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ABSTRACT 

Maternal omega (n)-3 polyunsaturated fatty acid (PUFA) intake during gestation has been shown 

to promote neurodevelopment and reduce the risk of neuropsychiatric disorders. The goals of this 

thesis were to investigate the effects of maternal diets differing in n-3 PUFA during gestation on 

fetal brain lipidomic profiles and neuronal membrane dynamics of C57BL/6 mice. A maternal diet 

high in n-3 PUFA promoted the accretion of ethanolamine, serine, inositol, and glycerol-based 

glycerophospholipids (GP), while decreasing the levels of choline-based GP in the fetal brain as 

gestation progressed, compared with low n-3 PUFA diet. A diet high in n-3 PUFA increased the 

accretion of docosahexaenoic acid (DHA)-containing GP in the fetal brain as gestation progressed, 

relative to a diet low in n-3 PUFA. Maternal diets high in n-3 PUFA reduced fetal neuronal 

membrane thickness and increased area per lipid, suggesting increased membrane fluidity. A high 

n-3 PUFA diet reduced the cholesteryl ester (CE) flip-flop rate, while increasing the formation of 

ceramide, CE, and phosphatidylethanolamine-enriched lipid domains in the fetal neuronal 

membrane, which are associated with improved neurotransmission, memory, and cognition. In 

summary, the data reported in this thesis suggest that adequate amounts of maternal n-3 PUFA 

during gestation are necessary for proper fetal brain growth, development, and health. 
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1.1 Brain lipid composition  

The brain is a vital organ that coordinates nerve messages within the body. According to 

the Global Burden of Diseases Study 2019 (GBD, 2019), about 40% of the global population 

suffers from some form of brain disease, which is estimated to double by 2050. Approximately 

60% of total brain dry weight is composed of lipids (Chang et al., 2009). Lipids are a source of 

energy  (Nordström et al., 2013) and play crucial roles in brain development, metabolism, and 

function (Cao et al., 2009; Deoni et al., 2018; Hussain et al., 2019). Some brain lipids, such as 

arachidonic acid (20:4 n-6, ARA) and docosahexaenoic acid (22:6 n-3, DHA) are precursors of 

bioactive chemicals such as maresins and docosanoids that modulate cognition, memory, and other 

forms of neurobehavior (Hussain et al., 2019; West et al., 2020). Inadequate levels of major brain 

lipids have been shown to result in poor myelination, synaptogenesis (Teigler et al., 2009), 

neurogenesis, and neurotransmission (Mallick et al., 2021), all of which affect brain development 

and function. Hence, adequate accretion of lipids in the brain is crucial for proper brain health.  

There are different groups of lipids in the brain. These include glycerophospholipids (GP), 

sphingolipids, sterols and glycerolipids, and their fatty acyl species (O’Brien et al., 1964; O’Brien 

& Sampson, 1965; Custers et al., 2022; Hirabayashi, 2012). GP is a group of lipids with glycerol 

backbone with one or two fatty acyl groups typically attached at the sn-1 and sn-2 carbons of 

glycerol and phosphorylated variable head group at the sn-3 carbon of the glycerol. Different 

classes of GP have been identified in the brain. Based on linkages at the sn-1 position of the 

glycerol backbone, GP are classified into diacyl, plasmanyl (or 1-O-alkyl-linked), and plasmalogen 

(plasmenyl or 1-O-alk-1′-enyl-linked) GP (Maeba et al., 2018). GP are also classified based on the 

headgroup attached to the sn-3 position of the glycerol backbone. These include choline-based GP 

such as diacyl phosphatidylcholine (PC), plasmanyl choline (O-PC), choline plasmalogens (P-PC, 
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plasmenyl choline), and lysophosphatidylcholine (LPC). Another class of GP is ethanolamine-

based GP, such as diacyl phosphatidylethanolamine (PE), ethanolamine plasmalogens (P-PE, 

plasmenyl ethanolamine), plasmanyl ethanolamine (O-PE) and lysophosphatidylethanolamine 

(LPE). Other GP classes found in the brain include serine-based GP (diacyl phosphatidylserine, 

PS), inositol-based GP (diacyl phosphatidylinositol, PI), and glycerol-based GP (diacyl 

phosphatidylglycerol, PG). Among the GP classes in adult rat brains, ethanolamine-based GP was 

the most abundant (54%), followed by choline-based GP (30%), PS (8%), and  PI (5%), with 

phosphatidylglycerol (PG) making up about 0.02% of the total GP (Choi et al., 2018). 

Plasmalogens are major reservoirs of DHA in the brain and play key roles in brain and neuronal 

membrane function (Udagawa & Hino, 2022). In the adult human brain, P-PE consists of 18-20% 

of total GP (Dorninger et al., 2015), while it makes up 11% of total adult mouse brain lipids 

(Fitzner et al., 2020). DHA-containing plasmalogens are abundant in neuronal membranes and 

contribute to membrane flexibility (Huber et al., 2002), and promote optimal brain function 

(Almsherqi, 2021). 

Ethanolamine-based GP are critical in neurogenesis, myelination, neuroprotection and 

stabilization of membrane structure (Tasseva et al., 2012) whereas PS and PG were shown to 

protect neurons from stress-induced damages (Donoso et al., 2020). PG-enriched membrane 

domains inhibit α-synuclein fibrillation that promote amyloid-β peptide formation (Khammari et 

al., 2020). Unfibrilated α-synuclein regulates membrane fusion and neurotransmitter release (Sun 

et al., 2019); hence, inhibiting α-synuclein fibrillation will enhance neurotransmission. PS and 

DHA-containing PS promote neurogenesis and myelination (Kim et al., 2010), and neuronal cell 

survival (Kawakita et al., 2006). PS also increases the formation of neurotrophins, neuroprotectins, 

and synaptamide that boost neurogenesis, synaptogenesis, synaptic transmission and 
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neuroprotection ( Kim et al., 2019; Kim et al., 2022b). Choline-based GP promotes neuronal 

differentiation through protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)-

responsive element binding protein (CREB) signaling (Montaner et al., 2018; Magaquian et al., 

2021). LPC is a metabolite of PC, and the major form in which DHA is transported in the form of 

DHA-containing LPC [LPC(22:6); 22 representing the number of carbon atoms and 6 representing 

the number of double bonds] into the brain through the transporter, major facilitator superfamily 

domain 2a (Mfsd2a) (Nguyen et al., 2014; Bergman et al., 2023). LPC(22:6) was reported to 

inhibit neuroinflammation (Hung et al., 2011) and enhance memory and cognition (Sugasini et al., 

2017). Plasmalogens protect brain cells from neuroinflammation, prevent neurodegeneration, and 

boost cognitive function (Ifuku et al., 2012; Katafuchi et al., 2012; Hossain et al., 2023). 

Additionally, DHA-containing ether lipids (plasmalogens and plasmanyl GP) are crucial because 

they inhibit γ-secretase, the enzyme that synthesizes amyloid-β peptides which are implicated in 

neurodegenerative diseases (Onodera et al., 2015). Generally, GP is involved in neurogenesis, 

synaptogenesis, neurotransmission, neuroprotection, and anti-apoptosis (Hossain et al., 2013; Kim 

et al., 2014; Hossain et al., 2016, 2020;). However, little is known about changes in brain GP 

profile during normal gestation window, demanding studies to fill this gap in knowledge.  

Dysregulation in brain GP metabolism has been reported in neurological conditions such 

as rhizomelic chondrodysplasia punctata (Dorninger et al., 2015), Parkinson’s disease (PD) 

(Fabelo et al., 2011), Alzheimer’s disease (AD) (Goodenowe et al., 2007; Dorninger et al., 2017, 

2019; Su et al., 2019), and Zellweger spectrum (Da Silva et al., 2012). Depleted DHA-containing 

GP has been reported in different brain parts of mouse model of AD (App KI mice) at 18 months; 

specifically, DHA-containing PC [PC(16:0/22:6) and PC(18:0/22:6)] and PE [PE(18:0/22:6)] were 

lower in cortex, and PC(18:0/22:6) and DHA-containing PS [PS(18:0/22:6)] in the hippocampus, 
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compared with normal mice (Emre et al., 2021). On the other hand, ARA-containing PC 

[PC(18:1/20:4)] and PE [PE(18:1/20:4)] were lower in the cortex, and PE(18:1/20:4), 

PS(18:1/20:4) and PS(18:0/20:4) in the hippocampus of AD mice, compared with normal mice 

(Emre et al., 2021). Similarly, lower levels of DHA-containing PS were found in human AD brain, 

compared with healthy age-matched subjects (Cunnane et al., 2012). 

Sphingolipids (SP) are another group of lipids in the brain. They have a sphingoid base 

backbone with aliphatic amino alcohols. Based on the polar head group, SP are grouped into 

sphingomyelins (SM), ceramides (Cer), and glycosphingolipids (Lahiri & Futerman, 2007). 

Generally, SP improves synaptogenesis and synaptic transmission via glutamate-mediated 

information pathways (Hirabayashi, 2012; Riganti et al., 2016). Specifically, SM promotes 

cognition and the formation and stability of myelin (Deoni et al., 2018; Schneider et al., 2019). In  

general, aberrations in the metabolism of SP in the brain and plasma are implicated in several brain 

disorders, including AD, PD, Huntington’s disease, Krabbe's disease, and Gaucher's disease (Xing 

et al., 2016; Olsen & Færgeman, 2017; Czubowicz et al., 2019; Alaamery et al., 2021). For 

instance, higher plasma levels of C22:0 and C24:1 ceramides have been recorded in PD patients 

compared with healthy controls (Xing et al., 2016). Therefore, changes in brain Cer and SM 

species during the physiological gestation window and by maternal dietary intake need to be 

studied by lipidomics analysis. Understanding gestational brain SP profiles will open a window 

for studying how gestational brain SP profiles are associated with risks of brain diseases in 

postnatal life and how to modify the risk through dietary intervention.  

Sterols are another group of lipids found in the brain, and they exist primarily in the 

unesterified form (free cholesterol) with about 0.1-1% as cholesteryl esters (CE) in the normal 

adult brain and about 1-5% during the early stage of myelination (Petrov et al., 2016). Cholesterol 
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makes up about 10% of the dry weight of the adult human brain (Alling & Svennerholm, 1969), 

which is about  20% of the total cholesterol in an adult body (Jurevics & Morell, 1995). At high 

cholesterol levels, some of the free cholesterol is esterified into cholesteryl esters (CE) to prevent 

the effects of excess cholesterol, such as high membrane rigidity. However, the fetal brain sterol 

composition at different gestation stages and the impact of maternal diets differing in n-3 PUFA 

have not been reported. This is important as cholesterol is crucial in myelination and neuronal 

membrane structure and function (Saher et al., 2005). 

Brain lipids also contain glycerolipids (GL), including diacylglycerols (DG) and 

triacylglycerols (TG). They are found in smaller amounts in the brain, compared with GP. DG are 

signaling molecules in cannabinoid signaling-mediated synaptic growth, plasticity, and function, 

and are precursors of TGs and phospholipids (Tu-Sekine & Raben, 2011; Keimpema et al., 2013). 

On the other hand, TG are reservoirs of fatty acids that can be mobilized for energy and for the 

synthesis of bioactive lipid mediators (Cook, 1981). TG are components of membrane lipid rafts 

and are typically between membrane leaflets (Pakkanen et al., 2011; Caillon et al., 2020). There 

is a growing interest in circulating TG status and brain health in middle age. For example, 

accumulating evidence shows that hypertriglyceridemia (HTG), a condition characterized by high 

plasma TGs in middle age, is a contributory factor to the development of impaired cognitive and 

executive functions, attention disorders, and dementia in old age (Kalmijn et al., 2000; Reitz et al., 

2005; Burgess et al., 2006; Parthasarathy et al., 2017; Power et al., 2018; Lv et al., 2019).  

The injection of the TG triolein into mice brain impaired neurotransmission mediated by 

the N-methyl-D-aspartate (NMDA) component of hippocampal long-term potentiation (LTP) (Farr 

et al., 2008). This may explain the relationship between diet-induced HTG and memory 

impairment (Farr et al., 2008), as TG can cross the blood-brain barrier (BBB) (Banks et al., 2018) 
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and increase the permeability of BBB, leading to increased brain inflammation and stress (Lee et 

al., 2017). HTG has also been shown to increase the polymerization and build-up of amyloid-β 

peptides and neurofibrillary tangles in the brain, leading to impairment of synaptic transmission 

and other events associated with neurodegeneration (Burgess et al., 2006; Choi et al., 2016; Nägga 

et al., 2018). This makes HTG and excessive accretion of TG in the adult brain a risk factor for 

neurological disorders; however, the fetal brain TG profile and impact of maternal dietary n-3 

PUFA intake during gestation are not well-known and should be investigated through fetal brain 

lipidomics analysis.   

 In addition to major brain lipid groups and classes, brain fatty acids also play a key role in 

brain health. This is discussed in the next subsection. 

1.1.1 Fatty acyl composition of brain lipids 

The composition of fatty acids in the brain is critical in brain growth and function. Long-

chain PUFA, typically ARA and DHA, make up 25-30% of total fatty acids in the brain depending 

on the species, different brain sections, diet, age, and health status (Carrié et al., 2000; Carver et 

al., 2001; Xiao et al., 2005). In the human brain, DHA consists of 15% of total fatty acids and over 

90% of n-3 PUFA (Makrides et al., 1994), suggesting that DHA has a critical role in brain 

development and function. In C57BL/6 mice brains, ARA and DHA consist of 5-10% and 10-15%, 

respectively; the highest ARA level in the brain is in the hypothalamus (~10%), while the highest 

DHA level is in the prefrontal cortex (~15%) (Joffre et al., 2016).  

There is a rapid accretion of DHA in the brain during late gestation and early postnatal life 

when substantial development of brain tissues, including myelination (Kinney et al., 1988; 

Yarnykh et al., 2018) and synaptogenesis occur (Sarnat & Flores-Sarnat, 2015; Sarnat, 2023). 
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Moreover, DHA has been demonstrated to promote synaptogenesis by upregulating the expression 

of several synaptic proteins, leading to an increase in synaptic function, including synaptic 

plasticity and LTP, which are associated with learning and memory (Sakamoto et al., 2007; Cao et 

al., 2009; Kim et al., 2011; Lee et al., 2016; Kim et al., 2022). Furthermore, the accretion of DHA 

and DHA-containing lipids in the developing brain is critical because poor myelination due to low 

brain DHA during brain development has been linked to a higher risk of cognitive impairment 

(Deoni et al., 2018). Low brain DHA also alters synaptic function, influences memory and 

cognition, and negatively impacts behavior (Cohen et al., 2005; Salem et al., 2001). Higher 

prevalence of neurodevelopmental defects such as schizophrenia (SCZ), attention-

deficit/hyperactivity disorder, and autism spectrum disorder  (Rommel et al., 2017; Anderson et 

al., 2021) and psychiatric disorders such as psychosis and mood disorders  (Vanes et al., 2022) has 

been recorded in preterm-born individuals. Moreover, people with these conditions are reported to 

have low brain DHA compared with their healthy counterparts (McNamara, 2010), suggesting that 

low brain DHA status during early brain development may predispose to neurodevelopmental and 

psychiatric disorders across the lifespan. Additionally, preterm-born individuals with high DHA 

status exhibited higher brain development and better cognitive behavior (Tam et al., 2016), 

indicating that accretion of adequate DHA during early brain development will promote 

neurodevelopment and brain health. 

DHA is a precursor for the synthesis of neuromodulatory chemicals, including 

neurotransmitters, synaptamides, docosanoids, neuroprotectins, resolvins, and maresins 

(Dinicolantonio & O’Keefe, 2020; Kim et al., 2022). These chemicals are known to prevent the 

development and progression of several neurodegenerative events in both in vitro (Rey et al., 2016) 

and in vivo models  (De Smedt-Peyrusse et al., 2008; Orr et al., 2013). They enhance neuronal 
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expansion and maturation and stimulate neuritogenesis and growth of cell membranes through 

several pathways, including upregulating proteins implicated in membrane transport and neurite 

outgrowth, such as syntaxin 3 (Darios & Davletov, 2006). They also stimulate neurogenesis and 

protect brain cells against oxidation and inflammation (Palacios-Pelaez et al., 2010; Bazan et al., 

2011; Bazan, 2013, 2018). Dietary DHA supplementation (at 14% of total fat) for eight weeks was 

shown to promote brain DHA-containing GP of adult senescence-accelerated mouse-prone 8 mice, 

which alleviated memory and cognitive impairment associated with these mouse models between 

8-12 months of life (Petursdottir et al., 2008b). However, it is highly unlikely that this high amount 

of dietary DHA intake will be sustained in a population with low DHA intake in early life. Hence, 

the accretion of adequate DHA in the brain during early brain development is critical for brain 

health, as summarized in Figure 1.1. 

1.2 Changes in brain lipid composition with age 

Brain development starts with the formation of the neural tube at the third week of gestation 

in humans (Newville et al., 2018), which corresponds to gestation day (GD) 8.5-9.5 in mice (Chen 

et al., 2017), and continues until parturition and early adulthood. As the brain develops, its lipid 

content (including the lipid groups, classes and their associated fatty acyl species) changes in 

amount and composition (Hazel, 1990; Mota-Martorell et al., 2022). For example, total choline-

based GP in a healthy human brain decreases by half at eight years, compared with the amount at 

birth, while human total brain SM increased by 8-fold between this age window (Dawson, 2015).  
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Figure 1.1: Summary of benefits of docosahexaenoic acid (DHA) in the brain and neuronal 

membrane. Dietary n-3 PUFA increases brain DHA leading to an increase in total 

glycerophospholipids (GP) and DHA-containing GP (DHA-GP) which are crucial in increasing 

neuronal membrane fluidity. Increase in DHA-containing GP also increases neurogenesis and 

neuronal survival. DHA also increases levels of total and DHA-containing diacyl 

phosphatidylserine (PS) that activates protein kinase B (AKT) and protein kinase C (PKC) 

signaling that also promote neurogenesis and neuronal survival. DHA are precursors of 

synaptamide, neuroprotectins and resolvins which protect neurons from assaults and promote 

synaptogenesis and neurotransmission. Promotion of synaptic transmission increases synaptic 

plasticity, memory, and cognition. Block arrows pointing up show increase while line arrows show 

direction of events. The image was created using Biorender.com.  
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Regarding brain fatty acids and fatty acyl species of major lipid groups/classes in the brain, 

palmitic acid (PA, C16:0) was the most abundant fatty acyl content in rat brain PC and it increased 

dramatically from full-term pregnancy (GD21) to postnatal day (PND) 9, while DHA was the most 

abundant fatty acyl species in PE and it increased sharply from GD21 to PND3 and from PND6 to 

PND9 (Cunnane & Chen, 1992). 

In the normal aging human brain, n-6 PUFA-containing GP [PC(18:0/20:4), PE(18:0/22:4), 

PE(16:0/22:4), PS(18:0/22:4) and PS(18:0/20:4)] progressively decrease between 20 and 100 

years, whereas DHA-containing GP [PE(18:/22:6), PS(18:0/22:6) and LPE(22:6)] increased with 

age (Hancock et al., 2015). Contrarily, lower levels of PA, eicosapentaenoic acid (EPA, 20:5n-3), 

and DHA-containing PS (Cunnane et al., 2012) and choline plasmalogens [PC(P-18:0/22:6) and 

PC(P-18:0/20:4)] (Otoki et al., 2021) were reported in AD human brain compared with healthy 

counterparts. Similarly, a marked reduction in DHA-containing PS [PS(18:0/22:6) and ARA-

containing PI [PI(16:0/20:4)] in the gray matter of the prefrontal cortex has been reported in aged 

human schizophrenia patients relative to age-matched healthy control (Matsumoto et al., 2017). 

These observations suggest that DHA-containing GP may be essential in preventing the 

development of AD and SCZ. The findings reviewed above showed that changes in brain GP 

during postnatal life are well-known; however, little is known about changes in fetal brain GP 

profile during the gestation window, warranting studies to fill this knowledge gap through 

lipidomic analysis of fetal brain at different stages of gestation.  

For the brain sterols, there is a substantial increase in CE between gestation weeks 28 and 

38 in humans (Alling & Svennerholm, 1969), which correlates with the onset of myelination. Brain 

CE substantially decreases around the full term and during early postnatal, with almost all the 

cholesterol being in the unesterified form at 60 years (Adams & Davison, 1959; Alling & 
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Svennerholm, 1969).  In general, there is a progressive switching of brain total cholesterol from 

the esterified form during prenatal life and early infancy to all being in the non-esterified form 

during adulthood (Quan et al., 2003; Dietschy & Turley, 2004). This suggests that both free and 

esterified cholesterol are important in the determination of the sterol profile of the fetal brain. 

Brain SP metabolism also changes with age and has been associated with the risk of 

neurodegenerative disorders (Wang & Bieberich, 2018). In the human hippocampus, the total Cer 

and SM levels were shown to increase with age (Couttas et al., 2018). This could be attributed to 

the previously reported increase in activities of Cer and SM synthases with age in rat brain (Sacket 

et al., 2009). Looking at the specific Cer and SM species, erucic acid (C22:1) and nervonic acid 

(C24:1)-containing Cer and erucic acid (C22:1)-containing SM were reported to increase, whereas 

sphingosine 1-phosphate (S1P), a neuroprotective signaling SP decreased with age in hippocampus 

(Couttas et al., 2018). In C57BL/6 mice, an age-dependent increase in nervonic acid (C24:1)-

containing ceramide [Cer(d18:1/24:1)] and hexosylceramide [HexCer(d18:1/24:1)] in 

hippocampus was reported at 12 and 21 months relative to three months, whereas stearic acid 

(C18:0)-containing ceramide [Cer(d18:1/18:0)] decreased with age (Vozella et al., 2017). These 

changes were explained by the upregulated gene expression of ceramide synthase 2 (CerS2), which 

is responsible for the synthase of very long-chain ceramides like C24:0 and C24:1, whereas CerS1, 

which catalyzes the synthesis of long-chain ceramides like C18:0-containing ceramides decreased 

during between 12 and 21 months (Vozella et al., 2017). Interestingly, the expression of genes for 

the enzymes that catalyze the rate-limiting step in the synthesis of C24:1, stearoyl-CoA 

desaturases, were markedly increased at 21 months relative to three and 12 months in mice. 

Sphingomyelin [SM(d42:2)], which was speculated to contain C24:1 fatty acid molecular species, 

was shown to increase in mice hippocampi between three and 21 months (Vozella et al., 2017). A 
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similar result was previously reported in rat brain: SM(d24:1) significantly increased between two 

and half and 21.5 months, whereas SM(d18:0) decreased (Giusto et al., 1992).  

Changes in brain lipid composition during the postnatal period (infancy to late adulthood) 

have been reported in both healthy and diseased brains (Nussbaum et al., 1971; Clandinin et al., 

1980; Cunnane & Chen, 1992; J. Choi et al., 2018). However, little is known about changes to the 

fetal brain lipidome (all lipids in the brain), especially the fatty acid components of major brain 

lipids at different stages of gestation. Altered brain lipids during gestation have been shown to 

influence brain development and function that extend to adulthood (Suzuki et al., 1998). Hence, 

understanding the entire fetal brain lipidome at different stages of normal gestation is crucial.  

Our laboratory previously showed that the fetal brain fatty acid profile changes during 

gestation; as gestation progress, the total monounsaturated fatty acids (MUFA) and palmitoleic 

acid (C16:1) and oleic acid (C18:1, OA), and n-6 PUFA and linoleic acid (C18:2-n6, LA) decrease, 

whereas total n-3 PUFA and DHA  in the fetal brain increase during gestation (Akerele & Cheema, 

2020). Our laboratory also showed that MUFA, OA and eicosenoic acid (C20:1) composition of 

offspring brain increases from weaning to 16 weeks postweaning (Balogun & Cheema, 2014), 

suggesting a switch from decrease during progress of gestation to increase during early postnatal 

until adulthood.  However, the lipid classes and specific fatty acyl species in the fetal and offspring 

brains in the above reports were not studied.  

As mentioned previously, PUFA such as DHA and ARA make up major components of 

brain total fatty acid and they accrue in developing brain – typically during the third  trimester and 

early postnatal life (Wainwright, 2002). DHA and DHA-containing GP boost neurogenesis, 

myelination, and synaptogenesis, and protect brain cells from damages. As shown in several 
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models of membranes such as rat bile canalicular plasma membrane (Hashimoto et al., 2001), 

membrane extracted from Y-79 retinoblastoma cells (Treen et al., 1992), artificial membrane 

formed with cholesterol-to-phospholipid (1.5:1 ratio) (Mason et al., 2016), and membrane 

prepared using small unilamellar vesicles (Jacobs et al., 2021), DHA also increases fluidity and 

permeability of membrane. ARA also contributes to membrane fluidity and permeability to 

enhance membrane transport function (Beck et al., 1998). At high concentrations, ARA induces 

inflammation that can cause damage to brain cells, leading to alteration in pathways involved in 

cognition and memory, including glutamate receptor 5, Aβ oligomers affect the activity and 

recycling of the NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

signaling (Bagga et al., 2003; Thomas et al., 2017). 

Metabolites of ARA, endocannabinoids modulate synaptic communication, learning and 

memory (Atwood & Lovinger, 2017). Hence, adequate amount of these lipids in the brain may be 

beneficial against neurodevelopmental and neurodegenerative disorders. These studies highlight 

the importance of analysis of normal brain lipidome at all stages of life, from prenatal through the 

lifespan. The results may provide crucial information with diagnostic implications on the etiology 

of some brain diseases.  

1.3 Importance of dietary essential fatty acids in brain development and function 

Diet is another important modifiable factor that affects brain lipid composition. Maternal 

gestational diets have been shown to influence the fetal brain lipid composition. Maternal n-3 

PUFA intake during gestation is crucial because dietary n-3 PUFA have several health benefits, 

including improving cardiometabolic health (Balogun et al., 2013, 2014; Balogun & Cheema, 

2016), neurotrophin signaling (Balogun & Cheema, 2014; Feltham et al., 2019; Akerele & 
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Cheema, 2020) and reducing cognitive impairment associated with neurodegenerative diseases 

(Ruxton et al., 2005; Katakura et al., 2009; Gil et al., 2012; Gil & Gil, 2015). It has been shown 

previously in our laboratory that maternal diets enriched in fish oil-based n-3 PUFA during 

gestation improved maternal lipogenesis to meet the high demand of fatty acids by developing 

mouse fetal brain (Akerele & Cheema, 2017), altered fetal brain lipid composition, and regulated 

neurotrophin signaling (Akerele & Cheema, 2020). Maternal cord DHA level, an indicator of 

maternal n-3 PUFA status, has been reported to be directly associated with fetal DHA status 

(Montgomery et al., 2003).  

Human offspring from mothers with high cord DHA levels were shown to have higher 

DHA levels and better neurological functionality at five and half years (Escolano-Margarit et al., 

2011). Breastmilk lipid composition is another indicator of n-3 PUFA status; our laboratory has 

previously shown that breastmilk of mice on a high n-3 PUFA diet (10% of total fatty acid 

composition) had higher n-3 PUFA content, including DHA, EPA, and docosapentaenoic acid 

(C22:5 n-3, DPA), compared with mice on low n-3 PUFA diet (2% of total fatty acid composition) 

(Balogun et al., 2014). Interestingly, offspring from dams with high breastmilk n-3 PUFA had 

higher brain BDNF and CREB gene expression (Balogun et al., 2014). Human offspring of mothers 

with high breastmilk n-3 PUFA were shown to have better cognitive performance, compared with 

formula-fed counterparts (with low dietary n-3 PUFA) (Makrides et al., 1994; Gibson et al., 1996; 

Smith & Rouse, 2017).  

Inadequate supply of n-3 PUFA (0.3% α-linolenic acid, C18:3-n3, ALA) during prenatal 

life of a mouse was shown to result in progressive decline of its brain DHA during early postnatal 

life, typically within the first 30 days of life. This depletion of brain DHA resulted in 

downregulated expression of BDNF (Madore et al., 2014). Similarly, insufficient supply of n-3 
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PUFA (0.3% ALA) was reported to deplete DHA-containing PE and PS in brain and retina of 

rhesus monkeys which were not completely restored by supplying of n-3 PUFA-enriched diet 

(7.7% ALA) (Anderson et al., 2005). Human offspring whose mothers received fish oil or n-3 

PUFA supplementation during pregnancy had higher cognitive performance, visual acuity, and 

brain growth (Campoy et al., 2012; Larqué et al., 2006, 2012). Remarkably, the impact of n-3 

PUFA on fetal brain health is higher when n-3 PUFA is initiated by pregnancy week 20 (Tahaei et 

al., 2022).  

DHA accretion during early life is crucial as studies have shown that poor DHA accretion 

during neurodevelopmental stages increases the risk of neurological disorders, including AD 

(Lauritzen et al., 2016). Once these conditions have set in, the impact of DHA supplementation 

and accretion is limited. In individuals with poor brain DHA accretion during early life requires a 

high dose of DHA (1000 mg/day or more) supplementation to prevent/alleviate the impact of 

defective neurodevelopment (Stonehouse et al., 2013).  

Our laboratory has shown previously that maternal diets high in fish oil-based n-3 PUFA 

improve the accretion of total n-3 PUFA, especially DHA with concomitant reduction in total n-6 

PUFA and LA in mouse fetal brain during gestation (Akerele & Cheema, 2020). However, the 

entire fetal brain lipid profile was not studied to understand the lipid classes which the DHA are 

associated with and the specific fatty acyl species that are impacted by diets during gestation. Our 

laboratory also showed that the accretion of DHA in fetal brain of fetuses prenatally fed high n-3 

PUFA diet correlated with increased expression of BDNF and its receptors (Akerele & Cheema, 

2020). BDNF is crucial in neurogenesis, neuronal plasticity, memory and cognition (Miranda et 

al., 2019), and in protecting brain cells against assaults and degeneration (Nagahara et al., 2009). 

This implies that the n-3 PUFA improves neurogenesis, synaptogenesis and synaptic function 
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through upregulation of BDNF signaling (Cao et al., 2009). Other mechanisms through which n-3 

PUFA (typically DHA) promote brain growth, in addition to increasing BDNF signaling, includes 

upregulation of transcription factors involved in neuronal differentiation and maturation such as 

retinoid X receptors, neurogenin, neuronal differentiation 1, and Achaete-scute homolog 1 

(Calderon & Kim, 2004; Beltz et al., 2007; Katakura et al., 2009; Cao et al., 2009a; Crupi et al., 

2013; Dyall, 2011, 2014). Hence, accretion of DHA in the developing brain (especially during 

prenatal life) is crucial because some neurodevelopmental defects associated with inadequate 

supply of DHA in the brain during early development may not be fully-remedied by postnatal 

dietary n-3 PUFA intake (McNamara & Carlson, 2006). Therefore, consumption of diets enriched 

in n-3 PUFA during pregnancy may promote brain growth and prevent neurodegenerative diseases.  

The essential n-3 PUFA, ALA and essential n-6 PUFA, LA cannot be synthesized in 

humans and hence must be derived from diet. The major sources of ALA are flaxseed, soybean, 

rapeseed and some green vegetables (Burdge & Calder, 2006), while LA is mainly found in 

safflower oil, sunflower oil, meats, and eggs (Whelan & Fritsche, 2013). When consumed, ALA 

and LA can be converted to their long-chain PUFA (LC-PUFA) counterparts such as EPA, DPA 

and DHA from ALA, and ARA and adrenic acid (22:4 n-6, ADA) from LA in the body (Figure 

1.2). 
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Figure 1.2: Bioconversion of essential fatty acids to their long-chain and very long-chain 

polyunsaturated fatty acid derivatives. Modified from (Akerele & Cheema, 2016). Journal of 

Nutrition & Intermediary Metabolism, 5; 23–33. C18:2n-6 = linoleic acid (LA), C18:3n-6 = γ-

linolenic acid (GLA), C20:3n-6 = dihomo-γ-linolenic acid (DGLA), C20:4n-6 = arachidonic acid 

(ARA), C22:4n-6 = adrenic acid (ADA), C22:5n-6 = docosapentaenoic acid (DPA), C18:3 n-3 = 

α-linolenic acid (ALA),  C18:4n-3 = stearidonic acid (SA), C20:4n-3 = eicosatetraenoic acid 

(ETA), C20:5n-3 = eicosapentaenoic acid (EPA), C22:5n-3 = docosapentaenoic acid (DPA), 

C22:6n-3 = docosahexaenoic acid (DHA). 
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Although the endogenous conversion of essential fatty acids is possible, as shown in Figure 

1.2, the efficiency is low (Swanson et al., 2012). The conversion also depends on age and sex and 

is influenced by other constituents of diets. For example, using stable isotope-labeled ALA, a study 

showed that the conversion rate of ALA to EPA, DPA, and DHA after 48 hours in adult men is 

2.8%, 1.2%, and 0.04%, respectively (Burdge et al., 2003), whereas the conversion rate of ALA to 

EPA, DPA, and DHA in adult women of reproductive age were 21%, 6%, and 9%, respectively 

(Burdge & Wootton, 2002). During pregnancy, the conversion of ALA to DHA has been speculated 

to double due to metabolic adaptation associated with increased estrogen (Williams & Burdge, 

2006), hence, confirming the importance of DHA during gestation. Our laboratory reported non-

detectable levels of ALA in erythrocytes of dams on a low n-3 PUFA diet (2.72% ALA) using gas 

chromatography technique (Akerele & Cheema, 2017), suggesting a total conversion of all the 

ALA to longer-chain n-3 PUFA.  However, the conversion rate of ALA to DHA in human does not 

meet the DHA requirement during fetal brain development, highlighting the importance of 

consuming preformed EPA and DHA in the form of fatty fish, fish oil, or n-3 PUFA supplement 

(Jia et al., 2015; Best et al., 2022). 

Brain PUFA composition can be improved through diet; our laboratory previously showed 

that the consumption of n-3 PUFA-enriched diet containing preformed DHA at both prenatal and 

postnatal stages promoted accretion of brain DHA and total n-3 PUFA levels, which upregulated 

BDNF signaling to promote brain health (Balogun & Cheema, 2014; Feltham et al., 2019; Akerele 

& Cheema, 2020). In these studies, the specific lipid classes with which the DHA in the fetal brain 

were associated were not studied. Hence, it is crucial to understand the specific lipids and the 

associated fatty acyl species influenced by diet which could provide more information with 

diagnostic implications on brain health. 
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Maternal diets containing a n-6/n-3 PUFA ratio of 4:1 (including preformed DHA) during 

gestation and lactation were shown to improve the accretion of total n-3 PUFA and DHA in all 

parts of the mouse offspring’s brain, including the cortex, brainstem, cerebellum and subcortical 

regions, at PND30 and PND60, compared to diet containing a n-6/n-3 PUFA ratio of 303:1 which 

showed very poor accretion of total n-3 PUFA and DHA in the mouse offspring’s brain (Janssen 

et al., 2015). The accretion of DHA in fetal brain of the offspring is associated with improved 

behavior, such as motor and cognitive functions and memory (Janssen et al., 2015). Adequate 

accretion of DHA in the brain due to n-3 PUFA-enriched diet during gestation and lactation is 

sustained through adulthood to improve brain development and function. Our laboratory 

previously showed that maternal diets containing a n-6/n-3 PUFA ratio of 5:1 (including preformed 

DHA) for two weeks before and during gestation promoted accretion of total n-3 PUFA and DHA 

(Akerele & Cheema, 2020). The high n-3 PUFA diet further upregulated neurotrophin signaling 

with depletion in total n-6 PUFA in the fetal brain, compared to maternal diets containing ratio of 

40:1 which showed lower effect on DHA accretion and neurotrophin signaling and higher fetal 

brain total n-6 PUFA level (Akerele & Cheema, 2020). Maternal diets containing a n-6/n-3 PUFA 

ratio of 6:1 (including preformed DHA) during gestation until PND7 improved neurogenesis and 

brain growth whereas diet containing n-6/n-3 PUFA ratio of 16:1 elicited neuronal apoptosis (Fan 

et al., 2015). Reducing the n-6/n-3 ratio in maternal diets during gestation and lactation was 

reported to improve human offspring brain development and neurobehavior in infancy (Bernard et 

al., 2013; Kim et al., 2017). Furthermore, recent meta-analyses of randomized controlled trials 

concluded that n-3 PUFA supplementation (1000 mg DHA + EPA combined) twice weekly during 

gestation is beneficial by reducing the risks of preeclampsia, preterm birth and prenatal fetal death, 

and increasing fetal birth weight (Abdelrahman et al., 2023). These findings agree with the 
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hypothesis from our laboratory that a balance between n-3 PUFA and n-6 PUFA intake during 

pregnancy and lactation is critical for fetal/offspring health (Akerele & Cheema, 2016). 

1.4 Brain lipids and neuronal membranes 

Lipids are major components of cellular membranes, including neuronal membranes. 

Lipids play a barrier function in the membrane by forming a bilayer in aqueous environment to 

separate the internal and external environment of cells. Membrane GP are crucial in cellular 

trafficking, signaling, proliferation, differentiation, migration and death, and regulation of 

membrane protein (Morita & Ikeda, 2022). For example, PS and PG play roles in activating protein 

kinase C (PKC) (Murray et al., 1998; Bittova et al., 2001). PKC is a membrane protein involved 

in several cellular processes such as induction of LTP through the AMPA receptor (Son et al., 1996; 

Sweatt et al., 1998).  

Membrane SP, typically Cer is involved in formation of microdomains that are involved in 

some cellular functions. For example, Cer-enriched membrane domains promote the clustering of 

receptors involved in cellular signaling and amplify signal transduction (Zhang et al., 2009), 

including activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling 

(Ladjohounlou et al., 2020). PI3K/AKT signaling pathways promote neurogenesis and neuronal 

survival (Chen et al., 2017), and LTP, synaptic plasticity and cognition (Horwood et al., 2006; Sui 

et al., 2008; Bruel-Jungerman et al., 2009). 

Cholesterol is a major component of plasma membrane and regulates the movement of 

lipid tails to increase orderliness and rigidification of membranes whereas membrane fluidity is 

reduced  (Kutchai et al., 1983; Arora et al., 2004). Therefore, membranes with higher cholesterol 

content are more rigid and ordered than membranes with low cholesterol content. Cholesterol also 
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modulates the activities of membrane proteins, including ion channels and receptors associated 

with signaling transduction and induces domain formation (Wang et al., 2005; Sheng et al., 2012). 

At low concentration, cholesterol participates in transbilayer dimerization through van der Waals 

interactions between the bulky ring to form microdomains (Mukherjee & Chattopadhyay, 1996; 

Rukmini et al., 2001). The hydroxyl functional group of cholesterol interacts with GP through the 

carbonyl functional group and the bulky ring with hydrocarbon chain of the fatty acyl molecular 

species of GP (Xu & London, 2000). Cholesterol also interacts with SP through the N-linked acyl 

chain to form lipid domains (Pandit et al., 2004; Ramstedt & Slotte, 2006; Bakht et al., 2007). The 

interaction between cholesterol and SP-like SM is more pronounced than GP (Leftin et al., 2014). 

As cholesterol interacts more with saturated fatty acid-containing GP compared with PUFA-rich 

GP (Engberg et al., 2016), membranes with higher PUFA-containing GP are less rigid and have 

higher fluidity (characterized by higher area per lipid, APL). APL is a crucial membrane dynamic 

parameter determined by calculating local Voronoi cells and estimating APL from the area of each 

cell (Buchoux, 2017) . APL is an index of membrane fluidity; hence, the higher the APL, the higher 

the membrane fluidity. Membranes with high PUFA content, especially DHA are reported to have 

higher APL (Ollila et al., 2007).  

Lipid flip-flop between membrane leaflets is an important membrane dynamic parameter 

that represents the movement of lipids from one membrane leaflet to another (Ueda et al., 2014). 

Membrane lipids such as cholesterol, DG and Cer have been shown to flip between neuronal 

membrane bilayers with cholesterol having a higher flip-flop rate, followed by DG and Cer having 

very small flip-flop rates (Ingólfsson et al., 2017). Oxidation of cholesterol has been shown to 

decrease the cholesterol flip-flop rate between membrane bilayer by over 20-fold (Wilson, et al., 

2021); however, CE flip-flop rates in neuronal membrane have not been studied previously. As 
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CE is found in the brain and membrane, it would be interesting to evaluate if CE flip between 

membrane bilayer like free cholesterol and to compare the flip-flop rate with free cholesterol. 

Membrane thickness, the distance between the lipid head groups of membrane bilayers is 

another membrane parameter. Membrane thickness modulates the organization and interaction of 

membrane proteins and transmembrane permeability to small molecules (Paula et al., 1996; 

Mathai et al., 2008; Shinoda, 2016); thicker membranes have lower permeability to molecules 

compared with thinner membranes. As already described, membrane physiochemical properties 

are influenced by its lipid composition; hence, change in membrane lipid composition alters its 

physicochemical properties and behavior. For example, membranes containing a higher degree of 

unsaturated lipids, especially PUFA-enriched GP have been reported to have higher APL, 

compared with membranes with lower unsaturated lipid contents (Wilson et al., 2020). Oxidation 

of phospholipids and the presence of cholesterol was shown to increase membrane bilayer 

thickness and lipid orderliness but decrease APL (Schumann-gillett & Mara, 2019). In addition, 

oxidation of cholesterol (to 27-OH-cholesterol) in membranes was shown computationally to 

disturb the integrity of the membrane leading to increased permeability of water and hydrophilic 

small molecules, whereas oxidation of cholesterol to 7β-OH-cholesterol did not affect the 

permeability (Kulig et al., 2020).  

DHA is a major component of neuronal membrane phospholipids, especially 

ethanolamine-based GP. It promotes membrane fluidity and membrane function (Mason et al., 

2016). In neurodevelopmental disorders such as schizophrenia, lower membrane fluidity and 

higher membrane thickness have been reported  (Horrobin et al., 1994; Horrobin, 1998; Mason et 

al., 2016). This altered membrane dynamic corresponds to low brain DHA levels reported in 

schizophrenia (McNamara et al., 2007; McEvoy et al., 2013; Li et al., 2022). Our laboratory 
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showed that high n-3 PUFA diet increased the accretion of DHA in fetal brain during gestation 

(Akerele & Cheema, 2020); however, the lipid classes and fatty acyl species that are crucial in 

brain growth and function, and neuronal membrane structure and function, were not studied. 

Proper understanding of the fetal brain lipidomic profile during gestation and impact of maternal 

dietary n-3 PUFA intake will clarify if accretion of specific lipids during gestation will impact fetal 

neuronal membrane dynamics.   

The effects of changes in lipid composition and other factors on membrane structure and 

functions are assessed computationally by determining the dynamic parameters. Hence, lipidomics 

data can be used to construct membranes which are computationally studied to predict the behavior 

of the membrane. Adult brain lipidomic data have been applied for studying idealized complex 

neuronal membrane computationally; hence, fetal brain lipidomics data can be utilized to study 

how maternal dietary status influences fetal brain lipidomic profile, and how the impact on fetal 

brain lipidomic profiles affect neuronal membrane structure and behavior during gestation. 

1.4.1 Molecular dynamic simulation for studying membrane properties 

The behavior of membrane composed of different lipid species, and how changes to the 

variety and concentration of lipid species influence the physicochemical properties of membranes, 

has been computationally studied. For example, computational studies have used membrane lipids 

[such as palmitoyl-oleoylphosphatidylcholine (POPC), dioleoylphosphatidylcholine (DOPC), or 

mix of these and N-palmitoyl-sphingomyelin (PSM), and cholesterol] to generate artificial 

membranes for studying the impact of ratio of POPC, DOPC, SM and cholesterol and head group 

size on membrane properties such as permeability and thickness (Björkbom et al., 2010; Orsi & 

Essex, 2012; Reddy et al., 2012; Frallicciardi et al., 2022). Although these strategies have 
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successfully provided insights on the impact of internal (such as composition and oxidative status 

of the lipids) and external factors (such as temperature) on membrane behavior, the influence of 

interaction of diverse lipids classes as seen in a typical plasma membrane may not be entirely 

accounted for using simple membrane models.  

Recent computational studies are adapting lipidomic profiles of whole cells and tissues to 

idealize the complexity of lipids in plasma membranes. This involves using lipidomics data to  

computationally study membrane dynamics at molecular level by molecular dynamics (MD) 

simulation (Ingólfsson et al., 2017; Wilson et al., 2020; Wilson et al., 2021). Ingólfsson et al. 

(2017) showed that cholesterol concentration and degree of tail saturation also have huge impact 

on model neuronal membrane structure and behavior, including APL and membrane thickness. As 

membrane lipid compositions are derived from whole cells or tissues, it is not certain if the types 

and molar ratios of the lipids used in constructing membrane for dynamic simulation are exactly 

the same as those found in the plasma membranes. However, utilizing whole tissue lipidomics data 

for MD simulation of membrane lipids helps to predict how changes in class, oxidative state and 

concentration of membrane lipids influence membrane properties and behaviors. As mentioned 

above, Ingólfsson et al. (2017) utilized adult brain lipidomics data to computationally construct a 

model of human neuronal plasma membrane for MD simulation; this study provided features of 

idealized complex human neuronal plasma membrane and compared them with the averaged 

plasma membrane. Another computational study, utilized a similar complex neuronal membrane 

model to show that site of cholesterol oxidation influences domain formation of adult neuronal 

plasma membrane (Wilson et al., 2021). However, fetal neuronal membrane has not been 

computationally studied. Understanding the fetal neuronal membrane dynamics will predict if fetal 
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neuronal membranes differ from adult neuronal membranes, and will open the window for further 

understanding of the link between fetal neuronal membrane and brain diseases.  

Overall, brain lipidomic profiles during postnatal life have been well studied but little is 

known about changes in brain lipidomic profiles during the gestation. Research from our 

laboratory previously demonstrated that maternal diets high in n-3 PUFA promoted the accretion 

of DHA and total n-3 PUFA in fetal brain during gestation (Akerele & Cheema, 2020), but the 

effect of maternal dietary n-3 PUFA intake on the entire fetal brain lipidome during gestation has 

not been studied. As inadequate levels of brain lipids influence brain development and function, 

understanding changes in fetal brain lipidomic profiles and the effect of maternal dietary n-3 PUFA 

intake during gestation may promote further research to elucidate the role of each lipid species in 

the fetal brain on brain structure and function during postnatal life. The lipid composition of 

membranes influences membrane properties and function. Lipidomic data are being utilized to 

construct membranes for molecular dynamic simulations to study how the composition of 

membranes, oxidative state and site of oxidation of lipid components of the membrane influence 

membrane behaviour (Ingólfsson et al., 2017; Wilson et al., 2021). While such work was 

computationally studied with adult neuronal membranes (Ingólfsson et al., 2017), no one has 

computationally studied the fetal neuronal membrane. It would be interesting to computationally 

study fetal neuronal membranes by predicting how the impact of maternal dietary n-3 PUFA intake 

during gestation on the fetal brain lipidome will influence fetal neuronal membrane dynamics.  

 1.5 Mouse as an animal model 

Despite differences in size and complexity between human and mouse brains (Wong et al., 

2023), there are substantial genetic and physio-anatomical similarities (Nakajima et al., 2021; 
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Beauchamp et al., 2022) and susceptibilities to metabolic and brain disorders (Paigen et al., 1990; 

Yang et al., 1997; Harper, 2010). C57BL/6 mice were used in the current research because it is a 

strain widely adopted for investigating the influence of diets on neurodevelopment and brain 

function across lifespan (Janssen et al., 2015; Fernandes et al., 2021; Wang et al., 2021; Bordeleau 

et al., 2022; Westmark et al., 2022; Wu et al., 2023). It is also an ideal model for studying changes 

in brain development and function with age (Shoji et al., 2016), and it is the strain from which 

many models of metabolic and brain disorders were generated (Paigen et al., 1990; The Dutch-

Belgian Fragile X Consorthium et al., 1994; Fontaine & Davis, 2016). Hence, the adoption of 

C57BL/6 mice for this study opens the window for extending our investigation on transgenic mice 

models of neurodevelopmental defects. 

1.6 Rationale for the study 

The impact of dietary n-3 PUFA intake during postnatal life on brain lipid metabolism has 

been well investigated (Petursdottir et al., 2008; Balogun & Cheema, 2014); however, little is 

known about the impact of n-3 PUFA intake during gestation on fetal brain lipidomic profiles. Our 

laboratory has previously analyzed the effect of maternal diets differing in n-3 PUFA content on 

the fetal brain fatty acid profiles to show that maternal diets high in n-3 PUFA increased the 

accretion of total n-3 PUFA and DHA in the fetal brain while LA and total n-6 PUFA decreased 

in high n-3 PUFA group compared with low n-3 PUFA intake (Akerele & Cheema, 2020). In this 

previous study, the effect of maternal dietary n-3 PUFA intake on the entire fetal lipidomic profile 

was not studied. As lipid makes up over half of the brain and several neurodevelopmental defects 

manifest in the postnatal stage when irreparable alterations have occurred in the brain, 

understanding the brain lipidomic profile during gestation, a time of rapid brain development, is 

crucial. The physicochemical properties of a membrane are dependent on its lipid composition as 
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lipids are major components of the membrane. Hence, it is worthwhile to predict how changes in 

the fetal lipidomic profile resulting from different maternal dietary n-3 PUFA intake during 

gestation impact fetal neuronal membrane dynamics.  

1.6.1 Overall hypothesis 

The overall hypothesis of this thesis is that maternal diets high in n-3 PUFA during 

gestation will promote the accretion of specific lipids and fatty acids in the fetal brain and influence 

fetal neuronal membrane dynamics.  

1.6.2 Specific aims 

Aim 1: To investigate the effects of a maternal diet high (9%, n-6/n-3 PUFA ratio 5:1) or low (1%, 

n-6/n-3 PUFA ratio 40:1) in n-3 PUFA during gestation on the accretion of specific lipids and fatty 

acyl species in the fetal brain at gestation days 12.5 and 18.5. 

Hypothesis: It was hypothesized that maternal diets high in n-3 PUFA during gestation would 

promote the accretion of specific lipids and fatty acid species crucial for brain development and 

function. 

Aim 2: To predict whether maternal diets high (9%, n-6/n-3 PUFA ratio 5:1) or low (1%, n-6/n-3 

PUFA ratio 40:1) in n-3 PUFA during gestation impact fetal neuronal membrane dynamics. 

Hypothesis: It is hypothesized that maternal diets containing high n-3 PUFA during gestation will 

increase area per lipid and reduce membrane thickness in fetal neuronal membrane dynamics. 
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Diet preparation, animal feeding, and fetal brain tissue collection were done by Dr. Cheema 

and her former PhD student, Anthony Akerele. 

2.1 Experimental diet 

The experimental diets used in this study were high-fat diets prepared by adding known 

amounts of Menhaden fish oil (Sigma-Aldrich, St. Louis, MO, USA; Cat. No. 8002-50-4 and 

product number - F8020); safflower oil, extra-virgin olive oil, and lard that were procured from 

domestic grocery stores with same lot numbers. These oils providing n-3 PUFA, n-6 PUFA, 

MUFA, and SFA, were added to a custom ordered fat-free semi-synthetic diet (MP Biomedicals, 

Santa Ana, CA, USA; Cat No. 999999 and lot number - X2448) to control for fat content of final 

diets at 20% w/w. The composition of the semi-synthetic base diet as per the provider is presented 

in Appendix 1. To make one kilogram of the experimental diets, each of the oils were mixed in 

specific ratios to make a 200 g oil mixture (20% total fat), as shown in Appendix 2. The resulting 

total diets contained either 9% n-3 PUFA with n-6/n-3 PUFA ratio of 5:1 (high n-3 PUFA diet) or 

1% n-3 PUFA with n-6/n-3 PUFA ratio of 40:1 (low n-3 PUFA diet). In the two diets, the total 

amounts of saturated, monosaturated, and polyunsaturated fatty acids were kept constant while the 

amount of total n-6 and n-3 PUFA varied. The 5:1 n-6/n-3 PUFA ratio diet has been shown in 

previous studies in our laboratory to promote physiological health during pregnancy and fetal 

development (Akerele et al., 2021; Akerele & Cheema, 2018, 2020) and is the recommended diet 

with adequate n-3 PUFA, while the 40:1 n-6/n-3 PUFA ratio diet is very low in n-3 PUFA and is 

characteristic of vegetarian diets in some urban communities in India (Mani & Kurpad, 2016; 

Simopoulos, 2016). The 20% fat diet represents approximately 40% of total calories from fat, 

which is higher than the quantity (20-35% of total calories) recommended by the Food and 
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Agriculture Organization (2010). The diets were stored in black bags to protect from light at -20°C 

and under nitrogen to prevent oxidation of their fatty acids. 

2.2 Experimental design 

Prior to animal procurement and handling, the experimental protocols received the 

approval of the Memorial University's Animal Care Committee (approval number - 22-02-SC). All 

animal experiments were executed following the Canadian Council on Animal Care guidelines for 

the use of animals for research (CCAC, 2022). Female C57BL/6 mice (seven weeks old) were 

purchased from Charles Rivers Laboratories (MA, USA) and were separately caged to habituate 

with the laboratory environment (temperature of 21 ± 1°C, humidity of 35 ± 5%, and 12 h light/12 

h dark period cycle) for seven days. The mice had unrestricted access to standard rodent chow 

purchased from Prolab RMH 3000 (MI nutrition, USA) and drinking water. After the seven-day 

period, the females were divided into two groups and were fed either low or high n-3 PUFA diets 

from two weeks prior to mating and throughout gestation (Figure 2.1). Gestation was established 

when a vaginal plug was observed in the morning of the day after an overnight mating, which 

represents gestation day (GD) 0.5. On either GD12.5 or GD18.5, mice from each diet group were 

euthanized and fetal brains were collected for fetal brain total lipid extraction. Fetal brains from 

the same dam were pooled together to represent n = 1. 

2.3 Extraction of fetal brain total lipids and lipidomic analysis 

The fetal brain total lipids were extracted and lipidomic analysis was performed at the 

Lipidomics Facilities by Dr. Raymond Thomas, Grenfell Campus, Memorial University of 

Newfoundland.  
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Figure 2.1: Experimental design of the study. Female C57BL/6 mice used in this study were fed 

either of the two experimental diets differing only in the amount of n-3 PUFA described as “High” 

or ‘‘Low” n-3 PUFA diets for two weeks prior to breeding. The High and Low n-3 PUFA describes 

n-6/n-3 PUFA of 5:1 and n-6/n-3 PUFA of 40:1, respectively. After successful mating (determined 

by plug formation after male and female pairing and confirmed by a progressive increase in body 

weight), the females were maintained on the assigned diet throughout the experimental period. n-

3 PUFA = omega-3 polyunsaturated fatty acid. 
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2.3.1 Lipid extraction  

The fetal brain tissues (~80 mg) were cryo-homogenized (Potter-Elvehjem homogenizer, 

USA) with 2 mL of 0.1% ammonium acetate in water. Ten microliters of SPLASH® internal lipid 

standard mix (Avanti Polar Lipids, Birmingham; Catalogue number - 330710X-1EA) were added 

to 500 µL of each of the tissue homogenate in a glass tube. Two microliters of methyl tert-butyl 

ether (MTBE)/methanol/water (10:3:2.5, v/v/v, i.e 2 mL MTBE, 0.6 mL methanol, and 0.5 mL 

deionized water) were added to the glass tube, caped and vortexed. The tube was centrifuged for 

15 min at 1200 xg (Cryomill, Retsch, Germany) to separate the contents into two layers. The 

organic layer containing the extracted lipids (upper layer) was transferred into a new glass Teflon-

lined cap tube and stored at -20°C for lipidomic analysis (Matyash et al., 2008).  

2.3.2 Lipidomic analysis  

Lipidomics platforms described previously (Pham et al., 2019) using ultra-high-

performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry 

(HRMS) were adopted for this study. Both hydrophilic interaction (HILIC) and C30 reverse phase 

(C30RP) columns were used: HILIC chromatography was the best for resolving the polar lipid 

classes in the negative ion mode with ammonium acetate buffer (Anesi & Guella, 2015).  

For the HILIC chromatography, UHPLC was managed by Chromeleon software (Dionex 

UltiMate 3000 UHPLC, ThermoScientifc, MO, USA). An Acquity BEH HILIC 1.7 µm particle 

Size, 2.1 mm x 150 mm (Waters, MA, USA) column was used. The mobile phase consisted of 

solvents A (pure acetonitrile) and solvent B (10 mM ammonium acetate in HPLC-grade water). 

The mobile phase gradient was set as follows: initially set as 97% solvent A and 3% solvent B for 

2 min, then increased to 10% solvent B over 23 min, 10-20% solvent B for 10 min, and maintained 
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as 85% solvent A and 20% solvent B for 5 min. The column was re-equilibrated with only solvent 

A for 10 min before the injection of every new sample.  

For the C30RP chromatography, the mobile phase system consisted of solvent A 

(acetonitrile:water 60:40 v/v) and solvent B (iso-propanol:acetonitrile:water 90:10:1 v/v/v) both 

containing 10 mM ammonium formate and 0.1% formic acid. Solvent gradient and run conditions 

were: 30% of solvent B for 3 min and increasing to 43% within a 5-min interval. This was followed 

by increasing solvent B increased to 50% for 1 min, followed by 90% for 9 min, and 99% for 4 

min. Solvent A set at 70% for 5 min was used to reset the column prior to every fresh sample 

injection.  

The high-resolution tandem mass spectrometry was achieved using a Q-Exactive™ Plus 

Hybrid Quadrupole-Orbitrap™ mass spectrometer managed by X-Calibur version 4.0 software 

(ThermoScientifc, MO, USA). The system conditions for the mass spectrometer were set to a mass 

range (200–2000 m/z), resolution (70,000 m/z), sheath gas (45 arbitrary units), auxiliary gas (15 

arbitrary units), ion spray voltage (3.2 kV), capillary temperature (300°C), S-lens RF (30V), 

collision energy (35 eV), isolation window (1 m/z), and automatic gain control target (1x105 

arbitrary units). The platforms were first calibrated using positive and negative ion calibration 

solutions (ThermoScientifc, MO, USA), and the working conditions optimized using non-natural 

standard lipids (Avanti Polar Lipids, Alabama, USA) in both negative and positive ion modes. 

Fetal brain lipid extracts (10 µL) were injected into the UHPLC-HRMS with column temperature 

and a flow rate set at 30°C and 0.2 mL/min, respectively. Details of how the lipidomic data were 

analyzed are provided in the “lipidomics data and statistical analysis” section. 
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2.3.3 Pathway analysis 

The fetal brain lipid species were visualized in a heatmap to observe the enrichment and 

depletion of species by maternal diets during gestation. The number of lipid metabolic pathways 

and hits influenced by maternal diets during gestation were predicted using MetaboAnalyst 

software 5.0 (https://new.metaboanalyst.ca/MetaboAnalyst/) (Dhariwal et al., 2017). Compound 

(lipid species) matching were done using human metabolic databases (HMDB), hypergeometric 

test was used as the enrichment method, and Mus musculus small molecule pathway database 

pathway library were used. The cut off for statistical significance was set at p ≤ 0.05. 

2.4 Formulation of fetal neuronal membrane model, molecular dynamics simulation and 

analysis of membrane dynamics 

Previously published MD simulation protocols (Ingólfsson et al., 2017; Wilson et al., 2020; 

Wilson et al., 2021) were followed to computationally construct molecular models of neuronal 

membranes using the lipidomics data (Appendix 4). The chemical composition of lipid species 

head groups and linkers used to compose the fetal neuronal membrane are shown in Appendix 5. 

A custom-version of the Insane Package from Wassenaar (Wassenaar et al., 2015) was used to 

construct the fetal neuronal membrane corresponding to each of the four experimental groups. All 

lipid species found in the fetal brain with a molar ratio ≥ 0.001 were included (and those not 

detected such as free cholesterol were excluded). Lipid species with related tails, as shown in 

Appendix 4, were combined, and each system was composed of ∼4007 lipids and was solvated 

using 82581-83305 polarizable MARTINI water molecules (Yesylevskyy et al., 2010) and 150 

mM sodium chloride (∼972 sodium and ∼855 chloride ions) (Appendix 6). The initial positions 

of the lipids in the bilayer were randomly placed, and each replicate had a different random 

https://new.metaboanalyst.ca/MetaboAnalyst/
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placement of lipids. All bilayers were oriented in the x−y plane of a solvated rectangular box with 

dimensions of 35 nm × 35 nm × 12 nm. Periodic boundary conditions were applied in all directions. 

Each membrane system was solvated using the polarizable MARTINI water model (Yesylevskyy 

et al., 2010), and was energy-minimized using the steepest descent algorithm and equilibrated over 

three 5 ns simulations with increasing time step (10 fs, 20 fs and 25 fs) at constant temperature and 

pressure.  

All simulations were conducted using the GROMACS 2022.4 molecular dynamics engine 

(Abraham et al., 2015; Berendsen et al., 1995; De Jong et al., 2016; Hess et al., 2008; Kutzner et 

al., 2022; Lindahl et al., 2001; Páll et al., 2015; Pronk et al., 2013; Van Der Spoel et al., 2005) 

under periodic boundary conditions, adopting the MARTINI 2.2P coarse-grained force field 

parameters (De Jong et al., 2013). Each membrane underwent 10 μs production simulation at 

temperature of 310 K, [maintained using the Bussi thermostat (Bussi et al., 2007) with a coupling 

constant of 1.0 ps] and pressure of 1.0 bar [maintained using a semi-isotropic Parrinello–Rahman 

barostat (Parrinello & Rahman, 1980, 1981) with a compressibility of 3 × 10-4 bar-1 and a coupling 

constant of 12 ps], using a time step of 25 fs in triplicates.  

2.4.1 Analysis of effects of gestation and maternal dietary n-3 PUFA status on fetal neuronal 

membrane parameters 

Parameters indicative of membrane physicochemical properties were determined. The 

density of the four membranes representing four experimental groups was determined using 

GROMACS to confirm that the fetal neuronal membrane model constructed (Appendix 7) agrees 

with typical neuronal membrane (Ingólfsson et al., 2017). The lateral self-diffusibility of each lipid 

class was calculated using GROMACS and was averaged to obtain the average diffusion rate. 
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Membrane thickness was determined using FATSLiM software (Buchoux, 2017), while APL and 

CE flip-flop rate were determined using the LiPyphilic python package (Smith & Lorenz, 2021). 

The formation of lipid domains in membrane – assembling of lipid species and lipid classes with 

each other was determined by calculating contact fraction as previously reported (Koldsø et al., 

2014; Wilson et al., 2020) using the LiPyphilic python package (Smith & Lorenz, 2021). The 

relative collocation (enrichment/depletion) of lipid species B around lipid species A was calculated 

by comparing the local molar ratio within the 1.2 nm cut-off to the global molar ratio of species B.  

                                                                                                 Equation 1 

Where; C is the contact fraction, NAB = number of lipid species B around species A, [NB] = mean 

number of species B around any species. Notably, contact fractions were evaluated over the entire 

membrane rather than by each leaflet and the values were averaged over all lipid species within 

the lipid class. This was done for the GP and SP headgroup beads. Lipid domains with contact 

fractions < 0.8 are depleted, lipid domains with contact fraction ≥ 1.2 are enriched, while lipid 

domains with contact fraction ≥ 0.8 and < 1.2 are neither enriched nor depleted.   

Visualization of simulations were done using visual molecular dynamics (VMD) software 

(Humphrey et al., 1996). Membrane parameters were assessed over the entire membrane and not 

by membrane leaflets.  

2.5 Lipidomics data and statistical analysis  

2.5.1 Lipidomics data analysis: The raw UHPLC/MS2 data of the fetal brain lipid profile was first 

subjected to multivariate analyses in XLSTAT 2022 (Addinsoft Software, New York). Partial least-

squares discriminant analysis (PLS-DA) was used to rank the effects of gestation and maternal n-
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3 PUFA status on the 127 lipid species identified in fetal brain based on lipid group/class of interest. 

In each lipid group or class considered, lipid species whose variable importance in the projection 

(VIP) scores were ≥ 1.0 were considered substantially varied by diet and/or gestation, while lipid 

species with moderate to low variability (VIP scores < 1.0) were not included in further analysis. 

Lipid species with VIP ≥ 1.0 were subjected to principal component analysis (PCA), another 

multivariate analysis tool to visualize the distribution of species with related variability. 

2.5.2 Statistical analysis: The main effects and the interaction of gestation stage and maternal 

dietary n-3 PUFA status on lipid species clustered in the same quadrant of PCA biplot were 

determined using two-way ANOVA and Bonferroni multiple comparisons in GraphPad Prism, 

version 9.3.1 (GraphPad Software, San Diego). The lipidomics data were presented as mean ± 

standard deviation (SD), with sample size per group (n) as 8 dams (fetal brains from the same dam 

were pooled as n =1). Data for each lipid species [fatty acyl molecular species of each lipid] were 

expressed as nmol% of each lipid group or class; p < 0.05 was considered significant. 

The raw data of molecular dynamics simulations of the fetal neuronal membrane were 

subjected to 2-way ANOVA to understand the main effects and the interaction of gestation stage 

and maternal dietary n-3 PUFA status on molecular dynamics parameters using GraphPad Prism, 

version 9.3.1 (GraphPad Software, San Diego). The results were presented as mean ± standard 

error of the mean (SEM) in triplicate runs for each membrane.  
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3.1 Fetal brain lipidomic profile  

The HILIC-MS base peak chromatogram of a fetal brain lipid extract from a representative 

of high n-3 PUFA at GD18.5 group showing the separation of lipids based on their polarity and 

the headgroups is shown in Figure 3.1 (A). The major brain lipid classes detected in negative ion 

mode include Cer, non-esterified fatty acids (NEFA, C16:0 or FA 16:0), PG, PI, PE, PS, PC, and 

SM. An example of HILIC-MS2 spectra with the structures of precursor ions is presented in Figure 

3.1 (B-E) showing the typical fragmentation of their headgroup class. Cer and NEFA belong to 

neutral lipids category which are not retained in HILIC column and as a result, elute first in the 

HILIC-MS chromatogram. Figure 3.1 (B) shows the fragmentation of major Cer molecular species 

seen in Figure 3.1 (A) at m/z 624.56 [M+CH3COO]-. The two main fragments at m/z 308.30 and 

237.22 resulted from the most energy favourable pathway of cleaving C-C bond in conjunction 

with the double bond in the sphingosine backbone, giving the identification of Cer(d18:1_18:0) 

molecular species. The fragmentations of PE, PC, and PS in negative ion mode were well-known 

with the formation of headgroup characteristic ions: m/z 140.01 for phosphoethanolamine (from 

ethanolamine-containing lipids), m/z 168.04 for phosphocholine (from choline-containing lipids), 

and m/z 152.99 from glycerophosphate in PS headgroup. Their molecular species were identified 

by the fatty acyl product ions at m/z 255.23 (C16:0), m/z 283.26 (C18:0), m/z 303.23 (C20:4), and 

m/z 327.23 (C22:6), confirming the identity of PE(18:0_20:4), PC(16:0_20:4) and PS(18:0_22:6) 

(Figure 3.1C-E), respectively. PE(18:0_20:4) represents PE with 2 fatty acid molecular species - 

C18:0 and C20:4; these fatty acid molecular species can be either in sn-1 or sn-2 position of the 

glycerol backbone. 
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Figure 3.1: Ultra-high-performance liquid chromatography (UHPLC) coupled with high-

resolution mass spectrometry (HRMS) conducted in negative ion mode of a representative fetal 

brain lipid extract from high n-3 PUFA at GD18.5 group. A) Hydrophilic interaction (HILIC-

MS) base peak chromatogram of fetal brain lipid extract. HILIC-MS2 spectra showing the typical 

fragmentation of their headgroup class from the precursor ions: B) Cer(d18:1_18:0) 

[M+CH3COO]- at m/z 624.56, C) PE(18:0_20:4) [M-H]- at m/z 766.54, D) PC(16:0_20:4) 

[M+CH3COO]- at m/z 840.58 and E) PS(18:0_22:6) [M-H]- at m/z 834.53. Ceramides (Cer), 

phosphatidylglycerol (PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), 

phosphatidylserine (PS, phosphatidylcholine (PC), and sphingomyelin (SM).  
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Subclasses of PC and PE, including plasmanyl choline (O-PC), plasmanyl ethanolamine 

(O-PE), choline plasmalogen (P-PC), and ethanolamine plasmalogen (P-PE) were also detected in 

the fetal brain lipid extract. Examples of major P-PE and O-PC molecular species are shown in 

Appendices 8 and 9, respectively. Full MS spectra of PE and PC classes were achieved [Appendix 

8 (A) and Appendix 9 (A)] due to the inter-class separation capacity of the HILIC column. The 

resolution of plasmanyl and plasmalogen PC and PE were achieved using both HILIC and C30RP 

column HRMS. Fragmentation of P-PE [PE(P-18:1_22:6) and PE(P-18:0_22:5)] are shown in 

Appendix 8 (B and C). Two additional product ions, m/z 462.30 and 444.29, in Appendix 8 (B) 

were signatures from P-18:1, while m/z 464.31 and 446.30 in Appendix 8 (C) resulted from P-18:0 

plasmalogen linkage. It is noted that m/z 283.24 and m/z 285.26 fragment ions in Appendix 8 (B 

and C) resulted from the loss of CO2 (44 Da), which is typical of the PUFAs, C22:6 and C22:5, 

respectively. HILIC-MS2 spectra of PE(18:0_22:6) and PE(18:0_22:5) in Appendix 8 (D and E) 

show the two major fatty acyl ions from each molecular species in addition to m/z 140 PE 

headgroup characteristic ions. Similarly, HILIC-MS2 spectra of some major PC species, including 

PC(16:0_18:1), PC(16:0_16:0), PC(16:0_14:0) and ether PC(O-16:0_16:0) are displayed in 

Appendix 8. 

Figure 3.2 (A) shows the C30RP-MS chromatogram of fetal brain lipid extract, separating 

two lipid categories, GP and TG, at different regions on the chromatograms based on the m/z and 

their fatty acyl chain length and unsaturation degree. In contrast to HILIC, where TG was eluted 

upfront together with all other nonpolar lipids, TG was separated and resolved very well at the end 

of C30RP chromatography, even at low concentrations.  
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Figure 3.2: C30 reverse phase ultra-high-performance liquid chromatography coupled with 

high-resolution mass spectrometry (C30RP-HRMS) chromatogram conducted in positive ion 

mode for a representative fetal brain lipid extract from high n-3 PUFA at GD18.5 group. A) 

C30RP-MS2 spectra of some major TG molecular species: B) TG(16:0_16:0_18:1) [M+NH4]
+ at 

m/z 850.79, C) TG(16:0_18:1_22:6) [M+NH4]
+ at m/z 922.79, and D) ether TG(O-

12:0_6:0_20:4) [M+NH4]
+ at m/z 662.57. Glycerophospholipids (GP), and triacylglycerols (TG). 
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Some major TG molecular species in the fetal brain samples were selected for showing 

C30RP-MS2 spectra as in Figure 3.2 (B-D). All TG molecular species were observed as ammonium 

adducts [M+NH4]
+ in the positive ion mode. The fragmentation of the most abundant TG seen at 

m/z 850.79 was shown in the inserted structure in Figure 3.2 (B), whose accurate m/z already 

assigned the total carbon number and number of double bonds as TG(50:1) [M+NH4]
+ precursor 

ion. Two product ions observed at m/z 577.52 and 551.50 were corresponding to the neutral losses 

of 273 Da (-C15H31COONH4) and 299 Da (-C17H33COONH4), respectively. From these 

characteristic neutral losses of C16:0 and C18:1 (in form of ammonium salts), the identification of 

TG(16:0_16:0_18:1) was confirmed. Where TG molecules consisted of three different fatty acyls, 

such as TG(16:0_18:1_22:6), there were 3 characteristic neutral losses of ammonium salts C16:0, 

C18:1 and C22:6 forming m/z 649.49, 623.50 and 577.52 product ions seen in Figure 3.2 (C). The 

relative position (sn-1,2, 3) of FA on the glycerol backbone of TG molecular species could be 

assigned due to much higher neutral loss of sn-1/3 FA as compared with sn-2 FA loss (Herrera et 

al., 2010; Pham et al., 2019). Ether O-TG subclass was also observed and C30RP-MS2 spectrum 

of TG(O-12:0_6:0_20:4) [M+NH4]
+ at m/z 662.57 shown in Figure 3.2 (D). 

Using the above-described algorithm, 127 lipid molecular species were identified in the 

fetal brain lipid extract at each gestation stage (Appendix 10).  

Further data analysis was conducted based on lipid major head groups and lipid species per 

lipid classes to evaluate the impact of gestation and maternal dietary n-3 PUFA intake on fetal 

brain lipidome. 
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3.2 Effects of gestation and maternal n-3 PUFA intake on major lipid groups and classes in total 

lipids 

The effects of gestation and maternal diet on the proportion of major lipid groups, viz, 

ethanolamine-based [diacyl phosphatidylethanolamine (PE), plasmanyl ethanolamine (O-PE) and 

ethanolamine plasmalogen (P-PE) and lyso-PE (LPE)], choline-based [diacyl phosphatidylcholine 

(PC), plasmanyl choline (O-PC) and choline plasmalogen (P-PC) and lyso-PC 

(LPC)];glycerolipids [triacylglycerols (TG) and diacylglycerols (DG)], and minor brain lipids 

[phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG), CE, ceramides 

(Cer) and sphingomyelins (SM)], classes and subclasses in the fetal brain total lipids, were first 

analyzed (Figure 3.3).  

Gestation and maternal diets had significant effects on ethanolamine-based, choline-based, 

minor brain lipids, and glycerolipids in the fetal brain total lipids (Figure 3.3). As gestation 

progressed, ethanolamine-based and minor brain lipids significantly (p < 0.0001) increased, 

whereas choline-based lipids (p < 0.0001) and glycerolipids (p = 0.0002) decreased in both low 

and high n-3 PUFA group. A maternal diet high in n-3 PUFA significantly increased the accretion 

of ethanolamine-based lipids (p < 0.0001) and minor brain lipids (p = 0.0003) in the fetal brain as 

gestation progressed, whereas maternal diet high in n-3 PUFA showed significantly lower (p < 

0.0001) choline-based lipids, compared with low n-3 PUFA diet (Figure 3.3). Diet had no 

significant effect on the glycerolipids in fetal brain during gestation. Unlike other major brain lipid 

groups, there was significant interaction between diet and gestation (p < 0.0001) in choline-based 

lipids (Figure 3.3).  
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Figure 3.3: Effects of gestation and maternal n-3 PUFA intake on major lipid groups in total 

lipids. Data were analyzed using two-way ANOVA to determine the main effects and the 

interactions between maternal diet and gestation stage; pairwise comparison using Bonferroni's 

correction was used to determine differences. Data represent the mean ± SD of nmol% of sum of 

each of the lipid group in total lipids. Mean values with different superscript letters (a, b, c & d) 

are significantly different; p<0.05 (n = 8 dams per group). ethanolamine-based = diacyl 

phosphatidylethanolamine (PE), ethanolamine plasmalogens (P-PE), plasmanyl ethanolamine 

(O-PE), and lyso-PE (LPE); choline-based = diacyl phosphatidylcholine (PC), plasmanyl choline 

(O-PC) and choline plasmalogen  (P-PC) and lyso-PC (LPC); glycerolipids = triacylglycerols 

(TGs) and diglycerides (DGs); minor brain lipids = diacyl phosphatidylserine (PS), diacyl 

phosphatidylinositol (PI), diacyl phosphatidylglycerol (PG), cholesteryl esters (CE), ceramides 

(Cer), and sphingomyelins (SM). 
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Thereafter, we analyzed the effect of gestation and diet on each of the lipid class or subclass 

of the major lipid groups in the fetal brain total lipids (Table 3.1). Gestation had a significant effect 

on the proportion of diacyl phosphatidylethanolamine (PE) and plasmanyl ethanolamine (O-PE) 

in fetal brain total lipids; PE and O-PC increased significantly (p < 0.0001) as gestation progressed 

from GD12.5 to GD18.5 in both low and high n-3 PUFA groups (Table 3.1). Diet had a significant 

effect on the proportion of PE and O-PE in the fetal brain total lipids; a maternal diet high in n-3 

PUFA significantly increased PE (p = 0.001) and O-PC (p < 0.0001) levels in the fetal brain total 

lipids at both gestation stages, compared with a low n-3 PUFA diet (Table 3.1).  

There was a significant interaction between diet and gestation (p = 0.01) for the 

ethanolamine plasmalogen (P-PE) in the fetal brain total lipids revealing a significant diet-

dependent effect with no significant gestation-dependent effect (Table 3.1). A maternal diet high 

in n-3 PUFA showed a significantly lower (p = 0.01) level of P-PE in the fetal brain total lipids at 

GD18.5 only, compared with a low n-3 PUFA diet (Table 3.1). Both gestation and diet had no 

significant effect on the lysophosphatidylethanolamine (LPE) levels in the fetal brain total lipids 

(Table 3.1). Gestation and maternal diets had significant effects on ethanolamine-based fatty acyl 

species in the fetal brain total lipids (Table 3.1). As gestation progressed, ethanolamine-based fatty 

acyl species in the fetal brain total lipids significantly increased (p < 0.0001) in both low and high 

n-3 PUFA groups (Table 3.1). A maternal diet high in n-3 PUFA significantly (p = 0.001) increased 

the sum of ethanolamine-based fatty acyl species in the fetal brain total lipids, compared with low 

n-3 PUFA diet (Table 3.1). 
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Table 3.1. nmol% of lipid group/class/subclass found in fetal brain total lipids 

Lipid species Low-GD12.5 Low-GD18.5 High-GD12.5 High-GD18.5 Diet Gestation Diet* 

Gestation 

Diet 

effect 

Gestation 

effect 

∑Ethanolamine-

based lipids 

27.26 ± 2.35c 35.47 ± 3.95b 32.89 ± 3.30b 40.18 ± 2.33a p < 0.0001 p < 0.0001 NS ↑ ↑ 

PE  12.45 ± 2.43c 17.46 ± 4.32b 15.91 ± 2.33ab 22.27 ± 2.02a p = 0.001 p < 0.0001 NS ↑ ↑ 

O-PE  3.51 ± 0.97c 5.62 ± 1.42b 5.82 ± 0.86b 8.29 ± 0.69a p < 0.0001 p < 0.0001 NS ↑ ↑ 

P-PE  10.84 ± 1.70a 11.61 ± 1.94a 10.77 ± 1.46a 8.66 ± 0.43b p = 0.01 NS p = 0.01 - ↓ 

LPE  0.46 ± 0.19a 0.78 ± 0.47a 0.39 ± 0.16a 0.96 ± 0.57a NS NS NS - - 

∑Choline-based 

lipids 

56.10 ± 3.14a 38.77 ± 9.71b 46.06 ± 6.23b 27.29 ± 3.18c p < 0.0001 p < 0.0001 p < 0.0001 ↓ ↓ 

PC  54.42 ± 3.49a 36.89 ± 10.10 b 43.88 ± 6.21b 25.22 ± 3.32c p = 0.0001 p < 0.0001 NS ↓ ↓ 

O-PC  0.11 ± 0.03a 0.14 ± 0.02a 0.12 ± 0.03a 0.12 ± 0.01a NS NS NS - - 

P-PC  0.94 ± 0.22a 0.58 ± 0.12ab 1.06 ± 0.28a 0.34 ± 0.11b NS p < 0.0001 NS - ↓ 

LPC  0.63 ± 0.28b 1.17 ± 0.43a 1.00 ± 0.24b 1.61 ± 0.39a p = 0.004 p = 0.0002 NS ↑ ↑ 

PS  5.94 ± 1.02c 12.66 ± 3.50b 7.26 ± 2.86c 16.80 ± 0.84a p = 0.006 p < 0.0001 NS ↑ ↑ 

PG  0.80 ± 0.11c 1.99 ± 0.48b 1.97 ± 0.42b 3.61 ± 0.23a p < 0.0001 p < 0.0001 NS ↑ ↑ 

PI  5.50 ± 0.95b 7.63 ± 2.19a 7.60 ± 1.44a 8.97 ± 1.01a p = 0.006 p = 0.005 NS ↑ ↑ 

∑SP 1.17 ± 0.24b 2.00 ± 0.43a 1.10 ± 0.14b 1.48 ± 0.17b p = 0.006 p < 0.0001 p = 0.02 ↓ ↑ 

Cer  1.06 ± 0.22bc 1.91 ± 0.42a 0.98 ± 0.09c 1.37 ± 0.14b p = 0.003 p < 0.0001 P = 0.02 ↑ ↑ 

SM  0.10 ± 0.02a 0.09 ± 0.01a 0.12 ± 0.04a 0.11 ± 0.03a NS NS NS - - 

CE  0.70 ± 0.51ab 0.15 ± 0.11c 1.12 ± 0.40a 0.35 ± 0.10b p = 0.01 p < 0.0001 NS ↓ ↓ 

∑Glycerolipids 2.53 ± 1.07a 1.33 ± 0.14b 1.99 ± 0.42ab 1.32 ± 0.15b NS p = 0.0002 NS ↓ ↓ 

DG  0.97 ± 0.34a 0.49 ± 0.10b 1.04 ± 0.29a 0.61 ± 0.07b NS p < 0.0001 NS - ↓ 

TG  1.56 ± 0.12a 0.84 ± 0.15b 0.96 ± 0.22ab 0.71 ± 0.09b NS p = 0.001 NS - ↓ 
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Female mice were fed diets containing 1% n-3 PUFA (low n-3 PUFA diet) and 9% n-3 PUFA (high 

n-3 PUFA) during gestation, and fetal brain lipidomic profile at gestation days (GD)12.5 and 

GD18.5 was determined. Data were analyzed using two-way ANOVA to determine the main effects 

and the interactions between maternal diet and gestation stage; pairwise comparison using 

Bonferroni's correction was used to determine differences. Data represent mean ± SD nmol 

percentage of major lipid group/class/sub-class found in fetal brain total lipid extract. Mean values 

with different superscript letters (a, b, c & d) are significantly different; p<0.05 (n = 8 dams per 

group). ethanolamine-based = diacyl phosphatidylethanolamine (PE), ethanolamine 

plasmalogens (P-PE), plasmanyl ethanolamine (O-PE), and lyso-PE (LPE); choline-based = 

diacyl phosphatidylcholine (PC), plasmanyl choline (O-PC) and choline plasmalogen  (P-PC) and 

lyso-PC (LPC); glycerolipids = triacylglycerols (TGs) and diglycerides (DGs); minor brain lipids 

= diacyl phosphatidylserine (PS), diacyl phosphatidylinositol (PI), diacyl phosphatidylglycerol 

(PG), cholesteryl esters (CE), ceramides (Cer), sphingomyelins (SM), ∑GP = sum of 

glycerophospholipids, ∑SP = sum of sphingolipids, and ∑GL = sum of glycerolipids. For gestation 

effect column, ↑ = increase as gestation progressed from GD12.5 to GD18.5, while ↓ = decrease 

as gestation progressed. For the diet effect column, ↑ = higher levels in high n-3 PUFA diet group, 

compared with low n-3 PUFA diet group, while ↓ = lower levels in high n-3 PUFA diet group, 

compared with low n-3 PUFA diet group. - = no effect of diet and/or gestation. 
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Among the lipid (sub)classes in choline-based fatty acyl species in the fetal brain total 

lipids, gestation had a significant effect on diacyl phosphatidylcholine (PC), choline plasmalogen 

(P-PC) and lysophosphatidylcholine (LPC), but not on plasmanyl choline (O-PC) levels in the fetal 

brain total lipids (Table 3.1). As gestation progressed, PC in the fetal brain total lipids significantly 

decreased (p < 0.0001) in both low and high n-3 PUFA diet groups, whereas P-PC significantly 

decreased (p < 0.0001) in the high n-3 PUFA diet group. Diet had a significant effect on PC; a 

maternal diet high in n-3 PUFA showed a significantly lower (p = 0.0001) level of PC in the fetal 

brain total lipids in both gestation stages, compared to a low n-3 PUFA diet (Table 3.1). As 

gestation progressed, the proportion of LPC in the fetal brain total lipids significantly increased (p 

= 0.0002) in both low and high n-3 PUFA groups. Diet had a significant effect on the proportion 

of LPC in the fetal brain total lipids; a maternal diet high in n-3 PUFA significantly increased (p = 

0.004) LPC levels in the fetal brain total lipids at both gestation stages, compared with a low n-3 

PUFA diet (Table 3.1). Total choline-based fatty acyl species in the fetal brain total lipids showed 

significant interaction between diet and gestation revealing a significant decrease (p < 0.0001) in 

both low and high n-3 PUFA diet groups as gestation progressed from GD12.5 to GD18.5 (Table 

3.1). Diet had a significant effect on the total choline-based fatty acyl species in the fetal brain 

total lipids; a maternal diet high in n-3 PUFA showed significantly lower (p < 0.0001) total choline-

based fatty acyl species in the fetal brain total lipids, compared with low n-3 PUFA diet (Table 

3.1).  

Gestation had a significant effect on PS and PG in fetal brain total lipids; the PS and PG 

levels in fetal brain total lipids significantly increased (p < 0.0001) in low and high n-3 PUFA diet 

groups (Table 3.1). Diet had a significant effect on PS and PG in the fetal brain total lipids; a 

maternal diet high in n-3 PUFA diet significantly increased PS (p = 0.006) and PG (p < 0.0001) 
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levels in the fetal brain total lipids (Table 3.1). Gestation had a significant effect on 

phosphatidylinositol (PI) in the fetal brain total lipids; as gestation progressed, PI level in the fetal 

brain total lipids significantly increased (p = 0.005) in low n-3 PUFA group with no significant 

change in high n-3 PUFA group (Table 3.1).  

Gestation had a significant effect on Cer level in the fetal brain total lipids; Cer level in the 

fetal brain total lipids significantly increased (p < 0.0001) in both low and high n-3 PUFA groups 

as gestation progressed (Table 3.1). Diet had a significant effect on Cer level in the fetal brain total 

lipids; a maternal diet high in n-3 PUFA showed significantly lower (p = 0.003) level of Cer in the 

fetal brain total lipids at GD18.5 only, compared to low n-3 PUFA group (Table 3.1). Neither 

gestation nor diet had a significant effect on sphingomyelin (SM) in the fetal brain total lipids 

(Table 3.1). Our findings show a significant interaction between diet and gestation (p = 0.02) for 

total SP in the fetal brain total lipids revealing significantly increased (p < 0.0001) in the low n-3 

PUFA group with no significant change in the high n-3 PUFA group as gestation progressed from 

GD12.5 to GD18.5 (Table 3.1). Diet had a significant effect on total SP in the fetal brain total 

lipids; a maternal diet high in n-3 PUFA showed lower (p = 0.006) total SP in the fetal brain total 

lipids at GD18.5, compared with a low n-3 PUFA diet (Table 3.1).  

CE in fetal brain total lipids showed gestation and diet-dependent effects revealing a 

significant decrease (p < 0.0001) in CE level in the total lipids as gestation progressed from 

GD12.5 to GD18.5 in both low and high n-3 PUFA groups. A maternal diet high in n-3 PUFA 

showed a significantly higher (p = 0.01) level of CE in the fetal brain total lipids at both gestation 

stages, compared with low n-3 PUFA diet (Table 3.1). 
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Gestation had a significant effect on the DG and TG levels in the fetal brain total lipids; as 

gestation progressed, DG level in the fetal brain total lipids significantly decreased (p < 0.0001) in 

both low and high n-3 PUFA diet groups, whereas TG level significantly decreased (p = 0.001) in 

low n-3 PUFA diet group (Table 3.1). Diet had no significant effect on DG and TG levels in the 

fetal brain total lipids. Gestation had a significant effect on ∑glycerolipids in the fetal brain total 

lipids; as gestation progressed, ∑glycerolipids in the fetal brain total lipids significantly decreased 

(p = 0.0002) in low n-3 PUFA group with no significant change in the high n-3 PUFA group (Table 

3.1). Diet had no significant effect on ∑glycerolipids in the fetal brain total lipids (Table 3.1). 

3.3 Effects of gestation and maternal n-3 PUFA intake on fetal brain glycerophospholipids 

Gestation had significant effects on all fetal brain GP; as gestation progressed, 

ethanolamine-based [diacyl phosphatidylethanolamine (PE), ethanolamine plasmalogens (P-PE), 

plasmanyl ethanolamine (O-PE), and lyso-PE (LPE)] (p < 0.0001), serine-based [diacyl 

phosphatidylserine (PS)] (p < 0.0001), glycerol-based [diacyl phosphatidylglycerol (PG)]  (p < 

0.0001) and inositol-based [diacyl phosphatidylinositol (PI)] (p = 0.006) GP in fetal brain total GP 

increased in both low and high n-3 PUFA groups, whereas choline-based [choline-based = diacyl 

phosphatidylcholine (PC), plasmanyl choline (O-PC) and choline plasmalogen (P-PC) and lyso-

PC (LPC)] GP in fetal brain total GP decreased in both low and high n-3 PUFA groups (Figure 

3.4). Maternal diets high in n-3 PUFA significantly increased the accretion of ethanolamine-based, 

inositol-based, serine-based, and glycerol-based GP in the fetal brain (p = 0.0002, p = 0.005, p = 

0.006 and p = 0.0001, respectively) as gestation progressed, compared with low n-3 PUFA diets. 

On the other hand, a diet high in n-3 PUFA showed significantly lower (p = 0.0001) levels of 

choline-based GP in fetal brain total GP, compared with the low n-3 PUFA diet.  
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 Figure 3.4: Effects of gestation and maternal n-3 PUFA intake on fetal brain 

glycerophospholipids.  Female mice were fed diets containing 1% n-3 PUFA (low n-3 PUFA diet) 

and 9% n-3 PUFA (high n-3 PUFA) during gestation, and fetal brain lipidomic profile at gestation 

days (GD)12.5 and GD18.5 was determined. Data represent the mean ± SD of nmol% of sum of 

each of the GP classes. Mean values with different superscript letters (a, b, c & d) are significantly 

different; p<0.05 (n = 8 dams per group). Ethanolamine-based GP= diacyl 

phosphatidylethanolamine (PE), ethanolamine plasmalogen (P-PE), plasmanyl ethanolamine (O-

PE), and lyso-PE (LPE); choline-based GP = diacyl phosphatidylcholine (PC), plasmanyl choline 

(O-PC) and choline plasmalogen (P-PC) and lyso-PC (LPC); Inositol-based GP = diacyl 

phosphatidylinositol (PI), serine-based GP = diacyl phosphatidylserine (PS) and glycerol-based 

GP = diacyl phosphatidylglycerol (PG). 
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3.4 Effects of maternal diets high or low in n-3 PUFA on ethanolamine-based 

glycerophospholipids in the fetal brain during gestation 

Next, we investigated the effect of diet and gestation on each ethanolamine-based GP fatty 

acyl species among total GP in fetal brain. Of the 34 ethanolamine-containing GP species subjected 

to PLS-DA analysis, 22 had VIP score ≥ 1.0, suggesting substantial alteration by either or both diet 

and gestation (Figure 3.5 A). The 22 ethanolamine-based fatty acyl species with VIP scores ≥ 1.0 

were subjected to PCA analysis; these species were clustered into four quadrants (Q) 1-4 in the 

PCA biplot with accumulated variability components, F1 and F2, explaining the 78.39% variation 

in the fatty acyl species (Figure 3.5 B). Oleic acid (18:1, OA)-containing ethanolamine-based GP 

[PE(16:0_18:1), PE(16:1_18:1) and PE(18:1_18:1)], palmitoleic acid (16:1)-containing 

ethanolamine-based fatty acyl species [PE(16:0_16:1)] and ARA-containing ethanolamine-based 

fatty acyl species [PE(O-16:0_20:4)] were clustered in Q1 of the PCA biplot, corresponding to 

high n-3 PUFA diet at GD12.5 centroid (Figure 3.5 B). ARA-containing [PE(P-16:0_20:4)], OA-

containing [PE(P-16:0_18:1)], EPA-containing [PE(P-16:0_22:5) and PE(P-18:0_22:5)], adrenic 

acid (22:4, ADA)-containing [PE(P-16:0_22:4) and P-18:0_22:4)] and palmitic acid-containing 

[PE(P-16:0_16:0] ethanolamine-based fatty acyl species were clustered in Q2 of the PCA biplot, 

corresponding to low n-3 PUFA diet group at GD12.5 centroid (Figure 3.5 B). DHA-containing 

[PE(16:0_22:6)], ARA-containing [PE(18:0_20:4)], ADA-containing [PE(18:0_22:4)] and EPA-

containing [PE(18:0_22:5)] ethanolamine-based fatty acyl species were clustered in Q3 of PCA 

biplot, corresponding to low n-3 PUFA diet at GD18.5 centroid (Figure 3.5 B). OA-containing 

[PE(18:0_18:1)] and DHA-containing [PE(18:0_22:6), PE(O-16:1_22:6), and PE(O-18:1_22:6)] 

ethanolamine-based fatty acyl species were clustered in Q4 of the PCA biplot corresponding to 

high n-3 PUFA diet at GD18.5 centroid (Figure 3.5 B). 
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Figure 3.5: Effects of maternal diets high or low in n-3 PUFA on ethanolamine-based fatty acyl 

species in fetal brain during gestation. A) Partial least-squares discriminant analysis (PLS-DA) 

score plot showing their variability importance in the progression (VIP); B) Principal component 

analysis (PCA) score plot of the ethanolamine-based lipid species in total lipids; ethanolamine-

based fatty acyl species clustered in - C) quadrant 1; D) quadrant 2, E) quadrant 3, and F) 

quadrant 4. Female mice were fed diets containing 1% n-3 PUFA (low n-3 PUFA diet) and 9% n-

3 PUFA (high n-3 PUFA) during gestation, and fetal brain ethanolamine-based fatty acyl species 

at gestation days (GD)12.5 and GD18.5 were determined. Data were analysed using two-way 
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ANOVA to determine the main effects and the interactions between maternal diet and gestation 

stage; pairwise comparison using Bonferroni's correction was used to determine differences when 

there was an observed interaction. Data represent the mean ± SD of nmol% of each of 

ethanolamine-based fatty acyl species in total ethanolamine-based species. Mean values with 

different superscript letters (a, b, c & d) are significantly different; p<0.05 (n = 8 dams per group). 

Diacyl phosphatidylethanolamine (PE), plasmanyl ethanolamine (O-PE), and ethanolamine 

plasmalogen (P-PE).  
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Thereafter, we conducted a two-way ANOVA on the ethanolamine-based lipids based on 

the quadrants (Q1-Q4) the lipid species were clustered in the PCA biplot. Gestation had a 

significant (p < 0.0001) effect on all ethanolamine-based fatty acyl species clustered in the first 

quadrant (Q1) of PCA output (Figure 3.5 C). Oleic acid (18:1)-containing- [PE(16:0_18:1), 

PE(18:1_18:1) and PE(16:1_18:1)], ARA-containing [PE(O-16:1_20:4)], LA-containing 

[PE(18:1_18:2)], and palmitoleic acid-containing [PE(16:0_16:1)] ethanolamine-based fatty acyl 

species, generally decreased as gestation progressed from GD12.5 to GD18.5 (Figure 3.5 C). Diet 

had a significant effect on PE(16:0_18:1) only; a diet high in n-3 PUFA significantly increased 

level of PE(16:0_18:1), p = 0.004 in fetal brain, compared with low n-3 PUFA diet (Figure 3.5 C). 

Gestation had significant effects on ethanolamine-based lipids clustered in Q2 of the PCA biplot, 

except PE(P-18:0/16:0) where gestation had no significant effect (p > 0.05) (Figure 3.5 D). As 

gestation progressed from GD12.5 to GD18.5, ethanolamine-based fatty acyl species [PE(P-

16:0_22:4), PE(P-16:0_20:4), PE(P-16:0_22:5), PE(P-18:0_22:5), PE(P-16:0_18:1), p < 0.0001, 

p < 0.0001, p < 0.0001, p = 0.001 and p < 0.0001, respectively], significantly decreased in both 

low and high n-3 PUFA groups, whereas PE(P-18:0_22:4) and PE(P-16:0_16:0), p < 0.0001 and p 

= 0.007, respectively, significantly decreased in high n-3 PUFA group only (Figure 3.5 D). Diet 

had a significant effect on all the ethanolamine-based lipids clustered in Q2 of the PCA biplot. 

Compared with low n-3 PUFA diet, a maternal diet high in n-3 PUFA showed lower levels of 

ethanolamine-based fatty acyl species [PE(P-16:0_22:4), PE(P-16:0_20:4), PE(P-16:0_22:5), 

PE(P-18:0_22:5), PE(P-16:0_18:1), PE(P-18:0_22:4) and PE(P-16:0_16:0), p < 0.000] as 

gestation progressed from GD12.5 to GD18.5, whereas PE(P-18:0_16:0) was significantly lower 

(p = 0.01) at GD18.5 only (Figure 3.5 D). 
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Gestation had a significant effects on all the ethanolamine-based fatty acyl species 

clustered in Q3 of PCA biplot; as gestation progressed from GD12.5 to GD18.5, PE(18:0_20:4) 

and PE(18:0_22:4)] significantly increased (p < 0.0001 and p = 0.0004, respectively) in both low 

and high n-3 PUFA groups, whereas PE(18:0_22:5) increased (p = 0.01) in low n-3 PUFA group 

only (Figure 3.5 E). Diet had no significant effect (p > 0.05) on PE(18:0_20:4) level in the fetal 

brain; however, a diet high in n-3 PUFA showed lower levels of PE(18:0_22:4) at both gestation 

stages and PE(18:0_22:5) at GD18.5 only, compared with the low n-3 PUFA diet (Figure 3.5 E). 

DHA-containing ethanolamine-based fatty acyl species [PE(16:0_22:6)] significantly increased (p 

< 0.0001) in the fetal brain as gestation progressed from GD12.5 to GD18.5. A maternal diet high 

in n-3 PUFA significantly promoted the accretion of PE(16:0_22:6) in the fetal brain by 2-fold, p 

< 0.0001 as gestation progressed from GD12.5 to GD18.5, compared with a low n-3 PUFA diet  

(Figure 3.5 E).  

As shown in Figure 3.5 F, gestation had a significant effect on the ethanolamine-based 

fatty acyl species clustered in the 4th quadrant (Q4), except OA-containing ethanolamine-based 

fatty acyl species [PE(18:0_18:1)]. DHA-containing ethanolamine-based fatty acyl species 

[PE(18:0_22:6), PE(O-16:1_22:6), and PE(O-18:1_22:6)] significantly increased (p < 0.0001) in 

both low and high n-3 PUFA groups as gestation progressed from GD12.5 to GD18.5 (Figure 3.5 

F).  

Diet also had a significant effect on all the ethanolamine-based fatty acyl species clustered 

in the 4th quadrant (Q4). As gestation progressed from GD12.5 to GD18.5, maternal diets high in 

n-3 PUFA significantly increased (p < 0.0001) the levels of OA-containing ethanolamine-based 

GP [PE(18:0_18:1)], compared with low n-3 PUFA diets. Maternal diets high in n-3 PUFA 

promoted the accretion of DHA-containing ethanolamine-based fatty acyl species [PE(18:0_22:6), 
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PE(O-16:1_22:6), and PE(O-18:1_22:6), p < 0.0001] species by approximately 2-fold, compared 

with low n-3 PUFA diets (Figure 3.5 F). Interestingly, the accretion of DHA-enriched PE species 

in the high n-3 PUFA group at GD12.5 was equivalent to that of low n-3 PUFA group at GD18.5. 

(Figure 3.5 F). 

3.5 Effects of maternal diets high or low in n-3 PUFA on choline-based fatty acyl species in the 

fetal brain during gestation 

We conducted PLAS-DA analysis on the 40 choline-based fatty acyl species and 16 of the 

species with VIP scores ≥ 1.0 (Figure 3.6 A) were subjected to PCA analysis. As shown in the PCA 

biplot (Figure 3.6 B), these 16 choline-based fatty acyl species were clearly separated into four 

quadrants with accumulated variability components, F1 and F2, explaining the 74.90% variation 

in clustering. Palmitoleic acid-containing [PC(O-16:0_16:1)], DHA-containing [PC(16:1_22:6), 

PC(16:0_22:6) and LPC(22:6)], 20:3-containing [PC(18:0_20:3)] and arachidic acid-containing 

[PC(18:1_20:0)] choline-based fatty acyl species were clustered in quadrant (Q)1, corresponding 

with high n-3 PUFA at GD18.5 (Figure 3.6 B). Stearic acid-containing [PC(18:1_18:0) and 

PC(16:0_18:0)] and palmitoleic acid-containing [PC(14:0_16:1) and PC(16:1_16:1)] choline-

based fatty acyl species were clustered in Q2, corresponding with low n-3 PUFA at GD18.5 (Figure 

3.6 B). ARA-containing [PC(18:1_20:4) and PC(16:0_20:4)] choline-based fatty acyl species were 

clustered in Q3, corresponding with low n-3 PUFA at GD12.5 (Figure 3.6 B).  Dihomo-γ-linolenic 

acid (20:3n-6; DGLA)-containing [PC(16:0_20:3)] and DHA-containing [PC(18:0_22:6)] 

choline-based fatty acyl species were clustered in Q4, corresponding with high n-3 PUFA at 

GD12.5 (Figure 3.6 B). 



62 
 

As gestation progressed, DHA-containing choline-based fatty acyl species [PC(16:0_22:6) 

and LPC(22:6), p = 0.01 and p < 0.0001, respectively] increased in both low and high n-3 PUFA 

groups, whereas arachidic acid-containing PC [PC(18:1_20:0), p < 0.0001] significantly increased 

(p < 0.0001) at GD18.5 only (Figure 3.6 C). Gestation had no significant effect on PC(18:0_20:3), 

PC(16:1_22:6) and PC(O-16:0_16:1) species clustered in quadrant (Q) 1 of PCA biplot (Figure 

3.6 C). A diet high in n-3 PUFA significantly increased the accretion of DHA-containing choline-

based [PC(16:0_22:6) and LPC(22:6), p < 0.0001 and p < 0.0001, respectively] at both gestation 

stages, whereas DGLA-containing [PC(18:0_20:3) (p = 0.001)], DHA-containing [PC(16:1_22:6), 

p < 0.0001)], arachidic acid-containing [PC(18:1_20:0), p < 0.0001], and palmitoleic acid-

containing [PC(O-16:0_16:1), p = 0.0005] choline-based fatty acyl species increased at GD18.5 

only (Figure 3.6 C). There was significantly interaction between diet and gestation for 

PC(18:1_20:0) and LPC(22:6), p = 0.01 and p = 0.0009, respectively (Figure 3.6 C). 

Figure 3.6 D shows that as gestation progressed, choline-based fatty acyl species clustered 

in Q2 of PCA biplot [PC(16:1_16:1), PC(18:1_18:0), PC(16:0_18:0), and PC(14:0_16:1)] 

significantly increased (p < 0.0001) in both low and high n-3 PUFA groups. Diet had a significant 

effects on choline-based fatty acyl species clustered in Q2, except PC(16:1_16:1). As gestation 

progressed, maternal diets high in n-3 PUFA increased the level of stearic acid-containing choline-

based fatty acyl species [PC(18:1_18:0), p < 0.0001] in fetal brain at both gestation stages, whereas 

PC(18:1_18:0) and PC(14:0_16:1) significantly increased (p = 0.007 and p = 0.006, respectively) 

at GD18.5 only (Figure 3.6 D). There was a significant interaction between diet and gestation (p 

= 0.004) for PC(16:1_16:1) (Figure 3.6 D).   
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Figure 3.6: Effects of maternal diets high or low in n-3 PUFA on choline-based fatty acyl 

species in fetal brain during gestation. A) Partial least-squares discriminant analysis (PLS-DA) 

score plot showing their variability importance in the progression (VIP); B) Principal component 

analysis (PCA) score plot of the choline-based fatty acyl species; choline-based fatty acyl species 

clustered in - C) quadrant 1; D) quadrant 2, E) quadrant 3, and F) quadrant 4. Female mice were 

fed diets containing 1% n-3 PUFA (low n-3 PUFA diet) and 9% n-3 PUFA (high n-3 PUFA) during 

gestation and fetal brain choline-based fatty acyl species at gestation days (GD)12.5 and GD18.5 

were determined. Data were analyzed using two-way ANOVA to determine the main effects and 

the interactions between maternal diet and gestation stage; pairwise comparison using 

Bonferroni's correction was used to determine differences. Data represent the mean ± SD of 

nmol% of each of choline-based fatty acyl species in total choline-based fatty acyl species. Mean 

values with different superscript letters (a, b, c & d) are significantly different; p<0.05 (n = 8 

dams per group). Diacyl phosphatidylcholine (PC) and polyunsaturated fatty acids (PUFA), 

gestation day (GD). 
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Gestation had a significant effect on PC(16:0_20:4), but not on PC(18:1_20:4) which were 

clustered in Q3; as gestation progressed, PC(16:0_20:4) significantly increased (p < 0.0001) in 

low n-3 PUFA diet group only without significant change in high n-3 PUFA group (Figure 3.6 E). 

Diet had a significant effect on PC(16:0_20:4) and PC(18:1_20:4); a maternal diet high in n-3 

PUFA showed significantly lower level of PC(16:0_20:4), p < 0.0001 at GD18.5 only, whereas a 

high n-3 PUFA diet showed significantly lower level of PC(18:1_20:4), p = 0.001 at GD18.5 

compared with low n-3 PUFA diet at GD12.5. There was significant interaction between diet and 

gestation for PC(16:0_20:4), p = 0.0008 (Figure 3.6 E). 

Gestation had a significant effect on lipid species clustered in Q4 of PCA biplot; as 

gestation progressed, DHA-containing PC [PC(18:0_22:6)] significantly decreased (p = 0.002) 

only in high n-3 PUFA diet group with no significant change (p > 0.05) in low n-3 PUFA group, 

whereas PC(16:0_20:3) significantly decreased (p < 0.0001) in both low and high n-3 PUFA 

groups (Figure 3.6 F). Diet had significant effects on choline-based GP species clustered in Q4 of 

PCA biplot [PC(16:0_22:6)] but not PC(16:0_20:3) (Figure 3.6 F). A maternal diet high in n-3 

PUFA significantly promoted accretion of PC(16:0_22:6), p = 0.0003 at GD18.5 only, compared 

with low n-3 PUFA diet. There was a significant interaction between diet and gestation (p = 0.02) 

on PC(16:0_22:6) (Figure 3.6 F). 

3.6 Effects of maternal diets high or low in n-3 PUFA on minor brain lipids in the fetal brain 

during gestation 

As shown in the PLS-DA score plot (Figure 3.7 A), 13 of 26 minor brain lipids (PG, PS, 

CE, Cer, and PI) had VIP score ≥ 1.0, showing that they are affected by either or both diet and 

gestation. There was a clear separation of these 13 minor lipid species into different quadrants in 
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the PCA biplot with accumulated variability components, F1 and F2 explaining 80.59% variance 

in clustering of the lipid species (Figure 3.7 B).  

DHA-containing CE [CE(22:6)], OA-containing PG [PG(18:1_18:1) and PG(18:0_18:1)] 

and PA-containing PG [PG(16:0_16:0)] were clustered in Q1, corresponding with high n-3 PUFA 

diet at GD12.5 (Figure 3.7 B, High-GD12.5, Q1). OA-containing PG [PG(16:0_18:1)], DHA-

containing PS [PS(18:0_22:6)], palmitoleic acid-containing PG [PG(16:0_16:1)] and stearic acid-

containing Cer [Cer(d18:2_18:0) and Cer(d18:1_18:0)] were clustered in Q2 of PCA biplot, 

corresponding with high n-3 PUFA diet at GD18.5 (Figure 3.7 B, High-GD18.5, Q2). EPA-

containing PS [PS(18:0_22:5)] was the only minor brain lipid species clustered in Q3 of PCA 

biplot, corresponding with low n-3 PUFA diet at GD18.5 (Figure 3.7 B, Low-GD18.5, Q3). ARA-

containing PI [PI(18:0_20:4)], PA-containing Cer [Cer(d18:1_16:0)] and ADA-containing PS 

[PS(18:0_22:4)] were clustered in Q4 of PCA biplot, corresponding with low n-3 PUFA diet at 

GD12.5 (Figure 3.7 B, Low-GD12.5, Q4). 

Gestation had a significant effect on all the minor brain lipids clustered in Q1 of PCA 

biplot; as gestation progressed, oleic acid (18:1)-containing PG [PG(18:1_18:1)] significantly 

decreased (p = 0.0008) in high n-3 PUFA diet group, with no significant change in low n-3 PUFA 

group, whereas PG(18:0_18:1) and PG(16:0_18:1) significantly increased (p < 0.0001) in both low 

and high n-3 PUFA groups (Figure 3.7 C). DHA-containing CE [CE(22:6)] significantly decreased 

(p < 0.0001) as gestation progressed from GD12.5 to GD18.5 in the high n-3 PUFA diet group 

only with no significant change in low n-3 PUFA groups (Figure 3.7 C).  
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Figure 3.7: Effects of maternal diets high or low in n-3 PUFA on minor brain lipid fatty acyl 

species in fetal brain during gestation. A) Partial least-squares discriminant analysis (PLS-DA) 

score plot showing their variability importance in the progression (VIP); B) Principal component 

analysis (PCA) score plot of the minor brain lipid fatty acyl species; minor brain lipid fatty acyl 

species clustered in - C) quadrant 1; D) quadrant 2, E) quadrants 3 and 4. Female mice were fed 

diets containing 1% n-3 PUFA (low n-3 PUFA diet) and 9% n-3 PUFA (high n-3 PUFA) during 

gestation and fetal brain minor brain lipids fatty acyl species at gestation days (GD)12.5 and 

GD18.5 were determined. Data were analysed using two-way ANOVA to determine the main 

effects and the interactions between maternal diet and gestation stage; pairwise comparison using 

Bonferroni's correction was used to determine differences when there was an observed interaction. 

Data represent the mean ± SD of nmol% of each of minor brain lipid fatty acyl species in total of 

each of the minor brain lipid class. Mean values with different superscript letters (a, b, c & d) are 

significantly different; p<0.05 (n = 8 dams per group). Phosphatidylglycerol (PG), cholesteryl 

esters (CE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramide (Cer), polyunsaturated 

fatty acids (PUFA), and gestation day (GD). 
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A maternal diet high in n-3 PUFA significantly increased oleic acid (18:1)-containing PG 

[PG(18:1_18:1), PG(18:0_18:1) and PG(16:0_18:1), p = 0.0008, p < 0.0001 and p < 0.0001, 

respectively] and DHA-containing CE [CE(22:6), p < 0.0001] minor brain lipids, compared with 

low n-3 PUFA diet (Figure 3.7 C). There were significant interaction between diet and gestation 

in PG(18:0_18:1) and CE(22:6), p < 0.0001 and p = 0.006, respectively (Figure 3.7 C). As 

gestation progressed from GD12.5 to GD18.5, DHA-containing PS [PS(18:0_22:6), p < 0.0001] 

significantly increased in both low and high n-3 PUFA groups, whereas stearic acid (18:0)-

containing Cer [Cer(d18:1_18:0), p < 0.0001] and palmitoleic acid (16:1)-containing PG 

[PG(16:0_16:1), p < 0.0001] significantly increased in the low n-3 PUFA group (Figure 3.7 D). 

Stearic acid-containing Cer [Cer(d18:2_18:0)] significantly decreased (p < 0.0001) as gestation 

progressed in the high n-3 PUFA group only, whereas gestation had no significant effect on 

PG(16:0_16:0) (Figure 3.7 D).  

Diet had a significant effect on all the minor brain lipids clustered in Q2 of PCA biplot; a 

maternal diet high in n-3 PUFA significantly increased DHA-containing PS [PS(18:0_22:6), p < 

0.0001] in the fetal brain at both gestation stages. A maternal diet high in n-3 PUFA showed 

significantly lower level (p = 0.001) of Cer(d18:1_18:0) at GD18.5, whereas a high n-3 PUFA diet 

showed significantly higher level of Cer(d18:2_18:0), PG(16:0_16:0) and PG(16:0_16:1), p = 

0.003, p < 0.0001 and p = 0.0009, respectively at both gestation stages (Figure 3.7 D). There was 

a significant interaction between diet and gestation for Cer(d18:1_18:0), Cer(d18:2_18:0) and 

PG(16:0_16:0), p = 0.007, p = 0.002 and p = 0.001, respectively (Figure 3.7 D). 
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3.7 Effects of maternal diets high or low in n-3 PUFA on glycerolipids in the fetal brain during 

gestation 

Fifteen GL species, including tri (TG) and di (DG)-acylglycerols had VIP score ≥ 1.0 

showing that either or both diet and gestation influenced these species (Figure 3.8 A). The PCA 

biplot showed a significant separation of these 15 species into four quadrants with combined 

variability components F1 and F2 explaining 71.49% variance in clustering of the lipid species 

(Figure 3.8 B). OA-containing [DG(16:0_18:1)] DHA-containing GL species 

[TG(16:0_16:0_22:6) and TG(16:0_18:1_22:6)] and DGLA-containing [TG(16:0_20:3_20:3)] GL 

species were clustered in Q1 of PCA biplot, corresponding with high n-3 PUFA diet at GD18.5 

(Figure 3.8 B, High-GD18.5, Q1). ARA-containing [TG(O-12:0_6:0_20:4), TG(18:0_18:1_20:4) 

and TG(16:0_16:0_20:4)], PA-containing [TG(18:0_16:0_16:0) and TG(16:0_16:0_16:0)] and 

ALA-containing [TG(18:1_18:1_18:3)] GL species were clustered in Q2 of PCA biplot, 

corresponding with low n-3 PUFA diet at GD18.5 (Figure 3.8 B, Low-GD18.5, Q2). LA-

containing [TG(18:1_18:2_18:2) and TG(18:1_18:1_18:2)] and [TG(16:0_18:2_18:2)] GL species 

were clustered in Q3 of PCA biplot, corresponding with low n-3 PUFA diet at GD12.5 (Figure 3.8 

B, Low-GD12.5, Q3). Octanoic acid-containing [TG(8:0_8:0_8:0)] and stearic acid-containing 

[DG(18:0_18:0)] GL species were clustered in Q4 of PCA biplot, corresponding with high n-3 

PUFA diet at GD12.5 (Figure 3.8 B, High-GD12.5, Q4). 
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Figure 3.8: Effects of maternal diets high or low in n-3 PUFA on glycerolipids in the fetal brain 

during gestation. A) Partial least-squares discriminant analysis (PLS-DA) score plot showing 

their variability importance in the progression (VIP); B) Principal component analysis (PCA) 

score plot of the glycerolipids fatty acyl species; glycerolipids fatty acyl species clustered in - C) 

quadrant 1; D) quadrant 2, E) quadrant 3, and F) quadrant 4. Female mice were fed diets 
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containing either 1% n-3 PUFA (low n-3 PUFA diet) and 9% n-3 PUFA (high n-3 PUFA) during 

gestation and fetal brain glycerolipids (DG and TG) fatty acyl species at gestation days (GD)12.5 

and GD18.5 were determined. Data were analyzed using two-way ANOVA to determine the main 

effects and the interactions between maternal diet and gestation stage; pairwise comparison using 

Bonferroni's correction was used to determine differences. Data represent the mean ± SD of nmol% 

of each fatty acyl species in the fetal brain total diacylglycerols and total triacyglycerols. Mean 

values with different superscript letters (a, b, c & d) are significantly different; p < 0.05 (n = 8 

dams per group). Diacylglycerols (DG), triacylglycerols (TG), polyunsaturated fatty acids 

(PUFA), and gestation day (GD). 
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Gestation had a significant effect on the accretion of fetal brain GL species clustered in Q1 

of PCA biplot; as gestation progressed, OA-containing DG [DG(16:0_18:1), p < 0.0001], DGLA-

containing TG [TG(16:0_20:3_20:3), p < 0.0001], DHA-enriched [TG(16:0_16:0_22:6) and 

TG(16:0_18:1_22:6), p < 0.0001] GL species increased significantly in both low and high n-3 

PUFA groups (Figure 3.8 C). Diet had a significant effect on fetal brain GL species clustered in 

Q1 of PCA biplot; a maternal diet high in n-3 PUFA significantly increased the levels of 

DG(16:0_18:1), p = 0.001; TG(16:0_20:3_20:3), p < 0.0001; TG(16:0_16:0_22:6), p = 0.0002 and 

TG(16:0_18:1_22:6), p < 0.0001 as gestation progressed (Figure 3.8 C). 

Gestation had a significant effect on the accretion of fetal brain glycerolipids clustered in 

Q2 of PCA biplot; as gestation progressed, PA-containing [TG(18:0_16:0_16:0) and 

TG(16:0_16:0_16:0), p < 0.0001], ALA-containing [TG(18:1_18:1_18:3), p < 0.0001], ARA-

containing [TG(18:0_18:1_20:4), and TG(O-12:0_6:0_20:4), p < 0.0001 and p < 0.0001, 

respectively] GL species significantly increased in both low and high n-3 PUFA groups, whereas 

TG(16:0_16:0_20:4) significantly increased at GD12.5 only (Figure 3.8 D). Diet had a significant 

effect on ALA-containing [TG(18:1_18:1_18:3)] and ARA-containing [TG(18:0_18:1_20:4) and 

TG(16:0_16:0_20:4)]; a maternal diet high in n-3 PUFA showed significantly higher (p < 0.0001) 

level of TG(18:1_18:1_18:3) at both gestation stages, compared with low n-3 PUFA diet (Figure 

3.16 B). High n-3 PUFA diet showed significantly lower (p = 0.0003) level of TG(16:0_16:0_20:4) 

at both gestation stages, whereas a maternal diet high in n-3 PUFA showed significantly lower (p 

= 0.0005) level of TG(18:0_18:1_20:4) at GD18.5 only, compared to low n-3 PUFA diet (Figure 

3.8 D). There was a significant interaction between diet and gestation in ALA-containing 

[TG(18:1_18:1_18:3), p = 0.0006 (Figure 3.8 D).  
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Gestation had a significant effect on fetal brain glycerolipids clustered in Q3 of PCA biplot; 

LA-containing TG [TG(16:0_18:2_18:2 and TG(18:1_18:1_18:2), p < 0.0001] decreased as 

gestation progressed in low n-3 PUFA group only, whereas TG(18:1_18:2_18:2), p < 0.0001 

decreased in both low and high n-3 PUFA groups as gestation progressed (Figure 3.8 E). Maternal 

diet high in n-3 PUFA showed lower level of TG(18:1_18:1_18:2), p = 0.0002 in fetal brain at 

GD12.5 only, compared with low n-3 PUFA diet. There was a significant interaction between diet 

and gestation for TG(18:1_18:1_18:2), p = 0.0007 (Figure 3.8 E). 

Gestation had a significant effect on glycerolipids clustered in Q4 of PCA biplot; stearic 

acid-containing DG [DG(18:0_18:0)] and octanoic acid-containing TG [TG(8:0_8:0_8:0)] 

significantly decreased (p < 0.0001) as gestation progressed in both low and high n-3 PUFA group 

(Figure 3.8 F). Diet had no significant effect on GL clustered in Q4 of PCA biplot (Figure 3.8 F).  

3.8 Heatmap visualization of actively variable fetal brain lipid species  

The clustering of the actively varied fetal brain lipid species was visualized in a heatmap 

using MetaboAnalyst software 5.0 (https://new.metaboanalyst.ca/MetaboAnalyst/). Figure 3.9 

shows that all the DHA-containing lipid species in fetal brain clustered with the high n-3 PUFA 

diet at GD18.5 region, irrespective of the lipid class. Results also showed that n-6 PUFA-

containing lipid species decreased as gestation progressed, with lower levels found in high n-3 

PUFA diet group, compared with low n-3 PUFA diet group. The results of the heatmap summarizes 

the results presented in previous subsections that as gestation progressed, the accretion of DHA-

enriched lipid species increased and that maternal diets high in n-3 PUFA boost the accretion of 

DHA-enriched GP (Figure 3.9). 
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3.9 Lipid metabolic pathways analysis and predicted effects of maternal n-3 PUFA diet on lipid 

metabolic pathways during gestation 

Lipid metabolic analysis was performed using MetaboAnalyst software 5.0. Eight lipid 

pathways, including glycerophospholipids, steroid, glycosylphosphatidylinositol-anchor 

biosynthesis, glycerolipids, sphingolipid, arachidonic acid, linoleic acid, and α-linolenic acid 

metabolism pathways were impacted by n-3 PUFA diet (Figure 3.10 A). Interestingly, the 

glycerophospholipid pathway had the highest number of hits (4 hits), whereas other pathways had 

only one hit each. Although sphingolipid pathways had only one hit, the pathway impact score 

(0.27) was higher than glycerophospholipids with 4 hits and an average pathway impact score of 

0.26 (Table 3.2). Glycerolipid metabolic pathway with 1 hit has a pathway impact score of 0.014, 

while the GPI-anchor biosynthesis pathway has one hit and a pathway impact score of 0.004. Other 

pathways had very low pathway impact score less than 0.001 (Table 3.2). Statistically, 

glycerophospholipids and steroid metabolic pathways were significantly impacted by maternal n-

3 PUFA diet with p ≤ 0.05, whereas other lipid metabolic pathways were not statistically 

significantly (p > 0.05) impacted by maternal diet (Table 3.2).  

The impact of n-3 PUFA on major lipid species and predicted pathways implicated are 

shown in Figure 3.10 B. Interestingly, the fold change of DHA-containing lipids showed that they 

were enriched (green arrows) while oleic acid, LA and some ARA-containing lipid species were 

depleted (black arrows) by high n-3 PUFA diets. It was speculated that the effect of maternal diets 

on fetal brain lipidome was through the predicted pathways by influencing the activities of key 

enzymes associated with speculated pathways (shown in yellowish-brown texts in Figure 3.10 B). 
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Figure 3.9: Heatmap visualization of major lipid species. Lipid species in fetal brain were entered 

in MetaboAnalyst software 5.0 to visualize the enrichment (red cells) and depletion (blue cells) of 

different fetal lipid species in the experimental groups. Within low or high n-3 PUFA groups, lipid 

species with red cells at gestation day (GD)12.5 and blue cells at the GD18.5 shows depletion as 

gestation progressed from GD12.5 to GD18.5, whereas within GD12.5 and GD18.5, lipid species 

with blue cells in low n-3 PUFA and red cells at in high n-3 PUFA shows that maternal diet high 

in n-3 PUFA promoted the enrichment in the fetal brain. Note: the variation in nomenclature of 

lipids species in Figure 3.9 compared to other data is because MetaboAnalyst can only accepts 

the nomenclature shown in this Figure, and not the nomenclature on the other Figures/Tables. 
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Figure 3.10: Lipid metabolic pathways analysis and predicted effects of maternal n-3 PUFA diet 

on lipid metabolic pathways during gestation. A) Lipid species in fetal brain were entered in 
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MetaboAnalyst software 5.0 to analyze the impact of diet on lipid metabolic pathways by matching 

fetal brain lipid species with compounds in human metabolic database of lipid metabolic 

pathways. The number of matching lipid species with compounds in a metabolic pathway database 

is identified as hits while the influence of diet on the pathways is ranked as pathway impact scores. 

Pathway score > 0.10 is considered substantially impacted by treatment under consideration (ex. 

n-3 PUFA) (Liu et al., 2019). B) The difference between the mean of nmol% of high n-3 PUFA and 

low n-3 PUFA for each lipid species in fetal brain was calculated and species positive values 

represent enriched species (↑) while species with negative values were considered depleted species 

(↓). Based on the metabolic pathway the lipid species belong to, we predicted that the changes in 

levels of lipid species by n-3 PUFA could be linked with alteration in expression of key enzymes of 

the pathway (shown in yellowish brown texts). It was predicted that n-3 PUFA could affect the 

referenced pathways by altering the key enzymes of the pathways; the increased or decrease of 

glycerolipids species (DG and TG) could be attributed to alteration in specific phosphatidic acid 

phosphatase (PAP) and acyl-CoA:diacylglycerol acyltransferase (DGAT), respectively. We also 

predicted that n-3 PUFA could influence plasmalogens and plasmanyl species metabolism by 

altering the expression of glyceronephosphate O-acyltransferase (GNPAT) = alkylglycerone 

phosphate synthase (AGPS), by altering the key enzymes of ether lipids. For GP metabolic 

pathways, it was predicted that n-3 PUFA influenced DHA-containing PS, PE, PC and LPC species 

by altering PS synthases (PSS), PS decarboxylase (PSD), PE methyltransferase (PEMT) and 

phospholipases (PLs), respectively. For the SP and sterolipids metabolic pathways, the enzymes 

predicted to be affected were sphingosine phosphatases (SPP) and lecithin cholesterol acyl 

transferase (LCAT), respectively. Glycerophospholipids (GP); glycosylphosphatidylinositol 

(GPI); α-linolenic acid (ALA); sphingolipids (SP); phosphatidylserine (PS), phosphatidylcholine 

(PC); ethanolamine plasmalogens (P-PE); plasmanyl ethanolamine (O-PE), and plasmanyl 

choline (O-PC).   
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We predicted that the increase in DHA-containing LPC by n-3 PUFA diet is predicted to 

be increased activity of specific phospholipases (PLs), while the increase in DHA-containing PE 

and PS species could be attributed to availability of DHA for synthesis of PE and an increase in 

the activity of PS synthase (PSS) and PS decarboxylase (PSD) in fetal brain. We also predicted 

that the influence of n-3 PUFA on glycerolipid metabolism (DG and TG species) could be 

attributed to altered expression of phosphatidic acid phosphatase and acyl-CoA:diacylglycerol 

acyltransferase-2 (DGAT-2), respectively (Figure 3.10 B).  

As shown in Figure 3.10 B, it is predicted that n-3 PUFA could influence metabolism of 

ether lipids, including ethanolamine plasmalogen, plasmanyl ethanolamine and plasmanyl choline, 

by altering the expression of glyceronephosphate O-acyltransferase (GNPAT) and alkylglycerone 

phosphate synthase (AGPS), the key enzymes of ether lipid metabolic pathways. Furthermore, 

alterations in GP metabolic pathways such as PS, PE, PC and LPC metabolism by n-3 PUFA could 

be attributed to influence on PS synthases (PSS), PS decarboxylases (PSD), PE methyltransferases 

(PEMT) and phospholipases (PLs), respectively, whereas that of sphingolipid metabolism could 

be attributed to alteration of sphingosine phosphatases (SPP) (Figure 3.10 B). 

3.10 Effects of maternal n-3 PUFA diets during gestation on the concentration of lipid 

headgroups in computationally constructed fetal neuronal membranes 

Lipidomics data were used to computational construct neuronal membranes models representing 

the four experimental groups (see methods and Appendices 2-6 for details, Figure 3.11). Choline-

based lipids were more concentrated in the outer leaflet, ethanolamine-based lipids were more 

concentrated in the inner leaflet, while PS and PI were exclusively found in the inner leaflet (Figure 

3.11).  
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Table 3.2: Summary of the metabolic pathway analysis of fetal brain lipid species  

Pathway name Total compounds Hits Impacts Raw p-value -log10(p) 

Steroid biosynthesis 42 1 0.0000 0.0206 1.6861 

GP metabolism 36 4 0.2630 0.0572 1.2426 

Glycerolipid metabolism 16 1 0.0140 0.6200 0.2076 

Arachidonic acid metabolism 36 1 0.0000 0.6700 0.1739 

Linoleic acid metabolism 5 1 0.0000 0.6700 0.1739 

ALA metabolism 13 1 0.0000 0.6700 0.1739 

GPI-anchor biosynthesis 14 1 0.0040 0.6700 0.1739 

Sphingolipid metabolism 21 1 0.2700 0.9900 0.0044 

Data presented in the table represent the pertubation of different lipid metabolic pathways by n-3 

PUFA; the total number of lipid species (total compounds) in database of each metabolic pathway 

and number of lipid species in the fetal brain (Hits). Lipid pathways with higher number of hits 

and pathway impacts are altered more by the treatment (n-3 PUFA diet in our study). Total 

compounds = the total number of metabolites in the pathway; Hits = the actual number of lipid 

species matched from our data; Impact = the pathway impact value calculated from pathway 

topology analysis; GPI = glycosylphosphatidylinositol; GP = Glycerophospholipid; ALA = α-

Linolenic acid. 
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Maternal diets high in n-3 PUFA revealed higher concentration of ethanolamine-based 

lipids in the fetal neuronal membrane as gestation progressed, compared with low n-3 PUFA diet, 

whereas high n-3 PUFA diets showed higher concentration of choline-based lipids in the fetal 

neuronal membrane as gestation progressed (Figure 3.11). The concentrations of lipid species in 

the fetal neuronal membrane models described above were dependent on the membrane model set-

up from lipidomics data as reported previous (Ingólfsson et al., 2017). CE and TG were observed 

to flip-flop between the leaflets (characteristic of membrane lipids with poor polarity) while GP 

and SP remained in their original locations in the inner and outer membrane leaflets (Figure 3.11).  

3.11 Effects of maternal diets high in n-3 PUFA on the thickness, area per lipid, and CE flip-flop 

rate of fetal neuronal membrane 

Gestation had a significant (p < 0.0001) effect on the fetal neuronal membrane thickness; 

as gestation progressed, there was a decrease in fetal membrane thickness in both low and high n-

3 PUFA diet groups (Figure 3.12 A). Diet had a significant (p < 0.0001) effect on the fetal 

membrane thickness; a maternal diet high in n-3 PUFA showed lower membrane thickness at 

GD12.5 (39.16 ± 0.00 Å), compared with low n-3 PUFA diet (38.80 ± 0.00 Å) (Figure 3.12 A). 

However, at GD18.5, a higher membrane thickness was observed in high n-3 PUFA diet group 

(38.40 ± 0.00 Å), compared with low n-3 PUFA diet group (38.20 ± 0.00 Å). There was a 

significant interaction between diet and gestation for the fetal neuronal membrane thickness (p < 

0.0001) (Figure 3.12 A). 
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Figure 3.11: Representative snapshots from 10 μs molecular dynamics simulations of fetal 

neuronal membrane to show the location of the glycerophospholipids (GP) headgroups, 

cholesteryl esters (CE), and triacyglycerols (TG), and the clustering of lipid species in the upper, 

and lower leaflets of fetal neuronal plasma membrane models. Image were created using visual 

molecular dynamics (VMD) (Humphrey et al., 1996); For the membranes shown in the left-hand 

side, dark-blue beads represent GP headgroups, ochre beads represent CE and light pink beads 

represent TG. For the leaflets shown in the right-hand side, red beads represent PC, yellow beads 

represent PE, black beads represent PS, white beads represent PI, blue beads represent PG, purple 

beads represent SM, and green beads represent Cer. GD = gestation day. 
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Gestation had a significant (p < 0.0001) effect on the APL of fetal neuronal membrane; the 

APL of fetal neuronal membrane increased in both low and high n-3 PUFA diet groups as gestation 

progressed (Figure 3.12 B). Diet had a significant (p < 0.0001) effect on the APL of fetal neuronal 

membrane; a maternal diet high in n-3 PUFA diet showed higher APL at both gestation stages 

(70.00 ± 0.00 Å2 and 71.13 ± 0.01 Å2 for GD12.5 and GD18.5, respectively), compared with low 

n-3 PUFA diet (68.95 ± 0.01 Å2 and 69.92 ± 0.01 Å2 for GD12.5 and GD18.5, respectively). There 

was a significant interaction between diet and gestation for APL in fetal neuronal membrane (p < 

0.0001) (Figure 3.12 B).  

Gestation had a significant (p < 0.0001) effect on CE flip-flop rate in fetal neuronal 

membrane; as gestation progressed in both low and high n-3 PUFA diet groups, CE flip-flop rate 

decreased (p < 0.0001) (Figure 3.12 C). Diet had significant (p < 0.0001) effect on CE flip-flop 

rate; as gestation progressed, high n-3 PUFA diet showed lower CE flip-flip rate (9.81 ± 0.09 x106 

s-1 and 6.47 ± 0.23 x106 s-1 at GD12.5 and GD18.5, respectively) between fetal neuronal membrane 

leaflets, compared with low n-3 PUFA diet (12.28 ± 0.05 x106 s-1 and 7.64 ± 0.10 x106 s-1 at GD12.5 

and GD18.5, respectively). There was a significant interaction between diet and gestation for CE 

flip-flop rate (p < 0.0001) (Figure 3.12 C).  

Maternal n-3 PUFA diets had no significant effect on the average lipid diffusion rate (6.25 

± 0.20 vs 6.42 ± 0.25 10-7 cm2/s at GD12.5; 6.73 ± 0.17 vs 6.86 ± 0.15 10-7 cm2/s at GD18.5, for 

both low and high n-3 PUFA groups, respectively) (Appendix 11).  
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               A             B               C 

Figure 3.12: Effects of maternal diets high in n-3 PUFA on the membrane dynamic parameters 

in fetal neuronal membrane. A) membrane thickness; B) area per lipid; C) CE flip-flop rate. 

Molecular dynamic simulation of the computed membrane data was done in triplicate for 10 μs. 

The membrane thickness was analyzed using FATSLiM software (Buchoux, 2017), area per lipid 

(APL), and cholesteryl esters (CE) flip-flop rate were analyzed using LiPyphilic software (P. Smith 

& Lorenz, 2021). The simulation data were analysed using two-way ANOVA to determine the main 

effects and the interactions between maternal diet and gestation stage; pairwise comparison using 

Bonferroni's correction was used to determine differences when there was an observed interaction. 

Significant level was set at p < 0.05 (n = 3 per group). 
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3.12 Maternal n-3 PUFA dietary intake during gestation influenced the formation of lipid 

domains in fetal neuronal membrane 

Lipid domains PG/SM, PI/Cer, PI/PE, and SM/Cer were enriched in high n-3 PUFA fetal 

neuronal membrane at both gestation stages; however, they were neither enriched nor depleted in 

the low n-3 PUFA fetal neuronal membrane at both gestation stages (Table 3.3). The contact 

fraction values of the above domains increased as gestation progressed in the high n-3 PUFA diet 

membranes (Table 3.3). Lipid domains CE/CE, CE/PE, Cer/PC, PC/CE, and PE/PE were enriched 

in all the domains except in the low n-3 PUFA diet at GD12.5 membrane, which was neither 

enriched nor depleted. Additionally, the contact fraction values of these enriched domains 

increased as gestation progressed in the high n-3 PUFA diet membranes (Table 3.3).  

Lipid domains PC/PS, PS/PE, and PS/SM were enriched in all the membranes except in 

the high n-3 PUFA diet at GD18.5 membrane, which was neither enriched nor depleted. As 

gestation progressed, the contact fraction values of these domains decreased, and they were lower 

in the high n-3 PUFA diet membrane compared with the low n-3 PUFA diet membrane (Table 3.3).  

Lipid domain PC/SM was enriched only in the high n-3 PUFA diet at GD18.5 membrane 

and was neither enriched nor depleted in other membranes (Table 3.3). On the other hand, PE/PI 

was enriched in the low n-3 PUFA diet at GD12.5 membrane and was neither enriched nor depleted 

in other membranes (Table 3.3).  

Lipid domain CE/PG was enriched in the low n-3 PUFA diet at GD18.5 and high n-3 PUFA 

diet at GD18.5 membranes but was neither enriched nor depleted in other membranes (Table 3.3). 

Meanwhile, Cer/PG was enriched in the low n-3 PUFA diet at GD18.5 membrane but was neither 

enriched nor depleted in other membranes (Table 3.3). 
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Table 3.3: Maternal n-3 PUFA dietary intake during gestation influenced the formation of lipid domains 

in fetal neuronal membranes 

Domains   
Groups 

Low-GD12.5 Low-GD18.5 High-GD12.5 High-GD18.5 

PG/SM 1.09 ± 0.07 0.85 ± 0.08 1.20 ± 0.18 1.46 ± 0.22 

PI/Cer 1.06 ± 0.06 1.12 ± 0.12 1.20 ± 0.01 1.49 ± 0.05 

PI/PE 1.10 ± 0.04 1.15 ± 0.02 1.21 ± 0.03 1.37 ± 0.02 

SM/Cer 1.08 ± 0.06 1.15 ± 0.10 1.34 ± 0.01 1.49 ± 0.18 

CE/CE 1.09 ± 0.02 1.41 ± 0.08 1.30 ± 0.04 1.51 ± 0.05 

CE/PE 1.14 ± 0.03 1.45 ± 0.03 1.26 ± 0.02 1.48 ± 0.02 

Cer/PC 1.10 ± 0.06 1.30 ± 0.10 1.30 ± 0.10 1.40 ± 0.22 

PE/CE 1.09 ± 0.03 1.39 ± 0.02 1.20 ± 0.02 1.39 ± 0.02 

PE/PE 1.10 ± 0.03 1.35 ± 0.05 1.19 ± 0.05 1.32 ± 0.04 

PC/PS 1.37 ± 0.00 1.32 ± 0.00 1.24 ± 0.00 1.06 ± 0.00 

PS/PE 1.37 ± 0.19 1.32 ± 0.16 1.24 ± 0.12 1.05 ± 0.03 

PS/SM 1.35 ± 0.00 1.29 ± 0.01 1.21 ± 0.01 1.03 ± 0.00 

PC/SM 1.06 ± 0.03 1.12 ± 0.06 1.13 ± 0.06 1.29 ± 0.14 

PE/PI 1.21 ± 0.11 0.90 ± 0.10 1.13 ± 0.06 1.04 ± 0.02 

CE/PG 1.03 ± 0.02 1.20 ± 0.09 1.14 ± 0.02 1.24 ± 0.03 

Cer/PG 0.99 ± 0.05 1.22 ± 0.00 1.00 ± 0.00 1.10 ± 0.00 

CE/SM 0.80 ± 0.03 0.41 ± 0.06 0.60 ± 0.03 0.45 ± 0.03 

CE/PC 0.84 ± 0.04 0.42 ± 0.06 0.64 ± 0.04 0.45 ± 0.02 

PS/Cer 0.59 ± 0.02 0.61 ± 0.02 0.67 ± 0.02 0.82 ± 0.05 

SM/PE 0.68 ± 0.14 0.65 ± 0.20 0.72 ± 0.09 0.86 ± 0.09 

PE/PS 0.88 ± 0.00 0.78 ± 0.01 0.25 ± 0.00 0.96 ± 0.01 

PG/PI 0.80 ± 0.13 0.82 ± 0.08 0.73 ± 0.16 0.64 ± 0.17 

SM/PI 0.87 ± 0.02 0.85 ± 0.00 0.77 ± 0.01 0.65 ± 0.00 

PG/PG 0.70 ± 0.02 0.80 ± 0.08 0.90 ± 0.05 1.00 ± 0.02 

PS/PG 0.91 ± 0.02 0.88 ± 0.05 0.83 ± 0.08  0.67 ± 0.17 

Molecular dynamic simulation of the fetal neuronal membrane was done in triplicate for 10 µs. 

The formation of lipid domains in the fetal neuronal membranes were determined by calculating 

contact fractions. Contact fraction of lipid species B around species A within 1.2 nm was 

calculated by dividing the number of molecules of species B around species A (NAB) by the mean 
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number of species B around any species [NB]  using LiPyphilic software (P. Smith & Lorenz, 2021).  

The mean ± standard error of the mean (SEM) (n = 3 per group) was determined and presented in 

the Table 3.3. Lipid domains with contact fraction values < 0.8 (in red color cells) represent 

depleted domains, domains with contact fraction values > 0.8 and less than 1.2 (in yellow color 

cells) represent domains that were neither depleted nor enriched and domains with contact fraction 

values ≥ 1.2 (in blue color cells) represent enriched domains. Only domains that were enriched 

and/or depleted by diet or gestation in 1-3 membranes were shown in Table 3.3, while domains 

that were enriched, depleted, or neither enriched nor depleted in all the four membranes were 

shown in Appendix 12. 
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The lipid domains CE/SM and CE/PC were depleted in all the membranes except in the 

low n-3 PUFA diet at GD12.5 membranes, which were neither enriched nor depleted, whereas 

PS/Cer and SM/PE were depleted in all the membranes except in the high n-3 PUFA diet at GD18.5 

membranes, which was neither enriched nor depleted (Table 3.3). 

Lipid domain PE/PS was depleted in low n-3 PUFA diet at GD18.5 and high n-3 PUFA diet 

at GD12.5 membranes but was neither enriched nor depleted in the low n-3 PUFA diet at GD12.5 

and high n-3 PUFA diet at GD18.5 membranes (Table 3.3). Lipid domains PG/PI and SM/PI were 

depleted in the high n-3 PUFA diet membranes at both gestation stages but were neither enriched 

nor depleted in the low n-3 PUFA diet at both gestation stages (Table 3.3). Lipid domain PG/PG 

was neither enriched nor depleted in all the membranes except in the low n-3 PUFA diet at GD12.5 

membranes, which was depleted. On the other hand, PS/PG was neither enriched nor depleted in 

all the membranes except in the high n-3 PUFA diet at GD18.5 membranes, which was depleted 

(Table 3.3). 

Lipid domains CE/PI, CE/Cer, Cer/Cer, Cer/PE, Cer/SM, PC/PC, PE/PG, PE/Cer, PI/PS, 

SM/SM, and SM/PC were enriched in all the membranes (Appendix 12). The contact fraction of 

these domains increased as gestation progressed, and higher levels in the high n-3 PUFA diet, 

compared with the low n-3 PUFA diet, except Cer/Cer and PI/PS, which decreased as gestation 

progressed and lower l in the high n-3 PUFA compared with low n-3 PUFA diet membranes 

(Appendix 12). Meanwhile, CE/PS, PC/PG, PC/Cer, PG/Cer, PI/PG, and PI/PI were neither 

enriched nor depleted in all the membranes. On the other hand, Cer/CE, Cer/PS, Cer/PI, PC/PI, 

PC/PE, PC/CE, PE/SM, PE/PC, PG/CE, PG/PC, PG/PS, PG/PE, PI/CE, PI/PC, PI/SM, PS/PC, 

PS/CE, SM/PG, and SM/PS were depleted in all the membranes (Appendix 12). 
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CHAPTER FOUR 
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4.1. Gestation stages and diet affect brain lipidome 

Our laboratory have previously showed that total brain DHA increases in fetal brain from 

mid (GD12.5) to late (GD18.5) gestation stages, and that maternal diets enriched in n-3 PUFA 

further increases the accretion of total DHA in the fetal brain during gestation (Akerele & Cheema, 

2020). However, the fatty acid profile was studied in total extracted brain lipids; the specific lipid 

species with which DHA was associated was not investigated. Furthermore, changes in all lipid 

classes and their associated fatty acyl species during gestation were not studied.  

Results of the present study show for the first time that fetal brain lipidome changes within 

pregnancy window, and diets low and high in n-3 PUFA further influenced brain lipidomics profile 

as summarized in our heatmap (Figure 3.9). The overall summary of our findings show that 

maternal diets high in n-3 PUFA promoted the accretion of DHA-enriched ethanolamine-based 

lipids and increased indices of membrane fluidity and formation of lipid domains that are 

associated with neurogenesis, memory and cognition (as summarized in Appendices, 13, 14 and 

15).  

We found that maternal diet high in n-3 PUFA promoted the enrichment of total 

ethanolamine-based GP and total PE, compared to low n-3 PUFA diet in fetal brain as gestation 

progressed. The ability of high n-3 PUFA diet to promote accretion of ethanolamine-based GP, 

specifically PE, as early as GD12.5 is interesting because ethanolamine-based GP are critical in 

neurogenesis, myelinogenesis, neuroprotection and stabilization of membrane structure (Tasseva 

et al., 2012). Interestingly, there was an interaction between diet and gestation for P-PE, revealing 

lower levels in the high n-3 PUFA diet at late gestation, compared to low n-3 PUFA diet. On the 

other hand, O-PE increased as gestation progressed, and was higher in the high n-3 PUFA group 
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compared to the low n-3 PUFA group. The higher amounts of O-PE with concomitant lower P-PE 

in the high n-3 PUFA group suggest a reduction in the activity of phosphatidate phosphohydrolase 

(PPH), as predicted in our pathway analysis (Figure 3.10 B). PPH is the enzyme that converts 1-

alkyl-glycerol-3-phosphate to alkylacylglycerophosphate for synthesizing plasmalogens  

(Farooqui et al., 2008; Messias et al., 2018). As the precursor of P-PE, the accretion of O-PE in 

the fetal brain may benefit the developing brain by boosting cognitive function and protecting 

brain cells from damages (Ifuku et al., 2012; Katafuchi et al., 2012; Hossain et al., 2023).  

Our results further show that MUFA-containing PE [PE(16:0_18:1), PE(18:1_18:1), 

PE(16:1_18:1), and PE(16:0_16:1)], and P-PE [PE(P-16:0_18:1)] decreased as gestation 

progressed, and the levels of PE(16:0_18:1) and PE(P-16:0_18:1) were lower in high n-3 PUFA 

group. It has been previously shown that total MUFA, palmitoleic acid, and OA in the fetal brain 

decreased as gestation progressed, and with a diet high in n-3 PUFA ( Kuipers et al., 2012; Akerele 

& Cheema, 2020). In the current study, the reduction in fetal brain MUFA profile during gestation 

is likely partly associated with a decrease in palmitoleic acid and OA-containing PE/O-PE/P-PE 

species. A reduction in MUFA-containing PE/O-PE (especially C16:1 and C18:1) could be due to 

the conversion of these species to longer-chain MUFA that are essential for myelination and axonal 

function (Velasco et al., 2003). 

As gestation progressed, n-6 PUFA-containing PE/P-PE [PE(18:1_18:2), PE(P-16:1_20:4), 

PE(P-16:0_20:4), PE(P-16:0_22:4), and PE(P-18:0_22:4)] significantly decreased (p < 0.0001) in 

all groups. This aligns with our previous findings that showed a decrease in total n-6 PUFA and 

LA in fetal brain total lipid extract as gestation progressed (Akerele & Cheema, 2020). The 

decrease in the n-6 PUFA-containing PE/O-PE species could be attributed to the gestation-related 

increase in mobilization and oxidation of n-6 PUFA by cytosolic phospholipase A2 (cPLA2) 
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activity during gestation (Skannal et al., 1997). Mobilized ARA could also serve as a precursor for 

the synthesis of endocannabinoids that are crucial in brain development and function (Wei et al., 

2016, 2017). The lower ARA-containing PE/O-PE could also be a compensatory response to the 

accretion of DHA-containing PE/O-PE (Wainwright et al., 1991) and to minimize the impact of 

increased ARA on impairing BDNF signaling needed for neurogenesis, cognition, and memory 

(Fan et al., 2016). The high n-3 PUFA group generally showed lower levels of n-6 PUFA [PE(P-

16:0_20:4), PE(P-16:0_22:4), and PE(P-18:0_22:4)]-containing PE/O-PE species, compared with 

the low n-3 PUFA groups. Our previous findings showed lower levels of n-6 PUFA in fetal and 

offspring’s brains of dams fed high fed high n-3 PUFA diet (Balogun & Cheema, 2014; Feltham 

et al., 2019; Akerele & Cheema, 2020); our current results suggest that reduction in the fetal brain 

n-6 PUFA profile is likely partly associated with P-PE/PE.  

DPA-containing P-PE [PE(P-16:0_22:5), PE(P-18:0_22:5)] and PE [PE(18:0_22:5) 

decreased as gestation progressed, and showed lower levels in high n-3 PUFA group, compared 

with low n-3 PUFA group. These findings agree with our previous findings where fetal brain 

showed a reduction in DPA level fed similar diets as gestation progressed (Akerele & Cheema, 

2020). The lower amount of DPA-containing ethanolamine-based GP is likely due to increased 

conversion of DPA to DHA for incorporation into ethanolamine-based GP as predicted by pathway 

analysis (Figure 3.10 B). 

According to the literature review, the effect of maternal dietary n-3 PUFA on fetal brain 

DHA-containing PE profile has not been previously reported. A diet high in n-3 PUFA boosted the 

accretion of DHA-containing PE and O-PE by over 2-fold as early as GD12.5, compared with a 

low n-3 PUFA diet. Akerele & Cheema (2020) previously showed similar findings; however, the 

current findings suggest that the accretion of DHA in the fetal brain by a high n-3 PUFA diet is 
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associated with PE/O-PE. Suzuki et al. (1998) reported that intake of a high n-3 PUFA diet for 12 

months increased adult mice brain DHA-containing PE levels. It is interesting to note that in our 

study, maternal diets high in n-3 PUFA also caused fetal brain enrichment of DHA in PE and O-

PE during gestation. One mechanism through which n-3 PUFA could achieve this is via inhibition 

of calcium-independent iPLA2 to suppress the mobilization of DHA incorporated in brain GP 

(Bousserouel et al., 2003; Rao et al., 2007). N-3 PUFA may increase fetal brain DHA-containing 

O-PE by upregulating expression and/or activities of GNPAT and AGPS, the rate-determining 

enzymes in ether lipid biosynthesis as predicted by our pathway analysis (Fig. 3.10 B). The 

increase in DHA-containing ether lipids is crucial because they increase BDNF expression 

(Hossain et al., 2022) and inhibit γ-secretase, the enzyme that synthesizes amyloid-β peptides 

implicated in neurodegeneration (Onodera et al., 2015). We previously showed that maternal diets 

high in n-3 PUFA improved the accretion of DHA in fetal brain that correlated with upregulation 

of BDNF expression (Akerele & Cheema, 2020). As BDNF promotes neurogenesis and 

neuroprotection (Numakawa et al., 2018), the results of the present study suggest that prenatal 

exposure to the high n-3 PUFA diet will improve brain development and overall brain health, and 

reduce the risk of neurodegenerative diseases in postnatal life due to correlation of DHA accretion, 

BDNF and lower risk of neurodegenerative diseases. Although the functional difference between 

diacyl and ether-containing GPs is unclear, the presence of vinyl ether bonds in ether-linked 

phospholipids may influence their physicochemical properties and health benefits such as 

modulating membrane fluidity, anti-inflammatory and antioxidant properties (Hossain et al., 

2013).  

Our results showed a significant interaction between diet and gestation, revealing a decline 

in total choline-based GP, and PC as gestation progressed, with lower levels of P-PC in the high 
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n-3 PUFA group, compared with the low n-3 PUFA group. This agrees with the previous report 

that fetal brain total PC declines during late gestation (Burdge & Postle, 1995). As far as we know, 

there are no publications to date showing the influence of diets high or low in n-3 PUFA on fetal 

brain choline-based GP during gestation window. A diet high in n-3 PUFA promoted the accretion 

of DHA-containing PC as gestation progressed, compared with a low n-3 PUFA diet. Our research 

group has previously shown accretion of DHA in the fetal brain from dams fed a high n-3 PUFA 

diet. However, this was measured in the total fetal brain. Our current findings suggest that the 

accretion of DHA in the fetal brain by a maternal high n-3 PUFA diet is associated with PC. The 

accretion of DHA-containing PC during fetal brain development is crucial because it has been 

reported to alleviate oxidative stress, inflammation, apoptosis, and spatial deficits in Aβ1–40 rats 

and improve learning performance (Wen et al., 2016). Aβ1–40 rats are AD models known to be 

associated with oxidative stress, one of the pathogenetic mechanisms of AD (Ul Amin et al., 2017). 

ARA-containing PC [PC(16:0_20:4)] showed a significant interaction of diet and 

gestation, revealing an increase as gestation progressed, and lower levels of PC(16:0_20:4) and 

PC(18:1_20:4) in high n-3 PUFA group, compared with high n-3 PUFA diet. A similar finding was 

shown previously by our research group on mice fed a similar diet (Akerele & Cheema, 2020), 

and show that the depletion of ARA in the fetal brain is likely associated with PC. The mechanism 

behind the lower ARA-containing PC via a gestation-dependent increase in higher iPLA2 activity 

might be a protective strategy as ARA regulates BDNF signaling, leading to impairment of 

neurogenesis and upregulation of apoptosis of neuronal cells (Fan et al., 2016); hence, the lower 

level of ARA-containing PC in the fetal brain may promote BDNF signaling and the associated 

benefits on memory and cognitive performance. Additionally, elevated PC(16:0_20:4) was 

associated with reactive microglia and astrocytes (indicators of neuroinflammation) in peripheral 
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nervous injury (Xu et al., 2016), suggesting that reduction in this species during gestation and by 

high n-3 PUFA will protect the developing brain from neuroinflammatory assaults.  

Stearic acid-containing PC [PC(18:1_18:0) and PC(16:0_18:0)] a significantly increased 

as gestation progressed with higher levels in the high n-3 PUFA group, compared with the low n-

3 PUFA group. The increase in stearic acid-containing PC in the fetal brain and in the high n-3 

PUFA group could be linked to increased fatty acid biosynthesis during gestation and by high n-3 

PUFA diet in response to a high lipid demand during gestation (Akerele & Cheema, 2017). 

Accretion of stearic acid in the fetal brain is beneficial due to its protective nature against brain 

cells’ assaults ( Wang et al., 2006); it is also a precursor of erucic acid and nervonic acid, which 

are crucial for myelination (Namiecinska et al., 2024). 

A maternal diet high in n-3 PUFA increased the accretion of LPC in the fetal brain, with 

further accretion as gestation progressed. The increase in LPC with the concomitant decrease in 

PC could be attributed to the increased breakdown of PC to LPC by PLA2 during gestation 

(Besenboeck et al., 2016). The increase in LPC during gestation and by high n-3 PUFA diet is 

interesting because LPC is a major pathway for transporting DHA and other n-3 PUFA into the 

brain through Mfsd2a (Nguyen et al., 2014; Bergman et al., 2023). DHA-containing LPC 

[LPC(22:6)] showed a significant interaction between diet and gestation, revealing a significant 

increase as gestation progressed, and over 2-fold higher level in the high n-3 PUFA diet, compared 

with the low n-3 PUFA diet. Our research group previously showed that maternal diets high in n-

3 PUFA upregulated Mfsd2a expression in the fetal brain during gestation (Akerele & Cheema, 

2020). The accretion of LPC(22:6) in the fetal brain during gestation may reduce the risk of 

neurological diseases associated with neuroinflammation (Gilhus & Deuschl, 2019), and improve 
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memory and cognitive function as LPC(22:6) was reported to inhibit neuroinflammation (Hung et 

al., 2011) and enhance memory and cognition (Sugasini et al., 2017). 

Minor brain lipids (sum of PS, PG, PI, Cer, SM, and CE) in fetal brain total lipids increased 

as gestation progressed with a higher level in the high n-3 PUFA group, compared with the low n-

3 PUFA group. We further analyzed the effect of gestation and diet on individual lipid classes that 

make up the minor brain lipids. Our findings showed that PS increased as gestation progressed, 

with a higher level in the high n-3 PUFA diet, compared with the low n-3 PUFA diet. N-3 PUFA 

has been reported to increase PS synthesis in cultured neuronal cells (Guo et al., 2007), supporting 

the higher PS level in the high n-3 PUFA group, compared with the low n-3 PUFA group in our 

study. We speculate that n-3 PUFA may increase fetal brain PS level by increasing 

phosphatidylserine synthase I (PSS-1)-mediated conversion of PC to PS (Bergo et al., 2002) as 

can be deduced from the enrichment of PS with a concomitant depletion PC in the high n-3 PUFA 

group, compared with low n-3 PUFA group. N-3 PUFA may have also increased the synthesis of 

PS from DG by PSS-2, as predicted from our pathway analysis (Figure 3.10 B). The accretion of 

PS in the fetal brain during brain development is critical because PS promotes neurotransmission 

and prevents neuroinflammation (Zhao et al., 2018), and increases the formation of neurotrophins, 

neuroprotectins, and synaptamide that boost synaptogenesis and synaptic transmission through Akt 

and cAMP/PKA/CREB signaling pathways  (Kim et al., 2019; Kim et al., 2022). Moreover, mice 

fed n-3-deficient diets from in-utero until two months old had lower brain total PS levels (Hamilton 

et al., 2000). This report further demonstrates that consumption of adequate n-3 PUFA during 

gestation to boost fetal brain PS will promote fetal brain development and function, by promoting 

synaptogenesis and synaptic neurotransmission and protecting brain cells against assaults  (Park 

et al., 2021). For the first time, we report that a high n-3 PUFA diet promoted the accretion of 
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DHA-containing PS [PS(18:0_22:6)] in the fetal brain as early as GD12.5 and by approximately 2 

fold, with further increases as gestation progressed from GD12.5 to GD18.5. DHA-containing PS 

is critical for neurogenesis and myelination (Kim et al., 2010), and neuronal cell survival 

(Kawakita et al., 2006); hence, the accretion of DHA-containing PS in the fetal brain as gestation 

progressed by n-3 PUFA diet will promote brain development and protect developing brain from 

assaults. Our results further support the need for the consumption of adequate amounts of n-3 

PUFA during gestation as n-3 PUFA-deficient diets during gestation until eight weeks showed 

depleted brain DHA-containing PS, which resulted in cognitive impairment (Hamilton et al., 

2000); hence, the accretion of DHA-containing PS in fetal brain may promote cognitive function 

across the lifespan. 

Our findings showed a drastically lower DPA-containing PS [PS(18:0_22:5)] level in the 

high n-3 PUFA group, compared with the low n-3 PUFA group. Akerele & Cheema (2020) 

previously showed a similar reduction in DPA of the fetal brain fed high n-3 PUFA, suggesting 

that lower fetal brain DPA in the high n-3 PUFA diet is associated with PS.  Our findings suggest 

that n-3 PUFA diet increases the conversion of DPA to DHA (Hamilton et al., 2000). Our results 

also show that n-6 PUFA-containing PS [PS(18:0_22:4)] decreased as gestation progressed, and 

lower levels in the high n-3 PUFA group, compared to the low n-3 PUFA group. This is in 

accordance with the results of our research group showing a lower n-6 PUFA in the fetal brain 

(Akerele & Cheema, 2020), and indicate that a reduction in n-6 PUFA is associated with 

PS(18:0_22:4). The lower amount of PS(18:0_22:4) in the fetal brain could be attributed to the 

lower conversion rate of LA to ADA due to the inhibitory effects of n-3 PUFA (Lands et al., 1990).  

Little attention has been given to the brain PG profile, probably due to the smaller 

proportion of PG compared with other GP classes (Choi et al., 2018). Our results show a 
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significantly higher accretion of total PG in the high n-3 PUFA group, compared with the low n-3 

PUFA group with further increases as gestation progressed. There was an interaction between diet 

and gestation for OA-containing PG [PG(18:1_18:1)] revealing higher levels in the high n-3 PUFA 

group, compared with the low n-3 PUFA group, with further increase in PG(18:0_18:1) and 

PG(16:0_18:1) as gestation progressed. The accretion of total PG and OA-containing PG in the 

fetal brain is interesting because PG and OA-containing PG are reported to inhibit inflammation 

through toll-like receptor/nuclear factor kappa B/tumor necrotic factor alpha (Choudhary et al., 

2019; Klein et al., 2020) and PLA2-mediated release of inflammatory mediators (Wu et al., 2003); 

hence, will protect the developing brain from neuroinflammation. We also found a significant 

interaction between diet and gestation for PA-containing PG [PG(16:0_16:0)], revealing higher 

levels in high n-3 PUFA groups compared with low n-3 PUFA diet at both gestation stages. N-3 

PUFA increases lipogenesis (Akerele & Cheema, 2017), which may explain the increased PA-

containing PG in the fetal brain of the high n-3 PUFA group, compared with the low n-3 PUFA 

group. Th accretion of palmitic acid-enriched species in the brain will serve as a reservoir of 

palmitic acid for elongation to longer-chain fatty acids, and for palmitoylation of synaptic proteins 

during synaptic plasticity, which is needed for cognition (Fukata & Fukata, 2010). 

A maternal diet high in n-3 PUFA showed higher PI levels, compared with the low n-3 

PUFA group, and further increased as gestation progressed. The increase in PI is speculated to 

result from DG conversion to PI by PI synthase (Vance, 2015) as can be deduced from the increase 

in PI with concomitant decrease in DG. PI plays a role in neurogenesis and neurotransmission 

through the PI3K/Akt signaling pathway (Peng et al., 2004; Papadopoulos et al., 2017) and 

promote myelination (Logan et al., 2017). ARA-containing PI species [PI(18:0_20:4)] decreased 

as gestation progressed, which aligns with our previous findings (Akerele & Cheema, 2020), and 
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confirms that reductions in fetal brain n-6 PUFA profile found in our previous studies were partly 

associated with PI.  

Cer is a major class of SP in the brain and neuronal membrane which increases with age in 

postnatal life (Sacket et al., 2009; Vozella et al., 2017; Couttas et al., 2018); however, little is 

known about changes in brain Cer levels during gestation. Our findings showed an interaction of 

diet and gestation for total SP and Cer, revealing an increase as gestation progressed and lower 

levels in the high n-3 PUFA groups, compared with the low n-3 PUFA group. The higher total SP 

and Cer levels during gestation will benefit myelination and formation of Cer-enriched domains 

in neuronal membrane critical for brain development and function (Zhang et al., 2009; 

Ladjohounlou et al., 2020). We found significant interaction between diets and gestation for 

Cer(d18:1_18:0) and Cer(d18:2_18:0) levels in the fetal brain, revealing an increase as gestation 

progressed in low n-3 PUFA group for Cer(d18:1_18:0) and decrease as gestation progressed in 

high n-3 PUFA group for Cer(d18:2_18:0). A maternal diet high in n-3 PUFA showed lower 

Cer(d18:1_18:0) and Cer(d18:1_16:0) levels and higher Cer(d18:2_18:0) level in the fetal brain, 

compared with low n-3 PUFA diet. Literature review suggests that the difference in functions of 

these ceramide species in the brain is unknown.  The result of the present study suggests that CerS 

catalyze the attachment of fatty acids to sphingosine or sphinganine to produce specific ceramides, 

thereby determining the brain ceramide profile (Stiban et al., 2010), are differentially expressed in 

the fetal brain during gestation and are differentially impacted by n-3 PUFA diet (Camacho-Muñoz 

et al., 2022), as predicted by our pathway analysis (Figure 3.10 B).  

Free cholesterol consists of about 80% of total sterol in the fetal brain (Yusuf et al., 1981); 

however, free cholesterol was not detected using the lipidomic method adopted in this study 

because free cholesterol has poor ionization efficiency due to its low proton affinity and acidity 
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(Wu et al., 2009). However, CE was detected in the fetal brain and decreased as gestation 

progressed, with lower levels in the high n-3 PUFA group compared with the low n-3 PUFA group. 

There was a significant interaction of diet and gestation for DHA-containing CE [CE(22:6)], 

revealing a decrease as gestation progressed with higher levels in the high n-3 PUFA group, 

compared with the low n-3 PUFA group. Our pathway analysis predicted that n-3 PUFA may have 

increased fetal brain CE(22:6) level by upregulating LCAT, the enzyme that catalyzes the 

esterification of free cholesterol with PC (such as DHA-containing PC) (Figure 3.10 B). N-3 PUFA 

may also increase fetal brain CE(22:6) level by increasing the activity of acyl coenzyme-A 

cholesterol acyltransferase (ACAT) (Davis, 1992). ACAT is the enzyme that esterifies cholesterol 

with activated fatty acids like docosahexaenoyl coenzyme-A to form CE(22:6) (Zhang & Liu, 

2015).  CE is the storage and transport form of cholesterol in lipid droplets, typically during 

cholesterol surplus (Wechsler et al., 2003); thus, the higher accretion of CE(22:6) in the developing 

brain will serve as a reservoir of cholesterol and DHA for neuronal membrane formation in 

developing fetal brain. 

Our results show that total GL, DG, and TG in the fetal brain total lipids decreased as 

gestation progressed with no significant effects of diet. High n-3 PUFA diet increased the accretion 

of OA-containing DG, and DGLA and DHA-containing TG, compared with low n-3 PUFA diet as 

gestation progressed. N-3 PUFA is speculated to increase the accretion of the aforementioned TG 

species by upregulating DGAT-2, an enzyme that catalyzes TG synthesis (Akerele & Cheema, 

2017). This will make DHA available for remodeling into other brain lipids and for conversion to 

bioactive DHA metabolites such as docosanoids that prevent neuroinflammation and promote 

brain growth and development (Basak et al., 2020). The increase in OA-containing DG in the fetal 

brain is interesting because DG is a second messenger and a signal transduction molecule crucial 
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in modulating axonal growth, synaptic plasticity (Keimpema et al., 2013), memory, and cognition 

(Schurman et al., 2019). 

Overall, OA and ARA, ADA and DPA-containing lipid species decreased as gestation 

progressed, with lower levels in high n-3 PUFA diet group, compared with low n-3 PUFA diet 

groups as summarized in our heatmap (Figure 3.9). On the other hand, DHA-containing lipids 

increased as gestation progressed in both diet groups, and a maternal diet high in n-3 PUFA further 

promoted the accretion of DHA-containing lipids in the high n-3 PUFA group, compared with low 

n-3 PUFA group (Figure 3.9). 

4.2. Gestation stages and diet affect computationally-constructed neuronal membrane dynamics 

The composition of membrane lipids influences its structure and physicochemical 

properties. We are the first to report that fetal neuronal membranes are thinner, compared to the 

adult neuronal membranes. There was a significant interaction of diet and gestation for membrane 

thickness revealing a decrease as gestation progressed, and lower thickness in high n-3 PUFA diet 

at GD12.5. Our results are remarkable to show that fetal neuronal membranes are thinner (39.16 ± 

0.00 Å and 38.80 ± 0.00 Å in the high and low n-3 PUFA groups at GD12.5, respectively and 38.40 

± 0.00 Å and 38.20 ± 0.00 Å in the high and low n-3 PUFA groups at GD18.5, respectively) than 

adult neuronal membrane (42.63 ± 0.17 Å) (Wilson et al., 2021) and average mammalian PM 

mixture (41.09 ± 0.00 Å) (Ingólfsson et al., 2017). Free cholesterol is known to increase membrane 

thickness (Chakraborty et al., 2020; Boonnoy et al., 2021; Oh et al., 2021; Chen et al., 2023); 

however, we did not detect free cholesterol in the fetal brain lipids due to adopted analytical 

method and hence, we cannot directly compare our result and that of previous studies (Ingólfsson 

et al., 2017). Thinner membranes have higher ability to transport molecules across the membrane, 
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and interaction between membrane components such as neuromodulatory molecules and their 

receptors associated with brain development and neurotransmission (Cohen, 2018).  

Both diet and gestation affected APL, revealing an increase by 0.95 Å2 and 1.13 Å2 in low 

n-3 and high n-3 PUFA groups, respectively at GD18.5 compared with GD12.5. APL was higher 

in the high n-3 PUFA group by 1.05 Å2 and 1.21 Å2 at GD12.5 and GD18.5, respectively, compared 

with low n-3 PUFA diet. APL is associated with higher membrane fluidity and interaction of 

membrane components needed for neuronal differentiation and brain growth (Noutsi et al., 2016). 

The higher APL in fetal neuronal membrane in our study (70.00 ± 0.00 Å2 and 71.13 ± 0.01 Å2 at 

GD12.5 and GD18.5, respectively for high n-3 PUFA diet and 68.95 ± 0.01 Å2 and 69.92 ± 0.01 

Å2 at GD12.5 and GD18.5, respectively for low n-3 PUFA diet), compared with adult neuronal 

membrane (49.67 ± 15.35 Å2 and 54.74 ± 16.00 Å2, respectively for the extracellular and 

intracellular leaflets) (Ingólfsson et al., 2017) suggest that the fetal neuronal membrane is more 

fluid than the adult neuronal membrane. Free cholesterol has been shown to reduce APL (Philips, 

1972); however, we did not detect free cholesterol using the analytical methods in this study. 

Hence, we were unable to determine the impact of free cholesterol on the APL of the fetal neuronal 

membrane and hence cannot accurately compared our results and that of previous studies.  

Accretion of DHA-enriched PE in adult mice brain fed high n-3 PUFA diet has been shown to 

correlate with increased synaptic membrane fluidity and improved cognitive function (Suzuki et 

al., 1998). Our results suggest that the accretion of DHA-containing PE in the fetal brain of high 

n-3 PUFA group is involved in higher APL in the high n-3 PUFA diet membranes, relative to low 

n-3 PUFA diet membranes.  

Lipid flip-flop between membrane bilayer, the number transbilayer movement of lipids 

from one bilayer to another per minutes, regulates membrane tension and structures (Devaux et 
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al., 2008). Free cholesterol flip-flop between membrane leaflets have been reported in 

computational studies on adult neuronal membrane (Ingólfsson et al., 2017); however, CE flip-

flop between membrane bilayers has not been reported. Our results show an interaction between 

diet and gestation for CE flip-flop rate, revealing a decrease as gestation progressed, and a lower 

rate in high n-3 PUFA group, compared with a low n-3 PUFA group. Our findings showed higher 

CE flip-flop rate in the fetal neuronal membrane (12.28 ± 0.05 s-1 and 7.64 ± 0.10 s-1 for low n-3 

PUFA at GD12.5 and GD18.5, respectively and 9.81 ± 0.09 s-1 and 6.47 ± 0.23 s-1 for high n-3 

PUFA at GD12.5 and GD18.5, respectively), compared with free cholesterol flip-flop rate reported 

in computationally constructed adult neuronal membrane (2.64 ± 0.01  s-1) (Ingólfsson et al., 2017). 

CE flip-flop rate has not been studied previously; hence, there was a scarcity of findings to 

compare with our result. Several factors have been shown to influence the cholesterol flip-flop 

rate, including the degree of unsaturation of membrane lipids, the site of cholesterol oxidation, and 

cholesterol concentration (Ingólfsson et al., 2017; Wilson et al., 2021). Membranes with a higher 

degree of unsaturation have been shown to have a lower rate of lipid flip-flop between the 

membrane bilayers (Alwarawrah et al., 2016); however, we did not find an association between 

the degree of unsaturation and CE flip-flop rate. As mentioned earlier, we did not detect free 

cholesterol using the analytical method adopted in this study; hence, we do not know if the 

presence and concentration of free cholesterol influence the CE flip-flop rate. 

We found that a high n-3 PUFA diet promoted the formation of some Cer-enriched (Cer/PC, 

PI/Cer, and SM/Cer), SM-enriched (SM/Cer, and PG/SM), and PC-enriched (PC/CE, and Cer/PC) 

domains in the fetal neuronal membrane, with further increase as gestation progressed. 

Interestingly, high n-3 PUFA promoted the formation of the lipid domain, PC/SM at GD18.5 only. 

Cer-enriched domains have been shown to contribute to the clustering of receptors, some of which 
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are involved in signal transduction and stress modulation (Ladjohounlou et al., 2020), that are 

critical in neurotransmission, memory, and cognition. Cer-enriched domains also form channels 

for small molecules like cytochrome c involved in cellular respiration (Siskind & Colombini, 

2000). Therefore, the increase in Cer-enriched domains in the fetal neuronal membrane by a high 

n-3 PUFA diet suggests that consuming adequate n-3 PUFA diets during gestation will improve 

fetal brain growth and function that may extend throughout the lifetime. Similarly, SM-enriched 

domains promote cellular cytokinesis, a process involved in cellular differentiation (Abe et al., 

2012), whereas PC-enriched domains are important in neuronal regeneration (Marcucci et al., 

2010); hence, n-3 PUFA diet will boost neurogenesis and neuronal survival.  

High n-3 PUFA diet promoted the formation of PE-enriched (PE/PE, CE/PE, and PI/PE), 

and CE-enriched (CE/CE, CE/PE, and PE/CE) domains in the fetal neuronal membrane, which 

increased as gestation progressed. The specific role of CE and PE-enriched domains in the 

neuronal membrane is unclear; however, due to the charged ethanolamine head group, PE-enriched 

domains may promote neurotransmission and favour the synthesis and folding of some neuronal 

membrane proteins, including GPI-anchored proteins to their most active form (Patel & Witt, 

2017). PE-enriched domains possess intrinsic negative curvature and promote membrane fusion 

(Lee et al., 2020; Joardar et al., 2021). As a major reservoir of DHA, PE-enriched domains may 

enhance the production of synaptamide, a DHA metabolite that promotes synaptic development 

and neurogenesis through the activation of orphan adhesion G-protein-coupled receptor 110 

signaling (Kim et al., 2022), and prevention of neuroinflammation through cAMP/PKA/CREB 

signaling (Park et al., 2016).  

Interestingly, a high n-3 PUFA diet promoted the formation of PG-enriched (PG/SM) 

domain in the fetal neuronal membrane as gestation progressed. PG-enriched domains inhibit the 
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assembly of α-Synuclein into α-synuclein fibrils that promote amyloid-β peptide formation 

(Khammari et al., 2020). Unfibrilated α-synuclein is essential in regulating membrane fusion, 

synaptic vesicle release, and transport and neurotransmitter release (Sun et al., 2019); hence, 

inhibiting α-synuclein fibrillation will enhance neurotransmission. Therefore, consumption of 

adequate n-3 PUFA diets (9% n-3 PUFA diet) during gestation will boost fetal brain PG and enrich 

the formation of PG-enriched domains in the fetal neuronal membrane, which are crucial in brain 

development and neurotransmission that may extend across the lifespan.  

Cholesterol has been shown to influence lipid domain formation in membranes (Javanainen 

et al., 2017; Xu & London, 2000); however, we did not detect free cholesterol in the fetal neuronal 

membrane using the analytical method adopted in this study and could not determine the effect of 

cholesterol on domain formation in the fetal neuronal membrane. 

4.3 Limitations of the study and future directions 

The findings from the current thesis demonstrate that maternal diets high in n-3 PUFA 

promote the accretion of DHA-containing PE in the fetal brain, increased indicators of membrane 

fluidity, and formation of lipid domains associated with neurotransmission; however, the 

molecular mechanisms involved were not studied, and should be explored in future. In addition, 

free cholesterol was not detected in our study by the electrospray ionization MS used in this study 

because free cholesterol has poor ionization efficiency due to its low proton affinity and acidity 

(Wu et al., 2009). Since cholesterol plays an important role in brain function, future studies should 

derivatize the fetal brain lipid extract by treating the extract with betaine aldehyde or acetyl chloride 

to convert free cholesterol to hemiacetal salt or cholesteryl acetate to enable its quantification by 
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HPLC-MS (Higashi & Shimada, 2004; Liebisch et al., 2006; Wu et al., 2009; Li et al., 2019) to 

investigate whether gestation stage or diets high/low in n-3 PUFA alter cholesterol levels.  

We computationally predicted the impact of maternal diets differing in n-3 PUFA during 

gestation on fetal neuronal membrane using the whole fetal brain lipidomic profile to show that 

high n-3 PUFA diet reduced membrane thickness and CE flip-flop, and increased APL and 

formation of lipid domains were associated with neuronal transmission, memory, and cognition. 

Computational studies on membrane dynamics using lipidomics data is accumulating in literature 

(Ingólfsson et al., 2017; Wilson et al., 2020; Wilson et al., 2021); however, isolating fetal neuronal 

membranes, extracting lipids and analyzing the lipidomic profile before using the data for 

computational examination will provide a direct relationship between neuronal membrane 

lipidome and membrane dynamics.  

4.4 Overall conclusion and take-home message 

Overall, the findings of this study demonstrated that maternal diets containing an adequate 

amount of n-3 PUFA promoted accretion of DHA-containing PE in the fetal brain. The accretion 

of DHA-containing PE in the fetal brain resulted in a reduction in neuronal membrane thickness 

and increase in APL, indicating increased membrane fluidity. High n-3 PUFA also increased the 

formation of domains which are associated with neurogenesis, synaptogenesis, synaptic 

transmission, memory, and cognition. The take home message from this research is that intake of 

adequate n-3 PUFA (9% n-3 PUFA, n-6/n-3 PUFA ratio of 5:1) before and during gestation 

promoted the accretion of DHA-containing PE in fetal brain as gestation progressed from GD12.5 

to GD18.5. Adequate n-3 PUFA improved area per lipid and formation of Cer, PG, SM, and PE-

enriched domains, and reduced membrane thickness at GD12.5 in fetal neuronal membrane 
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(Figure 4.1, Appendix 14). Therefore, it is strongly recommended that women of childbearing age 

should consume adequate n-3 PUFA, including preformed DHA during gestation for better 

offspring brain health across the lifespan. 

 

Figure 4.1: Schematic summary of thesis findings. Maternal diets high in n-3 polyunsaturated 

fatty acids (PUFA) during gestation increases the accretion of DHA-enriched  

phosphoatidylethanolamine (PE) in fetal brain with concomitant increase in fetal neuronal 

membrane fluidity and formation of Cer, PG, PE, and SM-enriched membranes domains are 

associated with improved neurogenesis, memory, and cognition. Therefore, consuming diets 

containing high n-3 PUFA during gestation will not only promote accretion of DHA-containing 

PE in the fetal brain but also promote brain growth and function. 
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Appendix 1 

Composition of the semi-purified diet used for preparing 20% fat experimental diets 

Constituents Amount in g per kg diet 

Casein 200 

D/L-methionine 3 

Sucrose 305 

Corn starch 190 

Alphacel non-nutritive bulk  50 

Vitamin mixa 12 

Mineral mixb 40 

aVitamin Mix: Thiamine hydrochloride (0.6 g), riboflavin (0.6 g), pyridoxine hydrochloride (0.7 

g), nicotinic acid (3.0 g), D-calcium pantothenate (1.6 g), folic acid (0.2 g), D-biotin (0.02 g), 

cyanocobalamin (0.001 g), retinyl palmitate - pre-mix (250,000 IU/g) (1.6 g), D/L-α-tocopherol 

acetate (250 IU/g) (20 g), cholecalciferol (400,000 IU/g) (0.25 g), menaquinone (0.005 g), and 

finely powdered sucrose (972.9 g). 

bMineral Mix: Calcium phosphate dibasic (500.0 g/kg), sodium chloride (74.0 g/kg), potassium 

citrate monohydrate (220.0 g/kg), potassium sulfate (52.0 g/kg), magnesium oxide (24.0 g/kg), 

manganese carbonate (43-48% Mn, 3.50 g/kg), ferric citrate (16-17% Fe, 6.0 g/kg), zinc carbonate 

(70% ZnO, 1.6 g/kg), cupric carbonate (53-55% Cu, 0.30 g/kg), potassium iodate (0.01 g/kg), 

sodium selenite (0.01g/kg), chromium potassium sulfate (0.55 g/kg) and finely powdered sucrose 

(118.0 g/kg). 
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Appendix 2 

Sources of fat added to the semi-purified fat-free diet 

Fat sources  Amount (g) in high n-3 PUFA diet Amount (g) in low n-3 PUFA diet 

Menhaden fish oil 46 5 

Safflower oil 92 113 

Olive oil 32 31 

Lard 30 51 

Total 200 200 
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Appendix 3 

Fatty acid composition of the experimental diets 

 

Fatty acids (%) High n-3 PUFA diet 

(n-6:n-3 PUFA, 5:1) 

Low n-3 PUFA diet 

(n-6:n-3 PUFA, 40:1) 

C14:0 2.42 0.66 

C16:0 11.94 11.70 

C18:0 4.36 5.16 

∑ SFA 18.72 17.53 

C16:1n-7 3.70 0.94 

C18:1 22.80 25.32 

C20:1n9 0.35 0.05 

∑ MUFA 26.85 26.30 

C18:2n6 45.23 54.81 

C20:4n6 0.42 ND 

∑ Omega (n)-6 PUFA 45.65 54.81 

C18:3n3 0.81 0.82 

C18:4n3 0.56 0.26 

C20:5n3 4.13 0.16 

C22:5n3 0.66 0.12 

C22:6n3 2.59 ND 

∑ Omega (n)-3 PUFA 8.75 1.36 

n-6/n-3 PUFA 5.2 40.1 

Values represented percentages in total fatty acid composition of oil extracted from the diet. 

Saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids 

(PUFA).
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Appendix 4 

Chemical composition of the acyl tails of lipid species used to simulate the fetal neuronal membrane 

Lipid 

species 

Lipid 

class 

MARTINI * Atomistic # Total 

unsaturation 

sn-1 tail sn-2 tail sn-3 tail sn-1 tail sn-2 tail sn-3 tail  

LPC LPC CCCC     14:0 
  

0 

PPC  CCCC     16:0, 18:0 
  

0 

OPC  CDCC     16:1, 18:1 
  

2 

FPC  DDDC     18:3 
  

3 

APC  DDDD     20:4 
  

4 

DLPC PC CCCC CCCC   14:0 14:0 
 

0 

LPPC  CCCC CCCC   14:0 16:0 
 

0 

LOPC  CCCC CDCC   14:0 16:1 
 

1 

DPPC  CCCC CCCC   16:0;2 16:0, 18:0 
 

0 

POPC  CCCC CDCC   16:0;2 16:1, 18:1 
 

1 

DOPC  CDCC CDCC   16:1;2, 18:1 16:1, 18:1;2 
 

2 

OIPC  CDCC CDDC   16:1 18:2 
 

3 

PSPC  CCCC DDDD   16:0 18:4 
 

4 

OPPC  CDCC CCCC   18:1 18:0 
 

1 

PQPC  CCCC DDDC   16:0, 18:0 20:3;2 
 

3 

PAPC  CCCC DDDD   16:0, 18:0 20:4;2 
 

4 

OAPC  CDCC DDDD   16:1, 18:1 20:4;2 
 

5 

OBPC  CDCC CCCC   18:1  20:0 
 

1 

OGPC  CDCC CDCC   18:1 20:1 
 

2 

PUPC  CCCC DDDDDD   16:0, 18:0 22:6;2 
 

6 

OUPC  CDCC DDDDDD   16:1, 18:1 26:6;2 
 

7 

SGPC  DDDD CDCC   18:4 22:1 
 

5 

DPAC  CCCC CCCC   16:0;2 16:0, 18:0 
 

0 
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DPMC  CCCC CCCC   18:0 16:0 
 

0 

PPE LPE CCCC 
 

  16:0, 18:0 
  

0 

APE  DDDD 
 

  20:4 
  

4 

DPPE PE CCC CCCC   18:0 16:0 
 

0 

DOPE  CCCC CDCC   16:1, 18:1 18:1, 18:1 
 

2 

POPE  CCCC CDCC   16:0;2, 18:0 16:1, 18:1;2 
 

1 

OIPE  CDCC CDDC   18:1 18:2 
 

3 

PQPE  CCCC DDDC   18:0 20:3 
 

3 

PAPE  CCCC DDDD   16:0, 18:0, 16:0 20:4;2, 22:4 
 

4 

PUPE  CCCC DDDDD 
 

16:0;2, 18:0;2 22:5, 22:6, 22:5, 22:6 6 

DPME  P-PE CCCC CCCC 
 

16:0, 18:0 16:0;2 
 

0 

POME CCCC CDCC 
 

16:0, 18:0 18:1;2 
 

1 

PAME CCCC DDDD 
 

16:0;2, 18:0 20:4;2, 22:4 
 

4 

PUME CCCC DDDDD 
 

16:0;2,18:0;2 22:5, 22:6, 22:5, 22:6 6 

OAAE O-PE CCCC DDDD 
 

16:1,18:1 20:4;2 
 

5 

OUAE  CCCC DDDDDD 
 

16:1, 18:1 22:6;2 
 

7 

DOPG PG CDCC CDCC 
 

18:1, 18:1 
 

2 

POPG  CCCC CDCC 
 

18:0, 16:0;2 18:1;2, 16:1 
 

1 

PAPI PI CCCC DDDD 
 

18:0, 20:4 
 

4 

OAPI  CDCC DDDD 
 

18:1, 20:4 
 

4 

POPS PS CCCC CDCC 
 

18:0, 18:1 
 

1 

PAPS CCCC DDDD 
 

18:0;2 20:4, 22:4 
 

4 

PUPS CCCC DDDDD 
 

18:0, 22:5, 22:6 
 

6 
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DPCE Cer CCCC CCCC 
 

d18:1 16:0, 18:0 
 

1 

OPCE CCCC CCCC 
 

d18:2 18:0 
 

2 

PBCE CCCC CCCC 
 

d18:1 20:0, 22:0 
 

1 

PXCE CCCC CCCC 
 

d18:1 24:0 
 

1 

PNCE CCCC CDCC 
 

d18:1 24:1 
 

2 

PWCE CCCC CDDC 
 

d18:1 24:2 
 

3 

PNSM SM CCCC CDCC 
 

d18:1 24:1 
 

2 

PPDG DG CCCC CCCC 
 

16:0, 18:0;2 16:0;2, 18:0 
 

0 

PODG  CCCC CDCC 
 

16:0;2 16:1, 18:1 
 

1 

LCAP O-TG CCCC CCCC DDDD 12:0 6:0 20:4 4 

TPG TG CCCC CCCC CCCC 16:0 16:0 16:0 0 

PPOG CCCC CCCC CDCC 16:0 16:0 18:1 1 

POOG CCCC CDCC CDCC 16:0;2 16:1,18:1 18:1;2 2 

POIG CCCC CDCC CDDC 16:0 18:1 18:2 3 

PIIG CCCC CDDC CDDC 16:0 18:2 18:2 4 

TOG CDCC CDCC CDCC 18:1 18:1 18:1 3 

OOIG CDCC CDCC CDDC 18:1 18:1 18:2 4 

OIIG CDCC CDDC CDDC 18:1 18:2 18:2 5 

DPUG CCCC CCCC DDDDDD 16:0 16:0 22:6 6 

POUG CCCC CDCC DDDDDD 16:0 18:1 22:6 7 

CHYO CE CDCC 
  

18:1 
  

1 

CHYI  CDDC 
  

18:2 
  

2 

CHYA  DDDD 
  

20:4 
  

4 

CHYU  DDDDDD 
  

22:6 
  

6 
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* = Tail saturation from MARTINI beads; # = acyl tails of lipid species from LC- MS/MS lipidomics data; C = saturated carbons (C1 bead), D = cis-

unsaturated carbon (C4 bead). Cer = ceramides, SM = sphingomyelin, CE = cholesteryl ester, PE = phosphatidylethanolamine, P-PE = 

plasmalogens ethanolamine, O-PE = plasmanyl ethanolamine, LPE = lyso-phosphatidylethanolamine, PC = diacyl phosphatidylcholine, 

P-PC = choline plasmalogen, O-PC = plasmanyl choline, LPC = lyso-phosphatidylcholine, PS = phosphatidylserine, PI = 

phosphatidylinositol, DG = diacylglycerol, TG = triacylglycerol 
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Appendix 5 

Chemical composition of lipid species head groups and linkers used to simulate the fetal 

neuronal membrane 

Lipid 

(sub)class 

Linkera MARTINI 

headgroups 

Linker Atomistic 

headgroups 

PC GL1/GL2a PO4-NC3d glycerol  Phosphocholine 

PE GL1/GL2a PO4-NH3d glycerol  Phosphoethanolamine 

PS GL1/GL2a PO4-CN0d glycerol  Phosphoserine 

PG GL1/GL2a PO4-GL0d Glycerol Phosphoglycerol 

PI GL1/GL2a PO4-C1-C2-C3d Glycerol Phosphoinositol 

DG GL1/GL2a − Glycerol - 

TG GL1/GL2a − Glycerol - 

MC GL1/PL2a,b PO4-NC3d vinyl ether Phosphocholine 

ME GL1/PL2a,b PO4-NH3d vinyl ether Phosphoethanolamine 

AC GL1/PL2a,b PO4-NC3d Ether Phosphocholine 

AE GL1/PL2a,b PO4-NH3d Ether Phosphoethanolamine 

SM AM1/AM2c PO4-NC3d Sphingoid GalNAcα1-3GalNAcβ1-3Galα1-

4Galβ1-4Glcβ1 

Cer - - Sphingoid GalNAcα1-3GalNAcβ1-3Galα1-

4Galβ1-4Glcβ1 
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Appendix 6 

Simulated composition of the fetal neuronal plasma membrane by experimental groups 

Lipid species 
Upper/lower 

leaflet ratio 

Low 

GD12.5 

Low 

GD18.5 

High 

GD12.5 

High 

GD18.5 

Total Upper Lower Total Upper lower Total Upper lower Total Upper lower 

Count Count 

 

Fraction  Count 

 

Fraction  Count Count  Fraction  Count 

 

Fraction  Count Count  Fraction  Count 

 

Fraction  Count Count 

 

Fraction  Count 

 

Fraction  

Lysophosphatidylcholine (LPC) 

LPC 

0.67/0.33 

2 2 

      

0.001  

- - 

1 1       0.001  

- - 

2 2       0.001  

- - 

4 4 

      

0.002  

- - 

PPC 14 10 

      

0.005  4 

      

0.002  24 17       0.009  7 

      

0.004  25 18       0.009  7 

      

0.004  46 36 

      

0.018  10 

      

0.005  

OPC 6 4 

      

0.002  2 

      

0.001  6 5       0.003  1 

      

0.001  9 8       0.004  1 

      

0.001  18 14 

      

0.007  4 

      

0.002  

FPC 

- - - - - 

1 1       0.001  

- - 

2 2       0.001  

- - 

4 2 

      

0.001  2 

      

0.001  

APC - - - - - 1 1       0.001  - - - - - - - - - - - - 

Phosphatidylcholine (PC) 

DLPC 

0.65/0.35 

4 2 

      

0.001  2 

      

0.001  9 8       0.004  1 

      

0.001  5 4       0.002  1 

      

0.001  18 14 

      

0.007  4 

      

0.002  

LPPC 60 40 

      

0.020  20 

      

0.010  643 615       0.309  28 

      

0.014  93 67       0.033  26 

      

0.013  68 52 

      

0.026  16 

      

0.008  

LOPC 12 8 

      

0.004  4 

      

0.002  21 14       0.007  7 

      

0.004  13 10       0.005  3 

      

0.002  26 20 

      

0.010  6 

      

0.003  

DPPC 512 340 

      

0.169  172 

      

0.086  252 171       0.086  81 

      

0.041  455 323       0.160  132 

      

0.066  247 191 

      

0.095  56 

      

0.028  

POPC 1006 668 

      

0.332  338 

      

0.168  505 341       0.171  164 

      

0.082  712 505       0.251  207 

      

0.104  497 384 

      

0.191  113 

      

0.056  
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DOPC 215 142 

      

0.071  73 

      

0.036  105 71       0.036  34 

      

0.017  160 114       0.057  46 

      

0.023  87 67 

      

0.033  20 

      

0.010  

OIPC 18 12 

      

0.006  6 

      

0.003  10 7       0.004  3 

      

0.002  17 12       0.006  5 

      

0.003  6 4 

      

0.002  2 

      

0.001  

PSPC 16 10 

      

0.005  6 

      

0.003  5 4       0.002  1 

      

0.001  15 12       0.006  3 

      

0.002  6 4 

      

0.002  2 

      

0.001  

OPPC 48 32 

      

0.016  16 

      

0.008  82 55       0.028  27 

      

0.014  80 57       0.028  23 

      

0.012  107 83 

      

0.041  24 

      

0.012  

PQPC 50 34 

      

0.017  16 

      

0.008  18 13       0.007  5 

      

0.003  41 30       0.015  11 

      

0.006  24 18 

      

0.009  6 

      

0.003  

PAPC 143 95 

      

0.047  48 

      

0.024  89 61       0.031  28 

      

0.014  99 71       0.035  28 

      

0.014  52 40 

      

0.020  12 

      

0.006  

OAPC 58 38 

      

0.019  20 

      

0.010  138 23       0.012  115 

      

0.058  33 24       0.012  9 

      

0.005  20 16 

      

0.008  4 

      

0.002  

OBPC 

- - - - - - - - - - - - - - - 

2 2 

      

0.001  

- - 

OGPC 6 4 

      

0.002  2 

      

0.001  1 1       0.001  -            -    5 4       0.002  1 

      

0.001  2 2 

      

0.001  

- - 

PUPC 38 26 

      

0.013  12 

      

0.006  26 17       0.009  9 

      

0.005  61 44       0.022  17 

      

0.009  42 32 

      

0.016  10 

      

0.005  

OUPC 10 6 

      

0.003  4 

      

0.002  8 5       0.003  3 

      

0.002  13 10       0.005  3 

      

0.002  12 10 

      

0.005  2 

      

0.001  

SGPC 22 14 

      

0.007  8 

      

0.004  6 5       0.003  1 

      

0.001  13 10       0.005  3 

      

0.002  2 2 

      

0.001  0            -    

Choline plasmalogen (P-PC) 

DPAC 0.65/0.35 4 2 

      

0.001  2 

      

0.001  3 2       0.001  1 

      

0.001  5 4       0.002  1 

      

0.001  6 4 

      

0.002  2 

      

0.001  

Plasmanyl choline (O-PC)  

DPMC 0.65/0.35 38 26 

      

0.013  12 

      

0.006  18 13       0.007  5 

      

0.003  43 30       0.015  13 

      

0.007  16 12 

      

0.006  4 

      

0.002  

Lysophosphatidylethanolamine (LPE) 
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PPE 

0.33/0.67 

10 4 

      

0.002  6 

      

0.003  14 5       0.003  9 

      

0.005  5 2       0.001  3 

      

0.002  22 10 

      

0.005  12 

      

0.006  

APE 10 4 

      

0.002  6 

      

0.003  11 4       0.002  7 

      

0.004  5 2       0.001  3 

      

0.002  16 8 

      

0.004  8 

      

0.004  

Phosphatidylethanolamine (PE) 

DPPE 

0.35/0.65 

6 2 

      

0.001  4 

      

0.002  4 1       0.001  3 

      

0.002  5 2       0.001  3 

      

0.002  8 4 

      

0.002  4 

      

0.002  

DOPE 68 24 

      

0.012  44 

      

0.022  23 8       0.004  15 

      

0.008  74 30       0.015  44 

      

0.022  40 20 

      

0.010  20 

      

0.010  

POPE 111 40 

      

0.020  71 

      

0.035  94 35       0.018  59 

      

0.030  145 61       0.030  84 

      

0.042  162 81 

      

0.040  81 

      

0.040  

OIPE 12 4 

      

0.002  8 

      

0.004  1 0            -    1 

      

0.001  13 6       0.003  7 

      

0.004  4 2 

      

0.001  2 

      

0.001  

PQPE 12 4 

      

0.002  8 

      

0.004  14 5       0.003  9 

      

0.005  19 8       0.004  11 

      

0.006  20 10 

      

0.005  10 

      

0.005  

PAPE 186 67 

      

0.033  119 

      

0.059  237 89       0.045  148 

      

0.074  180 75       0.037  105 

      

0.053  306 152 

      

0.076  154 

      

0.077  

PUPE 100 36 

      

0.018  64 

      

0.032  206 77       0.039  129 

      

0.065  172 71       0.035  101 

      

0.051  359 179 

      

0.089  180 

      

0.089  

Plasmalogen ethanolamine (P-PE) 

DPME 

0.35/0.65 

10 4 

      

0.002  6 

      

0.003  9 4       0.002  5 

      

0.003  7 4       0.002  3 

      

0.002  8 4 

      

0.002  4 

      

0.002  

POME 44 16 

      

0.008  28 

      

0.014  27 10       0.005  17 

      

0.009  35 14       0.007  21 

      

0.011  26 12 

      

0.006  14 

      

0.007  

PAME 206 75 

      

0.037  131 

      

0.065  132 49       0.025  83 

      

0.042  149 61       0.030  88 

      

0.044  88 44 

      

0.022  44 

      

0.022  

PUME 166 61 

      

0.030  105 

      

0.052  206 77       0.039  129 

      

0.065  206 85       0.042  121 

      

0.061  206 103 

      

0.051  103 

      

0.051  

Plasmanyl ethanolamine (O-PE) 

OAAE 
0.35/0.65 

94 34 

      

0.017  60 

      

0.030  82 30       0.015  52 

      

0.026  103 42       0.021  61 

      

0.031  98 48 

      

0.024  50 

      

0.025  
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OUAE 28 -            -    28 

      

0.014  106 39       0.020  67 

      

0.034  119 48       0.024  71 

      

0.036  237 118 

      

0.059  119 

      

0.059  

Phosphatidylserine (PS) 

POPS 

0.0/1.00 

48 

- - 

48 

      

0.024  11 

- - 

11 

      

0.006  44 

- 

           -    44 

      

0.022  34 

- 

           -    34 

      

0.017  

PAPS 95 

- - 

95 

      

0.047  106 

- - 

106 

      

0.053  71 

- 

           -    71 

      

0.036  87 

- 

           -    87 

      

0.043  

PUPS 91 

- - 

91 

      

0.045  291 

- - 

291 

      

0.146  136 

- 

           -    136 

      

0.068  405 

- 

           -    405 

      

0.201  

Phosphatidylinositol (PI) 

PAPI 

0.0/1.00 

178 

- - 

178 

      

0.089  210 - 

- 

210 

      

0.105  340 

- - 

340 

      

0.171  235 

- 

           -    235 

      

0.117  

OAPI 38 

- - 

38 

      

0.019  36 - 

- 

36 

      

0.018  40 

- - 

40 

      

0.020  46 

- 

           -    46 

      

0.023  

Phosphatidylglycerol (PG) 

DOPG 

0.50/0.50 

4 2 

      

0.001  2 

      

0.001  7 4       0.002  3 

      

0.002  13 8       0.004  5 

      

0.003  18 12 

      

0.006  6 

      

0.003  

POPG 28 14 

      

0.007  14 

      

0.007  60 32       0.016  28 

      

0.014  64 36       0.018  28 

      

0.014  139 91 

      

0.045  48 

      

0.024  

Sphingomyelin (SM) 

PNSM 0.80/0.20 4 4 

      

0.002  -            -    2 2       0.001  - - 4 4       0.002  

- - 

4 4 

      

0.002  

- - 

Ceramide (CE) 

DPCE 

0.51/0.49 

16 8 

      

0.004  8 

      

0.004  24 13       0.007  11 

      

0.006  13 8       0.004  5 

      

0.003  22 14 

      

0.007  8 

      

0.004  

OPCE 

- - - - - 

3 2       0.001  1 

      

0.001  

- - - - - 

4 2 

      

0.001  2 

      

0.001  

PBCE 32 16 

      

0.008  16 

      

0.008  49 26       0.013  23 

      

0.012  29 16       0.008  13 

      

0.007  44 28 

      

0.014  16 

      

0.008  
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PXCE 4 2 

      

0.001  2 

      

0.001  1 1       0.001  - -    2 2       0.001  -            -    2 2 

      

0.001  

- - 

PNCE 4 2 

      

0.001  2 

      

0.001  3 2       0.001  1 

      

0.001  3 2       0.001  1 

      

0.001  6 4 

      

0.002  2 

      

0.001  

PWCE 16 8 

      

0.004  8 

      

0.004  8 1       0.001  7 

      

0.004  2 2       0.001  -            -    2 2 

      

0.001  

- - 

Cholesteryl ester (CHY) 

CHYO 

0.51/0.49 

6 4 

      

0.002  2 

      

0.001  

- - - - - 

9 6       0.003  3 

      

0.002  2 2 

      

0.001  

- - 

CHYI 14 8 

      

0.004  6 

      

0.003  1 1       0.001  

- - 

21 12       0.006  9 

      

0.005  6 4 

      

0.002  2 

      

0.001  

CHYA 8 4 

      

0.002  4 

      

0.002  2 2       0.001  

- - 

7 4       0.002  3 

      

0.002  2 2 

      

0.001  

- - 

CHYU 

- - - - - 

2 2       0.001  

- - 

6 3       0.001  3 

      

0.002  6 4 

      

0.002  2 

      

0.001  

Diglycerides (DG) 

DPDG 

0.50/0.50 

28 14 

      

0.007  14 

      

0.007  10 7       0.004  3 

      

0.002  25 14       0.007  11 

      

0.006  16 10 

      

0.005  6 

      

0.003  

PODG 12 6 

      

0.003  6 

      

0.003  8 5       0.003  3 

      

0.002  11 6       0.003  5 

      

0.003  12 8 

      

0.004  4 

      

0.002  

1-O-alkyl-diglycerides 

LCAP 0.50/0.50 4 2 

      

0.001  2 

      

0.001  3 2       0.001  1 

      

0.001  3 2       0.001  1 

      

0.001  6 4 

      

0.002  2 

      

0.001  

Triglycerides (TG) 

TPG 

0.50/0.50 

4 2 

      

0.001  2 

      

0.001  1 1       0.001  

- - 

2 2       0.001  

- - 

2 2 

      

0.001  

- - 

PPOG 6 4 

      

0.002  2 

      

0.001  2 1       0.001  1 

      

0.001  5 4       0.002  1 

      

0.001  6 2 

      

0.001  4 

      

0.002  

POOG 8 4 

      

0.002  4 

      

0.002  2 1       0.001  1 

      

0.001  3 2       0.001  1 

      

0.001  2 2 

      

0.001  

- - 
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POIG 8 4 

      

0.002  4 

      

0.002  

- - - - - 

3 2       0.001  1 

      

0.001  

- - - - - 

PIIG 6 4 

      

0.002  2 

      

0.001  

- - - - - 

3 2       0.001  1 

      

0.001  

- - - - - 

TOG 4 2 

      

0.001  2 

      

0.001  1 1       0.001  

- - - - - - - - - - - - 

OOIG 4 2 

      

0.001  2 

      

0.001  1 1       0.001  

- - - - - - - - - - - - 

OIIG 6 4 

      

0.002  2 

      

0.001  

- - - - - 

5 4       0.002  1 

      

0.001  

- - - - - 

PPUG 

- - - - - - - - - - - - - - - 

2 2 

      

0.001  

- - 

POUG 

- - - - - - - - - - 

2 2       0.001  

- - 

2 2 

      

0.001  

- - 

Total   4021 2010 

      

1.000  2011 

      

1.000  3982 1991       1.000  1991 

      

1.000  4004 2015       1.000  1989 

      

1.000  4024 2011 

      

1.000  2013 

      

1.000  

Water   82865           82368         82573         81812       

Na+   957           953         976         1005       

Cl-   877           875         855         814       
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Appendix 7 

 

Illustration of the density of each lipid class between leaflets of the neuronal membranes. Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), di/triacylglycerols 

(DG/TG), cholesteryl esters (CE), sphingomyelins (SM), and ceramides (Cer). 
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Appendix 8 

 

High-resolution mass spectra (HRMS) obtained from HILIC-MS chromatogram of fetal brain lipid 

extract in negative ion mode. (A) Full MS spectrum of PE class by averaging scans from 21-24 

mins in the HILIC-MS chromatogram. (B-E) HILIC-MS2 spectra showing the fragmentation of 

PE and plasmalogen PE precursor ions: (B) plasmalogen PE(P-18:1_22:6) [M-H]- at m/z 772.53, 

(C) plasmalogen PE(P-18:0_22:5) [M-H]- at m/z 776.56, (D) PE(18:0_22:6) [M-H]- at m/z 790.54 

and (E) PE(18:0_22:5) [M-H]- at m/z 792.55.  
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Appendix 9 

 

High-resolution mass spectra (HRMS) achieved from HILIC-MS chromatogram of fetal brain lipid 

extract in negative ion mode. (A) Full MS spectrum of PC class by averaging scans from 27.5-29 

mins in the HILIC-MS chromatogram. (B-E) HILIC-MS2 spectra showing the fragmentation of 

PC and ether PC precursor ions: (B) PC(16:0/18:1) [M+CH3COO]- at m/z 818.59, (C) 

PC(16:0_16:0) [M+CH3COO]- at m/z 792.58, (D) PC(16:0_14:0) [M+CH3COO]- at m/z 764.55 

and (E) ether PC(O-16:0_16:0) [M+CH3COO]- at m/z 778.59.  
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Appendix 10 

Lipid species detected in fetal brain at both gestation stages 

No    Lipid class Lipid group Lipid species Lipid Ion m/z RT (min) 

1.  Cer Cer(d34:1) Cer(d18:1_16:0) [M+H]+ 538.519 16.301 

2.  Cer Cer(d36:1) Cer(d18:1_18:0)  566.551 16.845  

3.   Cer Cer(d36:2) Cer(d18:2_18:0)  564.535 16.312  

4.  Cer Cer(d38:1) Cer(d18:1_20:0)  594.582 17.272  

5.  Cer Cer(d40:1) Cer(d18:1_22:0)  622.613 17.705  

6.  Cer Cer(d42:1) Cer(d18:1_24:0)  650.645 18.154  

7.  Cer Cer(d42:2) Cer(d18:1_24:1)  648.629 17.615  

8.  Cer Cer(d42:3) Cer(d18:1_24:2)  646.613 17.165  

9.  SM SM(d40:2) SM(d18:1_22:1) [M+H]+ 785.653  17.112  

10.  SM SM(d42:2) SM(d18:1_24:1)  813.684  17.486  

11.  CE CE(18:1) CE(18:1) [M+NH4]
+ 668.634 23.896  

12.  CE CE(18:2) CE(18:2)  666.618 22.863  

13.  CE CE(20:4) CE(20:4)  690.618 22.045  

14.  CE CE(22:6) CE(22:6)  714.618 21.530  

15.  DG DG(32:0) DG(16:0_16:0) [M+NH4]
+ 586.541 17.157  
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16.  DG DG(32:1) DG(16:0_16:1)  584.525 16.765  

17.  DG DG(34:0) DG(18:0_16:0)  614.572 17.601  

18.  DG DG(34:1) DG(16:0_18:1)  612.556 17.122  

19.  DG DG(36:0) DG(18:0_18:0)  642.603 18.047  

20.  LPC LPC(14:0) LPC(14:0) [M+H]+ 468.308 2.669 

21.  LPC LPC(16:0) LPC(16:0)  496.340 4.318  

22.  LPC LPC(16:1) LPC(16:1)  494.324 2.935  

23.  LPC LPC(18:0) LPC(18:0)  524.371 7.724  

24.  LPC LPC(18:1) LPC(18:1)  522.355 4.724  

25.  LPC LPC(18:2) LPC(18:2)  520.340 3.414  

26.  LPC LPC(18:3) LPC(18:3)  518.324 4.319  

27.  LPC LPC(18:4) LPC(18:4)  516.308 1.491  

28.  LPC LPC(20:4) LPC(20:4)  544.340 3.135  

29.  LPC LPC(22:6) LPC(22:6)  568.340 2.974  

30.  LPE LPE(16:0) LPE(16:0) [M-H]- 452.278 1.491  

31.  LPE LPE(18:0) LPE(18:0)  480.310 8.008  

32.  LPE LPE(20:4) LPE(20:4)  500.278 1.478  

33.  PC PC(28:0) PC(14:0_14:0) [M+H]+ 678.507 15.137  

34.  PC PC(30:0) PC(14:0_16:0)  706.538 15.253  
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35.  PC PC(30:1) PC(14:0_16:1)  704.522 15.884  

36.  PC PC(32:0) PC(16:0_16:0)  734.569 16.044  

37.  PC PC(32:1) PC(16:0_16:1)  732.554 15.396  

38.  PC PC(32:2) PC(16:1_16:1)  730.538 15.977  

39.  PC PC(34:0) PC(16:0_18:0)  762.601 17.263  

40.  PC PC(34:1) PC(16:0_18:1)  760.585 16.418  

41.  PC PC(34:2) PC(16:1_18:1)  758.569 17.058  

42.  PC PC(34:3) PC(16:1_18:2)  756.554 17.805  

43.  PC PC(34:4) PC(16:0_18:4)  754.538 15.081  

44.  PC PC(36:1) PC(18:1_18:0)  788.616 15.608  

45.  PC PC(36:2) PC(18:1_18:1)  786.601 16.097  

46.  PC PC(36:3) PC(16:0_20:3)  784.585 16.516  

47.  PC PC(36:4) PC(16:0_20:4)  782.569 17.127  

48.  PC PC(36:5) PC(16:1_20:4)  780.554 15.137  

49.  PC PC(38:1) PC(18:1_20:0)  816.648 15.938  

50.  PC PC(38:2) PC(18:1_20:1)  814.632 15.991  

51.  PC PC(38:3) PC(18:0_20:3)  812.616 16.578  

52.  PC PC(38:4) PC(18:0_20:4)  810.601 17.165  

53.  PC PC(38:5) PC(18:1_20:4)  808.585 15.075  
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54.  PC PC(38:6) PC(16:0_22:6)  806.569 15.564  

55.  PC PC(38:7) PC(16:1_22:6)  804.554 15.831  

56.  PC PC(40:5) PC(18:4_22:1)  836.616 16.471  

57.  PC PC(40:6) PC(18:0_22:6)  834.601 16.738  

58.  PC PC(40:7) PC(18:1_22:6)  832.585 17.005  

59.  O-PC PC(32:0e) PC(O-16:0_16:0) [M+H]+ 720.554 17.646  

60.  O-PC PC(33:1e) PC(O-16:0_16:1)  732.590 15.618  

61.  O-PC PC(34:0e) PC(O-16:0_18:0)  748.621 16.204  

62.  P-PC PC(34:0p) PC(P-18:0_16:0) [M+H]+ 746.606 16.310  

63.  PE PE(32:1) PE(16:0_16:1) [M-H]- 688.492 15.848  

64.  PE PE(34:0) PE(18:0_16:0)  718.539 16.884  

65.  PE PE(34:1) PE(16:0_18:1)  716.524 16.381  

66.  PE PE(34:2) PE(16:1_18:1)  714.508 15.926  

67.  PE PE(36:1) PE(18:0_18:1)  744.555 16.887  

68.  PE PE(36:2) PE(18:1_18:1)  742.539 16.402  

69.  PE PE(36:3) PE(18:1_18:2)  740.524 16.055  

70.  PE PE(36:4) PE(16:0_20:4)  738.508 15.858  

71.  PE PE(38:3) PE(18:0_20:3)  768.555 16.438  

72.  PE PE(38:4) PE(18:0_20:4)  766.539 16.441  
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73.  PE PE(38:5) PE(16:0_22:5)  764.524 15.885  

74.  PE PE(38:6) PE(16:0_22:6)  762.508 15.717  

75.  PE PE(40:4) PE(18:0_22:4)  794.571 16.441  

76.  PE PE(40:5) PE(18:0_22:5)  792.555 16.623  

77.  PE PE(40:6) PE(18:0_22:6)  790.539 16.304  

78.  P-PE PE(32:0p) PE(P-16:0_16:0) [M+H]+ 676.528 16.746  

79.  P-PE PE(34:0p) PE(P-18:0_16:0)  704.559 17.122  

80.  P-PE PE(34:1p) PE(P-16:0_18:1)  702.543 16.684  

81.  P-PE PE(36:1p) PE(P-18:0_18:1)  730.575 17.058  

82.  P-PE PE(36:4p) PE(P-16:0_20:4)  724.528 16.044  

83.  P-PE PE(38:4p) PE(P-16:0_22:4)  752.559 16.641  

84.  P-PE PE(38:5p) PE(P-16:0_22:5)  750.543 16.044  

85.  P-PE PE(38:6p) PE(P-16:0_22:6)  748.528 15.938  

86.  P-PE PE(40:4p) PE(P-18:0_22:4)  780.590 16.952  

87.  P-PE PE(40:5p) PE(P-18:0_22:5)  778.575 16.791  

88.  P-PE PE(40:6p) PE(P-18:0_22:6)  776.559 16.588  

89.  P-PE PE(40:7p) PE(P-18:1_22:6)  774.543 16.055  

90.  O-PE PE(36:5e) PE(O-16:1_20:4) [M-H]- 722.513 16.179  

91.  O-PE PE(38:5e) PE(O-18:1_20:4)  750.544 16.666  
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92.  O-PE PE(38:7e) PE(O-16:1_22:6)  746.513 16.029  

93.  O-PE PE(40:7e) PE(O-18:1_22:6)  774.544 16.581  

94.  PG PG(36:1) PG(18:0_18:1) [M-H]- 775.549 8.167 

95.  PG PG(36:2) PG(18:1_18:1) (HILIC  773.533 8.165 

96.  PG PG(34:1) PG(16:0_18:1) column) 747.518 8.411 

97.  PG PG(32:1) PG(16:0_16:1)  719.486 8.545 

98.  PG PG(32:0) PG(16:0_16:0)  721.502 8.630 

99.  PI PI(38:4) PI(18:0_20:4) [M-H]- 885.550 15.937  

100.  PI PI(38:5) PI(18:1_20:4)  883.534 15.344  

101.  PS PS(36:1) PS(18:0_18:1) [M-H]- 788.545 16.535  

102.  PS PS(38:4) PS(18:0_20:4)  810.529  16.045  

103.  PS PS(40:4) PS(18:0_22:4)  838.560  16.371  

104.  PS PS(40:5) PS(18:0_22:5)  836.545  16.234  

105.  PS PS(40:6) PS(18:0_22:6)  834.529  15.873  

106.  TG TG(24:0) TG(8:0_8:0_8:0) [M+NH4]
+ 488.395  13.633  

107.  TG TG(46:0) TG(16:0_14:0_16:0)  796.739  20.415  

108.  TG TG(48:0) TG(16:0_16:0_16:0)  824.770  21.252  

109.  TG TG(48:1) TG(16:0_16:0_16:1)  822.755  20.326  

110.  TG TG(50:0) TG(18:0_16:0_16:0)  852.801  22.213  
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111.  TG TG(50:1) TG(16:0_16:0_18:1)  850.786  21.109  

112.  TG TG(50:2) TG(16:0_16:1_18:1)  848.770  20.397  

113.  TG TG(52:1) TG(18:0_16:0_18:1)  878.817  22.070  

114.  TG TG(52:2) TG(16:0_18:1_18:1)  876.801  21.037  

115.  TG TG(52:3) TG(16:0_18:1_18:2)  874.786  20.362  

116.  TG TG(52:4) TG(16:0_18:2_18:2)  872.770  19.791  

117.  TG TG(52:4) TG(16:0_16:0_20:4)  872.770  20.103  

118.  TG TG(54:3) TG(18:1_18:1_18:1)  902.817  20.914  

119.  TG TG(54:4) TG(18:1_18:1_18:2)  900.801  20.291  

120.  TG TG(54:4) TG(16:0_16:0_22:4)  900.801  20.904  

121.  TG TG(54:5) TG(18:1_18:2_18:2)  898.786  9.755  

122.  TG TG(54:5) TG(18:1_18:1_18:3)  898.786  20.050  

123.  TG TG(54:6) TG(16:0_16:0_22:6)  896.770  9.943  

124.  TG TG(56:5) TG(18:0_18:1_20:4)  926.817  20.851  

125.  TG TG(56:6) TG(16:0_20:3_20:3)  924.801  20.691  

126.  TG TG(56:7) TG(16:0_18:1_22:6)  922.786  19.827  

127.  O-TG TG(38:4e) TG(O-12:0_6:0_20:4) [M+NH4]
+ 662.572  7.165  

Information in the above table represents the lipid species found in the fetal brain. Ceramides (Cer), 

sphingomyelin (SM), cholesteryl ester (CE), phosphatidylethanolamine (PE), ethanolamine 
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plasmalogens (P-PE), plasmanyl ethanolamine (O-PE), lyso-phosphatidylethanolamine (LPE), 

diacyl phosphatidylcholine (PC), plasmalogen choline (P-PC), plasmanyl choline (O-PC), lyso-

phosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylinositol (PI), diacylglycerols 

(DG), triacylglycerols (TG), and 1-O-alkyl-diglyceride (O-TG). 
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Appendix 11 

Effects of maternal n-3 PUFA diet on lateral diffusion rate of lipids in fetal neuronal 

membrane (10-7 cm2/s) 

Lipids Low 

GD12.5 

Low 

GD18.5 

High 

GD12.5 

High 

GD18.5 

Diet Gestation Diet* 

Gestation 

PC  6.21 ± 0.15b 6.79 ± 0.03a 6.33 ± 0.20a 6.85 ± 0.11b NS p = 0.0005 NS 

PE  6.23 ± 0.12b 6.60 ± 0.27a 6.33 ± 0.19a 6.79 ± 0.11b NS p = 0.01 NS 

PG  6.55 ± 0.95a 6.45 ± 0.93a 6.43 ± 0.17a 7.33 ± 0.04a NS NS NS 

PS  6.18 ± 0.46b 6.60 ± 0.31a 5.94 ± 0.20a 5.94 ± 0.03b p = 0.04 NS NS 

PI  5.30 ± 0.29b 6.10 ± 0.11a 5.94 ± 0.20a 5.94 ± 0.03a NS p = 0.01 p = 0.01 

DG  7.26 ± 0.43a 9.58 ± 1.06a 10.06 ± 0.85a 9.39 ± 1.04a NS NS NS 

TG  6.76 ± 0.30b 9.48 ± 0.24a 7.24 ± 1.48a 7.32 ± 0.63a NS p = 0.04 NS 

CE  12.39 ± 2.01a 9.74 ± 3.16a 12.90 ± 2.74a 11.99 ± 2.96a NS NS NS 

SM  2.75 ± 0.68a 5.55 ± 1.48a 6.88 ± 2.23a 6.75 ± 4.18a NS NS NS 

Cer  7.49 ± 0.52a 8.64 ± 0.55a 7.90 ± 0.63a 7.81 ± 1.16a NS NS NS 

ADR 6.25 ± 0.20a 6.73 ± 0.17a 6.42 ± 0.25a 6.86 ± 0.15a NS NS NS 

Data were analysed using two-way ANOVA to determine the main effects and the interactions 

between maternal diet and gestation stage; pairwise comparison using Bonferroni's correction was 

used to determine differences when there was an observed interaction. Data represent the mean ± 

standard error of mean (SEM). Mean values with different superscript letters (a, b, c & d) are 

significantly different; p < 0.05 (n = 3 replicates). PC = species with choline head group (diacyl 

phosphatidylcholine, lysophosphatidylcholine, plasmanyl choline, and choline plasmalogen), PE 

= species with ethanolamine head group (diacyl phosphatidylethanolamine, 

lysophosphatidylethanolamine, plasmanyl ethanolamine and ethanolamine plasmalogen), 

phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), di/triacylglycerols 

(DG/TG), cholesteryl esters (CE), sphingomyelins (SM), ceramides (Cer), and average diffusion 

rate (ADR). 
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Appendix 12 

Effect of n-3 PUFA diets on domain formation in the fetal neuronal membrane during 

gestation 

Domains   
Groups 

Low-GD12.5 Low-GD18.5 High-GD12.5 High-GD18.5 

Domains that were enriched in all the membranes 

CE/PI 1.20 ± 0.02 1.22 ± 0.01 1.30 ± 0.02 1.47 ± 0.01 

CE/Cer 1.45 ± 0.07 1.73 ± 0.11 1.73 ± 0.15 2.03 ± 0.09 

Cer/Cer 1.40 ± 0.15 1.28 ± 0.91 2.26 ± 0.35 1.99 ± 1.00 

Cer/PE 1.46 ± 0.06 1.75 ± 0.02 1.64 ± 0.04 1.79 ± 0.01 

Cer/SM 1.21 ± 0.13 1.33 ± 0.06 1.50 ± 0.07 1.67 ± 0.27 

PC/PC 1.83 ± 0.02 1.90 ± 0.00 1.89 ± 0.00 1.93 ± 0.00 

PE/PG 1.62 ± 0.04 1.97 ± 0.08 1.77 ± 0.03 2.00 ± 0.06 

PE/Cer 1.45 ± 0.06 1.74 ± 0.17 1.63 ± 0.03 1.75 ± 0.02 

PI/PS 1.83 ± 0.41 1.87 ± 0.43 1.91 ± 0.45 1.89 ± 0.44 

SM/SM 1.92 ± 0.01 1.96 ± 0.02 1.98 ± 0.00 2.00 ± 0.00 

SM/PC 1.89 ± 0.00 1.98 ± 0.00 1.97 ± 0.00 2.00 ± 0.00   

Domains that were neither enriched nor depleted in all the membranes 

CE/PS 0.95 ± 0.01 0.83 ± 0.02 0.93 ± 0.00 1.00 ± 0.00 

PC/PG 1.02 ± 0.01 1.04 ± 0.03 1.06 ± 0.03 1.14 ± 0.07 

PC/Cer 1.02 ± 0.01 1.06 ± 0.02 1.06 ± 0.02 1.15 ± 0.08 

PG/Cer 1.05 ± 0.04 1.03 ± 0.01 1.08 ± 0.06 1.19 ± 0.10 

PI/PG 0.96 ± 0.02 1.02 ± 0.04 1.06 ± 0.04 1.16 ± 0.01 

PI/PI 0.80 ± 0.04 0.90 ± 0.01 0.89 ± 0.01 0.99 ± 0.00 

Domains depleted in all the membranes 

Cer/CE 0.37 ± 0.09 0.53 ± 0.07 0.40 ± 0.04 0.43 ± 0.03 

Cer/PS 0.75 ± 0.14 0.50 ± 0.07 0.57 ± 0.11 0.45 ± 0.13 

Cer/PI 0.73 ± 0.14 0.52 ± 0.07 0.55 ± 0.12 0.48 ± 0.06 

PC/PI 0.68 ± 0.16 0.54 ± 0.23 0.58 ± 0.21 0.47 ± 0.23 

PC/PE 0.63 ± 0.00 0.26 ± 0.01 0.53 ± 0.02 0.40 ± 0.01 

PC/CE 0.19 ± 0.01 0.27 ± 0.03 0.18 ± 0.01 0.15 ± 0.02 

PE/SM 0.70 ± 0.02 0.56 ± 0.01 0.60 ± 0.01 0.48 ± 0.01 

PE/PC 0.22 ± 0.00 0.17 ± 0.01 0.20 ± 0.02 0.18 ± 0.01 

PG/CE 0.56 ± 0.20 0.52 ± 0.13 0.40 ± 0.10 0.40 ± 0.11 

PG/PC 0.63 ± 0.00 0.28 ± 0.00 0.52 ± 0.00 0.40 ± 0.00 

PG/PS 0.24 ± 0.00 0.28 ± 0.00 0.25 ± 0.00 0.27 ± 0.00 
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PG/PE 0.45 ± 0.01 0.61 ± 0.02 0.49 ± 0.00 0.55 ± 0.02 

PI/CE 0.60 ±0.05 0.32 ± 0.03 0.61 ± 0.04 0.36 ± 0.03 

PI/PC 0.68 ± 0.16 0.54 ± 0.23 0.58 ± 0.21 0.47 ± 0.25 

PI/SM 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

PS/PC 0.71 ± 0.14 0.55 ± 0.23 0.61 ± 0.20 0.48 ± 0.27 

PS/CE 0.47 ± 0.05 0.49 ± 0.03 0.48 ± 0.04 0.36 ± 0.04 

SM/PG 0.71 ± 0.00 0.52 ± 0.02 0.67 ± 0.01 0.61 ± 0.01 

SM/PS 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Molecular dynamic simulation of the fetal neuronal membrane was done in triplicate for 10 µs. 

The contact fractions - the number of contacts between the headgroups of two lipids within 1.2 nm 

were calculated using LiPyphilic software (P. Smith & Lorenz, 2021) (to determine the formation 

of lipid domains in the membrane). The mean ± standard error of the mean (SEM) (n = 3 per 

group) was determined and presented in Table 3.3. Lipid domains with contact fraction values < 

0.8 (in red color cells) represent depleted domains, domains with contact fraction values > 0.8 

and less than 1.2 (in yellow color cells) represent domains that were neither depleted nor enriched, 

and domains with contact fraction values ≥ 1.2 (in blue color cells) represent enriched domains. 
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Appendix 13 

Summary of effect of diet and gestation on selected fetal brain lipids and fatty acyl species 

Lipid group/class/fatty acyl species Diet Gestation 

∑Ethanolamine-based GP ↑ ↑ 

∑PE ↑ ↑ 

MUFA-containing PE 

PE(16:0_16:1) NS ↓ 

PE(16:0_18:1) ↑ ↓ 

PE(18:1_18:1) NS ↓ 

PE(16:1_18:1) NS ↓ 

PE(P-16:0_18:1) ↓ ↓ 

N-6 PUFA-containing PE  

PE(18:1_18:2) NS ↓ 

  N-3 PUFA-containing PE 

PE(16:0_22:6) ↑ ↑ 

PE(18:0_22:6) ↑ ↑ 

∑P-PE ↓ NS 

N-6 PUFA-containing P-PE 

PE(P-16:1_20:4)  NS ↓ 

PE(P-16:0_20:4) ↓ ↓ 

PE(P-16:0_22:4) ↓ ↓ 

PE(P-18:0_22:4) ↓ ↓ 

N-3 PUFA-containing P-PE 

PE(P-16:0_22:5) ↓ ↓ 

PE(P-18:0_22:5) ↓ ↓ 

∑O-PE ↑ ↑ 

PE(O-16:1_22:6) ↑ ↑ 

PE(O-18:1_22:6) ↑ ↑ 

   

∑Choline-based GP ↓ ↓ 

∑PC ↓ ↓ 

SFA-containing PC 

PC(18:1_18:0) ↑ ↑ 

PC(16:0_18:0) ↑ ↑ 

N-6 PUFA-containing PC 

PC(18:1_20:4) ↓ NS 

PC(16:0_20:4) ↓ ↑ 

N-3 PUFA-containing PC 
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PC(16:0_22:6) ↑ ↑ 

PC(16:1_22:6) ↑ NS 

∑P-PC NS ↓ 

∑LPC ↑ ↑ 

LPC(22:6) ↑ ↑ 

Minor brain lipids ↑ ↑ 

SFA-containing minor brain lipids 

PG(16:0_16:0) ↑ NS 

Cer(d18:1_16:0) ↓ ↓ 

Cer(d18:1_18:0) ↓ ↑ 

Cer(d18:2_18:0) ↑ ↓ 

MUFA-containing minor brain lipids 

PG(18:1_18:1) ↑ ↓ 

PG(18:0_18:1) ↑ ↑ 

PG(16:0_18:1) ↑ ↑ 

N-6 PUFA-containing minor brain lipids 

PS(18:0_22:4) ↓ ↓ 

PI(18:0_20:4) NS ↓ 

   N-3 PUFA-containing minor brain lipids 

PS(18:0_22:5) ↓ NS 

PS(18:0_22:6) ↑ ↑ 

CE(22:6) ↑ ↓ 

∑Glycerolipids NS ↓ 

MUFA-containing glycerolipids 

DG(16:0_18:1) ↑ ↑ 

N-6 PUFA-containing glycerolipids 

TG(16:0_20:3_20:3) ↑ ↑ 

N-3 PUFA-containing glycerolipids 

TG(16:0_16:0_22:6) ↑ ↑ 

TG(16:0_18:1_22:6) ↑ ↓ 

Under diet column, ↑ = higher in high n-3 PUFA diet compared with low n-3 PUFA diet, whereas 

↓ = lower in high n-3 PUFA diet compared with low n-3 PUFA diet; under gestation column: ↑ 

increase as gestation progressed from GD12.5 to GD18.5, whereas ↓ = decrease as gestation 

progressed. NS = no significant effect. 
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Appendix 14 

Summary of effect of diet and gestation on selected fetal neuronal membrane dynamics 

Membrane dynamics  Diet Gestation 

Membrane thickness ↓at GD12.5 and ↑ at GD18.5 ↓ 

Area per lipids ↑ ↑ 

CE flip-flop rate ↓ ↓ 

Average LDR NS NS 

Under diet column, ↑ = higher in high n-3 PUFA diet compared with low n-3 PUFA diet, whereas 

↓ = lower in high n-3 PUFA diet compared with low n-3 PUFA diet; under gestation column: ↑ 

increase as gestation progressed from GD12.5 to GD18.5, whereas ↓ = decrease as gestation 

progressed. LDR = lipid diffusion rate. NS = no significant effect. 


