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Abstract

This paper investigates the viability of predicting rock properties within wells using

real-time drilling data. Among these properties, the sonic log plays a crucial role

in understanding the physical characteristics of subsurface formations and helps geo-

scientists and drilling engineers interpret the subsurface geology and make informed

decisions about well construction, drilling parameters, and reservoir performance.

Successfully forecasting sonic logs has the potential to significantly improve the op-

timization of fracturing processes in wells with similar geological structures. To ac-

complish this objective, we introduced a well-structured eXtreme Gradient Boosting

(XGBoost), LSTM (Long Short-Term Memory), and Random Forest (RF) models

that utilize depth-series data for predicting sonic log in the field of oil and gas ex-

ploration. The data used in this research was gathered from the drilling project

“A Data Analytics Approach to Energy and Safety Improvements” which received

funding from the NL Offshore Oil and Gas Industry Recovery Assistance Fund.
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Chapter 1

Introduction

Well logging data is crucial for deducing the physical and chemical characteristics of

rock formations. This information enables geologists and engineers to gain insights

into the geological composition of the region, facilitating informed decisions about

optimal resource extraction methods, such as for oil and gas. Many well logging tools

and techniques exist, each designed to measure distinct properties of rock formations.

Common well logging measurements include:

• Sonic Logs: These logs measure the P-wave travel time versus depth, recorded

in microseconds per meter (ms/n), indicating the speed of acoustic waves through

rock formations [1].

• Resistivity Logs: These electrical logs record the formation’s resistivity at

shallow, medium, and deep depths, inferring porosity, water saturation, and

hydrocarbon presence [1, 2].
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• Density Logs: These logs measure neutron scattering to determine rock den-

sity [3].

• Porosity Logs: These logs measure the open space within the rock formation

[4].

• Gamma-Ray Logs: These logs measure the natural radiation emitted by the

rock formation [5].

The primary objective of this research is to develop a predictive model for sonic

logs using the extensive drilling parameters available in our dataset. These param-

eters include resistivity, density, porosity, and gamma-ray logging, which are used

to understand formation properties comprehensively. Various drilling parameters are

accessible for each well within our dataset. However, sonic logs are selectively ac-

quired and not universally available across all wells. More data is gathered during

exploratory drilling activities. Drilling parameters such as penetration rate, weight

on bit, bit size, rotational speed, torque, flow rate, and mechanical specific energy are

not currently correlated with wireline data such as density, porosity, and sonic logs.

By analyzing these parameters, we aim to predict sonic logs accurately, facilitating

better understanding and decision-making regarding rock formations. Understanding

the travel time of sound waves recorded in sonic logs is essential for comprehending

the composition and structure of rock formations. The development of a predictive

model using drilling parameters will enhance the ability to make informed decisions

about resource extraction, even when direct sonic log data is not available. How-
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ever, wireline logs are statistically sensitive to drilling parameters. This results in

a non-linear relationship between drilling parameters, density, and porosity. Also,

drilling parameters are expected to be highly interactive with each other. In other

words, changes in some drilling parameters, such as pump pressure, will affect other

drilling parameters, such as flow and penetration rates. Since the relationship be-

tween drilling parameters and wireline logs, specifically sonic logs, is non-linear and

interactive, we investigate its deep learning potential [6]. Based on other research,

it is evident that intelligent systems, including traditional machine learning methods

and deep learning-based approaches, have a distinct advantage in solving geophysical

problems. Several types of studies have been conducted, from simple Artificial Neu-

ral Network (ANN), support vector regression models, genetic algorithms, and fuzzy

logic, to Convolutional Neural Network (CNN), LSTM, time-reversing algorithms,

and non-linear autoregressive methods with exogenous inputs [7, 8, 9].
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1.1 Workflow

 
Signal processing processed on depth 
series signals  
(GR, TFLO, SPPA, ROP based on TVD) 
 

Utilizing well data, a structured and modified 
eXtreme Gradient Boosting (XG-Boost), Random 
Forest (RF), and Long Short-Term Memory 
(LSTM) model employed on depth series to 
predict sonic logs for both Well-1 and Well-6, 
with similar formations. 
 

The raw dataset comprises data from 13 wells in 
CSV format. Information has been extracted and 
concatenated specifically for 2 wells that have 
available sonic logs (DTCO_MH_R) 

Data cleaned:  
• Outliers removed 
• Missing values filled 
• Below scalers applied to find best scalers 

for normalizing data: 
o Min-Max, 
o Quantile transformer,  
o Log  
o Z-score scalers  

• Lowpass filter used as the best candidate 
for filtering 

The available sonic log (DTCO_MH_R) was 
extracted for Well-1 and Well-6, and the data 
have been categorized according to three distinct 
hole sizes: 445, 311, and 216. 
  
 
 

Filters applied to smooth peaks: 
• Rolling mean 
• Linear filter 
• Rolling median 
• Filter forward and backward 
• Finite Impulse Response Filter 
• Lowpass filter 
• Interpolation 
 

Process Flow Chart 

Based on Pearson correlation and other studies 
references,  
these features considered as input features: 
 TVD, SWOB, STOR, ROP5, GR, RPM, SPPA 
Hole Size and TFLO 
 

Figure 1.1: Workflow
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Features Description Features Description

TVD True Vertical Depth A40H Acoustic Impedance at 40 Hz

DEPT Depth BS Bit Size

GR Gamma Ray CHSH QPINV Caliper Shale

SPPA Stand Pipe Pressure DEVI Deviation

RPM Rotations Per Minute DRHB Density of Rock Head

STOR Storage DTCO MH R Compressional Sonic Travel Time

SWOB Surface Weight on Bit DTSH QPINV Shear Sonic Travel Time

TFLO Total Flow FRQMAX QPINV Maximum Frequency

ROP5 Rate of Penetration (5-minute average) FRQMIN QPINV Minimum Frequency

SMSE Surface Mechanical Specific Energy P16H Pressure at 16 Hz

CRPM Corrected Rotations Per Minute P28H Pressure at 28 Hz

TRPM True Rotations Per Minute P40H Pressure at 40 Hz

DHAP Downhole Axial Pressure PR Pressure Ratio

DHAT Downhole Axial Temperature ROBB Rotary Bit

MWTI Mud Weight In TICO MH R6 Inline Compressional Time

ECD Equivalent Circulating Density TISH QPINV R6 Inline Shear Time

HoleSize Size of the Hole TNPH Thermal Neutron Porosity

Geological Formation Geological Formation Information VPVS Velocity Ratio of P-wave to S-wave

WellName Name of the Well DTSH MH R Shear Sonic Travel Time (Method H)

PEB Photoelectric Effect DTCO INV Inversion of Compressional Sonic Travel Time

UCS Unconfined Compressive Strength

Table 1.1: Well-1 dataset log types and descriptions

Figure 1.1 illustrates the workflow implemented in this study. The dataset comprises

13 wells labeled as Well-1, Well-2, etc. Each dataset consists of 49 features shown in

Table 1.1. However, it is important to note that sonic log data is only available for

Well-1 and Well-6. In data preprocessing, we undertook a series of crucial operations

to refine our dataset. Our initial task involved identifying and excluding outliers or
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data points that deviate significantly from the norm. This step was imperative to up-

hold our data’s overall quality and reliability. Subsequently, we performed a thorough

quality check on our dataset to confirm its integrity and address any discrepancies. To

make our data more consistent and suitable for predictive modeling, we ventured into

data normalization and scaling. During this process, we explored various methods to

adjust the scale of the data and carefully evaluated their performance. Notably, the

Min-Max scaler emerged as the most effective in producing desirable outcomes. The

rationale behind implementing scalers is their capacity to enhance our confidence in

the data’s suitability for predictive and analytical purposes. Towards the final stages

of our data preparation, we conducted feature selection and analysis, a crucial step

for identifying the most pertinent aspects of our dataset. This process was applied

to data samples of Well-1 and Well-6. Following comprehensive analyses involving

P-value calculations, Pearson correlation coefficient (discussed in Section 5.2) assess-

ments, and a review of relevant research, it was concluded that the most effective

set of attributes for predicting the sonic log comprises ten features. Therefore, the

dataset’s dimensionality from forty-nine features was reduced to ten. These vari-

ables (described in Table 1.2) are GR, TFLO, Hole Size, Rotational Speed (RPM),

ROP5, SPPA, SWOB, TVD, Surface Torque (STOR), and compressional-wave

slowness (DTCO-MH-R). Importantly, these attributes are present and observed

in both Well-1 and Well-6.

Therefore, we will focus on using nine features, including GR, TFLO, Hole Size,
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RPM, ROP5, SPPA, SWOB, TVD, and STOR as input features and our target

is predicting sonic log, identified as a DTCO-MH-R.

For reference, a comprehensive list of the abbreviations and their corresponding

full names of selected features are presented in Table 1.2.

Table 1.2: List of important variables in Well-1 and Well-6.

Features Description of Features Units

DEPT Depth Index/Measured Depth m

SPPA Standpipe Pressure kPa

RPM Rotational Speed c/min

STOR Surface Torque kN.m

SWOB Surface Weight On Bit 1000 kgf

ROP5 Rate of Penetration Averaged Over the Last 5 ft m/h

TFLO Total Flow Rate of All Active Pumps L/min

GR Gamma Ray gAPI

TVD True Vertical Depth m

SMSE Surface Mechanical Specific Energy kPa

DTCO Delta T Sonic Compressional ms/m

Another critical facet of preprocessing is signal processing, which entails trans-

forming the data and filtering out irrelevant noise. In our study, we concentrated on
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the efficacy of different filtering techniques for smoothing peaks in the data.

Our project employed a supervised learning model, specifically XGBoost and RF,

alongside LSTM to predict the sonic log. We conducted hyperparameter tuning to

optimize accuracy.

It is crucial to note that, when leveraging XGBoost or RF, powerful predictive

modeling tools, we ensured that the data remained ordered by depth. This approach is

vital as time series algorithms should handle sequential data, preserving the temporal

order for accurate analysis and prediction. All components of data analysis and model

development were executed using Python.

The remainder of this document adheres to a structured outline. Chapter 2 explores

prior research relevant to our work, providing context for the topics discussed in this

thesis. Chapter 3 offers a more detailed overview of signal processing, while Chapter

4 delves into data processing. Chapter 5 serves as a methodology section where we

examine utilizing the XGBoost, RF, and LSTM models with depth series data in

this study. This chapter also reveals the results obtained from the models. Finally,

Chapter 6 concludes the thesis and outlines potential directions for future research.
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Chapter 2

Background and Related Work

This chapter provides a comprehensive overview of the foundational concepts and

prior research relevant to this study. We begin with the objectives of the research,

outlining the key goals and motivations driving this work. Following this, we delve

into various machine learning algorithms, focusing on those particularly pertinent

to our study, such as RF and XGBoost, which are renowned for their robustness

and accuracy in handling complex datasets. We also explore LSTM networks, which

are effective for sequential data analysis. In the context of our research, we place

special emphasis on sonic log data and discuss how previous papers have utilized

machine learning techniques to interpret these data types. Additionally, we examine

the critical process of hyperparameter tuning, which is essential for optimizing the

performance of machine learning models. Finally, we review previous studies, high-

lighting the methodologies, findings, and gaps in the existing literature that our work
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aims to address. This background sets the stage for understanding the current state

of knowledge and how our research contributes to advancing the field.

Sonic log prediction is crucial for the petroleum industry’s cost-effective and ef-

ficient operation. In well logging, electrical or radioactive signals are sent into rock

formations; they are continuous records of various physical properties at depth. Log

parameters can help evaluate a zone and determine whether a well-completion at-

tempt is warranted. In this work, our focus is on applying machine learning methods

to predict the sonic log. The relationship between energy demand prediction and well

logging highlights the importance of accurate and reliable data for informed decision-

making in the energy industry. Machine learning as a tool proposes promising results

in different fields for predicting sonic logs based on important features. Through a

review of various articles, it becomes evident that the algorithms most frequently

explored and analyzed are Neural Network (NN), LSTM, Recurrent Neural Net-

work (RNN), and XGBoost. In essence, we have provided a concise introduction

to these prominent algorithms.

2.1 Objective

The primary objective of this study is to predict the compressional sonic log using ma-

chine learning algorithms, namely LSTM, RF, and XGBoost, utilizing commonly

acquired well logs. Additionally, the study aimed to assess the effectiveness, particu-

larly by comparing the performance and errors of LSTM with RF and XGBoost.
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The study emphasized the importance of data preprocessing, relevant input parame-

ters, optimized hyperparameter selection, and Grid Search cross-validation to ensure

confidence in the predictions made by the ML algorithms [10, 11].

2.2 Machine learning algorithms

A neural network is a robust computational tool characterized by its neurons, ac-

tivation functions, biases, and corresponding weights. In comparison to regression

models, it stands out as a potent model for pattern recognition. By utilizing non-

linear functions that iterate within the network, it can effectively capture intricate

relationships between input and output variables. Moreover, it exhibits resilience in

the presence of missing or imprecise data. ANN model is a widely adopted machine

learning algorithm for both linear and non-linear regression tasks. The ANN model

comprises three distinct layers; an input layer, one or more hidden layers, and an

output layer. These layers are constructed from an array of nodes and neurons. In

its early design, the ANN operated as a feedforward neural network, enabling the

flow of information exclusively from the input layer to the output layer. The ANN

algorithm works to determine an optimal set of weights for each layer of neurons in

each interface, ultimately resulting in a refined set of optimized weights [12].

XGBoost is a popular and powerful machine learning algorithm known for its ef-

ficiency and effectiveness, particularly in structured data and tabular data tasks.

It is based on the gradient boosting framework and has gained prominence in ma-
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chine learning competitions, real-world applications, and various data science tasks.

It combines multiple decision trees, gradually improving model performance [13].

XGBoost optimizes an objective function through gradient descent, incorporating

regularization to prevent overfitting. It offers valuable feature importance insights,

handles missing data efficiently, and supports parallel processing. This algorithm is

well-suited for structured data, allowing for powerful predictive modeling, and is a

top choice in various fields due to its speed and accuracy. It is often the preferred

choice for structured data problems, especially in situations where large datasets are

involved. XGBoost uses parallel computing to build trees by utilizing all available

CPUs during the training process. Unlike traditional methods, XGBoost employs a

“max depth” parameter as the stopping criterion and applies tree pruning in a back-

ward direction, resulting in improved computational efficiency and faster processing

times compared to other Gradient Boosting machine (GBM) frameworks [14]. Ad-

ditionally, XGBoost can automatically learn the best way to handle missing values

based on the training loss, allowing it to handle different types of sparsity patterns

in the input data more effectively.

Random Forest is an ensemble learning method for classification, and regression that

operates by constructing a multitude of decision trees at training time. For classifi-

cation tasks, the output of the random forest is the class selected by most trees. For

regression tasks, the mean or average prediction of the individual trees is returned

[15, 16]. We aim to use the RF regression process, which involves several key steps.
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This model randomly samples the training data with replacement (bootstrapping) to

create multiple subsets of the data. Each subset is used to train an individual decision

tree. At each node of the decision tree, it randomly selects a subset of features from

the total set of features. This introduces diversity among the trees and helps pre-

vent overfitting. For each bootstrapped sample and random feature subset, it builds

an individual decision tree. The trees are constructed recursively by splitting nodes

based on the selected features until a stopping criterion is met (e.g., maximum depth,

minimum samples) per leaf. For classification tasks, each tree votes for a class, and

the class with the majority of votes is assigned as the final prediction. For regression

tasks, the predictions of individual trees are averaged to obtain the final prediction.

Then it assesses the importance of each feature by measuring how much each feature

contributes to the reduction in impurity or information gain across all trees. Features

that are frequently used for splitting nodes are considered more important. The fun-

damental idea behind Random Forest is that by combining a large number of diverse

and slightly overfitting decision trees, the overall model becomes more robust and

generalizes well to unseen data. The randomness introduced at both the instance and

feature levels helps in decorrelating the trees, reducing the risk of overfitting, and

improving the model’s accuracy and stability. In summary, this method is known

for its flexibility, ease of use, and ability to handle high-dimensional data with many

features. It is less prone to overfitting compared to individual decision trees, making

it a powerful and widely used algorithm in practice. Additionally, the parallelization
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capabilities of Random Forest make it computationally efficient, allowing it to handle

large datasets efficiently.

LSTM is a special RNN that specializes in sequential data [17]. Unlike Deep Neural

Network (DNN), a fully connected network system, RNN has a loop. The loop

transfers the information from the previous step to the next step so that the previous

information can be used for the next data. RNN outperforms ANN models when it

comes to processing sequential data. However, RNNs are known to have a significant

decrease in learning ability if the distance between the relevant information in the

previous step and the current step increases. LSTM was introduced to deal with this

vanishing gradient problem. It has three gate units (input, output, and forget). This

model can effectively maintain the long-range sequence information of the input data

by using the internal network of cell states.

In our research, we employed XGBoost, Random Forest, and LSTM to forecast the

sonic log. We also conducted hyperparameter tuning to optimize our model. To assess

the performance, we partitioned the data, with the majority allocated for training (90

percent) and the remainder for validation. This section provides a summary of prior

research endeavors that focused on examining the viability of forecasting subsurface

rock properties within wells using real-time drilling data. Researchers introduced

innovative deep learning or machine learning models, which enabled them to recog-

nize various rock hydrate structures and gauge gas hydrate saturations at varying

depths in the wells. Additionally, certain studies adopted more preprocessing steps
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to enhance the accuracy of their predictions.

2.3 Previous studies

Chiranth and Ken [18] demonstrated real-world applications of machine learning in

drilling engineering, exploring practical techniques such as Random Forest. In their

studies, a notable application involved utilizing Random Forest to forecast across di-

verse formations and lithologies. Through the incorporation of feature engineering,

they observed enhanced model performance, resulting in more accurate and improved

predictions in drilling operations.

Another application they employed was the optimization of ROP for drilling a well,

using machine learning and data analytics to predict ROP while drilling. By modi-

fying surface parameters such as weight-on-bit (WOB), rotary speed, and flow rate,

they asserted that ROP could increase over different lengths of the well. They effec-

tively demonstrated their approach over 25, 50, and 100 feet.

Also, Chiranth and Ken [19], evaluated different strategies for drilling optimization,

emphasizing the importance of considering multiple factors such as ROP, Torque On

Bit (TOB), and mechanical specific energy. Utilizing a Random Forest algorithm,

they developed models for predicting ROP, TOB, and mechanical specific energy

using WOB, flow rate, rotary speed, and rock strength as input features. Using

mechanical specific energy as an objective function resulted in a balanced improve-

ment in drilling, with an increase in ROP and a reduction in mechanical specific
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energy and torque, potentially extending the bit’s longevity. Overall, these practical

applications of machine learning in drilling engineering demonstrated its potential to

enhance drilling performance and efficiency.

Lúıs Felipe et al. [20] conducted a comprehensive review of the literature onROP pre-

diction with a particular focus on machine learning techniques. In their review, they

discussed various strategies employed to optimize the performance of these models

using data from the literature. The authors delved into a range of machine learn-

ing techniques and approaches, including non-iterative algorithms, Support Vector

Machine (SVM), Fuzzy System Inference (FIS), neuro-fuzzy, and ensemble mod-

els. They highlighted the importance of ensemble models in enhancing the predictive

power of weak learners by combining their predictions. The article also explained the

differences between homogeneous and heterogeneous ensemble models and provided

examples of each. Finally, the paper briefly mentioned specific algorithms, such as

Random Forests and Gradient Boosting Machines, that had been studied in ROP

research.

Mohammad et al. [21] introduced a precise predictive model ROP in drilling oper-

ations. Constructed through machine learning algorithms, the model utilized data

derived from mud logs and wireline logs. The initial phase involved the application

of various statistical models, including those fine-tuned with a Genetic Algorithm

(GA), to establish baseline predictions. Subsequently, the performance of diverse

ANN was evaluated against these baseline predictions. The research revealed that
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incorporating petrophysical logs, particularly considering the geological formations

in conjunction with drilling parameters, substantially enhanced the predictive capa-

bilities of the machine learning algorithms. Notably, Multilayer Perceptron (MLP)

training technique that utilizes a Particle Swarm Optimization (PSO) algorithm, the

hybrid MLP-PSO, emerged as the most effective model, surpassing the performance

of other algorithms in the study. Furthermore, the study demonstrated the superi-

ority of SVR, MLP, radial basis function artificial neural network (RBF-ANN), and

the hybrid MLP-PSO model in comparison to Decision Tree and Random Forest al-

gorithms when applied to pre-processed data. The study also highlighted the benefits

of employing the Savitzky-Golay (SG) filter as a noise reduction method, leading to

improved predictive performance, particularly in the case of the SVR model.

Jiachun et al. [22] introduced an inventive strategy for predicting Shear Wave Velocity

(Vs) curves within wells situated in Alaminos Canyon Block 21. They achieved this by

harnessing the capabilities of the LSTM neural network. Notably, this investigation

was conducted in circumstances where Vs log measurements were limited in avail-

ability. The LSTM model was meticulously constructed using input features such

as gamma-ray, density, porosity, Compressional Wave Velocity (Vp), and resistivity

to forecast Vs. The well-logging curves depicted traditional time or depth sequences,

capturing the changes in stratigraphic sequences. Specialized deep learning models,

such as RNN and LSTM models designed for handling sequences, were utilized in

this context. The results of the study revealed that the LSTM method surpassed
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the performance of the Linear Support Vector method in predicting Vs curves. Addi-

tionally, the research delved into the concept of transfer learning, an approach that

efficiently optimized a new NN model by leveraging knowledge from a pre-trained

model. This study further illustrated the effectiveness of using a pre-trained LSTM

model and transfer learning to attain highly accurate predictions of Vs values.

Muhammad Ali et al. [23] introduced an innovative technique for the prediction of

missing shear sonic logs utilizing machine learning and DNN. This approach involved

analyzing patterns of similarity, utilizing metrics such as Jaccard and overlap simi-

larities among wells that shared similar geophysical characteristics. The aim was to

achieve precise and detailed predictions for missing log data. Moreover, it is impor-

tant to highlight that this methodology showed promise for extension to predicting

absent density and sonic logs across diverse well locations.

Hany et al. [11] presented a novel approach using machine learning techniques like

Random Forest and Decision Tree to predict sonic data based on surface drilling pa-

rameters. The research showed that both Random Forest and Decision Tree could

accurately predict sonic slowness. The model utilized various drilling parameters, in-

cluding WOB, SPPA, RPM, and ROP, with the most significant hyperparameters

being max-depth and min-samples-split. During the testing and training phases, the

Random Forest model proved superior to the Decision Tree model.

Ruizhi et al. [17] underscored the increased utilization of machine learning in the

oil and gas sector, particularly in drilling applications. They highlighted that ANN,
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SVM, and Bayesian Networks (BN) stood out as the most commonly employed al-

gorithms in well control investigations. The authors also pointed out that drilling

operations generated a substantial amount of data, necessitating thorough quality

checks, and emphasized the criticality of real-time implementation for tasks like de-

termining drilling fluid properties, optimizing drilling processes, and detecting drilling

issues. Input parameters for machine learning models encompassed drilling parame-

ters, fluid properties, well details, and formation properties. The authors cautioned

that the reliability of model outcomes might be influenced by noisy drilling data and

the random selection of training and testing samples. Furthermore, they illustrated

that while ANN was the most frequently used machine learning method, advanced

algorithms such as Gradient Boosting Trees and time series machine learning could

offer superior performance.

Jongkook’s study [12] demonstrated a novel method that combined machine learning

techniques to create synthetic sonic logs, known for their high acquisition costs. This

involved inputting data from five wireline logs into three supervised machine-learning

models, alongside the use of unsupervised learning through data clustering and PSO

to improve model accuracy and identify optimal hyperparameters. The study revealed

that the hybrid approach proved to be more dependable and effective in generating

synthetic logs for petrophysical or geomechanical purposes. It was suggested for prac-

tical use based on its favorable outcomes.

Ammar et al. [24] presented an innovative data-driven hybrid system designed to
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enhance drilling efficiency. This system consisted of two crucial phases. The initial

phase involved querying geological data, while the subsequent phase focused on mak-

ing real-time adjustments to controllable dynamic drilling parameters. The model

provided recommendations for optimizing these parameters, including WOB, ROP,

and Gallons per Minute (GPM), and computed the optimal ROP parameter for

each specific well. The connection between ROP and these controllable dynamic

drilling parameters was typically represented by a specific equation. Diverging from

conventional ROP optimization practices that involved selecting fixed values for each

controllable dynamic drilling parameter and adjusting them on a per-section basis, the

paper introduced a novel approach to ROP optimization. It leveraged both dynamic

and static drilling data available in real time. The authors proposed a comprehensive

two-phase, data-driven system that utilized existing data to model optimal drilling

practices. These practices were then compared against real-time data from a live

well to identify the optimal ROP. Finally, the researchers analyzed the relationship

between controllable dynamic parameters such as WOB, RPM, GPM, and ROP.

They derived an empirical relationship based on ANN.

Mohsen et al. [25] asserted that the reduction of drilling time and cost was achiev-

able through the optimization of drilling variables and operational parameters. Their

investigation focused on ROP as a pivotal determinant in drilling duration. This pa-

rameter could be influenced by a range of factors, including drilling mud properties,

formation characteristics, rotary speed, and bit attributes. In their research, scholars
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put forth models and methodologies encompassing regression analysis and machine

learning algorithms, such as ANN, for the prediction of ROP. They harnessed the

Generalized Reduced Gradient (GRG) technique and Decision Trees to tackle multi-

variable challenges and establish models. Moreover, they introduced the Radial Basis

Function (RBF) neural network as a more straightforward model compared toMLP,

employing Gaussian functions for transfer functions. The proposed RBF model fea-

tured two spread coefficients and 100 neurons, while optimization algorithms were

utilized to enhance drilling efficiency.

In 2023, Liu et al. [10] presented an integrated approach that merged the XGBoost

technique with the PSOmethod. The objective was to predict Nuclear Magnetic Res-

onance (NMR) log parameters based on conventional petrophysical logs, with a pri-

mary focus on accurately forecasting NMR logging responses using cost-effective log-

ging data. The research utilized data from conventional well logs, including neutron,

density, sonic, caliper, gamma ray, and resistivity logs, obtained from sixteen wells in

an offshore oilfield located in the Persian Gulf. In this context, the XGBoost-PSO

model generated outputs related to free fluid porosity, bound fluid porosity, perme-

ability, and total porosity. The outcomes revealed that the XGBoost-PSO model

provided predictions with an accuracy range of 88.5% to 91.4%. Notably, the appli-

cation of PSO for hyperparameter optimization enhanced the predicted parameters

by a minimum of five percent. This study underscored the feasibility of utilizing

standard conventional logging data to derive advanced NMR information, thereby
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reducing operational costs while retaining the benefits associated with such data.

In 2023, Callistus et al. [26] undertook the task of predicting the compressional sonic

log within the Tano basin of Ghana. They employed machine learning algorithms and

conducted a comparative analysis of their performances. This study utilized three

distinct machine learning algorithms; SVM, RF, and XGBoost. These algorithms

were applied to forecast the compressional sonic log using data obtained from com-

monly collected logs, including gamma-ray, resistivity, density, and neutron-porosity.

To gauge the effectiveness of these algorithms, they underwent training and testing

using data from two wells. Subsequently, the models were applied to a third well for

predicting the sonic log. Evaluation of the algorithm performances was conducted

using statistical metrics such as Coefficient of determination (R2), Mean Squared

Error (MSE), MAE, and Root Mean Squared Error (RMSE). The results unveiled

that XGBoost exhibited the highest degree of prediction accuracy, followed by RF,

while SVM displayed the lowest level of accuracy. This research significantly con-

tributed to enhancing the understanding of oil and gas fields, especially in regions

like the Ghanaian sedimentary basin and the broader West African sub-region, where

compressional sonic logs are scarce or entirely unavailable.

Drawing from the insights provided by this comprehensive literature review, it is evi-

dent that a wide range of investigations have delved into the significance of employing

various combinations of input data, filtering techniques, and hyperparameter tuning.

This extensive body of research underscores the critical role these elements play.
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In this section, we have showcased the existing works within the realm of oil and

gas that leverage machine learning methodologies. We have taken note of the no-

table endeavors that have already advanced the state of knowledge in this domain.

Subsequently, in Chapter 5, by considering the comparison between RF, XGBoost,

and LSTM models, we will elucidate a proper model utilizing time series data in oil

and gas field to predict sonic log for unseen data more accurately building upon this

existing body of work.

The subsequent chapter represents an independent endeavor to minimize noise for

upcoming studies. Our goal is to utilize the insights from Chapter 3 to enhance sig-

nal smoothness, eliminate certain outliers stemming from oil and gas activities, and

improve overall accuracy.
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Chapter 3

Signal Processing

Signal processing is a critical step in the analysis and interpretation of data across

various domains. It involves techniques that enhance the quality of signals, making

it easier to extract meaningful information. This chapter provides a comprehensive

overview of fundamental signal processing methods, starting with the rolling mean,

which smooths out short-term fluctuations to reveal long-term trends. We then ex-

plore linear filters that modify signals by emphasizing certain frequencies, followed by

the rolling median, which effectively reduces noise while preserving significant edges

in the data. The chapter also covers advanced filtering techniques such as forward

and backward filters that prevent phase distortion, and finite impulse response (FIR)

filters known for their stability and precise frequency response. Further, we delve

into low-pass filters, including the Butterworth filter with its flat passband response

and the Fourier transform-based filter, which operates in the frequency domain. In-
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terpolation methods, which estimate intermediate data points, are also discussed.

Finally, a comparative analysis of these filters helps understand their applications

and effectiveness in different scenarios.

Signal processing pertains to the analysis of data frequency over time, with com-

mon techniques including filtering to remove unwanted frequencies or noise, compres-

sion to reduce signal size, and modulation for encoding information into a signal for

transmission. In our investigation, we examine various features, such as gamma rays

based on TVD, and observe the impact of different filtering approaches in both short

and large intervals.

Data smoothing can be achieved through diverse methods, including randomiza-

tion, utilizing a random walk, calculating a moving average, or employing various

exponential smoothing techniques. Smoothing algorithms are categorized as either

global or local, depending on whether we filter noise across the entire series or a

smaller segment. This involves summarizing data within a local or global TVD do-

main, resulting in a smooth estimation of the underlying data. For example, exponen-

tial smoothing, employs a simple average calculation with exponentially decreasing

weights, starting from the most recent observations.

In this segment of the study, we have conducted preparation steps using Well-

7 and Well-10. Leveraging the similarity of these two wells based on formation, a

data frame concentrating on a specific portion (indexes 5000 to 10000) was employed.

Additionally, in the final section of this chapter, Well-6 is included to compare filters
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and discuss the obtained results.

3.1 Rolling mean

A rolling mean, also known as a moving average, is a statistical calculation used

to analyze and smooth fluctuations in time series data. It involves calculating the

mean of a subset of data points within a moving or rolling window that progresses

through the dataset. The filter operates in three sequential steps. Firstly, it employs

a moving window approach, where a window of a specified size traverses through the

dataset one step at a time. At each step, the data points within the window are

utilized to compute the mean. Subsequently, the mean is calculated for each position

of the moving window based on the values within that window. This process yields

a snapshot of the average value over a specific period. Ultimately, the rolling mean

serves to smooth out short-term fluctuations or noise in the data, offering a clearer

depiction of the underlying trends or patterns. The pseudocode for this methodology

is presented below in Algorithm 1.
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Algorithm 1 Rolling Mean Calculation

1: function rolling mean(data, window size)

2: rolling means← []

3: window ← []

4: for i← 0 to length(data) − 1 do

5: append data[i] to window

6: if length(window) > window size then

7: pop the oldest value from window

8: mean← calculate mean(window)

9: append mean to rolling means

10: return rolling means

11: function calculate mean(values)

12: sum← 0

13: for value in values do

14: sum← sum + value

15: return sum/length(values)

The selection of the window size is a crucial decision that relies on the data’s char-

acteristics and the specific goals of the analysis. Opting for larger window sizes leads

to smoother trends but may potentially mask short-term variations. On the other

hand, smaller window sizes capture more detailed variations but might be susceptible

27



to noise. This filter finds extensive applications across diverse fields such as finance,

economics, signal processing, and environmental monitoring. They prove especially

valuable in handling time series data, aiding in the identification of trends and pat-

terns while effectively filtering out short-term fluctuations. In Python, libraries like

NumPy and pandas offer functions to calculate rolling means. In this methodology,

a rolling mean with varying window sizes, such as 10, 20, 50, and 100, is employed

on four columns of the dataset. The vertical axis, which is inverted, corresponds to

TVD. The rolling mean is applied to ROP, GR, SPPA, and TFLO. The outcomes

of this approach have been graphically represented in Figures 3.1, 3.2, 3.3, and 3.4.

Using different window sizes (10, 20, 50, and 100) for the rolling mean filter offers

varied detail. Smaller window sizes capture more detailed variations but might be

susceptible to noise.
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Figure 3.1: Using different window sizes (10, 20, 50, and 100) for the rolling mean

filter on ROP, a larger window size results in a smoother feature.
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Figure 3.2: Using different window sizes (10, 20, 50, and 100) for the rolling mean

filter on GR, a larger window size results in a smoother feature.
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Figure 3.3: Using different window sizes (10, 20, 50, and 100) for the rolling mean

filter on SPPA, a larger window size results in a smoother feature.
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Figure 3.4: Using different window sizes (10, 20, 50, and 100) for the rolling mean

filter on TFLO, a larger window size results in a smoother feature.
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3.2 Linear filter

Linear filters can be seen as a controlled scaling of the signal components in the

frequency domain. Linear filtering entails the manipulation of a signal by passing

it through a filter to achieve desired effects, such as smoothing, noise reduction, or

extracting specific features [27]. The implementation of the filter is based on the

following equation:

y[n] = b[0]x[n] + b[1]x[n − 1] + . . . + b[M]x[n −M] − a[1]y[n − 1] −⋯− a[N]y[n −N]

where “b” is the numerator coefficient vector in a 1-D sequence, “a” is the denomi-

nator coefficient vector in a 1-D sequence, and “x” is an N -dimensional input array.

In Python, the “lfilter” function is part of the scipy.signal module and is utilized to

apply a digital filter to a signal. The pseudocode for this methodology is presented

below in Algorithms 2 and 3.

Algorithm 2 The lfilter function

1: function lfilter(coefficients, 1, input value)

2: filtered value← 0

3: for i← 0 to length(coefficients) − 1 do

4: filtered value← filtered value + coefficients[i] × input value[i]

5: return filtered value
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Algorithm 3 Apply lfilter to DataFrame columns

1: function apply lfilter(df, columns lfilter)

2: for i← 0 to len(columns lfilter) − 1 step 2 do

3: lfilter column(df, columns lfilter[i], columns lfilter[i+1])

4: function lfilter column(df, input column name, output column name)

5: filter coefficients← [1.0/10,1.0/10,1.0/10,1.0/10,1.0/10,

6: 1.0/10,1.0/10,1.0/10,1.0/10,1.0/10,1.0/10]

7: filtered values← []

8: input values← df[input column name]

9: for each value in input values do

10: filtered value← lfilter(filter coefficients,1, value)

11: append filtered value to filtered values

12: df[output column name] ← filtered values

Using this function, a linear filter is applied to the signal given b = 0.1, a = 1, and

x were the values of Well-7 from the 5000th to 10000th index. Both the filtered and

unfiltered sequences are plotted on ROP, GR, SPPA, and TFLO based on TVD

as depicted in Figure 3.5.1

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html
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Figure 3.5: Applying linear filter on ROP, GR, SPPA and TFLO. Filtered data is

smoother and less noisy.
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3.3 Rolling median

The concept of a rolling median is rooted in statistical principles applied to time

series analysis and signal processing. It entails computing the median of a subset

of data points within a moving or rolling window as it traverses the dataset. The

primary objective of employing a rolling median is to smooth out data variations and

accentuate underlying trends or patterns2.

In essence, the rolling median represents the median of a specified number of preceding

periods in a time series. The process typically unfolds in three steps. Firstly, a moving

window of a specified size progresses through the dataset step by step. At each step,

the data points within the window are used to calculate the median. This median

calculation considers the values within the window at each position of the moving

window. Unlike the mean, which treats all values equally, the median represents the

middle value when the data is sorted, making it less sensitive to extreme values or

outliers. Ultimately, the rolling median aids in smoothing out short-term fluctuations

or noise in the data, offering a clearer perspective on underlying trends or patterns.

The pseudocode for this methodology is presented below in Algorithm 4.

2https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.

rolling.Rolling.median.html
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Algorithm 4 Rolling Median Calculation

1: function rolling median(data, window size)

2: rolling medians← []

3: window ← []

4: for i← 0 to length(data) − 1 do

5: append data[i] to window

6: if length(window) > window size then

7: pop the oldest value from window

8: median← calculate median(window)

9: append median to rolling medians

10: return rolling medians

11: function calculate median(values)

12: sorted values← sort(values)

13: middle index← length(sorted values)/2

14: if length(sorted values) mod 2 = 1 then

15: return sorted values[middle index]

16: else

17: return (sorted values[middle index − 1]+

sorted values[middle index])/2

In the below plots, while TVD serves as the inverted y-axis, rolling medians with

different window sizes (10, 20, 50, and 100) for ROP, GR, SPPA, and TFLO are

applied and depicted in 3.6, 3.7, 3.8 and 3.9.
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Figure 3.6: Applying rolling-median filter on ROP with window size 10, 20, 50, and

100, a larger window size results in a smoother feature.
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Figure 3.7: Applying rolling-median filter on GR with window size 10, 20, 50, and

100,a larger window size results in a smoother feature.
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Figure 3.8: Applying rolling-median filter on SPPA with window size 10, 20, 50, and

100,a larger window size results in a smoother feature.
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Figure 3.9: Applying rolling-median filter on TFLO with window size 10, 20, 50, and

100, a larger window size results in a smoother feature.
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3.4 Forward and Backward filter

The “butter” function within the scipy.signal module is a tool for designing But-

terworth digital and analog filters. It is capable of designing an Nth-order digital

or analog Butterworth filter and provides the filter coefficients. The key parameters

include “N”, representing the filter order, and “Wn”, denoting the critical frequency.

For lowpass and highpass filters, “Wn” is a scalar. This function returns two param-

eters, “b” and “a”, representing the numerator and denominator polynomials of the

IIR filter, respectively3.

The “filtfilt” function, also from the scipy.signal module, is widely used in signal

processing, standing for Filter Forward and Backward. It applies a linear digital filter

twice, first forward and then backward, resulting in a combined filter with zero phase

and a filter order twice that of the original. This zero-phase filtering is advantageous

for preserving temporal accuracy, crucial in applications like time series analysis or

event-related data handling.

The input parameters for “filtfilt” are “b” and “a”, representing the numerator

and denominator coefficient vectors, respectively, along with “x”, an N-dimensional

input array. The output is the filtered data4. The pseudocode for this methodology

is presented below in Algorithm 5 and 6.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html
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Algorithm 5 Butterworth Filter Design

1: function butter(N, Wn, btype=’low’, analog=False, output=’ba’, fs=None)

2: Wn norm← normalize(Wn,fs)

3: b, a← calculate coefficients(N,Wn norm, btype, analog)

4: if output =′ ba′ then

5: return b, a

6: else if output =′ zpk′ then

7: z, p, k ← bilinear transform(b, a, fs)

8: return z, p, k

9: function normalize(Wn, fs)

10: if fs = None then

11: return Wn

12: else

13: return 2
fs ×Wn

14: function calculate coefficients(N, Wn, btype, analog)

15: if analog then

16: b, a← analog filter coefficients(N,Wn, btype)

17: else

18: b, a← digital filter coefficients(N,Wn, btype)

19: return b, a
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Algorithm 6 Forward-Backward Filtering

1: function filtfilt(b, a, x)

2: y forward← forward filtering(b, a, x)

3: y backward← backward filtering(b, a, y forward)

4: return y backward

5: function forward filtering(b, a, x)

6: y forward← []

7: y forward[0] ← x[0] × b[0]

8: for i← 1 to length(x) − 1 do

9: y forward[i] ← x[i] × b[0]

10: for j ← 1 to min(i, length(b) − 1) do

11: y forward[i] ← y forward[i] + x[i − j] × b[j] − y forward[i − j] × a[j]

12: return y forward

13: function backward filtering(b, a, x)

14: y backward← []

15: y backward[length(x) − 1] ← x[length(x) − 1] × b[0]

16: for i← length(x) − 2 downto 0 do

17: y backward[i] ← x[i] × b[0]

18: for j ← 1 to min(length(x) − i − 1, length(b) − 1) do

19: y backward[i] ← y backward[i]+x[i+j]×b[j]−y backward[i+j]×a[j]

20: return y backward
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In practice, after obtaining the coefficients “b” and “a” from the Butter function

with specified parameters N = 4 and Wn = 2
365 , they are used with the “filtfilt”

function for backward and forward filtering. It is worth noting that backward filtering,

as applied in time series, involves predicting future data points, rendering it more

suitable for offline processing of recorded signals rather than real-time applications.

In the context of subsequent analysis, ”filtfilt” is employed for features ROP, GR,

SPPA, and TFLO, and the results are plotted in Figure 3.10.
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Figure 3.10: Applying forward and backward filter onROP,GR, SPPA, andTFLO.

Filtered data was not Representative of data due to smoothing data points roughly.
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3.5 Finite Impulse Response filter

Finite Impulse Response (FIR) filter is a type of digital filter used in signal pro-

cessing. Unlike Infinite Impulse Respons ( IIR) filters, FIR filters only have a finite

response to an input signal. This means that the output of an FIR filter is deter-

mined entirely by a weighted sum of the input samples and does not rely on feedback

from previous outputs. The general structure of an FIR filter involves convolving the

input signal with a set of coefficients, also known as the filter taps. The coefficients

determine the filter’s frequency response and are usually determined through filter

design techniques.

FIR filters find applications in various areas, including audio processing, image pro-

cessing, telecommunications, and control systems. They are often used for tasks such

as smoothing, noise reduction, equalization, and signal shaping. The procedure of the

FIR filter includes a segment that creates a triangular window of length N and then

convolves it with the specific feature from DataFrame. Finally, it stores the result of

the convolution, filtered by the triangular window, in a new column as FIR filter on

the data frame.

The pseudocode for this methodology is presented below in Algorithm 7.
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Algorithm 7 Finite Impulse Response filter

1: function convolve(signal, filter)

2: result← []

3: for i← 0 to length(signal) + length(filter) − 1 do

4: sum← 0

5: for j ← 0 to length(filter) − 1 do

6: if i − j ≥ 0 and i − j < length(signal) then

7: sum← sum + signal[i − j] × filter[j]

8: append sum to result

9: return result

In Python, creating a FIR filter can be accomplished by using Scipy.signal mod-

ule. The following figure demonstrates the application of the FIR filter to ROP,

GR, SPPA, and TFLO, illustrating the reduction of noise achieved through this

procedure.
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Figure 3.11: Applying Finite Impulse Response filter on ROP with window size 30,

60, 80, and 100, a larger window size results in a smoother feature.
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Figure 3.12: Applying Finite Impulse Response filter on GR with window size 30,

60, 80, and 100, a larger window size results in a smoother feature.
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Figure 3.13: Applying Finite Impulse Response filter on SPPA with window size 30,

60, 80, and 100, a larger window size results in a smoother feature.
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Figure 3.14: Applying Finite Impulse Response filter on TFLO with window size 30,

60, 80, and 100, a larger window size results in a smoother feature.
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3.6 Low-pass filter

A low-pass filter is a type of electronic filter that allows signals with a frequency

lower than a certain cutoff frequency to pass through while reducing the amplitudes

of signals with frequencies higher than the cutoff frequency. In other words, it permits

low-frequency components to pass through and blocks or reduces the amplitudes of

high-frequency components. For implementing a low-pass filter we used two different

methods: Butterworth filter and Fourier transform. We have utilized these filters on

features ROP, GR, SPPA, and TFLO and presented the results. However, in the

section dedicated to comparing filters, the Fourier transform method is specifically

applied.

3.6.1 Butterworth low-pass filter

A low-pass filter is a crucial component in signal processing, communication systems,

and audio applications, serving to attenuate higher frequencies beyond a specified cut-

off frequency while allowing lower frequencies to pass through. The cutoff frequency

marks the point at which the filter begins attenuating the signal, and the transition

between the passband and stopband defines the filter’s roll-off rate.

These filters, including types like Butterworth, Chebyshev, and elliptic filters,

find widespread application in tasks such as smoothing signals and eliminating high-

frequency noise or fluctuations.

The Butterworth low-pass filter function specifically facilitates the design of a
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Butterworth low-pass filter. This function requires inputs such as the cutoff frequency

(cutoff ), sampling frequency (fs), and filter order (order). It employs the butter

function from the scipy.signal module to compute and return the filter coefficients

(b, a). This function is instrumental in tailoring low-pass filters to meet the specific

requirements of diverse applications. Within our dataset, elliptic filters with a cut-off

of 4, a frequency of 2/300, and a threshold of 5000 have been applied. Subsequently,

the butter-lowpass filter function is utilized to implement the Butterworth filter on

the provided input signal. The filter coefficients (b, a) are derived using the butter-

lowpass function, and the linear filter function is then employed to filter the input

signal. The pseudocode for this methodology is presented below in Algorithm 8 and

9.

Algorithm 8 Butterworth low-pass filter design

1: function butter lowpass(cutoff, fs, order=5)

2: return butter(order, cutoff, fs=fs, btype=“low”, analog=False)

Algorithm 9 Butterworth low-pass filtering

1: function butter lowpass filter(data, cutoff, fs, order=5)

2: (b, a) ← butter lowpass(cutoff, fs, order=order)

3: y ← lfilter(b, a,data)

4: return y
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Figure 3.15: Applying butterworth low pass filter for ROP, GR, SPPA, and TFLO.

Filtered data is smoother and less noisy.

3.6.2 Fourier transform low-pass filter

The Fourier transform is a mathematical operation that transforms a signal or func-

tion from its original domain (typically time or space) into a representation in the

frequency domain. It decomposes a complex signal into simpler sinusoidal compo-

nents, revealing the frequency content of the original signal. The transformed signal

provides information about the amplitude and phase of different frequency compo-

nents. The function low-pass defined in Algorithm 10 below, implements a low-pass

filter using the Fourier transform. It takes the input signal (s) and a frequency

threshold (threshold) as inputs. The function first checks if the length of the signal

is odd and removes the last element if necessary. It then applies the real-valued Fast
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Fourier transform (rfft) from scipy.signal library to the signal. Frequencies above the

specified threshold are set to zero in the Fourier domain. Then the inverse Fourier

transform (irfft) from scipy.signal library applied to obtain the filtered signal. The

pseudocode for this methodology is presented in Algorithm 10.

Algorithm 10 Fourier transform low-pass Filter

1: function low pass(s, threshold)

2: if len(s) mod 2 = 1 then

3: s← s[∶ −1]

4: fourier ← rfft(s)

5: frequencies← rfftfreq(size(s), d = 2e − 2/size(s))

6: fourier[frequencies > threshold] ← 0

7: return irfft(fourier)
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3.7 Interpolation

Interpolation is a mathematical technique used to estimate values that fall between

known values [28]. It is commonly employed in various fields, including mathematics,

computer science, statistics, and signal processing. The primary goal of interpolation

is to predict the values of a function or dataset at points that are not explicitly

provided but lie within the range of existing data points. Knowing this concept we

have applied the Exponential Weighted Moving Average (EWMA) method which is

used for smoothing time series data or for estimating the underlying trend of a time

series. In the context of interpolation, EWMA is often used to fill in missing or

irregularly sampled data points in a time series.

The basic idea behind EWMA is to assign exponentially decreasing weights to

past observations, with more recent observations receiving higher weights. This makes

EWMA particularly suitable for capturing trends and reacting quickly to changes in

the data.

In this section, necessary libraries for numerical operations (numpy), Fourier trans-

forms (numpy.fft), signal processing (scipy.signal), and plotting (matplotlib) have

been imported. There are some constants and parameters that need to be defined in

applying interpolation including DELTA, a parameter used in outlier removal; LOW-

CLIP and HIGH-CLIP, threshold values for clipping data; SPAN value is the number

of data points that are used to calculate the average, and SPIKE is the amplitude of

a spike in the data. Additional functions are required at this stage and are described
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below:

Clip-data: This function takes an unclipped data column and clips values outside

the specified range (LOW-CLIP to HIGH-CLIP). It converts the data to an array,

applies the clipping conditions, and returns the clipped data as a list. The pseudocode

for this function is presented as Algorithm 11.

Algorithm 11 clip data Function

1: function clip data(unclipped,high clip, low clip)

2: np unclipped← convert to numpy array(unclipped)

3: for each value in np unclipped do

4: if value > high clip or value < low clip then

5: set value to NaN

6: clipped data← convert to list(np unclipped)

7: return clipped data

Create-sample-data: This function creates a sample data frame using a subset of

the original data frame. The pseudocode for this function is presented as Algorithm

12.

Algorithm 12 create sample data Function

1: function create sample data

2: df← df[ “GR”, “SPPA”,“TFLO”, “SWOB”, “ROP”]

3: df[“y spikey df column”] ← df[“df column”]

4: return df
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Ewma-fb: This function applies a forward-backward exponential weighted moving

average filter to a given data column. It uses the EWM method from the pandas

library to calculate forward and backward EWMA separately and then combines

them to get the final forward-backward EWMA. The pseudocode for this function

is presented as Algorithm 13.

Algorithm 13 ewma fb Function

1: function ewma fb(df column, span)

2: fwd← pd.Series.ewm(df column, span = span).mean()

3: bwd← pd.Series.ewm(df column[::-1], span = 10).mean()

4: stacked ewma← np.vstack((fwd,bwd[::-1]))

5: fb ewma← np.mean(stacked ewma,axis = 0)

6: return fb ewma

Remove outliers: This function removes outliers from a data column (spikey)

based on a threshold (delta) and a reference column. It converts the input data to

arrays, applies the outlier condition, and returns the data with outliers replaced by

NaN. The pseudocode for this function is presented as Algorithm 14.
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Algorithm 14 remove outliers Function

1: function remove outliers(spikey, fbewma,delta)

2: np spikey← np.array(spikey)

3: np fbewma← np.array(fbewma)

4: cond delta← (np.abs(np spikey − np fbewma) > delta)

5: np remove outliers← np.where(cond delta,np.nan,np spikey)

6: return np remove outliers

It is worth mentioning that each dataset necessitates modifications in LOW-CLIP,

HIGH-CLIP, and DELTA for interpolation, even if these adjustments might not be

immediately evident in datasets with similar ranges. The figures 3.16 and 3.17 illus-

trate this.
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(a) Applying interpolation with

DELTA=0.6, SPAN=200, LOW-CLIP=10,

HIGH-CLIP=300, and Spike amplitude=20

for ROP in 350 m (850-1200) of ROP for

Well-7.
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(b) Applying interpolation with

DELTA=0.6, SPAN=100, LOW-CLIP=10,

HIGH-CLIP=300, and Spike amplitude=20

for GR in 350 m (850-1200) of ROP for

Well-7.

Figure 3.16: Adjustments to LOW-CLIP, HIGH-CLIP, and DELTA are necessary for

interpolation although it might not be apparent in datasets with identical ranges.
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(a) Applying interpolation with
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(b) Applying interpolation with

DELTA=30, SPAN=100, LOW-

CLIP=3700, HIGH-CLIP=4100, and

Spike amplitude=20 for TFLO in 350 m

(850-1200) of ROP for Well-7.

Figure 3.17: Adjustments to LOW-CLIP, HIGH-CLIP, and DELTA are necessary for

interpolation.
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3.8 Comparison of filters

Selecting the most suitable filter for signal processing depends on several factors,

including the characteristics of the data, the type of signal, and the specific goals

of the analysis. Filters are designed to address various aspects of signal processing,

such as noise reduction, smoothing, and feature extraction. One crucial aspect to

consider is the frequency response of the filters. Different filters may exhibit distinct

effects on high and low-frequency components of the signal. It is imperative to assess

whether a filter introduces phase shifts, particularly when preserving the timing of

signal features is of utmost importance.

Efficient noise reduction while preserving the signal-to-noise ratio is of paramount

consideration. The choice between a smoother output and the preservation of sharp

transitions in the signal depends on the specific goals of the analysis. Different filters

demonstrate varying degrees of smoothing or sharpness.

Each type of filter, whether it be Butterworth, elliptic, or Fourier transform,

possesses unique characteristics. For instance, Butterworth filters provide a smooth

frequency response, while elliptic filters offer a steeper roll-off. Evaluating these

characteristics in alignment with the goals of the analysis is imperative.

As we proceed with our analysis, the incorporation of performance metrics be-

comes pivotal for an objective and comprehensive comparison of filters. Metrics such

as mean squared error or signal-to-noise ratio offer valuable insights, enhancing the

depth of our assessment. Our study is committed to optimizing cross-correlations
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across diverse geological formations, and to achieve this objective, we strategically

employ a low-pass filter. This selection is made in consideration of the distinctive

advantages offered by low-pass filters in terms of noise reduction and signal clarity.

The rationale behind selecting a low-pass filter is rooted in its unique advantages,

contributing to enhanced signal clarity and interpretability. The most important ad-

vantage of the low-pass filter is noise removal, as high-frequency noise in a signal can

be disruptive and impede interpretability. Low-pass filters excel in removing such

high-frequency noise, ensuring a clearer and more intelligible signal. The elimination

of noise facilitates a more accurate interpretation of the signal’s intrinsic features. The

second rationale revolves around the augmentation of Signal-to-Noise Ratio (SNR).

High-frequency noise tends to undermine the overall signal-to-noise ratio. The ap-

plication of a low-pass filter results in the removal of high-frequency noise, thereby

improving the overall SNR. Improved SNR facilitates the detection and analysis of

subtle signals that might otherwise be overshadowed by noise.

As a conclusion, the strategic use of a low-pass filter emerges as a valuable ap-

proach in our study, aiming to optimize cross-correlations amidst diverse geological

formations. By leveraging the noise removal capabilities and enhancing the signal-to-

noise ratio, the low-pass filter becomes an instrumental tool in elucidating meaningful

insights from the geological data. The advantages of this filter contribute to a refined

and clearer understanding of the underlying signals, fostering more robust and ac-

curate interpretations in the context of cross-correlations. In Figures 3.18a, 3.18b,
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3.19a and 3.19b, the application of various filters on both large and small intervals of

TVD respectively for ROP and SWOB features of Well-6 is depicted.

58



25 50
ROP5 (m/h)

950

975

1000

1025

1050

1075

1100

1125

1150

TV
D 

(m
)

Raw Data (ROP)
Interpolated

25 50
ROP5 (m/h) 

Raw Data (ROP)
Rolling_mean_100

25 50
ROP5 (m/h)

Raw Data (ROP)
Rolling_median_100

0 25 50
ROP5 (m/h)

Raw Data (ROP)
Lfilter

25 50
ROP5 (m/h)

Raw Data (ROP)
Filter_forward_backward

0 25 50
ROP5 (m/h)

Raw Data (ROP)
FIR_filter

25 50
ROP5 (m/h)

Raw Data (ROP)
Low_passfilter

(a) Comparison of the mentioned filters for depth of 200 meters in TVD (950-1150) for

ROP of Well-6, a low-pass filter provides a more accurate representation of the data while

employing Finite Forward and Backward methods significantly enhances data smoothness.
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(b) Comparison of the mentioned filters for depth of 50 meters in TVD (950-1150) for

ROP of Well-6, a low-pass filter provides a more accurate representation of the data while

employing Finite Forward and Backward methods significantly enhances data smoothness.
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(a) Comparison of the mentioned filters for depth of 200 meters in TVD (950-1150) for

SWOB of Well-6, a low-pass filter provides a more accurate representation of the data while

employing Finite Forward and Backward methods significantly enhances data smoothness.
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(b) Comparison of the mentioned filters for depth of 50 meters in TVD (950-1050) for

SWOB of Well-6, a low-pass filter provides a more accurate representation of the data

while employing other methods significantly enhances data smoothness.
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In this chapter, we explored various signal processing techniques, including rolling

mean, linear and median filters, FIR filters, low-pass filters (Butterworth and Fourier

transform), and interpolation methods. These techniques are essential for enhancing

signal quality by reducing noise and highlighting important features. As we move

forward, the next chapter will focus on preprocessing, which prepares these refined

signals for analysis by addressing scaling, and normalization. Preprocessing trans-

forms the cleaned signals into a format suitable for advanced analysis and modeling,

ensuring data integrity and usability in various applications.

61



Chapter 4

Preprocessing

Preprocessing is the first step for refining raw data into a format suitable for machine

learning algorithms. This transformative process involves a series of operations, such

as cleaning, feature selection, and transformation. In this chapter, through prepro-

cessing, we streamline the dataset by selecting the most important features, applying

scalers and removing outliers, and laying the groundwork for robust and accurate

model training.

4.1 Research Server Specifications

My research was conducted using a server with the following specifications:

• Server: Lapicque

• Model Name: Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz
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• CPUs: 32

• Cores per Socket: 8

• Memory: 251 GiB (approximately 269.41 GB)

The server’s memory usage was monitored during the experiments using the free

-h command, revealing insights into total, used, and free memory. This research

leveraged Python programming language, with key libraries including NumPy, SciPy,

and TensorFlow. Additionally, data processing tasks were executed using Pandas.

4.2 The dataset

In our study, we analyzed two datasets linked to Well-1 and Well-6, each containing

accessible sonic log information. The Well-1 dataset consists of 55,575 rows and 42

features, with significant features displayed in Table 1.2. It is noteworthy that certain

parts of the data were missing, resulting in NaN values. Specifically, our focus was

on the DTCO-MH-R column, representing the sonic log, which contained 37650

non-NaN values after removing outliers related to hole sizes 311, 445, and 216 (mm).

In the dataset, only two variables were categorized as objects, “Well Name” and

“Geological formations”. The geological formations variable encompassed distinct

formations, including Banquereau, Oligocene Sandstone Unit, South Mara Mem-

ber, Mudstone Member Top, Dawson Canyon, Petrel Member, Nautilus, Ben Nevis,

Avalon, and Whiterose Formation. Additionally, we treated the “Hole Size” column
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as categorical data due to its non-uniform distribution with three distinct hole size

categories. Consequently, separate predictions were conducted for each size category.

The Well-6 dataset comprises 68,273 rows and 49 columns. The DTCO-MH-R col-

umn, representing the sonic log, contains 44,306 non-NaN entries associated with hole

sizes 311, 445, and 216 (mm). The geological formation variable encompasses distinct

formations, including Banquereau, Oligocene Sandstone Unit, South Mara Member,

Mudstone Member Top, Dawson Canyon, Petrel Member, Nautilus, and Ben Nevis

Formation.

The values in the Hole Size column were determined based on TVD and extracted

from the raw data. TheTVD height range corresponding to each hole size is presented

in Table 4.1.

Table 4.1: Corresponding hole sizes for different TVD ranges.

Well TVD Range (m) Corresponding Hole Size

1 523 to 1062 445

1 1062 to 1770 311

1 1766 to 2564 216

6 544 to 1335 445

6 1062 to 1770 311

6 2009 to 2050 216
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4.3 Feature selection

Pearson Correlation Coefficient

The Pearson correlation coefficient, denoted as r, is a measure of the linear correlation

between two variables X and Y . It quantifies the degree to which a linear relationship

exists between these two variables. The value of r ranges from −1 to 1:

• r = 1 indicates a perfect positive linear correlation,

• r = −1 indicates a perfect negative linear correlation,

• r = 0 indicates no linear correlation.

The Pearson correlation coefficient is calculated by taking the covariance of the two

variables and dividing it by the product of their standard deviations. Mathematically,

it is expressed as:

r = ∑(Xi −X)(Yi − Y )√
∑(Xi −X)2∑(Yi − Y )2

where:

• Xi and Yi are the individual sample points,

• X and Y are the means of X and Y , respectively,

• ∑ denotes the summation over all sample points.
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The coefficient r provides insight into the strength and direction of the linear

relationship between the variables. A value closer to ±1 signifies a stronger linear

relationship, while a value closer to 0 signifies a weaker one.

The pseudocode for calculating the Pearson correlation coefficient between two

lists of numbers, X and Y is presented as Algorithm 15.

66



Algorithm 15 Pearson Correlation Coefficient

1: function PearsonCorrelationCoefficient(X, Y)

2: mean X←mean(X)

3: mean Y←mean(Y )

4: numerator← 0

5: denominator X← 0

6: denominator Y← 0

7: for each i from 0 to length(X) − 1 do

8: diff X←X[i] −mean X

9: diff Y← Y [i] −mean Y

10: numerator← numerator + diff X × diff Y

11: denominator X← denominator X + diff X × diff X

12: denominator Y← denominator Y + diff Y × diff Y

13: denominator←
√
denominator X × denominator Y

14: if denominator == 0 then

15: return 0

16: else

17: return numerator/denominator

18: function mean(values)

19: return ∑(values)/length(values)

In order to identify the most impactful contributors among the columns, a regres-

67



sion analysis was conducted, computing P-values for each predictor variable. The

P-value serves as an indicator of the likelihood of observing the data assuming no

relationship between the predictor variable and the response variable.

The columns were subsequently arranged in ascending order based on their P-

values. A lower P-value suggests stronger evidence against the null hypothesis, in-

dicating a greater potential contribution of the column to the model. A significance

threshold of 0.05, a standard choice in statistical analyses, was employed. Columns

with p-values below this threshold were deemed statistically significant, signifying

their meaningful role in the model.

Upon sorting, columns with P-values below the chosen significance level were

identified. These following columns, TVD, GR, SPPA, RPM, Hole Size, STOR,

SWOB, TFLO, ROP, and Geological Formation, demonstrated statistically signif-

icant contributions, providing valuable insights into explaining the variability in the

DTCO-MH-R variable. For consistency between Well-1 and Well-6 datasets, vari-

ables available in both were selected. Additionally, considering the high correlation

between TVD and DEPT, only TVD was included in the analysis. Through a metic-

ulous assessment of P-values and their significance levels, the most prominent column

contributions were discerned and prioritized based on their statistical significance.

68



TV
D

D
E
P
T

G
R

H
ol
eS

iz
e

S
P
PA

R
P
M

S
TO

R

S
W
O
B

TF
LO

R
O
P
5

D
TC

O
_M

H
_R

TVD

DEPT

GR

HoleSize

SPPA

RPM

STOR

SWOB

TFLO

ROP5

DTCO_MH_R

0.8

0.6

0.4

0.2

0.0

0.2

(a) Correlation matrix of selected features

for Well-1.

TV
D

D
E
P
T

G
R

H
ol
eS

iz
e

S
P
PA

R
P
M

S
TO

R

S
W
O
B

TF
LO

R
O
P
5

D
TC

O
_M

H
_R

TVD

DEPT

GR

HoleSize

SPPA

RPM

STOR

SWOB

TFLO

ROP5

DTCO_MH_R

0.8

0.6

0.4

0.2

0.0

0.2

(b) Correlation matrix of selected features
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Figure 4.1: Heatmap of Well-1 and Well-6.

Figures 4.1a and 4.1b provided the visual representation of a matrix of data using

color gradients respectively for Well-1 and Well-6. Therefore, in alignment with prior

studies, RPM, ROP, TFLO, SWOB, STOR, GR, TVD, and Hole Size were

employed as predictor variables to forecast the sonic log.

Tables 4.2, 4.3, 4.4, 4.5, and 4.6 provide a quick overview of key statistical mea-

sures for the numerical attributes within a dataset. These measures, encompassing

minimum, maximum, and standard deviation, serve to convey the range and vari-

ability of values for the chosen features across different hole sizes in both Well-1 and

Well-6.
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Table 4.2: Summary of statistical characteristics of selected features for hole size 445

in Well-1.

TVD GR SPPA RPM STOR SWOB TFLO ROP5 DTCO MH R

count 202 202 202 202 202 202 202 202 202

mean 1052.616 100.739 12939.714 158.564 15.615 19.555 4148.052 52.904 416.594

std 4.439 8.904 69.662 0.497 1.770 1.095 20.578 14.227 8.663

min 1044.969 80.655 12735.560 158.000 11.290 16.371 4100.345 22.404 401.844

25% 1048.802 94.819 12893.492 158.000 14.275 18.864 4138.136 47.476 411.014

50% 1052.624 99.528 12939.610 159.000 15.725 19.662 4138.136 56.633 415.066

75% 1056.433 106.468 12992.838 159.000 16.732 20.393 4175.928 62.303 419.680

max 1060.235 128.062 13095.290 159.000 21.320 21.974 4175.928 70.353 460.274

Table 4.3: Summary of statistical characteristics of selected features for hole size 311

in Well-1.

TVD GR SPPA RPM STOR SWOB TFLO ROP5 DTCO MH R

count 16257 16257 16257 16257 16257 16257 16257 16257 16257

mean 1396.011 115.353 13651.338 154.272 15.909 12.600 3710.958 24.176 371.394

std 193.295 25.867 769.518 12.219 2.954 4.683 60.702 10.036 32.584

min 1062.087 35.034 9572.271 111.000 6.670 1.132 3117.774 5.402 250.784

25% 1227.113 100.723 13144.905 149.000 13.800 9.451 3703.538 17.537 356.222

50% 1394.678 114.361 13686.825 149.000 14.970 12.133 3722.433 17.784 375.825

75% 1550.061 138.799 14197.680 160.000 18.070 15.514 3741.329 38.886 397.873

max 1765.971 155.089 15276.570 180.000 28.270 26.266 4138.136 49.575 466.860
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Table 4.4: Summary of statistical characteristics of selected features for hole size 216

in Well-1.

TVD GR SPPA RPM STOR SWOB TFLO ROP5 DTCO MH R

count 21191 21191 21191 21191 21191 21191 21191 21191 21191

mean 2149.576 77.210 14976.438 161.832 37.429 12.239 1991.216 29.370 279.359

std 230.264 23.965 1118.166 14.675 8.623 3.998 91.472 14.902 38.556

min 1766.090 29.387 9948.147 110.000 13.230 -2.545 1662.813 4.679 148.642

25% 1944.349 57.309 14015.334 158.000 30.864 9.238 1984.038 16.773 260.161

50% 2125.299 83.554 15033.590 159.200 37.872 12.904 1991.596 27.963 280.610

75% 2362.843 96.482 15949.148 177.000 43.555 15.249 2002.934 40.020 305.453

max 2539.241 127.454 17247.270 181.000 55.090 26.231 3722.433 91.030 368.705

Table 4.5: Summary of statistical characteristics of selected features for hole size 311

in Well-6.

TVD GR SPPA RPM STOR SWOB TFLO ROP5 DTCO MH R

count 44289 44289 44289 44289 44289 44289 44289 44289 44289

mean 1632.239 87.325 28719.066 149.512 31.171 8.214 4187.331 46.540 321.172

std 178.125 13.408 4116.948 9.618 8.737 3.765 11.839 8.975 46.405

min 1342.703 48.646 19813.190 108.000 7.530 0.000 4161.300 20.639 186.292

25% 1477.359 79.804 24604.185 139.500 21.925 5.303 4180.215 42.140 271.473

50% 1626.865 87.432 28720.680 150.000 30.415 7.444 4189.672 49.580 319.500

75% 1787.773 96.294 32122.625 158.500 40.220 10.605 4199.130 54.345 365.084

max 2003.019 123.372 36453.815 180.000 51.050 17.505 4218.045 69.811 421.709
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Table 4.6: Summary of statistical characteristics of selected features for hole size 216

in Well-6.

TVD GR SPPA RPM STOR SWOB TFLO ROP5 DTCO MH R

count 17 17 17 17 17 17 17 17 17

mean 2014.247 51.578 36116.338 158.265 41.907 9.774 4187.447 31.572 295.273

std 3.744 3.385 58.605 2.024 1.357 3.394 13.177 7.712 11.121

min 2010.669 48.734 36015.300 155.000 39.230 5.404 4161.300 21.643 279.708

25% 2010.924 48.918 36050.810 157.000 40.920 6.322 4180.215 23.734 284.703

50% 2012.285 50.389 36127.500 158.000 42.090 9.891 4189.672 31.118 293.209

75% 2018.929 54.439 36165.810 159.000 42.920 13.970 4199.130 40.601 307.355

max 2019.696 57.894 36191.250 162.000 43.950 14.582 4199.130 40.717 314.810

As previously mentioned, in the dataset of Well-1 and Well-6, the DTCO-MH-R

column consists of many NaN values. We omitted all rows containing NaN values. To

address the NaN values in the Geological Formation column, the forward fill method

(ffill) was employed. This method propagates the last known value forward to fill in

the missing values.

4.4 Sonic log and geological formation

The relationship between geological formations and sonic logs is fundamental in un-

derstanding subsurface rock properties. Sonic logs measure the travel time of acoustic

waves through the formation, which provides insight into the rock’s elastic properties.

These properties include porosity, lithology, and the presence of fluids, which are all
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critical for geological and reservoir characterization. Sonic logs help in identifying

different lithologies (rock types) based on their acoustic properties. Different rocks,

such as sandstones, shales, and carbonates, have distinct sonic velocities [29]. The

acoustic velocity is influenced by the porosity of the rock. High porosity typically re-

sults in slower acoustic velocities due to the presence of fluids within the pores, while

low porosity corresponds to higher velocities [30]. Sonic logs can indicate the pres-

ence of hydrocarbons. Fluid-filled porosity, particularly with hydrocarbons, affects

the acoustic impedance and velocity [31]. Understanding the mechanical properties

of the rock, such as Young’s modulus and Poisson’s ratio, which are derived from

sonic log data, is crucial for drilling and reservoir management [32].
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Figure 4.2: Sonic log values attributed to various formations based on TVD and

different hole sizes for Well-1.
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Figure 4.2, presents the sonic log values attributed to various formations based

on TVD and different hole sizes. However, it is noteworthy that in Well-1 there is a

small portion of target values for a hole size of 445. As evident from the chart, the

initial meters of Well-1 pose a challenge for making predictions due to this missing

data. In Well-6 there are no target values for a hole size of 445 as we can see in Figure

4.3.
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Figure 4.3: Sonic log values attributed to various formations based on TVD and

different hole sizes for Well-6.
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4.5 Removing outliers

There are two approaches for identifying outliers in the data; one involves utilizing

Interquartile Range ( IQR), and the other involves utilizing standard deviation. In

our case, we opted for IQR method to eliminate outliers from the dataset.

To implement this, we calculated the first and third quartiles (representing the

25th and 75th percentiles, respectively) for each column in the input and output

features. Subsequently, we computed the IQR by taking the difference between the

third quartile (Q3) and the first quartile (Q1). The IQR is a statistical measure that

helps assess the dispersion of data, focusing on the middle 50% of the dataset.

Following the IQR calculation, we proceeded to clean the dataset by removing

data points (rows) deemed as outliers within the designated columns. This data-

cleaning process aids in enhancing the data quality for subsequent analyses or mod-

eling by eliminating data points that exhibit significant deviations from the central

tendencies of the dataset.
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Figure 4.4: Boxplot and histogram of ROP5, SWOB, GR and sonic log before

removing outliers of Well-1.
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Figure 4.5: Boxplot and histogram of ROP5, SWOB, GR and sonic log after re-

moving outliers of Well-1.
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Figures 4.4 and 4.5 showcase box plots and histograms illustrating the distribu-

tions of ROP5, SWOB, GR, and the sonic log before and after the removal of

outliers for Well-1.

4.6 Scaling

In our models, scaling is employed to reduce the disparities between data points,

particularly when the data exhibits significant differences. In simpler terms, scaling

aims to create generalized data points in such a way that the distance between them

becomes more uniform. Having considered various scalers like quantile transform, log

scaling, and Z-score and their applications, the scaling method adopted in our study

is the Min-Max scaler. In the following, we briefly discuss alternative scalers and

their respective applications.

4.6.1 Min-Max scaler

Min-Max scaling, also referred to as normalization, is a technique employed to rescale

the values within a dataset to a predefined range. The primary objective is to stan-

dardize all values within the dataset to a common scale, facilitating meaningful com-

parisons.

The Min-Max scaling formula is expressed as follows:

Normalized Value = Value −minimum

maximum −minimum
,
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where Value is the original value of the data.

This formula scales the values in the dataset such that they are all within the

range of 0 to 1. The minimum value in the dataset will be scaled to 0, and the

maximum value will be scaled to 1. All other values will be scaled between 0 and

1 based on their position relative to the minimum and maximum values. Min-Max

scaling can be useful for bringing all the values in a dataset into the same range for

modeling or visualization.1

It is important to note that Min-Max scaling can be sensitive to outliers, as the

minimum and maximum values will be based on the entire dataset. In our study, we

have removed the outliers and then used the scaler on the Well-1 and Well-6. Figure

4.6 shows the density of ROP5, SWOB, GR, and TFLO by applying a Min-Max

scaler.

4.6.2 Quantile transform

Quantile transformation is a method used to transform the values of a dataset so that

they are distributed evenly across a specified range. This is often done to ensure that

the transformed data follows a specific distribution, such as a normal distribution.

There are several ways to perform a quantile transformation, but one common

method is to use the quantile function of a probability distribution. For example,

to transform a dataset to follow a normal distribution, you could use the quantile

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
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Figure 4.6: Showing the density of ROP5, SWOB, GR and TFLO applying Min-

Max scaler.
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function of the normal distribution to transform the values of the dataset.

The process of quantile transformation typically involves sorting the values in the

dataset from lowest to highest and then mapping each value to a new value based on

its quantile within the dataset. For example, if the dataset has 100 values, the value

at the 25th quantile (also known as the first quartile) would be mapped to a new

value that is 25% of the way through the specified range.

Quantile transformation can be useful for ensuring that the transformed data

follows a specific distribution, such as a normal distribution. It can also be useful

when you want to bring the values of a dataset into a specific range, such as 0 to 1.

It is important to note that quantile transformation is sensitive to the distribution of

the original data, as the transformation will be based on the quantiles of the original

data. If the original data does not follow the desired distribution, the transformed

data may not follow the desired distribution either. In these cases, it may be necessary

to use a different method of transformation. This transform also reduces the impact

of marginal outliers.2

4.6.3 Log scaling

Log scaling is a method used to transform the values of a dataset by taking the

logarithm of each value. This can be useful when the values in the dataset span a wide

range and you want to bring them into a smaller range for modeling or visualization.

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

QuantileTransformer.html
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Several types of logarithms can be used for log scaling, including the natural logarithm

(base e), the common logarithm (base 10), and the logarithm to any other base. The

choice of base will depend on the specifics of the dataset and the desired range of the

transformed values.

Log scaling can be useful when the values in the dataset span a wide range and

you want to bring them into a smaller range for modeling or visualization. It can also

be beneficial when the original values are skewed or have a long-tailed distribution,

as log scaling can help to bring the values into a more symmetrical distribution.

4.6.4 Z-score

Standardization, also known as Z-score normalization, is a method used to transform

the values of a dataset so that they have a mean of 0 and a standard deviation of 1.

This is often done to bring the values in a dataset into a common scale for modeling

or comparison.

The formula for standardization is as follows:

Standardized value = Value −mean

standard deviation
,

where Value is the original value of the data.

This formula transforms the values in the dataset such that they have a mean of 0

and a standard deviation of 1. All the values in the dataset will be transformed to fall

within the range of -3 to 3, with most of the values falling within the range of -1 to 1.

Standardization can be useful when we want to bring all the values in a dataset into
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the same scale for modeling. It is noteworthy to mention that standardization assumes

the original data follows a normal distribution. If the original data does not follow

a normal distribution, the transformed data may not follow a normal distribution

either. In these cases, it may be necessary to use a different method of scaling, such

as Min-Max scaling or quantile transformation.

83



0 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
D
en
si
ty

ROP5

0 1
0

1

2

3

4

5

6

7

D
en
si
ty

MinMax

0.00 0.01
0

200

400

600

800

1000

D
en
si
ty

Z-score

0 1
0

1

2

3

4

5

6

7

D
en
si
ty

MaxAbs

0 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en
si
ty

Robust

10 0 10
0.0

0.1

0.2

0.3

0.4

0.5

D
en
si
ty

Quantile

2.5 5.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en
si
ty

Log

0 25
0.00

0.02

0.04

0.06

0.08

0.10

D
en
si
ty

SWOB

0 1
0.0

0.5

1.0

1.5

2.0

2.5

D
en
si
ty

MinMax

0.0000 0.0025
0

200

400

600

800

1000

1200

1400

1600
D
en
si
ty

Z-score

0 1
0.0

0.5

1.0

1.5

2.0

2.5

D
en
si
ty

MaxAbs

5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en
si
ty

Robust

10 0 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en
si
ty

Quantile

0 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en
si
ty

Log

0 200
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

D
en
si
ty

GR

0 1
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en
si
ty

MinMax

0.00 0.02
0

50

100

150

200

D
en
si
ty

Z-score

0 1
0.0

0.5

1.0

1.5

2.0

2.5

D
en
si
ty

MaxAbs

2.5 0.0 2.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
D
en
si
ty

Robust

10 0 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en
si
ty

Quantile

4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en
si
ty

Log

2500 5000
0.0000

0.0005

0.0010

0.0015

0.0020

D
en
si
ty

TFLO

0 1
0

1

2

3

4

5

D
en
si
ty

MinMax

0.00 0.25
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en
si
ty

Z-score

0.5 1.0
0

2

4

6

8

D
en
si
ty

MaxAbs

0 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en
si
ty

Robust

10 0 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en
si
ty

Quantile

7 8
0

1

2

3

4

5
D
en
si
ty

Log

Figure 4.7: Applying Min-Max, Z-score, MaxAbs, Robust, Quantile, and Log scalers

on features ROP5, SWOB, GR and TFLO of Well-1.
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Figure 4.7 shows the effect of different scalers on features ROP5, SWOB, GR,

and TFLO of Well-1.

In our research, we encountered features with varying units or scales. To make

the features comparable without losing significant information, we opted for Min-

Max scaling. Furthermore, we applied different scalers to the data for modeling and

validated our decision by comparing results using performance metrics.

4.7 Accuracy measurements

At the end of this chapter, we aim to provide a short explanation of the accuracy

measurements utilized. These measurements will be employed in the subsequent

chapter to evaluate the algorithms. In these formulas, yi is the actual value, ŷi is the

predicted value, ȳ is the mean of the actual values and n is the sample size.

Mean Absolute Error (MAE):

MAE measures the average absolute difference between the actual and predicted

values. It provides a straightforward representation of the average error and is calcu-

lated by taking the mean of the absolute differences between each actual and predicted

value. The formula is:

MAE = 1

n

n

∑
i=1

∣yi − ŷi∣

Mean Squared Error (MSE):

MSE calculates the average of the squared differences between the actual and

predicted values. Squaring the errors emphasizes larger errors, making it sensitive to
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outliers. The formula is:

MSE = 1

n

n

∑
i=1

(yi − ŷi)2

Root Mean Squared Error (RMSE):

RMSE is the square root of MSE, providing a measure of the average magnitude

of errors in the same units as the target variable. It is often preferred when the errors

are expected to be normally distributed. The formula is:

RMSE =
√
MSE

Coefficient of determination or R-squared (R2):

R2 score represents the proportion of the variance in the dependent variable that

is predictable from the independent variables. It ranges from 0 to 1, with 1 indicating

a perfect fit. It is a relative measure that assesses the goodness of fit of a regression

model. The formula is:

R2 = 1 − ∑
n
i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2

In this chapter, we have cleaned our dataset through various techniques, such

as outlier removal and scaling. With the data now prepared, we transition to the

methodology phase. In the upcoming chapter, we will detail the methodologies em-

ployed for analysis, encompassing advanced algorithms and fundamental statistical

approaches.

86



Chapter 5

Methodology

The methodology involved several steps to achieve the study’s objectives. This study

employed LSTM, RF, and XGBoost algorithms for predictive modeling and en-

sured optimized hyperparameter selection and grid search with cross-validation to val-

idate the models’ performance. Cross plots of predicted versus actual compressional

wave travel times on blind data were generated to validate the predictions made by

LSTM, XGBoost, and RF algorithms. The study concluded that while all three

algorithms successfully predicted the compressional sonic log, RF and XGBoost

exhibited superior generalization abilities compared to LSTM model.

In the subsequent section, we present the outcomes of our model evaluation for

predicting the sonic log.
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Figure 5.1: Working process

5.1 Working process

The general structure of the work has three basic steps following data collection

illustrated in Figure 5.11 :

• Data preparation

• Feeding the machine learning model with the training data

• Evaluating the model on test, compute R2 score, MSE , RMSE and MAE.

5.2 Data exploration and feature engineering

The dataset utilized in this study comprises numerical observations collected in the

drilling project for Well-1 and Well-6. In total, the dataset encompasses 42 distinct

1Template adapted from www.canva.com
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features with 55,574 observations for Well-1 and 49 features for 68,272 observations

for Well-6. Notably, certain features are defined based on TVD.

To distill the essential features from this dataset, we adopted a comprehensive ap-

proach. Initially, we employed a correlation matrix to identify features demonstrating

a strong linear relationship with the target variable. Through the application of the

Pearson correlation method, we successfully identified and removed highly correlated

features, achieving two key objectives: the preservation of crucial features and the

improvement of model interpretability. In addition, we conducted a thorough review

of relevant research literature to explore the potential inclusion of other pertinent

features. Finally, we considered the availability of variables in the selection process,

ensuring a pragmatic approach to feature inclusion. Through the integration of these

methodologies, we effectively pinpointed the key features that provide comprehensive

insights into explaining the target variable.

The selected input features are as follows:

• TVD: True Vertical Depth (m)

• RPM: Rotational Speed (c/min)

• TFLO: Total Flow rate of all active pumps (L/min)

• SWOB: Surface Weight On Bit (1000 kgf)

• GR: Gamma Ray (gAPI)

• Hole size: Classical variable including 445, 311, or 216 values (mm)
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• STOR: Surface Torque (kN.m)

• ROP5: Rate Of Penetration averaged over the last 5 feet (m/h)

Our target variable is sonic log which is denoted as

• DTCO-MH-R (ms/m)

It is crucial to emphasize that within our model, we executed specific data preprocess-

ing procedures. These particular steps play a pivotal role in ensuring the attainment

of dependable and uniform results across a variety of models and methodologies.

Ultimately, they empower us to make well-founded decisions in practical drilling ap-

plications.

To elaborate further, it is worth noting that we undertook the following actions.

We removed rows containing NaN values from the dataset to maintain data integrity

and completeness. To ensure consistency, we standardized column names, with par-

ticular attention to the Hole Size feature. This enhances clarity and coherence in the

dataset. Outliers, which could negatively impact model performance, were system-

atically eliminated using the interquartile method. This ensures that the model is

trained on data free from extreme values that might skew predictions and cells with

a value of -999 were identified and dropped within the dataset.

By executing these essential data refinement measures and standardizing the

dataset, we established a foundation where our model is trained on high-quality,

dependable data. This, in turn, enables us to furnish precise predictions for the sonic
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log. Such an approach is imperative for achieving dependable and uniform outcomes

across the model, ultimately equipping us to make informed decisions in practical

drilling scenarios. Figures 5.2, 5.3 and 5.4 illustrate the processed data correspond-

ing to TVD for various hole sizes in Well-1. Additionally, Figure 5.5 depicts the data

for hole size 311 in Well-6.
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Figure 5.2: The values of selected features at various TVDs for Well-1, with a hole

size of 445.
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Figure 5.3: The values of selected features at various TVDs for Well-1, with a hole

size of 311.
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Figure 5.5: The values of selected features at various TVDs for Well-6, with a hole

size of 311.

5.3 Data management

Data management is the systematic and efficient process of acquiring, organizing,

storing, and utilizing data. In our models, where the signal of variables follows a

sequential pattern based on TVD, it is crucial to maintain the sequence integrity of

train and test sets. This can not be achieved by utilizing the train-test split function

from the sklearn library which shuffles the signals.

The primary objective of our study is to optimize a machine learning model for

continuous sonic log predictions as the depth increases across diverse formations. In

this context, the training set comprises data up to a certain depth, whereas the test
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set includes data beyond that depth. For example, in Well-1, TVD spans from 1062

to 1770 meters, providing data for a depth of 708 meters for hole size 311. The

training data consists of observations (data points) ranging from 0 to 14631 for this

hole size, while the test set extends from observations 14631 to 16256. This meticu-

lous approach ensures that the model generalizes effectively to new data, facilitating

practical application in real-world scenarios without encountering data leakage or dis-

rupting sequences. Furthermore, our study incorporates a blind prediction strategy.

We utilized information from a particular segment of Well-1 to predict the behavior

of a similar well, Well-6, from a similar geological formation by considering TVD

ranges. Similarly, we employed a segment of Well-6 as training data to forecast a

specific section of Well-1.

This methodology empowers us to make precise predictions with constrained infor-

mation, proving beneficial in practical scenarios where data availability is restricted.

Through harnessing the existing data, our objective is to construct a robust model

capable of accurately predicting the target variable for novel, unseen data instances.

5.4 Data splitting

For XGBoost, LSTM, or RF models, we divided the dataset into a training set

and a test set. The initial 90% of the data were utilized as training data, while the

remaining 10% were set aside for testing purposes. This division was consistently

applied to all three distinct hole sizes for Well-1. Tables 5.1 and 5.2 illustrate the
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sizes of training and test sets for Well-1 and Well-6, respectively. As we can see, there

is no data for hole size 445 of Well-6, and there are limited data points for hole size

216 of Well-6.

Table 5.1: Description of data corresponding to Well-1 and the number of data points

for three different hole sizes.

Hole size 445 311 216

Well-1 201 16256 21190

Train size 181 14631 19071

Test size 20 1625 2119

Table 5.2: Description of data corresponding to Well-6 and the number of data points

for three different hole sizes.

Hole size 445 311 216

Well-6 0 44288 16

Train size 0 39860 15

Test size 0 4428 1

As highlighted earlier, employing a random allocation method for dataset division

was not feasible due to the crucial role of event sequencing in time series analysis,

especially in our scenario where the sequence order holds paramount importance.
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Consequently, we had to be cautious when partitioning the data into training and test

sets to maintain the accurate sequencing of events, thereby upholding the reliability

of our results. Therefore the function “Train test split”, is designed to split a dataset

into training and testing sets. This function takes two parameters as input. The first

parameter, data, represents the dataset that we need to split into training and testing

sets.

The second parameter, n test, is an integer that specifies the number of data points

to reserve for testing. These data points will be used to evaluate the performance of

a predictive model. At the end, the function returns two sets of data. The first set

includes all data points from the beginning of the data array up to (but not including)

the last n test data points. This portion of the data is typically used for training the

predictive model. The second set includes the last n test data points from the data

array. This portion of the data is reserved for testing the model’s predictions. This

type of data split is common when working with time series data to assess how well

a model generalizes to unseen data. Algorithm 16 illustrates the pseudocode which

shows the functioning of the “Train test split” function in more detail.

5.5 Preparing series for supervised learning

We have implemented a function designed to convert time series data into a format

suitable for supervised learning tasks. This function takes sequence data as input

and rearranges it to make it usable for training and evaluating XGBoost, RF, and
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Algorithm 16 Train test split

Require: data: The entire dataset

Require: n test: Number of test instances

1: function TrainTestSplit(data, n test)

2: train← data[∶ −n test, ∶]

3: test← data[−n test ∶, ∶]

4: return train, test

LSTM models. By specifying the number of lag observations to use as input features,

the number of future observations to predict, and ensuring that the data is devoid of

NaN values, the function outputs the transformed data in the form of a NumPy array.

This format is ideal for conducting supervised learning, enabling the utilization of past

observations as features to predict future ones. The “series-to-supervised” function

is designed to handle diverse input parameters, catering to multiple formats of time

series data. It primarily accepts input data as either a list, a 2D NumPy array, or a

data frame featuring multiple features, as is pertinent to our particular study.

There are some parameters in this function, n in is the number of lag observations

as input (default is 30) and n out is the number of observations to predict as output

(default is 10). Also, we add a boolean flag that determines whether to drop rows

with NaN values (default is True). Then, the function checks the type of the data

variable to determine the number of variables. If data is a list, it sets n vars to 1;

otherwise, it sets it to the number of columns in the data and converts data to a
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data frame (df). It converts the input data into a data frame using the data frame

constructor. This is typically done for easier manipulation of the data. By studying

the features and correlation between the selected features and output, our dataset is

multivariate. Now the function creates lag features for the input data. It does this

by looping through the range of n in (the number of lag observations) and appending

lagged versions of the data to the columns list. This effectively creates columns that

represent past observations of time series data.

Next, the function creates forecast features. The function appends forecast fea-

tures to the columns list by shifting the data in the opposite direction for a range of

n out values.

In the end, the function combines lag and forecast features. It concatenates the

columns in the columns list along the horizontal axis to create a single data frame.

This data frame now contains both lagged and forecasted features. It also handles

NaN values, if the dropnan is set to True, it removes rows containing NaN values

from the data frame. Finally, the function returns the values of the data frame as a

NumPy array. Algorithm 17 illustrates the pseudocode of the “Convert time series

to supervised learning” function.
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Algorithm 17 Convert time series to supervised learning

Require: data: time series data

Require: n in: Number of lag observations as input (default: 30)

Require: n out: Number of future observations to predict (default: 10)

Require: dropnan: Drop rows with NaN values (default: True)

1: function SeriesToSupervised(data, n in,n out, dropnan)

2: n vars← number of features ▷ Assuming data is multivariate

3: df ← DataFrame(data)

4: cols← empty list

▷ Input sequence (t-n, ..., t-1)

5: for i← n in to 1 by −1 do

6: Append df .shift(i) to cols

▷ Forecast sequence (t, t+1, ..., t+n)

7: for i← 0 to n out − 1 do

8: Append df .shift(−i) to cols

9: agg ← Concatenate(cols, axis=1)

10: print(agg)

▷ Drop rows with NaN values

11: if dropnan then

12: agg.dropna(inplace=True)

13: return agg.values
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5.6 XGBoost model

XGBoost is an open-source software library that provides a gradient-boosting frame-

work for Python and other programming languages. It was developed by Tianqi Chen

and is commonly used for supervised learning problems like regression, classification,

and ranking [13].

One of the reasons why XGBoost is a popular choice for many data science prob-

lems is because it provides high performance, and scalability, and offers several tuning

hyperparameters that can be adjusted to suit the specific problem at hand.

To use XGBoost for regression, we need to import the XGBoost library and

create an XGBRegressor object. The fit method is then used to train the regressor

on the data, while the predict method is used to make predictions on new data. To

improve the performance of the XGBoost regressor, several hyperparameters can be

tuned. Some of the most important ones include the learning rate, the maximum

depth of the tree, the number of trees in the forest, and the subsample rate.

In this research, our workflow commenced with data loading, followed by data

preprocessing and the subsequent division of the dataset into training and testing

subsets. We experimented with various combinations of hyperparameters in our XG-

Boost regressor, based on the GridSearchCV from the scikitlearn library; the most

effective hyperparameters were number of estimators and learning rate. Specifically,

we tested with 1000, 2000, 5000, and 10000 estimators, along with learning rates

of 0.01, 0.05, 0.1, and 0.3. Ultimately, we initialized the XGBoost regressor with a
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specific configuration: 1000 estimators and a learning rate of 0.05. In Table 5.3, a

comparison between different hyperparameters based on MAE measurement is pro-

vided. After tuning the hyperparameters, the model was trained on the training

dataset, and predictions were generated for the test dataset.

Table 5.3: A comparison between different hyperparameters based on MAE mea-

surement.

Number of estimators Learning Rate MAE

1000 0.01 3.6029

1000 0.05 3.1066

2000 0.05 3.0993

5000 0.1 3.4400

10000 0.3 3.8363

Based on Table 5.3, the ideal configuration is 2000 estimators with a learning

rate of 0.05. However, due to limitations in training time, we chose the second-best

option: 1000 estimators with a learning rate of 0.05, which only slightly affects the

results. In this study, we carried out separate training and testing using Well-1 and

Well-6 applying XGBoost, RF, and LSTM models. Additionally, at the end of

this chapter, we performed a blind prediction by training the LSTM model on 60

meters of the dataset from Well-1 on hole size 311 and testing it on 40 meters of data
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corresponding to hole size 311 of Well-6. Furthermore, we repeated this process by

using 60 meters of Well-6 for training and predicted 40 meters of Well-1 to explore the

performance from a different perspective. The detailed presentation of the procedure

and results is provided in Section 5.10.3.1.

Algorithm 18 illustrates the pseudocode of the “XGBoost forecast” function.

Algorithm 18 XGBoost forecast

Require: train: Training data

Require: testX: Test input data

1: function XGBoostForecast(train, testX)

2: train← Array(train)

3: trainX, trainy ← train[∶, ∶ −1], train[∶,−1]

4: model ← XGBRegressor( n estimators = 1000, learning rate = 0.05,

min child weight = [default = 1], reg lambda = [default = 1], reg alpha =

[default = 0], subsample = [default = 1], colsample bytree = [default = 1],

max depth = [default = 6] )

5: model.fit(trainX, trainy)

6: ŷ ←model.predict(Array([testX]))

7: return ŷ[0]
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5.7 Walk-forward validation for XGBoost

Before proceeding to the model evaluation, the following preparatory steps were un-

dertaken. An empty list was initialized to capture model predictions and store fore-

casted values. Subsequently, the dataset was effectively split into training and testing

subsets, employing the data splitting method outlined in Section 5.4. Notably, the

train test split method from the sklearn library was not utilized, and shuffling was

avoided.

A systematic iteration was conducted, encompassing each depth step within the

test set. During each iteration, relevant input features, including lag observations,

and the actual target value were considered. The trained XGBoost model was then

utilized to generate one-step predictions. This involved making predictions using

historical data and input features, with the predicted value stored in a variable labeled

ŷ.

These predictions were systematically recorded, and the actual observation was

appended to the historical data. Subsequently, evaluation metrics, such as MAE,

R2, MSE, and RMSE were computed to assess the model’s performance. Model

predictions were generated through the invocation of the “XGBoost forecast” func-

tion from Section 5.6. Algorithm 19 delineates the operation of the “Walk forward

validation for XGBoost model” function.
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Algorithm 19 Walk forward validation for XGBoost model

Require: data: The entire dataset

Require: n test: Number of test instances

1: function WalkForwardValidation(data, n test)

2: predictions← empty list

3: train, test← TrainTestSplit(data, n test)

4: history ← copy of train

5: for i← 1 to len(test) do

6: testX, testy ← SplitTestRow(test[i])

7: ŷ ← XGBoostForecast(history, testX)

8: Append ŷ to predictions

9: Append test[i] to history

10: Print((expected, predicted) = (testy, ŷ))

11: MAE ← MeanAbsoluteError(test[∶,−1], predictions)

12: R2 ← R Squared(test[∶,−1], predictions)

13: RMSE ←
√
MeanSquaredError(test[∶,−1], predictions)

14: MSE ← MeanSquaredError(test[∶,−1], predictions)

15: return MAE,R2,RMSE,MSE, test[∶,−1], predictions

The outcomes of the XGBoost model are presented in Tables 5.4 and 5.5 for

Well-1 and Well-2, respectively.
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Table 5.4: Summary of results of sonic log prediction using XGBoost model for

Well-1 on the test datasets. The XGBoost model shows varying performance across

different test datasets for Well-1. The model achieves the highest accuracy and best fit

on the third dataset, as evidenced by the lowest MAE, RMSE, and MSE values and

a high R2 value, which demonstrates more sample data can result in more accurate

results.

XGBoost

Well-1 MAE R2 RMSE MSE

Hole size: 445 4.8554 0.7950 5.7426 32.9779

Hole size: 311 2.3419 0.9889 3.4052 11.5958

Hole size: 216 1.4439 0.9811 2.3901 5.7126

Table 5.5: Summary of results of sonic log prediction using XGBoost model for

Well-6 on the test dataset.

XGBoost

Well-6 MAE R2 RMSE MSE

Hole size: 311 0.4973 0.9764 1.0851 1.1775

In Figures 5.6a, 5.6b, 5.6c, and 5.6d, the expected and predicted values, de-

rived from varying numbers of lag observations for 30 future observations using the
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XGBoost model, are depicted. Among these figures, Figure 5.6a featuring 30 lag

observations exhibited superior predictive performance as evidenced by the lowest

MAE, RMSE, and MSE values and a high R2 value in Table 5.9 and demonstrated

a more consistent trend during the sonic log value increments, resulting in smoother

predictions devoid of fluctuations.

Table 5.6: Summary of results of sonic log prediction using XGBoost model for

Well-1 on the test dataset.

XGBoost

Well-1 lag observations MAE R2 RMSE MSE

Hole size: 311 30 4.4835 0.7785 5.6538 31.9658

Hole size: 311 40 4.6961 0.7592 5.8954 34.7563

Hole size: 311 60 4.6130 0.7559 5.9352 35.2275

Hole size: 311 80 4.6939 0.7478 6.0331 36.3993
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Figure 5.6: Comparison of expected and predicted outcomes using varying numbers

of lag observations for the same future observations, generated by the XGBoost

model for hole size 311 of Well-1. (a) 30 lag observation and future forecast for 30

values, (b) 40 lag observation and future forecast for 30 values, (c) 60 lag observation

and future forecast for 30 values, (d) 80 lag observation and future forecast for 30

values. Based on metric measurements in Figure 5.9, 30 lag observation has the best

result.

107



5.8 Random Forest

Random Forest is an ensemble learning technique that builds multiple decision trees

during training and combines their outputs for improved accuracy and robustness.

It works by training each tree on a random subset of the training data and then

combining their predictions during the testing phase. Known for its versatility and

effectiveness in handling complex datasets, RF is widely used for classification and

regression tasks in machine learning. [15, 16, 11]

The procedures, like splitting the dataset into training and testing sets and trans-

forming it into depth series, follow the same approach as with the XGBoost model.

In Sections 5.4 and 5.5, we introduced “Train test split” and “Convert time series to

supervised learning” functions, and thorough explanations were provided. The pri-

mary difference lies in the application of the RF model. Within the “Walk forward

validation” function, the technique employed for training and adding each trained

value to the test set is RF model, accompanied by its unique set of hyperparameters.

To utilize RF for regression, we need to import the necessary libraries, such as

Scikit-learn, and create a Random Forest Regressor object. The fit method is then

employed to train the regressor on the data, while the predict method is utilized to

make predictions on new data.

In the performance of the Random Forest regressor, we used n-estimators (fixed

100). Algorithm 20 illustrates the pseudocode of RF model.

108



Algorithm 20 Random Forest forecast

Require: train: Training data

Require: testX: Test input data

1: function RandomForestForecast(train, testX)

2: train← Array(train)

3: trainX, trainy ← train[∶, ∶ −1], train[∶,−1]

4: model ← RandomForestRegressor( n estimators = 100, random state =

42 )

5: model.fit(trainX, trainy)

6: ŷ ←model.predict(Array([testX]))

7: return ŷ[0]

5.9 Walk forward validation applying Random For-

est

Before moving on to model evaluation, several preparatory steps were carried out.

First, an empty list was initialized to capture model predictions and store forecasted

values. Subsequently, the dataset underwent an effective split into training and testing

subsets using the data splitting method described in Section 5.4. Notably, the Sklearn

library’s train test split method was not employed, and shuffling was deliberately

avoided.

A systematic iteration was conducted, covering each step within the test set. In
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each iteration, relevant input features, including lag observations, and the actual

target value were taken into account. The trained RF model was then employed to

generate one-step predictions. This involved making predictions using historical data

and input features, with the predicted value stored in a variable labeled ŷ.

These predictions were systematically recorded, and the actual observation was

appended to the historical data. Subsequently, evaluation metrics, such as MAE, R2,

MSE, and RMSE were computed to assess the model’s performance. Model predic-

tions were generated through the invocation of the “Random Forest” function. The

provided pseudocode in Algorithm 21 outlines the operation of the “Walk forward val-

idation for Random Forest model” function. The outcomes of RF model for different

hole sizes of Well-1 and Well-6 are presented in Tables 5.7 and 5.8 respectively.
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Algorithm 21 Walk forward validation for Random Forest

Require: data: The entire dataset

Require: n test: Number of test instances

1: function WalkForwardValidation(data, n test)

2: predictions← empty list

3: train, test← TrainTestSplit(data, n test)

4: history ← copy of train

5: for i← 1 to len(test) do

6: testX, testy ← SplitTestRow(test[i])

7: ŷ ← RandomForestForecast(history, testX)

8: Append ŷ to predictions

9: Append test[i] to history

10: Print((expected, predicted)=(testy, ŷ))

11: MAE ← MeanAbsoluteError(test[∶,−1], predictions)

12: R2 ← R Squared(test[∶,−1], predictions)

13: RMSE ←
√
MeanSquaredError(test[∶,−1], predictions)

14: MSE ← MeanSquaredError(test[∶,−1], predictions)

15: return MAE, R2, RMSE, MSE, test[∶,−1], predictions

111



Table 5.7: Summary of results for sonic log prediction using Random Forest model

for Well-1 on the test datasets. The RF model shows varying performance across

different test datasets for Well-1. The model achieves the highest accuracy and best

fit on the hole size 216, as evidenced by the lowest MAE, RMSE, and MSE values

and a high R2 value.

Random Forest

Well-1 MAE R2 RMSE MSE

Hole size: 445 7.487 0.543 8.579 73.607

Hole size: 311 2.063 0.991 3.046 9.278

Hole size: 216 1.420 0.981 2.389 5.708

Table 5.8: Summary of results of log prediction using Random Forest model for Well-6

on the test dataset.

Random Forest

Well-6 MAE R2 RMSE MSE

Hole size: 311 0.725 0.983 1.377 1.896

In Figures 5.7a, 5.7b,5.7c and 5.7d, the expected and predicted values, derived

from varying numbers of lag observations for 30 future observations using the RF

model, are depicted. Among these figures, Figure 5.7b featuring 40 Lag observations
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shows the best performance across MAE, R2, and RMSE, making it the top choice.

Figure 5.7a featuring 30 Lag observations performs well overall and has the lowest

MSE, making it the second-best option. 30 Lag observations is our choice due

to being comparable with XGBoost on exact dimensions with good performance

metrics and the lowest MSE.

Table 5.9: Summary of results of sonic log prediction using RF model for Well-1 on

the test dataset.

RF

Well-1 lag observations MAE R2 RMSE MSE

Hole size: 311 30 4.3001 0.7474 6.0386 31.9658

Hole size: 311 40 4.2861 0.7514 5.9902 35.8828

Hole size: 311 60 4.5144 0.7362 6.1706 38.769

Hole size: 311 80 4.4742 0.7460 6.0547 36.6604
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Figure 5.7: Comparison of expected and predicted outcomes using varying numbers

of lag observations for the same future observations, generated by the RF model for

hole size 311 of Well-1. (a) 30 lag observation and future forecast for 30 values, (b)

40 lag observation and future forecast for 30 values, (c) 60 lag observation and future

forecast for 30 values, (d) 80 lag observation and future forecast for 30 values. Based

on metric measurements in Figure 5.9, 30 lag observation has the best result
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In summary, the comparison between anticipated and forecasted outcomes in Fig-

ures 5.6 and 5.7 highlights the influence of different lag observations on the subsequent

30 observations, specifically concentrating on hole size 311 of Well-1. While the RF

model demonstrates fewer fluctuations compared to the XGBoost model, both mod-

els exhibit a delay in accurately predicting actual values.
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5.10 LSTM model

The LSTM model employed in this code is a specialized type of RNN designed to

effectively capture long-term dependencies within sequential data. In the specific

context of this code, the LSTM model was developed and trained, corresponding

to different hole sizes 311, 445, and 216. In the following sections, we delve into a

comprehensive overview of the architecture, training process, and evaluation aspects.

5.10.1 Model architecture, compilation and evaluation

The model’s architecture is established using the sequential API from TensorFlow and

Keras, popular libraries for building and training neural networks. The initial layer is

a bidirectional LSTM layer with 200 units, strategically designed to capture temporal

dependencies in both forward and backward directions. This bidirectional nature

enhances the model’s ability to discern patterns in sequential data. Subsequent dense

layers with 20 units and hyperbolic tangent (tanh) activation functions introduce

non-linearity to the model. To prevent overfitting, a dropout layer with a dropout

rate of 0.25 is incorporated. The final layer is a dense layer with a single unit, serving

as the output layer for regression.

The model is compiled using the Adam optimizer, a popular optimization algo-

rithm for training neural networks, and MSE is employed as the loss function. MSE

is particularly suitable for regression tasks, aligning to predict continuous sonic log

values.
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Training involves feeding the model with historical data, where input sequences

for each of the hole sizes are associated with target values for that hole size. The

training process spans 50 epochs with a batch size of 72, and the model’s performance

is monitored on a validation set during training.

Figure 5.8 presents the training and validation loss over 50 epochs and Algorithm

22 illustrates the pseudocode of the functioning of the LSTM model.

Algorithm 22 Create and compile LSTM Model

1: lstm model ← Sequential [

Bidirectional(LSTM(200),

Dense(20, activation=tanh),

Bidirectional(LSTM(150)),

Dense(20, activation=tanh),

Dense(20, activation=tanh),

Dropout(0.25),

Dense(1) ])

2: lstm model.compile(optimizer=adam, loss=mse)

3: lstm model.summary()
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Figure 5.8: Record of training and validation loss values collected during the training

process for over 50 epochs by LSTM model for different hole sizes of Well-1. (a)

Training history for hole size 445, (b) Training history for hole size 311, (c) Training

history for hole size 216. The loss values for both training and validation datasets

showed a similar decreasing trend as observed for all hole sizes, demonstrating the

model’s robustness and ability to adapt to different hole sizes.
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Figure 5.9: Record of training and validation loss values collected during the training

process for over 50 epochs by LSTM model for hole size 311 of Well-6.The loss

values for both training and validation datasets showed a similar decreasing trend,

demonstrating the model’s robustness.

5.10.2 Comparison of prediction and actual values

To compare the forecasted and actual values and to visualize the LSTM model’s be-

havior, the following steps were executed. The test dataset, representing the last 10%

of the sequence for each hole size, underwent reshaping to conform to the necessary

format for prediction. Subsequently, both the predicted and actual values underwent

an inverse scaling operation. For the predicted values, the feature columns from the

reshaped test dataset were combined with the predictions. The scaling transforma-

tion, previously applied during preprocessing using the Min-Max scaler, was then

reversed to extract the forecasted values. Similarly, for the actual values, the target

data was reshaped and merged with the feature columns of the reshaped test input
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data. Inverse scaling was then applied to isolate the actual values. This process

allows for a direct comparison between the forecasted and actual values, thereby fa-

cilitating the evaluation of the LSTM model’s performance. The sensitivity of MAE

is typically not sensitive to scaling because it measures the average magnitude of

errors without considering their direction. R2 is sensitive to scaling, especially when

the scaling affects the variance of the target variable. RMSE is sensitive to scaling

because it calculates the square root of the mean squared errors. Like RMSE, MSE

is sensitive to scaling because it measures the average of squared errors. In summary,

R2, RMSE, and MSE are more sensitive to scaled data compared to MAE. In our

LSTM model, performance ranked up by using scalers in Section 4.6.

The model’s effectiveness is assessed using metrics such as MSE, RMSE, MAE,

and R2 on both the training and validation sets. Tables 5.10 and 5.11 show the result

of accuracy measurements for Well-1 and Well-2. In the following, Figures 5.10, 5.11

and 5.12 illustrate the actual and predicted values for different hole sizes of Well-1

and Figure 5.13 shows the actual and predicted values of hole size 311 for Well-6.
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Table 5.10: Summary of results in sonic log prediction using LSTM model for Well-1

on the test datasets.The LSTM model shows varying performance across different

test datasets for Well-1. The model achieves the highest accuracy and best fit on the

hole size 216, as evidenced by the lowest MAE, RMSE, and MSE values and the

highest R2 value.

LSTM

Well-1 MAE R2 RMSE MSE

Hole size: 445 25.5841 0.5527 31.657 1002.1938

Hole size: 311 24.7066 0.1701 30.001 900.0620

Hole size: 216 2.0314 0.9691 9.3511 3.058

Table 5.11: Summary of results in sonic log prediction using LSTM model for Well-6

on the test dataset.

LSTM

Well-6 MAE R2 RMSE MSE

Hole size: 311 0.2456 0.9225 0.294 0.0862
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Figure 5.10: Comparison of LSTM predictions and actual values for hole size

445 of Well-1.
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Figure 5.11: Comparison of LSTM predictions and actual values for hole

size 216 of Well-1. The LSTM model’s predictions closely follow the trend

of the actual values, indicating that the model has learned the underlying

patterns in the data effectively.
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Figure 5.12: Comparison of LSTM predictions and actual values for hole size

311 of Well-1, fFollowing the 400th index, there’s a notable jump causing the

predicted values to diverge from the expected values significantly.
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Figure 5.13: Comparison of LSTM predictions and actual values for hole size

311 of Well-6.
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As illustrated in Figure 5.12 for Well-1, at around index 400, a significant sudden

change is evident in the data for hole size 316. Upon dividing the data into training

(90%) and testing (10%) segments, it became apparent that the LSTM model en-

countered challenges in accurately predicting subsequent data points for hole size 311

of Well-1 following significant noise; leading to deviations in the model’s predictions.

Post index 400, a marked disparity between predicted and actual values became evi-

dent. To address this issue, we segmented the 1620 test data indices into two subplots,

comprising the first 400 indices and the subsequent 400 to 1625 indices, as illustrated

in Figures 5.14 and 5.15. This subdivision was implemented to enhance clarity. To

mitigate this issue, we reconfigured the LSTM model by allocating 95% of the data

for training and the remaining 5% for testing. This adjustment allowed the model to

comprehensively learn from the training data, resulting in closely aligned actual and

predicted values, as evidenced in Figure 5.16. Furthermore, under this configuration,

the coefficient of determination R2 exhibited an improvement. Figure 5.17 illustrates

the actual values for the last 10% of data, along with its corresponding prediction.

Additionally, it presents the prediction of the last 5% of data after adding noisy data

into the training set and the reduction of the test size by 5%. Table 5.12 shows the

accuracy measurements for Well-1, considering 95% as a train and 5% as a test by

LSTM model.
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Table 5.12: Summary of results in sonic log prediction using LSTM model for Well-6

on the test dataset, considering 95% as train and 5% as test test.

LSTM

Well-6 MAE R2 RMSE MSE

Hole size: 311 10.771 0.371 12.115 146.774
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Figure 5.14: Comparing LSTM predictions with actual values on test data,

analyzing index values 0 to 400 for hole Size 311 in Well-1.
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Figure 5.15: Comparing LSTM predictions with actual values on test data,

analyzing index values 400 to 1625 for hole Size 311 in Well-1.
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Figure 5.16: Comparison of predictions and actual values for the hole size

311 in Well-1 for the last 5% of sequence as a test dataset. Compared to

Figure 5.12, the predicted values are closer to expected values.
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Figure 5.17: Comparison of actual values for the last 10% of the data as test

data, together with their respective predictions. Furthermore, the predictions

for the last 5% of the data after incorporating noisy data into the training

set and reducing the test size by 5%.
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5.10.3 Generalization

In this section, the LSTM model is tailored for time series prediction, showcasing

a sophisticated bidirectional architecture with multiple layers to capture intricate

patterns and dependencies in the data associated with a hole size of 311 to predict

sonic log values. Ensuring that the model can generalize to new, unseen data is a

crucial consideration. The goal is to establish a model that not only performs well

on the training set but also demonstrates robustness in making accurate predictions

on data it has not encountered during training.

5.10.3.1 Blind prediction

In our method of blind prediction, we used a specific portion of Well-1 as the training

data, while another designated portion of Well-6 was used as the test set for sonic

log prediction. Before employing the models (XGBoost, RF, and LSTM), both

datasets underwent preprocessing steps to handle NaN values and outliers, ensuring

alignment with the algorithmic procedures outlined in this chapter. For this particular

scenario, we chose data with TVD ranging from 1460 to 1520 meters for hole size 311

of Well-1, covering a depth of 60 meters, as the training dataset. Subsequently, the

models were applied to predict the sonic log for the 40-meter depth segment in Well-

6, specifically with TVD ranging from 1470 to 1510. Table 5.13 presents the results

obtained from the XGBoost, RF, and LSTM models. In the case of the LSTM

model, a bidirectional architecture is utilized. The training and test loss history for
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over 50 epochs is depicted in Figure 5.18, while the actual and predicted values using

the LSTM model are illustrated in Figure 5.19.

Similarly, we considered data with TVD ranging from 1460 to 1520 meters of hole

size 311, with a depth of 60 meters from Well-6, as the training set and the models

were then employed to forecast the sonic log for the 40-meter depth segment in Well-1,

specifically TVD between 1470 and 1510. In this scenario, the training and testing

loss history for the LSTM model over 30 epochs is depicted in Figure 5.20, and the

actual and predicted values using the LSTM model are shown in Figure 5.21.

Table 5.14 presents the results obtained from the XGBoost, RF, and LSTM

models for this partition of blind prediction.

Table 5.13: Summary of results of blind prediction, using 60 meters of Well-1 (TVD

ranging from 1460 to 1520) for training and predicting 40 meters of Well-6 as a test

set (TVD ranging from 1470 to 1510).

Blind prediction results

Models MAE R2 RMSE MSE

XGBoost 0.196 0.994 0.254 0.649

RF 0.078 0.996 0.221 0.048

LSTM 3.577 0.633 29.287 5.412
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Figure 5.18: Loss history for hole size 311 by LSTM as a blind prediction

over 50 epochs, 60 meters of Well-1 is used for training, 40 meters of Well-6

is considered as a test set.
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Figure 5.19: Expected and predicted values using 60 meters of Well-1 (TVD

from 1460 to 1520) for training and predicting 40 meters of Well-6 (TVD

from 1470 to 1510) in hole size 311 as a test set.
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Figure 5.20: Loss history for hole size 311 by LSTM as a blind prediction

over 30 epochs, 60 meters of Well-6 is used for training, 40 meters of Well-1

is considered as a test set.
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Figure 5.21: Expected and predicted values using 60 meters of Well-6 (TVD

from 1460 to 1520) for training and predicting 40 meters of Well-1 (TVD

from 1470 to 1510) in hole size 311 as a test set.
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Table 5.14: Summary of results of blind prediction, using 60 meters of Well-6 (TVD

ranging from 1460 to 1520) for training and predicting 40 meters of Well-1 as a test

set (TVD ranging from 1470 to 1510).

Blind prediction results

Models MAE R2 RMSE MSE

XGBoost 0.838 0.967 1.311 1.719

RF 0.976 0.951 1.452 2.10

LSTM 4.2505 0.4827 6.443 41.5112

Considering Table 5.13, while utilizing a 60-meter segment of Well-1 as training

data to predict a 40-meter segment of Well-6, it is evident that both XGBoost and

RFmodels outperform LSTM in terms of MAE, R2, RMSE, andMSE. Conversely,

for Well-6 considering a segment of it as a train, based on Table 5.14, it seems while

XGBoost and RF models still perform better than LSTM, the performance gap

between XGBoost and LSTM is wider compared to considering Well-1 as a training

set, indicating that the LSTM model struggles more with data from Well-6 as a

training set.
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Chapter 6

Conclusion

In this study, we applied three different machine learning algorithms (XGBoost,

RF, and LSTM) to predict the sonic log. We also used Well-1 and Well-6 inter-

changeably to predict part of each in a blind prediction scenario. Each algorithm

brought its unique strengths and considerations to the table. The study highlighted

the importance of ML techniques in enhancing reservoir characterization and explo-

ration efforts, potentially reducing costs and environmental impact associated with

traditional methods.

XGBoost, a gradient boosting algorithm, demonstrated robust performance with

respectableMAE and R2 across different hole sizes. It showcased its ability to capture

complex relationships within the data and adapt well to the blind prediction setting.

Random Forest, an ensemble learning method, provided competitive results, show-

casing its effectiveness in handling the provided features. The model demonstrated
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good predictive power, making it a valuable contender for sonic log predictions in

real-world scenarios while acknowledging that the XGBoost model exhibited even

better performance.

Although the LSTM model demonstrates strong performance for predicting sonic

log in Well-6, it encounters challenges in accurately forecasting the target value for

Well-1, specifically for hole sizes 311 and 445. The limited availability of data for hole

size 445 was a contributing factor, but in the case of hole size 311, it had poor perfor-

mance. Even after expanding the training dataset, although there were improvements

in R2 and RMSE, the model still lags behind XGBoost and RF models.

To compare the performance of XGBoost, RF and LSTM models based on the

provided metrics MAE, R2, RMSE and MSE for different hole sizes of Well-1, Table

6.1 presents a cohesive view of the data.
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Table 6.1: Performance comparison of XGBoost, RF and LSTM for Well-1 in all

hole sizes, considering last 10% of data as test set.

Algorithm Metric Hole Size: 445 Hole Size: 311 Hole Size: 216

RF

MAE 7.487 2.063 1.420

R2 0.543 0.991 0.981

RMSE 8.579 3.046 2.389

MSE 73.607 9.278 5.708

XGBoost

MAE 4.8554 2.3419 1.4439

R2 0.7950 0.9889 0.9811

RMSE 5.7426 3.4052 2.3901

MSE 32.9779 11.5958 5.7126

LSTM

MAE 25.5841 24.7066 2.0314

R2 0.5527 0.1701 0.9591

RMSE 31.657 30.001 9.3511

MSE 1002.1938 900.0620 3.058

According to the table, when comparing XGBoost, RF, and LSTM for Well-1

across all hole sizes, particularly considering the last 10% of data as the test set,

several observations can be made.

XGBoost consistently demonstrates the lowest MAE across all hole sizes, fol-

lowed by RF. LSTM exhibits the highest MAE values among the three algorithms,
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indicating that XGBoost tends to produce predictions that are closer to the actual

values on average.

XGBoost andRF generally perform well in terms of R2, withXGBoost slightly

outperforming RF for smaller hole sizes but showing slightly worse performance for

the largest hole size (445). LSTM lags behind in R2 values compared to XGBoost

and RF.

Similar to MAE, XGBoost consistently shows lower RMSE values compared

to RF and LSTM across all hole sizes. This suggests that XGBoost’s predictions

are closer to the actual values on average, with LSTM having the highest RMSE

values.

XGBoost also exhibits lower MSE values compared to RF and LSTM for all

hole sizes, further emphasizing its better prediction accuracy.

In summary, XGBoost generally outperforms RF and LSTM in terms of pre-

diction accuracy for all hole sizes in Well-1, as evidenced by lower MAE, RMSE,

and MSE values. However, RF shows slightly better R2 values for the largest hole

size. Also, Table 6.2 presents a comprehensive view of the performance metrics for

hole size 311 of Well-6.

136



Table 6.2: Performance comparison of XGBoost, RF and LSTM for Well-6 in hole

size 311, considering last 10% of data as a test set.

Algorithm
Metric

MAE R2 RMSE MSE

Random Forest 0.725 0.983 1.377 1.896

XGBoost 0.4973 0.9764 1.0851 1.1775

LSTM 0.2456 0.9225 0.294 0.0862

Considering Table 6.2, LSTM achieves the lowest MAE, indicating better accu-

racy in predicting the sonic log values compared to XGBoost and RF. In compar-

ing the performance metrics for Well-6, we observe variations across different models.

Specifically, RF emerges with the highest R2 value, indicating a better fit to the

data, followed by XGBoost and LSTM. Conversely, for RMSE and MSE, LSTM

demonstrates superior performance, with lower values compared to XGBoost and RF.

These lower RMSE and MSE values signify better accuracy of the LSTM model in

predicting sonic log values for Well-6. Thus, while RF excels in terms of R2, LSTM

outperforms in terms of MAE, RMSE and MSE, underscoring the importance of

considering various metrics when evaluating model performance. The study’s out-

come proves that the LSTM, RF and XGBoost algorithms can successfully predict

the compressional sonic log. Despite the superior performance of the XGBoost, the

study cannot confirm that the XGBoost algorithm will always outperform.
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6.1 Study Limitations

There are several limitations inherent in this study. Firstly, the sonic log data, our

target for prediction, was only available for 2 out of 13 wells. Even for those wells

available, data was not available for all hole sizes. The second limitation arises from

treating the XGBoost and RF algorithms as supervised learning models and adapt-

ing them into time series algorithms. This adaptation necessitates numerous itera-

tions to integrate each time step with the preceding ones and requires the utilization

of powerful servers equipped with high GPU and CPU capabilities to facilitate more

in-depth research. The third limitation was time constraints; exploring a broad spec-

trum of hyperparameters and conducting an exhaustive search for numerous itera-

tions was unfeasible. Additionally, determining the suitability of an LSTM algorithm

for sequential data relies on identifying the optimal sequence length and frequency,

which can be challenging, particularly when dealing with non-uniform frequencies.

Consequently, delving deeper into certain concepts proved to be excessively resource-

intensive.

6.2 Future Work

Subsequent research endeavors in this domain could explore the integration of sig-

nal processing techniques into algorithms with guidance from drilling engineers to

oversee and detect sequence noise arising from alterations in drilling projects. The
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implementation of signal processing will result in cleaner data, enabling algorithms to

identify more optimal frequencies for predicting well performance with unseen data.

This involves confirming that such noise constitutes outliers occurring during the

project, thereby enhancing data preprocessing. Moreover, fine-tuning relevant hyper-

parameters for RF and XGBoost algorithms can notably enhance their performance

and predictive accuracy. Refining hyperparameters like the number of trees (or es-

timators), maximum tree depth, minimum samples per leaf, and feature selection

criteria can contribute to better generalization or performance on unseen data, while

also improving computational efficiency. However, these processes involve significant

computational expenses, necessitating the use of powerful servers equipped with high

GPU and CPU capabilities to facilitate more comprehensive research. Incorporating

larger datasets comprising sequences for all hole sizes and across more than two wells

would augment the methodology’s generalizability.

139



Bibliography

[1] Jonathan Evenick. Introduction to well logs & subsurface maps. 2008.

[2] George B Asquith, Daniel Krygowski, and Charles R Gibson. Basic well log

analysis, volume 16. American Association of Petroleum Geologists Tulsa, 2004.

[3] Jun Li, Wei Zhang, and Xiao Liu. Bulk Density Response and experimental

Study of Pulsed Neutron-Gamma Density Logging. Frontiers, 2021.

[4] SPE PetroWiki. Density logging. PetroWiki, 2013.

[5] Robert L. Hawley and Evan M. Morris. Borehole optical stratigraphy and

neutron-scattering density measurements at summit, greenland. Journal of

Glaciology, 2008.

[6] Rayan Kanfar, Obai Shaikh, Mehrdad Yousefzadeh, and Tapan Mukerji. Real-

time well log prediction from drilling data using deep learning. In International

Petroleum Technology Conference. OnePetro, 2020.

[7] Mojtaba Rajabi, Bahman Bohloli, and Esmaeil Gholampour Ahangar. Intelli-

140



gent approaches for prediction of compressional, shear and stoneley wave veloc-

ities from conventional well log data: A case study from the Sarvak carbonate

reservoir in the Abadan Plain (Southwestern iran). Computers & Geosciences,

36(5):647–664, 2010.

[8] Shahoo Maleki, Ali Moradzadeh, Reza Ghavami Riabi, Raoof Gholami, and

Farhad Sadeghzadeh. Prediction of shear wave velocity using empirical corre-

lations and artificial intelligence methods. NRIAG Journal of Astronomy and

Geophysics, 3(1):70–81, 2014.

[9] Zeeshan Tariq, Salaheldin Elkatatny, Mohamed Mahmoud, and Abdulazeez Ab-

dulraheem. A new artificial intelligence based empirical correlation to predict

sonic travel time. In International Petroleum Technology Conference. OnePetro,

2016.

[10] Bo Liu, Auref Rostamian, Mahdi Kheirollahi, Seyyedeh Forough Mirseyed, Erfan

Mohammadian, Naser Golsanami, Kouqi Liu, and Mehdi Ostadhassan. NMR

log response prediction from conventional petrophysical logs with XGBoost-PSO

framework. Geoenergy Science and Engineering, 224:211561, 2023.

[11] Hany Gamal, Ahmed Alsaihati, and Salaheldin Elkatatny. Predicting the rock

sonic logs while drilling by random forest and decision tree-based algorithms.

Journal of Energy Resources Technology, 144(4), 2022.

141



[12] Jongkook Kim. Synthetic shear sonic log generation utilizing hybrid machine

learning techniques. Artificial Intelligence in Geosciences, 3:53–70, 2022.

[13] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA,

2016. ACM.

[14] Nimrabanu Memon, Samir B Patel, and Dhruvesh P Patel. Comparative analysis

of artificial neural network and XGBoost algorithm for PolSAR image classifica-

tion. In International Conference on Pattern Recognition and Machine Intelli-

gence, pages 452–460. Springer, 2019.

[15] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international con-

ference on document analysis and recognition, volume 1, pages 278–282. IEEE,

1995.

[16] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8):832–844,

1998.

[17] Ruizhi Zhong, Cyrus Salehi, and Ray Johnson Jr. Machine learning for drilling

applications: A review. Journal of Natural Gas Science and Engineering, page

104807, 2022.

142



[18] Chiranth Hegde and KE Gray. Use of Machine Learning and Data Analytics to

increase drilling efficiency for nearby wells. Journal of Natural Gas Science and

Engineering, 40:327–335, 2017.

[19] Chiranth Hegde and Ken Gray. Evaluation of coupled machine learning mod-

els for drilling optimization. Journal of Natural Gas Science and Engineering,

56:397–407, 2018.

[20] Lúıs Felipe FM Barbosa, Andreas Nascimento, Mauro Hugo Mathias, and

Joao Andrade de Carvalho Jr. Machine learning methods applied to drilling

rate of penetration prediction and optimization-A review. Journal of Petroleum

Science and Engineering, 183:106332, 2019.

[21] Mohammad Sabah, Mohsen Talebkeikhah, David AWood, Rasool Khosravanian,

Mohammad Anemangely, and Alireza Younesi. A machine learning approach to

predict drilling rate using petrophysical and mud logging data. Earth Science

Informatics, 12:319–339, 2019.

[22] Jiachun You, Junxing Cao, Xingjian Wang, and Wei Liu. Shear wave velocity

prediction based on LSTM and its application for morphology identification and

saturation inversion of gas hydrate. Journal of Petroleum Science and Engineer-

ing, 205:109027, 2021.

[23] Muhammad Ali, Ren Jiang, Huolin Ma, Heping Pan, Khizar Abbas, Umar

Ashraf, and Jar Ullah. Machine learning-A novel approach of well logs simi-

143



larity based on synchronization measures to predict shear sonic logs. Journal of

Petroleum Science and Engineering, 203:108602, 2021.

[24] Ammar M Alali, Mahmoud F Abughaban, Beshir M Aman, and Sai Ravela.

Hybrid data driven drilling and rate of penetration optimization. Journal of

Petroleum Science and Engineering, 200:108075, 2021.

[25] Mohsen Riazi, Hossein Mehrjoo, Reza Nakhaei, Hossein Jalalifar, Mohammad-

hadi Shateri, Masoud Riazi, Mehdi Ostadhassan, and Abdolhossein Hemmati-

Sarapardeh. Modelling rate of penetration in drilling operations using RBF,

MLP, LSSVM, and DT models. Scientific Reports, 12(1):11650, 2022.

[26] Callistus Nero, Akwasi Acheampong Aning, Sylvester Kojo Danuor, and Victor

Mensah. Prediction of compressional sonic log in the western (Tano) sedimen-

tary basin of ghana, west africa using supervised machine learning algorithms.

Heliyon, 2023.

[27] I.N. Bankman. Handbook of Medical Imaging: Processing and Analysis. Aca-

demic Press series in biomedical engineering. Academic Press, 2000.

[28] B.P. Lathi and R.A. Green. Signal Processing and Linear Systems. The Oxford

series in electrical and computer engineering. Oxford University Press, 2021.

[29] Darwin V Ellis and Julian M Singer. Well Logging for Earth Scientists. Springer

Science & Business Media, 2007.

144



[30] Li Zhang, Dong Han, and Sen Hu. The Relationship between sonic velocity and

Rock Properties in a Sandstone Formation. Journal of Petroleum Science and

Engineering, 65(1-2):64–72, 2009.

[31] Schlumberger. Log Interpretation Principles/Applications. Schlumberger Edu-

cational Services, 1998.

[32] C. Fairhurst. Rock Mechanics and Engineering. CRC Press, 1996.

145


	Abstract
	Acknowledgments
	Statement of contribution
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Workflow

	Background and Related Work
	Objective
	Machine learning algorithms
	Previous studies

	Signal Processing
	Rolling mean
	Linear filter
	Rolling median
	Forward and Backward filter
	Finite Impulse Response filter
	Low-pass filter
	Butterworth low-pass filter
	Fourier transform low-pass filter

	Interpolation
	Comparison of filters

	Preprocessing
	Research Server Specifications
	The dataset
	Feature selection
	Sonic log and geological formation
	Removing outliers
	Scaling
	Min-Max scaler
	Quantile transform
	Log scaling
	Z-score

	Accuracy measurements

	Methodology
	 Working process
	Data exploration and feature engineering
	Data management
	Data splitting
	Preparing series for supervised learning
	XGBoost model
	Walk-forward validation for XGBoost
	Random Forest
	Walk forward validation applying Random Forest
	LSTM model
	Model architecture, compilation and evaluation
	Comparison of prediction and actual values
	Generalization
	Blind prediction



	Conclusion
	Study Limitations
	Future Work

	Bibliography

