forecasting. It is important to note that the ANN method does not replace conventional 

reservoir simulation methods; rather, it complements them by providing additional insights and 

confidence in the forecasting techniques. 

J. Cao & Roy (2017) reported that time-lapse seismic analysis is a crucial tool in well planning, 

reservoir management, and reservoir model updating. While it works effectively in simple 4D 

cases, it becomes less reliable when estimating complex reservoir dynamics and 4D reservoir 

property changes. To overcome this limitation, data-driven quantitative methods are utilized, 

leveraging the inherent physics between seismic attributes and time-lapse reservoir property 

changes. These methods utilize machine learning techniques and can incorporate multiple seismic 
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attributes simultaneously. The study was conducted on a complex North Sea reservoir with 

extensive injection and production history. This data-driven approach demonstrates remarkable 

accuracy in predicting saturation, compaction, and pressure changes. The estimation maps of all 

reservoir property changes closely match the simulation model in the synthetic study. 

Consequently, the authors established that integrating a substantial amount of 4D seismic data with 

machine learning prediction models significantly improves the capabilities and opportunities for 

reservoir management. This integration enables informed decision-making by harnessing 

geophysical data in various types of reservoir settings. Nonetheless, (Vyas et al., 2017) introduced 

a novel approach for predicting decline curves at new well locations by establishing a connection 

between decline curve model parameters and well completion data. By avoiding the need for 

expensive and time-consuming reservoir simulators, the study utilizes production data to rapidly 

generate decline curve models, which can then be employed to predict decline curves for new 

wells. The authors demonstrated that this methodology enables the estimation of ultimate recovery 

for new wells based on data from previous wells. Various types of decline curve models, including 

Arp's, Stretched Exponential Decline Model (SEDM), Doug's model, and Weibull growth curve, 

were employed in the study. Among these models, SEDM combined with support vector machine 

learning exhibited the highest success rate in predicting flow rates. Furthermore, the study 

highlighted additional factors that influence production prediction, such as the initial flow rate, the 

total amount of support, and the total vertical depth. These factors contribute significantly to the 

accuracy of production predictions.  

The study by (Dong et al., 2021), a deep learning model based on stacked Long Short-Term 

Memory networks (LSTM) is proposed for the prediction of reservoir production, (Figure 2.5). 

Transfer learning is utilized to extend the model's applicability to well patterns with limited 

production data and short production times within the same oilfield block (Figure 2.6). The model 

successfully incorporates the actual reservoir production process and leverages the knowledge 

gained from existing well patterns, along with sufficient historical data, to develop a well pattern 

model with minimal data requirements. As a result, this approach enables more accurate prediction 

outcomes while reducing the time required for model training, thus delivering more effective 

application results compared to compositional simulation. Furthermore, (Han & Kwon, 2021) 

focused on the application of machine learning techniques to predict production rates in a shale 

reservoir. A data-driven deep learning model, along with an alternative proxy model, is employed 
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in the study. Gas production is predicted using a deep neural network, where cumulative gas serves 

as the independent variable, while other production data, well information, and completion 

parameters act as the dependent variables. The research aims to extend the application of this 

approach to other shale formations. Furthermore, the article highlighted the widespread use of 

decline curve analysis (DCA) in recent years, as proposed by Arps, for predicting reserves in 

unconventional and conventional wells. DCA has proven to be a valuable technique for predicting 

future production with limited data, despite the challenges it presents in the pre-drilling stage of 

prediction.  

 

Figure 2.5: Schematic diagram of the LSTM unit structure (Dong et al., 2021) 
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Figure 2.6: Flow chart of production prediction based on transfer learning (Dong et al., 2021) 

 

Desbordes et al. (2022) introduced a novel technique for maximizing the net present value (NPV) 

of production over the estimated life of a reservoir. Traditional methods for reevaluating prediction 

models are computationally expensive and fail to consider inter-cycle correlation in changing 

production controls. The utilization of transfer learning algorithms in the oil and gas industry has 

been challenging due to their high processing costs and the randomness or unavailability of 

learning samples. In response, the research presented a new optimization framework based on 

transfer learning for dynamic production optimization challenges. The method entails the 

following steps: domain adaptation learning (DAL) is employed to reduce differences between 

data from two inter-cycles, using extended boundary constraints (EBC) to embed the optimization 

issue within the learning samples during the DAL stage. This makes the algorithm feasible for 

production optimization while reducing the computational burden. Additionally, a transfer 

component analysis (TCA) method is applied to reduce data format and extract data correlations. 

The developed framework is incorporated into three well-known evolutionary algorithms (non-

dominated sorting genetic algorithm II, multi-objective particle swarm optimization, and multi-

objective evolutionary algorithm based on decomposition) as well as a single-objective optimizer 

(particle swarm optimization) for NPV maximization and comprehensive optimization. The 

proposed method is tested on dynamic benchmark scenarios and an actual situation using a three-
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channel reservoir model. The results indicate that the proposed strategy reduces the number of 

simulation calls required to reach optimal control options when applied with population-based 

evolutionary algorithms. Furthermore, the proposed technique demonstrates higher NPV and faster 

computational time compared to their original evolutionary algorithms. 

Hernandez-Mejia et al. (2023) presented a method for evaluating the connectivity between water 

injection and oil production wells in reservoirs. The authors highlighted the importance of 

determining well interference to enhance oil recovery through waterflooding. The existing 

techniques for assessing connectivity between injectors and producer wells, such as correlation 

coefficients, linear regression models, and capacitance resistance models are discussed. However, 

these methods have limitations as they rely on simplified flow physics and make various 

assumptions about the data and subsurface conditions. To address these limitations, the authors 

proposed a new approach called the physics-constrained dynamic time warping algorithm 

(PCDTW). The PCDTW method is based on the dynamic time warping (DTW) algorithm, which 

is commonly used for detecting similarities between temporal sequences. The authors adapt DTW 

to map the water injection signal onto the oil production signal, effectively determining the lag 

time between injection and production responses. This mapping allows for the characterization of 

reservoir formation connectivity and heterogeneity between paired injection and production wells. 

The proposed method is grounded in an enhanced physics-based model that incorporates 

constraints for subsurface flow through porous media. By considering the physics of the system, 

the method improves accuracy, avoids incorrect signal matches or non-physical results, and 

reduces uncertainty. Furthermore, the PCDTW method is robust in the presence of data 

measurement noise and relies on fewer assumptions about the data. The paper emphasized that the 

proposed method is a data-driven approach that combines domain knowledge and physics-based 

modeling. It offers a valuable tool for subsurface engineering data science by providing insights 

into reservoir characterization and facilitating the development of effective waterflood plans. 

 

Based on the literature review conducted, several key findings and insights can be drawn regarding 

reservoir simulation and its evolution in the oil and gas industry. Initially, reservoir simulation 

heavily relied on techniques such as history matching to improve prediction accuracy by 

calibrating simulation models with field data. Over time, advancements in both industry practices 

and computer science have led to significant improvements in processing time and cost-efficiency, 
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making reservoir simulation methods more accessible. The literature review also highlighted the 

importance of data preparation, including the division of the reservoir into cells and assigning rock 

and fluid properties to each cell. Geological studies play a crucial role in reservoir characterization, 

including understanding the variability of reservoir rock in terms of porosity, permeability, and 

capillary properties. Stratigraphy was identified as a significant factor influencing flow simulation 

and history matching studies. The findings suggest that both simple and complex geologic models 

can provide similar predictions of flow performance, emphasizing the importance of performance 

measures over visual interpretations. Despite the advancements made in mathematical modeling 

and simulation techniques, challenges such as numerical issues and the uncertainty of reservoir 

volume remain. Further research and innovation are needed to address these challenges and 

develop robust and reliable reservoir models. The emergence of artificial intelligence (AI), 

particularly machine learning, has introduced new possibilities for enhancing traditional reservoir 

simulation approaches. Machine learning techniques offer advantages such as faster processing 

and the ability to generate high-quality predictions with less reliance on resource-intensive 

simulators. Additionally, machine learning models can retain knowledge from prior training 

through transfer learning, enabling accurate predictions even when new data is introduced. 

In this research, we will leverage the power of machine learning tools to address key challenges in 

reservoir management. Specifically, we will employ dynamic time warping (DTW) to align well 

production data and fill in missing values, thereby enhancing the completeness and accuracy of 

the dataset. Furthermore, we will utilize long short-term memory (LSTM) networks to improve 

the prediction of oil production, taking advantage of their ability to capture temporal dependencies 

and patterns in the data. To extend the applicability of our models, we will incorporate transfer 

learning techniques. By using prior knowledge and pre-trained models, we can enhance the 

predictive capabilities for new wells or wells with missing data. This approach not only saves 

computational resources and time but also ensures accurate predictions even when faced with 

limited or incomplete information. By combining the strengths of DTW, LSTM, and transfer 

learning, our research aims to provide more robust and reliable predictions for oil production. 

These advanced machine learning techniques offer the potential to optimize reservoir management 

strategies and decision-making processes in the oil and gas industry, ultimately leading to 

improved operational efficiency and resource utilization. 
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3. Methodology 

 

This study explores into the systematic and comprehensive approach to analyze and model the 

candidate reservoir using a combination of industry-leading software tools and advanced machine 

learning techniques. In this chapter, we present the step-by-step process adopted to achieve the 

study's objectives, encompassing the use of Petrel, Eclipse, and machine learning as primary tools. 

Petrel, a widely utilized software platform in the oil and gas industry, forms the foundation of our 

reservoir characterization efforts. Leveraging Petrel's robust capabilities in geological modeling 

and reservoir simulation, we gained valuable insights into the subsurface geology, fluid properties, 

and reservoir behavior. This enabled us to construct a static reservoir model that serves as a reliable 

representation of the candidate reservoir's geological and petrophysical properties. In addition to 

Petrel, Eclipse, a reservoir simulation software, that was used in the backend of Petrel and played 

a crucial role in the dynamic characterization of the reservoir. Eclipse facilitated the simulation of 

fluid flow, reservoir performance, and recovery mechanisms, enabling us to predict production 

behavior under various scenarios and operational conditions. 

To further augment our analysis and optimize reservoir management strategies, we incorporated 

machine learning as a powerful technique. Machine learning allowed us to unlock valuable 

patterns and relationships hidden within large volumes of data, providing insights into reservoir 

behavior and aiding in predictive modeling. In particular, long short-term memory (LSTM) time 

series analysis and dynamic time warping (DTW) alongside with transfer learning were employed 

as cutting-edge machine learning techniques, promising to deliver enhanced accuracy in predicting 

future production and effectively handling missing data. 

By amalgamating the capabilities of Petrel, Eclipse, and machine learning, we aim to provide a 

comprehensive reservoir management framework that optimizes production strategies, enhances 

hydrocarbon recovery, and facilitates informed decision-making. This work will detail the 

implementation of these techniques and their integration, ultimately setting the stage for the 

subsequent analysis and results presented in the following section 4. 
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3.1 Case Study 

For this study, we have selected a specific oil reservoir as our candidate for analysis. The Sarir or, 

more specifically, the Sarir "C" field lies on the western edge of the Calanscio Sand Sea in southern 

Cyrenaica and is the largest oil field in Libya. It occurs at the southeastern margin of the Upper 

Cretaceous-Tertiary Sirte basin or embayment that contains all the major oil fields of Libya and is 

the most prolific oil-producing basin in North Africa which is Sirt basin (Figure 3.1). The 

understanding of the studied area's geology relies on acknowledging significant geological events 

that impacted the Sirt basin and its surroundings. (Abadi et al., 2008) offers a concise overview of 

these events, which are detailed as follows: The Late Jurassic - Early Cretaceous period initiated 

rifting, creating a complex system of northwest-southeast horst-grabens due to extension. 

Subsequently, during the Late Cretaceous, further extension and fault reactivation led to major 

subsidence. This allowed Late Cretaceous seas to invade and fill the basin, characterized by shale 

and shallow water carbonates. The conclusion of the Cretaceous marked widespread Kalash 

carbonate deposition. Carbonates were present along the shelf margin, their characteristics 

influenced by water depth, topography, and currents. (Figure 3.2) demonstrates Horst-Graben 

system in Sirt basin. The chosen reservoir possesses unique geological characteristics, complex 

fluid properties, and a history of production data. A thorough examination of this reservoir presents 

an ideal opportunity to showcase the efficacy and applicability of the methodologies adopted in 

this study. The reservoir is also known as Nubian sandstone formation and the basal sandstones 

are the main reservoir of the field. They are far from homogeneous and have been subdivided into 

five members, three of shaly or tight sandstone separated by two clean sandstone units. The (Figure 

3.3) shows the stratigraphic column of Sarir trough. 
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Figure 3.1: The location of the study area of the Sarir C field 
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Figure 3.2: Horst-Graben system in Sirt basin, (Abadi et al. 2008) 

 
















































































































































































