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ABSTRACT 

Environmental data analysis encompasses methods including domain specific 

environmental modelling, statistics, and data-driven methods (e.g., artificial intelligence) 

to interpret observational and experimental datasets for tackling environmental issues. The 

field of environmental data analysis has experienced significant advancement over the last 

decade, fueled by the exponential increase in data quantity and complexity and the 

progression of data-driven paradigms alongside artificial intelligence. This field faces 

several key challenges, including 1) the lack of means for analysis from causal 

perspectives, especially in complicated multivariable problems, 2) the relatively high 

computational cost associated with partial-differential-equation-based models that 

incorporate physics priors, compounded by intrinsic uncertainties in parameter tuning 

processes, and 3) the frequent situations with limited data available or valid for analysis. 

This dissertation research aims to bridge the gaps by developing a set of integrated methods 

that meld the strengths of interpretable machine learning and causal inference with classic 

tools for environmental data analysis and modelling. It entails the following major tasks: 

1) to introduce an interpretable data analysis framework that leverages machine learning 

and causal inference. This framework can not only promote a deeper understanding of the 

causal relationships within environmental data but also serve as a testament to the value 

and potential of applying interpretative analytics in environmental fields. It is exhibited by 

a case study on the relationships between environmental factors and pandemic severity. 2) 

to develop a causal-prior embedded neural network, utilizing experimental data and 

parameters fitted from physics-based models, offering a systematic integration of lab 

experiments, physics-based simulation, causal inference techniques, and neural network 
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modelling. The method is demonstrated through an integrated experimental and modelling 

study on the fate and transport of metformin, an emerging contaminant, in a porous 

medium. 3) To propose and test a transfer learning-based method to estimate the 

occurrences of environmental pollutants released or closely associated with human 

activities under data-scarce scenarios, supported by a novel neural network architecture 

and a comprehensive model fine-tuning strategy. The method is exemplified through a 

global risk assessment of metformin with a special attention on Canadian ecozones and the 

Arctic and sub-Arctic regions to showcase the method’s effectiveness in enhancing 

environmental risk evaluation in data-limited contexts.  

The dissertation research advances the field of environmental data analysis by developing 

a set of new methodologies based on causal inference and interpretable machine learning. 

Those methods deliver benefits including enhanced model interpretability, reduced 

computational costs, and improved efficiency in dataset utilization, enabling robust 

analysis of environmental data across diverse scales. The research can offer not only robust 

and effect methodologies for actionable environmental data analysis and modelling but 

also enhance our capability to harness vast and complex environmental data for informed 

decision-making and policy development. 
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1.1 Background 

Environmental data analysis is a field dedicated to examining observational and 

experimental datasets to extract insights critical for addressing pressing environmental 

challenges. This discipline utilizes specialized modelling tools informed by prior 

knowledge, alongside statistical methods, to guide data interpretation and inform solutions 

(Gibert et al., 2018). Fueled by the exponential increase in environmental data volume and 

complexity and the progression of data-driven methods such as artificial intelligence, the 

field of environmental data analysis has experienced significant advancement over the last 

decade (Fleming et al., 2021; Rolnick et al., 2023). Leveraging advancements in 

computational power and data-driven techniques, the field of environmental data analysis 

possesses unique characteristics. A key aspect is the emphasis on understanding the reasons 

behind environmental phenomena, which is often as crucial, if not more so, than the 

phenomena themselves (Carriger et al., 2016). This is because environmental issues 

typically span multiple disciplines, such as chemistry, biology, geoscience, and 

epidemiology, and so on. This interdisciplinary nature can make the underlying 

mechanisms of observations complex and not as straightforward as those seen in controlled 

laboratory settings, raising the risk of generating misleading conclusions solely based on 

correlations (J. Zhu et al., 2023). Moreover, the inherent uncertainty and complexity of 

environmental issues require engineers and scientists to not only rely on traditional 

physics-based models but also to embrace data-driven approaches (Beven, 2007). These 

approaches are essential for extracting insights from a wide range of data sources and 

formats, both experimental and observational. For example, data-driven research has 

yielded significant findings in environmental research field, from estimating arsenic levels 
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in global groundwater to identifying significant evidence of climate change in a large 

amount of studies (Podgorski & Berg, 2020; Callaghan et al., 2021), highlighting the value 

of further exploration in this area. Furthermore, some urgent environmental issues are 

emerging, presenting critical challenges with limited data availability, such as the case with 

emerging pollutants (Arpin-Pont et al., 2016; Archer et al., 2017). These substances are not 

routinely monitored worldwide, leading to the datasets that are sparse and largely confined 

to limited numbers of studies without systematic collection efforts, comparing with 

ordinary pollutants. Therefore, we are facing significant challenges and environmental data 

analysis can play a critical role in addressing those problems amid changing conditions, 

underscoring the urgent need for innovative and effective analytical strategies to utilize the 

limited available data.  

In modern environmental data analysis, two primary modelling paradigms are 

distinguished: physics-based models and data-driven methods (Šimůnek & van Genuchten, 

2008; Zhong et al., 2021). From a methodological perspective, physics-based models have 

been a valuable tool and extensively applied in the environmental field. Although these 

models are reliable and useful, they are characterized by high computational demands and 

a complex recalibration process which reduce its applicability. This limits their application 

for rapid analyses, especially when computational resources are scarce and time is of the 

essence, such as in emergency decision-making processes (Šimůnek & van Genuchten, 

2008; Ye et al., 2020). Conversely, with the recognized power and effectiveness, the data-

driven methods have been given growing attention along with concerns on their lack of 

transparency in many algorithms and limitations in reflecting the physical mechanisms or 

processes underlying the data (Zhong et al., 2021; J. Zhu et al., 2023). Therefore, given the 
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unique demands of the field and the inherent challenges within commonly used 

methodologies, some novel approaches beyond standard machine learning techniques and 

physics-based modelling methods are worth exploring.  

Causal inference aims to investigate the underlying reasons behind data correlations, 

evaluating essential causal relationships for informed decision-making and policy 

development (Pearl, 2000). It enables researchers to investigate the mechanisms or driving 

factors behind specific phenomena, such as the association between air pollution and public 

health (Davis et al., 2022; Forster et al., 2020; G. He et al., 2020). Additionally, there is a 

growing demand for interpretable data-driven methods such as Physics-Informed Neural 

Networks (Zhong et al., 2021), which incorporates physics-based models with machine 

learning. This integration ensures that models are grounded in scientific principles, 

improving their interpretability and reliability while reducing their dependency on 

extensive datasets (Bandai & Ghezzehei, 2022; Cai et al., 2021). Furthermore, the adoption 

of techniques such as transfer learning in applied science and engineering illustrates its 

effectiveness in utilizing existing knowledge and data to tackle new, often data-limited, 

challenges (S. J. Pan & Yang, 2010). By adapting models trained for one task to another 

related one, transfer learning circumvents the need for large datasets traditionally required 

for training models from the ground up. Its utility in environmental engineering is 

particularly valuable, given the field's frequent encounters with sparse or difficult-to-

acquire datasets (Cao et al., 2022; Chen et al., 2021). This approach not only speeds up 

research efforts but also improves prediction accuracy and model robustness, facilitating 

more effective environmental management and policymaking. It holds promise for 

addressing emergent yet data-sparse issues, like the presence and ecological risk of 
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pharmaceuticals and personal care products (PPCPs) in aquatic environments, a problem 

which has been widely recognized for its significance yet hampered by insufficient data 

(Wilkinson et al., 2022).  Therefore, the aforementioned methods warrant further 

exploration to enhance and refine current methodologies in environmental data analysis, 

enabling more effective tackling of urgent environmental challenges. 

1.2 Statement of Problems 

The integration of machine learning into environmental data analysis heralds a new era of 

vast potential, promising to enhance our understanding and management of environmental 

systems. However, a notable challenge lies in environmental data analysis, specifically the 

gap in interpretative, data-driven methodologies and optimal data operational practice. This 

deficit profoundly affects our ability to fully harness the power of AI and other data-driven 

methods in addressing environmental concerns, specifically in four critical areas: causal 

interpretation of observational data, adaptation of physics-based models, pervasive issues 

of data scarcity, and optimal data curation practices. 

(1) Need for causal inference framework for environmental data analysis 

The task of extracting causal insights from observational data presents a significant 

challenge in environmental data analysis. While some problems may appear 

straightforward initially, a comprehensive investigation is often required to adequately 

assess causal links. The current analytical frameworks’ inability to offer causal 

interpretations underscores a pressing need for innovative methods that can transform 

observational data into causal insights. The COVID-19 pandemic exemplifies this, as 

researchers have endeavored to determine the impact of potential environmental factors, 

such as meteorological conditions and air pollution, on the severity of the disease (Bashir, 
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Ma, Bilal, Komal, Bashir, Tan, et al., 2020). However, only a handful of studies have 

approached these associations from a causal perspective (Mastakouri & Schölkopf, 2020). 

(2) Inherent challenges in physics-based models 

Although models based on physics prior-knowledge are reliable and useful, they are 

marked by their intensive computational demands and the inherent uncertainty, especially 

from the parameterization processes, which significantly increase computation time and 

diminish their applicability (Raissi et al., 2019). The limitation renders these models less 

suitable for quick analyses in situations when computational resources are limited, and 

swift decision-making is vital such as during environmental emergency responses 

(Šimůnek & van Genuchten, 2008; Ye et al., 2020). Furthermore, these models encounter 

obstacles including equifinality, a phenomenon where diverse parameter sets produce 

indistinguishable output curves, raising the risk of misinterpretation (Beven, 1996). This 

issue was prominently illustrated in the studies investigating the fate and transport 

behaviours of emerging pollutants within porous media, where numerous parameter 

combinations derived from extensive parameterization processes yielded identical, well-

fitted breakthrough curves, yet insufficient prior knowledge failed to discern among these 

combinations (Bandai & Ghezzehei, 2021).  Stiffness is also a situation in which certain 

parameters lead to equations that pose significant challenges in solving (Asaro & Lubarda, 

2006; Um et al., 2019). Lastly, a significant challenge in utilizing physics-based models in 

environmental engineering is the often-ambiguous interpretability of some parameters. 

These parameters are typically inferred by fitting models to observed data, leading to 

significant research efforts focused on curve-fitting (Kumar, 2012).  
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(3) Scarce data for emerging environmental challenges 

Data scarcity is a pervasive challenge across various domains of applied science. The lack 

of comprehensive, high-quality datasets can significantly constrain the ability of 

researchers to draw meaningful conclusions and formulate effective management strategies 

(Gibert et al., 2018). This limitation becomes particularly apparent when investigating 

emerging pollutants, such as PPCP. Their widespread presence and ecological impacts are 

increasingly alarming. However, most of them are not covered by regulated monitoring 

programs, resulting in a lack of comprehensive data from both spatial and temporal scales. 

Efforts to understand the environmental footprint of PPCPs often need to grapple with the 

dual challenges of data insufficiency and the absence of methodologies designed to extract 

maximum insights from limited datasets (Wilkinson et al., 2022). 

1.3 Objectives and Tasks 

This dissertation research aims to develop an integrated framework aided by a set of 

interpretable machine learning and causal inference methods for effective data analysis at 

multiple scales, to provide more solutions for environmental studies. Specifically, it entails 

the following research tasks: 

(1) To develop an interpretable data analysis framework that utilizes interpretable machine 

learning techniques and causal inference methodologies in environmental engineering and 

science, with an emphasis on promoting model interpretability and data transparency. This 

framework is to be exemplified by an in-depth analysis of the impact of environmental 

factors on COVID-19 severity, to illustrate the effectiveness and applicability of causal 

inference in environmental data analysis. 
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(2) To develop a causal-prior embedded neural network based on experimental data and 

physics-model fitted parameters to enhance the current environmental data analysis 

methodologies by systematically integrating experimental data, physics-based modelling, 

causal inference techniques, and neural networks. This method will be tested by an 

investigation on the fate and transport of metformin, a representative PPCP, in porous 

media. 

(3) To develop a transfer learning-based methodology designed to estimate environmental 

pollutant occurrences with limited data, particularly emerging pollutants closely linked to 

human activities. This approach will be supported by a suite of complementary data science 

techniques, including an innovative neural network architecture and a comprehensive 

model fine-tuning strategy. The method is to be demonstrated through the global risk 

assessment of metformin, with a particular emphasis on Canadian ecozones and the Arctic 

and sub-Arctic regions, for its effectiveness on tackling the issue of data scarcity in 

environmental risk analysis. 

1.4 Structure of the Dissertation 

This dissertation is structured in a manuscript-based format, systematically unfolding 

through a series of research work and outcomes, to address the critical challenges in 

environmental data analysis. Our methods have been exemplified through case studies that 

illuminate the intricate interactions between environmental factors and the COVID-19 

pandemic (Chapter 3), explore the behavior and movement of the emerging pollutant 

metformin (Chapter 4), and evaluate its global ecological risks (Chapter 5). A schematic 

overview of the research framework is depicted in Figure 1.1, illustrating the dissertation’s 

structure and logical connections is organized as follows: 
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Chapter 2 provides a comprehensive review of key topics, laying the groundwork with a 

focus on emerging environmental health challenges. It introduces the methods employed 

in the research, including machine learning, causal inference, PINN (Physics-Informed 

Neural Network), and transfer learning, establishing a foundation for the subsequent 

analyses. Additionally, it provides a background review that details the intricate 

relationship between COVID-19 and air pollution and surveys the prevalence of metformin 

as an emerging pollutant in global waterbodies. 

Chapter 3 introduces a causal inference framework utilizing the Structural Causal Model 

(SCM) and machine learning techniques and showcases its capability by investigating the 

potential causal relationships between COVID-19 severity and environmental factors 

across 166 Chinese cities, categorized into three clusters based on socio-economic 

characteristics. The chapter concludes with a comprehensive robustness check to examine 

the reliability of the potential causal links. 

Chapter 4 proposes a novel transport modelling approach that incorporates experimentally 

derived causal priors into neural networks, with the aid of causal inference techniques. Its 

capability is demonstrated by a case study exploring the transport dynamics of metformin 

in sandy media. The transport characteristics of metformin and the effectiveness of the 

methodology are summarized and discussed.  

Chapter 5 develops a modelling strategy ideal for scenarios where limited, yet valuable 

prior knowledge is available, utilizing transfer learning and semi-synthetic datasets. It also 

introduces EffluentNet, a novel neural network architecture specifically designed to 

simultaneously predict two or more associated distributions, demonstrating its applicability 

in scenarios where the relationships between distributions are known to be interconnected. 
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Its capability is demonstrated through a case study investigating the global distribution of 

metformin, identifies critical areas of concern and highlights the impact of pharmaceutical 

pollutants in pristine environments like Canadian ecozones and the Arctic and sub-Arctic 

regions. This chapter advocates for the adoption of culturally sensitive policies, particularly 

in regions inhabited by indigenous communities, to ensure environmental preservation that 

aligns with the socio-cultural fabric of those communities. 

Chapter 6 concludes the dissertation by summarizing the key contributions and findings of 

the research. It underscores significant insights and makes recommendations for future 

research in environmental data analysis. 
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Figure 1.1 A schematic diagram of the dissertation research. 
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LITERATURE REVIEW 
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2.1 Environmental Data Analysis1  

Environmental data analysis encompasses techniques such as classic environmental 

modelling, statistics and artificial intelligence to analyze and interpret complex datasets, 

aiming to support environmental mitigation and decision-making (Gibert et al., 2018). As 

a complex and evolving field, environmental data analysis has seen rapid progress due to 

the substantial growth in both the volume and complexity of data generated by 

advancements in environmental analytical tools, monitoring technologies, and the 

availability of open datasets (Zhong et al., 2021). Consequently, the sources of data for 

environmental analysis involve not only traditional environmental variables, such as 

monitoring and observational data, satellite imagery, but also extend to unconventional 

data pertinent to environmental challenges (Wilkinson et al., 2022; Podgorski & Berg, 

2020), such as public health indices and financial statements that highlight a company’s 

carbon footprint (Callaghan et al., 2021; Heberling et al., 2021; Rolnick et al., 2023). 

Therefore, in a broad sense, environmental data analysis is characterized by its goals rather 

than the specific types of data it utilizes. This section reviews the current state of 

environmental data analysis and common challenges it can solve, aiming to provide a 

thorough background on the subject. 

Before the era of ‘big data’, researchers primarily utilized two approaches to simulate and 

investigate environmental processes: 1) empirical models, exemplified by the Universal 

 
1 This section is partially based on and expanded from the following paper: 

Datta, A. R., Kang, Q., Chen, B., & Ye, X. (2018). Fate and transport modelling of 

emerging pollutants from watersheds to oceans: a review. Advances in marine biology, 81, 

97-128. 

Role: I conceptualized the study with Datta, A. R., conducted literature reviews, and participated in writing 

and editing. I prepared the initial draft of the manuscript, which was then refined through collaborative 

revisions. 
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Soil Loss Equation (Hudson, 1993) and 2) analytical and theoretical methods, such as the 

Navier–Stokes equations (Bear, 2013). Many of these models remain relevant today. 

Taking Hydrus-1D as an example, it is one of the modelling tools capable of simulating 

the transport of chemicals. It is a well-established software tool that incorporates a variety 

of physics-based equations, such as Richards’ equation for saturated-unsaturated water 

flow and Fickian-based advection-dispersion equations for solute transport, enabling 

analysis of water flow and solute transport in variably saturated porous media. It has been 

used to investigate the fate and transport of substances such as propranolol, ciprofloxacin, 

clomipramine, caffeine and carbamazepine (Feizi et al., 2021; Koroša et al., 2020). The 

governing flow and solute transport equations were inversely solved via the finite element 

method from the observed breakthrough curves. This approach allows for the estimation 

of parameters related to porous media hydraulics and solute transport. However, like many 

other partial differential equation (PDE) models, it faces challenges such as equifinality, 

where different parameter combinations yield identical fitted curves, potentially leading to 

inaccurate interpretations (Beven, 1996), and stiffness, where reasonable parameters result 

in equations that are difficult to solve (Asaro & Lubarda, 2006). Thus, there is room for 

these models to benefit from advancements in modern data-driven methods. 

The scenarios that environmental data analysis faces are also becoming increasingly 

complex. One example is the risk posed by emerging pollutants, which include PPCPs, 

deodorizers, fragrances, flame retardants, industrial chemicals, natural hormones and 

steroids, current-use pesticides, plasticizers, and surfactants (Diamond et al., 2011). The 

chemicals are not commonly monitored under existing environmental regulations but 

considered to pose potential risks to ecosystems and humans (Geissen et al., 2015). Due to 
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the rapid development of technology, industry, and resources, the increase in the number 

of emerging pollutants is alarming in the environment from the atmosphere to the 

subsurface and oceans. More than 1,000 emerging pollutants in the European aquatic 

environment have already been listed by the Norman Network, Network of reference 

laboratories, research centres and related organisations for monitoring emerging 

environmental substances (2016). How the CECs enter the environment depends on their 

usage patterns and application modes (La Farré et al., 2008). Emerging pollutants from 

urban and industrial sources are discharged into sewers and wastewater treatment plants. 

The removal of these pollutants is challenging since conventional treatment processes are 

usually not capable of eliminating them. For example, the removal of endocrine-disrupting 

compounds (EDCs) by lime softening or by coagulation by alum/ferric sulphate can be 

< 20% (Deblonde et al., 2011). Hence, those wastewater effluents can be considered as 

point source pollution to the water bodies. Once they reach the water bodies, they can be 

further transported downstream in dissolution form or present in the suspended solids form. 

The physicochemical properties of emerging pollutants, such as solubility, vapour pressure 

and polarity, determine their environmental behaviour (La Farré et al., 2008). Depending 

on the transport properties, some potential fate and transport pathways for emerging 

pollutants include leaching, surface runoff, and sorption (Geissen et al., 2015).Biological 

and chemical degradation may occur during the transportation to ambient water bodies as 

well. Eventually, the concentration of emerging pollutants in water bodies may vary from 

a low ng/L level to a mid μg/L level (Ahmed et al., 2017). Those variations in their 

occurrences are due to different doses applied in the treatment processes in various regions 

and also the inconsistent treatment efficiency of the wastewater treatment plants. Thus, the 
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stability of the physics-based models when modelling transport processes with significant 

concentration variations cannot be guaranteed. On the other hand, the relatively unknown 

characteristics of emerging pollutants exacerbate the issue of equifinality since such 

uncertainty makes it difficult to select the most reasonable parameter combinations from a 

series of candidates due to a lack of comprehensive knowledge about these pollutants. 

Lastly, the emerging nature of these pollutants often means that there is limited data 

available for robust process simulation and predictive modelling. The scarcity of data poses 

a significant challenge in assessing the environmental impact of emerging pollutants. The 

challenges outlined above underscore the potential for physics-based models to greatly 

benefit from the integration of modern data-driven methodologies. 

Another prevalent scenario in environmental data analysis involves the exploration of 

causal relationships, as illustrated by the case between environmental factors and COVID-

19. The global health crisis instigated by the COVID-19 pandemic has necessitated a 

critical examination of various contributing factors to its spread and severity. Among these, 

the correlation between environmental factors—specifically air pollution and 

meteorological conditions—and COVID-19 outcomes has garnered significant scholarly 

attention (F. Liu et al., 2021; X. Zhang et al., 2021). Some studies have highlighted the 

inadvertent environmental benefits arising from lockdown measures implemented 

worldwide (Adams, 2020; G. He et al., 2020; Lovrić et al., 2020). A pivotal study 

conducted across 325 cities in China revealed a substantial improvement in air quality, 

quantified by a 12.2% reduction in the Air Quality Index (AQI). This improvement varied 

across different pollutants and was more pronounced in northern cities, areas with higher 

income, and more industrialized regions (M. Wang et al., 2020). The relationship between 
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short-term exposure to air pollution and COVID-19 infection rates has been explored in 

various studies. One such study in China found positive associations between several air 

pollutants (PM2.5, PM10, NO2, and O3) and the incidence of COVID-19 cases. 

Interestingly, SO2 exhibited a negative association with confirmed cases (Y. Wang et al., 

2020). Similarly, many studies reported reductions in air pollution during the pandemic 

and interpreted such drop as a result of the lockdown policies implemented worldwide. 

Such interpretations are considered to be credible and reasonable (Adams, 2020; Cole et 

al., 2020; F. Liu et al., 2021; J. Liu et al., 2020; Lovrić et al., 2020; J. Wang et al., 2021; 

M. Wang et al., 2020; Y. Wang et al., 2020). Meanwhile, those reported links lead to the 

speculation that some causal mechanisms may exist behind the associations with several 

plausible hypotheses proposed. For instance, low wind speeds may facilitate the suspension 

of infectious particles in the air, potentially increasing exposure risks (Coccia, 2020a, 

2021b). Additionally, exposure to air pollution may weaken individuals’ immune systems, 

thereby elevating the infection rate. Exposure to air pollution may compromise people’s 

immune systems and induce a higher infection rate (Kutter et al., 2021; Srivastava, 2021; 

Tian et al., 2021). Though no consensus has been reached, researchers deployed various 

approaches on several types of observational data and discussed the possibilities of some 

causal links’ existence (Islam et al., 2021; Qu et al., 2020; Sunyer et al., 2021), even though 

some studies within the field have interpreted data with less caution, resulting in some 

confusion. Such a scenario highlights the complexity of environmental challenges caused 

by emerging pathogens and the multifaceted nature of the data they produce, underscoring 

the indispensable need for causal inference in environmental data analysis. 
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2.2 Causal Inference with Structural Causal Model 

The Structural Causal Model (SCM) evolves from the Bayesian Network and Structural 

Equation Model. The main improvement of SCM compared with its predecessors is that 

SCM uses a causal diagram as part of the input. In this way, the prior knowledge is 

introduced into the system in a causal directional manner rather than bidirectional 

probability distribution in Bayesian Network and Structural Equation Model. Hence, the 

relationships in SCM can more accurately represent real-world causal links.  

SCM uses a directed acyclic graph (DAG) to reflect the causal relationship between 

different variables. A variable in the dataset is a vertex in the graph, and a directed edge 

(arc) indicates a causal link. This causal diagram explicitly introduces prior knowledge 

regarding the data-generating process to the system. Given a causal diagram of a problem 

based on a series of mathematically proven graphic-based operations, a set of variables in 

the graph can be picked from all the given variables while following the graph-based 

operations. The selected variables are then sufficient to calculate the causal effects of 

interest. The set of these variables is hence called the sufficient set. Another important 

assumption is that if a causal effect can be estimated, all the variables in the sufficient set 

should be observable. 

To have a deeper insight into causal inference, two conditional distributions that one might 

want to estimate during data analysis should be distinguished. The two distributions are 

given below (Pearl, 2000, 2014): 

Observation p(y|x): The conditional distribution of Y when the variable 𝑋 has the value 𝑥.  

Intervene p(y|do(x)): The conditional distribution of Y when the variable 𝑋 is set to 𝑥.  
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Though being similar, the two distributions are totally different. Only the second one can 

answer causal problems. Intervention means changing the value of a causal variable 𝑋 on 

purpose and then observing the changes in the corresponding variable Y. The effect of an 

intervention operation expressed as a probability distribution is given as 𝑃(𝑦|𝑑𝑜(𝑥)). 

Mathematically, the ultimate goal of SCM is to estimate this distribution, which is hardly 

feasible in most real-world cases.  

The primary goal of do-calculus is to estimate 𝑃(𝑦|𝑑𝑜(𝑥)) based on observed data outside 

of a controlled randomized experiment. For better comprehension, below is an axiomatic 

system for converting probability formulas containing the do operator with ordinary 

conditional probabilities. Let G be the directed acyclic graph associated with a causal 

model and let 𝑃(˙) denote the probability distribution induced by the model. 𝐺𝑋 indicates 

a modified graph G with all the edges pointing towards X are removed. Similarly, 𝐺𝑋 

indicates that all the outgoing edges from X are removed. For any disjoint subsets of X,Y,Z, 

and W, the following rules apply (Y. Huang & Valtorta, 2012): 

Rule 1: Insertion/deletion of observations 

𝑃 (𝑦|𝑥̂, 𝑧, 𝑤) =  𝑃 (𝑦|𝑥̂, 𝑤) 𝑖𝑓 (𝑌 ⊥  𝑍|𝑋, 𝑊 )𝐺
𝑋

                                                                       (2.1) 

Rule 2: Action/observation exchange 

𝑃 (𝑦|𝑥̂, 𝑧̂, 𝑤) =  𝑃 (𝑦|𝑥̂, 𝑧, 𝑤) 𝑖𝑓 (𝑌 ⊥  𝑍|𝑋, 𝑊 )𝐺
 𝑋𝑍

                                                                 (2.2) 

Rule 3: Insertion/deletion of actions 

𝑃 (𝑦|𝑥̂, 𝑧̂, 𝑤) =  𝑃 (𝑦|𝑥̂, 𝑤) 𝑖𝑓 (𝑌 ⊥  𝑍|𝑋, 𝑊 )𝐺
𝑋,𝑍(𝑊)

                                                                (2.3) 
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where Z(W) is the set of Z-nodes that are not ancestors of any W-node in 𝐺𝑋. All the do-

calculus-based operations are based on the three rules mentioned above. 

Where Y is the outcome, T is the treatment, and W is a set of identified backdoor variables.  

Given a sufficient set 𝑆, the causal effect can be expressed as:  

𝑃(𝑌| 𝑑𝑜(𝑋  =  𝑥))  = ∑ 𝑃(𝑌  =  𝑦| 𝑋  =  𝑥,  𝑆  =  𝑠)𝑃(𝑆  =  𝑠)

𝑠

 (2.4) 

Where 𝑑𝑜(⋅)  indicates the intervention operation, 𝑋 , 𝑌  indicate the treatment and the 

outcome variables, respectively. 𝑆 indicates the variables in the sufficient set. In contrast, 

𝑥, 𝑦, and 𝑠 indicate the individual values in corresponding variables.  

Another presentation of causal effect can be given in the form of average treatment effect 

(ATE), as described as follows: 

ATE =  𝔼[𝑌(1)  −  𝑌(0)]     (2.5) 

Where 𝑌(1)  represents the value of an outcome transport variable when the causal 

transport parameter is altered (i.e., the treatment is applied), and 𝑌(0) denotes the value of 

the outcome variable during the substance transport if the causal transport parameter is not 

changed (i.e., the treatment is not applied). 𝔼[ ⋅ ] denotes the expectation over all simulated 

transport processes (Rubin, 1974). 

Refutation techniques are commonly used to test the robustness of the causal estimators 

during experiments, which can be helpful testing the robustness of the assumed causal links 
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(Sharma & Kiciman, 2020). Refutation methods are a series of statistical experiments to 

assess the constructed DAG and the estimators’ ability to withstand scrutiny, i.e., 

robustness. Some of these techniques include 1) the placebo treatment refuter, which 

involves randomizing the treatment variable affecting the outcome and expects the causal 

estimates to go to zero; 2) the adding random common cause refuter, which introduces an 

independent variable to test the sensitivity of causal estimates to a new common cause, 

with robust estimates remaining unchanged; and 3) the adding unobserved common causes 

refuter, which investigates the effect of adding a treatment-correlated confounder, 

indicating the presence of hidden confounders if the estimates change significantly 

(Sharma & Kiciman, 2020). For instance, the final effect estimates for downstream analysis 

can be chosen based on the most robust estimator between machine learning and linear 

estimations, factoring in the results of refutations. If both estimations yielded similar 

results, Occam’s Razor principle was used, and hence the study opted for linear estimates. 

The extracted causal insights from the dataset can be further encapsulated into a series of 

causal functions.  

One limitation of SCM is its reliance on the correctness of the graph model, which means 

it should correctly include causal relevant variables and potential confounders. On the other 

hand, challenges can also arise from the complexity of depicting intricate causal 

relationships in large multivariate systems with potential non-linear causal effects. These 

constraints necessitate cautious application and interpretation of SCM findings, especially 

when generalizing across different contexts (Pearl, 2000). 
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2.3 Machine Learning: Interpretable Models, Physics-Informed Neural 

Networks, and Transfer Learning  

Machine learning methods suitable for analyzing environmental datasets should 1) excel 

in solving complex high-volume continuous data regression problems, 2) be capable of 

tackling the over-fitting problem, and 3) have a highly interpretable structure for research 

purposes. Due to these three demands, tree-based algorithms, including well-known 

models such as Random Forest, LightGBM, and XGBoost seemed to be more suitable for 

this task compared to other algorithms in the field (T. Chen & Guestrin, 2016; Ke et al., 

2017).  

Random Forest is a widely recognized and powerful ensemble learning technique used 

extensively in the field of machine learning for both classification and regression tasks 

(Breiman, 2001). As an ensemble of decision trees, Random Forest combines the 

predictions of multiple tree models to improve accuracy and reduce the risk of overfitting. 

This is achieved by training each tree on a random subset of the dataset and averaging their 

predictions for regression tasks or using a majority vote for classification. For 

environmental scientists and engineers, Random Forest serves as an indispensable tool for 

diverse applications, including but not limited to predicting PM 2.5 concentration (Zamani 

Joharestani et al., 2019) and evaluating groundwater quality (S. He et al., 2022). Its strength 

lies in its ability to capture complex interactions and nonlinear relationships between 

variables without necessitating extensive data preprocessing or handling missing values 

explicitly. Moreover, Random Forest provides insights into feature importance, allowing 

researchers to identify which variables significantly influence the model’s predictions. 



38 

 

However, the algorithm is also prone to challenges such as high computational cost, 

overfitting problems and undesirable performance on high-dimensional data.  

LightGBM, short for Light Gradient Boosting Machine, is another advanced gradient 

boosting framework that, like XGBoost, focuses on efficiency, speed, and performance but 

with reduced memory usage and higher efficiency (Ke et al., 2017). LightGBM employs a 

novel tree-growing algorithm, which significantly accelerates the learning process and 

reduces memory consumption without compromising accuracy. While it excels in 

managing large-scale datasets, it also presents certain limitations, including the need for 

extensive data preprocessing and substantial data volume requirements. 

XGBoost, which stands for eXtreme Gradient Boosting, is a highly efficient and versatile 

machine learning algorithm that has gained popularity among data scientists and 

researchers across various fields (T. Chen & Guestrin, 2016). At its core, XGBoost is an 

implementation of gradient boosted decision trees designed for speed and performance. It 

is particularly lauded for its ability to handle large and complex datasets with remarkable 

accuracy. For environmental engineers and scientists, XGBoost offers a powerful tool for 

tackling a wide range of modelling tasks, such as forecasting air pollution indicators (B. 

Pan, 2018), predicting soil pH distribution (S. Chen et al., 2019), and assessing 

groundwater quality (Singha et al., 2021). Its ability to deal with non-linear relationships 

and interactions between variables makes it well-suited for the multifaceted nature of 

environmental data. Additionally, XGBoost includes features that handle missing data and 

prevent overfitting, making it a robust choice for real-world environmental data analysis 

projects. 
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A typical workflow of the XGBoost algorithm is: 1) traverse all features in the dataset and 

sort the instances by eigenvalues separately; 2) determine the split points for each feature 

by finding the point with the highest information gain of all possible split points; 3) 

construct the optimal tree structure by choosing the best split strategy for all the features. 

Equation (2.7) shows the calculation of information gain in XGBoost: 

𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+λ
+

𝐺𝑅
2

𝐻𝑅+λ
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+λ
] − γ                                                                              (2.6)         

In the equation, G and H are defined as the sum of the first and second derivatives, 

respectively, of all the samples in a node L or R. λ and 𝛾 are constants. The formula could 

be decomposed as the gain scores on the new left branch, on the new right branch, on the 

original node, and the additional leaf’s regularization. The node split only if the gain is 

greater than zero.  

Physics-Informed Neural Networks (PINNs) is a promising AI-based solution for scientific 

problems, including environmental modelling (Zou et al., 2023; Karniadakis et al., 2021). 

These networks integrate information from physics equations into machine learning 

processes during the design or training phase, potentially mitigating some common 

limitations in traditional transport models, such as equifinality (Beven, 1996) and stiffness 

(Asaro & Lubarda, 2006) to a certain extent. The application of PINNs in environmental 

and earth sciences signifies a progressive shift towards more interpretable and accurate 

predictive modelling techniques necessary for solving complex multi-physics problems 

inherent in these domains. By integrating deep learning with established physical laws, 

PINNs can enhance the capability of model learning and predicting physical dynamics with 

appreciable accuracy. For instance, in soil hydrothermal modelling, PINNs have 
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demonstrated the ability to efficiently couple soil moisture and temperature dynamics, 

utilizing one to improve predictions for the other, thereby reducing reliance on dense 

measurement datasets (Y. Wang et al., 2023). This capability is of immense value in 

environmental engineering and science, where data scarcity often limits the robustness of 

model predictions. Further, in subsurface flow problems, PINNs have been successfully 

employed to estimate hydraulic conductivity under both saturated and unsaturated 

conditions, leveraging partial differential equation constraints to enhance accuracy. 

Additionally, the innovative use of PINNs with monotonicity constraints presents a novel 

approach for estimating soil-specific characteristics necessary for modelling water 

movement through soils directly from volumetric water content measurements without 

necessitating initial and boundary conditions (Raissi et al., 2019).  The application of 

PINNs in capturing the hidden kinetics of complex biological processes like sulfur-driven 

autotrophic denitrification indicates the versatility and potential of these networks in 

analyzing intricate dynamics and designing process control strategies that outperform 

existing models (Zou et al., 2023). While being a great alternative to the traditional physics-

based models (Ghorbani et al., 2021), PINN applications in contaminant transport 

modelling still harbour room for enhancements. For instance, the typical practice is to 

construct separate neural networks for each individual transport process (e.g., separate 

neural networks for adsorption and solute transport) rather than the whole system, 

increasing computational demand and impacting the feasibility and practicality of utilizing 

PINNs over classic physics models (Bertels & Willems, 2023; Bandai & Ghezzehei, 2022; 

Tartakovsky et al., 2020). Furthermore, the lack of clarity surrounding many transport 

factors for emerging pollutants such as metformin adds to the confusion in determining the 
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necessary prior knowledge to be utilized. Thus, a comprehensive methodology that retains 

advantages of PINNs while efficiently extracting and representing prior knowledge—

particularly in scenarios with limited data—is highly desirable. Transfer learning is a 

machine learning technique where a model developed for one task is repurposed or fine-

tuned on a related task, leveraging pre-existing knowledge to improve learning in the 

second scenario (S. J. Pan & Yang, 2010). It is particularly valuable in situations where 

labeled data for the second task is scarce or expensive to obtain. By transferring learned 

features, representations, and weights from a source model trained on ample data to a target 

model for a different but related task, the learning process is significantly accelerated and 

enhanced. This approach reduces both the time and resources needed for model training 

from scratch, making it an effective strategy for improving performance across a wide 

range of applications. It has shown promising applications across various disciplines, 

including environmental engineering and science, where the challenges of sparse data, data 

imbalances, and the high cost of data collection prevail. Transfer learning can significantly 

enhance the efficiency and accuracy of environmental predictions even with limited or 

imbalanced dataset availability by enabling the utilization of pre-trained models on new 

but related tasks. For instance, in predicting geogenic contaminated groundwaters, a 

Siamese Network-Based Transfer Learning model addressed the issue of insufficient 

groundwater quality data and class imbalances, achieving higher sensitivity and specificity 

in predicting hazardous substances' presence in groundwater compared to benchmark 

models (Cao et al., 2022). Similarly, the application for estimating dairy methane emissions 

from aerial imagery with transfer learning approaches showed a strong correlation with 

human visual inspections, offering a cost-effective alternative to traditional labour-
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intensive methods (Jeong et al., 2022). In agriculture, transfer learning facilitated crop 

classification in regions with a shortage of training samples by leveraging crops’ similar 

temporal growth patterns across different global regions (Hao et al., 2020).In addressing 

environmental concerns such as plastic pollution in soil, transfer learning methods have 

proven efficient in evaluating pollution levels across distinct soil regions using Near-

infrared sensors, surpassing the performance of conventional multivariate analysis methods 

(Qiu et al., 2020). Predicting dynamic riverine nitrogen export in unmonitored watersheds 

has also benefited from transfer learning, leveraging insights from data-rich regions (Xiong 

et al., 2022). However, despite its advantages, transfer learning comes with limitations. 

The effectiveness of transferring knowledge largely depends on the relevance and 

similarity between the source and target tasks; if the tasks are too dissimilar, the transferred 

knowledge may not be beneficial and can even degrade the model's performance. 

Additionally, fine-tuning a pre-trained model on a new task requires careful adjustment of 

parameters to avoid overfitting, especially when the target dataset is small. Lastly, 

determining the optimal level of transfer and customization for the target task often 

involves trial and error, which can be time-consuming and require domain expertise. 

2.4 Summary 

This chapter has explored the existing methodologies, applications, and challenges within 

the realm of environmental data analysis, underlining its significance in addressing 

multifaceted environmental challenges. It specifically examined the applications and 

limitations of various techniques, including traditional environmental modelling tools, 

causal inference, machine learning, Physics-Informed Neural Networks (PINN), and 

transfer learning, providing a comprehensive overview of the landscape of environmental 
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data analysis. Despite remarkable advancements and the expanding versatility of 

environmental data analysis, the field encounters distinct challenges that necessitate 

ongoing research endeavors and methodological refinements. A principal concern is the 

evident lack of a comprehensive causal inference framework specifically crafted for 

intricate environmental datasets. This limitation constrains the depth of insight that can be 

derived regarding the causal relationships underlying observed patterns. Moreover, the 

application and development of physics-based models, despite their foundational 

importance, grapple with inherent limitations such as model stiffness and equifinality. 

These challenges underscore the necessity for innovative solutions that can enhance model 

adaptability and reliability, particularly in the context of new and emerging environmental 

threats. The escalation of such environmental threats brings to attention another critical 

challenge: the scarcity of data characterizing emerging environmental issues. This data gap 

hampers the ability to formulate timely and effective responses to novel pollutants and 

environmental changes, emphasizing the need for advanced data acquisition and analysis 

methodologies.  
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2 This chapter is based on and expanded from the following paper: 

Kang, Q., Song, X., Xin, X., Chen, B., Chen, Y., Ye, X., & Zhang, B. (2021). Machine 

learning-aided causal inference framework for environmental data analysis: a COVID-19 

case study. Environmental Science & Technology, 55(19), 13400-13410. 

Roles: I conceived the study with the input from Song, X., Xin, X., Ye, X., Zhang, B. and Chen, B. I, Song, 

X., and Xin, X., contributed to data collection and processing. I, together with Chen, Y., developed the 

program script and conducted the data analysis. I wrote the first version of the manuscript, Zhang, B., Chen, 

Y. and Chen, B. contributed to subsequent revisions. 
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3.1 Introduction 

After 12 months of the first COVID-19 case report in Wuhan, China (N. Zhu et al., 2020), 

a new SARS-CoV-2 variant was identified by the United Kingdom authorities on 

December 19, 2020 (Kirby, 2021). Two months later, the new variant with potential higher 

transmissibility and fatality (NERVTAG, 2021) has been found in ten Canadian provinces 

(Thompson, 2021) as well as in the United States and other 91 countries (O’Toole et al., 

2021). As of June 30, 2021, multiple SARS-CoV-2 variants are circulating globally 

(Walensky et al., 2021), and the COVID-19 pandemic has claimed 3.93 million lives (Dong 

et al., 2020). The urgency of suppressing the COVID-19 pandemic has never been greater. 

Although SARS-CoV-2 can only be viable in aerosol for a limited period (3 - 16 hours; 

Fears et al., 2020; van Doremalen et al., 2020), COVID-19 was still reported to be capable 

of transmitting through the dissemination of suspended infectious aerosols (Bourouiba, 

2020; Mittal et al., 2020; World Health Organization, 2020) in addition to unprotected 

contact with infectious individuals (J. F.-W. Chan et al., 2020; C. Huang et al., 2020) and 

fomite (contaminated surface; Chia et al., 2020; Guo et al., 2020; van Doremalen et al., 

2020). Thus, as an effort to tackle the pandemic, the scientific community is examining 

factors associated with the pandemic, including environmental conditions such as 

meteorological factors and air pollution. As a result, correlations of air pollution and 

meteorological factors with COVID-19 severity have been reported worldwide (Accarino 

et al., 2021; Adams, 2020; Andree, 2020; Bashir, Ma, Bilal, Komal, Bashir, Farooq, et al., 

2020; Carleton et al., 2021; Coccia, 2021c, 2021a; Haque & Rahman, 2020; Kulkarni et 

al., 2020; Y. Ma et al., 2020; Rahman et al., 2020; Rosario et al., 2020; Sarkodie & Owusu, 

2020; X. Zhang et al., 2021). Those reported links lead to the speculation that some causal 
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mechanisms may exist behind the associations. For instance, low wind speed may promote 

the suspension of infectious particles (Coccia, 2020a, 2021b); exposure to air pollution 

may compromise people’s immune systems and further induce a higher infection rate 

(Kutter et al., 2021; Srivastava, 2021; Tian et al., 2021).  

Though no consensus has been reached (Islam et al., 2021; Qu et al., 2020; Sunyer et al., 

2021), researchers deployed various approaches on several types of observational data, 

searching for clues to the causal links’ existence. However, some issues are emerging while 

the research is becoming increasingly in-depth. The first issue is the confusion between 

correlation and causation (Holland, 1986). Due to ambiguous hypotheses and similarities 

between the two concepts, misidentifying the correlations as causalities is common. 

Another issue is the inappropriate use of conventional methods without the support of prior 

knowledge, which was constantly being overlooked in the existing studies. Those methods 

include time series analysis such as Granger causal test (Damette & Goutte, 2020; Delnevo 

et al., 2020; Mele & Magazzino, 2020) and machine learning models. Besides, some 

essential confounders, such as social-economical factors and inbound traffic flows from 

the pandemic epicentre (Bates et al., 2020; Coccia, 2020b; Pearl, 2000; Varian, 2016), were 

commonly omitted in the existing studies. Many spurious correlations could emerge due to 

such omission (Imbens & Rubin, 2015). Finally, among all the studies that attempted to 

estimate the causal effects quantitatively, few incorporated methods to refute the 

relationships or falsify the assumptions. The step is quite essential, especially when the 

ground truth of the causal links is unknown (Sharma & Kiciman, 2020). The issues above 

are not isolated but are commonly seen in environmental studies when a causal question 

has to be answered based on observational data without the aid of randomized experiments 
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(Rubin, 1974), such as in policy impact evaluation and climate change attribution (Forster 

et al., 2020; J.-Y. Liu et al., 2021). Thus, environmental studies can greatly benefit from a 

new framework for causal inference.  

Thanks to the growing research on causal inference in the statistics and artificial 

intelligence field during the past few years (Butcher et al., 2021; Glymour et al., 2019; 

Prosperi et al., 2020), some novel and effective methods were born and thrived from the 

rich discussions, enabling us to develop a new causal framework with the desired features. 

To build such a framework which can conduct causal reasoning from observational data, 

among the most discussed methods, the SCM, one of the most established causal inference 

methods (Pearl, 2000) as the causal engine, was selected. The method has the following 

characteristics: 1) It uses prior knowledge regarding the data generating process as an input. 

2) Intervention (i.e., purposely modify the condition to observe the response of the result) 

is a supported action in SCM in the form of do-calculus. The two features enabled SCM to 

perform causal reasoning from observational data. On the other hand, since the framework 

needs to be resilient to some common characteristics in environmental datasets such as 

frequent outliers, non-normal distribution and limited sample size (Ye et al., 2019), some 

functional components were also embedded to ensure the applicability and adaptivity of 

the framework. These components include: (a) a backup prior-knowledge extractor in case 

the prior knowledge is limited or not accessible; (b) a feature selection component, which 

can significantly reduce the computational time while acquiring data insights for the causal 

reasoning and (c) a refutation module that can test the proposed causal relation’s 

robustness, which is especially helpful when the relationship is unconfirmed.  
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This chapter aims to propose a causal inference framework and to investigate the potential 

causal relationships between COVID-19 severity and environmental factors, including six 

air pollution indicators and four meteorological factors in 166 Chinese cities. The social-

economic diversity among these cities makes China an ideal study area for investigating 

the causal relationships under multiple socio-economical scenarios (Huang, 2010). The 

study attempts to provide evidence for causal inference about environmental factors and 

COVID-19 severity, to support the decision-making process for global and regional 

pandemic countermeasures in the current phase of the COVID-19 pandemic and to 

establish an applicable and robust causal recovery framework for the environmental 

engineering and science community.  

3.2 Materials and Methods 

3.2.1 Framework Design, Study Area and Data sources 

The workflow of the causal inference framework in this study is illustrated in Figure 3.1. 

This framework is suitable for environmental causal reasoning problems under different 

socio-economic conditions. During the data processing phase in the framework, socio-

economic data will be used to generate clusters of different administrative units (i.e., 

countries, provinces, cities, etc.) with similar socio-economic conditions. Time series data 

from each administrative unit will be assigned to corresponding clusters. When the trends 

in the target time series are obvious, need-based time segmentation can be further applied. 

In that case, a time series segment (e.g., P1 to Pn in Figure 3.1) will become the smallest 

unit for further analysis. Each segmentation will be analyzed by the machine learning 

module, followed by the causal inference module. Models for each unit will be trained by 

a selected machine learning algorithm then interpreted by multiple metrics for feature 
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selection. The interpretation can also support causal relationship identification in later 

procedures. Data will be input along with a DAG in the causal inference module. If no 

graph can be provided due to limited knowledge, a backup method can be called to generate 

a quasi-causal relationship graph as the DAG input. After quantitative estimation, the 

potential causal relationships will undergo two refutation processes as a robustness check.  

This study investigated the causal relationship between environmental factors and COVID-

19 severity. One hundred sixty-six key air quality monitoring cities recognized by the 

Ministry of Environmental Protection of China were selected as the study area due to their 

representativeness in their corresponding regions as well as their complete COVID-19 case 

and environmental monitoring data. Comparing to the original 168 key monitoring cities, 

Wuhan (the epicentre) was excluded and Dongying (had zero cases during the first wave 

pandemic) for the study. The socio-economic data were from each city’s Statistical 

Bulletin/Yearbook or directly acquired from city-level Civil Affairs Bureaus. Most 

environmental data were acquired from the China National Environmental Monitoring 

Center. The COVID-19 related data were obtained from the Chinese Center for Disease 

Control and Prevention. The numbers of inbound travellers from Wuhan and the degree of 

activeness in each city were calculated based on Baidu Location-based Service (LBS) data. 
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Figure 3.1 A schematic diagram of the causal framework. Note: “Cluster 1” indicates 

individual methods/parts in the component by making all the components transparent. 
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3.2.2 Measures of Variables and Data Processing 

Two datasets, the “snapshot” dataset and the time-series dataset were composed and 

investigated. The “snapshot” dataset is a cross-sectional dataset consisting of all the 166 

cities’ socio-economic profiles before the 2020 Spring Festival. The features include: 

• The inhabited populations (thousand people) 

• Population density (people per km2) 

• Area of the cities (km2) 

• Total gross domestic products (GDP, in billion USD) 

• GDP by sectors (primary, secondary, tertiary, in billion USD), and corresponding 

percentages 

• GDP per capita (thousand USD) 

• Elderly population percentage (over 60 years old) 

This feature was added since senior citizens are vulnerable to COVID-19 due to their 

fragile immune systems (Rothan & Byrareddy, 2020).  

• Numbers of hospital beds, medical doctors, and nurses per thousand population 

The public healthcare development indexes were added, considering that the COVID-

19 patients need timely and intensive care.  

• Transient population flow from Wuhan (thousand people) 
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The 15-day accumulative inbound travellers from Wuhan to all the 166 selected cities 

before the pandemic outbreak were estimated according to Intracity Migration Index 

(IMI), a dataset developed based on Baidu’s Location-Based Service. The dataset has 

also served the same purpose in previous related studies (Bao & Zhang, 2020).  

• Average degree of activeness before the outbreak 

Based on the IMI data mentioned above, the degree of activeness in each city from 

January 10 to January 23, 2020, was used to calculate the average value. 

The snapshot dataset was served as the basis for the following clustering process. A 

correlation heatmap of the snapshot dataset was given in Figure 3.2. 

The time-series dataset comprises 13 time series for each selected city during the first wave 

of the pandemic. The 76-day lockdown period of Wuhan was selected as the time span for 

all the time series, which started from January 22 to April 8, 2020. The time series include:  

• Six air pollutants’ concentrations (PM2.5, PM10, SO2, NO2, and O3 in μg/m3
, CO in 

mg/m3) 

• Average air temperature (TEMP, in ℃) 

• Relative humidity (HMD, in percentage) 

• Atmospheric pressure (PRES, in hpa) 

• Wind speed (WSPD, in m/s) 

• Daily degree of activeness (ACTV) 

There are also two other features in the dataset:  



53 

 

• Daily new confirmed COVID-19 cases (CASES)  

In contrast to the moving average method, confirmed cases time series were processed 

with a three-day moving sum strategy for a more intuitive analysis process. 

• Elapsed days (DAYS) 

Counted from the first day with a confirmed COVID-19 case in each city. 

Three-day moving average to the above time series was applied to reduce the random 

noises in the dataset while focusing on the potential short-term effects (Jing et al., 2018; P. 

Li et al., 2013). In the time-series dataset, each feature’s mean values in the corresponding 

city were used to impute a small portion (~0.23%) of missing values. A statistic description 

of two datasets and each feature’s corresponding data source have been listed in Table 3.1. 
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Table 3.1 Features and Data Sources 

Feature and Unit 

(if applicable) 
Mean 

Standard 

Deviation 
Min Max Source 

Snapshot Dataset      

  Population (Thousand People) 5,624.67 4,029.80 720.96 31,243.20 B 

  City area (km2) 11,733.64 9,080.77 1,459.00 82,402.00 Y 

  Population density (People per km2) 652.19 694.77 24.31 6,729.49 E 

  GDP (Billion USD) 66.02 81.53 5.13 552.18 B 

  Primary sector (Billion USD) 3.54 2.51 0.17 21.87 B 

  Secondary sector (Billion USD) 25.80 26.94 1.89 151.89 B 

  Tertiary sector (Billion USD) 36.68 57.05 2.85 427.53 B 

  Primary sector percentage (%) 8.42 5.09 0.09 23.08 B 

  Secondary sector percentage (%) 41.33 7.58 16.16 60.00 B 

  Tertiary sector percentage (%) 50.25 8.08 33.54 83.52 B 

  GDP per capita (Thousand USD) 10.52 5.29 4.01 29.05 E 

Elderly population percentage (%) 19.50 4.50 4.92 32.20 B, Y 

  Hospital beds per thousand people 6.22 1.22 3.82 9.67 B 

  Registered medical doctors per thousand people 2.81 0.76 1.32 5.76 B 

  Registered nurses per thousand people 3.19 1.01 1.27 6.71 B, Y 

  Travellers from Wuhan (Thousand People) 23.98 85.02 0.00 691.87 Baidu LBS 

  Wuhan travellers per thousand population 6.01 23.303 0.00 187.25 E 
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  Average degree of activeness  5.36 0.64 2.98 7.08 Baidu LBS 

Timeseries Dataset      

PM2.5 (μg/m3) 46.67 31.34 3.67 349.00 CNEMC 

PM10 (μg/m3) 70.27 38.73 6.33 378.00 NEMC 

SO2 (μg/m3) 10.33 7.415 1.67 92.00 NEMC 

CO (mg/m3) 0.81 0.35 0.20 4.50 NEMC 

NO2(μg/m3) 25.26 11.17 2.67 87.00 NEMC 

O3 (μg/m3) 83.82 22.06 5.00 166.67 NEMC 

Relative humidity (%) 71.23 18.20 8.00 100.00 BIN 

Atmospheric pressure (hpa) 991.77 50.30 644.33 1,035.33 BIN 

Wind speed (m/s) 2.23 1.31 0.10 11.47 BIN 

Average air temperature 8.98 6.34 -22.00 27.68 BIN 

Degree of activeness 3.59 1.34 0.31 8.81 Baidu LBS 

New confirmed cases 6.17 34.26 0.00 1,021.00 CCDC 

Morbidity rate 0.02 0.11 0.00 3.21 E 

Note: “B” “Y” “E” in the Source columns indicate “Bulletin” “Yearbook” “Engineered Feature” respectively; “CCDC” is the 

abbreviation of the Chinese Center for Disease Control and Prevention; Percentage of Elderly and Registered Nurses per Thousand 

People were collected from multiple sources, including each city’s 2019 Statistical Bulletin, the 2018 Statistical Yearbook, or directly 

acquired from City-level Civil Affairs Bureau, depending on the availability of the data; The air pollution data was provided by the 

China National Environmental Monitoring Center, while the meteorological data was collected from an Application Programming 

Interface (API) provided by BINSTD, a data trading company; Travellers from Wuhan and Degree of Activeness in each city are 

calculated based on Baidu Location-based Service(LBS) data. 
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Figure 3.2 Spearman correlation heatmap of the snapshot dataset with statistical 

significance. Note: * indicates - P ≤ 0.05, ** indicates - P ≤ 0.01, *** indicates - P ≤ 0.001. 

POP: Population; PRIM/SEC/TERT: Primary, secondary, tertiary sector of GDP; >60yr%: 

Elderly population percentage; BED/DOC/NRS: Hospital beds/registered medical 

doctors/registered nurses per thousand population; TVLR: Inbound travellers from Wuhan; 

TVLR‰: Wuhan travellers per thousand population; ACT: Average degree of activeness. 
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3.2.3 Models and Data Analysis 

In this study, socio-economical factors should be considered essential since they are 

decisive for the human activity patterns and many other pandemic critical factors in 

different cities (Coccia, 2021e). Thus, the selected 166 cities were clustered based on the 

mentioned snapshot dataset. Such clusters can provide insights into the pandemic severity 

under different conditions and avoid the possible “Simpson’s paradox” (Blyth, 1972). 

Principal Component Analysis (PCA; Pearson, 1901) was selected as the dimensionality 

reduction technique to ensure a better clustering performance and resilience to the “curse 

of dimensionality.” Since PCA is sensitive to the variance within the dataset, the snapshot 

dataset was standardized before the procedure to minimize the impact of different feature 

scales and variance (Bellman, 2015; X. Song et al., 2019; Xin, Huang, An, & Feng, 2019; 

Xin, Huang, An, Raina-Fulton, et al., 2019). After a series of experiments, it was noticeable 

that over 62% of the variance could be explained with only three PCs, which is sufficient 

for further analysis. Thus, the original 18-dimensional dataset was compressed to three-

dimensional by selecting three principal components. The contribution of each feature to 

individual principal components was given in Figure A.1, along with the explained 

variance ratios. For city clustering, the time-proven k-means method was selected due to 

its effectiveness and efficiency (Steinhaus, 1956). The “elbow method” (Thorndike, 1953) 

was used to determine the numbers of the cluster. Three was selected as the cluster number 

based on the result of the elbow method, which was given in Figure A.2. Due to the 

assumption that each factor may have different behaviours during different pandemic 

phases (Coccia, 2021d), the cluster-wise time series were further divided into two segments 

by specific demarcation points. The splitting dates were February 3, 2020, for Cluster 1 
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and February 6, 2020, for Cluster 2 and 3, corresponding to each cluster’s pandemic 

spreading and post-peak phases. The corresponding trends can also be observed in Figure 

A.3(a). Hereafter, nine sub-datasets were generated from the time-series dataset, based on 

the pandemic development perspective (overall, spreading phase, post-peak phase) and 

three city clusters. Each sub-dataset will be further analyzed by both causal inference 

models and machine learning algorithms.  

XGBoost algorithm was selected for feature selection and knowledge extraction. Models 

were trained with the aid of k-fold cross-validation. The cross-validation method splits an 

existing dataset into k number of folds, where each fold will be used as a testing set against 

the rest of the data. In this way, the impact of overfitting or sampling bias can be minimized. 

In the study, parameter k was set to 5 based on the number of instances (700 - 8500) in 

nine sub-datasets. After the training process, two feature importance evaluation metrics, 

total gain and permutation score, were used to interpret each trained model. The total gain 

in an XGBoost model is the product of a feature’s Gain score and the frequency of the 

feature being used for node splitting when constructing the model. Permutation score is 

another useful metric defined as the decrease of the model performance when a single 

feature is randomly shuffled (Breiman, 2001). One common shortfall of the two metrics is 

their weakness in identifying if a features’ contribution is positive or negative. Thus, SHAP 

was introduced as another method for interpretation as it can indicate the feature 

contribution’s direction (i.e., positive or negative), which enabled the researchers to select 

features of interest for further analysis (Lundberg et al., 2020).  

For causal inference, constructing a graphical causal model in the form of a DAG is the 

first step of the SCM (Pearl & Mackenzie, 2018; Sharma & Kiciman, 2020). Each DAG 



59 

 

node represents a variable, and an arrow indicates a causal link, either an assumed or 

confirmed one. The graph allows users to explicitly introduce prior knowledge and untested 

assumptions about the data-generating process. Figure 3.3 shows the graphic causal model 

for this study. Proven causal relationships are given as blue arrows. Causal relationships 

among elapsed days, degree of activeness and COVID-19 cases were considered, as well 

as those between meteorological factors and the air pollutants. The transformation from 

NO2 to O3 (Fahey et al., 1986) and the interactions among air temperature, relative 

humidity, wind speed and atmospheric pressure (Pearce et al., 2011) were also taken into 

account. Unproven causal links included potential causal relationships between the 

COVID-19 cases and different environmental factors. After creating the DAG, the Average 

Treatment Effects (ATE; Heckman, 1976, 1978) of the potential causal relationships could 

be estimated. The default incorporated algorithm is a linear estimator. To capture non-

linear causal effects, the DMLOrthoForest (Microsoft Research, 2020) method was 

selected to provide non-linear estimations. The linear estimator has been preserved as a 

complement to the machine learning-based estimator. A more detailed introduction to the 

do-calculus and SCM can be found in the Literature Review. Note that causal estimation 

was conducted on a normalized copy of the dataset for enabling the comparison between 

different features.  

Structural Agnostic Modelling (SAM) was deployed as the backup knowledge extractor. 

The neural-network-based algorithm has been proven robust in recovering non-linear 

causal relationships between continuous variables with a superb performance (Kalainathan 

et al., 2020). In this case study, though the DAG was constructed, SAM was used to 

generate a weighted adjacency matrix from the dataset, which is given in Table A.1. Each 
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weight in the matrix represents the corresponding causal relationship’s strength. The matrix 

can be used to support the final decision-making about the causal relationship from another 

perspective.  

In order to test the robustness of an assumed causal relationship, two refutation methods, 

Adding Random Common Cause (RCC) and Placebo Treatment (PT), were selected to test 

the robustness of each causal relationship. RCC adds an independent random variable as a 

common cause to the dataset, and PT replaces the chosen treatment variable’s value with 

some independent random values. For a robust relationship, its estimated effect is expected 

to remain stable under the RCC refutation test. On the contrary, effects estimated under the 

PT test should be zero instead of the original value (Sharma & Kiciman, 2020). Based on 

the two refutation methods, a four-level robust check criterion was set in the case study to 

ensure the robustness of a causal estimation. Firstly, an estimate must pass both refutation 

tests, PT and RCC, to be considered. Being more specifically, the estimates under the RCC 

test should be within 10% variance of the original value, which is the first level. Then 

another three tolerance thresholds (i.e., the maximum allowed variation of an estimate) will 

be set to evaluate the considered estimations under the RCC test. In this study, the four 

levels were 10% (the initial threshold), 5%, 1% and 5‰, indicating an increasingly strict 

criterion. A potential causal relationship should pass the 5‰ threshold to be considered 

robust enough. 
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Figure 3.3 The causal relationships among environmental factors and COVID-19 cases. 

All proven causal links are given as blue arrows, and unproven causal relationships are 

marked by red arrows. Note: ACTV - Daily degree of activeness; DAYS - Elapsed days; 

HMD – Relative humidity; PRES - Atmospheric pressure; TEMP - Average air 

temperature; U – Unobserved confounders; WSPD – Wind speed.  
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The causal effect estimation and refutation were achieved based on the DoWhy package: a 

Python package specialized in providing a causal inference interface. The RCC and PT 

algorithms used in the framework can be found within the package (Sharma & Kiciman, 

2020). The DMLOrthoForest algorithm and the SAM algorithm implemented in this study 

can be found in EconML (Microsoft Research, 2020) and CausalDiscoveryToolbox 

(Kalainathan & Goudet, 2019), respectively. A framework benchmark that applied SCM 

and SAM on three public datasets with known ground truth was given in the Appendix A.1 

as a robustness check for the proposed framework.  Meanwhile, some additional machine 

learning experiments were conducted during the study as an initial exploration, with their 

details listed below.  

Removing the elapsed days feature. The elapsed days feature was removed in this 

experiment and trained the XGBoost models on the rest of the data. Feature importance 

was given in Figure 3.6. Under the setting, the air temperature became one of the top 

contributors among all clusters due to its high collinearity with elapsed time. It is 

reasonable to believe that introducing elapsed days can weaken spurious correlations 

originated from any other highly time-correlated features such as air temperature, and the 

feature importance for this experiment is given in Figure A.4. 

Seven-day moving average. Instead of the original three-day moving average strategy, a 

seven-day moving average on the time series dataset was applied for machine learning and 

SCM analysis. No significant changes were observed. The results can be found in the 

GitHub repository of the study (https://github.com/kangqiao-

ctrl/EnvCausal/tree/main/additional_experiments/7-day-moving-average). 

https://github.com/kangqiao-ctrl/EnvCausal/tree/main/additional_experiments/7-day-moving-average
https://github.com/kangqiao-ctrl/EnvCausal/tree/main/additional_experiments/7-day-moving-average
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Targeting cases per capita. In this experiment, the daily new cases per capita was used as 

the machine learning regression target instead of the absolute case number. No significant 

difference was observed in the result. It might because that the cities have already been 

clustered based on their socio-economic status include population.  The results can be 

found in the GitHub repository of the study (https://github.com/kangqiao-

ctrl/EnvCausal/tree/main/additional_experiments/morbidity_target). 

 

3.3 Results 

Three city clusters are presented in Figure 3.4 with the geographical locations of all the 

selected cities (n=166). The distribution of all cities in different clusters in the Principal 

Component Space is given in the Appendix A as Figure A.5. A full city list of all three 

clusters is available in Table 3.2. In summary, Cluster 1 (n=7) comprised megacities with 

advantages in many socio-economic aspects. Cities in Cluster 2 (n=40) are mostly 

provincial capitals and other major cities, and the majority of Cluster 3 (n=119) are 

ordinary urbanized cities. The average feature values in different city clusters are given in 

Table 3.3. No significant difference could be found in the elderly population percentages 

(16.54% to 20.62%) and healthcare development indexes (beds per thousand: ~6.38, 

doctors per thousand: ~3.19, nurses per thousand: ~3.79) among the three clusters. The 

degrees of average activeness in the three clusters were also at the same level (~5.09) 

though a relatively higher activeness degree (5.57) can be observed in Cluster 3.  

 

https://github.com/kangqiao-ctrl/EnvCausal/tree/main/additional_experiments/morbidity_target
https://github.com/kangqiao-ctrl/EnvCausal/tree/main/additional_experiments/morbidity_target
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Figure 3.4 The selected cities’ locations with the circle size indicating the total confirmed COVID-19 cases. 
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Table 3.2 Cities in different clusters 

Cluster City names 

Cluster l (Megacities) Beijing, Shanghai, Chongqing, Suzhou, Chengdu, Guangzhou, Shenzhen 

Cluster 2  

(Major Cities) 

Shenyang, Dalian, Fuzhou, Xiamen, Nanning, Haikou, Guiyang, Kunming, Lhasa, Lanzhou, Xining, 

Yinchuan, Ürümqi, Tianjin, Shijiazhuang, Taiyuan, Jinan, Qingdao, Zhengzhou, Hohhot, Baotou, 

Nanjing, Wuxi, Changzhou, Hangzhou, Ningbo, Wenzhou, Shaoxing, Jiaxing, Jinhua, Hefei, Xi’an, 

Tongchuan, Nanchang, Changsha, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan 

Cluster 3 

(Common Cities) 

Chaoyang, Jinzhou, Huludao, Changchun, Harbin, Tangshan, Qinhuangdao, Handan, Xingtai, Baoding, 

Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui, Datong, Shuozhou, Xinzhou, Yangquan, 

Changzhi, Jincheng, Lüliang, Jinzhong, Linfen, Yuncheng, Zibo, Zaozhuang, Weifang, Jining, Tai’an, 

Rizhao, Linyi, Dezhou, Liaocheng, Binzhou, Heze, Kaifeng, Pingdingshan, Anyang, Hebi, Xinxiang, 

Jiaozuo, Puyang, Xuchang, Luohe, Nanyang, Shangqiu, Xinyang, Zhoukou, Zhumadian, Luoyang, 

Sanmenxia, Xuzhou, Nantong, Lianyungang, Huai’an, Yancheng, Yangzhou, Zhenjiang, Taizhou, 

Suqian, Huzhou, Quzhou, Taizhou, Lishui, Zhoushan, Wuhu, Bengbu, Huainan, Ma’anshan, Huaibei, 

Tongling, Anqing, Huangshan, Fuyang, Suzhou, Chuzhou, Lu’an, Xuancheng, Chizhou, Bozhou, 

Xianyang, Baoji, Weinan, Zigong, Luzhou, Deyang, Mianyang, Suining, Neijiang, Leshan, Meishan, 

Yibin, Ya’an, Ziyang, Nanchong, Guan’gan, Dazhou, Xianning, Xiaogan, Huanggang, Huangshi, Ezhou, 

Xiangyang, Yichang, Jingmen, Jingzhou, Suizhou, Pingxiang, Xinyu, Yichun, Jiujiang, Zhuzhou, 

Xiangtan, Yueyang, Changde, Yiyang, Jiangmen, Zhaoqing 
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Table 3.3 Average feature values in different city clusters 

Feature and Unit (if applicable) Cluster 1 Cluster 2 Cluster 3 

Population (Thousands) 19,019.47 6,266.86 4,620.88 

City Area (km2) 19,653.14 10,440.70 11,702.39 

Population Density (People per km2) 2,386.85 868.45 477.46 

GDP (Billion USD) 380.27 97.44 36.97 

Primary Sector (Billion USD) 5.82 2.92 3.61 

Secondary Sector (Billion USD) 117.50 39.16 15.92 

Tertiary Sector (Billion USD) 256.87 55.37 17.44 

Primary Sector Percentage (%) 18.25 34.68 10.47 

Secondary Sector Percentage (%) 32.57 39.55 42.45 

Tertiary Sector Percentage (%) 65.58 57.00 47.08 

GDP Per Capita (Thousand Yuan) 147.6 105.19 57.13 

Elderly Population Percentage (%) 17.46 16.54 20.62 

Hospital Beds per Thousand People 6.37  6.73  6.04  

Registered Medical Doctors per Thousand People 3.49  3.57  2.51  

Registered Nurses per Thousand People 4.30  4.32  2.74  

Wuhan Travellers (Thousand People) 31.69 7.49 29.07 

Wuhan Travellers per Thousand Citizens 15.93 10.72 7.93 

Average Degree of Activeness 4.87  4.84  5.57  
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Figure 3.5 shows the feature importance and the SHAP values. Features with positive 

contributions in each trained machine learning model were highlighted. Both the total gain 

and the permutation score were normalized to a 0-1 range for easier comparison and 

visualization. The hyperparameters ranges for GridSearchCV, the final hyperparameter 

values and r2 of each trained XGBoost model are given in Table 3.4. Note that as two 

baseline features, elapsed days and degree of activeness were designed to be never 

highlighted. For elapsed days, it is noticeable that the sign of its contribution varied in 

different sub-datasets. It was the dominating factor among all three phases in Cluster 1 with 

normalized feature importance above 0.60, the top contributor for the post-peak phase in 

Cluster 2 with feature importance of 0.35, and had lower feature importance varied from 

0.05 to 0.15 for other periods in Cluster 2 and 3. Similar to elapsed days, the degree of 

activeness also dominated in one cluster, Cluster 3, with its feature importance maintained 

around 0.29. It reached the top in Cluster 2 from the overall perspective with feature 

importance of 0.23, had lower yet considerable feature importance (~0.15) in the other two 

Cluster 2 phases, and became less significant in Cluster 1. 
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Table 3.4 Final XGBoost model hyperparameters and R2 
 Cluster 1 Cluster 2 Cluster 3 

 Spreading Post-peak Overall Spreading Post-peak Overall Spreading Post-peak Overall 

max_depth 4 4 2 4 3 3 4 5 5 

min_child_weight 9 8 8 9 8 8 8 6 3 

n_estimators 50 50 50 50 50 50 50 50 50 

learning_rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

R2 0.965 0.965 0.796 0.891 0.806 0.768 0.877 0.842 0.837 

*The ranges of the hyperparamters used in GridSearchCV are given as below: max_depth [2,10]; min_child_weight [2,10]; 

n_estimators [25,50,75,100,150,200,250,300]; learning_rate [0.01,0.05,0.1,0.2,0.3]
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From the interpretation results, positive contributions of air pollutants were generally low. 

Most air pollutants’ feature importance was below 0.05, except for a few specific pollutants 

under particular settings. The exceptions included SO2 in Cluster 1 spreading phase (0.10), 

CO from Cluster 3 overall perspective (0.06) and post-peak phase (0.14), as well as PM2.5 

(0.07) from the overall perspective in Cluster 3. Meteorological factors had a higher 

potential contribution than air pollutants, which can be observed in Figure 3.5. All 

meteorological factors had been highlighted at least once. Atmospheric pressure was 

highlighted among all sub-datasets for nine times. Its feature importance was within a range 

of 0.08 to 0.20 in Cluster 2 and Cluster 3, whereas being less significant in Cluster 1 with 

its feature importance varied from 0.03 to 0.09. The air temperature was the second-most 

highlighted meteorological feature, which had been highlighted six times. When 

highlighted, its feature importance varies from 0.02 to 0.22. Relative humidity showed 

most of its observable potential contribution in Cluster 3, with a feature importance ranging 

from 0.03 to 0.10. Wind speed had some minor contribution less than 0.03 in Cluster 3.  
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Table 3.5 Refutation results of potential impactful environmental factors 

City 

Cluster 

Pandemic 

Phase 

Feature Relationship 

Type 

ATE Threshold 

5% 1% 5‰ 

Cluster 1 Overall PRES Non-linear 0.045 F   

 Spreading  SO2 Non-linear 0.476 F   

 Post-peak HMD Linear 0.051 P P F 

Cluster 2 Overall PM2.5 Non-linear 0.323 P F  

  O3 Non-linear 0.012 P F  

  PRES Non-linear 0.055 P F  

 Spreading  PRES Non-linear 0.118 P F  

  TEMP Non-linear 0.041 P P P 

 Post-peak PM2.5 Non-linear 0.290 P F  

  HMD Non-linear 0.046 F   

  PRES Non-linear 0.066 P F  

  TEMP Non-linear 0.030 P F  

Cluster 3 Overall O3 Non-linear 0.016 P P F 

  HMD Non-linear 0.018 P F  

  PRES Non-linear 0.008 F   

  WSPD Non-linear 0.009 P   

 Spreading  PM10 Linear 0.079 P P F 

  SO2 Non-linear 0.057 P F  

  HMD Non-linear 0.046 F   

  TEMP Non-linear 0.073 F   

  WSPD Non-linear 0.005 P F  

 Post-peak  PM10 Non-linear 0.035 F   

  CO Non-linear 0.092 F   

  PRES Non-linear 0.016 F   

  WSPD Non-linear 0.022 P F  
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Note: Non-linear: Estimated by DMLOrthoForest; Linear: Estimated by linear estimator; 

ATE: Average Treatment Effect; Threshold: the maximum allowed variation of an estimate, 

used to evaluate the RCC refutation results; P: Pass; F: Fail. PRES: Atmospheric Pressure; 

HMD: Relative Humidity; TEMP: Air Temperature; WSPD: Wind Speed. All the estimates 

in the table passed the RCC test with a 10% threshold. 

 

Table 3.5 shows the 25 potential causal relationships that passed the initial refutation with 

positive ATE, as well as their behaviours when facing lower RCC tolerances. Nine out of 

the twenty-five relationships were about air pollution indicators. The majority of the 

connections were non-linear with two linear exceptions: relative humidity (Cluster 1 post-

peak phase) and PM10 (Cluster 3 spreading phase). The effect of reducing the RCC 

threshold was prominent. Decreasing the tolerance from 10% to 5% eliminated nine 

candidate relationships. Tolerance’s dropping from 5% to 1% removed another 11 

candidates. NO2, one of the most reported air pollutants with a correlation between 

COVID-19 severity, did not pass the initial causal screening. As for SO2 in Cluster 1, 

although it had positive contributions in Cluster 1 machine learning models and passed the 

initial round of the refutation test, it did not survive the first tolerance drop. When the 

tolerance dropped to 5‰, only one potential causal relationship survived: air temperature 

in Cluster 2 spreading phase with a causal effect of 0.041.   

 



72 

 

 

Figure 3.5 Feature importance and SHAP value of features in machine learning models. Features 

with positive SHAP values (subplots) are highlighted with orange and red in the feature importance 

plot. In the SHAP value subplots blue and red indicates lower and higher feature values, 

respectively. Instance points above the grey zero axis indicate positive SHAP values and vice 

versa. SHAP value features are in the same order as in subplot (a).  
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3.4 Discussions 

It is noticeable that the majority of the pollutants’ contributions in the machine learning models 

were negative. This characteristic can be easily observed from NO2, which had significant negative 

contributions (0.1 ~ 0.2) and was considerably correlated with the degree of activeness (𝜌=0.47) 

in Cluster 2. Meanwhile, the negative contributions were reflected in the estimated effects from 

the SCM as well: all of NO2’s non-linear ATE values were negative. From the results, NO2 is more 

likely to be an indicator of human activity in selected Chinese cities rather than a causal factor to 

COVID-19 cases. O3, another air pollutant that may compromise the human respiratory system 

(W. Gao et al., 2017; A et al., 2008), also had some negative causal effects (four out of nine), 

indicating it was unlikely to worsen the pandemic, especially considering that none of its 

relationships passed the final refutation. It can be assumed that those negative contributions were 

due to the connections between air pollution and human activity: the primary sources of NO2 and 

O3 in China are anthropogenic activities, mostly from industrial and mobile sources (LIU et al., 

2020; Xue et al., 2014). Implement and lift the lockdown policies might further influence the 

fluctuation of the pollutants’ concentrations (Diao et al., 2021; Shen et al., 2021; K. Xu et al., 

2020). Note that the genuine causal relationships among lockdown implementation, human 

activities and air pollution do not guarantee observable correlations. A visualization of NO2 and 

O3’s trends was given in Figure A3.3(d) and (e). 

Among all the relationships about PM2.5, PM10, SO2 and CO, PM10 in Cluster 3 spreading phase 

was the only relationship that passed the 1% threshold refutation test with positive ATE values 

(0.079), though it did not pass the final refutation. As for PM2.5, both its relationships in Table 

3.5 could not pass the 1% threshold refutation. The only CO-related causality failed the 5% 

threshold test in the Cluster 3 post-peak phase; SO2
 in Cluster 3 spreading phase failed the 1% 
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refutation. The results indicate the robustness of those causal relationships was not sufficient. The 

same deductions can be applied to the meteorological relationships, where most of them failed the 

second level of refutation (5%), implying their insignificance in the proposed causal problem. 

Though the majority of the relationships were refuted at the end, air temperature in the Cluster 2 

spreading phase passed the final refutation with a causal effect of 0.041. Technically, the values 

indicate that 1 ℃ air temperature increase in Cluster 2 during the spreading phase will lead to 

approximately 0.183 new confirmed cases. However, its final RCC refutation variance was 

0.00498, indicating that the temperature-case causal estimation almost failed the final refutation 

test (5‰ threshold). Based on all the results, though a specific causal relationship’s existence 

cannot be completely ruled out, the discussed factors’ causal effects on the COVID-19 severity are 

likely to be limited. Since the estimates reported in the study were by no means conclusions, but 

traces of evidence of the causal links. Thus, instead of drawing conclusions, it is more reasonable 

to deduce that the environmental factors were unlikely to exacerbate the COVID-19 pandemic in 

these Chinese cities from a short-term perspective. 
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3.5 Summary 

In this chapter, we introduce a sophisticated causal inference framework that leverages SCM 

enhanced by machine learning techniques to scrutinize the potential causal links between 

environmental factors and COVID-19 severity across 166 Chinese cities. By incorporating prior 

knowledge and employing a comprehensive data processing strategy that includes city clustering 

and phase-wise analysis, socio-economic and temporal considerations were brought into the causal 

investigation. Utilizing this framework, this chapter study meticulously evaluates reported causal 

relationships between ten environmental variables (including NO2, O3, PM2.5, PM10, SO2, CO, 

average air temperature, atmospheric pressure, relative humidity, and wind speed) and the severity 

of COVID-19, categorizing cities into three clusters based on socio-economic characteristics and 

analyzing time series data across different phases of the pandemic, and refuted the majority of 

these potential causal links (89 out of 90). This detailed investigation not only underscores the 

limited influence of environmental factors on the pandemic’s severity but also showcases the 

framework’s capability to address causal questions with observational data, thereby enriching 

environmental research and other disciplines. This chapter also demonstrated the high value and 

potential of the proposed framework in investigating causal problems with observational data in 

environmental or other fields. 
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CHAPTER 4  

CAUSAL PRIOR-EMBEDDED PHYSICS-

INFORMED NEURAL NETWORK AND A 

CASE STUDY ON METFORMIN TRANSPORT 

IN POROUS MEDIA3  

 

 

 

 
3 This chapter is based on and expanded from the following manuscript: Kang, Q., Zhang, 

B., Cao, Y., Song, X., Ye, X., Li, X., Wu, H., Chen, Y. & Chen, B.* (2024). Causal Prior-

Embedded Physics-Informed Neural Networks and a Case Study on Metformin Transport 

in Porous Media, Accepted by Water Research. 

Roles: I conceived the study with the input from Song, X., Zhang, B. and Chen, B. I, Cao, 

Y., and Song, X., contributed to conducting the transport experiments and gathering data. 

I developed the program scripts for processing, analyzing and visualizing the data along 

with Ye, X., and Wu, H. Visualization and interpretation of the results were further 

enhanced by the contributions from Cao, Y., Song, X., and Li, X. The initial manuscript 

draft was written by me, with subsequent feedback provided by Zhang, B., Chen, Y. and 

Chen, B. 
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4.1 Introduction 

As we transition into an era of data explosion, the field of environmental modelling is 

experiencing profound transformations accompanied by two challenges. The primary 

challenge involves the adoption of artificial intelligence (AI) within environmental 

modelling. While AI can offer superb performance and enhanced efficiency, traditional AI 

applications often incorporate minimal expert knowledge. This challenge can result in a 

deficiency in robustness and, in some cases, lead to misinterpretation of the model results 

(Rolnick et al., 2023; Zhong et al., 2021). The second challenge is the difficulty in 

effectively extracting, refining, or utilizing prior knowledge. This becomes particularly 

pronounced when dealing with limited information, such as in the context of emerging 

pollutants like Pharmaceutical and Personal Care Products (PPCPs). PPCPs are recognized 

as one of the largest groups of emerging pollutants due to their widespread occurrences, 

lack of sufficient regulation, and persistence in the environment (Schwartz et al., 2021; 

Wilkinson et al., 2022). Metformin, a commonly prescribed medication for type-2 diabetes, 

serves as a prime example of a PPCP. It has emerged as an environmental concern due to 

its reported endocrine-disruptive properties, ecological impacts, and the adverse health 

effects of its chlorination by-products (R. Zhang et al., 2021; Niemuth & Klaper, 2018; 

Briones et al., 2016; Niemuth et al., 2015). Its ubiquitous occurrences (ICPDR, 2020; Tao 

et al., 2018; Yao et al., 2018; Oldenkamp et al., 2018) in various environmental 

compartments, including in groundwater, soil and drinking water sources, highlights the 

potential risk that it may infiltrate potable water sources via soil-to-groundwater pathways 

(Y. He, Zhang, et al., 2022; Lesser et al., 2018; Tisler & Zwiener, 2018; Trautwein et al., 

2014).  The transport of metformin in  the subsurface environment has garnered some 
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attention (Briones & Sarmah, 2019, 2018a; Lopez et al., 2015). However, it is challenging 

to yield a comprehensive, universally applicable understanding of metformin’s transport 

dynamics with limited data. Thus, transport problems related to emerging pollutants, such 

as metformin, could greatly benefit from a data-driven framework that efficiently embeds 

constrained expert knowledge without compromising performance (Gibert et al., 2018). 

The causal prior-embedded physics-informed neural network is becoming a promising 

approach. It combines data-driven methods with causal prior knowledge extracted from 

enhanced experiment data. The extracted causal information is then incorporated into a 

data-driven application using various advanced causal embedding techniques. The task of 

the data-driven application mirrors a classic transport model, such as predicting the 

breakthrough time of a solute in a specific porous medium condition. In the proposed 

method, the SCM, a graph-based causal inference method, was selected to extract causal 

knowledge from the experimental dataset (Butcher et al., 2021; Prosperi et al., 2020; 

Glymour et al., 2019; Pearl, 2000). The rationale behind utilizing SCM arises from the 

recognition that in contaminant transport processes, most variables are intricately and 

causally interconnected, signifying that a change in a cause variable will inevitably lead to 

changes in some others. To estimate their causal strengths offers a good approximation of 

the underlying physical processes. Successful estimations can be transformed into a 

weighted version of DAG, where each edge corresponds to causal strength. This weighted 

DAG is more computationally efficient when embedded in downstream data-driven 

applications than traditional transport models PDEs. Considering SCM might be well-

suited for knowledge extraction in the context of contaminant transport (Um et al., 2019), 

it was selected for this framework.  
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The proposed method possesses an additional layer of interpretability by infusing causal 

priors derived from PDE-based models and requires fewer computational resources than 

typical PINN applications. Furthermore, its flexible and scalable architecture enables 

compatibility with various problem domains and data volumes. This positions it as a 

versatile tool for scientific data-driven applications. Additionally, the influence of various 

neural network hyperparameters within the context of causal embedding was closely 

examined. This helped us evaluate the robustness and broad applicability of our 

methodology in scientific contexts. The one-dimensional transport of metformin in sandy 

columns serves as a case study to validate our proposed method, to investigate its transport 

behaviour within the soil and groundwater compartments and enhance our understanding 

of the emerging pollutant. By proposing the causal physics-informed prior embedded 

neural network, this chapter seeks to strike a balance between data-driven methods and 

expert knowledge, thereby providing a robust and innovative solution in the field. 
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4.2 Materials and Methods 

4.2.1 Framework Design 

The schematic representation of our research framework is depicted in Figure 4.1. 

Experimental data acquired under various representative experimental configurations is 

subsequently fed into physics-based transport models such as Richards’ equation to 

estimate plausible distributions of unmeasurable parameters ω̂  (for example, type-1 

sorption fraction). The experimental data with the physics model-estimated parameters 

serves as the “seed data,” which is a foundational dataset used to initialize and inform 

further modelling efforts (Ebert-Uphoff & Deng, 2017). Following this, a grid-search-

based data augmentation is performed, with a series of constraints ensuring the resulting 

augmented dataset can represent the substance’s transport in the specific transport media 

with limited distortion. This dataset is then divided for causal inference and neural network 

training. Simultaneously, a causal graph is constructed in the form of a DAG, incorporating 

most of the impactful variables based on prior knowledge of the system. This step initiates 

the SCM, a graph-based causal inference methodology that identifies causally impactful 

variables in a multivariate system. It allows for quantitative estimation of causal impact 

using various regression techniques. The estimated causal dynamics are referred to as the 

“causal prior.”  These causal priors are embedded into the model through two techniques: 

causal weight initialization, which is introduced in this study and an existing method, 

causal prior regularization (Kancheti et al., 2022), to enhance interpretability in data-

driven models like multilayer neural networks. Ultimately, the causal-embedded neural 

networks are evaluated from two angles: model performance after embedding the causal 

prior and retained causal interpretability (hereafter referred to as “causal retention”). 
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Figure 4.1 A schematics diagram of the proposed causal embedded physics-informed 

neural network. In the causal prior extracted from a substance transport process, m̂ and ω̂ 

represent measurable parameters (e.g., boundary conditions) and parameters that cannot be 

directly measured or need to be acquired from the curve fitting process, respectively, and 

f (m̂, ω̂)  is a function corresponding to the causal dynamics within the system, i.e., a 

function from all the physics meaningful factors within the system to the variable of our 

interest. 
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4.2.2 Transport of Metformin in the Sandy Media 

4.2.2.1 Experimental Materials 

Commercial quartz sand (>98%) was used as the porous media for metformin 

transportation. The sand went through 20/40 (0.850 mm/0.425 mm), 40/80 (0.425 

mm/0.180 mm), and 80/120 (0.180 mm/0.125 mm) meshes, and hereinafter referred to as 

coarse, medium, and fine sand, respectively. Another two types of sand, “mixed sand 

(variant 1)” and “mixed sand (variant 2),” were acquired from 2-mm meshed quartz sand 

without going through finer meshes. All the types of sand underwent acid (HCl) and 

alkaline (NaOH) solution wash and then rinsed with de-ionized water to ensure the removal 

of all the impurities (Rostvall et al., 2018).  The grain size distributions of the sandy media 

were calculated by a particle size analyzer, and the grain size distributions for mixed sands 

(variants 1 and 2) are given in Table 4.1. Metformin hydrochloride (98%, manufactured by 

MP Biomedicals™) and sodium azide crystalline (NaN3) were purchased from Fisher 

Scientific Company, Ontario, Canada. The physicochemical properties of metformin are 

given in Table 4.2. 
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Table 4.1 Grain size distribution (%) of different types of sand 

Grain size (mm) 2-1 1-0.5 
0.5-

0.35 
0.35-0.25 0.25-0.15 0.15-0.075 <0.075 

Mixed Variant 1 2.48 21.79 24.86 9.54 24.52 11.71 5.1 

Mixed Variant 2 2.41 12.56 15.43 9.05 32.34 19.66 8.55 
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Table 4.2 Metformin physiochemical properties and fate parameters 

Parameter Unit Metformin  

CAS Number - 657-24-9  

Structure  

  

 

Molecular Weight g/mol 129.2  

Water Solubility (25 °C) g/L 300  

Log KOW - -4.9  

Log KOC (Soil) - 3.05  

Log KOC (Activated 

Sludge) 

- 39.2  

Vapour Pressure mm Hg 7.58 × 10-5  

KH atm/m3/M 7.6 × 10-16  

pKa (Calculated) - 10.0, 12.3  

pKa (Experimental) - 3.1, 13.8  

Melting Point ℃ 223-226  

Boiling Point ℃ 268.97  

Aerobic biodegradation  Degradation after 28 days ≈ 0.6 %  

Hydrolysis half-life year > 1   

Photolysis half-life day 28.3  

Most of the information was summarized from Briones’ metformin  

Global occurrence research (Briones et al., 2016), and metformin fate parameters were 

from AstraZeneca’s report (AstraZeneca, 2020). 
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4.2.2.2 Experiment Settings 

The 1-D column experiments were carried out to investigate the transport of metformin in 

sandy media. Acrylic columns with lengths of 80 cm, 60 cm and 24 cm with pre-drilled 

inlets and outlets were used to create 1-D flow spaces with different dimensions. The 

experiment settings were categorized based on three flow conditions: saturated and top-

down (with ponded water); unsaturated and top-down (no ponded water); saturated and 

bottom-up, as illustrated in Figure 4.2 (a, b, c). Under settings (a) and (b), two column sizes 

were used: 80 cm in length and 8 cm in internal diameter, and 40 cm in length and 5 cm in 

internal diameter. These columns were filled with four types of sand: medium, fine and 

mixed (variants 1 and 2) to the designated depths of 60 cm for the longer columns and 27 

cm for the shorter ones. In setting (c), designed to explore the effect of controlled flow rate 

and varying concentrations, smaller columns (24 cm in length and 2.4 cm in internal 

diameter) were entirely filled with coarse sand. The sand was compacted every 3 cm during 

filling to achieve a consistent density throughout the profiles. For each end of the column, 

four layers of gauze were placed to prevent clogging. To measure the residual water content 

of different column systems, the columns were moistened by pumping de-ionized water 

through them until saturation, followed by an overnight gravity drain to leave only residual 

water content. De-ionized water was then introduced into the columns to establish varying 

saturation and flow conditions. To get different saturation conditions for different 

scenarios, for setting (a), the inflow was adjusted until a ponded water of 3 cm was 

maintained; for setting (b), the inflow was balanced with outflow rates; and for setting (c), 

columns were fully saturated and the inflow was set to four predetermined levels (0.444, 
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0.666, 0.888, 1.11 ml/min) while the outflow rates were examined to ensure they were the 

same as the inflow rate. All flow rates were documented for further analysis. 

A metformin stock solution with a concentration of 500 mg/L was prepared for subsequent 

column experiments, containing 0.02% sodium azide (NaN3) to suppress any potential 

biodegradation process (MacQuarrie et al., 2001; Groffman et al., 1996).  

4.2.2.3 Tracer and Metformin Column Breakthrough Experiments 

As a non-reactive tracer, NaCl solution at 1,500 mg/L was introduced to all the columns to 

estimate transport parameters through curve fitting with groundwater models, after the flow 

and saturation conditions stabilized. The tracer experiment continued until the 

concentration in the collected samples was consistently nearly equal to the concentration 

in the influent. Following tracer testing and a subsequent rinse with de-ionized water, the 

inflow was switched to metformin solutions at various concentrations, and the experiment 

ended until the concentration in the collected samples was consistently nearly equal to the 

concentration in the influent. For settings (a) and (b), a fixed 10 mg/L concentration of 

metformin was used, while for setting (c), the following concentration was used: 2.5, 5, 10, 

20, and 40 mg/L, respectively.  

Two-milliliter samples from both the tracer experiment and the metformin transport 

experiment were collected at fixed time intervals (2, 4, 10, 30, 60 minutes based on 

different breakthrough time of the experiments). For the tracer experiment samples, NaCl 

concentration in each sample was measured with an electrical conductivity meter (Thermo 

Fisher). The metformin concentration in each sample was measured directly by a high-

performance liquid chromatography with an ultraviolet detector (HPLC-UV, Agilent 
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Technologies) after filtering 1 mL samples through 0.22 µm filters(Briones & Sarmah, 

2018b; Oertel et al., 2018). A Shimadzu HILIC column (250 × 4.6 mm, 5μm) was used 

with a liquid phase of acetonitrile and 10 mM ammonium acetate (pH adjusted to 3 by 

acetic acid). The volume ratio of acetonitrile and ammonium is 20:80. The flow rate of the 

mobile phase was 1.2 mL/min, and the injected sample volume was 20 μL; the UV 

detection wavelength was 233 nm. The retention time of metformin was 4.9 min. More 

experimental parameters and details are given in Table 4.3. 
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Table 4.3 Experimental conditions and parameters 

# Sand Type 
Height 

(cm) 

Diameter 

(cm) 

Bulk density 

 (g/cm3) 
Porosity Directions 

Pressure Head 

(cm) 

Inflow rate 

 (ml/min) 

Initial 

Metformin  

Concentration 

(mg/L) 

1 Fine 27 5 1.64 0.33 Top-down 3 1.600 10 

2 Fine 27 5 1.59 0.31 Top-down 0 1.000 10 

3 Medium 27 5 1.54 0.32 Top-down 3 16.800 10 

4 Medium 27 5 1.63 0.29 Top-down 0 1.000 10 

5 Mixed Variant 1 27 5 1.73 0.31 Top-down 3 1.700 10 

6 Mixed Variant 1 27 5 1.76 0.26 Top-down 0 0.533 10 

7 Mixed Variant 1 60 8 1.77 0.31 Top-down 3 6.087 10 

8 Mixed Variant 2 27 5 1.74 0.30 Top-down 3 0.900 10 

9 Mixed Variant 2 27 5 1.77 0.28 Top-down 0 0.406 10 

10 Mixed Variant 2 60 8 1.74 0.30 Top-down 3 2.830 10 

11 Coarse 24 2.4 1.55 0.30 Bottom-up 0 0.444 5 

12 Coarse 24 2.4 1.62 0.27 Bottom-up 0 0.444 10 

13 Coarse 24 2.4 1.54 0.32 Bottom-up 0 0.444 2.5 

14 Coarse 24 2.4 1.55 0.32 Bottom-up 0 0.444 20 

15 Coarse 24 2.4 1.56 0.33 Bottom-up 0 0.444 40 

16 Coarse 24 2.4 1.67 0.28 Bottom-up 0 0.666 2.5 

17 Coarse 24 2.4 1.60 0.29 Bottom-up 0 0.666 5 

18 Coarse 24 2.4 1.60 0.27 Bottom-up 0 0.666 10 

19 Coarse 24 2.4 1.67 0.26 Bottom-up 0 0.666 20 

20 Coarse 24 2.4 1.58 0.29 Bottom-up 0 0.666 40 

21 Coarse 24 2.4 1.66 0.26 Bottom-up 0 0.888 2.5 

22 Coarse 24 2.4 1.63 0.26 Bottom-up 0 0.888 5 

23 Coarse 24 2.4 1.59 0.29 Bottom-up 0 0.888 10 

24 Coarse 24 2.4 1.55 0.30 Bottom-up 0 0.888 20 

25 Coarse 24 2.4 1.58 0.29 Bottom-up 0 0.888 40 

26 Coarse 24 2.4 1.59 0.29 Bottom-up 0 1.111 2.5 

27 Coarse 24 2.4 1.53 0.31 Bottom-up 0 1.111 5 

28 Coarse 24 2.4 1.61 0.29 Bottom-up 0 1.111 10 

29 Coarse 24 2.4 1.66 0.26 Bottom-up 0 1.111 20 

30 Coarse 24 2.4 1.58 0.30 Bottom-up 0 1.111 40 
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4.2.3 Metformin Transport Modelling and Data Augmentation 

To estimate the parameters (ω̂ in Figure 4.1) of metformin transport within the column 

system, the breakthrough curves of the transport experiments were modelled. The Hydrus-

1D software package was chosen as the physics-based modelling tool for this study to fit 

the breakthrough curves of the tracer and metformin (Fan, 2022; Šimůnek & van 

Genuchten, 2008). This section presents the foundational assumptions and parameters 

crucial to the proposed framework.  

The transport equation in the Hydrus-1D model can be given as follows: 

(1 +
FρKd

θ
)

∂C

∂t
+

ρ

θ

∂Sk

∂t
= D

∂2C

∂x2
− v

∂C

∂x
 (4.1) 

Sk = (1 − F)KdCe (4.2) 

The retardation factor R can be expressed as: 

R = 1 +
𝐹ρ𝐾𝑑

θ
 (4.3) 

Where 𝐹 is the fraction of type-1 sorption; 𝜌 is the bulk density of the porous medium 

[𝑀𝐿−3]; 𝐾𝑑 is the partition coefficient [𝐿3𝑀−1]; 𝐶 is the solute concentrations in the liquid 

phase [𝑀𝐿−3]; 𝑆𝑘 is the type-2 site [𝑀𝑀−1]; 𝐶𝑒 is the solution concentration at equilibrium 

[𝑀𝐿−3 ]; D  is the dispersion coefficient [𝐿2𝑇−1 ]; 𝑣  is the average pore-water velocity 

[𝐿𝑇−1]; t and x are time [𝑇] and distance [𝐿], respectively; θ represents porosity. And 1/𝑅 

is referred to as “relative velocity” in the main text (Šimůnek & van Genuchten, 2008). 

 

In this study, the two-site conceptualization was used to describe the nonequilibrium 

sorption of metformin (Selim et al., 1977; van Genuchten & Wagenet, 1989). It is assumed 
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that the overall adsorption in the system can be categorized into two types: The first type 

(“Type-1”) is instantaneous sorption, while the other type (“Type-2”) indicates time-

dependent kinetic sorption with a first-order reaction rate (Rao et al., 1979). The reciprocal 

of the retardation factor 𝑅 can represent the relative travelling distance of a substance 

compared to water. Hence, it will be referred to as relative velocity below. Also, because 

relative velocity is one of the most intuitive metrics to evaluate the overall dynamics of 

metformin’s transport in a 1-D system while retaining most of the crucial information, it is 

selected as the target variable in our study for both the causal effect estimation and neural 

network modelling. A 90% concentration of the initial value (C0, ML-3) marked the 

endpoint for porous medium transport. 

Data augmentation refers to the significant enhancement of data volume and diversity 

available for training data-driven models without the need for new data collection. This 

process can mitigate overfitting and bolster model performance and robustness (van Dyk 

& Meng, 2001). Under the context of investigating metformin transport in sandy media, it 

is essential to preserve the characteristics of these processes within the augmented data. 

With this consideration, we employed a grid-traverse method in tandem with certain 

constraints to produce parameter combinations for data augmentation, ensuring the 

exclusion of improbable parameter sets, considering a series of constraints to ensure the 

augmented dataset faithfully represents metformin transport in a sandy medium, as 

opposed to the arbitrary transport of a substance in a random medium. As a result, we 

assembled an augmented dataset with 54,869 parameter combinations, which were 

subsequently normalized using 0-1 normalization. This normalization aids neural network 

training and generates normalized causal effect metrics, enabling comparison and easier 
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interpretation. To prevent data leakage and maintain the integrity of our findings, this 

dataset was then divided into two subsets for subsequent causal inference and neural 

network training: 30% for causal inference, containing 16,460 instances, and 70% for 

neural network training, containing 38,409 instances. The batch runs of the Hydrus-1D 

model were performed using Phydrus, a Python implementation of Hydrus-1D (Collenteur 

et al., 2020).  

Based on fitting 60 breakthrough curves (including 30 sets for tracer and 30 sets for 

metformin), a reasonable range of all parameters can be deduced from the results. Then, 

based on the ranges, a total of 200,000 instances were generated through Phydus. Any 

instances that failed to converge, implying the combination of conditions and parameters 

are unlikely reasonable, are removed.  

The particle density (𝜌𝑠) of a porous medium can be calculated using the bulk density (𝜌𝑏) 

and the porosity (θ) of the medium. The equation is: 𝜌𝑠 = 𝜌𝑏/(1 − 𝜃). The data is then 

filtered based on the particle density range (Bear, 2013), which should be between 2.2 and 

2.6. Following this, range limits for hydraulic conductivity, adsorption coefficient, porosity 

and bulk density were set to screen out outliers in the dataset. The final constraints used 

during data augmentation include 1) typical ranges for sandy porous media properties such 

as porosity and bulk density; 2) metformin transport parameter distributions acquired from 

the column experiment; and 3) ensuring the simulated processes can converge within the 

model framework. The final dataset is available in our data repository. 
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Figure 4.2 Schematic diagram of the metformin column transport experiment. Arrows indicate the flow direction. Setting (a): Saturated top-down flow with 

3 cm ponded water; Setting (b): Unsaturated top-down flow with no ponded water; Setting (c): Saturated bottom-up flow; (d) Metformin breakthrough curves 

under top-down saturated and unsaturated flow conditions. Solid and open squares represent experimental data with open shapes correspond to experiments 

without ponded water; solid and dashed lines represent fitted breakthrough curves with dashed lines represent experiments in 60 cm columns.  
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4.2.4 Causal Inference 

The first step of SCM is to construct a DAG for causally relevant variables. Based on the 

domain knowledge, 14 variables including the porous medium’s physical, hydraulic, and 

transport parameters, along with experimental boundary conditions, were included in the 

causal diagram. Specifically, they are:  

• θ: Porosity;  

• PD: Particle Density;  

• S: Saturation;  

• L: Travel distance;  

• C: Concentration;  

• Kd: Partitioning coefficient;  

• Ks: Hydraulic conductivity;  

• F: Type-1 sorption fraction;  

• D: Dispersivity;  

• α: First-order reaction rate for kinetics sorption;  

• H: Ponded water depth;  

• q: Water flow flux;  

• g: Travel direction;  

• 1/R: Metformin velocity relative to water. 

Given the causal relationships depicted in the causal diagram, suitable sufficient sets—

specific variables that encapsulate the causal effect—can be identified using graph-based 

procedures, primarily the backdoor adjustment.  
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In our study, two different estimators to capture both linear and non-linear causal effects 

were used: a classic linear model and a machine learning-based causal estimator 

CausalForestDML, previously named DMLOrthoForest (Chernozhukov et al., 2017; 

Foster & Chilton, 2003). Approximately one-third of the augmented dataset (~18,500 

instances) was used here for causal regression analysis. An additive model to represent the 

dynamics between different parameters and metformin’s relative velocity (
1

R
) in porous 

media was realized as the causal prior for providing causal information into the 

downstream neural network model. 

SCM framework and three refutation tests in the study are available within the DoWhy 

package, an open-source Python package for causal inference (Sharma & Kiciman, 2020). 

An open-source library, EconML, provides an implementation of the machine learning 

estimator CausalForestDML (Battocchi et al., 2019). As a benchmark, the estimators have 

been applied to multiple public datasets with known ground truth in previous studies. 

4.2.5 Causal Prior Embedding 

To embed the extracted causal prior into the neural network, two methods were used in this 

study. The first method of causal prior embedding is causal regularization (Kancheti et al., 

2022). On top of the ordinary regularization techniques, which aim to reduce overfitting, 

causal regularization introduces an additional penalty term into the learning process to 

encourage the model to align its learning with our prior understanding of the causal 

structure of the problem. The penalty term is determined by the L1 norm of the discrepancy 

between 1) the Jacobian matrix of the model with respect to its input and 2) the derivative 
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of the causal prior. In a linear context, the derivative of the causal prior corresponds to the 

Average Treatment Effect (ATE) for each influential feature. The regularization term was 

applied in such a way that the network’s learning process would strive to minimize the 

difference between its own understanding of the system and the known causal relationships. 

This step can improve the model’s interpretability without significantly damaging model 

performance, by making it adhere to known causal structures (Kancheti et al., 2022; 

Suryadi et al., 2023; Chattopadhyay et al., 2019).  

Causal regularization imposes a constraint on the learning process of the neural network, 

nudging it towards better alignment with prior causal knowledge. This process involves 

matching the gradients of the NN's causal effects with the gradients of a domain prior 

function. The regularization term can be given as: 

𝑅 =
1

𝑁
∑ max (||𝐴𝑖 − 𝐵𝑖||1

− 𝜖, 0)

𝑁

𝑖=1

 

 

(4.4) 

Here, 𝑁 represents the number of inputs; 𝐴𝑖 and 𝐵𝑖 are the i-th rows of matrices 𝐴 and 𝐵 

respectively; Matrix 𝐴 is the Jacobian of the network's output with respect to its input; 

Matrix 𝐵 represents a matrix of derivatives that stand for the known causal relationships; 

the error term 𝜖  is a small constant introduced to allow flexibility in the matching between 

A and B. 

||𝐴𝑖 − 𝐵𝑖||1
 denotes the 𝐿1 norm, which quantifies the absolute difference between the 

corresponding elements of matrices 𝐴 and 𝐵. In essence, the regularizer encourages the 
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gradients of the network's output with respect to its input to be close to the known causal 

effects, guiding the model towards physically meaningful solutions. 

In addition to causal regularization, a novel approach was developed to incorporate causal 

knowledge into the learning process of neural networks, which was refer to as causal 

weight initialization. Neural networks, at their core, are composed of layers of nodes (or 

“neurons”) that are interconnected through “weights.” These weights are essentially the 

parameters that the network adjusts during the learning process to improve its predictions. 

The initialization of these weights – the values they are given before the learning process 

begins – can significantly influence the network’s learning trajectory and final performance. 

In the case of causal weight initialization, the prior knowledge about the causal 

relationships between different factors to guide this initial assignment of weights was used 

(Kassani et al., 2022; Luo et al., 2020). Specifically, the initial weights in the input layer 

of the network are set to reflect the ATEs, a measure of the causal effect of each input 

feature. 

The causal weight initialization procedure leverages the Average Treatment Effect (ATE) 

values as priors in defining the initial weights of the neural network. In this study, for each 

input feature, the initial weight values are generated by drawing from a Gaussian 

distribution, with the mean equal to the ATE value for that input feature and a small 

standard deviation, signifying the uncertainty around the ATE. This process creates an 

array of weights with dimensions equal to the number of inputs by the number of nodes in 

the layer and hence can be used for input layer weight initialization. This way, the learning 

process starts from a state that's consistent with the known causal effects, offering a 
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promising direction to enhance the interpretability and reliability of model predictions. The 

algorithm for ATE calculation is based on a Taylor series expansion of the neural network 

output and employs both first-order and second-order gradients in its computations. The 

ACE is essentially the difference between two CATEs, as shown in the following pseudo-

code: 

Algorithm: Calculation of Average Causal Effect (ACE) learned by the neural 

network 

Result: Expected value of Y given t (E[Y|t]) for each t = α 

Inputs:  

- Function f that takes t as an argument 

- The range of t: from 'low' to 'high' 

- Number of interventions: n 

- Mean of the data: μ 

- Covariance matrix of the data: cov 

Procedure: 

1. Initialize α = low, a list IE = [] 

2. While α is less than high: 

   2.1 Set the i-th element of μ to α 

   2.2 Calculate the function f at μ, append 1/2 of this value to the list IE 

   2.3 Add the trace of the product of matrix multiplication (second derivative of f at μ, 

cov) to the last element of IE 

   2.4 Increment α by (high - low) / n 

3. Return the list IE 
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A Neural Architecture Search (NAS) parameterization experiment was conducted to assess 

the impact of various hyperparameters on model performance. A range for each parameter 

was predefined and models were trained with all combinations of these parameter values. 

Four standard neural network hyperparameters were considered: learning rate, number of 

layers, number of nodes, and the choice of activation functions. In addition to these, two 

causal embedding parameters were also taken into account: 1) the causal regularization 

parameter, represented as λ, and 2) a Boolean parameter indicating whether the model’s 

input layer weights were causally initialized. The models were evaluated not only on 

standard performance metrics such as convergence speed and performance on a test set but 

also on how well the model retained causal information derived from the prior. This 

validation set was separate from the training and testing sets to avoid data leakage and 

ensure rigorous evaluation. All models were trained and evaluated on the same training 

and testing sets, providing a consistent basis for comparison across different 

hyperparameter combinations. The neural network model was developed through the open-

source deep learning framework PyTorch 1.13.1, and the NAS parameterization was 

conducted through an open-source AutoML framework Neural Network Intelligence (NNI) 

2.10 (Microsoft, 2021). 
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4.3 Results and discussion 

4.3.1 Metformin Transport in Sandy Media and Causal Interactions Within 

The breakthrough curves of metformin are given in Figure 4.2(d) for settings (a, b) and 

Figure 4.3 for settings (c). Observed experimental data are denoted by squares and circles, 

while the fitted curves are in solid or dashed lines. The modelled curves showed good 

alignment with the original experimental data, with their 𝑅2 ranging from 0.970 to 0.999, 

indicating that the selected physics-based model’s capability describes metformin’s 

sorption in sandy columns. Meanwhile, as shown in Figure 4.2(d), it is noticeable that 

metformin’s residence time increased in the following order: medium sand (Col# 3,4), fine 

sand (Col# 1, 2) and mixed sand (Col# 5-10). The reason that metformin was stranded for 

the longest time within the mixed sand columns is due to the heterogeneous nature of the 

mixed sand, which increased the transport system’s complexity and impeded the transport 

of metformin, in contrast to more homogeneous media like medium and fine sands (Beven, 

1996; Simmons et al., 2001; Gelhar & Axness, 1983). Stranding time also varies between 

different mixed sand variants. In columns packed with mixed sand variant 1 (Col# 5-7), 

the breakthrough time for metformin ranged from 510 to 1,450 min. In columns with mixed 

sand variant 2 (Col# 8-10), the breakthrough time ranged from 2,230 to 4,200 min. Such a 

difference was due to the higher proportion of finer particles in the latter variant, as shown 

in Table 4.1. Moreover, for the columns filled with the same sandy medium, the 

breakthrough time of metformin was longer under unsaturated condition than under 

saturated condition. On the other hand, metformin’s breakthrough time under bottom-up 

saturated flow conditions in coarse sands (Col #11–30, ranging from 72 to 295 minutes) 

was more dependent on the flow flux, as shown in Figure 4.3. 



100 

 

Table 4.4. Estimated parameters of the sandy columns 

# 𝐾𝑠 (cm/min) 𝐷 (cm) 𝐹  𝐾𝑑 (L/kg) 𝛼  1/𝑅  

1 0.075 0.156 0.646 0.231 0.0081 0.568 

2 0.066 0.159 0.836 0.161 0.0148 0.648 

3 0.670 0.806 0.221 0.076 0.1104 0.962 

4 0.126 0.468 0.483 0.264 0.0115 0.798 

5 0.085 0.178 0.773 0.555 0.0237 0.345 

6 0.028 0.511 0.854 0.105 0.0023 0.238 

7 0.100 1.198 0.769 0.415 0.0004 0.223 

8 0.049 0.390 0.655 0.370 0.0857 0.151 

9 0.027 0.209 0.297 1.130 0.0060 0.101 

10 0.057 0.608 0.835 0.606 0.0030 0.190 

11 1.025 0.174 0.119 0.085 0.0139 0.722 

12 0.906 0.121 0.179 0.070 0.0187 0.728 

13 1.107 0.094 0.175 0.085 0.0148 0.883 

14 1.181 0.104 0.216 0.070 0.0210 0.916 

15 1.010 0.095 0.162 0.036 0.0218 0.943 

16 0.820 0.212 0.145 0.074 0.0185 0.881 

17 1.391 0.102 0.164 0.072 0.0282 0.910 

18 0.931 0.150 0.180 0.085 0.0273 0.904 

19 1.020 0.438 0.242 0.074 0.0268 0.877 

20 0.977 0.217 0.083 0.019 0.0088 0.990 

21 1.012 0.358 0.111 0.058 0.0261 0.893 

22 1.116 0.199 0.199 0.100 0.0281 0.882 

23 0.980 0.118 0.157 0.081 0.0352 0.930 

24 1.025 0.154 0.186 0.075 0.0336 0.928 

25 1.135 0.157 0.177 0.052 0.0387 0.945 

26 1.174 0.163 0.126 0.075 0.0309 0.926 

27 1.053 0.142 0.089 0.089 0.0379 0.962 

28 0.968 0.289 0.152 0.064 0.0317 0.931 

29 0.908 0.408 0.103 0.054 0.0383 0.930 

30 1.008 0.161 0.177 0.046 0.0413 0.941 

* 𝐾𝑠 : Hydraulic conductivity, 𝐷: Dispersivity; 𝐹: Type-1 sorption fraction; 𝐾𝑑: 

Partitioning coefficient; 𝛼: First-order reaction rate coefficient for kinetics sorption; 1/𝑅: 

Metformin velocity relative to water. 
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Figure 4.3 Metformin breakthrough curves under bottom-up flow conditions with 

different concentrations. 
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Based on the experimental data, the fitted parameters from the Hydrus-1D model in 

individual columns are given in Table 4.4 and were incorporated in the original 

experimental dataset. Variability across the transport parameters such as type-1 sorption 

fraction (F), hydraulic conductivity (Ks) and dispersivity (D) suggests that the original 

experiment settings covered various scenarios. Hence, the new dataset, which includes both 

the experimental and model-fitted-parameters, was deemed “seed data”, and was 

subsequently used to generate new synthetic data for the causal analysis and deep learning 

model training, as previously described.  

Based on the causal inference dataset as described in Section 4.2.3, a weighted causal 

diagram was constructed to showcase the results of causal effect estimations, as in Figure 

4.4. This causal graph seeks to demonstrate the complex interplay of various factors that 

contribute to solute transport in a porous medium. Some factors and causal interactions are 

discussion worthy. The first factor of interest is the type-1 Sorption Fraction. The fitted F 

in the original seed data varied from 0.08 to 0.91, with an observable higher value in finer 

sands. Type-1 sorption fraction is a variable influenced by many other factors, such as 

porosity, particle density and saturation status, instead of merely a dependent variable of 

sand type. Specifically, porosity emerges as a dominant factor, with a normalized causal 

effect of 0.0242. This corroborates the concept that increased porosity tends to provide 

more sorption sites for solute interaction, affecting the partitioning of the solute between 

the solid and liquid phases (Rao et al., 1979; van Genuchten, 1980). The saturation status 

and particle density have smaller effects on type-1 sorption fraction (0.0082 and –0.009). 

The underlying mechanism of the minor shift brought by saturation status could be that the 

water-filled pores might slightly facilitate greater interaction between the contaminant and 
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the solid phase, leading to a moderately higher instantaneous sorption fraction (Bear & 

Cheng, 2010). On the other hand, the minor negative effect from particle density 

corresponds to that when all the other factors are held constant, a medium with higher 

particle density implies a slightly limited availability of sorption sites, hence might slightly 

reduce the fraction (van Genuchten & Wagenet, 1989; Freeze & Cherry, 1979).  

Another pair of the treatment-outcome variables of interest is dispersivity D and travel 

distance L. Their relationship has been a topic of active discussion since the mid-twentieth 

century when researchers first documented the interaction between these two parameters. 

Two interpretations are commonly held in the field: one believes heterogeneity causes such 

a scale effect (G. Gao et al., 2010; Gelhar et al., 1992), and the other suggests that the scale 

effect might be a technical artifact (Domenico & Robbins, 1984). Although no consensus 

has been reached, it has been widely accepted that dispersivity is a distance-dependent 

parameter with a clear physical meaning (Bromly et al., 2007; Schulze-Makuch, 2005). 

Recently, to interpret the relationships between dispersivity and distance, researchers 

investigated multiple experimental datasets and found that dispersivity is still a good 

descriptor of a transport system (Younes et al., 2020; You & Zhan, 2013). In our case study, 

distance indeed shows its influence on dispersivity. Albeit a lesser influence compared to 

other factors, with a normalized weight of 0.023, it signifies a 2.3% shift in dispersivity 

when the transport distance ranges from its minimum observed value (20cm) to its 

maximum (160cm). The impact of distance on dispersivity stems from the nature of solute 

transport over different scales. As the travel distance increases, the solute particles have a 

higher likelihood of experiencing diverse flow paths and velocity variations within the 

system, leading to more extensive spread and, hence, greater dispersivity. This highlights 
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the spatial aspect of solute transport, underscoring that even when other conditions remain 

constant, an increase in the distance traversed by the solute can lead to a small yet 

observable increase in dispersivity (Menzie & Dutta, 1989; Schulze-Makuch, 2005). Thus, 

both porosity and distance contribute in their unique ways to the overall dispersivity in the 

system, although their impacts may vary in magnitude. The “scale effect” from the travel 

distance to the relative velocity was also quantified (-3.51%), indicating a measurable 

impact of the scale of the system on the transport process of metformin. It is also consistent 

with numerous empirical observations and theoretical models suggesting a slowdown in 

contaminant transport as the transport distance increases (Domenico & Robbins, 1984).  

Among all the factors affecting the target variable, the saturation status (S) stands out as a 

dominant factor, contributing a positive impact of 0.1625, in which a system shift from 

unsaturated to saturated conditions increases the relative velocity remarkably. This 

estimation underscores the role of saturation status in enhancing the transport speed of 

metformin, possibly by increasing the continuity of the water phase and thus facilitating 

the transport process (Freeze & Cherry, 1979). Another noteworthy influence comes from 

the adsorption coefficient 𝐾𝑑, which exerts a substantial negative effect of -106.44%. This 

suggests that an increase in the adsorption coefficient, which reflects the tendency of 

metformin molecules to adhere to the sand particles, considerably decelerates the relative 

velocity, implying an intensified retardation effect on the transport (Šimůnek & van 

Genuchten, 2008). The first-order reaction rate coefficient for type-2 sorption also has a -

0.1447 normalized causal effect on the relative velocity. It implies a faster rate of this 

sorption reaction would result in a greater proportion of the metformin adhering to surfaces 

and not moving freely in the water, resulting in a reduction in its overall transport velocity 
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(Maraqa et al., 2011). More detailed causal estimation and refutation results are given in 

Tables B.1 and B.2 in the Appendix B, including the backdoor adjustment sets for each 

causal link.  

Transport parameters in different types of sandy columns had distinctive distributions. 

Hydraulic conductivity (𝐾𝑠 ) in the coarse sand columns (Col #11–30) was noticeably 

higher than in other sandy columns (0.82–1.18 cm/min), with their dispersivity ( 𝐷 ) 

comparably lower, probably due to their slightly shorter column length (24 cm). The 

average relative velocity in the first ten column experiments was 0.42, nearly half of it in 

the coarse sandy columns #11–30 (0.90). On the other hand, the partitioning coefficient in 

Experiment #11–30 (coarse sand columns) was also noticeably lower, indicating there was 

not as much sorption occurring in those experiments as in Experiment #1–10.  

Particle density (PD in the Figure 3) has been identified as a parent node influencing 

hydraulic conductivity, dispersivity, adsorption coefficient, and the fraction of Type-1 

sorption. When all the other factors are held constant, a medium with higher particle 

density can reduce the pore space available for fluid flow, affecting hydraulic conductivity 

and dispersivity, and it can influence the availability of adsorption sites, thus affecting the 

adsorption coefficient and Type-1 sorption fraction (van Genuchten & Wagenet, 1989; 

Freeze & Cherry, 1979). That prior knowledge was captured in those noticeable weighted 

causal effects from particle density to adsorption coefficient 𝐾𝑑 (0.334) and hydraulic 

conductivity 𝐾𝑠 (–0.673). On the other hand, porosity (θ), which signifies the void spaces 

within the medium, also influences hydraulic conductivity, dispersivity, the adsorption 

coefficient, and Type-1 sorption fraction. Higher porosity generally affects hydraulic 

conductivity and dispersivity due to more interconnected void spaces. Similarly, a higher 
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porosity could increase the number of available sites for sorption, influencing both the 

adsorption coefficient and Type-1 sorption fraction(Bear, 2013; van Genuchten & 

Wagenet, 1989; Freeze & Cherry, 1979). Hence, such insights were also reflected in the 

corresponding weights in Figure 3 (-0.071 and 0.209 for 𝐾𝑑 and 𝐾𝑠, respectively).  

For dispersivity, the saturation status (𝑆) appears to have the most substantial impact, with 

a normalized weight of 0.0483. As a binary variable, a change in the degree of saturation 

from unsaturated (0) to saturated (1) results in a 4.83% change in the dispersivity value 

within its observed range. This aligns with the fact that the saturation state of the system 

can drastically influence the transport dynamics of the solute, with a saturated system 

typically having a greater dispersivity. Particle density also exerts a noticeable influence 

on dispersivity, with an estimated causal effect of 0.0371. This coincides with the 

understanding that denser particles reduce pore spaces and affect the diffusion and flow of 

solutes, impacting their spread (Bear, 2013; Freeze & Cherry, 1979). Porosity, another key 

factor, presents a smaller effect of 0.0127, which corresponds with the fact that an increase 

in porosity has the potential to increase the dispersivity due to that higher porosity typically 

provides a greater volume for fluid flow and more complex flow pathways, which can lead 

to enhanced mixing and dispersion of solutes (Schulze-Makuch, 2005; Menzie & Dutta, 

1989).  

Hydraulic conductivity 𝐾𝑠 presents minor effects of 3.39%, suggesting the effect of the 

connectivity of the pore spaces on relative velocity. Additionally, the negative influences 

from the type-1 sorption fraction (–4.23%), flux (–2.54%), and distance (–3.51%) suggest 

their roles in impeding metformin transport. The type-1 sorption fraction, indicating the 

fraction of metformin that adheres to the soil particles instantaneously, and flux, reflecting 
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the flow rate of water, logically affect the transport speed by increasing the retention of 

metformin and reducing the driving force, respectively. The negative effect of flux 

conforms to the expectation that the relative velocity of the solute will be slower when all 

the other conditions remain the same. It is because that in a higher flux situation, water 

molecules move more quickly through the soil and metformin molecules may not travel as 

quickly, which reflected in a lower relative velocity. As the distance that metformin 

molecules travel increases, various influencing factors like diffusion, adsorption, and 

degradation can come into play, reducing the speed at which they move through the system.  

An 𝐹  range from 0.38 to 0.45 for oxytetracycline in sandy loamy soil mixed with 

polyamide was reported by Li.(J. Li et al., 2021). Zhou et al.(Zhou et al., 2019) reported 

that no type-1 sorption occurred during the transport process of ciprofloxacin in hematite-

coated-sand-packed columns. In their research on the transport of aniline and nitrobenzene, 

Zakari et al. (Zakari et al., 2019) suggested that type-1 sorption of the organic compounds 

occurs on the sediment particle surface while type-2 sorption occurs on the micropore 

surface. They also found that the 𝐹  value dropped significantly when the velocity 

surpassed a certain threshold in another study on the transport of bisphenol-A in sandy 

columns(Zakari et al., 2016). The authors explained the phenomenon by suggesting that 

more BPA on the type-1 site (instantaneous) was “driven out” by fast water flow.  On the 

other hand, during an investigation on the transport of seven phthalates in biosolid-

amended soil, Sayyad et al. reported a low 𝐹  value range near zero and emphasis the 

parameter’s relationships with molecular size, substitution pattern of molecules, length of 

the carbon chain and Log Kow (Sayyad et al., 2017), which can meet the research conducted 

by Brusseau et al. and Maraqa et al.(Brusseau et al., 1991; Maraqa et al., 2011). Some 
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studies also reported correlations between pH and 𝐹 . Xing et al.(Xing et al., 2020) 

suggested the instantaneous sorption of tetracycline increased with the presence of colloids, 

implying that colloids might shorten the migration time of tetracycline in sandy media.  

The relative velocity of metformin in the sandy columns was within the same range shared 

by some other PPCPs such as bisphenol-A, tetracycline, and thiacloprid (Wei et al., 2021; 

Rodríguez-Liébana et al., 2018; Zakari et al., 2016) and was on the higher end of the 

spectrum (a 0.74 average across all the experiments). Given metformin’s insensitivity to 

photolysis and hydrolysis and the degradation rate of metformin is contingent upon specific 

environmental factors (Caldwell et al., 2019), metformin may exhibit a longer persistence 

in the groundwater compartment and may still cause a considerable travel distance, even 

though the velocity of groundwater is generally slow compared with surface water flows. 

The information above suggested a long-range transport potential in the groundwater 

(Griebler & Lueders, 2009), which partially explained the ubiquitous occurrence of 

metformin in natural water bodies.  
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4.3.2 Embedding Causal Prior into a Neural Network 

Figures 4.4 (a) present the results of all 1,440 neural networks parameter searching runs, 

detailing overall, top 10%, and bottom 10% outcomes, respectively. Certain experiments 

exhibited remarkable performance, with R-squared values peaking at 0.98 and root mean 

square error (RMSE) reaching lows of 0.02 on the test set, affirming the problem’s 

learnability while positioning the dataset as an ideal platform with a balanced complexity, 

for the exploration of causal embedding techniques. To facilitate the upcoming discussion 

related to activation functions, a visualization of the curves for the five activation functions 

investigated in this study is given in Figure 2.1 in the Literature Review section along with 

their corresponding equations and detailed exploration of their respective advantages and 

disadvantages. 
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Figure 4.4 A DAG with the weighted edge indicates the estimated causal effect of different causal links. θ: Porosity; PD: Particle Density; S: Saturation; 

L: Travel distance; C: Concentration; Kd: Partitioning coefficient; Ks: Hydraulic conductivity; F: Type-1 sorption fraction; D: Dispersivity; α: First-

order reaction rate for kinetics sorption; H: Ponded water depth; q: Water flow flux; g: Travel direction; 1/R: Metformin velocity relative to water. The 

weights associated with each edge correspond to its normalized estimated causal effect and are comparable across all the interactions.  
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Figure 4.5 Overview of experimental results and causal prior retention. (a) RMSE results from all 1,440 experiments; top 10% 

performing experiments and bottom 10% experiments; (b) Causal retention heatmap for experiments with causal regularization, 

each cell represents the Conditional Average Treatment Effects (CATEs) at evenly spaced intervals of the normalized input 

variables; (c) Two particular cases of causal retention, visualized in causal retention heatmaps. On the left: two-layer network 

with 64-node hidden layers, Sigmoid, low learning rate (0.001), without causal regularization; On the right: a three-layer network 

64-node hidden layers, LeakyReLU, high learning rate (0.05), with a minor causal regularization strength (λ=0.3); (d)Test loss 

curves for models with different causal embedding techniques.  
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The optimal hyperparameter combination relies on a subtle interplay between network 

structure, hyperparameters, and the choice of activation function. Most notably, networks 

comprising two or three layers, each with more than 16 nodes, coupled with LeakyReLU 

or ReLU activation functions, frequently yielded top-performing models, dominating the 

top 1% and 10% of experiments. LeakyReLU, in particular, proved to be a strong facilitator 

for networks of increased complexity, underlining its robustness as one of the most popular 

activation functions at the moment (B. Xu et al., 2015). On the other hand, some 

configurations resulted in less satisfying performance. Models employing the Softplus 

activation function frequently ranked in the bottom 10% of our experiments (90 out of 

144). This result is consistent with known characteristics of the Softplus activation 

function. Specifically, it is prone to a phenomenon known as saturation, where it outputs 

values close to zero for small inputs. This behaviour can lead to near-zero gradients, which 

can subsequently hinder the performance of the model (B. Xu et al., 2015). 

The interplay between various activation functions and causal embedding techniques 

revealed intriguing phenomena. As depicted in Figure 4.5(b), the benchmark column 

represents the originally embedded causal prior, with individual cells in the heatmap 

showcasing the Conditional Average Treatment Effects (CATEs) across evenly spaced 

intervals of the normalized input variables. Each cell value was computed by averaging 

across all experimental conditions involving different activation functions. This study 

utilized a logarithmically scaled colormap to scrutinize causal prior retention, particularly 
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interested in the effectiveness of both techniques when dealing with a simple additive 

causal prior with a mix of large and small terms— a scenario frequently encountered in 

environmental engineering and science disciplines. From the visualization, it can be 

observed that, in general, the causal regularization method can firmly introduce causal 

information into the model most of the time. However, there were still many signs of 

instability. For instance, LeakyReLU, despite its capability to capture a significant portion 

of the causal information without modification, exhibited the least retention of causal 

information among all activation functions when a minor causal regularization strength 

(λ=0.3) was applied. Interestingly, this deficiency in causal retention did not affect the 

overall performance and stability of the network, and it was not observed in ReLU, another 

piecewise linear activation function. One assumption is the discrepancy in behaviours 

under minor regularizing strength may be linked to LeakyReLU’s non-zero gradient for 

negative inputs, unlike ReLU’s zero gradient. This structural difference complicates 

LeakyReLU’s task of matching the constant rate of change in output with respect to input 

(as enforced by the regularization term) when the regularizing strength is insufficient, 

leading to poorer causal information retention. When regularization strength increased to 

an intermediate level (λ=1), LeakyReLU matched the performance of other functions, 

overcoming its initial causal retention deficit. This improvement can be attributed to 

LeakyReLU’s ability to handle complex transformations due to non-zero outputs for 

negative inputs and its resistance to the “dead neuron” problem, keeping the weight-
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updating process active even under stronger regularization. On the other hand, some of the 

sacrifices on both performance and stability can also be observed in Figure 4.5(d), which 

depicts different model training processes by plotting the model’s metric (RMSE) on the 

test set over epochs. The lower the metric, the better the model converged. The test losses 

of models utilizing causal regularization methods (navy blue and cyan curves) were 

restrained, as evidenced by their flattened curves higher than those without causal 

regularization (orange and green curves) after 200 epochs. These causal regularized 

experiment curves also exhibited fluctuating upper bounds, corresponding to the 

performance at the 95th percentile in each epoch. This fluctuation indicates the model’s 

struggle to balance minimizing the MSE loss with matching the derivative of the causal 

prior, which is an inherent challenge of the regularization techniques. In contrast, such 

observations were not found for experiments without causal regularization, suggesting that, 

generally, those causal regularized experiments faced more difficulties in achieving 

convergence.  
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Figure 4.6 Causal retention heatmap for experiments with causal weight initialization. 



116 

 

Meanwhile, the causal embedding technique proposed and developed in this chapter, 

termed “causal weight initialization,” appears to influence the models’ learning processes 

in a distinct way. In contrast to causal regularization, which imposes an additional 

constraint on the learning process by encouraging the model’s derivative to align with the 

derivative of the causal prior, causal weight initialization serves as a form of guided starting 

point. It sets the initial model weights to reflect the known causal relationships, thereby 

orienting the learning process towards these causal patterns from the very beginning. This 

can potentially lead to more efficient convergence and causal retention, even without the 

explicit constraint imposed by causal regularization. As shown in the left panel of Figure 

4.5(c), causal weight initialization proves effective for weight exploration in a Sigmoid-

connected network, revealing some causal characteristics, even without explicit causal 

regularization. Interestingly, as depicted in the right panel of the same figure, a 

LeakyReLU-connected network utilizing causal regularization (λ=0.3) initially struggled 

to retain causal information, but the introduction of causal weight initialization enabled the 

network to gain causal information. This pattern was also noted with Softplus and Tanh. 

This can be attributed to the initial bias introduced by causal weight initialization. 

Specifically, this technique provides the network with a ‘head start’ towards the known 

causal relationships. In high variance scenarios brought on by flexible activation functions 

such as LeakyReLU, Tanh, and Softplus, such bias forms part of the bias-variance trade-

off, and, overall, proves beneficial for the training process. Even if the neural network 
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models struggle with retaining causal information, causal weight initialization can guide 

the learning processes towards representing the designated causal relationships. The 

overall causal retention heatmap of weight initialization method is given in Figure 4.6. 

From a performance perspective, among those experiments utilizing both the causal 

regularization and causal weight initialization techniques, the R-squared values peaked at 

0.881. Furthermore, as depicted in Figure 4.5(d), models with causally initialized weights 

tend to converge faster than their unmodified counterparts. This trend is observed in both 

unmodified and causally regularized models. Additionally, the mean loss curve of causally 

regularized models lies above that of the causal weight initialized models, indicating that 

integrating causal weight initialization into the training process can slightly enhance the 

performance boundary. Thus, while our developed causal weight initialization method may 

not incorporate causal information into the model in the same manner as causal 

regularization, it establishes a substantial foundation for initiating causal embedded 

applications and significantly bolsters their efficiency and robustness. 

Based on the insights garnered from our study, here are some recommendations: 

(1) Combine causal regularization and weight initialization: These distinct techniques 

both contribute significant advantages. Causal regularization nudges the model to 

align with the causal prior, while causal weight initialization imparts an initial bias 

towards known causal relationships. The concurrent application of both techniques 
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can enhance the model’s learning process, aiding in the capture and retention of 

causal information. 

(2)  Maintain balanced structural complexity: Avoiding structures that are either overly 

simplistic or excessively complex is key to robust performance. Striking the right 

balance ensures the model possesses the requisite complexity to capture causal 

relationships without succumbing to data overfitting. 

(3) Consider activation function selection and adjust regularization strength: For causal 

priors that are approximately linear, the piecewise linear nature of the LeakyReLU 

or ReLU activation functions can better harmonize with the prior. It is also 

important to note that the choice of regularization strength (λ) can significantly 

impact the model’s ability to retain causal information. This was evident in the case 

of LeakyReLU, where different regularization strengths led to varying levels of 

causal information retention. 

These strategies provide a comprehensive guideline for explicitly incorporating 

experiment-extracted causal prior into neural networks.  

4.4 Summary 

This study delves into the innovative integration of prior knowledge from experiments and 

physics-based models with neural networks, focusing on metformin to showcase this 

methodology. Building upon this foundation, this chapter introduces a causal prior-

embedded neural network framework that significantly enhances model interpretability, 
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demonstrating a methodical balance between utilizing extensive datasets and applying 

expert knowledge in environmental modelling and management. A causal and quantitative 

analysis of often-overlooked system parameters such as the Type-1 sorption fraction F 

along with first-order reaction rate coefficient α, and the scale of the transport system, was 

causally examined for the first time along with relevant confounders like particle density 

and saturation status. The effectiveness of the proposed methods has been thoroughly 

discussed and validated.  The analysis of the experiment data, augmented data and the 

causal estimates overall showed that metformin’s considerable long-range transport 

potential in porous media largely relies on its high relative velocity to water and extended 

half-life in groundwater. Such insight warrants a more comprehensive environmental 

assessment and increased public awareness about the risks of pharmaceuticals in the water 

cycle. 
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CHAPTER 5  

A TRANSFER LEARNING APPROACH FOR 

MAPPING THE GLOBAL  

ENVIRONMENTAL RISK OF METFORMIN4  

 

 

 

  

 
4 This chapter is based on and expanded from the following paper: 

Kang, Q., Yang, M., Song, X., Cao, Y., Liu, B., Ye, X., Wu, H., Chen, Y., Zhang, B. & 

Chen, B*. (2024). Mapping the Global Environmental Risk of Metformin: A Transfer 

Learning Approach. Ready to submit. 

Roles: I conceived the study with the input from Chen, B, Yang, M. and Song, X. I designed 

the transfer learning-based framework and the EffluentNet structure. I developed the 

program scripts for processing, analyzing and visualizing the data along with Ye, X., and 

Wu, H. Visualization and interpretation of the results were further enhanced by the 

contributions from Yang, M., Cao, Y. and Song, X. The manuscript’s refinement benefited 

from the comments and discussions from Chen, Y., Zhang, B., and Chen, B. 
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5.1 Introduction  

Emerging pollutants refer to a group of pollutants that are not routinely monitored but have 

demonstrated potential environmental or ecological adverse effects (Ng et al., 2023; Y. 

Choi et al., 2021). Due to lower awareness, research on Contaminants of Emerging 

Concern (CECs) tends to commence more gradually compared to conventional pollutants 

that have garnered greater attention, despite the threats posed by many CECs are often 

comparable to those of more well-known pollutants(Wilkinson et al., 2022). Metformin is 

one such CEC. Since its introduction in the 1920s, the oral antihyperglycemic agent has 

been indispensable in managing type 2 diabetes mellitus. One in every two patients with 

type-2 diabetes is anticipated to be prescribed metformin (Drzewoski & Hanefeld, 2021; 

Ogurtsova et al., 2017). Beyond its primary role as an antidiabetic drug, metformin has 

been recognized for various additional effects, including potential life extension, anticancer 

properties, COVID-19 mitigation, and anti-mycobacterial benefits, in various studies 

(Böhme et al., 2020; Scheen, 2020; EL-Arabey & Abdalla, 2020; Romero et al., 2017; 

Dowling et al., 2012). Given these diverse reported benefits and the increasing global 

prevalence of type 2 diabetes, which is projected to reach approximately 580 million 

individuals worldwide by 2040, a continuous rise in the global consumption of metformin 

is anticipated (Ogurtsova et al., 2017). However, due to its limited metabolization in the 

human body, extensive usage, and inefficient removal by the secondary treatment 

technologies equipped in most contemporary wastewater treatment plants (WWTPs), 

metformin has become ubiquitously present in various aquatic compartments: based on 

Global Monitoring of Pharmaceuticals Project, the Joint Danube Survey 4, and multiple 

regional studies, metformin ranks among the most frequently detected PPCPs in surface 
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water, groundwater, and WWTP influents/effluents globally (Wilkinson et al., 2022; Zheng 

et al., 2023; Briones et al., 2018; Ambrosio-Albuquerque et al., 2021; R. Zhang et al., 2021; 

ICPDR, 2020; Tao et al., 2018; Oldenkamp et al., 2018; Yao et al., 2018; Briones et al., 

2016; Trautwein et al., 2014). This widespread occurrence of metformin is further 

evidenced by its detection in potable water (Scheurer et al., 2012; R. Zhang et al., 2021). 

On the toxicity front, metformin has shown endocrine disruptive effects on aquatic life, 

including intersexuality, altered gene expression, and developmental changes, at 

concentrations as low as 40 µg/L(Elizalde-Velázquez & Gómez-Oliván, 2020; Niemuth & 

Klaper, 2018; MacLaren et al., 2018; Niemuth et al., 2015; Niemuth & Klaper, 2015). The 

toxicity of metformin’s chlorination byproducts to human cells and living organisms also 

accentuates the environmental and health concerns associated with such widespread 

presence (R. Zhang et al., 2021; Y. He, Jin, et al., 2022). Consequently, understanding the 

global distribution of metformin in the environment is crucial for formulating effective 

regulations for metformin and other similar PPCPs, which are not only considered 

emerging pollutants but also biomarkers of human activity and epidemiological indicators 

(Wilkinson et al., 2022; Zheng et al., 2023; Shao et al., 2023; Lertxundi et al., 2023; Y. He, 

Zhang, et al., 2022).  

In recent years, machine learning and deep learning methods have gained prominence in 

pollution risk analysis due to their ability to handle complex datasets effectively, deliver 

satisfactory performance, and remain cost-effective(Barzegar et al., 2018; Sajedi-Hosseini 

et al., 2018). These approaches have been applied in various global-scale assessments, 

contributing significantly to identifying pollution hotspots and facilitating more targeted 

policy development (Podgorski & Berg, 2020; Tang et al., 2021). However, when it comes 
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to metformin, a distinct challenge arises from its limited monitoring data. Unlike some 

other contaminants, routine metformin monitoring is not commonly included in 

environmental regulations in most places, resulting in insufficient data to map its global 

distribution comprehensively. Such a situation led to some efforts to estimate metformin 

occurrence using pharmaceutical consumption estimates, providing valuable insights, 

albeit constrained by data accessibility (Yang et al., 2022). This situation highlights the 

necessity for more specialized and innovative modelling approaches that can adeptly 

navigate the constraints of data scarcity, specifically in the context of metformin analysis 

(Ng et al., 2023; Wilkinson et al., 2022; Lertxundi et al., 2023; Bai et al., 2018). As a 

machine learning paradigm, transfer learning appears well-suited for addressing the 

challenges mentioned above. It involves applying knowledge from solving one problem to 

a different but related issue by leveraging pre-trained models based on extensive datasets(S. 

J. Pan & Yang, 2010). This is particularly beneficial when the available data for the new 

problem is sparse or needs to be more diverse. Its applications have spanned various 

studies, from evaluating groundwater quality to assessing air pollution levels, and 

demonstrated impressive results (W. Ma et al., 2022; Z. Chen et al., 2021; Hao et al., 2020; 

Fong et al., 2020). Thus, transfer learning was chosen as our primary methodology in this 

study. Additionally, it is crucial to develop a modelling strategy that effectively utilizes 

most of the relevant data from scattered sources for a comprehensive environmental 

analysis of metformin. Given the significant release of metformin into the environment 

through WWTPs, forecasting its concentrations in WWTPs worldwide is a pertinent and 

feasible approach supported by the availability of global WWTP datasets (Ehalt Macedo 

et al., 2021). By composing a dataset including metformin consumption, type-2 diabetes 
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prevalence, socioeconomic status, and the treatment capabilities of WWTPs, models that 

provide foundational insights for broader environmental impact assessments can be 

trained. This approach offers a detailed understanding of metformin’s immediate 

occurrences around WWTPs and allows for an estimated global distribution, enhancing our 

comprehension of its broader ecological implications. This method could also prove 

invaluable for other PPCPs similar to metformin, particularly those strongly correlated to 

human activities. 

This chapter proposes a strategy aimed at predicting metformin concentrations in WWTP 

influents/effluents and further estimating its environmental risks on a global scale, a task 

made challenging by the scarcity of comprehensive data. Our approach harnesses the 

potential of transfer learning to optimally utilize relevant, albeit distinct, background 

datasets, enabling effective learning from the limited data available on metformin’s global 

occurrences (Cao et al., 2022; Z. Chen et al., 2021). A novel neural network architecture, 

EffluentNet, which appropriately considers endogenous causal relationships within the 

wastewater treatment process to enhance predictive performance, is introduced as a 

valuable addition to the toolkit for environmental analysis, particularly for tasks involving 

estimating pharmaceutical concentrations in wastewater. This study aims to estimate the 

global distribution of metformin, aimed at pinpointing areas with relatively higher potential 

risk. This effort aims to enable precise, targeted interventions and to enrich our 

understanding of the complex dynamics between type-2 diabetes prevalence, 

socioeconomic factors, wastewater treatment technologies, and metformin occurrences in 

global water. By achieving this, the study aspires to develop more effective and precise 
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management strategies for metformin and similar emerging pollutants, thereby 

contributing to better environmental stewardship and public health outcomes. 

5.2 Methods  

5.2.1 Modelling and Data Handling Strategies  

Unlike ordinary pollutant with abundance reports in both urban and natural environments, 

the availability of real-world data concerning metformin concentrations in global WWTPs 

is limited and insufficient to build a robust estimator at a global scale. Thus, this chapter 

introduces a transfer learning strategy to mitigate such challenges. Transfer learning is 

valued for its capacity to utilize pre-existing datasets and models to address new, related 

challenges. And by its nature, it is particularly useful under a data-scarce context(Cao et 

al., 2022; Z. Chen et al., 2021). In this study, our transfer learning strategy comprises 1) a 

semi-synthetic dataset representing antidiabetic drug occurrences in Organisation for 

Economic Co-operation and Development (OECD) country WWTPs, 2) a real-world 

dataset derived from a comprehensive literature review on global metformin occurrences 

in WWTPs, 3) EffluentNet, a tailored neural network architecture designed to estimate 

contaminant occurrences in WWTP influent and effluent, and 4) a customized model fine-

tuning approach.  

To process the data for further analysis, a series of processes were conducted for various 

data sources used in this chapter. HydroWASTE is a global dataset detailing WWTP 

characteristics such as geographic coordinates, population served, and effluent flow rate 

(Ehalt Macedo et al., 2021). In this study, it is used as the major source of the WWTP 

information. For WWTPs that lack clear geographic coordinates, a thorough investigation 
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to ascertain their locations through public available information (e.g., the naming and 

coding) was undertaken. This sometimes includes reasonable inferences with information 

such as maps, theses, reports, and government/company websites. Once the geocoordinates 

of a WWTP were confirmed, the HydroWASTE database was used as a reference for any 

missing parameters, such as discharge flow rate, population equivalent, and highest 

treatment level. The corresponding HydroWASTE ID for a WWTP was included whenever 

possible. In the event of discrepancies between the data provided by authors/governments 

and HydroWASTE database, precedence was given to the former, considering their greater 

likelihood of being more reflective of actual conditions at the time being. To maintain the 

representativeness of our dataset, WWTP records that remain unidentified after the 

extensive research above were excluded. Similarly, WWTPs that cannot be confidently 

associated with a specific community of less than 5 million people were omitted despite 

known geolocations (i.e., when only country or metropolitan area data is available).  

This study aimed to use the raw prevalence rate of diabetes among 20-year-old inhabitants 

in the WWTP region (including both Type-1 and Type-2, diagnosed, and undiagnosed cases) 

to represent at a specific time, similar to the comparable diabetes prevalence published by 

IDF. However, routine health surveys, including diabetes prevalence data, are not 

commonly available year-round in most of the countries globally. Thus, a series of 

guidelines were developed to ensure the available information is reasonably utilized in this 

study while not being over-adjusted. Some principles include: 
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(1) When studies report prevalences of diagnosed diabetes (for instance, those 

derived from insurance records or surveys inquiring about diabetes diagnoses), the 

figures were adjusted to include an estimate of the proportion of undiagnosed 

patients, thereby obtaining a comprehensive prevalence rate that encompasses both 

diagnosed and undiagnosed individuals. Suppose the study does not provide 

information on undiagnosed cases. In that case, this dataset is supplemented with 

data from relevant studies or with those acquired by applying the country-level ratio 

of undiagnosed diabetes patients as suggested by the International Diabetes 

Federation (IDF). On rare occasions, public announcements from health authorities 

may also be utilized if they are deemed as the most appropriate source of 

information. Additional adjustments are typically unnecessary for research that 

presents blood-sample test outcomes and includes a random selection of 

community members.  

(2) In cases where only the prevalence of Type-2 diabetes is reported, this study 

typically does not adjust for the presence of Type-1 diabetes due to its relatively 

lower prevalence among adults globally compared to Type-2, unless otherwise 

mentioned. 

(3) When prevalence data are only available for the entire population, this study 

adjusts these figures to reflect the prevalence among individuals over 20 years old, 

using age structure data from reliable sources. However, when only prevalence 
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figures starting from 15 years old are available, they are used as reported without 

modification.  

(4) Given the choice between raw and age-standardized prevalence data within 

a region, this study opts for the raw figures whenever possible. This preference is 

because age-standardized rates are optional for machine learning models that 

operate on datasets with multiple attributes.  

(5) If the preferred source for diabetes prevalence data differs by more than 

three years from the corresponding study on metformin occurrences, and there is 

credible information available to estimate diabetes prevalence trends within the 

relevant region, the prevalence will be recalibrated.  

(6) Data specific to smaller regions, such as counties, provinces, or cities, that 

meet quality criteria are favoured over broader estimates like national or regional 

data. If no quality data for smaller units are available, country-level diabetes 

prevalence figures from the IDF will be used by default, as used in the semi-

synthetic dataset, as a substitute. 

5.2.2 Semi-synthetic Dataset: Antidiabetic Drug in OECD WWTPs 

To construct a semi-synthetic dataset, this study integrated several data sources: 1) annual 

consumption data for antidiabetic drugs in OECD countries (OECD, 2021), 2) 

HydroWASTE as mentioned earlier, 3) country-level diabetes prevalence from the 

International Diabetes Federation (IDF; Magliano & Boyko, 2021), and 4) annual GDP per 

capita figures for OECD countries. The drug consumption data is in alignment with the 
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Anatomical Therapeutic Chemical (ATC) classification/Defined Daily Dose (DDD) 

system by the WHO, where ‘A10’ denotes the ATC code for antidiabetic drugs and DDD 

represents the standardized daily dosage (WHO, 2024).  

The occurrence of antidiabetic drug in the influent and effluent of each OECD WWTP can 

be estimated through the following formula: 

𝐴10𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 = 𝐶𝑜𝑒𝑓𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛 ⋅
𝐴10𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ⋅𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑤𝑤𝑡𝑝

1000⋅ 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑤𝑤𝑡𝑝
                        (5.1) 

𝐴10𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 = (1 − 𝐸𝑓𝑓𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) ⋅ 𝐴10𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡                        (5.2) 

Where 𝐴10𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡 and 𝐴10𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 represent the presences of antidiabetic drugs in unit 

WWTP influent and effluent flow (𝐷𝐷𝐷 ⋅ 𝑑𝑎𝑦 𝑚3⁄ ) respectively, 𝐴10𝑐𝑜𝑢𝑛𝑡𝑟𝑦 represents 

country-level consumption of antidiabetic drugs in DDD per thousand population, 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑤𝑤𝑡𝑝  denotes the population served by the WWTP, and  𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑤𝑤𝑡𝑝 

refers to the daily flow rate of the wastewater discharged by the WWTP. 𝐶𝑜𝑒𝑓𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛,  

the estimated excretion coefficient, was set at 0.575, considering the market share and 

reported excretion rates of various diabetes drugs in OECD countries(Moura et al., 2021; 

Soppi et al., 2018). 𝐸𝑓𝑓𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, indicative of the treatment efficiency for antidiabetic 

drugs at each WWTP based on its highest treatment level, was assigned values of 0.1, 0.3, 

and 0.8 for primary, secondary, and advanced treatment levels, respectively (Balakrishnan 

et al., 2022; Briones et al., 2018; Scheurer et al., 2012). 

IDF published prevalence in the population over 20 years old, inclusive of both diagnosed 

and undiagnosed cases of type 1 and type 2 diabetes, was utilized as the data source of 

diabetes prevalence. The time frame for the OECD drug consumption data, GDP per capita, 
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and IDF diabetes prevalence spans from 2010 to 2021/2022. A conditional logic was 

applied for aligning IDF diabetes prevalence such that if the year was less than 2016, the 

prevalence data from 2011 was used; otherwise, the 2021 data was applied. 

The semi-synthetic dataset was constructed by merging the aforementioned data sources 

based on country and year, comprising approximately 430,000 records. The dataset is 

termed ‘semi-synthetic’ due to its composite nature, integrating assumptions about certain 

relationships, yet still largely based on published datasets and is considered to reflect 

realistic scenarios.  

5.2.3 Dataset for Fine-tuning: Metformin in Global WWTPs 

Alongside the synthetic data, a smaller dataset comprising reported metformin 

concentrations in various WWTPs was compiled. Based on 31 selected studies that report 

metformin occurrences in WWTP influents and effluents, this dataset provided a realistic 

and specific set of observations for model fine-tuning and validation (Yao et al., 2018; 

Shao et al., 2023; Zheng et al., 2023; Y. He, Zhang, et al., 2022; Scheurer et al., 2012; 

Asghar et al., 2018; S. Wang et al., 2022; Inarmal & Moodley, 2023; Ogunbanwo et al., 

2022; S. Choi et al., 2022; Y. Choi et al., 2021; Cardini et al., 2021; Golovko et al., 2021; 

González-Gaya et al., 2021; Sadutto et al., 2021; Shao et al., 2021; X.-B. Song et al., 2020; 

Ju et al., 2019; Xiao et al., 2019; Yan et al., 2019; Alygizakis et al., 2019; Burns et al., 

2018; Oertel et al., 2018; K. H. Nguyen, 2018; De Jesus Gaffney et al., 2017; Shraim et al., 

2017; Archer et al., 2017; Carmona et al., 2017; Kot-Wasik et al., 2016; Estrada-Arriaga 

et al., 2016; van Nuijs et al., 2010). It encompasses key WWTP parameters, such as 

geographical coordinates, population served, and wastewater discharge rates. Most of those 
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parameters are from the corresponding studies, supplemented by publicly available 

information, and, when necessary, data from HydroWASTE database. Besides metformin 

concentrations in WWTPs, considerable effort was invested to enrich this dataset with 

accurate representations of the diabetes epidemiological and economic status proximate to 

the WWTPs. Specifically, this enhancement involved incorporating diabetes prevalence 

and GDP per capita data, gathered at the most granular level available, extending in some 

cases down to the district level (Al-Rubeaan et al., 2014; Boehme et al., 2015; Brunetti et 

al., 2022; Bruun-Rasmussen et al., 2020; Cerovečki & Švajda, 2021; De Mestral et al., 

2020; Fang et al., 2022; Laranjo et al., 2016; Menéndez Torre et al., 2021; Motlhale & 

Ncayiyana, 2019; D. Nguyen et al., 2020; Sahadew et al., 2022; Tamayo et al., 2016; 

Topor‐Madry et al., 2019; Uloko et al., 2018). Data sources for GDP per capita in the 

chapter is given in Appendix C.1. Diabetes prevalence figures were standardized as 

mentioned above to represent the prevalence among individuals over the age of 20 years.  

5.2.4 EffluentNet: A Customized Neural Network for Estimating Contaminants in 

WWTP  

In the quest to estimate contaminant levels in both influent and effluent of wastewater 

treatment facilities, traditional data-driven methods typically follow one of three 

approaches: 1) predicting influent concentrations and then applying a treatment coefficient 

reflective of the highest level of treatment at the facility to derive effluent concentrations; 

2) creating separate models for influent and effluent predictions and linking them 

sequentially; or 3) utilizing standard algorithmic models and treating influent/effluent types 

as a simple binary variable. These conventional methods, while straightforward, tend to 
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oversimplify the treatment process or inadequately ignored the intricate, nonlinear 

dynamics between various predictive features, potentially compromising the accuracy and 

reliability of the outcomes. 

To address these challenges, EffluentNet, a dual-pathway neural network architecture 

crafted for the estimation of contaminants in both influent and effluent in a single model 

process, was proposed in this chapter. EffluentNet manages dependencies within the 

dataset variables to provide more robust predictions. As illustrated in Figure 5.1, 

EffluentNet processes common variables, such as diabetes prevalence rates, GDP per 

capita, alongside WWTP operational parameters, such as treatment level variables, via 

parallel pathways. While treatment-specific features pass through a dedicated treatment 

embedding layer, other features are processed through shared layers. An effluent mask 

categorizes the data, directing influent records through an influent-dedicated output layer 

and concatenating influent embeddings with treatment embeddings for effluent data, 

subsequently passing through an effluent output layer. This dual-pathway approach 

acknowledges the logical connection between influent and effluent, captures complex 

dynamics between WWTP operational parameters, epidemic-economic variables, and 

influent/effluent concentration of the contaminant, and also mitigates error propagation, 

enhancing the reliability of the model for decision-making support.  

5.2.5 Hyperparameter Optimization, Model Fine-tuning, and Uncertainty Handling 

Modelling training in this study follows the following flow: a series of models with varying 

neural network architectures were developed using a semi-synthetic dataset, designated as 

the “base models.” These base models underwent further fine-tuning with real-world 
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metformin concentration data from global WWTPs while searching for their optimal 

hyperparameters through a series of hyperparameter optimization experiments. 

The first task was to develop predictive models for antidiabetic drug occurrences in 

wastewater across OECD countries, with architectures amenable to subsequent fine-tuning. 

To identify suitable structures for the base models, a comprehensive series of machine 

learning experiments focusing on hyperparameter optimization was undertaken. Prior to 

experimentation, comprehensive preprocessing was applied to the datasets. Given the 

variation in feature magnitudes between the semi-synthetic and fine-tuning datasets, 

standardization was necessary. To mitigate the risk of data leakage, a StandardScaler was 

fitted using the training set of the synthetic dataset. This scaler was subsequently employed 

for standardizing the fine-tuning data, ensuring no data leakage and the consistency of the 

method. Furthermore, a log transformation (np.log1p) was employed to normalize right-

skewed distributions, particularly notable in the target variable indicating antidiabetic drug 

levels in WWTPs. The semi-synthetic and fine-tuning datasets were partitioned using a 

consistent ratio: 60% of the data formed the training set, while the remaining 40% 

constituted the test set. 

Given the dataset sizes—approximately 400,000 for the semi-synthetic data and 400 for 

the fine-tuning dataset—the chosen architecture needed to strike a balance between being 

overly complex and overly simplistic. Opting for a conservative approach, a classic wide-

narrow configuration was selected. The structural guidelines established were as follows: 
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(1) The number of hidden layers was constrained to a minimum of two and a 

maximum of five. Consequently, including the input and output layers, the neural 

networks in this study comprised between four and seven total layers. 

(2) The architecture adhered to a Hanoi-tower pattern, ensuring that no layer was 

wider than its predecessor. For example, if the second layer contained 16 nodes, 

the subsequent layer could not exceed this number. 

(3) A cap was placed on the maximum number of nodes, set at 208 for this study, 

with the first layer required to have either 64 or 32 nodes. 

These criteria narrowed the field to 83 structural candidates. The chosen architecture 

featured a sequence of layers activated by ReLU functions, trained using the Adam 

optimizer with mean squared error as the loss function. The R2 score was the primary metric 

for evaluating performance. An early-stopping mechanism was implemented to prevent 

overfitting during fine-tuning, halting training when no further improvements were seen 

on the validation set. Under this setting, preliminary experiments were conducted with 

various batch sizes (32, 64, 256, 4096) and learning rates (0.0001, 0.0003, 0.001, 0.003) 

across a range of advanced GPUs (2080TI, 3080 MOBILE, RTX 4090, L40, H100) and 

based on the model performance in this experiment, a batch size of 32 and a learning rate 

of 0.001 were chosen for training base models. 

For each of the 83 selected candidate structures, training was conducted across various 

hyperparameter combinations to comprehensively cover a broad spectrum of reasonable 

hyperparameters. The combinations include one or two treatment embedding layers with 
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3, 4, or 5 nodes; learning rates of 0.001 and 0.005; and the option of a dropout layer before 

the final output, with dropout rates of 0.5 or 0, and led to 1,992 base model runs. 

For comparative analysis, a classic Multilayer Perceptron model was trained for each 

parameter combination without the treatment embedding. The inclusion of treatment 

embedding—a key feature of EffluentNet—was shown to enhance model performance, 

while accurately capturing the relationship between influent and effluent concentrations. 

Fine-tuning in machine learning entails adapting a pre-trained model to a specific and often 

smaller dataset, leveraging its pre-existing information to enhance performance on a new 

task. This method can conserve computational resources and improve model robustness, 

particularly when the new task has limited data availability as the scenario of this chapter 

(Cao et al., 2022; Z. Chen et al., 2021).To help the fine-tuning process, a fine-tuning 

strategy, a variant of the previously reported GradualUnfreeze, was developed. The idea 

is that during fine-tuning, the approach first freezes the initial layers of the network, 

training only the latter layers to adapt to the new data. The improvement is that instead of 

setting a fixed amount to unfreeze the next layer, it uses a more flexible mechanism to 

unfreeze the next layer when there is no performance increase for a certain number of 

epochs, similar to early stopping (Bengio, 2012).  This strategy was chosen based on the 

hypothesis that the base layers captured generalizable features relevant across both datasets. 

In contrast, the latter layers needed to adapt to the specificities of the fine-tuning dataset. 
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A pseudo-code for the algorithm is as follows: 

Class GradualUnfreezeCallback: 

    Initialize with monitor metric and patience parameter. 

    FreezeBeforeTraining(pl_module): 

        # Initially, freeze all layers except the last fully connected layer. 

        For each layer in pl_module except the last fully connected layer: 

            Freeze the layer. 

    FinetuneFunction(pl_module, current_epoch, optimizer): 

        # Unfreeze layers based on the performance metric and patience parameter. 

        If the monitored metric has not improved for 'patience' epochs: 

            If no layers have been unfrozen yet: 

                Unfreeze the last fully connected layer. 

            Else: 

                Unfreeze the next layer up in the network. 

            Reset the wait counter. 

    OnValidationEpochEnd(trainer, pl_module): 

        # Evaluate the model's performance on the validation set. 

        Get the current value of the monitored metric. 

        If the metric has improved or is the first evaluation: 

            Update the best score to the current metric value. 

            Reset the wait counter. 

        Else: 

            Increment the wait counter. 

After fine-tuning, stringent criteria were applied to select models for the ensemble, aiming 

to exclude those generating extreme or unrealistic predictions, thereby maintaining the 

ensemble's integrity for real-world applicability. The selection criteria included: 

(1) Capping the maximum predicted influent concentration at 10,000 µg/l. 

(2) Setting the minimum predicted influent concentration strictly above 0. 

(3) Limiting the maximum predicted effluent concentration to 1,000 µg/l or less. 

(4) Excluding models where the 75th percentile of effluent predictions equaled the 

maximum. 
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(5) Requiring the minimum predicted effluent concentration to be above 0. 

These measures ensured the exclusion of models with extreme or non-physical predictions. 

Following this rigorous selection process, 20 models were chosen for each embedding 

depth (1, 2, 3), resulting in 60 candidates for the ensemble. 

For the next step, confidence intervals for model predictions are estimated using a non-

parametric bootstrapping technique. This involves repeatedly sampling with replacement 

from the set of forecasts, each contributing a mean value to a distribution of means. From 

this distribution, the confidence interval was calculated by identifying the bounds within 

which a specified percentage (usually 95%) of these means lie.  This bootstrapping 

approach, robust and assumption-free, accounts for the inherent variability in the data and 

provides a reliable measure of the uncertainty associated with our model's predictions.  

All dataset handling, modelling and analysis in this section were conducted using Python 

3.9+. Our machine learning framework of choice was PyTorch Lightning version 2.1 paired 

with CUDA version 12.1. Model training, evaluation, and management of machine 

learning experiments were streamlined using MLflow version 2.8.   
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Figure 5.1 The neural network structure of EffluentNet. 
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5.3 Results and Discussion 

5.3.1 Global Metformin Risk Quotients  

To estimate the risk of metformin in a specific administrative unit with estimated 

metformin concentration in WWTPs, the Risk Quotient (RQ) for metformin at each WWTP 

was initially calculated: 

𝑅𝑄 =
𝐶𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

𝑃𝑁𝐸𝐶×𝐷𝐹
                                                                                                                (5.1)  

Where 𝐶𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡 denotes the concentration of effluents from individual WWTPs, 𝐷𝐹 is 

the dilution factor for a WWTP, and 𝑃𝑁𝐸𝐶 is the Predicted No-Effect Concentration 

(PNEC) for metformin, set at 160 µg/L based on the NORMAN database(Dulio et al., 

2018). The definition of 𝐷𝐹 here is the same as in the HydroWASTE study and 

represents the ratio between the natural discharge of the receiving waterbody and the 

WWTP effluent discharge, which is given as: 

𝐷𝐹 =  
𝑄+𝑊

𝑊
                                                                                                                     (5.2) 

Where 𝑄 is the receiving water’s daily flowrate (m3/day) and W is the flowrate of the 

discharge (m3/day)(Ehalt Macedo et al., 2021).  

Subsequently, the aggregate RQ in each region using the following formula: 

𝑅𝑄𝑟𝑒𝑔𝑖𝑜𝑛 =  ∑(𝑅𝑄)                                                                                                       (5.3) 

Here, 𝑅𝑄𝑟𝑒𝑔𝑖𝑜𝑛 denotes the aggregate RQ in a specific administrative unit.
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Figure 5.2 Global estimation of aggregate metformin Risk Quotients (RQ) and concentrations. Each dot signifies a WWTP discharge point, with the 

color reflecting the estimated metformin concentration in the vicinity of the discharge area. The RQ for each administrative unit is calculated as the 

sum of individual RQs within that unit. Subplots (b) to (f) detail specific regions: the Southwestern U.S., the Arabian Peninsula, India, East Asia, and 

Europe. 
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Figure 5.3 Global estimation of weighted average metformin Risk Quotients (RQ). 
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The spatial mapping of RQ values, derived from the estimated metformin concentrations, 

pinpointed regions potentially more vulnerable to metformin discharge into the 

environment while underscoring the heterogeneous nature of its risk distribution at a global 

scale, as depicted in Figure 5.2. The primary map, Figure 5.2(a), offers a global overview 

of metformin estimated risks. Confidence intervals, adjacent to Figure 5.2(a), visualized 

the uncertainty along both longitudinal and latitudinal axes, mirroring the variability 

inherent in our estimations. It can be seen that the north sphere shows apparent higher 

variability compared with the south sphere due to a higher data density field (Ehalt Macedo 

et al., 2021). The metformin RQ, while varying widely in magnitude, is predominantly low 

across most regions. However, specific regions exhibit heightened risk levels, portrayed 

with darker hues, signalling potential higher environmental stress, which can be attributed 

to metformin consumption and wastewater discharges. This pattern aligns with findings 

that suggest metformin’s ubiquitous presence with over 50% of samples in numerous 

global and regional studies exceeding the Limits of Quantitation, while the reported 

concentrations spanning a wide range of magnitudes from low ng/L level to high µg/L level 

(Y. He, Zhang, et al., 2022; ICPDR, 2020; Ng et al., 2023; Shao et al., 2021; Wilkinson et 

al., 2022). Figure 5.2(b-f) demonstrated some regions with elevated metformin risks, 

particularly in the Southwestern United States, the Arabian Peninsula, Central Europe, the 

Indian subcontinent, and East Asia. The diverse socioeconomic and ecological 

characteristics of those regions underscore the intricate nature of metformin risks. 

The region of the Southwestern United States, marked by its vast agricultural expanses and 

significant urban areas, is now depicted with an RQ indicative of potential concern as in 

Figure 5.2(b). Given the area’s existing water stress, the heightened RQ values call for 
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improved wastewater management strategies to address the compounding effects of 

agricultural runoff, urban discharge, and limited water availability (Miller et al., 2021; 

Vörösmarty et al., 2000). Arabia Peninsula is another critical area with generally elevated 

RQ, as seen in Figure 5.2(c). In light of the notably rapid urbanization process and high 

prevalence of diabetes, compounded by the arid climate and acute water scarcity in the 

Arabian Peninsula, effluent management stands out as a paramount concern (Alotaibi et 

al., 2017; Ogurtsova et al., 2017). In Figure 5.2(d), the Indian subcontinent showcases a 

complex array of aggregate RQ levels for metformin, indicative of varying degrees of 

ecological risk across this densely populated and rapidly developing region. Similarly, the 

varied RQ profile in East Asia, as in Figure 5.2(e), also exhibits disparities akin to those 

observed in the Indian subcontinent, which presents a significant concern considering the 

region’s densely populated urban centers and extensive agricultural lands (Y. Choi et al., 

2021; Tanabe & Ramu, 2012; Yan et al., 2019). Notably, areas adjacent to the Yellow 

Sea—including China’s Jing-Jin-Ji Metropolitan Region, Shandong and Liaoning 

provinces, and South Korea’s Incheon—stand out as particularly impacted zones and show 

clear signs of considerable metformin stress. The proximity of these high-risk zones in Asia 

to significant river systems, such as the Ganges, Yellow River and Han River, might also 

contribute to the dissemination of metformin in the area and require further investigation. 

In Europe, Germany and its neighbouring countries present an elevated risk profile, with 

certain zones showing increased aggregate RQ, as depicted in Figure 5.2(f), which suggests 

a potential for metformin to impact not only freshwater systems but also to carry over into 

the North Sea and Baltic Sea. Meanwhile, some other European regions like the Iberian 

Peninsula and areas surrounding the Black Sea also exhibit slightly higher RQs. These 
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observations underscore the need for more collaborations to tackle the emerging pollutants 

span beyond national borders (Dulio et al., 2018). 

In general, the variance in RQs across the globe mirrors the differing degrees of 

industrialization, the efficacy of wastewater treatment processes, and the prevalence of 

diabetes (Ehalt Macedo et al., 2021; Ogurtsova et al., 2017). The heightened RQ levels in 

the key areas reflect the substantial use of metformin, stemming from a considerable 

prevalence of diabetes, compounded by the challenges of managing the effluent outputs 

from urban centers that often lack advanced wastewater treatment. A complementary 

global metformin risk map that utilizes weighted average RQ for each region is provided 

for comparison in Figure 5.3, offering parallel insights into the spatial distribution of 

metformin risk profile. 

5.3.2 Metformin in Canadian Ecozones  

Canada’s diverse landscapes, ecological environments, coupled with a spectrum of human 

interactions ranging from the indigenous communities utilizing traditional food sources to 

the dynamic urban lifestyles in densely populated areas, presents an ideal background for 

a comprehensive, zoomed-in risk assessment of metformin and similar PPCPs. Its 

sensitivities among subarctic and coastal regions also warrant close attention (Drever et al., 

2021; Sanborn et al., 2011). The sparse data available in Canada presents a unique 

opportunity to test and validate our transfer learning-based approach (Littlejohn et al., 

2023; Schwartz et al., 2021; Ghoshdastidar et al., 2015). Given the reasons outlined above, 

a detailed exploration of metformin’s risk within the Canadian context was undertaken.   
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Our estimated figures for average metformin concentrations in influents and effluents 

across 1,710 WWTPs in Canada closely align with the metformin concentrations reported 

in various studies. These existing reports indicate metformin concentration levels in 

Canadian effluents varying at low µg/L levels, specifically 0.472 to 10.6 µg/L in Nova 

Scotia, 70 µg/L in Hamilton, Ontario, and 3.6 ± 3 µg/L in North Bay, 

Ontario(Ghoshdastidar et al., 2015; Littlejohn et al., 2023; Parrott et al., 2021). It is 

particularly noteworthy that our methodology deliberately excluded data from Canada in 

both the background dataset for base model training and the real-world dataset for fine-

tuning, specifically to ensure the integrity of our validation process free from data leakage 

in any form. This strategic approach underscores the robustness and practicality of our 

transfer learning technique, as our results falling within the reported range of Canadian 

metformin effluent concentration, despite its exclusion from our initial datasets. Moreover, 

the training metrics suggested that our model ensemble explained over 60% of the variance 

in the global metformin WWTP occurrences dataset (average R2:0.63), indicates that our 

season-neutral estimates can offer valuable insights and a reliable basis for broader global 

assessments and affirms the potential utility for more expansive risk assessment.  

The Canadian Ecozone system offers a classification that reflects natural ecological 

divisions, essential for a precise assessment of metformin’s environmental impact, and it 

intrinsically aligns with the First Nation communities’ traditional land use and dietary 

practices(Marshall et al., 1996). Thus, the RQ in each Canadian ecozone was calculated 

using equation (5.3) with the results presented in Figure 5.4(a). Overall, Canada’s risk from 

metformin is found to be low. This finding is consistent with the reported 21% detection 

rate of metformin in surface water samples across 11 ecozones, from First Nations Food, 
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Nutrition & Environment Study (FNFNES), a decade-long survey aims to promote healthy 

environments and healthy food for healthy First Nations(H. M. Chan et al., 2021; L. Chan 

et al., 2019). Nonetheless, there is a noticeable variation in risk across different ecozones. 

Regions such as the Prairies, Mixedwood Plains, and Boreal Plains are identified as higher 

risk areas, correlating with regions of heightened human activity. In contrast, metformin 

risk in ecozones such as Boreal Cordillera, Taiga Plains, and Taiga Shield are notably 

lower, primarily due to minimal recorded point source discharge. These results also 

correlate with the varied detection rates in these ecozones: during the survey, Boreal 

Cordillera and Taiga Plains reported no metformin detection while samples from Taiga 

Shield got a low metformin detect rate at 1/15, respectively, whereas Mixedwood Plains 

and Boreal Plains exhibited detection rates of 24/24 and 6/54, with the highest 

concentrations in the samples being 2020 ng/L and 93 ng/L. The alignment of our findings 

with reported detection rates is consistent across most ecozones except for Prairies, where 

our estimation indicates a higher risk, contrasting with a lower detection rate of 1/18 from 

the survey. This discrepancy could be attributed to limited sample locations in the survey, 

despite very high human activity in the region. Among all the ecozones, the Mixedwood 

Plains, as Canada’s most densely populated and industrially active ecozone, faces 

substantial PPCP contamination risks. The close interactions in between urban centers and 

prime agricultural lands, coupled with the ecozone’s rich waterways, create a complex 

challenge in managing PPCP pollution in the Mixedwood Plains, which necessitate 

advanced wastewater treatment solutions to protect the water quality and public health 

(Chambers et al., 2012). The Prairies, characterized by extensive agricultural activities, 

also represent a significant concern for metformin dispersion due to the vast farmlands that 
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cover more than 90% of the land base. The extensive use of water for irrigation and the 

resultant runoff make this ecozone particularly vulnerable to PPCP contamination, 

potentially impacting both the local biodiversity and human health through the 

consumption of contaminated water and food sources (Marshall et al., 1996; Bartzen et al., 

2010). While less dominated by agriculture, with only about 20% of the land devoted to 

farming, the Boreal Plains are not immune to risks. The ecozone’s significant forestry 

industry and emerging oil and gas development introduce various pathways for PPCP 

infiltration into aquatic systems. The extensive network of rivers and lakes in this area 

could also facilitate the spread of contaminants, affecting both aquatic life and the 

communities reliant on these water sources (Ireson et al., 2015). 

Fishing is recognized as the predominant food harvesting activity at the household level 

among First Nations communities across all ecozones, as reported by FNFNES (H. M. 

Chan et al., 2021; L. Chan et al., 2019). In light of this, this study seeks to identify ecozones 

where the consumption of natural products intersects with a non-negligible risk of 

metformin exposure, which aims to inform future environmental monitoring, public health 

policies, and community awareness programs, ensuring a culturally sensitive approach to 

environmental management (Schwartz et al., 2021). Applying this criterion, it is noticeable 

that the Boreal Shield, a region renowned for its iconic Canadian wildlife, spans over 1.8 

million square kilometers and boasts substantial freshwater resources, presents a moderate 

risk profile for metformin while ranked sixth in average daily consumption of traditional 

food in the First Nation communities. The Montane Cordillera and Pacific Maritime 

ecozones, known for their ecological diversity and significant agricultural and forestry 

industries, ranking second and third respectively for average daily traditional food 
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consumption, exhibit low metformin risk profiles. In these ecozones, fish species such as 

trout (Oncorhynchus mykiss), walleye (Sander vitreus), and eulachon (Thaleichthys 

pacificus) are commonly consumed as traditional food. Considering the progressingly 

frequent reported ecotoxicity of metformin to aquatic lives (MacLaren et al., 2018; 

Niemuth et al., 2015; Y. He, Zhang, et al., 2022; Lin et al., 2021; Ussery et al., 2019; Jacob 

et al., 2019; Caldwell et al., 2019; Godoy et al., 2018; Markiewicz et al., 2017; Melvin et 

al., 2017), as well as the fact that metformin may serve as an indicator for the presence of 

various other PPCPs or trace contaminants (Y. He, Zhang, et al., 2022; Wilkinson et al., 

2022), the ecozones mentioned above may require further investigation and research efforts 

to estimate the presence and bioaccumulation potential of metformin and other emerging 

pollutants, not only for safeguarding the health and well-being of their communities amidst 

ongoing environmental challenges but also for preserving the ecological integrity and 

cultural heritage of these regions. 

5.3.3 Metformin in Arctic and sub-Arctic Regions 

The Arctic and sub-Arctic regions, characterized by their pristine environments, unique 

biodiversity, and the integral role of indigenous communities, face significant challenges 

in PPCP pollution. The distinct climatic conditions and the relative isolation of these areas 

pose unique challenges for wastewater management, potentially exacerbating the risks 

associated with pharmaceutical contaminants. Thus, Figure 5.4(b) demonstrates the known 

locations of 85 WWTPs situated within or near the Arctic Circle (66° 34' N) where 

estimated concentrations within the effluent vicinity exceed the Limit of Quantification, 

set at 10 ng/L. WWTPs within 100 kilometers of each other are clustered to illustrate the 

potential zones of influence. The map illustrates that Sweden, Finland, and Russia have 
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WWTPs located directly within the Arctic Circle with estimate metformin discharge at 

concentrations above the detection limit. The United States, Canada, and Norway also 

operate several WWTPs with higher metformin effluent concentrations near the Arctic 

Circle above the 60th parallel north. Those facilities collectively discharge approximately 

553,000 m3 of wastewater per day into natural water bodies, with an estimated average 

metformin effluent concentration of 2.76 µg/L. Such a concentration is non-negligible for 

the Arctic regions. Taking the likelihood of metformin and other compounds associated 

with human activity affecting local food webs and indigenous communities (Chaves-

Barquero et al., 2016), and the fact that effective wastewater treatment systems are rarely 

established in communities in the Arctic region (Gunnarsdóttir et al., 2013), it is reasonable 

to assume that the discharge of emerging pollutants, especially PPCPs like metformin, 

could have far-reaching effects beyond the immediate vicinity of the WWTPs such as 

potential long-range transport in natural water, as well as bioaccumulation and 

biomagnification in Arctic food webs. Thus, more advanced and nuanced management 

programs are needed to protect the sensitivity of Arctic ecosystems. 
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Figure 5.4 Metformin Risk in Canadian Ecozones and sub-Arctic/Arctic Regions.  (a) Aggregate Metformin Risk Quotient 

(RQ) Estimations in Canadian Ecozones and Locations of First Nation Communities; (b) Estimated Metformin Occurrences 

Exceeding the Limit of Quantification (LoQ) of 10 ng/L in the Vicinity of WWTPs in Arctic and Subarctic Regions.   
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5.4 Summary 

This chapter introduces a scalable and efficient model for environmental risk assessment that 

merges environmental engineering with cutting-edge data science techniques, complemented by a 

series of innovative techniques to aid the method including a new neural network architecture 

EffluentNet, and a data fine-tuning strategy. The ecological risk of metformin is estimated with 

the framework, as a case study. By employing transfer learning, augmented with a limited set of 

domain-specific data, the extensive potential of this approach in applied environmental research 

and its utility in enhancing the robustness and relevance of our risk assessments have been 

demonstrated, particularly in data-sparse regions. This is further validated by our model’s 

alignment with observed metformin levels in Canada. This study offers a comprehensive 

evaluation of the ecological risk posed by metformin across diverse global regions, employing 

spatial mapping to visualize metformin discharges based on existing data. The investigation into 

the widespread distribution of metformin across aquatic systems worldwide underscores the urgent 

requirement for strategic policy responses, further highlighted by the significant spatial variability 

in risk levels, intricately tied to a combination of socioeconomic, industrial, and ecological factors. 

Our case studies for the Canadian ecozones, the Arctic and sub-Arctic regions, draw attention to 

the concern of pharmaceutical pollutants encroaching upon these pristine environments.  
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS  
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6.1 Conclusions 

The overarching goal of this dissertation research is to enhance environmental data analysis by 

introducing innovative data analysis frameworks and methodologies, which aims to deepen our 

comprehension of environmental dynamics, addressing both the complexity of environmental 

systems and the intricacy of environmental data. The dissertation presents the developed 

methodologies and frameworks that encapsulate the integration of causal inference, physics-

informed neural networks, and transfer learning techniques to tackle the multifaceted challenges 

in environmental data analysis. This goal serves as a foundation for the case studies detailed herein, 

each targeting specific aspects of environmental dynamics and offering unique insights into 

pressing environmental concerns. The key findings and contributions of the dissertation are as 

follows.  

Chapter 3 demonstrates a new causal reasoning method based on observational data with the aid 

of causal inference models and machine learning techniques. To investigate a causal problem with 

observational data, prior knowledge as an indispensable part of the system was also considered. In 

the case study on the interrelation of COVID-19 and air pollution, the socio-economic and 

temporal factors information was brought into the equation by explicitly identifying interrelations 

between variables in the directed acyclic graph and slicing the data through multiple data 

processing techniques such as city clustering and phase-wise analysis. Through the observational 

data from 166 Chinese cities, most of the reported potential causal relationships between 

environmental factors and COVID-19 severity from a short-term perspective with the proposed 

causal inference framework were examined. Based on the results, most of the estimations of the 

links (89 out of 90) under nine different cluster-phase settings were refuted. The results showed 

that the impact caused by environmental factors on the severity of COVID-19 was limited across 
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all three clusters. Commonly discussed factors such as rational policymaking, sufficient public 

awareness, and effective isolation strategy are still crucial for containing the ongoing COVID-19 

pandemic.  

Chapter 4 explores the potential of integrating prior knowledge extracted from experiments and 

physics-based models into neural networks using metformin as a case study for demonstration. 

Underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate 

coefficient α, and transport system scale have been causally and quantitatively evaluated with 

adequate confounders considered. The analysis of the experiment data, augmented data and the 

causal estimates overall showed that metformin’s considerable long-range transport potential in 

porous media largely relies on its high relative velocity to water and extended half-life in 

groundwater. Such insight warrants a more comprehensive environmental assessment and 

increased public awareness about the risks of pharmaceuticals in the water cycle. 

Chapter 5 developed a novel modelling approach for assessing the risks posed by emerging 

pollutants with limited data availability, including a neural network architecture EffluentNet for 

estimating the occurrences of the water within influent and effluent or similar distributions, and a 

data fine-tuning strategy to maximally utilize available data. The ecological risk of metformin is 

estimated with the framework, as a case study.  Metformin’s global risk is estimated for the first 

time, providing important value in environmental policy making. The investigation into the 

widespread distribution of metformin across aquatic systems worldwide underscores the urgent 

requirement for strategic policy responses, further highlighted by the significant spatial variability 

in risk levels intricately tied to a combination of socioeconomic, industrial, and ecological factors. 

The case studies for the Canadian ecozones, the Arctic and sub-Arctic regions, draw attention to 

the concern of pharmaceutical pollutants encroaching upon these pristine environments. This 
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chapter also showcased a scalable and cost-effective modelling approach for environmental risk 

assessment and emerging pollutant management by merging environmental engineering and 

science with advanced data science techniques. 

6.2 Research Contributions 

This dissertation research contributes significantly to environmental engineering and science.  The 

key research contributions are as follows: 

Development of a Machine Learning-Aided Causal Inference Framework: This dissertation 

research successfully established an advanced framework incorporating interpretable machine 

learning techniques and causal inference methodologies. By recognizing the critical role of prior 

knowledge in unraveling causal problems, the study intricately weaved socio-economic and 

temporal considerations into the analysis. This was achieved by identifying variable interrelations 

within DAG and employing sophisticated data processing methods, including city clustering and 

phase-wise analysis. This approach could significantly enhance model interpretability and ensures 

causal insights can be extracted from observational datasets across environmental engineering and 

science studies, setting a new standard for clarity and accessibility in environmental models. The 

dissertation research also provided an in-depth causal analysis of various environmental factors, 

including air pollution and meteorology, on the severity of COVID-19. Utilizing a novel data 

analysis framework, this work illuminated the minimal causal impact these factors have on disease 

severity, thus redirecting focus towards more influential containment strategies. This aspect of the 

research distinguishes between spurious associations and genuine causal relationships, offering 

valuable insights for pandemic policy and response. 
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Development of a Casual Prior-Embedded Physics-Informed Neural Network Framework: 

This dissertation research showcased the innovative integration of prior knowledge, derived from 

experimental and physics-based models with causal inference analysis, into neural networks. For 

the first time, this approach enabled the causal and quantitative evaluation of previously 

underexplored porous media transport system parameters taking into account critical confounders 

like particle density and saturation status. Metformin’s environmental behaviour was investigated 

as a case study. This methodology provides a balanced approach to environmental modelling and 

management, navigating between the complexities of extensive datasets and the invaluable 

application of expert knowledge, ensuring the preservation of most physics-causal connections, 

merging data-driven insights with fundamental physical and causal principles without sacrificing 

analytical performance. This novel paradigm promotes a substantial improvement in both the 

interpretability and efficacy of AI and ML applications within the realms of environmental science 

and engineering. The dissertation research also delved into the under-researched area of the 

environmental fate and transport of metformin as a pharmaceutical pollutant. Through a 

combination of experimental data integration, physics-based modelling, causal inference, and 

neural networks, the study revealed critical insights into metformin’s long-range transport 

potential. This highlights the necessity for a broader environmental risk assessment concerning 

pharmaceuticals in the water cycle. 

Development of a Transfer Learning-based Environmental Risk Estimation Framework:  

This dissertation research signified a methodological innovation by successfully integrating 

transfer learning techniques with environmental data analysis, specifically tailored to address the 

challenges of estimating the risks of emerging pollutants in diverse global regions. Additionally, 

the creation of EffluentNet and a novel fine-tuning method mechanism represent notable 
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exploration and advancements in adapting data science techniques. Those innovations ensure that 

the predictive models are not only grounded in empirical data but also reflect the underlying 

physical processes and causal relationships, making the outcomes more meaningful and actionable 

for environmental risk management. This methodological innovation seamlessly merges principles 

of environmental engineering and science with cutting-edge data science techniques, offering a 

robust and scalable solution for tackling data scarcity when investigating emerging problems. This 

dissertation research also offers a comprehensive global assessment of the environmental risk of 

metformin. Employing spatial mapping and transfer learning techniques, the dissertation identified 

significant variability in risk levels across different regions, focusing on Canadian ecozones and 

the Arctic and sub-Arctic regions.  

6.3 Recommendations for Future Work 

The following recommendations for future work are outlined to extend the boundaries of current 

knowledge in environmental data analysis. 

1) Enhancing Data Accessibility and Modelling Interpretability: Future data-driven studies in 

the field should promote data accessibility and focus on model interpretability to increase the data 

for emerging environmental issues. These are always sufficient to cultivate high-quality research 

output and accelerate understanding of the problem.  

2) Embedding Complex Causal Priors and Novel Machine Learning Techniques: Future 

work can explore embedding more complex causal priors into state-of-the-art machine learning 

algorithms, such as Graphical Neural Networks (GNNs). This avenue holds the potential to 

significantly enhance model interpretability and robustness, facilitating the application of AI in 

scientific inquiries with a causal perspective. 
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3) Expanding Methodological Applications and Insights in Environmental Research The 

methodologies developed and tested in this dissertation research demonstrated versatility and 

applicability across a broad spectrum of environmental contexts and challenges. Future research 

can further advance and extend these methods to address a wider range of environmental issues, 

such as non-point source pollution and seasonal variability. This would entail expanding the scope 

of analysis beyond WWTP effluent as showcased in the dissertation to include other environmental 

compartments, such as groundwater systems, and incorporating factors like runoff, non-point 

sources, and seasonal changes to achieve a more comprehensive and accurate risk assessment of 

pharmaceuticals like metformin. Additionally, the dissertation underscores the importance of 

advancements in wastewater treatment technologies. By developing and disseminating water 

treatment technologies that are both effective and economically viable, it is possible to manage the 

presence of emerging pollutants more effectively. Customizing these technologies to meet the 

specific needs and economic conditions of diverse communities worldwide will be crucial in 

ensuring universal access to clean water. This approach not only tackles the direct challenges posed 

by pharmaceuticals and other pollutants but also contributes to a broader strategy for sustainable 

water management and environmental protection. 

4) Robust Regulatory Frameworks and Community Engagement Incorporating 

Indigenous Knowledge: Establishing scientific effluent standards and medication return 

programs, alongside educating communities about responsible pharmaceutical disposal, can 

significantly contribute to reducing emerging environmental contamination. Emphasizing diabetes 

prevention and management can also mitigate the prevalence of metformin in water systems. 

Incorporating the ecological knowledge and practices of indigenous communities and fostering 

international cooperation for addressing pharmaceutical pollution is imperative. efforts are crucial 
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for achieving sustainable environmental stewardship and ensuring the health and well-being of 

current and future generations.  

5) Cultivate Optimal Data Curation Practices: The application of data-driven 

methodologies such as machine learning within the realm of environmental engineering reveals 

structural challenges that impede advancing research in this critical field. Firstly, the practice of 

employing machine learning techniques remains largely diverse, no cohesive set of protocols or 

best practices exists, making it challenging for researchers to apply and compare methodologies 

across different studies consistently. Additionally, the practice of data and model sharing in 

environmental engineering and science is far from ideal. Sharing the original data is still not 

considered a common practice in the field despite being encouraged by many peer-reviewed 

journals. To overcome these obstacles and foster a culture of innovation and collaboration in 

environmental engineering and science, it is imperative to cultivate optimal data curation practices 

and promote the sharing of data and models within the community whenever possible. 

6.4 Selected Publications 

During the Ph.D. program, I published 15 peer-reviewed journal articles and one conference 

proceeding paper. I was the first author on four of these papers and served as an equal contributor 

on two. Among my two unpublished works, one is currently under revision, and the other is 

prepared and ready for submission. In the remaining publications where I am listed as an author, I 

made substantial contributions to data analysis, encompassing method design, coding, 

visualization, and results interpretation. 
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Kang, Q., Song, X., Xin, X., Chen, B.*, Chen, Y., Ye, X., & Zhang, B. (2021). Machine Learning-
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Kang, Q., Zhang, B., Cao, Y., Song, X., Ye, X., Li, X., Wu, H., Chen, Y. & Chen, B.* (2024). 
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Appendix A EnvCausal Framework Benchmark 

SCM were further applied on two public datasets: Infant Health and Development Program 

(IHDP; Louizos et al., 2017) Dataset and Lanlode Dataset (Dehejia & Wahba, 1999). The IHDP 

dataset (n=747) is from a randomized experiment that began in 1985 targeting infant health, 

which means that the ground truth of the causal relationship in the dataset is known. The dataset 

consists of measurements on the child (birth weight, head circumference, weeks born preterm, 

birth order, first born, neonatal health, index sex, twin status) as well as mother status and 

behaviours during the pregnancy (consumption status of cigarettes, alcohol and drugs, age, 

marital status, educational attainment, employment, prenatal care, family residing site). The 

treatment variable in the dataset is if the infant received both intensive high-quality child care 

and home visits from a trained provider. LaLonde Dataset (n=445) is another well-known dataset 

that aims to investigate the effect of an employment training program, National Supported Work 

Demonstration (NSW), on wage increases (i.e., real income in 1978). Since the applicants were 

admitted randomly to the program, the ground truth within the dataset is also known as in the 

IHDP Dataset. The dataset also has the features such as age, years of schooling, indicator 

variables for race, martial status, high school diploma, real earnings in 1974 and 1975, and 

whether earnings in 1974 or 1975 being zero. The SCM identified causal relationships in both 

dataset, which passed three refutation methods (i.e., add random common cause, replace 

treatment with placebo, remove random subset of data). The estimates causal effects are 3.41 and 

1614.16, respectively. A Jupyter notebook with the causal estimation and refutation results can 

be found in the GitHub repository of the study (https://github.com/kangqiao-

ctrl/EnvCausal/tree/main/benchmark/hdpi_lalonde).  

https://github.com/kangqiao-ctrl/EnvCausal/tree/main/benchmark/hdpi_lalonde
https://github.com/kangqiao-ctrl/EnvCausal/tree/main/benchmark/hdpi_lalonde
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Structural Agnostic Model (SAM) was applied on another well-known dataset, Sachs Dataset 

(Sachs et al., 2005), which consists of simultaneous measurements of multiple phosphorylated 

proteins and phospholipid components in thousands of individual primary human immune system 

cells. The dataset was generated with molecular interventions which perturbed the cells. SAM was 

applied to the dataset to test capability in recovering the causal network. Two important metrics, 

Precision and Recall were calculated based on Equation S6 and S7: 

Precision =  
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                                                                                                                      (A.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =      
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                      (A.2) 

Where TP is the number of true positives, FP is the number of false positives, FN is the number of 

false negatives. 

For the Sachs dataset, SAM acquired an Area Under Precision-Recall Curve (AUPR) of 0.311. 

Since the corresponding baseline is 0.168 for this case, AUPR of such value is considered decent. 

A Jupyter notebook of the SAM benchmark on Sachs Dataset can be found in the GitHub 

repository of the study (https://github.com/kangqiao-ctrl/EnvCausal/tree/main/benchmark/sachs). 

 

https://github.com/kangqiao-ctrl/EnvCausal/tree/main/benchmark/sachs


201 

 

 

 

Figure A.1 Contribution of each feature to different principal components. Pop: population; 

S1/S2/S3: primary, secondary, tertiary sector of GDP; Elder: elderly population percentage (over 

60-year-old); Bed/Doc/Nrs: hospital beds/ registered medical doctors/ registered nurses per 

thousand people; TVLR: travellers from Wuhan; TVLR‰: Wuhan travellers per thousand; Act: 

the average degree of activeness before the 2020 Spring Festival. Explained variance by PC1-3: 

31.1%, 18.2%, 14.0%. 
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Figure A.2 Explained variance and number of clusters. The “elbow” is indicated by the blue 

dashed line. The number of clusters chosen should therefore be 3.
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Figure A.3 COVID-19 cases (a) and five selected features: (b) PM2.5, (c) CO, (d) NO2, (e) O3, 

(f) atmospheric pressure. Colored bands indicate 95% confidence intervals.  
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(a)                                                                                             

(b)  

  

Figure A.4 Feature importance and ranking in different clusters with no “elapsed days” feature 

(a) Normalized Total Gain, (b)Permutation Importance 
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Figure A.5 Clustered cities in the principal component space.
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Table A.1 Weighted adjacency matrix generated by SAM 

Cluster 1 - Overall 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.818 0.004 0.596 0.240 0.035 0.010 0.005 0.250 0.539 0.230 0.312 0.415 

PM10 0.260 0.000 0.411 0.008 0.547 0.452 0.335 0.358 0.255 0.026 0.150 0.031 0.011 

SO2 0.082 0.247 0.000 0.295 0.368 0.440 0.488 0.296 0.282 0.118 0.001 0.366 0.010 

CO 0.634 0.012 0.547 0.000 0.730 0.316 0.677 0.007 0.466 0.020 0.323 0.300 0.543 

NO2 0.009 0.052 0.600 0.259 0.000 0.053 0.001 0.009 0.684 0.053 0.236 0.165 0.037 

O3 0.135 0.010 0.008 0.377 0.025 0.000 0.393 0.244 0.233 0.519 0.445 0.307 0.143 

HMD 0.161 0.340 0.535 0.345 0.003 0.318 0.000 0.184 0.409 0.392 0.432 0.287 0.260 

PRES 0.151 0.312 0.513 0.326 0.686 0.786 0.174 0.000 0.319 0.544 0.616 0.177 0.002 

WSPD 0.004 0.002 0.313 0.178 0.383 0.001 0.267 0.010 0.000 0.001 0.012 0.517 0.001 

TEMP 0.465 0.475 0.551 0.258 0.278 0.338 0.251 0.425 0.487 0.000 0.597 0.265 0.455 

ACTV 0.014 0.016 0.046 0.015 0.455 0.024 0.002 0.003 0.600 0.083 0.000 0.330 0.515 

CASES 0.031 0.144 0.003 0.143 0.268 0.002 0.234 0.167 0.326 0.073 0.014 0.000 0.127 

DAYS 0.196 0.502 0.125 0.371 0.855 0.132 0.014 0.004 0.252 0.348 0.975 0.888 0.000 

Cluster 1 – Spreading phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.696 0.043 0.553 0.036 0.057 0.004 0.006 0.158 0.110 0.045 0.045 0.043 
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PM10 0.051 0.000 0.179 0.045 0.037 0.500 0.021 0.028 0.095 0.074 0.005 0.002 0.012 

SO2 0.001 0.200 0.000 0.147 0.008 0.010 0.709 0.237 0.129 0.169 0.305 0.471 0.002 

CO 0.117 0.001 0.415 0.000 0.372 0.002 0.007 0.001 0.092 0.015 0.004 0.006 0.010 

NO2 0.075 0.008 0.004 0.221 0.000 0.005 0.005 0.023 0.572 0.002 0.445 0.004 0.003 

O3 0.014 0.039 0.001 0.029 0.076 0.000 0.698 0.158 0.101 0.008 0.269 0.001 0.002 

HMD 0.001 0.017 0.048 0.003 0.035 0.226 0.000 0.004 0.232 0.030 0.005 0.009 0.011 

PRES 0.224 0.171 0.557 0.010 0.578 0.584 0.021 0.000 0.769 0.404 0.021 0.005 0.001 

WSPD 0.002 0.013 0.218 0.008 0.235 0.005 0.074 0.002 0.000 0.012 0.003 0.031 0.004 

TEMP 0.159 0.002 0.617 0.010 0.002 0.473 0.382 0.471 0.137 0.000 0.608 0.507 0.031 

ACTV 0.017 0.146 0.027 0.043 0.235 0.409 0.628 0.010 0.130 0.003 0.000 0.014 0.031 

CASES 0.004 0.006 0.019 0.053 0.093 0.003 0.691 0.065 0.381 0.095 0.062 0.000 0.174 

DAYS 0.002 0.042 0.019 0.280 0.852 0.476 0.631 0.011 0.079 0.588 0.747 0.700 0.000 

Cluster 1 – Post-peak phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.443 0.006 0.436 0.028 0.005 0.023 0.010 0.009 0.128 0.291 0.113 0.009 

PM10 0.476 0.000 0.901 0.005 0.025 0.152 0.300 0.838 0.090 0.028 0.003 0.012 0.615 

SO2 0.138 0.016 0.000 0.056 0.034 0.347 0.267 0.070 0.632 0.016 0.171 0.009 0.052 

CO 0.507 0.008 0.076 0.000 0.509 0.097 0.735 0.042 0.486 0.062 0.002 0.267 0.006 

NO2 0.005 0.004 0.503 0.217 0.000 0.059 0.004 0.508 0.881 0.031 0.477 0.394 0.051 

O3 0.003 0.006 0.167 0.469 0.300 0.000 0.517 0.112 0.001 0.214 0.029 0.571 0.045 
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HMD 0.037 0.127 0.250 0.080 0.009 0.138 0.000 0.238 0.629 0.022 0.001 0.318 0.012 

PRES 0.245 0.020 0.525 0.148 0.280 0.426 0.222 0.000 0.444 0.379 0.896 0.730 0.002 

WSPD 0.024 0.001 0.180 0.032 0.014 0.001 0.223 0.015 0.000 0.005 0.005 0.059 0.001 

TEMP 0.585 0.125 0.561 0.621 0.075 0.446 0.741 0.270 0.314 0.000 0.579 0.033 0.071 

ACTV 0.001 0.005 0.056 0.011 0.047 0.032 0.011 0.004 0.054 0.017 0.000 0.139 0.147 

CASES 0.027 0.006 0.013 0.010 0.004 0.031 0.006 0.005 0.009 0.010 0.129 0.000 0.037 

DAYS 0.008 0.176 0.171 0.507 0.517 0.148 0.438 0.029 0.895 0.379 0.681 0.735 0.000 

Cluster 2 - Overall 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.718 0.199 0.785 0.263 0.026 0.477 0.402 0.471 0.192 0.097 0.155 0.178 

PM10 0.445 0.000 0.152 0.402 0.320 0.334 0.459 0.207 0.008 0.005 0.003 0.008 0.332 

SO2 0.280 0.618 0.000 0.477 0.564 0.007 0.428 0.431 0.323 0.479 0.258 0.034 0.263 

CO 0.310 0.277 0.426 0.000 0.355 0.393 0.224 0.303 0.084 0.357 0.001 0.273 0.455 

NO2 0.087 0.263 0.319 0.420 0.000 0.510 0.049 0.152 0.249 0.443 0.379 0.205 0.404 

O3 0.003 0.151 0.310 0.152 0.163 0.000 0.298 0.183 0.066 0.310 0.279 0.149 0.162 

HMD 0.239 0.265 0.307 0.319 0.288 0.486 0.000 0.448 0.288 0.352 0.003 0.005 0.480 

PRES 0.319 0.132 0.188 0.299 0.398 0.268 0.352 0.000 0.287 0.208 0.501 0.415 0.539 

WSPD 0.001 0.167 0.270 0.538 0.162 0.200 0.294 0.446 0.000 0.017 0.256 0.466 0.316 

TEMP 0.276 0.167 0.207 0.415 0.075 0.397 0.409 0.306 0.167 0.000 0.370 0.340 0.436 

ACTV 0.293 0.397 0.179 0.026 0.399 0.416 0.016 0.092 0.241 0.309 0.000 0.546 0.405 
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CASES 0.308 0.450 0.001 0.352 0.029 0.144 0.201 0.390 0.152 0.087 0.127 0.000 0.596 

DAYS 0.361 0.472 0.071 0.457 0.481 0.369 0.006 0.007 0.071 0.271 0.736 0.166 0.000 

Cluster 2 – Spreading phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.812 0.008 0.514 0.354 0.017 0.573 0.279 0.254 0.523 0.005 0.068 0.221 

PM10 0.082 0.000 0.250 0.409 0.409 0.010 0.051 0.018 0.032 0.224 0.022 0.088 0.004 

SO2 0.149 0.324 0.000 0.233 0.077 0.126 0.116 0.261 0.340 0.290 0.297 0.014 0.006 

CO 0.133 0.007 0.457 0.000 0.359 0.381 0.048 0.040 0.314 0.203 0.030 0.018 0.403 

NO2 0.011 0.088 0.132 0.481 0.000 0.109 0.005 0.082 0.235 0.064 0.278 0.351 0.307 

O3 0.002 0.001 0.113 0.196 0.008 0.000 0.183 0.126 0.403 0.247 0.012 0.007 0.079 

HMD 0.078 0.137 0.374 0.005 0.001 0.692 0.000 0.450 0.322 0.118 0.089 0.003 0.464 

PRES 0.003 0.313 0.361 0.244 0.193 0.117 0.127 0.000 0.085 0.165 0.009 0.238 0.024 

WSPD 0.068 0.002 0.124 0.112 0.005 0.186 0.002 0.184 0.000 0.003 0.058 0.294 0.012 

TEMP 0.003 0.011 0.442 0.307 0.177 0.243 0.308 0.168 0.486 0.000 0.259 0.116 0.260 

ACTV 0.009 0.121 0.254 0.002 0.176 0.131 0.002 0.148 0.256 0.336 0.000 0.331 0.386 

CASES 0.207 0.161 0.004 0.008 0.029 0.190 0.421 0.405 0.423 0.087 0.004 0.000 0.545 

DAYS 0.003 0.004 0.001 0.089 0.056 0.450 0.086 0.020 0.010 0.274 0.483 0.247 0.000 

Cluster 2 – Post-peak phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.514 0.194 0.411 0.408 0.003 0.340 0.208 0.062 0.260 0.195 0.001 0.002 
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PM10 0.360 0.000 0.112 0.022 0.236 0.166 0.187 0.071 0.063 0.025 0.034 0.100 0.231 

SO2 0.069 0.456 0.000 0.158 0.239 0.002 0.272 0.173 0.173 0.431 0.225 0.351 0.227 

CO 0.279 0.306 0.333 0.000 0.437 0.147 0.003 0.315 0.332 0.248 0.190 0.214 0.254 

NO2 0.057 0.313 0.384 0.250 0.000 0.007 0.062 0.250 0.257 0.107 0.212 0.235 0.195 

O3 0.135 0.079 0.046 0.228 0.065 0.000 0.189 0.279 0.171 0.245 0.010 0.047 0.247 

HMD 0.232 0.271 0.254 0.303 0.212 0.426 0.000 0.411 0.259 0.306 0.078 0.147 0.003 

PRES 0.276 0.105 0.273 0.244 0.185 0.196 0.278 0.000 0.317 0.169 0.467 0.422 0.092 

WSPD 0.002 0.108 0.271 0.111 0.001 0.002 0.020 0.303 0.000 0.037 0.284 0.585 0.035 

TEMP 0.128 0.235 0.229 0.363 0.005 0.555 0.299 0.447 0.126 0.000 0.088 0.159 0.380 

ACTV 0.264 0.198 0.368 0.120 0.190 0.148 0.105 0.096 0.167 0.238 0.000 0.120 0.241 

CASES 0.201 0.362 0.004 0.004 0.168 0.022 0.054 0.127 0.024 0.070 0.094 0.000 0.467 

DAYS 0.002 0.070 0.008 0.107 0.376 0.220 0.115 0.023 0.023 0.250 0.435 0.214 0.000 

Cluster 3 - Overall 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.539 0.017 0.426 0.193 0.199 0.192 0.204 0.228 0.211 0.002 0.226 0.136 

PM10 0.423 0.000 0.195 0.029 0.138 0.194 0.268 0.060 0.204 0.222 0.150 0.065 0.005 

SO2 0.229 0.259 0.000 0.231 0.249 0.092 0.312 0.243 0.190 0.208 0.209 0.006 0.024 

CO 0.145 0.253 0.129 0.000 0.221 0.210 0.249 0.308 0.089 0.181 0.207 0.119 0.207 

NO2 0.091 0.212 0.215 0.212 0.000 0.209 0.100 0.126 0.207 0.272 0.144 0.069 0.179 

O3 0.206 0.238 0.295 0.140 0.171 0.000 0.206 0.189 0.227 0.227 0.277 0.121 0.131 
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HMD 0.202 0.205 0.238 0.135 0.243 0.361 0.000 0.190 0.238 0.210 0.207 0.148 0.210 

PRES 0.005 0.290 0.106 0.202 0.150 0.227 0.185 0.000 0.181 0.252 0.111 0.165 0.092 

WSPD 0.129 0.186 0.161 0.269 0.132 0.314 0.163 0.138 0.000 0.204 0.221 0.123 0.218 

TEMP 0.206 0.228 0.223 0.166 0.160 0.221 0.176 0.211 0.182 0.000 0.166 0.071 0.200 

ACTV 0.063 0.140 0.143 0.178 0.176 0.239 0.140 0.119 0.186 0.165 0.000 0.106 0.244 

CASES 0.011 0.000 0.008 0.217 0.364 0.038 0.173 0.329 0.053 0.217 0.634 0.000 0.278 

DAYS 0.197 0.204 0.317 0.179 0.330 0.226 0.012 0.111 0.131 0.193 0.157 0.099 0.000 

Cluster 3 – Spreading phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.389 0.050 0.686 0.341 0.479 0.662 0.278 0.021 0.223 0.173 0.090 0.143 

PM10 0.833 0.000 0.475 0.755 0.517 0.080 0.405 0.002 0.082 0.221 0.251 0.034 0.154 

SO2 0.277 0.380 0.000 0.334 0.734 0.057 0.452 0.264 0.130 0.291 0.209 0.001 0.010 

CO 0.037 0.243 0.207 0.000 0.208 0.058 0.592 0.041 0.270 0.162 0.001 0.161 0.225 

NO2 0.058 0.214 0.436 0.391 0.000 0.288 0.253 0.002 0.034 0.008 0.048 0.016 0.022 

O3 0.132 0.004 0.145 0.334 0.143 0.000 0.282 0.158 0.284 0.167 0.284 0.126 0.189 

HMD 0.154 0.000 0.321 0.098 0.196 0.280 0.000 0.202 0.254 0.256 0.234 0.155 0.151 

PRES 0.069 0.005 0.264 0.329 0.278 0.372 0.464 0.000 0.353 0.127 0.304 0.002 0.108 

WSPD 0.328 0.297 0.423 0.069 0.188 0.276 0.437 0.211 0.000 0.004 0.083 0.083 0.206 

TEMP 0.076 0.350 0.607 0.077 0.234 0.354 0.418 0.512 0.172 0.000 0.321 0.125 0.196 

ACTV 0.172 0.258 0.140 0.026 0.234 0.413 0.280 0.004 0.145 0.131 0.000 0.052 0.150 
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CASES 0.000 0.001 0.005 0.272 0.504 0.092 0.144 0.484 0.130 0.582 0.877 0.000 0.957 

DAYS 0.016 0.063 0.217 0.331 0.027 0.412 0.422 0.100 0.142 0.310 0.711 0.073 0.000 

Cluster 3 – Post-peak phase 
 

PM2.5 PM10 SO2 CO NO2 O3 HMD PRES WSPD TEMP ACTV CASES DAYS 

PM2.5 0.000 0.389 0.050 0.686 0.341 0.479 0.662 0.278 0.021 0.223 0.173 0.090 0.143 

PM10 0.833 0.000 0.475 0.755 0.517 0.080 0.405 0.002 0.082 0.221 0.251 0.034 0.154 

SO2 0.277 0.380 0.000 0.334 0.734 0.057 0.452 0.264 0.130 0.291 0.209 0.001 0.010 

CO 0.037 0.243 0.207 0.000 0.208 0.058 0.592 0.041 0.270 0.162 0.001 0.161 0.225 

NO2 0.058 0.214 0.436 0.391 0.000 0.288 0.253 0.002 0.034 0.008 0.048 0.016 0.022 

O3 0.132 0.004 0.145 0.334 0.143 0.000 0.282 0.158 0.284 0.167 0.284 0.126 0.189 

HMD 0.154 0.000 0.321 0.098 0.196 0.280 0.000 0.202 0.254 0.256 0.234 0.155 0.151 

PRES 0.069 0.005 0.264 0.329 0.278 0.372 0.464 0.000 0.353 0.127 0.304 0.002 0.108 

WSPD 0.328 0.297 0.423 0.069 0.188 0.276 0.437 0.211 0.000 0.004 0.083 0.083 0.206 

TEMP 0.076 0.350 0.607 0.077 0.234 0.354 0.418 0.512 0.172 0.000 0.321 0.125 0.196 

ACTV 0.172 0.258 0.140 0.026 0.234 0.413 0.280 0.004 0.145 0.131 0.000 0.052 0.150 

CASES 0.000 0.001 0.005 0.272 0.504 0.092 0.144 0.484 0.130 0.582 0.877 0.000 0.957 

DAYS 0.016 0.063 0.217 0.331 0.027 0.412 0.422 0.100 0.142 0.310 0.711 0.073 0.000 
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Appendix B Supplementary results for metformin transport in porous media 

Table B. 1 Causal estimation results and backdoor variable sets 

Treatment Outcome 

ATE for 

DML 

ATE for 

LNR Backdoor Variables 

Particle Density Hydraulic Conductivity -0.8935 -0.6731 Porosity 

Particle Density Dispersivity 0.0303 0.0371 Degree of Saturation, Porosity, Distance 

Particle Density Adsorption Coefficient 0.5310 0.3335 Porosity 

Particle Density Type-1 Sorption Fraction 0.0211 -0.0090 Degree of Saturation, Porosity 

Hydraulic 

Conductivity  Relative Velocity  0.0197  0.0339  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Adsorption Coefficient,  

Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Dispersivity  Relative Velocity  -0.0050  0.0005  

Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity,  

Adsorption Coefficient, Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Adsorption 

Coefficient  Relative Velocity  -1.1596  -1.0644  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity,  

Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Type-1 Sorption 

Fraction  Relative Velocity  -0.0400  -0.0423  

Dispersivity, Particle Density, Horizontal, Distance, Hydraulic Conductivity, Adsorption Coefficient,  

Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Porosity Hydraulic Conductivity 0.5834 0.2094 Particle Density 

Porosity Dispersivity -0.0259 0.0127 Particle Density, Degree of Saturation, Distance 

Porosity Adsorption Coefficient -0.2073 -0.0712 Particle Density 

Porosity Type-1 Sorption Fraction 0.0392 0.0242 Particle Density, Degree of Saturation 

Degree of Saturation Dispersivity 0.0409 0.0483 Particle Density, Distance, Hydraulic Conductivity, Adsorption Coefficient, Porosity 

Degree of Saturation Type-1 Sorption Fraction 0.0177 0.0082 Particle Density, Porosity, Hydraulic Conductivity, Adsorption Coefficient 

Degree of Saturation  Relative Velocity  0.2665  0.1625  

Particle Density, Horizontal, Distance, Hydraulic Conductivity, Adsorption Coefficient, Flux, Porosity,  

Type-2 Sorption Reaction Rate, Concentration 

Distance  Dispersivity  0.0014  0.0023  

Type-1 Sorption Fraction, Particle Density, Hydraulic Conductivity, Adsorption Coefficient,  

Degree of Saturation, Porosity 

Distance  Relative Velocity  -0.0324  -0.0351  

Type-1 Sorption Fraction, Particle Density, Horizontal, Hydraulic Conductivity, Adsorption Coefficient, 

 Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Concentration Type-2 Sorption Reaction Rate 0.0001  

Concentration  Relative Velocity  -0.0005  0.0001  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity,  

Adsorption Coefficient, Degree of Saturation, Flux, Porosity 

Type-2 Sorption 

Reaction Rate  Relative Velocity  -0.1357  -0.1447  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity,  

Adsorption Coefficient, Degree of Saturation, Flux, Porosity, Concentration 

Ponded Water Depth  Relative Velocity  -0.0012  14.3241  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity,  

Adsorption Coefficient, Degree of Saturation, Flux, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Flux  Relative Velocity  -0.0005  -0.0254  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Horizontal, Distance, Hydraulic Conductivity, 

Adsorption Coefficient, Degree of Saturation, Ponded Water Depth, Porosity, Type-2 Sorption Reaction Rate, Concentration 

Horizontal  Relative Velocity  0.0310  -0.0193  

Dispersivity, Type-1 Sorption Fraction, Particle Density, Distance, Hydraulic Conductivity, Adsorption Coefficient, 

Degree of Saturation, Flux, Ponded Water Depth, Porosity, Type-2 Sorption Reaction Rate, Concentration 

ATE: Average Treatment Effect; DML: CausalForestDML Estimator; LNR: Linear Estimator 
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Table B. 2 Causal refutation results 

Treatment Outcome 

Refuter: RCC for 

DML 

Refuter: UOC for 

DML 

Refuter: PLB for 

DML 

Refuter: RCC for 

LNR 

Refuter: UOC for 

LNR 

Refuter: PLB for 

LNR 

Particle Density 

Hydraulic 

Conductivity -0.8913 -0.8192 0.0004 -0.6731 -0.6240 -0.0002 

Particle Density Dispersivity 0.0310 0.0190 -0.0009 0.0371 0.0387 0.0010 

Particle Density 

Adsorption 

Coefficient 0.5285 0.4471 0.0011 0.3335 0.2966 -0.0008 

Particle Density 

Type-1 Sorption 

Fraction 0.0239 0.0150 0.0001 -0.0090 -0.0034 -0.0012 

Hydraulic Conductivity Relative Velocity 0.0218 0.0301 -0.0002 0.0339 0.0290 0.0006 

Dispersivity Relative Velocity -0.0057 -0.0069 0.0000 0.0005 -0.0006 -0.0006 

Adsorption Coefficient Relative Velocity -1.1555 -0.9423 -0.0011 -1.0644 -0.9095 0.0007 

Type-1 Sorption Fraction Relative Velocity -0.0396 -0.0395 0.0000 -0.0423 -0.0421 -0.0005 

Porosity 

Hydraulic 

Conductivity 0.5823 0.5429 -0.0006 0.2094 0.1756 -0.0006 

Porosity Dispersivity -0.0302 -0.0362 0.0024 0.0127 0.0120 -0.0024 

Porosity 

Adsorption 

Coefficient -0.2065 -0.1937 -0.0006 -0.0712 -0.0598 0.0001 

Porosity 

Type-1 Sorption 

Fraction 0.0257 0.0312 -0.0006 0.0242 0.0227 -0.0020 

Degree of Saturation Dispersivity 0.0468 0.0444 -0.0014 0.0483 0.0492 -0.0015 

Degree of Saturation 

Type-1 Sorption 

Fraction 0.0147 0.0234 0.0016 0.0082 0.0042 -0.0002 

Degree of Saturation Relative Velocity 0.2650 0.1149 -0.0001 0.1625 0.1518 0.0004 

Distance Dispersivity 0.0007 -0.0039 0.0000 0.0023 0.0017 0.0002 

Distance Relative Velocity -0.0325 -0.0328 0.0000 -0.0351 -0.0356 0.0002 

Concentration Type-2 Sorption Reaction Rate   0.0001 -0.0024 -0.0024 

Concentration Relative Velocity -0.0004 -0.0021 -0.0002 0.0001 -0.0006 -0.0002 

Type-2 Sorption Reaction 

Rate Relative Velocity -0.1354 -0.1297 0.0002 -0.1447 -0.1360 -0.0011 

Ponded Water Depth Relative Velocity -0.0010 -0.0300 0.0002 14.3153 -0.0222 -0.0003 

Flux Relative Velocity -0.0010 -0.0124 0.0001 -0.0254 -0.0367 0.0001 

Horizontal Relative Velocity 0.0295 0.0285 0.0000 -0.0193 -0.0175 -0.0003 

RCC: Add Random Common Cause Refuter; UOC: Add Unobserved Confounder; PLB: Placebo Refuter 
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Figure B.1 Five activation functions discussed in the study. LeakyReLU allows a small, positive gradient when the unit is not active (i.e., when the 

input is negative). ReLU provides an output of 0 for all negative inputs and linear output for positive inputs. Sigmoid squashes its input into a range 

between 0 and 1 and is smooth and differentiable at every point. Softplus smoothly approximates the ReLU function. It is differentiable everywhere 

and its output is also in the range (0, ∞). Tanh squashes its input into a range between –1 and 1. Like the sigmoid function, it's also smooth and 

differentiable at every point. 



 

 

Appendix C Common activation functions in neural networks 

Activation functions play a crucial role in neural network-based models, since 

appropriate activation functions are the key to desirable performance and the 

computational efficiency of an NN-based model. In a neural network, inputs are passed 

through layers of nodes (or “neurons”), each applying an activation function. The purpose 

of the activation function is to introduce non-linearity into the output of a neuron.  

Here are the five activation functions discussed in this dissertation work: 

(a) ReLU (Rectified Linear Unit):  

f(x)  = {
𝑥        𝑖𝑓 𝑥 >  0
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C.1) 

Pros: Computationally efficient and easy to implement. Non-zero gradients do not 

saturate, which is beneficial during the gradient descent process. 

Cons: The ‘dying ReLU’ problem. For negative inputs, the gradient is zero, so once a 

neuron gets negative, it is unlikely to recover. This 'dead neuron' would then always 

output the same value. 

(b) LeakyReLU: 

f(x)  = {
𝑥        𝑖𝑓 𝑥 >  0
𝑎𝑥     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C.2) 

Pros: Introduces a small slope to keep the updates alive, thus mitigating the ‘dying 

ReLU’ problem. Helps to keep some information flowing, even for negative input values. 

Cons: The performance is not consistently better than ReLU in practice. 
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(c) Tanh: 

f(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (C.3) 

Pros: Its output is zero-centered because its range is -1 to 1. This makes the model 

converge faster than when using the sigmoid function. 

Cons: It still has the vanishing gradient problem for very large positive and negative 

values. 

(d) Softplus: 

𝑓(𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥) (C.4) 

Pros: Softplus is smooth everywhere and its derivative (a version of the sigmoid function) 

is easy to compute, which could be beneficial in some cases. 

Cons: It may suffer from numerical instability; for large inputs, the output of Softplus 

could be infinite. 

(e) Sigmoid: 

f(𝑥) =
1

1 + 𝑒−𝑥
 (C.5) 

Pros: It is smooth and differentiable everywhere. Its output range between 0 and 1 is 

often useful in models like logistic regression, where the output can be interpreted as a 

probability. 

Cons: It suffers from the vanishing gradient problem. Furthermore, its output is not zero-

centered.  
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Appendix D Data Sources for Gross Domestic Product and Population 

The data sources for Gross Domestic Product (GDP) per capita in Chapter 5 are detailed 

in this section. To accurately represent the economic status of smaller regions during the 

specified period, GDP data were meticulously gathered and consolidated, which varied in 

availability across different countries. Thus, the data collection procedures are outlined 

here for clarity. Unless otherwise stated, currency conversion was standardized using the 

exchange rates published by the Organisation for Economic Co-operation and 

Development (OECD) to ensure consistency and comparability across countries and 

regions. 

Africa: 

Egypt. The GDP data for the Asyut Governorate were retrieved from the Ministry of 

Planning and Economic Development's official website 

(https://mped.gov.eg/Governorate?lang=en). The population figures for the same region 

were obtained from the Egypt Central Agency for Public Mobilization and Statistics’ 

Report on Births and Deaths (Central Agency for Public Mobilization and Statistics, 

2020). The exchange rate data from CEIC were used to convert the Egyptian Pound 

(EGP) to US Dollars (USD). 

Nigeria. The Lagos State government website 

(https://lagossdgandinvestment.com/glancelagos) provides the reported GDP per capita in 

USD for Lagos State. 

South Africa. The Ekurhuleni City GDP figures were published by the Gauteng 

Provincial Treasury, while the GDP of the KwaZulu-Natal Province was obtained from 

https://mped.gov.eg/Governorate?lang=en
https://lagossdgandinvestment.com/glancelagos
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Statistics South Africa (Statistics South Africa, 2023). Additionally, population data for 

South African municipalities were sourced from local government publications, 

specifically “The Local Government Handbook: South Africa" (Yes! Media, 2023). 

Uganda. Uganda’s national GDP per capita was sourced from the World Bank database, 

accessible at https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=UG. 

Asia 

China. Annual economic reports, or annual government working reports for various 

Districts/Counties (level 4 administrative units under cities), were primarily referenced as 

the major data source. They are typically available on the respective government’s 

official website by year-end. These reports often detail the gross domestic product and the 

population of Usual Residents, allowing for the calculation of GDP per capita. 

Occasionally, GDP per capita figures are directly reported within these documents. When 

such reports were unavailable, statistical yearbooks published by the local governments 

were utilized. Currency conversion from Chinese Yuan (CNY) to current US Dollar 

(USD) values was based on the annual exchange rate published by the China Foreign 

Exchange Trade System. 

Saudi Arabia. GDP data for Medinah were extracted from publications by the Saudi 

Arabian Ministry of Municipal and Rural Affairs (Saudi Arabian Ministry of Municipal 

and Rural Affairs, 2019). Population figures were sourced from the Population and 

Housing Census 2010 (https://portal.saudicensus.sa/portal/), which were then used to 

calculate the GDP per capita. The CEIC's exchange rates were applied to convert Saudi 

Riyals (SAR) to USD. 

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=UG
https://portal.saudicensus.sa/portal/
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South Korea. District-level GDP, population, and GDP per capita data were obtained 

from the Korean Statistical Information Service (KOSIS, https://kosis.kr/eng/).  

North America 

Mexico. State-level (Level 1) GDP data were obtained from Mexico's Economic 

Information System (https://en.www.inegi.org.mx/app/indicadores/?tm=0). State 

population figures were sourced from the Statistical and Geographical Yearbook 

(National Institute of Statistics and Geography, 2015). 

The United States of America. GDP per capita data for New York and Urbana-

Champaign were acquired from FRED Economic Data, provided by the Federal Reserve 

Bank of St. Louis (https://fred.stlouisfed.org/).  

Europe 

Generally, for European countries, including Belgium, Croatia, Germany, Italy, Sweden, 

and Switzerland, GDP per capita data were sourced uniformly from OECD statistics 

(https://stats.oecd.org/). Exchange rates were also obtained from the OECD, ensuring 

consistency in currency conversions. 

Czech Republic. Regional GDP per capita data for the South Moravian Region can be 

found at the Czech Statistical Office 

(https://apl.czso.cz/pll/rocenka/rocenka.indexnu_reg?mylang=EN). 

Faroe Islands. GDP per capita figures are published by Statistics Faroe Islands 

(https://hagstova.fo/en/economy/national-accounts/gdp-and-main-figures). 

https://kosis.kr/eng/
https://en.www.inegi.org.mx/app/indicadores/?tm=0
https://fred.stlouisfed.org/
https://stats.oecd.org/
https://apl.czso.cz/pll/rocenka/rocenka.indexnu_reg?mylang=EN
https://hagstova.fo/en/economy/national-accounts/gdp-and-main-figures
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Hungary. The GDP per capita for Budapest was retrieved from the Hungarian Central 

Statistical Office, accessible at the following URL: 

https://www.ksh.hu/stadat_files/gdp/en/gdp0078.html. 

Iceland. Statistics Iceland provides GDP per capita information 

(https://px.hagstofa.is/pxen/pxweb/en/Efnahagur/Efnahagur__thjodhagsreikningar__land

sframl__1_landsframleidsla/THJ01401.px). 

Slovakia. The GDP per capita for the Žilina Region was sourced from the Statistical 

Office of the Slovak Republic, available online here: 

https://datacube.statistics.sk/#!/view/en/VBD_SK_WIN/nu3002rr/v_nu3002rr_00_00_00

_en. 

Slovenia. GDP per capita data for Central Slovenia and the Lower Sava region were 

obtained from the Republic of Slovenia Statistical Office. The relevant data can be 

reviewed at: https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/0309250S.px/.  

Romania. For Bucharest and Cluj, GDP and population data are available at the National 

Institute of Statistics, Romania (https://insse.ro/cms/). 
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https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/0309250S.px/
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