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Abstract

Analyses of disease-free survival data for certain cancer types indicate that cohorts

of patients treated for cancer consist of individuals who are susceptible to experience

cancer related events and individuals who are cured. Cured individuals do not expe-

rience any cancer related event, and eventually die due to other causes. Individuals

who are not cured may die after experiencing cancer recurrence or without experienc-

ing any recurrence. Cure status is a partially latent variable and is only known if a

disease related event, cancer recurrence or cancer death, is observed. Causes of some

observed deaths may be masked. To model disease progression events, which are can-

cer recurrence and cancer death, we consider a multi-state model including partially

latent cured and not cured states. We describe our modeling approach and discuss

an inference method incorporating masked causes of deaths. Our method allows us

to identify factors associated with the risk of experiencing a disease related event and

with timing of disease events after the treatment of cancer.

It is of interest to make inference on direct exposure effects on time-to-event out-

comes in many studies. Traditional survival analysis methods may not reveal direct

exposure effects on time-to-event outcomes when there are indirect exposure effects

through intermediate variables which are confounded by some unmeasured factors. We

propose a mediation analysis method to make inference about direct exposure effects

on time-to-event outcomes under additive hazards model using estimating equations

methodology. We examine properties of the proposed method and compare them

with traditional survival analysis methods and the existing two-stage mediation anal-

ysis method which uses additive hazards model. The results show that our method

provides valid inference about controlled direct exposure effects on time-to-event out-

comes by successfully removing indirect effects through intermediate variables. It is

robust against measured and unmeasured confounding of indirect effects.

ii



To Yuna

iii



Acknowledgements

First and above all, I would like to thank God for giving me this opportunity.

I would like to express my deepest appreciation to my supervisors, Dr. Yildiz

Yilmaz and Dr. Candemir Cigsar, for giving me the opportunity to work with them

over the past few years. Their support, encouragement, patience and guidance have

been invaluable throughout this research work. I would like to appreciate members of

my Ph.D. supervisory committee Dr. J Concepcion Loredo-Osti and Dr. Alwell Oyet

for their invaluable guidance and support.

I wish to thank members of my thesis examining committee Dr. Xuewen Lu, Dr.

Zhaozhi Fan and Dr. Yanqing Yi for their insightful comments.

I sincerely acknowledge the financial support provided by the School of Gradu-

ate Studies and the Department of Mathematics & Statistics, Memorial University of

Newfoundland in the forms of Graduate Fellowship, Teaching Assistants, and Grad-

uate Assistants.

It is my great pleasure to thank friends who encouraged and helped me during my

Ph.D. program.

Finally, I wish to give special thank to my beautiful wife Yuna Oh and my daugh-

ters Raina Lim and Riley Lim for their support and love. I would not be able to

complete this thesis without constant support, patience and love from my family.

iv



Statement of contribution

Dr. Yildiz Yilmaz and Dr. Candemir Cigsar proposed the research questions that

were investigated throughout this thesis. The overall study was jointly designed by

Dr. Yildiz Yilmaz, Dr. Candemir Cigsar and Yongho Lim. The algorithms were

implemented, the simulation studies were conducted and the manuscript was drafted

by Yongho Lim. Dr. Yildiz Yilmaz and Dr. Candemir Cigsar jointly supervised the

study and contributed to the final manuscript.

v



Table of contents

Title page i

Abstract ii

Acknowledgements iv

Statement of contribution v

Table of contents vi

List of tables ix

List of figures xii

1 Introduction 1

1.1 Univariate Survival Data Analysis . . . . . . . . . . . . . . . . . . . . . 2

1.2 Sequential Time-to-Events . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Competing Risks Model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Illness-Death Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Multi-State Modeling Terminology . . . . . . . . . . . . . . . . . . . . 12

1.6 Likelihood Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Competing Risks with Masked Causes . . . . . . . . . . . . . . . . . . 14

1.7.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7.2 Estimation of Variance of θ̂ in EM Algorithm . . . . . . . . . . 18

1.8 Outline of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Statistical Inference in Multi-State Semi-Markov Models with a Cured

Fraction 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



2.2 Modeling and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Two-Stage Pseudo-Likelihood Estimation Method . . . . . . . . 30

2.3 Estimation in the Presence of Masked Causes of Deaths . . . . . . . . . 31

2.3.1 Maximum Likelihood Estimation via EM Algorithm . . . . . . . 33

2.3.2 Standard Error Estimation . . . . . . . . . . . . . . . . . . . . . 36

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Data Generation Algorithm in the Absence of Masked Causes

of Deaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Data Generation Algorithm in the Presence of Masked Causes

of Deaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 Simulation Results in the Absence of Masked Causes of Deaths . 44

2.4.4 Simulation Results in the Presence of Masked Causes of Deaths 46

2.5 Application to Colon Cancer Data . . . . . . . . . . . . . . . . . . . . . 49

3 Introduction to Mediation Analysis Methods for Time-to-Event Out-

comes 58

3.1 Regression Models for Time-to-Event Outcomes . . . . . . . . . . . . . 59

3.1.1 Accelerated Failure Time Model . . . . . . . . . . . . . . . . . . 59

3.1.2 Proportional Hazards Model . . . . . . . . . . . . . . . . . . . . 61

3.1.3 Additive Hazards Model . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Review of Mediation Analysis Methods for Time-to-Event Outcomes . . 69

3.2.1 Structural Equation Modeling . . . . . . . . . . . . . . . . . . . 71

3.2.2 Sequential G-estimation Method . . . . . . . . . . . . . . . . . . 73

3.2.3 Sequential G-estimation Method using Aalen’s Additive Haz-

ards Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.4 Causal Inference Estimating Equation Method . . . . . . . . . . 75

3.3 Outline of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Estimation of Controlled Direct Exposure Effects on Time-to-Event

Outcomes Using Additive Hazards Model 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Notation and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Application to Colon Cancer Data . . . . . . . . . . . . . . . . . . . . . 99

vii



5 Summary and Conclusions 103

5.1 Statistical Inference in Multi-State Semi-Markov Models with a Cured

Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Estimation of Controlled Direct Exposure Effects on Time-to-Event

Outcomes Using Additive Hazards Model . . . . . . . . . . . . . . . . . 106

Bibliography 109

viii



List of tables

2.1 Monte-Carlo simulation study results in the absence of masked causes

of deaths. Simulation study was conducted using 1, 000 replications

with sample size n = 200 and n = 400 under moderate dependence

(τ = 0.3) and strong dependence (τ = 0.7) between the sequential gap

times. Censoring rates are approximately 55% for 1 → 2 transition,

87% for 1 → 3 transition and 68% for 2 → 3 transition. Est refers

to estimate of the corresponding parameter, Mean(Est) refers to the

mean of the estimates, SD(Est) refers to the standard deviation of
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Chapter 1

Introduction

Multi-state modeling of multivariate survival times is widely used when subjects un-

dergo a number of events in a given time period (Cook and Lawless, 2018). Multi-

state modeling allows to model multiple time-to-events. It includes sequential time-

to-events, competing risks, and illness-death modeling. Applications of multi-state

models can be found in many studies such as cancer prognostic studies (Lawless and

Yilmaz, 2011; Beesley and Taylor, 2018). Patients with cancer may experience one or

more events after cancer treatment which includes cancer recurrence and death.

One may encounter challenges when modeling cancer progression events : (i) time

from cancer diagnosis to cancer recurrence, time from recurrence to death and time

from diagnosis to death could be subject to censoring, (ii) there could be dependence

between sequential event times, (iii) there could be multiple causes of deaths, and a

cause of death could compete with other causes, (iv) causes of deaths for some individ-

uals may not be available when there are competing causes, (v) some individuals may

not experience any cancer related event even though followup times are long enough.

This indicates that the population is a mixture of individuals who are susceptible

to a disease related event, which is recurrence or death due to cancer, and who are
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long-term disease free survivors (cured).

The objective of the study is to introduce a multi-state model for cancer prognostic

studies and to develop an estimation method to analyze the multi-state time-to-disease

related events data. To model disease progression events, we consider a multi-state

model with partially latent cured and not cured states. We describe our modeling

approach and discuss an inference method incorporating masked causes of deaths.

Our method allows us to identify factors associated with the risk of experiencing a

disease related event and with timing of disease events after the treatment of cancer.

In this chapter, we give a brief review of notation terminology and statistical

methods for univariate and multivariate survival time analyses. We focus on standard

multi-state modeling without cured population in Chapter 1. In Chapter 2, the model

is extended to include a cured fraction, cause specific deaths and masked causes of

deaths.

1.1 Univariate Survival Data Analysis

In this section, we give a brief review of statistical modeling of univariate survival

data. We let T be a continuous nonnegative time-to-event. The distribution function

of T is defined by

F (t) = Pr(T ≤ t), (1.1)

and the survival function of T is defined by

S(t) = Pr(T > t). (1.2)
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We let ∆t be an infinitesimal positive valued real number. The hazard function of

random variable T is defined as

h(t) = lim
∆t→0

Pr(T ∈ [t, t+∆t)|T ≥ t)

∆t
, t > 0. (1.3)

The function h(t)∆t is an approximate probability of an event occurrence over [t, t+

∆t).

Suppose the time-to-event Ti for subject i is subject to right-censoring and the

censoring time Ci and the time-to-event Ti are independent for i = 1, 2, . . . , n. Let

ti = min(Ti, Ci) be the observed time-to-event and δi = I(Ti ≤ Ci) be the event

indicator, where I(·) is the indicator function.

Then, the likelihood function for the observed data {(ti, δi), i = 1, 2, . . . , n} is

L =
n∏

i=1

f(ti)
δiS(ti)

(1−δi), (1.4)

where f(t) = ∂F (t)/∂t.

1.2 Sequential Time-to-Events

Sequential events refer to a series of events that occur one after the other in order.

Sequential times are the times between a specified series of sequentially observed

events. They are also called gap times or sojourn times between sequential events.

For example, cancer diagnosis, cancer recurrence and death can be considered as

sequential events when there is no death before cancer recurrence.

Suppose T1 and T2 denote sequential time-to-events where T2 cannot be observed

unless T1 is observed. T1 and T2 may not be independent. The joint distribution of
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T1 and T2 is defined by

F (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2), (1.5)

and the joint survival function of T1 and T2 is defined by

S(t1, t2) = Pr(T1 > t1, T2 > t2). (1.6)

The joint survival function in (1.6) can be expressed as

S(t1, t2) = 1− F1(t1)− F2(t2) + F (t1, t2), (1.7)

where F1(t1) = F (t1,∞) and F2(t2) = F (∞, t2) are the marginal distribution func-

tions of T1 and T2, respectively.

Let T1i, T2i be sequential time-to-events which are subject to right-censoring and

Ci be the independent right-censoring time for individual i, i = 1, 2, . . . , n. We let

t1i = min(T1i, Ci) and t2i = min(T2i, Ci−t1i) be the observed sequential gap times and

δ1i = I(T1i = t1i) and δ2i = I(T2i = t2i) be the event indicators. The observed data

consists of {(t1i, t2i, δ1i, δ2i), i = 1, 2, . . . , n}. The second time-to-event t2i and its event

indicator δ2i only exist if δ1i = 1. To obtain the likelihood function of the observed

data, we consider the likelihood contributions for subjects (i) who experienced both

the first and the second event (δ1i = 1, δ2i = 1), (ii) who experienced the first event

and then censored before experiencing the second event (δ1i = 1, δ2i = 0), (iii) who

were censored before experiencing the first event (δ1i = 0). The likelihood of the

observed data becomes (Lawless, 2003)

L =
n∏

i=1

[f(t1i, t2i)]
δ1i δ2i

[
−∂S(t1i, t2i)

∂t1i

]δ1i(1−δ2i)

[S1(t1i)]
(1−δ1i) , (1.8)
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where f(t1, t2) = ∂2F (t1, t2)/∂t1∂t2 is the joint probability density function of T1 and

T2 and S1(t1) = S(t1, 0) is the marginal survival function of T1.

There are three main ways to model the dependence between sequential event

times. These are conditional modeling, random effects modeling, and marginal mod-

eling approaches. Putter et al. (2006) used a semi-parametric Cox proportional hazard

model where the gap times depend on the previous states by using “clock reset” ap-

proach which is to set time t to 0 at each state. Their hazard function of the second

gap time was modeled conditionally dependent on the previous gap time. Fine et al.

(2001) considered random effects modeling using a gamma frailty to model the depen-

dence between successive gap times. A random effects model can be used to model

the association of successive event times. In random effects modeling, successive event

times are dependent through random components with a specified distribution (Cook

and Lawless, 2007, Chapter 4). The marginal distributions in random effects models

are not always in simple forms. He and Lawless (2003) considered marginal model-

ing approach in which they used a copula function to model the joint distribution of

sequential event times.

We review the marginal approach to model the joint distribution by using cop-

ula functions. Copula models have attractive features when modeling the depen-

dence structure between time-to-events. Copula modeling allows to consider different

marginal distributions for time-to-events. The dependence structure in copula models

does not depend on the marginal distributions of time-to-events. Therefore, marginal

distributions can be modeled separately considering the features of each time-to-event.

As a result, the interpretation of the dependence structure and the marginal distri-

bution remain relatively simpler.

The joint distribution of sequential times T1 and T2 can be formed with a copula
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function as

F (t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2) = C(F1(t1), F2(t2)), (1.9)

where C(., .) is a copula function, F1(t1) is the distribution function of T1 and F2(t2) is

the distribution function of T2. Based on Sklar’s theorem, there exists a unique copula

to construct the joint distribution of T1 and T2 if F1(t1) and F2(t2) are continuous

(Nelsen, 2006, page 21).

We can re-write the likelihood function for sequential time-to-events in (1.8) by

using a copula function as follows (He and Lawless, 2003; Lawless and Yilmaz, 2011)

L =
n∏

i=1

[
∂C(F1(t1i), F2(t2i))

∂t1i∂t2i

]δ1i δ2i [∂F1(t1i)

∂t1i
− ∂C(F1(t1i), F2(t2i))

∂t1i

]δ1i(1−δ2i)

× [S1(t1i)]
(1−δ1i) .

(1.10)

Fully parametric one-stage estimation using maximum likelihood estimation method

or two-stage parametric estimation using pseudomaximum likelihood estimation method

can be considered. A variety of copula families can be used with parametric estimation

methods (Joe, 2014). In addition to parametric estimation, He and Lawless (2003)

considered piecewise constant estimation to model the marginal hazard functions of

the gap times while the joint distribution was modeled by a copula function. Later,

Lawless and Yilmaz (2011) considered a semiparametric estimation method to esti-

mate the joint distribution of sequential gap times considering a parametric copula

function while the marginal distributions of the gap times were treated nonparamet-

rically.



7

1.3 Competing Risks Model

Competing risks modeling is considered in many settings (Cook and Lawless, 2018,

Chapter 3) where there are multiple possible outcomes or causes of an event that are

of interest. For example, competing risks problem arises when we consider possible

transitions from the healthy state to death state with different causes as shown in

Figure 1.1. Causes of death compete with each other and death due to a cause

prevents death due to the other causes.

Healthy Death due to cause II

Death due to cause I

...

Death due to other causes

Figure 1.1: A competing risks structure

Prentice et al. (1978) stressed out the use of cause-specific hazards in competing

risks modeling. Along with cause-specific hazards, cumulative incidence functions take

an important role in the competing risks modeling (Kalbfleisch and Prentice, 2002).

Nonparametric estimation in competing risks has been discussed by Aalen (1978)

using the Nelson-Aalen estimation of the cumulative hazard function and the Kaplan-

Meier estimation of the survival function. Because of the violation of the independence

assumption in censoring, Kaplan-Meier estimator of overall survival function might be

biased when cumulative incidence function is estimated (Putter et al., 2007). Bryant

and Dignam (2004) suggested a semiparametric cumulative incidence estimator which

considered Kaplan-Meier estimator of a survival function for a particular cause rather

than the overall survival function.
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Larson and Dinse (1985) considered decomposition of cumulative incidence func-

tion of time to failure to conditional subdistribution given the type of failure and

the marginal probability of the type of failure. Nicolaie et al. (2010) considered a

similar decomposition methodology to Larson and Dinse (1985) where they used de-

composition of subdistribution of time to failure into distribution of time to failure

and conditional probability of the type of failure given a failure occurred.

For parametric estimation of competing risks model, Larson and Dinse (1985)

considered conditional subdistribution (cumulative incidence) functions and utilized

parameterized marginal probability of cause. Jeong and Fine (2006) discussed a model

with direct parametric assumption in cumulative incidence function using Gompertz

distribution whose asymptote maybe less than one in certain settings. Fine and

Gray (1999) proposed another approach using the subdistribution hazard which is

the instantaneous risk of having a particular cause given that the subject has not

experienced this particular cause.

An important function in competing risks is the cause specific hazard function.

Suppose we have K distinct types of events. When an event occurs, it could be one

of the K causes. We let M denote the type of events where M = 1, 2, . . . , K. We

denote the cause specific hazard function for type k as

λk(t) = lim
∆t→0

Pr(T ∈ [t, t+∆t),M = k|T ≥ t)

∆t
, for k = 1, 2, . . . , K. (1.11)

We denote the marginal intensity function of T and the marginal cumulative in-

tensity function of T as

λ(t) =
K∑
k=1

λk(t), (1.12)
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and

Λ(t) =
K∑
k=1

Λk(t), (1.13)

respectively, where Λk(t) =
∫ t

0
λk(s)ds. We denote the cumulative incidence function

for type k as

Fk(t) = Pr(T ≤ t,M = k) =

∫ t

0

λk(u)S(u)du, (1.14)

where S(t) = exp(−Λ(t)) is the marginal survival function of T .

Let Ti and Ci be the time-to-event and the independent right-censoring time for the

ith individual, respectively. We have the observed data as {(ti, δ1i, δ2i, . . . , δKi, ), i =

1, 2, . . . , n} where ti = min(Ti, Ci) and δki = I[Cause k occurs for the ith individual],

k = 1, 2, . . . , K. The likelihood function for the observed data {(ti, δ1i, δ2i, . . . , δKi, ), i =

1, 2, . . . , n} is proportional to

L =
n∏

i=1

[
K∏
k=1

(
∂Fk(ti)

∂ti

)δki
]
S(ti)

∏K
k=1(1−δki). (1.15)

1.4 Illness-Death Model

Illness-death model or semi-competing risks model can be used to model cancer pro-

gression events. Patients who were diagnosed for cancer and became disease free may

have a cancer recurrence or may die without experiencing a recurrence. Patients who

had recurrence may die during followup time period. In illness-death model, there are

terminal and non-terminal events where a terminal event terminates the process while

a non-terminal event is an event that does not terminate the process. For example,

cancer recurrence refers to a non-terminal event and death refers to a terminal event

in the illness-death model. Figure 1.2 describes an illness death model structure where

there are healthy, cancer recurrence and death states.



10

Healthy
(State 1)

Recurrence
(State 2)

Death
(State 3)

Figure 1.2: An illness-death model structure

Illness-death model was first introduced by Fix and Neyman (1951). Markov

illness-death model was discussed in detail in Andersen et al. (1993). Semi-Markov

illness death model was discussed by Voelkel and Crowley (1984) considering hazards

for a particular state depending on the previous state. In semi-Markov illness death

model, the dependence between sequentially observed event times in semi-competing

risks needs to be taken into account.

Let T1i and T2i be the time-to-first event and time from recurrence to death,

respectively for individual i, i = 1, 2, . . . , n. Time-to-first event is the time un-

til cancer recurrence or cancer death without experiencing cancer recurrence. Let

Ci be independent right-censoring time for individual i, i = 1, 2, . . . , n. We let

t1i = min(T1i, Ci) and t2i = min(T2i, Ci − t1i) for i = 1, 2, . . . , n. We let δjki =

I[transition j → k occurs for individual i] be event indicators with j = 1 and k = 2, 3

or j = 2 and k = 3 for i = 1, 2, . . . , n and M denote the progression state at t1 for

M = 2, 3.

We denote the joint distribution function of time to recurrence and time from

recurrence to death by F12,23(t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2,M = 2). The survival
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function of time to recurrence and time from recurrence to death is denoted by

S12,23(t1, t2) = Pr(T1 > t1, T2 > t2,M = 2). (1.16)

We denote F13(t1) = Pr(T1 ≤ t1,M = 3) as the cumulative incidence function of T1

for subjects who died without experiencing recurrence.

The observed data is {(t1i, t2i, δ12i, δ13i, δ23i, i = 1, 2, . . . , n}. The second gap time

t2i and its event indicator δ23i only exist if δ12i = 1. Due to the nature of competing

risks, if δ12i = 1, then δ13i = 0; and if δ13i = 1, then δ12i = 0. To obtain the likelihood

function of the observed data, we consider the likelihood contributions for subjects (i)

who have censored time-to-first event (δ12i = 0, δ13i = 0), (ii) who have experienced

cancer recurrence and died (δ12i = 1, δ23i = 1), (iii) who have experienced cancer

recurrence and not died before the end of followup (δ12i = 1, δ23i = 0), and (iv) who

died without experiencing recurrence (δ13i = 1).

Then, the likelihood function for the observed data {(t1i, t2i, δ12i, δ13i, δ23i), i =

1, 2, . . . , n} is proportional to

L =
n∏

i=1

(f12,23(t1i, t2i))
δ12i δ23i

(
−∂S12,23(t1i, t2i)

∂t1i

)δ12i(1−δ23i)

×
(
∂F13(t1i)

∂t1i

)δ13i

(S1(t1i))
(1−δ12i)(1−δ13i) ,

(1.17)

where f12,23(t1, t2) = ∂2F12,23(t1, t2)/∂t1∂t2 is the joint probability density function of

time to recurrence and time from recurrence to cancer death and S1(t1) = Pr(T1 > t1)

is the marginal survival function of T1.

Parametric maximum likelihood estimation under illness-death model is well listed

in Andersen et al. (1993, Chapter 6). Royston and Parmar (2002) proposed a para-

metric estimation method under illness-death model using cubic spline function to
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model the baseline log cumulative hazard function. Xu et al. (2010) considered an

illness–death model with nonparametric maximum likelihood estimation method.

1.5 Multi-State Modeling Terminology

We let T be life time. We consider a multi-state process with K states. We let

Njk(t) be the number of event occurrences in transition from state j to k over a time

interval (0, t], where t > 0 and j ̸= k = 1, 2, . . . , K. Then, {N(t), t ≥ 0} is called a

counting process where N(t) = (Njk(t), j ̸= k = 1, 2, . . . , K)T . The history at time t,

H(t) = {N(u), 0 ≤ u ≤ t}, includes all the information about the counting process

{N(t), t ≥ 0} from time 0 to time t.

We let ∆t be an infinitesimal positive valued real number and ∆Njk(t) be an

increment in transition from state j to k over a small interval [t, t +∆t) which gives

the number of event occurrences in transition from state j to k over the time interval

[t, t+∆t). We define the intensity function for the transition from state j to k as

λjk(t|H(t−)) = lim
∆t→0

P{∆Njk(t) = 1|H(t−)}
∆t

for j ̸= k, (1.18)

where ∆t > 0. We assume that two or more events cannot occur simultaneously at

the same instant.

Using the multi-state model terminology, we can also define the intensity function.

We let Z(t) denote the state occupied at time t. Then, {Z(t), t ≥ 0} is associated with

a stochastic process. The history for the process is denoted by H(t) = {Z(u), 0 ≤ u ≤

t}. We define Pjk(s, t) = Pr(Z(t) = k|Z(s) = j,H(s−)) for s < t be the probability of

being in state k at time t given that the process was in state j at time s and H(s−)

denotes the history of events and covariate information up to and right before time



13

s. The multi-state process is characterized through transition intensities

λjk(t|H(t−)) = lim
∆t→0

Pjk(t, t+∆t)

∆t
for j ̸= k = 1, 2, . . . , K. (1.19)

We assume that all the individuals are observed from time 0 and independent

right-censoring time is Ci for i = 1, 2, . . . , n. We define Yij(t) = I(Zi(t) = j) as the

indicator that an individual i is in state j at time t. The likelihood function is given

by

L =
∏
j ̸=k

Ljk, (1.20)

with

Ljk =
n∏

i=1

 ∏
tir∈Dijk

λjk(tir) exp

(
−
∫ ∞

0

Ȳij(u)λjk(u)du

) , (1.21)

where Ȳij(u) = I(0 ≤ u ≤ Ci)Yij(u) and Dijk is the set of j → k transition times

observed over the interval [0, Ci].

1.6 Likelihood Inference

We let y1, y2, . . . , yn be a random sample which are from a distribution function f(y;θ)

where θ = (θ1, θ2, . . . , θp)
T is a vector of unknown parameters for θ ∈ Ω. The likeli-

hood function of observed data {y1, y2, . . . , yn} becomes

L(θ) =
n∏

i=1

f(yi;θ). (1.22)

Assuming the required regularity conditions (Cox and Hinkley, 1979) are satisfied,

we let U(θ) = (U1(θ), U2(θ), . . . , Up(θ))
T be a score vector where

Uj(θ) =
∂ logL(θ)

∂θj
, j = 1, 2, . . . , p (1.23)
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and maximum likelihood estimate θ̂ can be obtained by solving

U(θ) = 0. (1.24)

Assuming that the model is correctly specified and the required regularity conditions

are satisfied, θ̂ is a consistent estimator of θ and

√
n(θ̂ − θ) D−→ Np(0,J1

−1(θ)), (1.25)

where J1(θ) is the Fisher information matrix with entries

J1,jk(θ) =
1

n
E

(
−∂

2 logL(θ)

∂θj∂θk

)
j, k = 1, 2, . . . , p. (1.26)

The observed information matrix I(θ̂) is a consistent estimator of J (θ) = nJ1(θ)

where the entries of I(θ) are

Ijk(θ) = −∂
2 logL(θ)

∂θj∂θk
j, k = 1, 2, . . . , p. (1.27)

1.7 Competing Risks with Masked Causes

In classic competing risk model, causes of failures are all assumed to be known. How-

ever, it is not always possible to know causes of all failures.

Competing risks modeling with masked causes has been discussed by many au-

thors. Dinse (1986) considered nonparametric maximum likelihood estimation when

there are missing causes of failures. Two-stage data collection was considered by

Flehinger et al. (1998, 2002) to obtain information on some masked causes. They

considered maximum likelihood estimation for cause specific hazards functions using
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an EM algorithm. Estimation under a piecewise-constant hazards competing risks

model with two-stage data collection was proposed by Craiu and Duchesne (2004).

Basu and Tiwari (2010) considered Bayesian estimation method under mixture-cure

model with competing risks to tackle masked causes problem.

Suppose there are K − 1 competing risk events with k ≥ 2 and G masking groups

with G ≥ 1. Since masking groups can be subsets of all causes, we can define masking

groups as

G = {g1, g2, . . . , gG; gq ⊂ {2, 3, . . . , K}, q = 1, 2, . . . , G}, (1.28)

where masking groups gq, for q = 1, 2, . . . , G contains 2 or more causes

that are subsets of {2, 3, . . . , K}. The ith individual has complete data

(ti, γig1 , γig2 , . . . , γigG , δ12i, δ13i, . . . , δ1Ki) where γigq , for q = 1, 2, . . . , G, is an indicator

that the cause of failure of ith individual is masked to group gq for q = 1, 2, . . . , G

in the first stage data. If any γigq for q = 1, 2, . . . , G is 1 for ith individual, then

δ12i, δ13i, . . . , δ1Ki are missing. The masked probability becomes (Craiu and Duch-

esne, 2004)

Pgq |k(t) = Pr(cause masked to group gq in the first stage |T = t,M = k), (1.29)

for q = 1, 2, . . . , G and k = 2, 3, . . . , K. Also, the diagnostic probability is defined by

πk|gq(t) = Pr(actual cause of failure is k|cause masked to group gq and failed at time t).

(1.30)

The diagnostic probability can be obtained by using Bayes’ rule

πk|g(t) =
λ1k(t)Pg|k(t)∑
l∈g λ1l(t)Pg|l(t)

. (1.31)
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Let G∗
k be the set of masked groups that contains cause k. Then, the likelihood

function under the complete data is

L =
n∏

i=1

K∏
k=2

(
∂F1k(ti)

∂ti

)δ1ki

S(ti)
∏K

k=2(1−δ1ki)

×
∏
g∈G∗

k

Pg|k(t)
δ1kiγig

∏
g∈G∗

k

(1− Pg|k(t))
δ1ki(1−

∑
g∈G∗

k
γig).

(1.32)

Note that δ1ki follows multinomial distribution with size 1 and probabilities πk|g(ti),

for k ∈ g. Therefore,

E [δ1ki|Obs] = πk|g(ti) =
λ1k(t)Pgq|k(t)∑
l∈g λ1l(t)Pg|l(t)

. (1.33)

Therefore, the E step consists of substituting δ1ki by E [δ1ki|Obs] in the natural loga-

rithm of the likelihood given in (1.32) and the conditional expectation is maximized

in the M step.

1.7.1 EM algorithm

Expectation-Maximization (EM) algorithm is useful in finding maximum likelihood

estimates when some of the data are missing. Dempster et al. (1977) popularized the

EM algorithm. It has been extensively used in various studies. The details can also

be found in McLachlan and Krishnan (2007).

We let Y be the random vector corresponding to observed data y with pdf f(y|θ)

where θ is the vector of unknown parameters. We let X be the random vector corre-

sponding to the complete data x with pdf fc(x|θ). We only observe incomplete data y

instead of the complete data x = (y, z) where Z is the random vector corresponding

to the missing data z whose pdf is k(z|θ).
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The complete likelihood function is defined as

Lc(θ|y, z) = fc(x|θ), (1.34)

and the observed likelihood function is L(θ|y). Our goal is to maximize L(θ|y). We

let Q(θ|θ0,y) be

Q(θ|θ0,y) = Eθ0 [logLc(θ|y, z)|θ0,y], (1.35)

where θ0 is given value of θ.

We maximize L(θ|y) by maximizing Q(θ|θ0,y). Since the conditional distribution

of z given Y = y is

k(z|y,θ) = fc(z,y|θ)
f(y|θ)

, (1.36)

we can write L(θ|y) = f(y|θ) = fc(z,y|θ)/k(z|y,θ). Thus, we obtain

logL(θ|y) =
∫

logL(θ|y)k(z|θ0,y)dz

=

∫
[log fc(z,y|θ)− log k(z|θ,y)] k(z|θ0,y)dz

=

∫
[logLc(θ|y, z)− log k(z|θ,y)] k(z|θ0,y)dz

=Eθ0 [logLc(θ|y, z)|θ0,y]− Eθ0 [log k(z|θ,y)|θ0,y]

=Q(θ|θ0,y)− Eθ0 [log k(z|θ,y)|θ0,y]

(1.37)

Therefore, the EM algorithm consists of finding the expectation in (1.35) and

maximizing it. We let θ(0) be some initial value for θ. The E-step and M-step are

repeated to find θ(l+1) until the difference L(θ(l+1)) − L(θ(l)) meets the convergence

criterion.

1. E-step (Expectation Step)
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Calculate

Q(θ|θ(l),y) = Eθ0 [logLc(θ|y, z)|θ(l),y]. (1.38)

2. M-step (Maximization Step)

Find θ(l+1) by maximizing Q(θ|θ(l),y)

θ(l+1) = ArgmaxQ(θ|θ(l),y). (1.39)

1.7.2 Estimation of Variance of θ̂ in EM Algorithm

When the EM algorithm is used, a special attention is needed to obtain the standard

error estimates of θ̂ (Xu et al., 2014). There are several methods to calculate standard

error estimates of estimators obtained by EM algorithm. In this study, we focus on

the supplemented EM (SEM) algorithm and the nonparametric bootstrap.

SEM algorithm

SEM is useful to calculate standard error estimates with extra variability due to EM

procedure (Meng and Rubin, 1991; Xu et al., 2014). EM algorithm uses the relation

θ(l+1) =M(θ(l)), (1.40)

where θ(l) is the estimate of unknown parameter θ from the lth iteration and M(θ(l))

is the value of θ(l) that maximize Q(θ|θ(l),y). Then, the variance estimates can be

obtained by (Meng and Rubin, 1991)

V = I−1
oc + I−1

oc DM(I −DM)−1, (1.41)
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where Ioc is a complete information matrix obtained from

Ioc = E

(
−∂

2logf(y|θ)
∂θ∂θT

∣∣∣∣y,θ)∣∣∣∣
θ=θ̂

, (1.42)

and DM has entries

rij =

(
∂Mj(θ)

∂θi

)
θ=θ̂

, (1.43)

where rij can be estimated below. We let θ̃
(l)

i to be

θ̃
(l)
(i) = (θ∗1, θ

∗
2, . . . , θ

∗
i−1, θ

(l)
i , θ

∗
i+1, . . . , θ

∗
p), (1.44)

where θ∗i is the maximum likelihood estimator of θi for i = 1, 2, . . . , p. (1.44) means

that only the ith component is in the lth process of the algorithm while other compo-

nents are maximum likelihood estimators of θi. Meng and Rubin (1991) showed that

rij can be estimated by the following procedure

1. Obtain θ∗i for i = 1, 2, . . . , p where θ∗i is the maximum likelihood estimator of θi

using the EM algorithm.

2. Obtain θ
(l+1)
i (i) by treating θ̃

(l)
(i) in (1.44) as current iteration and running one

more EM iteration.

3. Obtain the ratio

r
(l)
ij =

θ
(l+1)
j (i)− θ∗j

θ
(l)
i − θ∗i

. (1.45)

4. Obtain rij until r
(l)
ij is stable.
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Bootstrap Procedure for EM Algorithm

Nonparametric bootstrap procedure can be used to obtain standard error estimates

of estimators. The procedure is as follows:

(i) Obtain a random sample {(t̃1r, t̃2r, δ̃12r, δ̃13r, δ̃23r, γ̃gmr), r = 1, 2, . . . , n} with re-

placement from the data {(t1i, t2i, δ12i, δ13i, δ23i, γgmi), i = 1, 2, . . . , n}.

(ii) Using the E step and the M step, obtain θ̂ which is the esti-

mate of unknown parameter vector θ = (θ1, θ2, . . . , θp) using the data

{(t̃1r, t̃2r, δ̃12r, δ̃13r, δ̃23r, γ̃gmr), r = 1, 2, . . . , n}.

(iii) Repeat the steps (i), (ii) B times and obtain estimates θ̂1, θ̂2, . . . , θ̂B.

(iv) Bootstrap variance-covariance matrix is

1

B

B∑
r

(θ̂r − θ̂)(θ̂r − θ̂)T , (1.46)

where θ̂ is the mean of θ̂1, θ̂2, . . . , θ̂B.

1.8 Outline of Research

In this chapter, we introduced the notation and some models used for univariate and

multivariate survival data analysis. In some types of cancer, such as breast, leukemia,

and colorectal cancer, a proportion of patients may not experience any cancer-related

events after treatment in a long followup time. These patients are considered as

statistically cured. Cured individuals do not experience any cancer-related events, and

eventually die due to other causes unrelated to cancer. On the other hand, individuals

who are not cured may die due to cancer either after experiencing cancer recurrence or
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without experiencing cancer recurrence. Cure status is a partially latent variable and

is only known if a disease-related event, cancer recurrence or cancer death, is observed.

Moreover, cause of death for some individuals may not be immediately observed and

may be masked. To model disease progression events, we consider a multi-state model

including partially latent cured and not cured states. Our modeling approach provides

a new method to model curable cancer progression data on time to cancer recurrence

and cancer death in the presence of masked causes of deaths. We study our modeling

approach and discuss an inference method incorporating masked causes of deaths in

Chapter 2.

In Chapter 3, we study the second topic which is about making inference on direct

exposure effects on time-to-event outcomes. Traditional survival analysis methods

may not reveal direct exposure effects on time-to-event variables when there are in-

direct exposure effects through intermediate variables which are confounded by some

unmeasured factors. We propose a mediation analysis method to make inference about

direct exposure effects on time-to-event outcomes under additive hazards model using

estimating equations methodology. We follow the sequential G-estimation idea but

consider a one-stage estimation solving two sets of unbiased estimating equations si-

multaneously. The direct exposure effect is measured using the adjusted time-to-event

outcomes obtained by removing indirect exposure effect. We examine the properties

of the proposed method and compare them with traditional survival analysis methods

and the existing two-stage causal inference method which uses additive hazards model.

In Chapter 3, we introduce the notation and some existing modeling approaches and

estimation methods for regression analysis with time-to-event data and mediation

analysis. We propose our mediation analysis method to infer the controlled direct

exposure effect on time-to-event outcome in Chapter 4. Our one stage estimating

equation approach gives a closed-form estimator for the direct exposure effect and
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allows to use the robust Huber-White sandwich estimator of the standard error of

direct exposure effect estimator.

In Chapter 5, we summarize our study and discuss future research.



Chapter 2

Statistical Inference in Multi-State

Semi-Markov Models with a Cured

Fraction

2.1 Introduction

There have been significant advances in treatment options for certain cancer types

and stages. Successful treatments lead to improvements in survival and disease-free

life of cancer patients. In many observational studies with long followup time, sub-

stantial proportions of individuals receiving cancer treatment do not experience any

cancer related events, cancer recurrence or death due to cancer. These individuals

are possibly not susceptible to any cancer events after receiving their cancer treat-

ment and they eventually die due to other reasons rather than their diagnosed cancer.

We call treated individuals who are not susceptible to any cancer events as “cured”.

Individuals who are susceptible to cancer related events may experience cancer recur-

rence and then die or may die due to cancer without experiencing recurrence. Cancer
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death without recurrence might be observed as a result of an adverse effect of cancer

treatment (Dillek̊as et al., 2019), and in this study it is considered as a death due to

cancer.

Figure 2.1 illustrates a multi-state model for cancer progression events. The treat-

ment state (state 1) represents patients who have been treated for their primary

cancer. It includes both “cured” and “not cured” states. Being cured or not is par-

tially latent. Patients who had cancer recurrence or died due to cancer are known to

be not cured. The possible transitions for non-cured patients are from cancer treat-

ment (state 1) to cancer recurrence (state 2) and then from recurrence (state 2) to

cancer death (state 3) or from treatment to cancer death (state 3) without experienc-

ing recurrence. There is an illness-death model for non-cured patients. Cancer death

without recurrence precludes cancer recurrence for non-cured patients who received

cancer treatment. Patients who have cancer recurrence may die due to cancer. Cured

individuals do not experience any disease related event in a long term followup and

eventually die due to other causes. Cure status is unknown if no cancer related event

is observed, and there can only be empirical evidence for being cured if no cancer

related event is observed during a long followup time (Lambert et al., 2010).

Treatment (1)

Not Cured Recurrence (2)

Cancer Death (3)Cured

Figure 2.1: Multi-state model with partially latent cured and not cured states

The objective of our study is to model the risk of experiencing a cancer related
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event and distributions of time to cancer recurrence, time from recurrence to cancer

death and time to cancer death without experiencing cancer recurrence.

When a study cohort consists of a mixture of long-term cancer free survivors and

non-cured patients, mixture cure modeling is helpful to identify factors associated

with the risk and timing of a cancer progression event (Yilmaz et al., 2013). Mixture

cure models have been used in various multiple modes of failure settings. It was used

in a multi-state modeling setting with a cured fraction in Conlon et al. (2014) and

Beesley and Taylor (2018) with an all-cause mortality state where causes of deaths

are ignored. Conlon et al. (2014) considered a semi-Markov multi-state cure model.

They assumed fully parametric models to model the probability of being cured and

transition intensities. They used conditional modeling approach to incorporate the

effect of time from treatment to recurrence on time from recurrence to death to fulfill

the semi-Markov assumption and proposed a Bayesian estimation method. Beesley

and Taylor (2018) also considered a multi-state cure model with an all-cause mortality

state but had the Markov assumption for successive time-to-events. They conducted

maximum likelihood estimation using a Monte Carlo EM algorithm.

In this study, we consider the multi-state cure model in Figure 2.1 with a cause

specific death state to suit the objective of the study described above. We use mixture-

cure model to incorporate cured fraction. For non-cured patients, the successive

time-to-events, time to recurrence and time from recurrence to cancer death, can be

associated for a given patient. Thus, we work under the semi-Markov assumption.

We consider the marginal modeling approach using copula functions to model the

dependence between time to recurrence and time from recurrence to cancer death.

Copula modeling allows to model marginal distributions of time-to-events separately

from the dependence structure (Nelsen, 2006; Joe, 2014). Therefore, the marginal

distributions can be selected based on modeling needs and can be combined using
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a copula function to obtain the joint distribution of the sequential gap times. The

marginal modeling allows the effect of covariates to be easily interpreted compared to

the conditional modeling (Cook and Lawless, 2007, Chapter 4). We obtain the like-

lihood function under this semi-Markov multi-state model including partially latent

cured and not cured states and discuss the likelihood and pseudo-likelihood based

inference methods in Section 2.2.

Cure status is a partially latent variable and is only known if a disease related

event, cancer recurrence or cancer death, is observed. In addition to unknown cure

status, the true causes of some observed deaths may be masked. A death can be due to

the diagnosed cancer or due to other causes. When there is no cured proportion, under

a competing risks model with masked causes of failure, Craiu and Duchesne (2004)

proposed a design and an EM algorithm to estimate cause specific hazard functions.

They considered a two-stage data collection design where the true causes of some

masked causes of failures are obtained in the second stage. In our setting, we use the

empirical evidence on cure status for the masked causes of deaths which occurred after

the last observed cancer related event time. We propose an EM algorithm in Section

2.3 to fit the multi-state cure model while incorporating the empirical evidence on

cure status.

The remainder of this Chapter is organized as follows. In Section 2.2, we introduce

the semi-Markov multi-state cure model with cause-specific cancer death state and

discusses the likelihood and pseudo-likelihood methods to fit the model. In Section

2.3, we propose the EM algorithm to fit the model in the presence of masked causes

of deaths. We describe the simulation studies performed to investigate the properties

of the estimation methods and presents the results in Section 2.4. In Section 2.5, we

provide an application of a real data using the proposed estimation methods.
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2.2 Modeling and Estimation

Suppose T1i denotes the first disease progression event time, T2i denotes time from

recurrence to cancer death for patients who experience cancer recurrence, and Ci

denotes the right censoring time for individual i, i = 1, 2, . . . , n. Let t1i = min(T1i, Ci)

and t2i = min(T2i, Ci− t1i) be the observed time-to-events and δjki = I[transition j →

k occurs for individual i] be the event indicator from state j = 1 to state k = 2 or 3

or from state j = 2 to state k = 3 for i = 1, 2, . . . , n. Suppose M = k denotes the

first disease progression state k (k = 2, 3).

When there are no masked causes of deaths, the observed data under the model

in Figure 2.1 is {(t1i, t2i, δ12i, δ13i, δ23i), i = 1, 2, . . . , n}. The second gap time t2i and

its event indicator δ23i only exist if δ12i = 1. Due to the nature of how competing

risks occur, if δ12i = 1, then δ13i = 0 and if δ13i = 1, then δ12i = 0. To obtain

the likelihood function of the observed data, we consider the likelihood contributions

for subjects (i) who have censored time-to-first event (δ12i = 0, δ13i = 0), (ii) who

have experienced cancer recurrence and died due to cancer (δ12i = 1, δ23i = 1), (iii)

who have experienced cancer recurrence and not died due to cancer before the end of

followup (δ12i = 1, δ23i = 0), and (iv) who died due to cancer without experiencing

recurrence (δ13i = 1).

Since there is a substantial proportion of long-term cancer-free survivors after

their cancer treatment, we use a mixture cure model to model the marginal survival

function of the first disease progression event time T1. The first disease progression

event time is the time until cancer recurrence or death due to cancer. Thus, the

survival function of T1 can be written in the form of

S1(t1) = Pr(T1 > t1) = pS10(t1) + 1− p (2.1)
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for t1 > 0, where 1 − p denotes probability of being cured and S10(t1) = Pr(T1 >

t1|Not cured) denotes the survival function of T1 for subjects susceptible to a disease

progression event. The likelihood contribution for subjects i who have censored time-

to-first event (δ12i = 0, δ13i = 0) is S1(t1i).

We denote the joint distribution function of time to cancer recurrence and time

from recurrence to cancer death by F12,23(t1, t2) = Pr(T1 ≤ t1, T2 ≤ t2,M = 2). We

consider a copula function to model the conditional joint distribution function of T1

and T2 for subjects experiencing cancer recurrence as follows

Pr(T1 ≤ t1, T2 ≤ t2 |M = 2) = C(F1|2(t1), F2(t2)), (2.2)

where C(., .) is a bivariate copula function, F1|2(t1) = Pr(T1 ≤ t1 |M = 2) is

the conditional distribution function of T1 for subjects experiencing recurrence and

F2(t2) = Pr(T2 ≤ t2 |M = 2) is the distribution function of T2 for subjects who have

experienced recurrence. A bivariate copula C(u1, u2) is a distribution function on the

unit square having uniform marginal distributions (Nelsen, 2006). Popular copula

models in survival analysis include some Archimedean copulas (Genest and Rivest,

1993) such as the Clayton family (Clayton, 1978) and the Gumbel-Hougaard family

(Gumbel, 1960).

The likelihood contribution for subjects i who have experienced cancer recurrence

and died due to cancer (δ12i = 1, δ23i = 1) is

f12,23(t1i, t2i) =
∂2F12,23(t1i, t2i)

∂t1i∂t2i
.

The likelihood contribution for subjects i who have experienced cancer recurrence and



29

not died due to cancer before the end of followup (δ12i = 1, δ23i = 0) is

−∂S12,23(t1i, t2i)

∂t1i
,

where S12,23(t1, t2) = Pr(T1 > t1, T2 > t2,M = 2). The likelihood contribution for

subjects i who died due to cancer without experiencing recurrence (δ13i = 1) is

∂F13(t1i)

∂t1i
,

where F13(t1) = Pr(T1 ≤ t1,M = 3) is the cumulative incidence function of T1 for

subjects who died due to cancer without experiencing recurrence.

Then, the likelihood function for the observed data {(t1i, t2i, δ12i, δ13i, δ23i), i =

1, 2, . . . , n} becomes proportional to

L =
n∏

i=1

[f12,23(t1i, t2i)]
δ12i δ23i

[
−∂S12,23(t1i, t2i)

∂t1i

]δ12i(1−δ23i)

×
[
∂F13(t1i)

∂t1i

]δ13i
[S1(t1i)]

(1−δ12i)(1−δ13i) .

(2.3)

We can rewrite the likelihood function in (2.3) by expressing its components in

terms of the non-cure probability p, probability of experiencing the state k as the

first disease progression event Pr(M = k) = p π1k = F1k(∞) for k = 2, 3, where

F1k(t1) = Pr(T1 ≤ t1,M = k), π1k = Pr(M = k|Not cured) subject to π12 + π13 = 1,

and the copula model in (2.2). The survival function of T1 in (2.1) becomes 1 −

p π12 F1|2(t1)− p π13 F1|3(t1). The joint distribution function of time to recurrence and

time from recurrence to cancer death becomes F12,23(t1, t2) = p π12C(F1|2(t1), F2(t2)).

The joint survival function of time to recurrence and time from recurrence to cancer

death, S12,23(t1, t2), can be written as S12,23(t1, t2) = p π12 Pr(T1 > t1, T2 > t2 |M = 2)
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where Pr(T1 > t1, T2 > t2 |M = 2) = 1− F1|2(t1)− F2(t2) + Pr(T1 ≤ t1, T2 ≤ t2 |M =

2). Therefore, −∂S12,23(t1,t2)

∂t1
in (2.3) is equal to p π12

[
∂F1|2(t1)

∂t1
− ∂C(F1|2(t1),F2(t2))

∂t1

]
.

The likelihood function in (2.3) can be rewritten in terms of the copula model

C(F1|2(t1), F2(t2)) and π1k, k = 2, 3 as

L =
n∏

i=1

(p π12)
δ12i

(
∂2C(F1|2(t1i), F2(t2i))

∂t1i∂t2i

)δ12i δ23i

×
(
∂F1|2(t1i)

∂t1i
−
∂C(F1|2(t1i), F2(t2i))

∂t1i

)δ12i(1−δ23i)

×
(
p π13

∂F1|3(t1i)

∂t1i

)δ13i (
1− p π12 F1|2(t1i)− p π13 F1|3(t1i)

)(1−δ12i)(1−δ13i) .

(2.4)

Maximum likelihood estimators of the parametric models are obtained by maxi-

mizing the likelihood function in (2.4). A nonlinear optimization algorithm could be

used to obtain the maximum likelihood estimates. We used nlm function in R for this

purpose.

2.2.1 Two-Stage Pseudo-Likelihood Estimation Method

An alternative estimation method is a two-stage pseudo-likelihood estimation method.

Lawless and Yilmaz (2011) proposed a two-stage estimation method to estimate the

bivariate copula model of sequentially observed time-to-events with a cured fraction

for the first event. They estimated the distribution of the first gap time in the first

stage and the distribution of the second gap time and the dependence parameter of

the copula model in the second stage. The two-stage estimation method can also be

applied to the current multi-state model.

In the first stage, the likelihood function for the observed data {(t1i, δ12i, δ13i), i =
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1, 2, . . . , n},

L1 =
n∏

i=1

(
p π12

∂F1|2(t1i)

∂t1i

)δ12i (
p π13

∂F1|3(t1i)

∂t1i

)δ13i

×
(
1− p π12 F1|2(t1i)− p π13 F1|3(t1i)

)(1−δ12i)(1−δ13i) ,

(2.5)

is maximized to obtain estimates of p, π12, π13 = 1− π12, F1|2(.) and F1|3(.).

In the second stage, we estimate parameters for the second gap time distribution

and the copula parameter(s) by maximizing the following pseudo-likelihood function

where F1|2(.) is replaced with its estimate F̂1|2(.) obtained in the first stage:

L2 =
n∏

i=1

(
∂2C(F̂1|2(t1i), F2(t2i))

∂F̂1|2(t1i)∂t2i

)δ12i δ23i (
1−

∂C(F̂1|2(t1i), F2(t2i))

∂F̂1|2(t1i)

)δ12i(1−δ23i)

.

(2.6)

When p, π12 and parameters in F1|2(.) and F1|3(.) are fixed, the likelihood function in

(2.4) is proportional to L2.

The two-stage estimation procedure is computationally more efficient since fewer

parameters are simultaneously estimated at each stage. The standard errors of the

estimators of parameters can be estimated through a nonparametric bootstrap.

2.3 Estimation in the Presence of Masked Causes

of Deaths

In cancer prognosis data, it is common to have missing causes for some observed

deaths. Individuals who die without experiencing cancer recurrence may die due to

cancer or due to other causes. If the cause of death is unknown for an individual

who did not experience any cancer recurrence, we add a masked cause of death in
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addition to the latent cure status. Thus, individuals with masked causes of deaths have

unknown cancer death indicator, δ13, and unknown cure status. Because our interest

is to only make an inference on time to cancer related events, when constructing our

multi-state model, we consider the cancer progression events in Figure 2.1 with only

the cancer death state as a death state. However, the data generation process is as in

Figure 2.2 with an additional death due to other causes. There are three possibilities

if an individual has a masked cause of death. The individual can be (i) uncured and

died due to cancer, (ii) uncured and died due to other causes, or (iii) cured and died

due to other causes.

Treatment (1)

Not Cured Recurrence (2)

Cancer Death (3)

Cured Death due to Other Causes (4)

Figure 2.2: Multi-state model structure with death due to other causes state

In order to study with masked causes in a competing risks setting without any

cure fraction, a two-stage data collection design was considered by Flehinger et al.

(1998) and Craiu and Duchesne (2004). In their two-stage data collection, first a

regular data collection is executed with possibly masked causes of deaths, and in the

second stage, the true causes for some of the masked causes of failure are determined

through further data collection. In our study, instead of collecting additional data, we

use empirical evidence obtained from the distribution of T1 to determine true causes

of certain masked causes of deaths. Cured individuals are expected not to experience
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any cancer related event and they are expected to eventually die due to other causes.

When there is a cured proportion, if the follow-up time is long enough, we expect the

empirical distribution of T1 to level off beyond some value τmax < Cmax where Cmax is

the largest followup time for T1. Thus, if a death occurs after the last observed cancer

related event time τmax, we have empirical evidence to assume that the individual is

cured and death is due to other causes than cancer.

2.3.1 Maximum Likelihood Estimation via EM Algorithm

We denote the transition from the “Treatment” state to the “Cancer Death” state

(1 → 3) as transition III and the transition from the “Treatment” state to the

“Death due to Other Causes” state (1 → 4) as transition IV . The transition IV

can occur for both cured and not cured individuals, but the transition III can only

occur for not cured individuals. The masked cause of death would belong to the

group gm = gIII ∪ gIV = {III, IV }, where gIII = {III} and gIV = {IV }. We let

γgmi = I[cause of death masked to group gm for individual i]. Thus, γgmi = 1 if ith

individual died but δ13i is unknown and γgmi = 0 if δ13i is known. We define a death

due to any cause indicator δdi = I[death occurs for individual i]. Then, the complete

data is {(t1i, t2i, δ12i, δ13i, δ23i, δdi, γgmi), i = 1, 2, . . . , n}.

The likelihood function based on the model in Figure 2.1 for the complete data
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becomes

Lc(θ) =
n∏

i=1

(p π12)
δ12i

(
∂2C(F1|2(t1i), F2(t2i))

∂t1i∂t2i

)δ12i δ23i

×
(
∂F1|2(t1i)

∂t1i
−
∂C(F1|2(t1i), F2(t2i))

∂t1i

)δ12i(1−δ23i)

× (pπ13)
δ13i

(
∂F1|3(t1i)

∂t1i

)δ13i

× [1− p π12 F1|2(t1i)− pπ13 F1|3(t1i)]
(1−δ12i)(1−δ13i)

× (Pgm|gIII )
δ13iγgmi(1− Pgm|gIII )

δ13i(1−γgmi)

× (Pgm|gIV )
(1−δ12i)(1−δ13i)δdiγgmi(1− Pgm|gIV )

(1−δ12i)(1−δ13i)δdi(1−γgmi),

(2.7)

where Pgm|gj = Pr(cause of death masked to group gm|cause is actually in group j)

for j = III, IV and θ is the vector of unknown parameters. We assume that δ13i

is missing at random (i.e., Pgm|gj does not depend on δ13i for j = III, IV ) (Craiu and

Duchesne, 2004).

We define the cause-specific hazard function for cause M = k, k = 2, 3 conditional

on not being cured as

λ1k(t1) = lim
∆t→0

Pr(T1 ∈ [t1, t1 +∆t),M = k | T1 ≥ t1,Not cured)

∆t
, (2.8)

and the cause-specific hazard function for cause M = 4 as

λ14(t1) = lim
∆t→0

Pr(T1 ∈ [t1, t1 +∆t),M = 4 | T1 ≥ t1)

∆t
. (2.9)

Using the Baye’s rule, we obtain the diagnostic probability πgIII |gm(t1) that actually

died due to cancer at time t1 given that it is masked to group gm as

πgIII |gm(t1) =
p λ13(t1)Pgm|gIII

p λ13(t1)Pgm|gIII + λ14(t1)Pgm|gIV
. (2.10)
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The conditional expectation of the logarithm of (2.7) given the observed data is

E[lc(θ)|Obs] =
n∑

i=1

δ12i log(p π12) +
n∑

i=1

δ12i δ23i log

(
∂2C(F1|2(t1i), F2(t2i))

∂t1i∂t2i

)

+

n∑
i=1

δ12i(1− δ23i) log

(
∂F1|2(t1i)

∂t1i
−

∂C(F1|2(t1i), F2(t2i))

∂t1i

)

+ log(p π13)

n∑
i=1

E[δ13i|Obs] +

n∑
i=1

E[δ13i|Obs] log

(
∂F1|3(t1i)

∂t1i

)

+

n∑
i=1

(1− δ12i)(1− E[δ13i|Obs]) log
[
1− p π12 F1|2(t1i)− p π13 F1|3(t1i)

]
+ log(Pgm|gIII )

n∑
i=1

γgmiE[δ13i|Obs] + log(1− Pgm|gIII )

n∑
i=1

(1− γgmi)E[δ13i|Obs]

+ log(Pgm|gIV )

n∑
i=1

δdiγgmi(1− δ12i)(1− E[δ13i|Obs])

+ log(1− Pgm|gIV )

n∑
i=1

δdi(1− γgmi)(1− δ12i)(1− E[δ13i|Obs]),

(2.11)

where lc(θ) = logLc(θ) and

E[δ13i|Obs] =



1 if the cause of death for individual i is known to be cancer,

0 if the cause of death for individual i is known to be other causes or

no death is observed for individual i,

πgIII |gm(t1i) if the death is observed but the cause of death

for individual i is masked in gm.

(2.12)

We use the following expectation (E) and maximization (M) steps to obtain the

maximum likelihood estimates of the parametric models:

E-step : Compute

Q(θ|θ(l)) = E[lc(θ)|Obs, θ(l)], (2.13)
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M-step : Find

θ(l+1) = ArgmaxQ(θ|θ(l)),

where λ14(t1) in (2.10) is estimated nonparametrically as follows using the data with-

out masked causes.

The cause specific cumulative hazard function for cause M = 4, Λ14(t1), is first

estimated by the Nelson-Aalen type estimator

Λ̂14(t) =
n∑

i=1

(1− γgmi
)I(t1i < t,Mi = 4)∑n

l=1 I(t1l ≥ t1i)
. (2.14)

Then, we obtain Λ̂14(t
∗
IV (j)) for t∗IV (1) < t∗IV (2) < · · · < t∗IV (nIV ) which are distinct

observed t1i’s with Mi = 4 and nIV is the total number of t1i’s with Mi = 4. For

t1 ∈ (t∗IV (j−1), t
∗
IV (j)], we approximate λ14(t1) by

λ̂14(tmj) =
Λ̂14(t

∗
IV (j))− Λ̂14(t

∗
IV (j−1))

∆j

, (2.15)

where tmj = 1/2(t∗IV (j) + t∗IV (j−1)) and ∆j = t∗IV (j) − t∗IV (j−1).

We use a general purpose optimization software, specifically the function nlm in

R, to compute the M-step.

2.3.2 Standard Error Estimation

We apply the supplemented EM algorithm (SEM) and nonparametric bootstrap to

obtain the standard error estimates of the obtained parameter estimators with the

EM algorithm in Section 2.3.1.
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SEM algorithm

The SEM algorithm can be used to obtain standard error estimates of the EM esti-

mators. It takes the extra variability due to EM procedure into account (Meng and

Rubin, 1991; Xu et al., 2014). EM algorithm uses the relation of a mapping θ →M(θ)

for θ = (θ1, θ2, . . . , θp)
T such that

θ(l+1) =M(θ(l)), (2.16)

where θ(l) is the estimate of unknown parameter vector θ from the lth iteration. Then,

the variance covariance matrix of the EM estimator θ̂ can be estimated by (Meng and

Rubin, 1991)

V̂ ar(θ̂) = I−1
oc + I−1

oc DM(I −DM)−1, (2.17)

where Ioc is the complete observed information matrix, I is the identity matrix and

DM is the Jacobian matrix for M(θ) evaluated at θ̂ with entries

rij =

(
∂Mj(θ)

∂θi

)
θ=θ̂

, i = 1, 2, . . . , p, j = 1, 2, . . . , p. (2.18)

We let θ̃
(l)
(i) to be

θ̃
(l)
(i) = (θ̂1, θ̂2, . . . , θ̂i−1, θ

(l)
i , θ̂i+1, . . . , θ̂p), (2.19)

where θ̂j is the maximum likelihood estimator of θj for j ̸= i and i, j = 1, 2, . . . , p.

Equation (2.19) means that only the ith component is in the lth iteration of the

algorithm while other components are maximum likelihood estimators of θj. Meng

and Rubin (1991) showed that rij can be approximated by the following procedure

1. Obtain θ̂j for j = 1, 2, . . . , p where θ̂j is the maximum likelihood estimator of θj
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using the EM algorithm.

2. For i = 1, 2, . . . , p, obtain θ
(l+1)
j (i) by treating θ̃

(l)
(i) in (2.19) as the lth iteration

and running one more maximization step.

3. Obtain the ratio

r
(l)
ij =

θ
(l+1)
j (i)− θ̂j

θ
(l)
i − θ̂i

. (2.20)

4. Obtain rij until r
(l+1)
ij − r

(l)
ij < ϵ for some small positive ϵ value.

Bootstrap Procedure

Nonparametric bootstrap procedure can also be used to obtain the standard error

estimates of the EM estimators as follows:

(i) Obtain a random sample {(t̃1r, t̃2r, δ̃12r, δ̃13r, δ̃23r, δ̃dr, γ̃gmr), r = 1, 2, . . . , n}

with replacement from the observed data {(t1i, t2i, δ12i, δ13i, δ23i, δdi, γgmi), i =

1, 2, . . . , n}.

(ii) Using the E and M steps in Section 2.3.2, obtain the estimate θ̂ of unknown

parameter vector θ = (θ1, θ2, . . . , θp) from {(t̃1r, t̃2r, δ̃12r, δ̃13r, δ̃23r, γ̃gmr, δ̃dr), r =

1, 2, . . . , n}.

(iii) Repeat the steps (i) and (ii) B times and obtain the estimates θ̂1, θ̂2, . . . , θ̂B.

(iv) Variance-covariance matrix is estimated by

1

B

B∑
b=1

(θ̂b − θ̂)(θ̂b − θ̂)T , (2.21)

where θ̂ is the mean vector of θ̂1, θ̂2, . . . , θ̂B.
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2.4 Simulation Study

A Monte Carlo simulation study was conducted to study the finite sample properties

of the proposed estimation methods. The algorithm to generate data from the Figure

2.1 model in the absence of masked causes of deaths is described in Section 2.4.1 and

the algorithm to generate data from the Figure 2.2 model in the presence of masked

causes of deaths is described in Section 2.4.2. Properties of the proposed estimation

methods were assessed when there are no masked causes of deaths in Section 2.4.3

and when there are masked causes of deaths in Section 2.4.4.

2.4.1 Data Generation Algorithm in the Absence of Masked

Causes of Deaths

In this section, we describe the data generation algorithm from the Figure 2.1 model

when there are no masked causes of deaths. We generated 1, 000 random samples of

{(t1i, t2i, δ12i, δ13i, δ23i), i = 1, 2, . . . , n} from the multi-state model in Figure 2.1 for

each of size n = 200 and n = 400. We generated cure status for each individual i

from Bernoulli distribution with cure probability 1−p. We set p = 0.70. For uncured

individuals, we generated T1i from F10(t1i) = Pr(T1i ≤ t1i|Not Cured = 1− S10(t1i) =

1 − exp
[
−
∫ t1i
0

(λ12(u) + λ13(u)) du
]
. We assumed log-logistic distribution to model

the cause specific hazard functions (2.8) for disease progression eventsM = k, k = 2, 3

conditional on not being cured:

λ1k(t1) =

(
β1k

α1k

)(
t1
α1k

)β1k−1

1 +
(

t1
α1k

)β1k
, t1 > 0, k = 2, 3. (2.22)

The log-logistic distribution is widely used for modeling time-to-events when the rate

of the event increases initially and decreases later. The log-logistic distribution is,
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for example, a good fit for the distribution of time-to-first disease progression events,

cancer recurrence or cancer death, in colon cancer data analyzed in Section 2.5. We

set α12 = 2.0, β12 = 4.0 and α13 = 3.5, β13 = 3.0 to have more observed cancer

recurrences than cancer deaths without experiencing recurrence. For uncured indi-

viduals, we set Mi = 2 with probability λ12(T1i)
λ12(T1i)+λ13(T1i)

, and set Mi = 3 otherwise.

For an uncured individual i, if Mi = 2, we generated T2i from C(F1|2(T1i), F2(T2i))

in (2.2), the conditional joint distribution of T1 and T2 for patients who experience

cancer recurrence. We considered the Clayton copula function (Clayton, 1978)

Cϕ(u1, u2) = (u−ϕ
1 + u−ϕ

2 − 1)−1/ϕ, ϕ > 0, (2.23)

where u1 = F1|2(t1), u2 = F2(t2) and ϕ is the dependence parameter. The Clayton

copula is one of the widely used copula families to model bivariate time-to-event data.

The dependence measure Kendall’s τ can be written in terms of the Clayton copula

parameter ϕ as τ = ϕ/(ϕ + 2). U1 and U2 are positively associated when ϕ > 0 and

the dependence increases as the value of the parameter ϕ increases. We considered

two levels of dependence, moderate and strong dependence between the sequential

gap times with Kendall’s τ = 0.3 (ϕ = 0.857) and τ = 0.7 (ϕ = 4.667), respectively.

The marginal distribution of T2 for subjects who have experienced recurrence was

assumed as the Weibull distribution with

F2(t2) = 1− exp

[
−
(
t2
α23

)β23
]
, t2 > 0. (2.24)

The Weibull distribution is one of the most widely used time-to-event distributions

since it is fairly flexible. The Weibull hazard function can be monotone increasing,

decreasing or constant based on its shape parameter (β23) value. We set α23 = 2.5

and β23 = 1.5. Since β23 > 1, the rate of death after experiencing cancer recurrence
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increases over time. We generated censoring times {Ci, i = 1, 2, . . . , n} from Uniform

(0, 10). For cured individuals, we generated time-to-death due to other causes from

F14|Cured(t1) = Pr(T1i ≤ t1i,Mi = 4|Cured) and set the censoring time Ci as the time

to death due to other causes if the censoring time is greater than the time to death due

to other causes. Time to death due to other causes is considered as a censoring time

when the estimation is performed using the likelihood function in (2.4) and the two-

stage pseudo-likelihood estimation method described in Section 2.2.1. We considered

the Weibull model for F14|Cured(t1) in the form of

F14|Cured(t1) = 1− exp

[
−
(

t1
α14|Cured

)β14|Cured

]
, t1 > 0. (2.25)

We set α14|Cured = 7.0 and β14|Cured = 4.0. We obtained t1i = min(T1i, Ci), δ12i =

I[T1i = t1i,Mi = 2], δ13i = I[T1i = t1i,Mi = 3]. If Mi = 2, we obtained t2i =

min(T2i, Ci − t1i) and δ23i = I[T2i = t2i,Mi = 2].

In Section 2.4.2, we discuss the simulation results when the data is generated as

described in this section from the Figure 2.1 model and when the Figure 2.1 model is

fitted using the maximum likelihood and the two-stage pseudo-likelihood estimation

methods in the absence of masked causes of deaths.

2.4.2 Data Generation Algorithm in the Presence of Masked

Causes of Deaths

In this section, we describe the data generation algorithm from the Figure 2.2 model

when there are masked causes of deaths.

Our multi-state model in Section 2.3.1 is based on the cancer progression events

in Figure 2.1. However, the data generation process follows the multi-state model in

Figure 2.2 with the additional “Death Due to Other Causes” state. We first explain
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the data generation process. We then explain how the complete data is obtained by

using the empirical evidence to assess if an individual is cured.

We generated 1000 random samples of {(t1i, t2i, δ12i, δ13i, δ23i, δ14i, δdi, γgmi), i =

1, 2, . . . , n} from the multi-state model in Figure 2.2 with masked causes of deaths

for each of size n = 400. In Figure 2.2 individuals who died due to other causes

can be cured or not cured. Thus, the cumulative incidence function of T1 for

subjects who died due to other causes is F14(t1) = Pr(T1 ≤ t1,M = 4) =

(1−p)F14|Cured(t1)+pF14|Not Cured(t1), where F14|Cured(t1) = Pr(T1 ≤ t1,M = 4|Cured)

and F14|Not Cured(t1) = Pr(T1 ≤ t1,M = 4|Not Cured). When an individual is not

cured, the first disease progression event can be any of M = 2, 3, 4. Therefore, time

to first event for not cured is generated from Pr(T1i ≤ t1i|Not Cured) = 1−S10(t1i) =

1 − exp
[
−
∫ t1i
0

(
λ12(u) + λ13(u) + λ14|Not Cured(u)

)
du
]
, where λ14|Not Cured(t1) is the

cause specific intensity function for cause M = 4 conditional on not being cured.

We generated cure status for each individual i from Bernoulli distribution with

cure probability 1 − p. We set p = 0.70. For uncured individuals, we gen-

erated T1i from F10(t1i) = Pr(T1i ≤ t1i|Not Cured) = 1 − S10(t1i) = 1 −

exp
[
−
∫ t1i
0

(
λ12(u) + λ13(u) + λ14|Not Cured(u)

)
du
]
. We assumed log-logistic distribu-

tion (2.22) to model the cause specific hazard functions for disease progression events

M = k, k = 2, 3 conditional on not being cured. We set α12 = 2.0, β12 = 4.0 and

α13 = 3.5, β13 = 3.0 to have more observed cancer recurrences than cancer deaths

without experiencing recurrence. We considered uniform distribution to model the

cause specific hazard for cause M = 4 conditional on not being cured:

λ14|Not Cured(t1) =
1

β14|Not Cured − t1
, α14|Not Cured < t1 < β14|Not Cured. (2.26)

We set α14|Not Cured = 1.3 and β14|Not Cured = 6.0. For uncured individuals, we set
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Mi = 2 with probability λ12(T1i)
λ12(T1i)+λ13(T1i)+λ14|Not Cured(T1i)

, set Mi = 3 with probability

λ13(T1i)
λ12(T1i)+λ13(T1i)+λ14|Not Cured(T1i)

, and set Mi = 4 otherwise. For individuals with Mi = 2,

we generated T2i from the copula function C(F1|2(T1i), F2(T2i)) in (2.2). We considered

the Clayton copula function in (2.23) with ϕ = 0.857 which gives the Kendall’s τ =

ϕ/(ϕ + 2) = 0.3. The marginal distribution of T2 for subjects who have experienced

recurrence was considered as Weibull distribution with F2(t2) = 1−exp

[
−
(

t2
α23

)β23
]
.

We set α23 = 2.5 and β23 = 1.5. For cured individuals, we set Mi = 4 and generated

time-to-death due to other causes, T1i, from the Weibull distribution (2.25) with

α14|Cured = 7.0 and β14|Cured = 4.0. We generated censoring times {Ci, i = 1, 2, . . . , n}

from Uniform (0, 15). We obtained t1i = min(T1i, Ci), δ12i = I[T1i = t1i,Mi = 2],

δ13i = I[T1i = t1i,Mi = 3], δ14i = I[T1i = t1i,Mi = 4]. If Mi = 2, we obtained

t2i = min(T2i, Ci − t1i), δ23i = I[T2i = t2i,Mi = 2].

We then obtained the complete data {(t1i, t2i, δ12i, δ13i, δ23i, δdi, γgmi), i =

1, 2, . . . , n} with masked causes of deaths using the generated data

{(t1i, t2i, δ12i, δ13i, δ23i, δ14i), i = 1, 2, . . . , n}. We obtained δdi = δ13i + δ14i for

each individual. For subjects with Mi = 3, we generated V1i from Bernoulli

distribution with probability Pgm|gIII . For subjects with Mi = 4, we generated

V2i from Bernoulli distribution with probability Pgm|gIV . If V1i = 1 or V2i = 1,

then δ13i and δ14i are masked and we set γgmi = 1. Otherwise, γgmi = 0. We

considered two cases: lower percentages of masked causes of deaths with probabilities

Pgm|gIII = 0.2, Pgm|gIV = 0.1 and higher percentages of masked causes of deaths with

probabilities Pgm|gIII = 0.4, Pgm|gIV = 0.3. We obtained the last observed disease re-

lated event time τmax = max{(1−γgmi)[δ12i(1−δ13i)+(1−δ12i)δ13i]t1i, i = 1, 2, . . . , n}.

For subjects with γgmi = 1 and t1i > τmax, we assumed δ13i = 0 and δ14i = 1. Thus,

we obtained complete data {(t1i, t2i, δ12i, δ13i, δ23i, δdi, γgmi), i = 1, 2, . . . , n}.

In Section 2.4.4, we discuss the simulation results when the data is generated as
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described in this section from the Figure 2.2 model but when the Figure 2.1 model is

fitted.

2.4.3 Simulation Results in the Absence of Masked Causes

of Deaths

Table 2.1 gives the empirical means and standard deviations and mean standard errors

of maximum likelihood estimates and two-stage pseudo-likelihood estimates over 1, 000

replications when the data is generated as described in Section 2.4.1 from the Figure

2.1 model and when the Figure 2.1 model is fitted in the absence of masked causes of

deaths. It shows that the mean point estimates using both the maximum likelihood

estimation and the two-stage pseudo-likelihood estimation are close to the true values

compared to their standard deviations. Maximum likelihood estimation gives slightly

more efficient estimators than the two-stage pseudo-likelihood estimation under both

moderate and strong levels of dependence between sequential gap times. When there

is heavy censoring and only a few number of events is observed for a transition (for

transition 1 → 3 when n = 200), standard errors of the two-stage pseudo-likelihood

estimators are overestimated through the nonparametric bootstrap. As the sample

size increases to n = 400, both methods yield more efficient estimators. Maximum

likelihood estimation method is computationally more intensive than the two-stage

pseudo-likelihood estimation method.
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True Maximum Likelihood Estimation Two-Stage pseudo-likelihood Estimation

Value Mean(Est) SD(Est) ŜE(Est) Mean(Est) SD(Est) ŜEboot(Est)

Kendall’s τ = 0.3, n = 200
α12 2.000 2.021 0.093 0.090 2.020 0.094 0.092
β12 4.000 3.973 0.366 0.355 3.988 0.370 0.377
α13 3.500 3.581 0.438 0.426 3.578 0.437 0.481
β13 3.000 3.076 0.504 0.494 3.079 0.506 0.526
α23 2.500 2.507 0.217 0.209 2.508 0.217 0.214
β23 1.500 1.546 0.150 0.145 1.546 0.149 0.151
ϕ 0.857 0.837 0.229 0.228 0.831 0.227 0.243
p 0.700 0.709 0.038 0.038 0.709 0.038 0.038

Kendall’s τ = 0.3, n = 400
α12 2.000 2.016 0.064 0.063 2.014 0.064 0.065
β12 4.000 3.961 0.251 0.249 3.975 0.256 0.262
α13 3.500 3.563 0.300 0.292 3.559 0.299 0.295
β13 3.000 3.012 0.348 0.342 3.015 0.349 0.348
α23 2.500 2.501 0.148 0.148 2.502 0.148 0.151
β23 1.500 1.531 0.100 0.101 1.533 0.100 0.103
ϕ 0.857 0.837 0.162 0.160 0.833 0.160 0.166
p 0.700 0.709 0.027 0.027 0.708 0.027 0.027

Kendall’s τ = 0.7, n = 200
α12 2.000 2.022 0.085 0.084 2.013 0.092 0.091
β12 4.000 3.952 0.338 0.334 4.001 0.362 0.378
α13 3.500 3.618 0.506 0.440 3.605 0.509 0.512
β13 3.000 3.023 0.490 0.488 3.032 0.496 0.518
α23 2.500 2.482 0.200 0.195 2.471 0.206 0.208
β23 1.500 1.570 0.139 0.140 1.583 0.142 0.147
ϕ 4.667 4.653 0.778 0.770 4.600 0.775 0.817
p 0.700 0.707 0.039 0.038 0.706 0.039 0.038

Kendall’s τ = 0.7, n = 400
α12 2.000 2.029 0.059 0.059 2.017 0.064 0.064
β12 4.000 3.942 0.244 0.235 3.989 0.262 0.262
α13 3.500 3.591 0.302 0.296 3.574 0.301 0.313
β13 3.000 3.000 0.353 0.342 3.011 0.355 0.351
α23 2.500 2.500 0.143 0.138 2.483 0.148 0.146
β23 1.500 1.565 0.097 0.098 1.577 0.100 0.102
ϕ 4.667 4.519 0.530 0.529 4.480 0.528 0.543
p 0.700 0.707 0.028 0.027 0.706 0.028 0.027

Table 2.1: Monte-Carlo simulation study results in the absence of masked causes of
deaths. Simulation study was conducted using 1, 000 replications with sample size
n = 200 and n = 400 under moderate dependence (τ = 0.3) and strong dependence
(τ = 0.7) between the sequential gap times. Censoring rates are approximately 55%
for 1 → 2 transition, 87% for 1 → 3 transition and 68% for 2 → 3 transition. Est refers
to estimate of the corresponding parameter, Mean(Est) refers to the mean of the

estimates, SD(Est) refers to the standard deviation of the estimates, ŜE(Est) refers

to the average standard error estimates and ŜEboot(Est) refers to average standard
error estimates obtained by nonparametric bootstrap with 1, 000 bootstrap samples
over 1, 000 replications.
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2.4.4 Simulation Results in the Presence of Masked Causes

of Deaths

In this section the data was generated as described in Section 2.4.2 from the Figure 2.2

model but the Figure 2.1 model was fitted. We considered three different scenarios: (a)

Masked causes of deaths are present and the estimation method in Section 2.3 is used,

(b) causes of deaths are all assumed to be fully observed and the estimation method in

Section 2.2 is used, and (c) individuals with masked causes of deaths are removed from

the data and the estimation method in Section 2.2 is used. In scenario (a) we assessed

the performance of the proposed maximum likelihood estimation method through

the EM algorithm in Section 2.3 in the presence of the masked causes of deaths.

In scenario (b) we assessed the performance of the proposed maximum likelihood

estimation method fitting Figure 2.1 in Section 2.2 in the absence of masked causes of

deaths when the data was generated from Figure 2.2. In scenario (c) we showed the

inaccuracy in parameter estimates when the data with masked causes of deaths are

omitted in analysis, that is a frequently applied analysis approach by practitioners.

Results of the three scenarios are shown in Table 2. It gives the empirical mean and

standard deviation and mean standard error of maximum likelihood estimates over

1, 000 replications. The supplemented EM algorithm is used to obtain the standard

error estimates in scenario (a).

The results in Table 2.2 show that the point estimates obtained by the proposed

method taking the masked causes of deaths into account under scenario (a) are closer

to the true values of the parameters except the parameter estimates for the transition

1 → 3. We obtain slightly biased estimates of the parameters and standard errors of

estimators for the transition 1 → 3 since we generated the data from the multi-state

model in Figure 2.2 but fitted the Figure 2.1 model. The amount of bias in parameter
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estimates for transition 1 → 3 increased when a higher probability of masked causes of

deaths was considered. The other parameter estimates are more accurate in scenario

(a) than scenarios (b) and (c) with valid standard error estimates obtained by the

supplemented EM algorithm.

In scenario (b) when no masked causes of deaths exist, because the Figure 2.2

model data was fitted to the Figure 2.1 model, the maximum likelihood estimates

of the cure probability and the parameters in transition 1 → 3 are slightly biased.

The estimation methods fitting the Figure 2.1 model in Sections 2.2 and 2.3 do not

consider the transition from treatment to death due to other causes than cancer since

our interest is only to model time-to-disease related events. For deaths due to other

causes than cancer, the cure status is usually unknown. The estimation methods

fitting the Figure 2.1 model in Sections 2.2 and 2.3 assume that the distribution of

time-to-death due to other causes follows the distribution of censoring times, and

time-to-deaths due to other causes are treated as censoring times. Although this

assumption holds in the data generation algorithm in Section 2.4.1, it does not hold

in the data generation algorithm described in Section 2.4.2. Therefore, we observe

little bias in the estimates of cure probability and parameters in transition 1 → 3 in

Table 2.2.

In scenario (c) when the individuals’ data with masked causes of deaths are omitted

in the analysis, we observe significant bias in the maximum likelihood estimates of the

parameters in the distribution of time-to-first disease related event including the cure

probability. The amount of bias increases when the percentage of the masked causes

of deaths increases. This indicates that it is not a good practice to exclude data with

masked causes of death.
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2.5 Application to Colon Cancer Data

We considered the data from a clinical trial on patients with colon cancer provided by

Moertel et al. (1990). The data is available in the “survival” package in R. After surgi-

cal removal of their diseased tissue, early diagnosed patients were randomly assigned

into a control placebo group or a drug therapy group, which can be Levamisole plus

5-FU group or Levamisole alone group. Earlier studies were interested in assessing

effectiveness of therapies on time to cancer recurrence as well as on overall survival

time (Moertel et al., 1990). Later, Lin et al. (1999) and Lawless and Yilmaz (2011)

studied whether there is any effect of the treatments on survival time after cancer re-

currence. They considered the sequential modeling of time from registration to cancer

recurrence and time from recurrence to death. Multi-state modeling of this data with

an all cause mortality state was considered in de Uña-Álvarez and Meira-Machado

(2015) and Meira-Machado and Sestelo (2019). In our study, we fit the multi-state

model in Figure 2.1 with the cancer death state and aim to assess the performance of

the proposed estimation method when there are masked causes of deaths.

There are 619 patients in the combination of the control placebo and the Lev-

amisole plus 5-FU treatment groups in the clinical trial. We excluded 31 patients

who had stage 4 colon cancer at diagnosis since they already had cancer recurrence at

diagnosis. For illustration purposes, we considered the 588 patients as a single group

and ignored the treatment differences. Among 588 patients, 276 patients had cancer

recurrence and 242 patients died after experiencing recurrence. By the end of the

study, 25 patients died without experiencing cancer recurrence. Time to death for

those 25 individuals varies from 23 days to 2789 days. Causes of their death were not

recorded. These patients might be cured or not cured and their causes of death could

be due to cancer or due to other reasons. There are also patients who neither had
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recurrence nor died during the followup time. The maximum followup time is about

9 years.

For patients who had the corresponding event(s), time from registration to cancer

recurrence and time from cancer recurrence to death or time from registration to

death without recurrence were provided. For other patients, their followup times

were provided. For patients who died without experiencing cancer recurrence, if there

are more than 2 lymph nodes with detectable cancer, cause of death is assumed to

be due to cancer (δ13 = 1) and if the number of lymph nodes with detectable cancer

is less than 3, then cause of death is assumed to be due to other reasons (δ14 = 1).

There are 10 patients who had more than 2 lymph nodes. Thus, deaths of 10 patients

are assumed to be due to cancer (δ13 = 1) and deaths of 15 patients are assumed to

be due to other reasons (δ14 = 1).

To assess the performance of our proposed method, we considered a scenario with

masked causes of deaths. We randomly assigned the masked causes of deaths for each

group gIII and gIV . We obtained 2 masked causes from 10 patients who died due to

cancer (δ13 = 1) and 6 masked causes from 15 patients who died due to other causes

(δ14 = 1). Thus, the masked probabilities are Pgm|gIII = 0.2 and Pgm|gIV = 0.4. We

obtained the last observed cancer related event time as τmax = 2.695, which allowed

us to assign one of the masked causes as δ14 = 1 and δ13 = 0, since the individual died

after τmax.

There is empirical evidence that some subjects are cured and did not have a

cancer related event in a long followup time. Lawless (2003) and Lawless and Yilmaz

(2011) used a mixture-cure model with the log-logistic distribution to model time-

to-recurrence for not cured. We also considered the mixture cure model in (2.1)

with the log-logistic distribution to model the cause specific hazard function for cause

M = k, k = 2, 3, in the form given in (2.8). The marginal distribution of T2 for
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subjects who experienced recurrence was considered as the log-logistic distribution

with F2(t2) = 1 − [1 + (t2/α23)β23] − 1 for t2 > 0. We modeled the conditional joint

distribution of T1 and T2 given that M = 2 with the Clayton copula in (2.23). For

convenience, we scaled time-to-events t1 and t2 in days with t1 × 10−3 and t2 × 10−3.

First, in the absence of masked causes of deaths, we assessed the adequacy of

the parametric model assumptions for the cumulative incidence functions of T1 for

subjects who had cancer recurrence (F12(t1)) and for subjects who died due to cancer

without experiencing recurrence (F13(t1)) in Figure 2.3. We compared the parametric

estimates of the cumulative incidence functions with their nonparametric estimates

obtained by the method in Lin (1997). We observed that the parametric estimates

of F1k(t1) for k = 2, 3 are very close to their corresponding nonparametric estimate.

Thus, we concluded that the log-logistic distribution provides an adequate fit for the

cumulative incidence functions. In Figure 2.4, we compared the parametric estimates

of Pr(T2 > t2|T1 ≤ t1,M = 2) with its nonparametric estimate using the method

in Lin et al. (1999) to assess the parametric model assumption for F2(t2) and the

Clayton copula assumption in modeling the joint distribution of time-to-recurrence

and time from recurrence to death. The parametric fits are close to the nonparametric

fit. This provides support for the assumed distribution for F2(t2) and the assumed

copula function.

Table 2.3 shows the maximum likelihood and the two-stage pseudo-likelihood es-

timates of parameters and their standard error estimates (given in Section 2.2) in the

absence of masked causes of deaths and the estimates obtained by the proposed EM

algorithm (given in Section 2.3) in the presence of masked causes of deaths. Estimates

of the standard errors for the two-stage pseudo-likelihood estimation were obtained

by nonparametric bootstrap with 1, 000 samples. Estimates of standard errors under

the masked causes scenario were obtained using the supplemented EM algorithm.
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The maximum likelihood estimates of the uncured probability (p), parameters of

the log-logistic cause specific hazard functions (αjk, βjk for (j, k) = (1, 2), (1, 3), (2, 3))

and the copula parameter (ϕ) in Table 2.3 under the absence of masked causes of

deaths indicate the following: About 47% of the considered sample is not susceptible

for any cancer recurrence or cancer death. In the first 310 days after study registration

there is a steep increase in the rate of cancer recurrence and later there is a rapid

decrease. The rate of cancer death also initially increases but with a slower pace

compared to the rate of cancer recurrence. The rate of death after experiencing

cancer recurrence initially has a sudden increase in the first 210 days after recurrence

and it later has a rapid decrease. Time to cancer recurrence and time from cancer

recurrence to death have a mild level of positive but significant dependence with an

estimated Kendall’s τ = 0.2. Having the Clayton copula parameter ϕ significantly

different than 0 shows that the Markov assumption (Cook and Lawless, 2018, Chapter

2) between time to cancer recurrence and time from cancer recurrence to death does

not hold and confirms using a semi-Markov model.

Results in Table 2.3 show that the proposed method in the presence of masked

causes of deaths yielded estimates close to the maximum likelihood and two-stage

pseudo-likelihood estimates in the absence of masked causes of deaths. These results

are also supported by Figures 2.3 and 2.4 in which the maximum likelihood esti-

mates of the cumulative incidence functions F1k(t1) for k = 2, 3 and the conditional

survival probability Pr(T2 > t2|T1 ≤ t1,M = 2) using the EM algorithm are given

when masked causes of deaths exist and compared with their parametric and non-

parametric estimates obtained under the absence of masked causes of deaths. The

maximum likelihood methods under the presence and absence of masked causes of

deaths provided almost the same standard error estimates except for one of the pa-

rameters in 1 → 3 transition. The two-stage pseudo-likelihood estimation method in
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the absence of masked causes of deaths provided larger standard error estimates for

the 1 → 3 transition than the maximum likelihood method. This may be due to the

small number of events in transition 1 → 3.

Although the number of masked causes of deaths is not large, when the individuals’

data with masked causes of deaths were discarded and the estimation methods in

Section 2.2 were applied to the remaining data, we obtained a biased estimate of

the cumulative incidence function F13(t1) in Figure 2.5. The maximum likelihood

estimate of F13(t1) in the lower panel of Figure 2.3 obtained through the EM algorithm

which accounts for masked causes of deaths provided a better fit than the parametric

estimates obtained when the data with masked causes of deaths are discarded in

Figure 2.5.
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Figure 2.3: Nonparametric, maximum likelihood and two-stage pseudo-likelihood es-
timates of F12(t1) (upper panel) and F13(t1) (lower panel) in the absence of masked
causes of deaths and maximum likelihood estimates of F12(t1) (upper panel) and
F13(t1) (lower panel) through EM algorithm in the presence of masked causes of
deaths. t1 is scaled to t1 × 10−3.
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Figure 2.4: Nonparametric, maximum likelihood and two-stage pseudo-likelihood esti-
mates of conditional probability P (T2 > t2|T1 ≤ 0.1,M = 2) in the absence of masked
causes of deaths and maximum likelihood estimates of P (T2 > t2|T1 ≤ 0.1,M = 2)
through EM algorithm in the presence of masked causes of deaths. t1 and t2 are scaled
to t1 × 10−3 and t2 × 10−3.
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Figure 2.5: Maximum likelihood and two-stage pseudolikelihood estimates of F13(t1)
when the data with masked causes of deaths are discarded. Nonparametric estimate
(Lin, 1997) of F13(t1) is obtained in the absence of masked causes of deaths. t1 is
scaled to t1 × 10−3.



Chapter 3

Introduction to Mediation Analysis

Methods for Time-to-Event

Outcomes

In many studies, establishing a causal relation is one of the crucial goals to achieve.

Various areas including epidemiology, medicine and public heath give significant at-

tention to understand causal relations and measure causal effects. For example, it is

important to investigate how genetic markers affect primary phenotypes in genetic as-

sociation studies. Measuring causal effects of environmental pollution on respiratory

health outcomes is important in environmental studies. Studying the effect of a new

drug treatment on a specific outcome of interest plays an important role in medicine.

To understand the true causal effect of an exposure on an outcome of interest, it

is essential to consider other factors that may affect the outcome of interest. More

specifically, it is important to consider indirect effects of the exposure on the outcome

that may result from intermediate variables. Failure to account for indirect effects

may give misleading results when measuring the direct effect of an exposure on the
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outcome of interest. In order to measure causal effects, mediation analysis methods

need to be applied.

In this chapter, we first review some regression models for time-to-event outcomes

which play an important role in survival analysis. Then, we review some mediation

analysis methods for time-to-event outcomes.

3.1 Regression Models for Time-to-Event Out-

comes

We consider three modeling approaches to construct regression models for time-to-

event outcomes: accelerated failure time models, proportional hazards models and

additive hazards models. In this section, we give a review of the three regression

models for time-to-event outcome.

3.1.1 Accelerated Failure Time Model

Accelerated failure time (AFT) model is one of the widely used regression models for

time-to-event data. In AFT model, the time-to-event follows a distribution such as

Weibull or log-normal and covariates’ effects can be measured on the logarithm of

time-to-event. It accelerates or decelerates the time-to-event.

We suppose that an individual has time-to-event T and a covariate vector x =

(x1, x2, . . . , xp)
T . We let β be a regression coefficient of x where β = (β1, β2, . . . , βp)

T .

The logarithm of the time-to-event T is usually modeled in AFT model, since a real

line on linear model can be used where −∞ < Y = log(T ) <∞. Survival function of
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Y = log(T ) given x is of the form

S(Y |x) = S0

(
Y − u(x)

σ

)
, (3.1)

where S0(ϵ) is independent of x, σ is a scale parameter, and u(x) is a function of x.

A linear specification u(x) = βTx is usually used. An AFT model can also be written

in the form of

Y = log(T ) = βTx+ σϵ, (3.2)

where the error term ϵ is a random variable with the survival function S0(ϵ) and σ is a

scale parameter. One of the commonly used distributions for ϵ is the standard normal

distribution which gives a log-normal regression model. Also, extreme value distribu-

tion and logistic distribution are other commonly used distributions of ϵ depending

on the modeling purposes.

We let Ti be the time-to-event outcome which is subject to right-censoring and Ci

be the censoring time for i = 1, 2, . . . , n. We let ti = min(Ti, Ci) and δi = I(Ti ≤ Ci)

for i = 1, 2, . . . , n. We suppose X be the n× p matrix with entries xij and ui = u(xi)

where xi = (xi1, xi2, . . . , xip)
T . For example, u(xi) is βTxi in (3.2). The likelihood

function for the observed data {(ti,xi, δi), i = 1, 2, . . . , n} can be written as (Lawless,

2003)

L(β, σ) =
n∏

i=1

{σ−1f0(ei)}δi{S0(ei)}(1−δi), (3.3)

where f0(e) = −∂S0(e)
∂e

and ei = (log(ti)− ui)/σ.

To obtain the estimates of parameters in an AFT model, the maximum likelihood

estimation method is used. The maximum likelihood estimate of θ = (β, σ)T is
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obtained by solving U(θ) = 0 where U(θ) is the score function

U(θ) =
∂ logL(θ)

∂θ
. (3.4)

The observed information matrix I(θ̂) can be obtained by

I(θ̂) =

∂2 logL(θ)

∂β∂βT

∂2 logL(θ)
∂β∂σ

∂2 logL(θ)

∂σ∂βT

∂2 logL(θ)
∂σ2


∣∣∣∣∣∣∣
θ=θ̂.

(3.5)

Under the regularity conditions,
√
n(θ̂−θ) is asymptotically N(p+1)(0,J1

−1(θ)) where

J1(θ) is the Fisher information matrix and the observed information matrix I(θ̂) is

a consistent estimator of J (θ) = nJ1(θ).

Although AFT model is flexible in modeling time-to-event distribution given co-

variates, it is a fully parametric model and results of the estimation can be sensitive

to the distributional assumption on the time-to-event variable. If the distribution of

time-to-event is not plausible, the results may be biased.

3.1.2 Proportional Hazards Model

Another important regression model for time-to-event data is the proportional haz-

ards (PH) model. The PH model has been used in a large number of areas such as

medicine, biochemistry and social sciences. The PH model assumes that a change in

an explanatory variable has a multiplicative effect on the hazard rate by a constant.

The hazard function for time-to-event T given covariates x where x can be possibly

time-dependent covariates is of the form

h(t|x) = h0(t)γ(x), (3.6)
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where h0(t) is the baseline hazard function, γ(x) is a positive valued function of x.

The baseline hazard function h0(t) is the hazard function when γ(x) = 1. A common

specification of γ(x) is γ(x) = exp(βTx). Then, h0(t) is the hazard function when

x = 0.

The survival function of T given x is of the form

S(t|x) = S0(t)
γ(x), (3.7)

where S0(t) = exp(−
∫ t

0
h0(u)du) is the baseline survival function. The survival func-

tion of T given x is the baseline survival function to a power. This means that the

hazard ratio with different values of x is constant over time.

The PH model can be generalized using time-dependent covariates. Consider (3.6)

with γ(x(t)) = exp(βTx(t)) then the hazard function becomes

h(t|x(t),α,β) = h0(t;α) exp(β
Tx(t)). (3.8)

Then, the log-likelihood function based on a censored random sample

{(ti, δi,xi(ti), i = 1, 2, . . . , n} where ti = min(Ti, Ci), Ci is right censoring time and

δi = I(Ti ≤ Ci) is given as

l(α,β) =
n∑

i=1

δi{log h0(ti;α) + βTx(t)}+
n∑

i=1

{H0(ti;α) exp(β
Tx(t))}, (3.9)

where H0(ti;α) is a baseline cumulative hazard function. The maximum likelihood

estimators of α and β are obtained by maximizing (3.9). The asymptotic variance-

covariance matrix of (α̂, β̂) can be estimated as I(α̂, β̂)−1 which is obtained from the
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information matrix I(α,β) where

I(α,β) = −

∂2l(α,β)
∂α2

∂2l(α,β)
∂α∂β

∂2l(α,β)
∂β∂α

∂2l(α,β)

∂β2

 . (3.10)

Under the regularity conditions,
√
n(θ̂ − θ), where θ = (α,β)T , is asymptotically

Np(0,J1
−1(θ)) where J1(θ) is the Fisher information matrix and J (θ) = nJ1(θ) can

be consistently estimated by I(θ̂) = I(α̂, β̂).

Cox PH Model and Semiparametric Estimation

A special case of PH model is the Cox PH model (Cox, 1972) where the baseline

hazard h0(t) is left arbitrary. We define Y (t) as “at risk” process {Y (t), 0 ≤ t} where

Y (t) = I(process is observed at time t). (3.11)

Then, the hazard function of T given covariates x with γ(x) = exp(βTx) can be

written as

h(t|x) = Y (t)h0(t) exp(β
Tx), (3.12)

where the baseline hazard h0(t) is unspecified.

The probability of having an event for ith individual at time t given the past and

that the event is observed at that time is

Yi(t)h0(t) exp(β
Txi)∑n

l=1 Yl(t)h0(t) exp(β
Txl)

=
Yi(t) exp(β

Txi)∑n
l=1 Yl(t) exp(β

Txl)
. (3.13)

We let ordered observed times t(1) < t(2) < · · · < t(k) assuming that there are

no tied event times. We let Yi(t(i)) be 1 if individual i is at risk at time t(i) and
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0 otherwise. Because the Cox PH model can easily be generalized to include time-

varying covariates, we let xi(t(i)) as the value of the covariates for the individual failing

at t(i) (Fisher and Lin, 1999). Cox (1972) suggested the following partial likelihood

function

L(β) =
k∏

i=1

Yi(t(i)) exp(β
Txi(t(i)))∑n

l=1 Yl(t(i)) exp(β
Txl(t(i)))

. (3.14)

We let Ri as the risk set at t(i) which is the set of individuals who have not failed or

censored until t(i). Then, (3.14) can be rewritten as

L(β) =
k∏

i=1

exp(βTxi(t(i)))∑
l∈Ri

exp(βTxl(t(i)))
. (3.15)

Since i ∈ Rl if and only if Yl(ti) = 1, the partial likelihood in (3.15) becomes

L(β) =

(
n∏

i=1

exp(βTxi(ti))∑n
l=1 Yl(ti) exp(β

Txl(ti))

)δi

. (3.16)

Then, the logarithm of the partial likelihood function (3.16) can be written as

l(β) = logL(β) =
n∑

i=1

δi{βTxi(ti)− log[
n∑

l=1

Yl(ti) exp(β
Txl(ti))]}. (3.17)

The maximum likelihood estimator of β can be obtained by maximizing (3.17). The

score vector S(β) = ∂l(β)/∂β is given by

S(β) =
n∑

i=1

δi

(
xi(ti)−

∑n
l=1 Yl(ti) exp(β

Txl(ti))xl(ti)∑n
l=1 Yl(ti) exp(β

Txl(ti))

)
. (3.18)

Under regularity conditions, β̂ has approximately N(β, E(I(β)−1)) distribution
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where I(β) is

n∑
i=1

δi

(∑n
l=1 Yl(ti) exp(β

Txl(ti))xl(ti)xl(ti)
T∑n

l=1 Yl(ti) exp(β
Txl(ti))

−{
∑n

l=1 Yl(ti) exp(β
Txl(ti))xl(ti)}{

∑n
l=1 Yl(ti) exp(β

Txl(ti))xl(ti)}T∑n
l=1 Yl(ti) exp(β

Txl(ti))

)
.

(3.19)

E(I(β)) can be consistently estimated by I(β̂).

While it does not require any distributional assumption for the baseline hazard

function and thus flexible, it has some limitations. The PH model assumes the hazard

ratio for any two sets of covariate values remain constant over time. If the proportional

assumption is violated, the results may be misleading.

3.1.3 Additive Hazards Model

Alternative to AFT and PH models, additive hazards model is another choice in

regression modeling of failure time in which the effect of covariates is measured directly

on the hazard function. Additive hazards model was first introduced by Aalen (1980).

In additive hazards model, it is assumed that the effects of covariates are additive on

the hazard function. The hazard function for an individual with additive hazards

model is defined by

h(t|H(t)) = α0(t) + α1(t)x1(t) + α2(t)x2(t) + · · ·+ αp(t)xp(t), (3.20)

where the history H(t) contains the covariate paths up to time t and αj(t) are time-

varying regression coefficients for j = 0, 1, . . . , p.

We let z(t) = (1, x1(t), x2(t), . . . , xp(t)) be a (p + 1)-dimensional time-dependent
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covariate vector and α(t) = (α0(t), α1(t), . . . , αp(t))
T be a (p + 1)-dimensional time-

varying regression coefficient vector. We let Y (t) be a risk-indicator. The hazard

function can be written as

h(t|H(t)) = Y (t) z(t)α(t). (3.21)

We use the counting process notation since it provides a precise and concise way

to formulate the additive hazards model and explain its properties. We explain the

estimation of α(t) in (3.21). We let N (t) = (N1(t), N2(t), . . . , Nn(t))
T be counting

processes for individuals i = 1, 2, . . . , n. We letX(t) be n×(p+1) matrix as following

X(t) =



Y1(t) Y1(t) x11(t) . . . Y1(t) x1p(t)

Y2(t) Y2(t) x21(t) . . . Y2(t) x2p(t)

...
...

...

Yn(t) Yn(t) xn1(t) . . . Yn(t) xnp(t)


, (3.22)

where Yi(t) = I[individual i is at risk at time t]. Then, we define an n × 1 vector of

martingales as

M (t) =N (t)−
∫ t

0

X(u)α(u)du. (3.23)

The equation in (3.23) implies that

dN (t) =X(t)dA(t) + dM (t), (3.24)

where dA(t) = α(t)dt and A(t) =
∫ t

0
α(u)du. Using the least squares estimation

method, (3.24) has the solution for dA(t) as

dÂ(t) = (XT (t)X(t))−1XT (t)dN (t). (3.25)
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Then, A(t) can be estimated by

Â(t) =

∫ t

0

(XT (u)X(u))−1XT (u)dN (u). (3.26)

The variance-covariance matrix of A(t) is estimated by

V̂ ar(Â(t)) = n

∫ t

0

(
(XT (u)X(u))−1XT (u)

)
diag(dN (u))

(
(XT (u)X(u))−1XT (u)

)T
.

(3.27)

Under some conditions (see, Martinussen and Scheike (2006), pp. 109-112, condition

5.1 and theorem 5.1.1),
√
n(Â(t) − A(t)) is asymptotically Normal with mean zero

and the estimated asymptotic variance V̂ ar(Â(t)) in (3.27).

Lin and Ying’s Additive Hazards Model

Additional to Aalen’s additive hazards model, Lin and Ying (1994) proposed an addi-

tive hazards regression model which was motivated by Cox semiparametric regression

model. The hazard function in Lin and Ying’s additive hazards model of ith indepen-

dent individual is given by

hi(t|H(t)) = h0(t) +α
Txi(t), (3.28)

where h0(t) is an unknown and unspecified baseline hazard function,

α = (α1, α2, . . . , αp)
T is a p-dimensional regression coefficient and xi(t) =

(xi1(t), xi2(t), . . . , xip(t))
T is a time-dependent covariate vector for the ith individual.

Lin and Ying’s (1994) additive hazards model assumes the regression coefficients are

constant over time.

We letH0(t) =
∫ t

0
h0(u)du andH(t;xi(t)) =

∫ t

0
h(u;xi(u))du. The hazard function
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can be written as

Yi(t) dH(t;xi(t)) = Yi(t)
(
dH0(t) +α

Txi(t)
)
. (3.29)

Similar to (3.23), the counting process Ni(t) can be decomposed into

Ni(t) =Mi(t) +

∫ t

0

Yi(u) dH(u;xi). (3.30)

Then, the estimating function to estimate α is given by Lin and Ying (1994) as

S(α) =
n∑

i=1

∫ ∞

0

xi(t){dNi(t)− Yi(t)dĤ0(α, t)− Yi(t)α
Txi(t)dt}, (3.31)

where

Ĥ0(α, t) =

∫ t

0

∑n
j=1 dNj(u)− Yj(u)α

Txj(u)du∑n
j=1 Yj(u)

. (3.32)

After some algebra, the estimating function (3.31) can be shown as

S(α) =
n∑

i=1

∫ ∞

0

(xi(t)− x̄(t)) {dNi(t)− Yi(t)α
Txi(t)dt}, (3.33)

where

x̄(t) =

∑n
j=1 Yj(t)xj(t)∑n

j=1 Yj(t)
. (3.34)

The estimator of α can be obtained by solving S(α̂) = 0. Then, the explicit

solution is

α̂ =

[
n∑

i=1

∫ ∞

0

Yi(t){xi(t)− x̄(t)}{xi(t)− x̄(t)}Tdt

]−1 [ n∑
i=1

∫ ∞

0

{xi(t)− x̄(t)}dNi(t)

]
.

(3.35)
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It can be easily seen that

S(α0) =
n∑

i=1

∫ ∞

0

(xi(t)− x̄(t)) dMi(t), (3.36)

where dMi(t) = dNi(t) − Yi(t)α
Txi(t) dt is a martingale. Therefore, the random

vector n−1/2 S(α0) converges to Normal distribution with mean zero and the variance

covariance matrix that can be consistently estimated by (Andersen and Gill, 1982;

Lin and Ying, 1994)

B = n−1

n∑
i=1

∫ ∞

0

(xi(t)− x̄(t)) (xi(t)− x̄(t))T dNi(t). (3.37)

Then, n(α̂ − α0) converges in Normal distribution with mean zero and the variance

covariance matrix that can be consistently estimated by

A−1BA−1, (3.38)

where

A = n−1

n∑
i=1

∫ ∞

0

Yi(t){xi(t)− x̄(t)}{xi(t)− x̄(t)}Tdt. (3.39)

3.2 Review of Mediation Analysis Methods for

Time-to-Event Outcomes

Mediation analysis is considered to understand and measure a cause and effect rela-

tionship between observed data. It is one of the main goals in the fields of genetics,

medicine and social sciences. There have been many methods developed for mediation

analysis.
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Structural equation model is widely used to infer the effect of an exposure in medi-

ation analysis studies (Bollen, 1989; De Stavola et al., 2015). G-estimation is another

widely considered method, alternative to structural equation model (Robins, 1986).

Along with G-estimation method, marginal structural model with inverse probability

weighting method (Robins et al., 2000; Madden et al., 2020) and structural nested

model with inverse-weight estimator were developed (VanderWeele, 2009). Recently,

VanderWeele and Tchetgen Tchetgen (2017) used G-estimation to infer the effects of

an exposure on the time-to-event outcome in the presence of a time-varying mediator.

A Directed Acyclic Graph (DAG) is an effective tool for visualizing the causal

relation (Greenland et al., 1999; Pearl, 1995). An illustrative example with the DAG

in Figure 3.1 is given. There is a direct effect of an exposure X on the primary outcome

of interest Y and indirect effect of X through the intermediate variable K on Y and

there are unmeasured and measured factors U and L, respectively, confounding the

effect of K on Y . The aim is to measure the direct effect of X on Y .

X K Y

L

U

αXK αKY

αXL αLK

αUL

αUY

αLY

αxy

Figure 3.1: Directed acyclic graph with mediator K, measured confounder L and
unmeasured confounder U . X is an exposure and Y is the outcome of interest. There
is an indirect effect of X on Y through K. αXY denotes the direct effect of X on Y .



71

Some methods are available to consider to measure the direct effect. As an exten-

sion of G-estimation method, sequential G-estimation method was applied to reveal

the effects of genetic markers on continuous primary phenotypes (Vansteelandt et al.,

2009; Vansteelandt, 2009). In sequential G-estimation method, two linear regres-

sion models are sequentially fitted to distinguish the direct genetic effect on primary

phenotype (Vansteelandt, 2009). Along with sequential G-estimation method, Konig-

orski et al. (2018) introduced the method called causal inference based on estimating

equations (CIEE) solving one set of estimating equations to remove indirect effects

through intermediate phenotypes on a primary phenotype and to obtain the direct

genetic effect on the primary phenotype.

In the following sections, we give a brief review of some available mediation analysis

methods in which the DAG in Figure 3.1 can be modeled. The outcome of interest Y

in Figure 3.1 is considered as time-to-event in Chapter 4.

3.2.1 Structural Equation Modeling

Structural equation modeling (SEM) is widely used to infer the effects of exposures in

mediation analysis studies (Bollen, 1989; De Stavola et al., 2015). SEM was applied

for time-to-event data. Recently, Vansteelandt et al. (2019) considered structural

equation modeling to infer the effect of a treatment on time-to-event outcome under

a setting with a repeatedly measured mediator.

SEM includes multiple regression models where a response variable in one regres-

sion model becomes an explanatory variable in another regression model. SEM may

include unmeasured variables which are called latent variables. The details of SEM

are given in Bollen (1989) and Pearl (1998).
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Using SEM method, the DAG in Figure 3.1 can be for example modelled by

L =αXL x+ ϵL, ϵL ∼ N(0, σ2
L)

K =αXK x+ αLK l + ϵK , ϵK ∼ N(0, σ2
K)

Y =αXY x+ αKY k + ϵY , ϵY ∼ N(0, σ2
Y )

(3.40)

where ϵL, ϵK and ϵY are error terms for L,K and Y , respectively. The model in (3.40)

can be re-written in matrix form as

Ỹ∼ = αY Ỹ∼ +α∼XX̃ + ϵ∼, (3.41)

where Ỹ∼ =


L

K

Y

, X̃ = x, αY =


0 0 0

αLK 0 0

0 αKY 0

, α∼X =


αXL

αXK

αXY

 and ϵ∼ =


ϵL

ϵK

ϵY

. The direct effect αXY can be obtained using maximum likelihood estimation

to minimize the function (Bollen, 1989, Chapter 4)

lML = log |Σ(θ)|+ tr(SΣ−1(θ))− log |S| − (p+ q), (3.42)

where θ contains the parameters in αY and α∼X , Σ(θ) is the variance-covariance

matrix that is a function of θ, S is the sample variance-covariance matrix of Ỹ∼ and

X̃, and p = 3 and q = 1. The asymptotic variance-covariance matrix for the maximum

likelihood estimator of θ is (Bollen, 1989, Appendix 4B)

(
2

n− 1

)
E

[
∂2lML

∂θ∂θT

]−1

. (3.43)
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Unlike traditional regression models, SEM allows to model the direct and indirect

relations among the measured and unmeasured (latent) variables. However, there are

some limitations in SEM. If multivariate normal assumption of error terms is violated

when maximum likelihood estimation is used under SEM, the estimates of the effects

may not be accurate. Also, Konigorski et al. (2018) showed that when the DAG in

Figure 3.1 was analyzed using SEM, inaccurate direct effect estimates can be obtained

when there is significant amount of unmeasured confounding.

3.2.2 Sequential G-estimation Method

Vansteelandt (2009) proposed the sequential G-estimation method. Sequential G-

estimation method fits two linear models sequentially. The direct effect of an exposure

on the outcome of interest is obtained after its indirect effect is removed from the

outcome.

In order to estimate the direct effect of an exposure X on the outcome Y in the

DAG in Figure 3.1, sequential G-estimation method involves two stages as follows :

The first stage is to estimate the adjusted effect of K on Y by fitting the model

Y = γ0 + γ1X + γ2K + γ3L+ ϵY , (3.44)

where ϵY has mean 0 and constant variance. The estimators γ̂0, γ̂1, γ̂2 and γ̂3 are

obtained by using ordinary least square estimation method.

In the second stage, the outcome is adjusted by removing the effect of the mediator

K as

Ỹ = Y − γ̂2K, (3.45)

and the direct effect αXY is estimated by fitting the following model with the adjusted
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outcome Ỹ as

Ỹ = α0 + αXYX + ϵỸ , (3.46)

where ϵỸ has mean 0 and constant variance. Least square estimation is used one

more time to obtain the direct effect estimate α̂XY . Due to the extra variability that

occurs in two-stage estimation, the standard error of α̂XY can be estimated by a

nonparametric bootstrap.

3.2.3 Sequential G-estimation Method using Aalen’s Addi-

tive Hazards Model

Martinussen et al. (2011) proposed a sequential G-estimation method under Aalen’s

additive hazards model. It first postulates a model considering the DAG in Figure

3.1 for the conditional distribution of T given X, L and K by using Aalen’s additive

hazards model

hX,L,K(t) = ψ0(t) + ψX(t)X + ψL(t)L+ ψK(t)K. (3.47)

We let Ri(t) = I(t ≤ Ti) be the at-risk indicator for ith individ-

ual, N (t) = (N1(t), N2(t), . . . , Nn(t))
T be the counting process, X(t) =

(R1(t)X1, R2(t)X2, . . . , Rn(t)Xn)
T , L(t) = (R1(t)L1, R2(t)L2, . . . , Rn(t)Ln)

T and

K(t) = (R1(t)K1, R2(t)K2, . . . , Rn(t)Kn)
T .

Similar to the idea from the sequential G-estimation (Vansteelandt, 2009), the

direct effect of X is obtained from a regression of the resulting adjusted outcome

where the indirect effect of X through K is removed from the outcome. Adjusting the

outcome involves adjusting the increment dN(t) and the at-risk indicator R(t). This

can be done by substituting dN(t) by dN(t)−K(t)dΨK(t) where ΨK(t) =
∫ t

0
ψK(s)ds



75

and R(t) by R(t) exp(ΨK(t)K).

It involves two steps. The first step is to obtain the Aalen estimator of ΨK(t) by

using least square estimation

Ψ̂(t) =

∫ t

0

{Y T (s)Y (s)}−1Y T (s)dN (s), (3.48)

where Y (t) has ith row Ri(t)(1, xi, li, ki). Then, the cumulative controlled direct effect

ΓX,k(t) is the second component of the following (see Martinussen et al., 2011, section

2.2)

Γ̂(t) =

∫ t

0

Z−
Ĥ
(s){dN (s)−K(s)dΨ̂K(s)}, (3.49)

where Z−
Ĥ
(t) = (ZT (t)H(t)Z(t))−1ZT (t)H(t) is an estimate of a weighted gener-

alized inverse of Z(t) with H(t) is replaced by Ĥ(t) and Z(t) is the n × 2 matrix

with ith row Ri(t)(1, Xi) and H(t) is the diagonal matrix with ith diagonal entry

Ri(t) exp{ΨK(t)Ki}.

Martinussen et al. (2011) showed that Wn = n−1/2(Γ̂(t)−Γ(t)) is asymptotically

normal with mean 0 and variance covariance matrix Σ(t). The variance covariance

matrix Σ(t) can be consistently estimated. The result is shown in section A.3.2 of

Martinussen et al. (2011).

3.2.4 Causal Inference Estimating Equation Method

Konigorski et al. (2018) introduced a causal inference method called causal inference

based on estimating equations (CIEE). The general idea behind CIEE follows the two-

stage sequential G-estimation method. However, their proposed method is a one-stage

estimation. They solve estimating equations to obtain the indirect effect of exposure

under an AFT model of outcome and to obtain direct effect of exposure on adjusted

time-to-event. Since the estimating equation methodology was used, a closed-form
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standard error estimator can be provided using CIEE.

First, suppose Y is a continuous random variable not subject to censoring. Then,

in CIEE, the following model is considered under the DAG in Figure 3.1

Yi = α0 + αkki + αxxi + αlli + ϵi, (3.50)

where ϵi ∼ N(0, σ2
1) for i = 1, 2, . . . , n. Here the outcome Y is considered as a

completely observed normally distributed quantitative outcome.

The effect of the mediator K is removed from the outcome in order to block the

indirect effect of X through K on the outcome

Ỹi = Yi − Y − αk(ki − k̄), (3.51)

where Y = 1
n

∑n
i Yi and k̄ = 1

n

∑n
i ki. Then, the direct effect of the exposure X on Y

can be estimated using the model

Ỹi = α
′

0 + αXY xi + ϵ
′

i, (3.52)

where ϵ
′
i ∼ N(0, σ2

2) for i = 1, 2, . . . , n.

We let θ = (θ1,θ2)
T where θ1 = (α0, αk, αx, αl, σ1)

T and θ2 = (α
′
0, αXY , σ2)

T .

The following unbiased estimating equations are obtained to estimate θ

S(θ) =

 ∂ logL1(θ1)
∂θ1

∂ logL2(θ1,θ2)
∂θ2

 = 0, (3.53)

where

L1(θ1) =
n∏

i=1

[
1

σ1
ϕ

(
yi − α0 − αkki − αxxi − αlli

σ1

)]
, (3.54)
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and

L2(θ1,θ2) =
n∏

i=1

[
1

σ2
ϕ

(
Yi − Y − αk(ki − k̄)− α

′
0 − αXY xi

σ2

)]
, (3.55)

and Φ(·), ϕ(·) are the standard normal cumulative distribution function and standard

normal probability density function, respectively.

Under mild regularity conditions,
√
n(θ̂ − θ) is asymptotically normal with mean

vector 0 and variance covariance matrix C(θ) = A(θ)−1B(θ)[A(θ)−1]T (White, 1982).

The variance covariance matrix C(θ) can be consistently estimated by Cn(θ̂) with

Cn(θ) = An(θ)
−1Bn(θ)[An(θ)

−1]T where

An(θ) = − 1

n

(
∂S(θ)

∂θT

)
, (3.56)

and

Bn(θ) =
1

n

n∑
i=1

Si(θ)Si(θ)
T . (3.57)

Here, S(θ) =
∑n

i=1 Si(θ). Therefore, a consistent estimator of C(θ) is given by

Cn(θ̂) = An(θ̂)
−1Bn(θ̂)[An(θ̂)

−1]T . (3.58)

Time-to-event outcome T was also considered. Here, (3.50) becomes an AFT

model with Y be the logarithm of time-to-event outcome T . Under right-censored

data setting, in order to remove the effect of the mediator K from the true underlying

Y
′
= log(T ), the conditional expectation of Y given that Y is greater than the right-

censoring time and given covariates is obtained as

Y
′

i = δi yi + (1− δi)E[Yi|Yi > yi, ki, xi, li], (3.59)
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where yi = log(ti), ti = min(Ti, Ci), Ci is the right censoring time and δi = I(Ti ≤ Ci)

for i = 1, 2, . . . , n. Then, the adjusted outcome can be computed using

Ỹi = Y
′

i − Y
′

n − αk(ki − k̄), (3.60)

where Y
′

n = 1
n

∑n
i Y

′
i and k̄ = 1

n

∑n
i ki. Then, the direct effect of the exposure X on

Y
′
can be estimated using the model

Ỹi = α
′

0 + αXY xi + ϵ
′

i, (3.61)

where ϵ
′
i ∼ N(0, σ2

2) for i = 1, 2, . . . , n.

The estimating equations for estimating θ =

θ1
θ2

 with θ1 = (α0, αk, αx, αl, σ1)
T

and θ2 = (α
′
0, αXY , σ2)

T are

S(θ) =

 ∂ logL1(θ1)
∂θ1

∂ logL2(θ1,θ2)
∂θ2

 = 0, (3.62)

where

L1(θ1) =
n∏

i=1

[
1

σ1
ϕ

(
yi − α0 − αkki − αxxi − αlli

σ1

)]δi
×
[
1− Φ

(
yi − α0 − αkki − αxxi − αlli

σ1

)]1−δi

,

(3.63)

and

L2(θ1,θ2) =
n∏

i=1

[
1

σ2
ϕ

(
Y

′
i − Y ′ − αk(ki − k̄)− α

′
0 − αXY xi

σ2

)]
, (3.64)

and Φ(·), ϕ(·) are the standard normal cumulative distribution function and standard
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normal probability density function, respectively. Under mild regularity conditions,

√
n(θ̂ − θ) is asymptotically normal with mean vector 0 and variance covariance

matrix C(θ) which can be estimated through (3.58).

3.3 Outline of Research

In this chapter, we reviewed some regression models for time-to-event data and some

mediation analysis methods. In Chapter 4, we propose a mediation analysis method to

make inference about direct exposure effects on time-to-event outcome under additive

hazards model using estimating equations methodology. We examine properties of

the proposed method and compare them with traditional survival analysis methods

and the existing two-stage G-estimation method using additive hazards model by

conducting simulation studies with various scenarios. A real-life application with the

proposed method is provided.



Chapter 4

Estimation of Controlled Direct

Exposure Effects on Time-to-Event

Outcomes Using Additive Hazards

Model

4.1 Introduction

In observational studies, it is well known that inference obtained about associations

could be misleading due to possible confounding. Exposure effects could be mediated

through other variables called mediators and the association between a mediator and

the outcome can be confounded by measured and unmeasured factors. It is impor-

tant to separate the direct exposure effects on outcome from indirect effects through

mediators.

We consider the directed acyclic graph (DAG) in Figure 4.1 where there is a direct

effect of an exposure X on time-to-event outcome T , and there is an indirect exposure
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X K T

L

U

αXK αKT

αXL αLK

αUL

αUT

αLT

αXT

Figure 4.1: The overview of considered causal directed acyclic graph in this study. X
is an exposure variable, T is the primary outcome of interest and K is a mediator.
There is an indirect effect of X on T through K. αXT denotes the direct effect of
X on T . We assume that αLT = 0 so that L is a measured factor of K. U includes
unmeasured factors and potential confounders that influence L and T .

effect of X on T through a mediator K. Measured factors L and unmeasured factors

U are also included in the model which could confound the effect of K on time-to-

event T . Our goal is to estimate and test the controlled direct exposure effect αXT

on T by removing the indirect effect of X on T through the mediator K.

Martinussen et al. (2011) inferred about αXT using a two-stage G-estimation

method under Aalen’s additive regression method. We propose a one-stage method to

estimate the controlled direct exposure effect on time-to-event outcome by using an

estimating equation approach under Lin and Ying’s additive hazards model (Lin and

Ying, 1994). Lin and Ying’s additive hazards model uses a semiparametric estimation

procedure similar to the partial likelihood-based method for the proportional hazards

(PH) regression model. There is no distributional assumption for the baseline haz-

ard function under Lin and Ying’s additive hazards model. The effect of K on T is
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estimated using a set of unbiased estimating functions under Lin and Ying’s additive

hazards model. The controlled direct effect of X is estimated by another set of unbi-

ased estimating functions using the adjusted T obtained by removing the effect of K

from T . We consider a one-stage estimation by simultaneously solving the two sets

of unbiased estimating equations. This allows us to use the Huber–White variance

estimator to obtain the standard error of the controlled direct effect estimator. We use

the well-developed asymptotic results for unbiased estimating equations to obtain the

asymptotic results for the controlled direct effect estimator. To test the absence of the

controlled direct effect, we use a Wald-type test statistic. We provide the asymptotic

properties of the controlled direct effect estimator and the test statistic. A simulation

study is carried out to assess the small sample properties of the method. We check the

validity of the asymptotic results for finite samples. We apply the method to colon

cancer data to estimate the controlled direct effect of having more than 4 positive

lymph nodes on time from cancer recurrence to death.

The remainder of this chapter is organized as follows. Section 4.2 provides the

notation and gives the novel method for estimation and testing of the controlled direct

effect. Section 4.3 gives the simulation study results to assess the properties and the

performance of the proposed method and to compare its performance with Lin and

Ying’s additive hazards model, Aalen’s additive hazards model, Cox PH model and

the sequential G-estimation method introduced by Martinussen et al. (2011). Section

4.4 illustrates how the proposed method is applied to a real life data. We make

inference on the controlled direct effect of having more than 4 positive lymph nodes

on time from cancer recurrence to death under a DAG model for colon cancer data

where the intermediate variable is time from cancer diagnosis to cancer recurrence.



83

4.2 Notation and Method

We consider the directed acyclic graph in Figure 4.1. We let Xi, Ki and Ti be the

exposure, mediator and time-to-event for individual i, i = 1, 2, . . . , n, respectively.

We let Li be the collection of measured confounders for the ith individual. We denote

Zi = (Xi, Li, Ki)
T as a covariate vector for ith individual. We assume that Ti is

subject to right-censoring. The observed time-to-event and its event indicator becomes

ti = min(Ti, Ci), δi = I(Ti ≤ Ci) where Ci is the right censoring time for ith individual.

We let Ni(t) be the number of events over the interval [0, t] for ith individual. This

means in the current setting that Ni(t) = I[Ti ≤ t, δi = 1]. We let dNi(t) be the

number of events in the small interval [t, t+ dt).

We assume that the hazard function at time t given Z is a linear combination of

Z in the following (Lin and Ying, 1994)

λ(t|Z) = λ0(t) +α
TZ, (4.1)

where λ0(t) is the baseline hazard function and α = (α1, α2, α3)
T is the regression

coefficient vector associated with Z.

Note that the estimation of (4.1) by Lin and Ying (1994) is based on an estimating

equation using partial likelihood score function. The baseline hazard function λ0(t)

is an unknown and unspecified function. The idea comes from semi-parametric pro-

portional hazards regression model estimation (Cox, 1972), where the baseline hazard

function is also unspecified.

Our estimation method follows the idea of the two-stage sequential G-estimation

method (Vansteelandt et al., 2009) to measure the controlled direct effect of the

exposure on the outcome. Unlike the two-stage sequential G-estimation method,

our proposed method is a one-stage estimation method. Therefore, it is analytically
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feasible to obtain the standard error estimator of the direct effect estimator. In our

implementation, we construct two sets of unbiased estimating functions. The effect

of the mediator K on time-to-event T is estimated by using the first set of estimating

equations. The controlled direct effect of exposure X on T is estimated by using

the second set of estimating equations which use adjusted counting process for the

effect of the mediator K. We estimate the effect of the mediator and the controlled

direct effect of exposure simultaneously by solving the two sets of unbiased estimating

equations in one stage.

The first set of estimating functions to obtain the indirect effect of K on T are

given as

S1(α) =
n∑

i=1

∫ ∞

0

Zi{dNi(t)− Yi(t)dΛ̂0(α, t)− Yi(t)α
TZidt}, (4.2)

where Yi(t) = I[individual i is at risk at time t] and Λ0(α, t) is estimated by

Λ̂0(α, t) =

∫ t

0

∑n
j=1{dNj(u)− Yj(u)α

TZjdu}∑n
j=1 Yj(u)

. (4.3)

The estimating functions in (4.2) are equivalent to

S1(α) =
n∑

i=1

∫ ∞

0

(
Zi − Z̄(t)

)
{dNi(t)− Yi(t)α

TZidt}, (4.4)

where

Z̄(t) =

∑n
j=1 Yj(t)Zj∑n
j=1 Yj(t)

. (4.5)

We estimate α = (α1, α2, α3)
T by solving S1(α) = 0 for α where S1(α) is defined

in equation (4.4). The adjustment for the effect of the intermediate variable K on

dNi(t) is done by dNi(t) − α3Kidt by following the approach in Martinussen et al.

(2011). The controlled direct effect of X on T , αXT , can be estimated by solving the
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following estimating equation,

S2(α3, αXT ) =
n∑

i=1

∫ ∞

0

Xi{dNi(t)−α3Ki dt−Yi(t)dΛ̂′
0(α3, αXT , t)−Yi(t)αXTXidt} = 0,

(4.6)

where

dΛ̂′
0(α3, αXT , t) =

∑n
j=1 (dNj(t)− α3Kj dt− Yj(t)αXTXj dt)∑n

j=1 Yj(t)
. (4.7)

Algebraically, the estimating function in (4.6) is equivalent to

S2(α3, αXT ) =
n∑

i=1

∫ ∞

0

(
Xi − X̄(t)

)
{dNi(t)− Yi(t)α3Ki dt− Yi(t)αXTXi dt}, (4.8)

where

X̄(t) =

∑n
j=1 Yj(t)Xj∑n
j=1 Yj(t)

. (4.9)

By combining the estimating functions in (4.4) and (4.8), we obtain the unbiased

estimating equations S̃(θ) =

 S1(α)

S2(α3, αXT )

 = 0 for a consistent estimation of the

unknown parameter vector θ = (α, αXT )
T with α = (α1, α2, α3)

T with S1(α) given

in (4.4) and S2(α3, αXT ) given in (4.6).

The explicit solution for the estimator of α is

α̂ =

[
n∑

i=1

∫ ∞

0

Yi(t)(Zi − Z̄(t))(Zi − Z̄(t))Tdt

]−1 [ n∑
i=1

∫ ∞

0

(Zi − Z̄(t))dNi(t)

]
,

(4.10)

and for the controlled direct exposure effect, αXT , is

α̂XT =

[
n∑

i=1

∫ ∞

0

Yi(t)(Xi − X̄(t))2 dt

]−1

×
[ n∑

i=1

∫ ∞

0

(Xi − X̄(t))(dNi(t)− Yi(t)α̂3Ki dt)

]
.

(4.11)
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Under regularity conditions,
√
n(θ̂−θ) is asymptotically normal with mean vector

0 and variance-covariance matrix C(θ) which can be consistently estimated by Cn(θ̂)

(White, 1982) which is

Cn(θ̂) = [An(θ̂)
−1]Bn(θ̂)[An(θ̂)

−1]T , (4.12)

where

An(θ̂) = − 1

n

(
∂S̃(θ)

∂θT

)∣∣∣∣∣
θ=θ̂

, Bn(θ̂) =
1

n

n∑
i=1

[S̃ji(θ̂) S̃ki(θ̂)
T ]j,k=1,2,...,p (4.13)

where S̃ki(θ) is the kth element of S̃i(θ) where S̃(θ) =
∑n

i=1 S̃i(θ) and p = 4.

For testing absence of the controlled direct effect, H0 : αXT = 0, we use the

Wald-type test statistic

Z =
α̂XT

ŜE{α̂XT}
, (4.14)

where ŜE{α̂XT} = 1√
n

√
Cn(θ̂)4,4. The asymptotic distribution of (4.14) is standard

normal under the null hypothesis.

4.3 Simulation Study

We conducted a Monte Carlo simulation study to investigate properties of the pro-

posed controlled direct effect estimator and to assess properties of the test statistic

for testing the absence of the direct effect. Empirical type I error and empirical power

of the Wald-type test statistic are examined for testing H0 : αXT = 0 versus Ha :

αXT ̸= 0.

We generated the data {(ti, δi, li, ki, xi, ui), i = 1, . . . , n} using the following setting
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:

Ui ∼ N(µU , σ
2
U),

Xi ∼ Ber(p),

Li = αULui + αXLxi + ϵL,i, where ϵL,i ∼ N(µL, σ
2
L),

Ki = αXKxi + αLK li + ϵK,i, where ϵK,i ∼ N(µK , σ
2
K),

(4.15)

where X is a binary exposure variable which takes the value 0 or 1, K is a mediator,

L is an measured confounder, U is the unmeasured confounder under the DAG in

Figure 4.1, and the time-to-event Ti was generated from

λ(ti|xi, li, ki, ui) = λ0 + αXT xi + αLT li + αKT ki + αUT ui, (4.16)

assuming constant baseline hazard λ0 for simplicity.

We considered 5 different scenarios. The overview of the scenarios is depicted with

the DAGs in Figure 4.2. The models in Figure 4.2 are submodels of the DAG in Figure

4.1 where some of the effects are set to 0. Scenario 5 is to check robustness against

model misspecification where there is a non-zero effect of L on T . To investigate

the power of the test statistics, non-zero controlled direct effects of X on T are also

considered for each scenario. Table 4.1 gives the effect sizes in (4.15) and (4.16) for

scenarios in Figure 4.2.

We first considered the null hypothesis model that there is no direct effect of X

on T (αXT = 0) for scenarios in Table 4.1. In each scenario, data was generated for

n = 1, 000 individuals with m = 1, 000 replications. We generated right-censoring

times Ci from the Uniform(0.5, 15) distribution. The exposure X was generated from

the Bernoulli distribution with p = 0.25 and p = 0.50. In each scenario, we considered

λ0 = 0.1, µU = 1, σU = 0.3, µL = 0, σL = 0.3, µK = 0 and σK = 0.3. Under the
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alternative hypothesis, we considered αXT = 0.10 and αXT = 0.50 for scenarios from

1 to 4 with the same values used for other parameters in the setting above.

X K T

L

Scenario 1

X K T

L

U

Scenario 2

X K T

L

U

Scenario 3

X K T

L

U

Scenario 4

X K T

L

U

Scenario 5

Figure 4.2: Overview of the scenarios

Scenario αUL αXL αXK αLK αLT αUT αKT

1 0 0.2 0.25 0.25 0 0 0.3
2 0.3 0.2 0.25 0.25 0 0 0.3
3 0.3 0.2 0.25 0.25 0 0.3 0.3
4 0.3 0.2 0.25 0.25 0 0.3 0
5 0.2 0 0.25 0.25 0.20 0.3 0.3

Table 4.1: The parameter values considered in each scenario

We compared the proposed method with the Aalen’s additive hazards model,

Lin and Ying’s additive hazards model, Cox PH model and sequential G-estimation
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method considered in Martinussen et al. (2011). Under Lin and Ying’s additive haz-

ards model, the hazard function considered is given as

λ(ti|ki, xi, li) = λ0(ti) + α1xi + α2li + α3ki. (4.17)

The effect of X on T is estimated by solving the estimating equation

U(α) =
n∑

j=1

∫ ∞

0

(
Zi − Z̄(t)

)
{dNi(t)− Yi(t)α

TZidt} = 0, (4.18)

where

Z̄(t) =

∑n
j=1 Yj(t)Zj∑n
j=1 Yj(t)

, (4.19)

α = (α1, α2, α3)
T and Zi = (Xi, Li, Ki)

T . Then, H0 : α1 = 0 vs HA : α1 ̸= 0 was

tested using the Wald-type test.

Under the Cox PH model, the effect of X on T was obtained from the hazard

function

λ(ti|ki, xi, li) = λ0(ti) exp(α1xi + α2li + α3ki), (4.20)

and the Wald-type test was performed for testing the null hypothesis H0 : α1 = 0.

Aalen’s additive hazards model assumes that the hazard function as

λ(ti|ki, xi, li) = ψ0(ti) + ψX(ti)xi + ψL(ti)li + ψK(ti)ki, (4.21)

where ψ0(t) is a baseline function and ψj(t) is a regression coefficient that measures

the time-varying association of factor j with T for j = X,L,K. The cumulative

regression coefficient is

Ψj(t) =

∫ t

0

ψj(s)ds for j = X,L,K, (4.22)
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and ψ(t) = (ψ0(t), ψX(t), ψL(t), ψK(t))
T . The Aalen least squares estimator of Ψ(t) =∫ t

0
ψ(s)ds can be obtained from

Ψ̂(t) =

∫ t

0

{JT (s)J(s)}−1JT (s)dN (s), (4.23)

where Ri(t) = I(t ≤ Ti), J(t) has ith row Ri(t)(1, xi, li, ki) and N (t) =

(N1(t), N2(t), . . . , Nn(t))
T .

The sequential G-estimation method (Martinussen et al., 2011) assumes the addi-

tive hazards function in (4.21). Then the controlled direct effect is obtained from the

adjusted counting process. We let K(t) = (R1(t)K1, R2(t)K2, . . . , Rn(t)Kn)
T , G(t)

be the n× 2 matrix with ith row Ri(t)(1, Xi) and H(t) be the diagonal matrix with

ith diagonal entry Ri(t) exp{ΨK(t)Ki}. Ψ̂K(t) is first obtained from (4.23). Then, the

cumulative controlled direct effect ΓX,k(t) is the second component of the following

(see Martinussen et al., 2011, section 2.2)

Γ̂(t) =

∫ t

0

G−
Ĥ
(s){dN (s)−K(s)dΨ̂K(s)}, (4.24)

where

G−
Ĥ
(t) = {GT (t)Ĥ(t)G(t)}−1GT (t)Ĥ(t).

Note that, in this simulation study, we obtained Γ̂X,k(t) and Ψ̂X(t) at t = 1, which

provides dΓ̂X,k(t) and dΨ̂X(t) for comparison. This was also considered in section 4.2

in Martinussen et al. (2011).

4.3.1 Simulation Results

The controlled direct effect (αXT ) of the exposure X on time-to-event outcome T and

the standard error of the estimator of αXT were estimated by the proposed method.
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We also provided results for the other methods, Cox PH, Lin and Ying’s additive

hazards model, Aalen’s additive hazards model and sequential G-estimation method

considered in Martinussen et al. (2011). Under the null hypothesis H0 : αXT = 0,

Table 4.2 shows that our proposed method provides unbiased controlled direct effect

estimates and valid standard error estimates of the controlled direct effect estimator.

The traditional survival analysis methods, additive hazard model by Lin and Ying

(1994) and Aalen’s additive hazards model do not provide valid inference when there

is an unmeasured confounder affecting the time-to-event variable (see Table 4.2).

Also, the estimates obtained from Cox PH model in Table 4.2 are biased throughout

scenarios from 1 to 4 compared to other considered models. This suggests that Cox

PH model does not provide valid inference when time-to-event comes from additive

hazards model.

The proposed method gave unbiased results even under Scenario 5 where the model

is misspecified. This suggests that the proposed method is robust when L affects T .

The sequential G-estimation method provided unbiased controlled direct effect

estimates but gave larger standard deviations of controlled direct effect estimates than

the mean standard error estimates obtained from the proposed method (Table 4.2).

This suggests that the proposed method provides a more efficient controlled direct

effect estimator than the sequential G-estimation method proposed by Martinussen

et al. (2011) (Table 4.2).

We further considered the scenarios in Table 4.1 under the alternative hypotheses

with αXT = 0.10 and αXT = 0.50 each with p = 0.25 and p = 0.50. Tables 4.3 and

4.4 display the results with αXT = 0.10 and αXT = 0.50 when p = 0.25, respectively.

Tables 4.5 and 4.6 show the results with αXT = 0.10 and αXT = 0.50 when p = 0.50,

respectively. The proposed method gave unbiased estimates of controlled direct ef-

fect and valid standard estimates when αXT = 0.10 and αXT = 0.50. Overall, larger
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standard error estimates were obtained when αXT = 0.50 (Table 4.3 versus Table 4.4

and Table 4.5 versus Table 4.6) and smaller standard error estimates were obtained

when p = 0.50 (Table 4.3 versus Table 4.5 and Table 4.4 versus Table 4.6). The

standard error estimates from the proposed method are smaller than the standard de-

viations of the estimates obtained using the sequential G-estimation method proposed

by Martinussen et al. (2011). The results show that Aalen’s least square estimation

method and Lin and Ying’s semiparametric estimation method are not valid methods

to estimate the controlled direct effect when an unmeasured confounder exists.

Also, the estimates obtained from Cox PHmodel in Tables 4.3, 4.4, 4.5 and 4.6 gave

biased results throughout scenarios from 1 to 4. This indicates that Cox PH model

does not provide valid inference when time-to-event comes from additive hazards

model.

The proposed method gave empirical type I error close to 5% throughout all

scenarios considered, while Lin and Ying’s additive hazards model and Cox PH model

yielded inflated type I error when an unmeasured confounder exists (Table 4.7).

Empirical power estimates are presented in Table 4.8. We considered the scenarios

in Table 4.1 under the alternative hypotheses with αXT = 0.10 and αXT = 0.20 each

with p = 0.25 and p = 0.50. Power gets higher as p gets higher. Overall, the proposed

method gave higher power than all traditional methods across all considered scenarios

even in the scenarios where two traditional methods had inflated type I error estimates.

This suggests that our proposed method is the only currently available powerful test

for the controlled direct effect.
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Ê
st

(Ŝ
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(Ê
st
))

α̂
X
T
(Ŝ
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(Ê
st
)]

[S
d
(Ê
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(Ê
st
))

Ê
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(Ê
st
))

α̂
X
T
(Ŝ
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(Ŝ
E
(Ê
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(Ŝ
E
(Ê
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(Ê
st
)]

[S
d
(Ê
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Standard multiple regression method Causal inference method
Scenario p Aalen’s Lin and Ying’s Cox PH Proposed

Least Square Semiparametric Method
1 0.25 4.30 % 3.40 % 3.50 % 4.10 %

0.50 4.10 % 5.00 % 4.80 % 4.10 %
2 0.25 5.79 % 5.39 % 5.89 % 5.19 %

0.50 5.79 % 5.39 % 5.89 % 5.19 %
3 0.25 5.20 % 6.30 % 6.70 % 5.10 %

0.50 4.70 % 5.21 % 5.41 % 4.80 %
4 0.25 5.91 % 7.01 % 6.81 % 5.01 %

0.50 5.81 % 8.31 % 8.11 % 5.41 %
5 0.25 4.60 % 5.30 % 5.20 % 6.30 %

0.50 5.30 % 6.00 % 6.10 % 6.10 %

Table 4.7: Type I error estimates under the null hypothesis H0 : αXT = 0. Data was
generated for n = 1, 000 individuals over the m = 1000 replicates.

Standard multiple regression method Causal inference method
Scenario αXT p Aalen’s Lin and Ying’s Cox PH Proposed

Least Square Semiparametric Method

1

0.10
0.25

28.50 % 61.70 % 56.60 % 62.90 %
0.20 80.10 % 98.50 % 98.10 % 99.20 %
0.10

0.50
42.60 % 78.80 % 78.00 % 79.70 %

0.20 89.90 % 99.99 % 99.99 % 99.99 %

2

0.10
0.25

28.20 % 60.40 % 55.90 % 60.10 %
0.20 77.90 % 99.00 % 98.50 % 98.70 %
0.10

0.50
39.10 % 72.80 % 72.00 % 75.50 %

0.20 88.20 % 99.80 % 99.80 % 99.80 %

3

0.10
0.25

13.00 % 23.50 % 22.50 % 30.90 %
0.20 47.00 % 71.60 % 70.00 % 80.90 %
0.10

0.50
19.00 % 29.50 % 29.10 % 41.00 %

0.20 57.40 % 83.00 % 83.10 % 87.60 %

4

0.10
0.25

23.90 % 54.90 % 57.20 % 72.00 %
0.20 80.70 % 99.40 % 99.60 % 99.90 %
0.10

0.50
33.30 % 71.50 % 72.20 % 86.20 %

0.20 89.90 % 99.70 % 99.70 % 99.90 %

5

0.10
0.25

18.00 % 30.10 % 31.00 % 30.90 %
0.20 51.10 % 80.20 % 80.40 % 80.00 %
0.10

0.50
25.30 % 41.90 % 41.80 % 40.90 %

0.20 68.50 % 89.40 % 89.20 % 89.20 %

Table 4.8: Power estimates under the alternative model when αXT = 0.10 and αXT =
0.20. Data was generated for n = 1, 000 individuals over the m = 1000 replicates.
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4.4 Application to Colon Cancer Data

We considered a clinical trial data on Duke’s Stage C colon cancer patients treated

with therapy with levamisole plus fluorouracil relative to a placebo which was also

considered by Moertel et al. (1990), Lin et al. (1999), He and Lawless (2003) and

Lawless and Yilmaz (2011). The data set is obtained from “colon” in R survival

library. Patients were assigned to the treatment (levamisole only or levamisole plus

fluorouracil) group or to the control (placebo) group. The data includes the patients’

information on whether having more than four positive nodes or not, type of treatment

received, time from registration to cancer recurrence and time from recurrence to

death. It is of interest to infer the direct effect of having more than 4 positive lymph

nodes on time to death after cancer recurrence which is not mediated through time

to recurrence from the registration of the study. Therefore, we only considered the

patients who experienced cancer recurrence in the data analysis.

There are 468 patients who experienced cancer recurrence. Among those patients,

414 of the patients died after cancer recurrence and 54 patients were censored after the

recurrence. This gives the censoring rate of 11.53 % for observing death among those

who experienced cancer recurrence. Whether or not having more than four positive

lymph nodes (Node4) is a binary variable. There are 180 patients with more than

four positive lymph nodes and 288 patients with less than or equal to four positive

lymph nodes. For patients with cancer recurrence observed, time to cancer recurrence

varies from 0.02 to 7.38 years and time to death from cancer recurrence varies from 0

to 7.47 years.

We considered standard regression methods which are Cox PH regression model,

Lin and Ying’s additive hazards model and Aalen’s additive hazards model. Also,

the sequential G-estimation method by Martinussen et al. (2011) and the proposed
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method were considered for mediation analysis.

Patients were randomly assigned to the control group, treatment with levamisole

alone group and treatment with levamisole plus fluorouracil group after stratification

according to several factors including the primary lesion and the interval since surgery

and whether or not having more than four positive lymph nodes (Node4). Therefore,

the treatment could be affected by whether the number of lymph nodes is greater

than 4 or not (Node4) because of the stratification. Also, in the treatment group,

treatments were either deferred or discontinued if there were side effects (Moertel

et al., 1990). This suggests that there could be unmeasured factors affecting the

treatment.

Figure 4.3 describes the assumed DAG in which time from cancer recurrence to

death T is the primary time-to-event outcome, having more than four positive nodes

X may affect T and time from registration to cancer recurrence K could mediate

the exposure effect X on time from recurrence to death T . The primary goal was

to measure the controlled direct effect of having more than four positive nodes X on

time from recurrence to death T that is not mediated through time from registration

to cancer recurrence K. Based on preliminary analysis with Lin and Ying’s additive

hazards model to check whether the treatment L has an effect on time from reccurence

to death T , we found that the treatment L does not have an effect on T .

We applied the sequential G-estimation method under the DAG in Figure 4.3 to

make a comparison with our proposed method. The hazard function for the Aalen

additive model is in (4.21) was considered. Note that the controlled direct effect

(ΓX,k(t)) using the sequential G-estimation method by Martinussen et al. (2011) is

obtained by using the equation (4.24). We obtained Γ̂X,k(t) at t = 1 which gives

dΓ̂X,k(t). With the proposed method, the hazard function in (4.17) is considered and

the controlled direct effect αXT is obtained from (4.11).
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Node4 (X) Time to Recurrence (K) Time to Death from Recurrence (T )

Treatment (L)

Unmeasured Factors (U )

Figure 4.3: Overview of the assumed DAG for colon cancer data. X is whether or not
having more than four positive nodes (Node4), K is time to recurrence, L is treatment
received (levamisole plus fluorouracil and levamisole only) and T is time to death from
recurrence.

Table 4.9 shows the results of the data analysis using Cox PH model, Lin and

Ying’s additive hazards model, Aalen’s additive hazards model, sequential two-stage

G-estimation method and the proposed method. To test the absence of the effect of

the factors on time from recurrence to death T including the controlled direct effect of

X on T , Wald-type test statistics were used in each model. The estimates of the effect

of having more than four positive nodes X on time from cancer recurrence to death

T under Aalen’s additive hazards model and sequential G-estimation method were

obtained at t = 1 year in order to compare with other models. The effect of having

more than 4 positive lymph nodes X on time from cancer recurrence to death T is

statistically significant for all the methods considered. Positive estimates of the direct

effect of having more than 4 positive lymph nodes on time to death from recurrence

suggest that having more than 4 positive lymph nodes increases the probability of

death after the recurrence. The estimates of the association between having more

than 4 positive lymph nodes and time from cancer recurrence to death using standard
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regression methods are slightly less than the estimates of the controlled direct effect

of X on T using the sequential G-estimation method and the proposed method. This

suggests that the estimation of the effect of having more than 4 positive lymph nodes

on time from recurrence to death could be misled using standard regression methods

assuming DAG in Figure 4.3 is correct.

Note that we conducted a proportionality test where a formal score test for time-

dependent coefficient is used from “cox.zph()” function R survival library. The pro-

portionality test shows global p-value being 0.0065 which indicates the violation of

the proportional assumption.

Methods Model Estimate ŜE Z p-value
Standard Cox PH 0.3857 0.1030 3.745 0.0001
Regression Lin and Ying’s Additive Hazards 0.2700 0.0745 3.410 0.0006
Methods Aalen’s Additive Hazards 0.2485 0.1178 2.109 0.0349

Causal Inference Proposed Method 0.3402 0.0733 4.636 3.5× 10−6

Methods Sequential G-estimation 0.3221 0.1064 3.027 0.0024

Table 4.9: Estimates of association between X and T using Cox PH regression model,
Lin and Ying’s additive hazards model and Aalen’s additive hazards model and esti-
mates of controlled direct effect of X on T using the sequential two-stage G-estimation
method and the proposed method. The standard error estimates of sequential G-
estimation and Aalen’s least square estimation were obtained by a nonparametric
bootstrap based on B = 500 resamples.



Chapter 5

Summary and Conclusions

5.1 Statistical Inference in Multi-State Semi-

Markov Models with a Cured Fraction

In certain cancer types patients who were treated for their primary cancer might

be cured or might be susceptible to experience cancer related events. Cured indi-

viduals do not experience any cancer related event, and eventually die due to other

causes. Individuals who are not cured may die after experiencing cancer recurrence

or without experiencing any recurrence. Cure status is a partially latent variable

and is only known if a disease related event, cancer recurrence or cancer death, is

observed. In this study, we considered the multi-state model in Figure 2.1 with the

initial “Treatment” state which represents patients who have been treated for their

primary cancer. It includes both “cured” and “not cured” states. Not cured patients

may have a transition from the “Treatment” state to the “Cancer Recurrence” state

or to the “Cancer Death” state. Both cured and not cured individuals may die due

to other causes. Although the data generation process includes the transition from

the “Treatment” state to the “Death Due to Other Causes” state for both cured and
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not cured individuals (Figure 2.2), our interest only lies in modeling the transitions

to the disease related events in Figure 2.1.

To model disease progression events, we considered a semi-Markov multi-state

model including partially latent cured and not cured states. We used mixture cure

model to model the distribution of time to first cancer related event. We took into ac-

count the possible dependence between successive event times which are time to cancer

recurrence and time from cancer recurrence to death. We utilized the marginal model-

ing approach using a copula function to model the joint distribution of time to cancer

recurrence and time from cancer recurrence to cancer death for not cured patients.

Copula modeling allows to model marginal distributions of time-to-events separately

from the dependence structure (Nelsen, 2006; Joe, 2014). Thus, the marginal distri-

butions can be selected based on modeling needs and can be combined using a copula

function to obtain the joint distribution of the sequential gap times. We applied

the maximum likelihood estimation and the two-stage pseudo-likelihood estimation

to obtain fits of each time-to-cancer related event distribution.

Previous studies, Conlon et al. (2014) and Beesley and Taylor (2018), considered

multi-state cure modeling with an all cause mortality state. Conlon et al. (2014)

considered fully parametric models for cure probability and transition intensities and

applied Bayesian estimation for their semi-Markov multi-state cure model. They used

conditional modeling approach to incorporate the effect of time to recurrence on time

from recurrence to death in their semi-Markov modeling. Their Bayesian method

requires assumptions on prior distributions for parameters in each of the regression

model for transition intensities and probability of being cured. Under the conditional

modeling approach, the obtained marginal distribution for time from recurrence to

death may not be in a simple form and the effect of covariates may not be easily

interpreted (Cook and Lawless, 2007, Chapter 4). Under a similar multi-state model
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to Conlon et al. (2014) with an all-cause mortality state, Beesley and Taylor (2018)

conducted maximum likelihood estimation using a Monte Carlo EM algorithm. They

assumed the successive time-to-events, time to recurrence and time from recurrence to

death are not associated. Markov assumption may lead to biased parameter estimators

when there is dependence between sequential time-to-events (Yilmaz et al., 2017).

In our multi-state model in Figure 2.1, there is a cause specific “Cancer Death”

state instead of an all cause death. It is important to consider meaningful endpoints

like “Cancer Death” which provide time to disease related events having homogeneous

definition and would lead to more meaningful and efficient estimators for measures

of associations between prognostic factors and time-to-event traits. Our multi-state

model requires information on if the cause of death for observed deaths is due to

cancer or not. It is common to have masked causes for some observed deaths in

cancer patient cohort data. In this case, in addition to partially latent cure status,

there are also masked causes of deaths. For individuals with masked causes of death,

their cure status are unknown too. We assume masked causes of deaths are missing

at random. We use empirical evidence to determine true causes of certain masked

causes of deaths. If a death occurs after the last observed cancer related event time,

we assume the individual is cured and death is due to other causes than cancer. To

estimate models, we use an EM algorithm assuming no cancer death after the last

observed cancer related event time.

The multi-state semi-Markov modeling with latent cured or not cured states pro-

vides an informative approach to model cancer progression events. This would allow

us to identify prognostic factors associated with being susceptible to a cancer event,

timing of recurrence, time from recurrence to death, and time to cancer death without

experiencing recurrence. The latter might allow us to detect the risk factors associ-

ated with serious adverse reactions of treatments used leading to death. Since the
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marginal modeling approach was considered for time-to-event distributions, covariate

information could be included using regression modeling for the cure probability and

each time-to-event distribution separately. Parametric estimation methods in Sec-

tions 2.2 and 2.3 can then be applied. Semi-parametric regression models would be

more robust to distribution misspecifications. Thus, the proposed estimation method

accounting for masked causes of deaths will be extended to handle covariates through

the adoption of Cox models for time-to-events.

5.2 Estimation of Controlled Direct Exposure Ef-

fects on Time-to-Event Outcomes Using Addi-

tive Hazards Model

We proposed a new method to estimate the controlled direct exposure effect on time-

to-event outcomes using estimating equation approach under Lin and Ying’s additive

hazards model (Lin and Ying, 1994).

Using Lin and Ying’s additive hazards model gives an advantage that distributional

assumption on the baseline hazard function can be relaxed. The proposed method

does not require the censoring to be adjusted, as it naturally adjusts for censoring

(Martinussen et al., 2011). Multiple influencing factors can be included in the model

which makes it flexible when modeling a variety of circumstances. The proposed

method gives a consistent estimator of the controlled direct effect and its standard

error in a variety of scenarios in the presence of confounding of indirect effects due

to measured and unmeasured factors. Closed form of standard error estimates is

obtained through Huber-White standard error estimation which is computationally

much less intensive than using nonparametric bootstrap standard error estimation.
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In addition, the proposed method yields a simple test statistic for testing absence of

the direct effect.

Simulation studies justified that the proposed method removes the indirect expo-

sure effect due to the mediator and provided unbiased direct exposure effects. It is

shown that traditional multiple regression methods including Lin and Ying’s addi-

tive hazards model, Aalen’s additive hazards model and Cox PH model are not valid

methods to estimate the controlled direct effect when there is an unmeasured con-

founding of indirect effects. In addition, the proposed method gave smaller standard

error estimates of the controlled direct effect estimator than the standard deviation of

the estimator obtained using the sequential G-estimation method proposed by Marti-

nussen et al. (2011). Empirical type I error under the proposed test statistic is close to

5% throughout all scenarios considered in the simulation study while Lin and Ying’s

additive hazards model and Aalen’s additive hazards model yielded inflated type I

error rates when there is an unmeasured confounding of indirect effects. It is also

shown that our proposed method is more powerful than the sequential G-estimation

method to test the absence of the controlled direct effect.

We conducted an in-depth analysis of clinical trial data on Duke’s Stage C colon

cancer patients. We inferred the controlled direct effect of having more than 4 positive

lymph nodes on time to death after cancer recurrence. Utilizing various statistical

models including the Cox PH model, Lin and Ying’s additive hazards model, Aalen’s

least square estimation method, the sequential G-estimation method by Martinussen

et al. (2011) and our proposed approach, we found that the controlled direct effect

estimates varied between standard regression methods and causal inference meth-

ods while Cox PH model is not valid for the data. This suggests that inferring the

controlled direct effect requires valid causal inference methods such as our proposed
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method or the sequential G-estimation method especially when there is an unmea-

sured confounding of indirect effects.

In this thesis, we considered the Lin and Ying’s additive hazards model with con-

stant coefficient parameters for simplicity. It is also important to explore controlled

direct effect estimation with time-varying effects of factors on hazard function. There-

fore, the additive hazards model with time-varying coefficients will be considered in

a future work.
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