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Abstract

Full-duplex (FD), enabling remote parties to transfer information simultaneously in

both directions and in the same bandwidth, has been envisioned as an important

technology for the next-generation wireless networks. This is due to the ability to

leverage both time and frequency resources and theoretically double the spectral ef-

ficiency. Enabling the FD communications is, however, highly challenging due to the

self-interference (SI), a leakage signal from the FD transmitter (Tx) to its own receiver

(Rx). The power of the SI is significantly higher when compared with the signal of

interest (SoI) from a remote node due to the proximity of the Tx to its co-located Rx.

The SI signal is thus swamping the SoI and degrading the FD system’s performance.

Traditional self-interference cancellation (SIC) approaches, spanning the propa-

gation, analog, and/or digital domains, have been explored to cancel the SI in FD

transceivers. Particularly, digital domain cancellation is typically performed using

model-driven approaches, which have proven to be effective for SIC; however, they

could impose additional cost, hardware, memory, and/or computational requirements.

Motivated by the aforementioned, this thesis aims to apply data-driven machine

learning (ML)-assisted SIC approaches to cancel the SI in FD transceivers—in the digi-

tal domain—and address the extra requirements imposed by the traditional methods.

Specifically, in Chapter 2, two grid-based neural network (NN) structures, referred

to as ladder-wise grid structure and moving-window grid structure, are proposed to

model the SI in FD transceivers with lower memory and computational requirements
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than the literature benchmarks. Further reduction in the computational complex-

ity is provided in Chapter 3, where two hybrid-layers NN structures, referred to as

hybrid-convolutional recurrent NN and hybrid-convolutional recurrent dense NN, are

proposed to model the FD SI. The proposed hybrid NN structures exhibit lower com-

putational requirements than the grid-based structures and without degradation in the

SIC performance. In Chapter 4, an output-feedback NN structure, referred to as the

dual neurons-` hidden layers NN, is designed to model the SI in FD transceivers with

less memory and computational requirements than the grid-based and hybrid-layers

NN structures and without any additional deterioration to the SIC performance.

In Chapter 5, support vector regressors (SVRs), variants of support vector ma-

chines, are proposed to cancel the SI in FD transceivers. A case study to assess the

performance of SVR-based approaches compared to the classical and other ML-based

approaches, using different performance metrics and two different test setups, is also

provided in this chapter. The SVR-based SIC approaches are able to reduce the train-

ing time compared to the NN-based approaches, which are, contrarily, shown to be

more efficient in terms of SIC, especially when high transmit power levels are utilized.

To further enhance the performance/complexity of the ML approaches provided

in Chapter 5, two learning techniques are investigated in Chapters 6 and 7. Specif-

ically, in Chapter 6, the concept of residual learning is exploited to develop an NN

structure, referred to as residual real-valued time-delay NN, to model the FD SI with

lower computational requirements than the benchmarks of Chapter 5. In Chapter 7,

a fast and accurate learning algorithm, namely extreme learning machine, is proposed

to suppress the SI in FD transceivers with a higher SIC performance and lower train-

ing overhead than the benchmarks of Chapter 5. Finally, in Chapter 8, the thesis

conclusions are provided and the directions for future research are highlighted.
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Chapter 1

Introduction

1.1 Background

The sixth-generation (6G) wireless networks are anticipated to connect “intelligence”

rather than “things” while maintaining the quality-of-service requirements of low la-

tency, massive connectivity, and stringent energy efficiency [1]-[5]. Through several

technologies, 6G visionaries expect an unprecedented provision of services to 6G users

by allowing 10 times lower latency, 100 times higher connectivity, and 1000 times

higher data rates compared to the fifth-generation wireless systems’ users [2]-[4].

To meet the high data rate requirements of 6G networks, the in-band full-duplex

(IBFD) systems have emerged as one of the potential technologies—as illustrated in

Fig. 1.1 [6]—owing to their ability to serve a large number of devices concurrently

on the same frequency bands [7]-[9]. Given this potential, the IBFD devices can

theoretically provide a twofold increase in spectral efficiency, making them promising

candidates for 6G networks. This is in contrast to half-duplex (HD) systems, in which

only one-fold is provided by enabling a one-direction communication between remote

parties, i.e., remote parties can either transmit or receive at the same time and in
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Fig. 1.1: Schematic diagram of future 6G wireless systems [6].

the same frequency band, as depicted in Fig. 1.2. Doubling the spectral efficiency

offered by IBFD systems, however, comes at the cost of having an inevitable self-

interference (SI) at the receiver (Rx) chain of an FD node from its own transmitter

(Tx) chain, as illustrated in Fig 1.3. The power of the SI signal is significantly higher

when compared with the desired signal of interest (SoI) from a remote node as a

result of the proximity of the Tx to its co-located Rx. The SI is thus swamping the

SoI and degrading the IBFD system’s overall performance. To break through such a

bottleneck, SI cancellation (SIC) has been verified as the panacea that can enable the

essence of IBFD communications [7]-[9].

In the past few decades, researchers have drawn attention to canceling the SI in

IBFD systems. Generally, the SIC can be performed in propagation, analog, and/or

digital domains. Propagation domain cancellation can be performed at the radio fre-

quency level using antenna isolation [7], beamforming [8], polarized antennas [10],
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Fig. 1.2: HD versus FD communication.

circulators [11], and/or hybrid junction networks [12]. On the other hand, analog

domain cancellation can be carried out actively by generating a pre-processed copy

of the SI signal—using digitally-assisted auxiliary transmit chains, as an example—

which is exploited to cancel the original SI signal at the Rx chain. Analog domain

cancellations are often incapacitated to suppress the SI signal to the Rx noise floor

level. As a consequence, additional focus has been directed to canceling the SI at the

baseband level using digital domain cancellation [13]-[16]. At low or moderate trans-

mit power levels, the digital domain cancellation is typically performed using linear

cancelers, which construct an estimated copy of the SI signal based on techniques

such as least-squares channel estimation [13], [14], [16]. However, at high transmit

power levels, such linear cancellation becomes insufficient to entirely suppress the SI

to the Rx noise floor due to the stringent non-linear behavior of the FD transceiver’s

components, such as the power and low-noise amplifiers [13]-[15]. Thus, non-linear

digital SIC is applied with the linear cancellation to bring the SI to the Rx noise

floor level. The non-linear digital SIC is conventionally performed using model-driven

approaches, e.g., polynomial models, which are shown to fit well in practice; however,

they need many trainable parameters that, in turn, translate to high computational
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Fig. 1.3: SI in FD transceivers.

requirements [17].

Artificial intelligence, a wide-ranging area of computer science, has currently made

a profound technological revolution in all disciplines of communications, as illustrated

in Fig. 1.4 [18]-[30]. Specifically, machine and deep learning (ML and DL), aiming

to extract hidden features, i.e., insights, from training data, have attained consid-

erable success in channel coding [19], [20], channel estimation [22], [23], [26], [27],

channel equalization [22], signal identification [21], [28], signal detection [18], optical

fiber’s signal-to-noise ratio (SNR) estimation [24], [25], digital pre-distortion [29], and

power amplifier’s behavioral modeling [30]. In these works, the data-driven ML ap-

proaches have achieved astonishing enhancements in performance and/or complexity

when compared to the model-driven approaches.

Applying ML to IBFD communications has recently been regarded as one of the

promising techniques that supports the horizon of 6G networks. To that extent, ML

techniques, such as neural networks (NNs) [31]-[34], support vector regressors [35],

[36], tensor completion [37], deep unfolding [38], and more [39]-[41], have been in-
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troduced in the literature for canceling the SI and enabling the FD communications.

Integrating ML with FD communications has achieved considerable success in terms

of performance and/or complexity when compared to the traditional SIC approaches.

However, further enhancements in performance and/or complexity are required to

build energy-efficient ML-based cancelers, which can be suitable for hardware imple-

mentation in mobile communication platforms. Motivated by the above, this thesis

aims to apply novel ML-assisted SIC approaches to cancel the SI in FD transceivers—

in the digital domain—and address the extra requirements, e.g., memory and/or com-

plexity, imposed by the traditional and existing ML-assisted SIC approaches.

In the next section, I will briefly review the traditional approaches for SIC in FD

transceivers. Thereafter, the thesis motivation, contributions, and organization will

be presented.

1.2 Traditional Approaches for SIC

Canceling the SI in FD transceivers can be performed using various techniques that

span the propagation, analog, and/or digital domains [8], [9], as summarized in Fig.

1.5. The following subsections briefly review such SIC approaches, discussing their

advantages, disadvantages, and/or challenges.

1.2.1 Propagation Domain Self-Interference Cancellation

Canceling the SI within the propagation domain is typically performed at the early

stage of the FD transceiver, i.e., it revolves around the Tx and Rx antennas. Prop-

agation domain cancellation can be accomplished passively using techniques such as

antenna separation, coupling networks, phase control, cross-polarization, and/or sur-

face treatments [8], [9], as shown in Fig. 1.5. Alternatively, it can be done actively
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Fig. 1.5: Traditional approaches for SIC in FD transceivers [9].

using techniques such as active coupling networks, active cross-polarization, and/or

Tx beamforming [9]. Additionally, antenna interfaces, such as balanced duplexers and

circulators, can also be employed. Applying the SIC within the propagation domain

has the advantage of refraining the SI signal from saturating the front end of the

FD Rx; however, in some cases, it may lead to the suppression of the desired signal,

i.e., the SoI [8]. Also, it can come at the cost of adding a hardware circuity to the

FD transceiver. Hence, the focus is directed to additionally canceling the SI in other

signal domains, e.g., analog and digital domains.

1.2.2 Analog Domain Self-Interference Cancellation

Canceling the SI within the analog domain is performed in the analog circuits be-

tween the antennas and digital conversion stages [8], [9]. Analog domain cancellation

approaches can be classified based on their architecture, location, and tunability, as

illustrated in Fig. 1.5 [9]. One of the common architectures for analog domain can-

cellation is to use digitally-assisted techniques based on auxiliary transmit chains [9].

Digitally assisted analog domain cancellation has the advantage of preventing the SI
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signal from saturating the analog-to-digital converter (ADC), especially in mobility

channel environments. However, the processing in the analog domain can be very

costly and challenging to scale up into a higher number of antennas, i.e., multiple-

input multiple-output scenario [8]. The focus is thus directed to additionally canceling

the SI in the digital domain.

1.2.3 Digital Domain Self-Interference Cancellation

Canceling the SI in the digital domain is performed after the ADC using techniques

such as channel modeling and/or Rx beamforming, as shown in Fig. 1.5. Digi-

tal domain approaches, applying channel modeling techniques, use the fact that the

Rx of any IBFD node has knowledge of its transmitted signal in order to model

the transceiver’s impairments. Specifically, in channel modeling-based SIC, linear,

widely linear, and reference-based models are applied to approximate the SI chan-

nel effects. Additionally, non-linear models, such as Wiener, Hammerstein, Wiener-

Hammerstein, and parallel Hammerstein—the cornerstone of the widely utilized poly-

nomial models—are employed to model the transceiver’s non-linearities, as shown in

Fig. 1.5. Digital domain cancellation has the advantage that the processing becomes

relatively easy to perform and less hardware-expensive compared to the analog do-

main cancellation [8]; however, it can come at the cost of increasing the computational

complexity of the FD transceiver [17].1

From the previous discussion, applying the traditional approaches for SIC in FD

transceivers can come with challenges, such as imposing extra hardware, higher cost,

and/or additional computational complexity. In contrast, applying ML approaches

for SIC in FD communications can relax such requirements, as mentioned before.

1The traditional approaches for SIC are detailed in [8] and [9].
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1.3 Thesis Motivation

As stated before, a considerable enhancement in terms of performance and/or com-

plexity has been achieved by integrating ML with FD communications. However,

further improvements in performance and/or complexity are needed to build energy-

efficient ML-based cancelers, which can be suitable for hardware implementation in

communication platforms. Motivated by the aforementioned, this thesis aims to apply

novel ML-assisted SIC approaches to cancel the SI in FD transceivers—in the digital

domain—and address the extra requirements imposed by the traditional and existing

ML-assisted SIC approaches.

1.4 Thesis Contribution

Motivated by the aforementioned, in this thesis, I have identified and investigated the

following research points:

1. I have designed two grid-based NN structures, referred to as ladder-wise grid

structure (LWGS) and moving-window grid structure (MWGS), to model the SI

in FD transceivers [42]. The optimum hyperparameters for the two NNs have

been obtained. The computational complexity and memory storage require-

ments for the two algorithms have also been evaluated in terms of the number

of floating-point operations (FLOPs) and network parameters, respectively, and

analyzed compared to those of the literature benchmarks. The proposed LWGS

and MWGS-based cancelers are able to model the FD SI with lower memory

and computational requirements than the literature benchmarks.

2. I have proposed two hybrid-layers NN architectures, referred to as hybrid-

convolutional recurrent NN (HCRNN) and hybrid-convolutional recurrent dense
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NN (HCRDNN), to model the SI in FD transceivers [43]. The optimum settings

for training the HCRNN and HCRDNN, e.g., number of convolutional filters,

filter size, number of neurons in recurrent and dense layers, activation functions,

learning rate, batch size, and optimizer, have been obtained. The computational

and memory requirements of the proposed NNs have been derived. Performance

analysis of the proposed NNs has also been provided in terms of their prediction

capabilities, mean square error, achieved SIC, computational complexity, and

memory requirements. The proposed NNs are able to model the SI with lower

computational requirements than the existing and grid-based NN structures.

3. I have designed an output-feedback NN structure, referred to as dual neurons-`

hidden layers NN (DN-`HLNN), to model the SI in FD transceivers [44]. The

network settings of the proposed algorithm have been optimized. The com-

putational complexity and memory storage have been studied. The proposed

DN-`HLNN is able to model the SI with lower memory and computational re-

quirements than the existing, grid-based, and hybrid-layers NN architectures.

4. I have investigated the support vector regressors (SVRs), variants of support

vector machines, to cancel the SI in FD transceivers [45]. In this study, a general

and comprehensive system model to integrate ML with FD communications has

been firstly introduced. The traditional and other ML approaches investigated

for SIC have been reviewed. A case study to assess the performance of SVR-

based approaches compared to the traditional and other ML-based approaches,

using different performance metrics and two different test setups, has also been

provided. An efficiency measure to select a suitable ML approach for SIC in FD

transceivers, depending on the system demands, has also been devised in this

chapter. The SVR-based SIC approaches are able to reduce the training time
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compared to the NN-based approaches, which are, contrarily, shown to be more

efficient in terms of SIC, especially when high transmit power levels are utilized.

5. I have exploited the concept of residual learning to develop an NN structure,

referred to as residual real-valued time-delay NN (Res-RV-TDNN), to model

the FD SI [46]. The optimum hyperparameters of the proposed NN have been

obtained. Further, the computational complexity and memory storage of the

proposed algorithm have been evaluated in terms of the number of FLOPs and

network parameters, respectively. The proposed Res-RV-TDNN is able to model

the SI with lower computational requirements than the benchmarks in [45].

6. I have proposed the extreme learning machine (ELM), a fast and accurate learn-

ing algorithm, to suppress the SI in FD transceivers with high SIC and low

training overhead [47]. The network settings of the proposed ELM-assisted SIC

approach have been optimized, and its performance has been analyzed compared

to the benchmarks in [45] in terms of SIC, PSD, training overhead, memory stor-

age, and computational complexity. The proposed ELM-assisted SIC approach

is able to model the SI with higher SIC performance and lower training overhead

than the benchmarks, albeit at higher memory and computational requirements.

1.5 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 proposes grid-based NN

structures for canceling the SI in FD transceivers. Chapter 3 proposes hybrid-layers

NN architectures for suppressing the FD SI. Chapter 4 proposes an output-feedback

NN structure for SIC in FD transceivers. Chapter 5 investigates the performance of

SVR-based SIC approaches to cancel the SI in FD transceivers. Chapter 6 explores

the concept of residual learning for SIC. Chapter 7 proposes an ELM-assisted SIC
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approach to suppress the SI in FD transceivers. Finally, Chapter 8 draws the thesis’s

conclusions and provides a guide for future research directions.
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Chapter 2

Low Complexity Neural Network

Structures for Self-Interference

Cancellation in Full-Duplex Radio

2.1 Abstract

Self-interference (SI) is considered as a main challenge in full-duplex (FD) systems.

Therefore, efficient SI cancelers are required for the influential deployment of FD

systems in beyond fifth-generation wireless networks. Existing methods for SI can-

cellation have mostly considered the polynomial representation of the SI signal at

the receiver. These methods are shown to operate well in practice while requiring

high computational complexity. Alternatively, neural networks (NNs) are envisioned

as promising candidates for modeling the SI signal with reduced computational com-

plexity. Consequently, in this chapter, two novel low complexity NN structures, re-

ferred to as the ladder-wise grid structure (LWGS) and moving-window grid structure

(MWGS), are proposed. The core idea of these two structures is to mimic the non-
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linearity and memory effect introduced to the SI signal in order to achieve proper SI

cancellation while exhibiting low computational complexity. The simulation results

reveal that the LWGS and MWGS NN-based cancelers attain the same cancellation

performance of the polynomial-based canceler while providing 49.87% and 34.19%

complexity reduction, respectively.

2.2 Introduction

The recent advancements in wireless technology impose a tremendous increase in

the number of devices that are required to satisfy the ascending demand for high

data rates communication. This high increase leads to an undeniable fact that some

levels of saturation in the available frequency resources will be reached. Therefore,

using efficient methods for sharing the spectrum resources is eagerly mandated for

the next generations of wireless systems, such as beyond the fifth-generation [1]. Full-

duplex (FD) technology has emerged as a promising remedy for spectrum congestion

problem by providing an efficient way for spectrum sharing. In FD systems, the data

is transmitted and received at the same time slot and in the same band of frequency

[2]. Sharing the spectrum resources simultaneously has the potential of doubling the

spectral efficiency of FD systems. However, this in turn, gives rise to a substantial

problem known as the self-interference (SI), which occurs when the transmitter’s

signal is leaked into the FD receiver. As such, canceling the SI signal at the receiver

is deemed the main challenge against the practical deployment of FD systems [3], [4].

For typical FD systems, the SI signal could be 110 dB larger than the desired

signal of interest at the receiver [5]. Therefore, if not efficiently eliminated, the SI

signal may saturate the receiver’s analog components, such as the analog-to-digital

converter (ADC) and the low-noise amplifier (LNA) [2]. Existing methods for SI can-
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cellation employ analog domain cancellation techniques, which are performed either

passively using the physical separation between the transmit and receive antennas

or actively by injecting a cancellation waveform into the propagation path of the re-

ceived signal [3]. However, the analog cancellation techniques are not usually able

to completely eliminate the SI signal at the receiver. Hence, the residual amount of

the SI signal is further suppressed with the help of digital domain cancellation [6].

For that, an estimated SI signal is subtracted from the received signal to perform

the SI cancellation. The digital cancellation procedure seems to be an easy task in

theory; however, it is hard to be realized in practice due to the non-linear distortion

caused by the various parts of the transceiver, such as the power amplifier (PA), IQ

mixer, ADC, and digital-to-analog converter (DAC) [7]. This distortion makes the

SI signal entirely different from the digital transmitted signal and raises a challenge

for the perfect elimination of the SI signal at the receiver. Typically, the polynomial

model is used for modeling the non-linearities caused by different parts of the FD

transceiver. The polynomial model works properly in practice while suffering from

high computational complexity [8].

Recently, neural networks (NNs) have received remarkable research interest from

communication community experts due to their advantages in modeling the non-

linearities with reduced computational complexity [8]–[11]. In [8], the authors intro-

duce a real-valued feed-forward NN (RV-FFNN) to model the SI signal. Further, the

hardware implementation of this NN-based canceler is presented in [10]. The same

research group proposes the complex-valued FFNN (CV-FFNN) to perform the SI

cancellation, and shows that the CV-FFNN could achieve the same cancellation as

the RV-FFNN with a reduced number of floating-point operations (FLOPs) [11]. In

addition, in [11], the recurrent NN (RNN) is introduced for SI cancellation due to its

capability to model data sequences; it has been shown that the RNN is not a proper
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candidate solution for the SI cancellation problem due to its high computational com-

plexity. To the best of our knowledge, the research works of [8] and [11] represent the

few attempts that target the application of NNs for SI cancellation in FD systems,

and there is a scarcity of contributions in this field.

Subsequently, in this chapter, two novel NN structures, referred to as the ladder-

wise grid structure (LWGS) and moving-window grid structure (MWGS), are pro-

posed. The aim of these structures is to model the SI signal with low computational

complexity. The proposed NNs exploit a grid topology in which only partial connec-

tions among the different neurons in the input and hidden layers are utilized to model

the SI signal with reduced computational complexity. In addition, the proposed meth-

ods aim to learn the memory effect introduced to the SI signal in order to efficiently

perform the SI cancellation. The numerical simulations substantiate the validity of

the proposed LWGS and MWGS NN-based cancelers as they achieve the same can-

cellation performance of the polynomial canceler while providing 49.87% and 34.19%

reduction in the number of FLOPs, respectively. Besides, the proposed LWGS and

MWGS outperform the state-of-the-art NN-based cancelers in terms of computational

complexity.

2.3 Full-Duplex System Model

The system model of the FD transceiver is depicted in Fig. 2.1. In this chapter,

the polynomial model is used to approximate the SI signal. Therefore, I follow the

stipulated assumption in [7] that the IQ mixer and PA are considered the dominant

sources of non-linearities in the FD transceiver. Accordingly, the non-linear effect of

other transceiver components, such as the DAC, ADC, variable gain amplifier (VGA),

and LNA, is neglected. Furthermore, due to the use of a shared local oscillator (LO)
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Fig. 2.1: Full-duplex transceiver system model.

for both transmitter and receiver, the effect of the phase noise is also ignored [10]. As

such, the digital transmitted signal x(n) is firstly converted from the digital to analog

form using the DAC. The analog signal is then filtered using a low pass filter (LPF)

and mixed with the carrier signal at the IQ mixer. The IQ mixer adds a non-linear

distortion to the input signal due to the IQ imbalance, and the digital equivalent of

the IQ mixer signal can be written as [7]

xIQ(n) =
1

2
(1 + ψejθ) x(n) +

1

2
(1− ψejθ) x∗(n), (2.1)

where ψ and θ denote the transmitter’s gain and phase imbalance parameters, re-

spectively. The mixed signal is then amplified using the PA, which further distorts

the input signal by adding additional non-linearities. In this chapter, I consider the

parallel Hammerstein model to approximate the non-linear distortion of the PA [7].

Subsequently, the output signal of the PA can be expressed as follows [7], [8]:

xPA(n) =
P∑
p=1,
p odd

MPA∑
m=0

hm,p xIQ(n−m)
p+1
2 x∗IQ(n−m)

p−1
2 , (2.2)

24



where hm,p represents the impulse response of the parallel Hammerstein model, while

P and MPA are the non-linearity order and memory length of the PA, respectively.

The amplified signal is then leaked into the receiver via the SI channel forming the

SI signal. With the assumption that the FD system does not receive any signal from

any remote FD nodes (i.e., no signal of interest is considered) and there is no thermal

noise, only the SI signal will go through the receiver. The received SI signal is firstly

filtered by the band pass filter (BPF), then amplified by the LNA, down-converted

by means of the IQ mixer, and finally converted to digital form using the ADC. The

SI signal at the receiver output is expressed as

y(n) =
P∑
p=1,
p odd

p∑
q=0

M−1∑
m=0

hm,q,p x(n−m)qx∗(n−m)p−q, (2.3)

where hm,q,p indicates the impulse response of a channel including the overall effect

of the PA, IQ mixer, and SI channel, while M denotes the memory effect introduced

to the input signal by the PA and SI channel.

The main aim of the digital canceler is to generate an accurate estimated version

ŷ(n) of the SI signal y(n) at the receiver. Therefore, to perform the digital SI cancella-

tion, ŷ(n) is subtracted from y(n), and the residual amount of the SI is approximated

as yr(n) = y(n)− ŷ(n). Hence, the amount of SI cancellation can be given in dB as

ΨdB = 10 log10

(∑
n

|y(n)|2 /
∑
n

|yr(n)|2
)
. (2.4)

2.4 Proposed NN-Based Cancelers

Cascade forward NN is an NN architecture that utilizes additional connections from

the input and every pre-layer to every post-layer [12]. The cascade forward NN has
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been broadly utilized to model the time series data, and it is shown to work well in

a wide variety of problems [12]. A similar NN that employs a cascade structure is

the cascade correlation NN (CasCor NN) [13], a promising solution to speed up the

learning algorithms of the conventional NNs, such as the back-propagation. CasCor

NN starts with a simple network topology that contains only input and output units,

and then successively adds hidden units one by one until the desired level of network

error is accomplished. The resulting network is formed in a grid topology in which

each new added unit is connected to the input and other layers’ units in a cascade

structure fashion.

CasCor NN has a faster learning capability than the conventional NNs that apply

back-propagation algorithms. Moreover, it is not mandatory in CasCor NN to deter-

mine the network structure before the training phase since the network automatically

determines its optimum configuration [13]. However, the major disadvantage of Cas-

Cor NN is that it potentially overfits to the training data in the sense that it yields a

better performance on the training set while achieving worse performance on a previ-

ously unseen (i.e., new) data [14]. As a result, modified versions of CasCor NN have

been introduced to avoid the overfitting of CasCor NN by applying simplified grid

structures with only partial connections in the grid [15]. Based on this, for the SI

cancellation, various grid structures can be investigated to model the memory effect

introduced to the SI signal in order to achieve a desired cancellation performance with

reduced computational complexity.

Motivated by this promising idea, two novel low complexity NN structures, named

as the LWGS and MWGS, are proposed. The proposed NNs employ a grid topology

with partial connections among the different neurons in the input and hidden layers.

The main difference between the LWGS and MWGS lies in the way utilized by each

structure to pass the buffered samples of the input signal to the different neurons
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Fig. 2.2: Proposed NNs (a) LWGS for N = M (b) LWGS for N < M (c) MWGS.

in the grid in order to efficiently simulate the SI signal’s memory effect. The key

ideas and network structures of the proposed methods are presented in detail in the

following subsections.

2.4.1 Ladder-Wise Grid Structure (LWGS)

To imitate the memory effect introduced to the SI signal, the LWGS is proposed as

shown in Figs. 2.2(a) and (b). The LWGS employs a grid structure similar to that used

in the CasCor NN. However, the LWGS uses the standard back-propagation technique

to minimize the network’s error and cannot determine its own structure as the CasCor

NN. Accordingly, in the LWGS, the network structure is selected empirically before

training to achieve the target network performance.

The basic idea behind the LWGS is to feed the buffered data to the network

neurons in a stair-case manner as depicted in Figs. 2.2(a), (b). Here, I denote the

number of hidden units by N . As such, in Fig. 2.2(a), I consider the case when the

number of hidden units is equal to the number of input units (e.g., N = M = 7),

where M is the memory length as stated before. Starting with the stair base, the

instantaneous sample x(n) is passed to all the neurons, and every predecessor sample
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(i.e., x(n−1), x(n−2), ... etc.) is passed to a fewer number of neurons gradually. The

oldest sample, x(n−M+1), which is the least one related to the current sample x(n), is

allowed to be passed to only one neuron side by side with its followers. In this manner,

each neuron receives the instantaneous sample plus part of the buffered samples to

learn the temporal behavior of the SI signal, and the outputs of all neurons are then

combined to figure out the detected pattern. Following this approach, the LWGS

could model the SI signal with only partial connections in the grid, and therefore it

can result in a significant reduction in the computational complexity.

Furthermore, the LWGS can learn the memory effect introduced to the SI signal

with fewer connections between the input and hidden layers’ neurons. Reducing the

number of connections can be done by considering a shorter length of the ladder base

(i.e., reducing the number of neurons to be less than the memory length (N < M ))

as shown in Fig. 2.2(b). The idea of this configuration is to enable the recent delayed

samples that are more related to the instantaneous sample x(n) to be learned using

many neurons; however, the other samples that are less related to x(n) are learned

by only one neuron (e.g., x(n− 4), x(n− 5), x(n−M + 1)) in Fig. 2.2(b). This will

slightly degrade the performance of the LWGS while providing a significant reduction

in the computational complexity compared to the case when N = M.

In the proposed method, the SI cancellation is performed in the digital domain in

which the non-linear part of the digital SI cancellation signal is reconstructed using

the LWGS canceler. However, the linear part of the cancellation signal is estimated

using the conventional least square channel estimation technique where all the non-

linear effects of the different transceiver’s components are neglected [8]. The total

cancellation achieved by the LWGS canceler is then computed by summing the linear

and non-linear cancellations [8], [10].

The effect of varying the number of hidden layer’s neurons on the cancellation
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performance of the LWGS is shown in Fig. 2.3(a).1 I test the LWGS using N =

9, 10, 11, 12 and depict the boxplots of total cancellation achieved by various configu-

rations using 20 seed initializations. The LWGS shows flexible settings that suit dif-

ferent applications. For example, moving from LWGS with nine neurons (i.e., LWGS

(9)) to twelve neurons (i.e., LWGS (12)) augments the SI cancellation from 44.50

to 44.75 dB; however, the increased number of neurons would result in an increased

computational complexity.

2.4.2 Moving-Window Grid Structure (MWGS)

An alternative approach that can accommodate the memory effect of the SI signal is

the moving window technique, generally recognized as an effective method for time

series prediction [16]. As such, I consider the moving window with a grid topology

to form the MWGS. Similar to the LWGS, the MWGS applies the standard back-

propagation technique to minimize the network’s error. Further, the MWGS takes

advantage of the reduced connections in the network grid. However, in the MWGS,

the considered samples of the input signals learned by different neurons are partitioned

based on a fixed-length sliding window technique as depicted in Fig. 2.2(c). More

specifically, all the input samples are passed to the first neuron. The main purpose of

this neuron is to learn the dependencies between all the delayed samples of the input

signal. Moreover, the other employed neurons are allowed to assist in learning the

memory effect by considering the windowed data only. Besides, sliding the window

over different neurons allows to consider all the buffered samples caused by the non-

linearities of the aforementioned FD components. For example, in Fig. 2.2(c), a

window size W = 3 is employed. Therefore, the first, second, and third delayed

version of x(n) (i.e., x(n−1), x(n−2), x(n−3)) are considered by the second neuron,

1The results in Fig. 2.3 are obtained using the simulation parameters in Section 2.6.
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Fig. 2.3: SI cancellation boxplots.

while x(n − 2), x(n − 3), and x(n − 4) samples are recognized by the third neuron,

and so forth.

The effect of varying the number of hidden layer’s neurons N and the window size

W on the cancellation performance of the MWGS is studied as well.1 In this study,

the network structures of the MWGS are selected empirically based on a trial and

error approach. As such, I test the values of N = 9, 10, 11, 12 and W = 4, 5, 6, 7. Due

to having many combinations between N and W , in Fig. 2.3(b), I only show the best

four structures that achieve the highest SI cancellation. As seen from the figure, the

MWGS using twelve neurons and window size W = 5 (i.e., MWGS (12,5)) attains the

highest SI cancellation among the competing structures.

2.5 Computational Complexity

In this chapter, I consider the total number of FLOPs as an indicator of the com-

putational complexity of the NN-based cancelers. The total number of FLOPs is

evaluated by calculating the total number of real-valued operations used in the NN’s
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inference process as Ξ = Ξw,b+Ξa where Ξw,b = ξ
(Rm)
w,b +ξ

(Ra)
w,b is the sum of real-valued

multiplications and additions, which account for multiplying the input/previous layer

values by the weight matrix and adding the bias terms. Similarly, Ξa = ξ
(Rm)
a + ξ

(Ra)
a

represents the sum of real-valued multiplications and additions required to evaluate

the activation functions in the hidden layer’s neurons.

In the LWGS and MWGS NNs, the inputs, hidden layer values, and network pa-

rameters (e.g., weights and biases) are complex-valued numbers. Therefore, converting

the complex-valued multiplications and additions to their real-valued equivalents is

required. By employing the reduced multiplications approach [10], a complex-valued

multiplication requires three real multiplications and five real additions. Moreover,

since each complex-valued addition is implemented using two real additions, ξ
(Rm)
w,b

and ξ
(Ra)
w,b can be expressed as

ξ
(Rm)
w,b = 3ξ

(Cm)
w,b , (2.5)

ξ
(Ra)
w,b = 5ξ

(Cm)
w,b + 2ξ

(Ca)
w,b , (2.6)

where ξ
(Cm)
w,b and ξ

(Ca)
w,b represent the number of complex-valued multiplications and

additions, respectively, which account for handling the weights and biases operations.

In the LWGS, ξ
(Cm)
w,b and ξ

(Ca)
w,b can be calculated as

ξ
(Cm)
w,b = ξ

(Ca)
w,b =

N∑
i=1

i+M. (2.7)

Further, in the MWGS, ξ
(Cm)
w,b and ξ

(Ca)
w,b can be obtained as

ξ
(Cm)
w,b = ξ

(Ca)
w,b = M +W (N − 1) +N. (2.8)
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However, ξ
(Cm)
w,b and ξ

(Ca)
w,b for CV-FFNN can be expressed as

ξ
(Cm)
w,b = ξ

(Ca)
w,b = N(M + 1). (2.9)

The proposed LWGS and MWGS employ the complex rectified linear unit (CRELU)

activation function, which is defined as [11]

Φ(z) = max(0,<(z)) + jmax(0,=(z)), (2.10)

where <(z) and =(z) denote the real and imaginary parts of z, respectively. The

implementation of CRELU activation function (2.10) requires two real multiplications

and two complex additions (i.e., four real additions) to evaluate the real and imaginary

parts of z. Further, to evaluate the max(0,<(z)) and max(0,=(z)), two multiplexers

and two comparators are required. Herein, if I assume that each comparator comes

with no cost and each multiplexer costs one real addition [8], the implementation of

CRELU activation function requires two real multiplications and six real additions.2

As such, the number of real-valued multiplications ξ
(Rm)
a and additions ξ

(Ra)
a utilized

for evaluating the activation functions in the hidden layer’s neurons of the LWGS and

MWGS can be given by ξ
(Rm)
a = 2N and ξ

(Ra)
a = 6N , respectively.

2.6 Results and Discussion

In this section, I assess the performance of the LWGS and MWGS NN-based cancelers

in terms of mean square error (MSE), SI cancellation, and computational complexity.

In addition, a comparison between the proposed methods and the NN-based cancelers

in the literature is also investigated. All the considered NNs are trained using complex-

2It is noted that the activation functions’ complexity in [11] is evaluated by counting their usage
in the hidden layer’s neurons, which is not exact.
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valued inputs and implemented in Python using Keras library and TensorFlow back-

end. In this work, I examine the use of the measured dataset presented in [8] and [11].

Hence, I train and test the NNs using measured data from a realistic FD testbed,

which applies an orthogonal frequency division multiplexing signal with 1024 sub-

carriers using a quadrature phase-shift keying modulation and 10 MHz pass-band

bandwidth. The dataset, containing 20,480 samples, is split into a training set that

consists of 90% of samples and a testing set that includes the remaining 10%. I adopt

the back-propagation technique, Adam optimization, and CRELU activation function

for the NNs [11]. The networks’ hyperparameters, such as the batch size and learning

rate, are tuned to select their optimal values. Based on hyperparameters tuning, I

employ a learning rate of 0.0045 and a batch size of 62 to train the NNs. Besides, I

consider M = 13 for the polynomial and NN-based cancelers [8], [11].

All the NN-based cancelers are employed to model the non-linear part of the SI

signal. Furthermore, for the sake of comparison, the NNs settings are selected in such

a way that they achieve a similar cancellation performance to the polynomial canceler

with P = 5. The polynomial canceler at P = 5 produces 44.45 dB cancellation and

requires 1556 FLOPs and 312 network parameters to be implemented [11]. As such, to

achieve the target cancellation of the polynomial canceler, the CV-FFNN requires at

least a single hidden layer with seven neurons (i.e., CV-FFNN (7)) [11]. In addition,

from Fig. 2.3, it is observed that the LWGS (9) and LWGS (10) achieve the target

cancellation as they provide 44.50 and 44.56 dB, respectively. Further, the MWGS

(12,5) attains 44.40 dB, which is very close to the target cancellation. Thus, in

this analysis, I consider CV-FFNN (7), LWGS (9), LWGS (10), and MWGS (12,5)

as promising NN-based cancelers that can be used as alternatives to the traditional

polynomial canceler.

In Fig. 2.4(a), the MSE values of the aforementioned NNs are evaluated on the
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Fig. 2.4: Performance comparison for different network structures.

training and testing data, respectively, using 20 seed initializations. As seen from

the figure, the considered NNs achieve a comparable MSE for the target cancellation

performance. Fig. 2.4(b) depicts the boxplots of SI cancellation achieved by the

considered NN-based cancelers using the above-selected settings. It is apparent from

the figure that CV-FFNN (7), LWGS (9), and MWGS (12,5) attain a comparable

cancellation performance to the polynomial canceler. However, LWGS (10) provides

a slightly higher SI cancellation. It is worth noting that the LWGS structure slightly

outperforms the cancellation of the MWGS as it passes the instantaneous sample x(n)

(i.e., most significant sample) to all neurons, which enables it to learn the SI signal’s

temporal behavior better than the MWGS.

The complexity analysis for the different NN-based cancelers is provided in Table

2.1, where the polynomial canceler complexity is considered as reference, and the NNs

complexity is computed in terms of the number of FLOPs and the number of net-

work parameters used to perform the total SI cancellation (i.e., linear and non-linear

cancellations). As seen from the table, the LWGS (9) reduces the number of FLOPs

by more than 49% while achieving a similar cancellation to the polynomial-based
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TABLE 2.1: Complexity reduction for different network structures compared to the
polynomial model with P = 5.

Network Cancellation
Complexity Complexity Reduction

# Parameters # FLOPs # Parameters # FLOPs

Polynomial (P = 5) 44.45 dB 312 1556 - -

CV-FFNN (7) 44.47 dB 238 1164 -23.72% -25.19%

LWGS (9) 44.50 dB 162 780 -48.08% -49.87%

LWGS (10) 44.56 dB 184 888 -41.03% -42.93%

MWGS (12,5) 44.40 dB 212 1024 -32.05% -34.19%

canceler. Furthermore, the LWGS (10) outperforms the cancellation performance of

the polynomial canceler while requiring 7% more FLOPs than the LWGS (9). Ac-

cordingly, the proposed LWGS provides a flexible trade-off between the cancellation

performance and the computational complexity. In addition, the MWGS (12,5) saves

34% computations compared to the polynomial-based canceler, while the conventional

CV-FFNN (7) saves only 25% of the computations. The previous results reveal the

superiority of the proposed NNs compared to the polynomial and state-of-the-art

NN-based cancelers.

2.7 Conclusion

In this chapter, two novel low complexity NN structures, namely the ladder-wise

grid structure (LWGS) and moving-window grid structure (MWGS), are proposed

to model the SI signal with low computational complexity. The former employs a

stair-based structure to accommodate the memory effect of the SI signal. The latter

uses a fixed-window procedure to model the temporal behavior of the SI signal. Our

findings showed that the proposed LWGS and MWGS provide the same cancellation

performance of the polynomial-based canceler while attaining 49.87% and 34.19%

reduction in the computational complexity, respectively. In addition, the proposed
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LWGS and MWGS offer superior performance over the state-of-the-art NN-based

cancelers by exhibiting 24.7% and 9% complexity reduction, respectively.
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Chapter 3

Hybrid-Layers Neural Network

Architectures for Modeling the

Self-Interference in Full-Duplex

Systems

3.1 Abstract

Full-duplex (FD) systems have been introduced to provide high data rates for beyond

fifth-generation wireless networks through simultaneous transmission of information

over the same frequency resources. However, the operation of FD systems is practically

limited by the self-interference (SI), and efficient SI cancelers are sought to make

the FD systems realizable. Typically, polynomial-based cancelers are employed to

mitigate the SI; nevertheless, they suffer from high complexity. This chapter proposes

two novel hybrid-layers neural network (NN) architectures to cancel the SI with low

complexity. The first architecture is referred to as hybrid-convolutional recurrent NN
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(HCRNN), whereas the second is termed as hybrid-convolutional recurrent dense NN

(HCRDNN). In contrast to the state-of-the-art NNs that employ dense or recurrent

layers for SI modeling, the proposed NNs exploit, in a novel manner, a combination of

different hidden layers (e.g., convolutional, recurrent, and/or dense) in order to model

the SI with lower computational complexity than the polynomial and the state-of-the-

art NN-based cancelers. The key idea behind using hybrid layers is to build an NN

model, which makes use of the characteristics of the different layers employed in its

architecture. More specifically, in the HCRNN, a convolutional layer is employed to

extract the input data features using a reduced network scale. Moreover, a recurrent

layer is then applied to assist in learning the temporal behavior of the input signal from

the localized feature map of the convolutional layer. In the HCRDNN, an additional

dense layer is exploited to add another degree of freedom for adapting the NN settings

in order to achieve the best compromise between the cancellation performance and

computational complexity. The complexity analysis of the proposed NN architectures

is provided, and the optimum settings for their training are selected. The simulation

results demonstrate that the proposed HCRNN and HCRDNN-based cancelers attain

the same cancellation of the polynomial and the state-of-the-art NN-based cancelers

with an astounding computational complexity reduction. Furthermore, the proposed

cancelers show high design flexibility for hardware implementation, depending on the

system demands.

3.2 Introduction

Recently, the evolution of Internet-of-Everything, supporting massive connectivity

among billions of users and billions of devices, has imposed a radical shift towards

the next generation of wireless networks, such as beyond the fifth-generation (B5G)
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[1]. These modern networks aim to provide high reliability, low latency, and high

data rates, in the order of tens Gbits/s, to enable extended reality applications, live

multimedia streaming, and autonomous systems in smart cities and factories, such

as drone swarms, cars, and robotics [2], [3]. As such, to cater to this novel breed of

applications and support such a plethora of services, the next generation of wireless

systems should be inherently tailored to simultaneously deliver higher data rates with

lower communication delays for both uplink and downlink.

In this regard, full-duplex (FD) has emerged as one of the key enabling technologies

for B5G wireless networks by providing high data rates through simultaneous trans-

mission of information over the same frequency resources [4]-[7]. Efficient exploitation

of the resources enables the FD systems to meet the high quality-of-service require-

ments in terms of spectral efficiency, which represents a major factor in designing B5G

wireless networks. Despite of this potential, the main challenge in implementing the

FD systems is the self-interference (SI), which comes out from the transmitter of the

same device on its own receiver [8]. This undesirable interference significantly hinders

the proliferation of FD systems in the next generation of wireless networks [4]-[7].

Over the past decade, a flurry of research interest has been directed for canceling

the interference in FD systems to make them realizable [7], [8]. Typically, canceling

the SI can be implemented in analog radio frequency (RF) and/or digital domains

to bring the SI signal’s power down to the receiver’s noise level. The analog RF

suppression is implemented at the very first stage of the receiver chain to refrain the

SI signal from saturating the analog components of the receiver, such as the low-

noise amplifier (LNA), variable-gain amplifier (VGA), and analog-to-digital converter

(ADC) [7]. In particular, the analog RF cancellation can be classified into passive

and active cancellations [9], [10]. Passive cancellation is implemented using techniques

such as antenna separation [11], circulators [12], polarized antennas [13], and balanced
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hybrid-junction networks [14]. On the other side, the active suppression is performed

using analog circuits, which generate a copy of the SI signal in order to be subtracted

from the original SI signal at the receiver chain [10]. In general, the analog suppression

techniques are insufficient to entirely remove the SI at the receiver side, and a non-

negligible residual SI still exists after the analog cancellation process. Hence, digital

cancellation approaches are utilized in order to mitigate the residual interference [15].

Digital domain cancellation uses the same notion of active suppression where a

processed copy of the baseband transmitted signal is subtracted from the residual SI

signal, but in the digital domain [15]. In principle, the digital cancelers could effec-

tively eliminate this SI signal since it stems from a transmit signal that is obviously

known to the receiver. However, this is not the case in practice, as the SI signal is sig-

nificantly distorted by the SI coupling channel and the impairments of the transceiver

components, such as non-linear distortion of the power amplifier (PA), in-phase and

quadrature-phase (IQ) imbalance of the mixer, phase noise of imperfect transceiver’s

oscillators, and digital-to-analog converter (DAC) and ADC’s quantization noise [16].

In order to efficiently cancel the SI in the digital domain, the digital cancelers

should properly model the distortion incorporated into the input signal due to the im-

perfection of the hardware and the SI channel. Generally, modeling the transceiver’s

impairments is based on the polynomial approximation of the SI signal at the re-

ceiver side [15]. The polynomial-based models have excellent modeling capabilities

to mimic the SI signal; however, they suffer from high complexity [16]. Accordingly,

low-complexity modeling approaches are sought for approximating the SI signal in

FD systems.

Applying neural networks (NNs) and deep learning has gained significant momen-

tum in the field of signal processing and wireless communications in the last few years

[17]-[28]. NNs have been recently employed to replace the model-based approaches in
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numerous communication areas in order to approximate the non-linearities with good

performance and low implementation complexity. For instance, NNs have brought

breakthroughs in signal detection [17], signal classification [18], channel estimation

[19], [20], channel equalization [21], channel coding [22], PA modeling [23]-[25], digital

pre-distortion [24]-[27], and non-linearity compensation in optical fiber systems [28].

In addition, there has been a surge of interest in applying NNs for SI cancella-

tion in FD systems [29]-[33]. More specifically, the first attempt of using NNs for

canceling the SI has been reported in [29], where a real-valued time delay NN (RV-

TDNN)1 is introduced to model the SI signal with computational complexity lower

than the polynomial-based canceler. In [30], a recurrent NN (RNN) and a complex-

valued TDNN (CV-TDNN) have been investigated for SI mitigation; it is shown that

the CV-TDNN has excellent modeling capabilities to approximate the SI with lower

computational complexity than the polynomial and RNN-based cancelers. In [31],

[32], the hardware design of the polynomial and NN-based cancelers introduced in

[29] have been provided. Furthermore, in [33], the ladder-wise grid structure (LWGS)

and moving-window grid structures (MWGS), two low-complexity NN models, have

been introduced for SI cancellation. It is demonstrated that the LWGS and MWGS

attain a similar cancellation performance to the polynomial and CV-TDNN-based

cancelers with a significant complexity reduction. The previous works shed light on

the few attempts that target applying low-complexity NN models for SI cancellation

in FD systems. However, further enhancements in the complexity are required to

build energy-efficient NN-based cancelers, which can be suitable for hardware imple-

mentation in mobile communication platforms. As such, this study fills in this gap by

providing efficient NN-based SI cancelers, which achieve a similar cancellation perfor-

1It is noted that the RV feed-forward NN (RV-FFNN) in [29] has a similar structure to the RV-
TDNN in [23] since both employ the input signal’s buffered samples at the input layer. Henceforth,
I will use RV-TDNN instead of RV-FFNN for accurate referring.
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mance to that of the polynomial and the state-of-the-art NN-based cancelers while

attaining a remarkable complexity reduction.

Based on the aforementioned, in this chapter, two novel low-complexity NN archi-

tectures referred to as the hybrid-convolutional recurrent NN (HCRNN) and hybrid-

convolutional recurrent dense NN (HCRDNN) are proposed. The proposed NNs ex-

ploit hybrid hidden layers (e.g., convolutional, recurrent, and/or dense) to efficiently

model the memory effect and non-linearity incorporated into the SI signal, with low

complexity. The key idea behind using hybrid layers is to build an NN model, which

makes use of the characteristics of the different layers employed in its architecture.

In particular, the proposed NNs exploit, in a novel manner, the feature extraction

characteristics of the convolutional layer along with the sequence modeling capabil-

ities of the recurrent layer and/or the learning abilities of the dense layer in order

to model the SI with lower computational complexity than the polynomial and the

state-of-the-art NN-based cancelers. To the best of the author’s knowledge, applying

hybrid-layers NN architectures for SI cancellation has not been previously reported in

the literature, and it is introduced for the first time in this chapter. More specifically,

in the proposed HCRNN, the input data containing the I/Q components of the in-

put samples is formulated into a two-dimensional (2D) graph for the sake of suitable

processing by the convolutional layer. The convolutional layer is then applied to the

2D graph to extract the input features (e.g., memory effect and non-linearity) at a

reduced network scale. Moreover, a recurrent layer is then utilized to help in learning

the temporal behavior of the input signal from the output feature map of the convolu-

tional layer. In the proposed HCRDNN, a dense layer is added after the convolutional

and recurrent layers to build a deeper NN model with low computational complexity.

Working with hybrid-layers NN architectures enables adjusting the hidden layers’ set-

tings to achieve a certain cancellation performance with a considerable computational
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complexity reduction.

The contributions of this chapter are summarized as follows:

� Two novel hybrid-layers NN architectures, termed as the HCRNN and HCRDNN,

are proposed for the first time to model the SI in FD systems with low computa-

tional complexity. In contrast to the state-of-the-art NNs that directly apply the

traditional dense or recurrent layers for SI modeling, the proposed NNs exploit,

in a novel manner, a combination of hidden layers (e.g., convolutional, recurrent,

and/or dense) in order to achieve high learning capability while maintaining low

computational complexity.

� The computational complexity and memory requirements of the proposed HCRNN

and HCRDNN-based cancelers are derived in terms of the number of floating-

point operations (FLOPs) and network parameters, respectively, and analyzed

compared to those of the polynomial and the state-of-the-art NN-based cancel-

ers.

� The optimum settings for training the proposed HCRNN and HCRDNN archi-

tectures (e.g., number of convolutional filters, filter size, number of neurons in

recurrent and dense layers, activation functions, learning rate, batch size, and

optimizer) are selected to achieve an acceptable cancellation performance with

a considerable computational complexity reduction.

� Performance analysis of the two proposed NNs is provided in terms of their pre-

diction capabilities, mean square error (MSE), achieved SI cancellation, com-

putational complexity, and memory requirements. Both NNs demonstrate ex-

cellent prediction capabilities in modeling the interference in FD systems with

reduced complexity.
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Fig. 3.1: Full-duplex transceiver system model.

The rest of this chapter is organized as follows. Section 3.3 presents the FD transceiver

system model. Section 3.4 introduces the proposed HCRNN and HCRDNN-based

cancelers. In Section 3.5, the complexity of the proposed NN architectures is analyzed,

whereas in Section 3.6, the optimum settings for their training are selected. Finally,

simulation results, future research directions, and conclusions are presented in Sections

3.7, 3.8, and 3.9, respectively.

3.3 System Model

An FD transceiver consisting of a local transmitter, local receiver, and two SI cancel-

lation techniques is illustrated in Figs. 3.1(a) and (b). Specifically, the FD system’s

design, shown in Fig. 3.1(a), employs an analog RF cancellation and a training-based

digital cancellation in order to suppress the SI signal to the receiver noise level. The

RF cancellation is applied at the first stage of the receiver chain to prevent the SI

signal from saturating the receiver’s analog components (e.g., LNA, VGA, and ADC).

However, the digital cancellation is employed after the ADC to remove the residual

SI signal.

Let us denote the digital transmitted samples before the DAC by x(n), with n
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representing each sample index. The transmitted samples are converted to analog,

filtered, and up-converted to the carrier frequency using the DAC, low pass filter

(LPF), and IQ mixer, respectively. The IQ mixer, undesirably, distorts the transmit-

ted signal due to the gain and phase imbalances between the I/Q components (i.e.,

IQ imbalance). Subsequently, the digital equivalent of the mixer’s output signal can

be expressed as [16], [29]

xIQ(n) =
1

2
(1 + ψejθ) x(n) +

1

2
(1− ψejθ) x∗(n), (3.1)

where ψ and θ represent the gain and phase imbalance coefficients of the transmitter,

respectively. The mixer’s output signal is then amplified by the PA, which further

distorts the transmitted signal due to its non-idealities. The PA’s output signal can

be expressed using the conventional parallel-Hammerstein (PH) model, described by

(3.48) in the Appendix, as [16], [29], [34]

xPA(n) =
P∑
p=1,
p odd

MPA∑
m=0

hm,p xIQ(n−m)
p+1
2 x∗IQ(n−m)

p−1
2 , (3.2)

where hm,p indicates the PA’s impulse response. In addition, P and MPA represent

the non-linearity order and the PA’s memory depth, respectively.

The PA’s output signal leaks to the receiver through the SI channel, forming the

SI signal. Accordingly, at the receiver side of the FD node, there are three signals: an

SI signal, a noise signal, and a far-end desired signal from another FD node. In this

work, I assume, for the ease of presentation, that there is no thermal noise, and there

are no far-end desired signals from any other FD nodes [29], [32]. As such, the residual

SI signal after the RF cancellation process is filtered, amplified, down-converted, and

digitized using the band-pass (BPF), LNA, IQ mixer, and ADC, respectively, and can

be expressed as [29]
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y
SI

(n) =
P∑
p=1,
p odd

p∑
q=0

M−1∑
m=0

hm,q,p x(n−m)qx∗(n−m)p−q, (3.3)

where hm,q,p represents the impulse response of a channel, including the composite

effect of the PA, IQ mixer, and SI channel, whereas M indicates the memory effect

incorporated into the input signal by the PA and SI coupling channel.

The estimation of the SI channel is performed using the least-squares (LS) ap-

proach as follows. Firstly, I formulate the matrix X with dimensions N ×M from

the input data x, where N is the length of the training data. Then, the output signal

y
SI

with dimension N × 1 can be obtained as y
SI

= Xh, where h is a vector of size

M × 1. In the LS method, the aim is to minimize the cost function J(ĥ), which can

be expressed as

J(ĥ) =
∥∥∥y

SI
−Xĥ

∥∥∥2

= (y
SI
−Xĥ)H(y

SI
−Xĥ)

= yH
SI
y
SI
− yH

SI
Xĥ− ĥHXHy

SI
+ ĥ

H
XHXĥ, (3.4)

where (.)Hdenotes the conjugate transpose operator. By setting the derivative of this

cost function with respect to ĥ to zero, the LS solution can be given as

ĥ =
(
XHX

)−1
XHy

SI
. (3.5)

In the digital canceler, the goal is to estimate the distortion caused by the imper-

fection of the transceiver hardware components and SI channel to generate an accurate

replica of the SI signal ỹ
SI

(n) at the receiver. This is attained by feeding the baseband

transmitted samples before the digital-to-analog conversion to a trainable-based dig-

ital canceler in order to produce such a replica. This replica is then subtracted from

the SI signal after the ADC to remove the interference, and the residual SI after the

49



digital cancellation is given by y(n) = y
SI

(n) − ỹ
SI

(n). The achieved SI cancellation

in the digital domain can be quantified in dB as

CdB = 10 log10

(∑
n |ySI (n)|2∑
n |y(n)|2

)
. (3.6)

In this work, the digital canceler is formed by linear and non-linear trainable-based

cancelers, as depicted in Fig. 3.1(b). The former is utilized to estimate the linear part

of the SI signal based on the conventional LS channel estimation [29], whereas the

latter is used to mimic the non-linear part of the SI signal using an NN model. The

SI signal is then reconstructed by combining the linear and non-linear components as

follows:

ỹ
SI

(n) = ỹ
SI,lin

(n) + ỹ
SI,nl

(n), (3.7)

where ỹ
SI,lin

(n) is the linear part of the SI signal, which can be obtained by substituting

p = 1 and q = 1 in (3.3) as

ỹ
SI,lin

(n) =
M−1∑
m=0

hm,1,1 x(n−m), (3.8)

while ỹ
SI,nl

(n) is the non-linear part, which can be given as

ỹ
SI,nl

(n) = g {x (n) , I (n)} , (3.9)

where g {.} represents the NN mapping function, and I (n) can be expressed as I (n) =

{x (n− 1) , x (n− 2) , ..., x (n−M + 1)}.
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Fig. 3.2: Proposed HCRNN architecture.

3.4 Proposed Hybrid-Layers NN Architectures

The main function of the NN-based canceler is to provide an accurate behavior model

to mimic the non-linearities and memory effect attributed to the input signal. As

such, to account for such effects, TDNN or RNN-based models were employed in the

literature. While the aforementioned models attain good modeling capabilities for

approximating the SI in FD systems, their complexity is a considerable issue that

should be addressed. A good choice for designing a low-complexity NN model is to

exploit the high feature extraction along with the parameter reduction capabilities of

the convolutional layer. Further, adding a recurrent layer with a sufficient number

of neurons after the convolutional layer can enhance the modeling capabilities with

no much increase in the computational complexity. Lastly, exploiting an additional

dense layer after the recurrent layer can help to add another degree of freedom for

adapting the NN settings in order to achieve the best compromise between the model

performance and the computational complexity. In the next subsections, I will show

how the proposed NN architectures exploit the aforementioned layers in order to build

low-complexity NN-based cancelers.
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3.4.1 HCRNN Architecture

The proposed HCRNN architecture is shown in Fig. 3.2. In the HCRNN, hybrid

hidden layers are employed to detect the memory effect and non-linearity incorporated

into the input signal due to the impairments of the FD transceiver and SI channel. The

HCRNN is arranged in five layers: the input layer, convolutional layer, reshape layer,

recurrent layer, and output layer. At the input layer, the input data is formulated

into a 2D graph consisting of the I/Q components of the instantaneous and delayed

versions of the input samples. Arranging the data into a 2D graph allows the input

samples to be in an appropriate form that can be efficiently processed by the next

convolutional layer. The convolutional layer, the first hidden layer of the HCRNN, is

applied to the 2D grid in order to detect the input signal’s features with a reduced

network scale. Applying the convolutional layer to the input graph comes with a

considerable reduction in the computational complexity due to the weight-sharing

characteristics and dimensionality reduction capabilities of the convolutional filters

[25]. The convolutional layer’s output is then reordered using a reshape layer, to be

processed by the next recurrent layer, which constitutes the second hidden layer of the

HCRNN. The aim of the recurrent layer is to assist in learning the temporal behavior

of the input signal from the localized feature map of the convolutional layer. Finally,

at the output layer of the HCRNN, the I/Q components of the SI signal are estimated.

An example showing the basic operation of the convolutional and reshape layers

of the proposed HCRNN, using M = 13, three convolutional filters, and 8 × 1 × 1

filter size, is illustrated in Fig. 3.3. At the convolutional layer, the input data is

convolved with the filters, acting as optimizable-feature extractors, in order to detect

the patterns of the input attributes. The output feature map of the lth filter after

applying the convolution operation can be expressed as
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Fig. 3.3: Example of the basic operation of the convolutional and reshape layers of
the proposed HCRNN.

F l
c =



Iin(n) Qin(n)

Iin(n− 1) Qin(n− 1)

Iin(n− 2) Qin(n− 2)

. .

. .

Iin(n−M + 1) Qin(n−M + 1)


⊗



kl1,1 kl1,S

kl2,1 kl2,S

kl3,1 kl3,S

. .

. .

klR,1 klR,S


, (3.10)

where l = 1, 2, ..., L, with L denoting the number of convolutional filters. Iin(n)

and Qin(n) represent the I/Q components of the current sample x(n), respectively,

while [Iin(n − 1), ..., Iin(n − M + 1)] and [Qin(n − 1), ..., Qin(n − M + 1)] indicate

the I/Q components of the delayed samples, respectively. In addition, R × S × Z

and kli,j represent the dimensions and the (ith, jth) entry of the lth convolutional filter,

respectively. Finally, ⊗ denotes the convolution operation. It is worth mentioning
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that for all convolutional filters, R ∈ {1, 2, ...,M}, S ∈ {1, 2}, and Z = 1 since the

input data is arranged into a 2D graph consisting of two columns to represent the I/Q

components of the instantaneous and delayed versions of the input samples.

After performing the convolution, a bias term is added, and a non-linear activation

function is applied to each element of F l
c. Accordingly, the output feature map of the

lth convolutional filter can be expressed as

F l =



f c(al1,1 + bl) f c(al1,C + bl)

f c(al2,1 + bl) f c(al2,C + bl)

f c(al3,1 + bl) f c(al3,C + bl)

. .

. .

f c(alB,1 + bl) f c(alB,C + bl)


, (3.11)

where f c(.) denotes the convolutional layer’s activation function, while bl represents

the bias term associated with the lth convolutional filter. B ×C indicates the output

feature map’s dimensions, whereas ali,j denotes the (ith, jth) entry of the feature map

just after applying the convolution. With unity-stride and without zero-padding, ali,j

can be given as

ali,j =
R−1∑
r=0

S−1∑
s=0

Xr+i,s+jK
l
r+1,s+1, (3.12)

where X and K l represent the input and the lth convolutional filter matrices with

entries described in (3.10), respectively.

For efficient processing of the forwarded data through the network, the output

feature maps of all filters are reshaped before they are passed to the recurrent layer.

More specifically, in the output feature map of each filter, there are dependencies

between each column’s elements due to the temporal behavior existing in the input
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data. Therefore, in the proposed HCRNN, the output feature maps of all filters are

reformulated using the reshape layer in order to take these dependencies into account

and pass them in a sequence to the recurrent layer. Reshaping the feature maps with

this mechanism enables the recurrent layer to detect the aforementioned sequence

for proper modeling of the system’s temporal behavior. Based on this, the resultant

feature map after the reshaping process can be expressed as

F out =

[
F 1 F 2 ... F L

]
, (3.13)

where F 1, F 2, and F L represent the output feature maps of the 1st, 2nd, and Lth

convolutional filters, respectively. The reshaped feature map is then passed to the

recurrent layer, and the output at any time step t can be expressed as

yr(t) = f r (f out(t)W x + yr(t− 1)W y + br) , (3.14)

where yr(t) ∈ R1×nhr represents the recurrent layer output at any time step t, with

nhr denoting the number of recurrent layer’s neurons. Similarly, yr(t − 1) ∈ R1×nhr

indicates the recurrent layer’s output at the previous time step t− 1. f out(t) ∈ R1×ni

represents a row vector of F out, which is passed to the recurrent layer at time step

t, with ni as the number of input features. W x ∈ Rni×nhr denotes the weight matrix

for the connections between the input and hidden units at the current time step.

Further,W y ∈ Rnhr×nhr indicates the weight matrix for the feedback connections from

the hidden units at the previous time step. Finally, f r(.) represents the activation

function operation of the recurrent layer, whereas br ∈ R1×nhr indicates a row vector

containing the bias terms of the recurrent layer neurons.

The recurrent layer’s output is then passed to the output layer, which is formed

by a fully-connected (dense) layer containing two neurons. The output layer neurons
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Fig. 3.4: Proposed HCRDNN architecture.

are utilized to map the extracted features by the recurrent layer to the final output

(i.e., estimated I/Q components of the SI signal) as follows:

I
′

out(n) = f o

(
nhr∑
i=1

W 1,i
o y

i
r + b1

o

)
, (3.15)

Q
′

out(n) = f o

(
nhr∑
i=1

W 2,i
o y

i
r + b2

o

)
, (3.16)

where f o(.) represents the output layer’s activation function, while {W 1,i
o , b

1
o,} and

{W 2,i
o , b

2
o} indicate the weight and bias terms associated with the first and second

neurons of the output layer, respectively.

3.4.2 HCRDNN Architecture

The network architecture of the proposed HCRDNN is depicted in Fig. 3.4. The

key difference between the HCRDNN and HCRNN architectures is that an additional

dense layer is employed after the convolutional and recurrent layers as increasing the

number of hidden layers can enable building more complex NN models with reduced

complexity [25]. Additionally, adding a dense layer to the HCRDNN architecture

provides another degree of freedom to adapt the NN settings in order to achieve
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the optimum cancellation-complexity trade-off. In particular, in the HCRDNN, the

convolutional layer’s hyper-parameters (e.g., number of filters, filter size) and the

number of neurons in the recurrent and dense layers are jointly adjusted to achieve

a considerable cancellation performance with a significant computational complexity

reduction.

The output of the uth neuron at the dense layer of the HCRDNN can be given by

yud = fd

(
nhr∑
i=1

W u,i
d y

i
r + bud

)
, (3.17)

where fd(.) indicates the activation function of the dense layer, while {W u,i
d , b

u
d,}

represent the weight and bias terms associated with the uth neuron in the dense layer,

respectively. The dense layer’s output is then passed to the output layer to estimate

the I/Q components of the SI signal as (3.15) and (3.16).

After predicting I
′
out(n) and Q

′
out(n), the MSE is calculated as a cost function to

measure how well the proposed NN models predict the actual outputs as follows:

E =
1

2N

N∑
n=1

([
Iout(n)−I ′out(n)

]2

+
[
Qout(n)−Q′out(n)

]2
)
, (3.18)

where {Iout(n), Iout(n)} and {I ′out(n), Q
′
out(n)} represent the actual and predicted val-

ues of the I/Q components of the SI signal, receptively, whereas N denotes the num-

ber of training observations, as stated before in Section 3.3. During the HCRNN and

HCRDNN models’ training, the convolutional, recurrent, and dense layers’ weights

and biases are set to minimize this cost function.

After the training process, the proposed NNs are employed to provide non-linear

SI cancellation as part of the digital cancellation in the FD transceiver, as illustrated

in Fig. 3.1(b).
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3.5 Complexity Analysis

In this section, the computational complexity and memory requirements of the poly-

nomial and proposed NN-based cancelers are analyzed in terms of the number of

computations and memory storage of the linear and non-linear cancelers required to

provide the total SI cancellation (i.e., the summation of linear and non-linear can-

cellations). In particular, in this work, the computational complexity is assessed in

terms of the number of FLOPs used to perform the linear and non-linear cancella-

tion processes. Moreover, the memory storage requirements are assessed in terms of

the number of stored parameters utilized to achieve the total cancellation. In this

analysis, I focus on evaluating the complexity of the polynomial and proposed NN-

based cancelers in the real-time inference stage since powerful processing units can be

employed to perform the training process offline.

3.5.1 Linear Canceler Complexity

In this subsection, I calculate the number of FLOPs required to implement the linear

canceler in terms of the number of RV multiplications and additions. From (3.8), the

linear canceler requires M complex multiplications and M − 1 complex additions to

perform the linear cancellation. Using the assumption that each complex addition is

implemented by two real additions, and each complex multiplication is executed using

three real multiplications and five real additions [32], the number FLOPs of the linear

canceler can be expressed as

Flin = 3M︸︷︷︸
χ<mul,lin

+ 7M − 2︸ ︷︷ ︸
χ<add,lin

, (3.19)
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where χ<mul,lin and χ<add,lin represent the number of real multiplications and additions

required for the linear canceler, respectively, while M denotes the memory effect in-

corporated into the input signal by the PA and SI channel, as stated before. Similarly,

from (3.8), the memory requirements of the linear canceler is evaluated as a function

of the number of stored parameters, which can be expressed as

Plin = 2M. (3.20)

3.5.2 Non-Linear Canceler Complexity

In this subsection, the number of FLOPs and parameters required for non-linear

cancellation using polynomial and NN-based cancelers are analyzed.

3.5.2.1 Polynomial-based Canceler Complexity

Using the previous assumptions, it can be deduced from (3.3) that the number of RV

multiplications and additions required for the non-linear polynomial-based canceler

can be expressed as [29], [32]

χ<mul,poly = 3M

{(
P + 1

2

)(
P + 1

2
+ 1

)
− 1

}
, (3.21)

χ<add,poly = 7M

{(
P + 1

2

)(
P + 1

2
+ 1

)
− 1

}
. (3.22)

Similarly, the number of parameters of the non-linear polynomial-based canceler can

be expressed as [29], [32]

Ppoly = 2M

{(
P + 1

2

)(
P + 1

2
+ 1

)
− 1

}
. (3.23)
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3.5.2.2 NN-based Canceler Complexity

For the proposed non-linear HCRNN-based canceler, the number of FLOPs can be

expressed as

FHCRNN = F c + F r + Fo , (3.24)

where F c, F r , and Fo represent the number of FLOPs required for the convolutional,

recurrent, and output layers of the HCRNN, respectively. Firstly, for the convolutional

layer, F c can be expressed as

F c = (2 {R× S × Z} − 1) (B × C × L)︸ ︷︷ ︸
Termc

1

+Fact × (B × C × L)︸ ︷︷ ︸
Termc

2

+(B × C × L)︸ ︷︷ ︸
Termc

3

, (3.25)

where Termc
1 represents the number of RV multiplications and additions required to

convolve the 2D graph of the input data with L convolutional filters. Termc
2 denotes

the number of RV operations (multiplications + additions) required for applying the

activation functions at each element of the output feature map after the convolution

process. Termc
3 indicates the number of real additions required for adding the bias

values. Finally, Fact represents the number of real operations needed to evaluate each

activation function, which mainly depends on the activation function type.

In this work, I consider the rectified linear unit (ReLU ), Sigmoid, and hyperbolic
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tangent (tanh) activation functions, which are defined as [25]

ReLU(z) = max(0, z), (3.26a)

Sigmoid(z) =
1

e−z + 1
, (3.26b)

tanh(z) =
ez − e−z

ez + e−z
. (3.26c)

By assuming that each real operation (e.g., multiplication, division, addition, sub-

traction, and exponentiation) costs one FLOP [35], [36], the number of FLOPs re-

quired to implement each of the aforementioned activation functions can be expressed

as

Fact =


1, if ReLU

4, if Sigmoid

6, if tanh

. (3.27)

Secondly, the number of FLOPs required for the recurrent layer can be expressed as

F r = 2nhr

(
ni + nhr −

1

2

)
︸ ︷︷ ︸

Termr
1

+Fact × nhr︸ ︷︷ ︸
Termr

2

+ nhr︸︷︷︸
Termr

3

, (3.28)

where Termr
1 represents the number of RV operations associated with multiplying the

weight matrices W x and W y in (3.14) with their corresponding inputs, while Termr
2

and Termr
3 indicate the number of real operations required for applying the activation

functions and adding the biases at each neuron of the recurrent layer, respectively.

Finally, the output layer’s FLOPs can be expressed as
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Fo = nho (2nhr − 1)︸ ︷︷ ︸
Termo

1

+Fact × nho︸ ︷︷ ︸
Termo

2

+ nho︸︷︷︸
Termo

3

, (3.29)

where nho represents the number of output layer’s neurons. Termo
1 denotes the number

of RV operations required to calculate the weighted sum of inputs at the output layer

neurons. Termo
2 and Termo

3 indicate the number of real operations associated with

employing the activation functions and adding the bias terms at each neuron of the

output layer, respectively.

The number of parameters of the proposed HCRNN architecture can be given as

PHCRNN = Pc + Pr + Po , (3.30)

where Pc, Pr , and Po represent the number of parameters of the convolutional,

recurrent, and output layers, respectively, which can be expressed as

Pc = L (R× S × Z + 1) , (3.31a)

Pr = nhr (ni + nhr + 1) , (3.31b)

Po = nho (nhr + 1) . (3.31c)

Using the same mathematical formulation, the number of FLOPs of the proposed

HCRDNN can be calculated as

FHCRDNN = F c + F r + Fd + Fo , (3.32)

where F c and F r represent the convolutional and recurrent layers’ FLOPs, which can

be determined using (3.25) and (3.28), respectively. Fo indicates the output layer’s

62



FLOPs, which can be calculated by replacing nhr by nhd in (3.29), whereas Fd denotes

the dense layer’s FLOPs, which can be expressed as

Fd = nhd (2nhr − 1)︸ ︷︷ ︸
Termd

1

+Fact × nhd︸ ︷︷ ︸
Termd

2

+ nhd︸︷︷︸
Termd

3

, (3.33)

where Termd
1, Termd

2, and Termd
3 represent the number of real operations required

for calculating the weighted sum of inputs, applying the activation functions, and

summing the biases at the dense layer neurons, respectively.

The number of parameters of the HCRDNN can be given as

PHCRDNN = Pc + Pr + Pd + Po , (3.34)

where Pc and Pr represent the convolutional and recurrent layers’ parameters given

by (3.31a) and (3.31b), respectively, while Po indicates the output layer’s parameters,

which can be evaluated by replacing nhr by nhd in (3.31c). Lastly, Pd = nhd (nhr + 1)

is the number of dense layer parameters.

For the RV-TDNN [29], [30], the number of FLOPs and parameters can be ex-

pressed as

FRV−TDNN =
L∑
j=2

2nj−1nj + Fact ,jnj, (3.35)

PRV−TDNN =
L∑
j=2

nj−1nj + nj, (3.36)

where L indicates the number of layers of the RV-TDNN, including the input, hidden,

and output layers. nj is the number of neurons in the jth layer, with n1 and nL

representing the number of input and output layers’ neurons, respectively. Fact ,j

denotes the number of operations required to apply the activation function at each of
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the jth layer’s neurons.

Similarly, for the RNN [30], the number of FLOPs and parameters can be given

by

FRNN =
L∑
j=2

2nj−1nj + 2n2
j + Fact ,jnj − 2n2

L, (3.37)

PRNN =
L∑
j=2

nj−1nj + n2
j + nj − n2

L, (3.38)

with n1 denotes the number of RNN inputs at each time step.

For the CV-TDNN [30], using the previous implementation assumptions for the

CV additions and multiplications, the number of FLOPs and parameters can be given

by

FCV−TDNN = 10

{
L∑
j=2

nj−1nj

}
+ Fact ,jnj, (3.39)

PCV−TDNN = 2

{
L∑
j=2

nj−1nj + nj

}
. (3.40)

For the LWGS [33] employing ni CV inputs and a single hidden layer with nh

neurons, the number of FLOPs and parameters can be expressed as

FLWGS = 10

{(
nh∑
j=1

j

)
+ ni

}
+ Factnh, (3.41)

PLWGS = 2

{(
nh∑
j=1

j

)
+ ni + nh+1

}
. (3.42)

Likewise, for the MWGS [33] employing ni CV inputs, a W window size, and a single

hidden layer with nh neurons, the number of FLOPs and parameters can be obtained
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as follows:

FMWGS = 10 {ni +W (nh − 1) + nh}+ Factnh, (3.43)

PMWGS = 2 {ni +W (nh − 1) + 2nh + 1} . (3.44)

Finally, the total number of FLOPs of any of the aforementioned NN-based can-

celers can be expressed as

FNN−C = Flin + FNN + 2, (3.45)

where Flin represents the linear canceler complexity, which can be calculated by (3.19),

while FNN indicates the NN complexity (e.g., FHCRNN , FHCRDNN , FRV−TDNN ). The

two FLOPs added in (3.45) represent the number of real additions required to sum

the outputs of the linear and non-linear cancelers in (3.8) and (3.9), respectively [32].

3.6 Optimum Settings of the Proposed HCRNN

and HCRDNN Architectures

In this section, the optimum settings for training the proposed HCRNN and HCRDNN

architectures are obtained. Specifically, the number of convolutional filters, filter size,

number of recurrent and dense layers’ neurons, activation functions in each layer,

learning rate, batch size, and training optimizer are selected in such a way that results

in a proper cancellation performance while maintaining low computational complexity.

In the following, I firstly describe the dataset employed to train the proposed NN

architectures, then the network settings for the training process are optimized.
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TABLE 3.1: Summary of the parameters employed to generate the dataset utilized
for training and verifying the proposed NN architectures.

Parameter Value

Type of modulation QPSK-modulated OFDM

Pass-band bandwidth 10 MHz

Number of carriers 1024

Sampling frequency 20 MHz

Average transmit power 10 dBm

Passive analog suppression 53 dB

Active analog suppression N/A

Total analog cancellation 53 dB

Dataset size 20,480 samples

3.6.1 Training Dataset

In the following experiments, the public dataset employed in [29] and [30] is utilized

to train and verify the proposed NN architectures. The dataset is produced using

a realistic FD test-bed, which generates a 10 MHz quadrature phase-shift keying

modulated-orthogonal frequency division multiplexing (OFDM) signal with an aver-

age transmit power of 10 dBm. The OFDM signal employs 1024 sub-carriers and is

sampled at 20 MHz. The generated dataset contains 20,480 time-domain baseband

samples, which I split into two distinct parts. The first part is used for training and

consists of 90% of samples, whereas the second is employed for verification and con-

tains the rest 10%. The employed hardware test-bed provides 53 dB passive analog

RF cancellation using physical separation between the transmit and receive antennas;

hence, in this work, no further active analog cancellation techniques are employed

since the use of digital cancellation after passive analog suppression is adequate to

bring the SI signal’s power down to the receiver’s noise level [29], [30]. A summary

of the parameters employed to generate the aforementioned dataset is presented in

Table 3.1.
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3.6.2 Optimum Configuration

The process of selecting the optimum configuration of the proposed HCRNN (e.g.,

number of convolutional filters, filter size, number of recurrent layer’s neurons) is

analyzed as given in Table 3.2.2 To that end, I test two values for the convolutional

filters L ∈ {2, 3} and change the filter size dimensions such that R ∈ {2, 3, ..., 13},

S ∈ {1, 2}, and Z = 1 for all filters. Moreover, I consider nhr ∈ {4, 5, ..., 10} for the

number of neurons in the recurrent layer. Since there is a large number of combinations

between L, R, S, Z, and nhr, I only show the NN configurations that achieve the best

cancellation-complexity trade-off in Table 3.2. Specifically, in this work, choosing

the optimum configuration of the HCRNN is based on the criterion of achieving

a similar or comparable cancellation performance to the polynomial canceler with

P = 5 while maintaining a lower implementation complexity.3 Based on this, it can

be observed from Table 3.2 that the HCRNN configuration with three convolutional

filters, 12 × 1 × 1 filter size, and nine neurons in the recurrent layer achieves the

target cancellation of the polynomial canceler. Besides, it attains the best compromise

between the cancellation performance and implementation complexity compared to

its other counterparts.

Similarly, the selection of the optimum configuration of the proposed HCRDNN

is explored in Table 3.3.2 In this case, I test the number of filters L ∈ {2, 3}, filter

dimensions R ∈ {2, 3, ..., 13}, S ∈ {1, 2}, and Z = 1, recurrent layer’s neurons nhr ∈

{4, 5, ..., 10}, and dense layer’s neurons nhd ∈ {4, 5, ..., 12}. As can be seen from

Table 3.3, two configurations of the proposed HCRDNN achieve the best compromise

2The results in Tables 3.2 and 3.3 are obtained using the following default settings: ReLU acti-
vation function in all hidden layers, 5×10−3 learning rate, 158 batch size, and Adam optimization
algorithm over 15 random initializations. The aforementioned settings are optimized in the next
subsections.

3It is noted that at P = 5, the polynomial canceler attains 44.45 dB cancellation [30], while from
(3.19), (3.20), (3.21), (3.22), and (3.23), it requires 1558 FLOPs and 312 parameters to achieve this
cancellation.
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TABLE 3.4: Optimum activation functions of the proposed HCRNN.

Config. # Conv. layer Rec. layer SI Canc. (dB) FLOPs

1 tanh tanh 44.61 850

2 tanh ReLU 44.50 805

3 tanh Sigm 44.15 832

4 ReLU tanh 44.37 790

5 ReLU ReLU 44.44 745

6 ReLU Sigm 44.41 772

7 Sigm tanh 44.27 826

8 Sigm ReLU 43.65 781

9 Sigm Sigm 43.12 808

among the cancellation performance, number of FLOPs, and parameters. The first

configuration (i.e., HCRDNN 1) employs two convolutional filters, 12×1×1 filter size,

seven neurons in the recurrent layer, and eleven neurons in the dense layer. However,

the second (i.e., HCRDNN 2) utilizes three convolutional filters, 12× 1× 1 filter size,

five neurons in the recurrent layer, and twelve neurons in the dense layer. It is worth

mentioning here that from Tables 3.2 and 3.3, the filter size of 12×1×1 is shown to be

the best size for the optimizable convolutional filters employed in both the HCRNN

and HCRDNN architectures. Moreover, it is worth noting that using an additional

dense layer in the proposed HCRDNN 1 and HCRDNN 2 reduces the number of

neurons in the recurrent layer from 9 to 7 and 5 neurons, respectively, compared to

the HCRNN architecture; this significantly affects the computational complexity of

the HCRDNN model.

3.6.3 Optimum Activation Functions

In this subsection, I test the cancellation performance and computational complexity

of the proposed HCRNN and HCRDNN using different activation functions in the

convolutional, recurrent, and dense (if any) layers and select the optimum combina-

tion of activation functions that results in the best cancellation-complexity trade-off.
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TABLE 3.5: Optimum activation functions of the proposed HCRDNN.

Config.

#

Conv.

layer

Rec.

layer

Dense

layer

SI Canc. (dB) FLOPs

HCRDNN 1 HCRDNN 2 HCRDNN 1 HCRDNN 2

1 tanh tanh tanh 44.41 44.33 830 870

2 tanh tanh ReLU 44.49 44.57 775 810

3 tanh tanh Sigm 44.21 43.98 808 846

4 tanh ReLU tanh 44.40 44.30 795 845

5 tanh ReLU ReLU 44.36 44.34 740 785

6 tanh ReLU Sigm 44.14 43.98 773 821

7 tanh Sigm tanh 43.98 44.05 816 860

8 tanh Sigm ReLU 44.13 44.34 761 800

9 tanh Sigm Sigm 43.96 44.09 794 836

10 ReLU tanh tanh 44.48 44.24 790 810

11 ReLU tanh ReLU 44.54 44.48 735 750

12 ReLU tanh Sigm 44.17 43.88 768 786

13 ReLU ReLU tanh 44.36 44.14 755 785

14 ReLU ReLU ReLU 44.44 44.41 700 725

15 ReLU ReLU Sigm 44.24 43.92 733 761

16 ReLU Sigm tanh 44.34 43.89 776 800

17 ReLU Sigm ReLU 44.31 44.26 721 740

18 ReLU Sigm Sigm 44.11 43.95 754 776

19 Sigm tanh tanh 44.08 43.89 814 846

20 Sigm tanh ReLU 44.04 44.07 759 786

21 Sigm tanh Sigm 43.90 43.59 792 822

22 Sigm ReLU tanh 43.46 42.78 779 821

23 Sigm ReLU ReLU 43.95 43.63 724 761

24 Sigm ReLU Sigm 43.84 43.21 757 797

25 Sigm Sigm tanh 42.53 41.98 800 836

26 Sigm Sigm ReLU 43.02 43.54 745 776

27 Sigm Sigm Sigm 42.97 42.94 778 812
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TABLE 3.6: Optimum learning rate of the proposed HCRNN and HCRDNN.

Learning rate 1× 10−2 5× 10−3 1× 10−3 5× 10−4 1× 10−4

Network SI Cancellation (dB)

HCRNN 44.36 44.44 44.12 43.64 38.90

HCRDNN 1 44.28 44.44 43.65 42.92 39.11

HCRDNN 2 44.22 44.41 44.01 43.26 39.22

Specifically, in Table 3.4, I evaluate the performance of the optimum HCRNN con-

figuration, obtained in the previous subsection, using different activation functions.

As seen from Table 3.4, the HCRNN with the ReLU activation function in both

convolutional and recurrent layers achieves the target cancellation of the polynomial

canceler and provides the best compromise between the cancellation and complexity

performances. It can also be inferred from Table 3.4 that using the tanh activation

function in the hidden layers of HCRNN only enhances the SI cancellation by 0.17

dB at the cost of augmenting the FLOPs by 14% compared to the ReLU activation

function. Hence, in this work, I employ the ReLU activation function for the HCRNN

as it provides the best cancellation-complexity trade-off.

Likewise, in Table 3.5, I test the optimum configurations of the HCRDNN using

various activation functions. As can be observed, using the ReLU activation func-

tion in the convolutional, recurrent, and dense layers attains the best cancellation-

complexity trade-off for both HCRDNN architectures.

3.6.4 Optimum Learning Rate

The effect of varying the learning rate on the cancellation performance of the pro-

posed HCRNN and HCRDNN-based cancelers is analyzed in Table 3.6. It can be

inferred that using a learning rate of 5×10−3 achieves the best cancellation perfor-

mance for both the proposed HCRNN and HCRDNN architectures compared to the

other learning rates.
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TABLE 3.7: Optimum batch size of the proposed HCRNN and HCRDNN.

Batch size 22 62 158 256 512

Network SI Cancellation (dB)

HCRNN 44.37 44.50 44.44 44.40 44.44

HCRDNN 1 44.17 44.38 44.44 44.39 44.28

HCRDNN 2 44.22 44.29 44.41 44.37 44.31

3.6.5 Optimum Batch Size

Similarly, in this subsection, I test the effect of varying the batch size on the perfor-

mance of the proposed HCRNN and HCRDNN-based cancelers. Herein, I consider

many values for the batch size, and I only show the batch sizes that result in the

best cancellation performance in Table 3.7. As can be observed, employing batch

size values of 62 and 158 provide the best cancellation performance for the proposed

HCRNN and HCRDNN architectures, respectively.

3.6.6 Selected Optimizer

The cancellation performance of the proposed HCRNN and HCRDNN-based cancelers

is analyzed using different optimizers, as illustrated in Table 3.8. In this work, I

test the stochastic gradient descent (SGD), Adam, root mean square propagation

(RMSprop), Adadelta, and Adamax optimizers. As seen from Table 3.8, the Adam

optimization algorithm attains the best performance for the HCRNN and HCRDNN

compared to the other optimization techniques.

Based on the aforementioned subsections, the optimum settings for training the

proposed HCRNN and HCRDNN architectures are summarized in Table 3.9.
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TABLE 3.8: Selected optimizer of the proposed HCRNN and HCRDNN.

Optimizer SGD Adam RMSprop Adadelta Adamax

Network SI Cancellation (dB)

HCRNN 41.11 44.50 44.23 37.80 44.36

HCRDNN 1 38.37 44.44 43.97 37.84 43.93

HCRDNN 2 38.73 44.41 43.89 37.83 43.95

3.7 Results and Discussions

In this section, the proposed and the state-of-the-art NN-based cancelers are assessed

for canceling the SI in a realistic FD system and compared with the polynomial-based

canceler’s performance. The performance assessment includes studying the proposed

NN architectures’ prediction capabilities, MSE performance, achieved SI cancellation,

power spectral density (PSD) of the modeled SI signal, computational complexity, and

memory requirements. The above-mentioned metrics are considered the typical mea-

sures for performance evaluation in the SI cancellation-related works in the literature

[29]-[33]. Herein, for the sake of comprehensive evaluation, I compare the performance

of the proposed NNs with the shallow and deep RV-TDNN, RNN, and CV-TDNN

introduced in [29] and [30]; further, I consider the performance of the LWGS and

MWGS investigated in [33]. In this work, all NN architectures are implemented using

3.5.7 Python software with 2.0.0 TensorFlow and 2.3.1 Keras versions. Moreover, the

NNs are trained using the dataset described in Section 3.6.1 over 15 random network

initializations. For the proposed NN architectures, I employ the optimum settings

summarized in Table 3.9, whereas for the state-of-the-art NNs, I use the optimum

settings listed in Table 3.10. Besides, I employ a memory length M = 13 for the poly-

nomial and all NN-based cancelers. It is worth mentioning that the optimum settings

for training the proposed and the state-of-the-art NN-based cancelers, summarized in

Tables 3.9 and 3.10 respectively, are chosen by applying trial and error methodology
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TABLE 3.9: Optimum settings of the proposed HCRNN and HCDRNN.

Structure HCRNN HCRDNN 1 HCRDNN 2

# Filters 3 2 3

Filter size 12×1×1 12×1×1 12×1×1

# Rec. neurons 9 7 5

# Dense neurons N/A 11 12

Conv. activation ReLU ReLU ReLU

Rec. activation ReLU ReLU ReLU

Dense activation N/A ReLU ReLU

Learning rate 5×10−3 5×10−3 5×10−3

Batch size 62 158 158

Optimizer Adam Adam Adam

TABLE 3.10: Optimum settings of the state-of-the-art NN architectures.

Structure # Hidden layers neurons Activation Learning rate Batch size Opti-mizer

RV-TDNN [8] 18 ReLU 5×10−3 22 Adam

RNN [11] 20 tanh 2.5×10−3 158 Adam

CV-TDNN [11] 7 CReLU 4.5×10−3 62 Adam

LWGS [33] 9 CReLU 4.5×10−3 62 Adam

MWGS [33] 12 CReLU 4.5×10−3 62 Adam

Deep RV-TDNN [11] (10-10-10) ReLU 5×10−3 22 Adam

Deep RNN [11] (16-16-16) tanh 2.5×10−3 158 Adam

Deep CV-TDNN [11] (4-4-4) CReLU 4.5×10−3 62 Adam

such they achieve a similar cancellation performance to the polynomial canceler at

P = 5 (i.e., 44.45 dB cancellation).

3.7.1 Prediction Capabilities of the Proposed NN Architec-

tures

In this subsection, the prediction capabilities of the proposed HCRNN, HCRDNN 1,

and HCRDNN 2 architectures are assessed in Figs. 3.5(a), (b), and (c), respectively.

Herein, I show the time-domain waveforms for 200 input-output sample pairs of the

SI signal predicted by the proposed NN architectures and their corresponding ground-

truth (actual) values. As can be seen from the figures, there is a consistency between
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Fig. 3.5: Prediction capabilities of the proposed NN architectures.

the actual and predicted values of the SI signal modeled by the proposed NNs. This

consistency substantiates the ability of the proposed HCRNN and HCRDNN-based

cancelers to model the SI correctly. In addition, it can be inferred from the figures

that the proposed NNs have similar modeling capabilities since their network settings

are intentionally set such that they achieve a comparable cancellation performance to

the polynomial-based canceler with P = 5.

3.7.2 MSE Performance

The MSE performance in the training and testing phases of the proposed NN architec-

tures is depicted in Figs. 3.6 and 3.7, respectively, compared to the state-of-the-art

NNs. The MSE is utilized to evaluate the average squared difference between the

ground-truth and predicted SI signal modeled by the various NN architectures. As

seen from the figures, the MSE values of all NNs are comparable in both training and

testing phases (this can be clearly observed from the inset graphs in Figs. 3.6 and

3.7). As previously stated, the reason behind this is that all NNs are set to attain

a comparable cancellation performance, and that is why they achieve a similar MSE

performance. Moreover, it can be observed from Figs. 3.6 and 3.7 that there are no

overfitting signs for the proposed and the state-of-the-art NNs as they perform well
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in both training and testing phases. Additionally, it can be seen from the figures that

the proposed NNs converge to similar, low MSE values in both training and testing

phases, which indicates the goodness of the solution provided by the proposed NN

architectures.

3.7.3 Achieved SI Cancellation

The boxplots quantifying the total SI cancellation achieved by the proposed and the

state-of-the-art NN-based canceler is depicted in Fig. 3.8. Here, I calculate the

mean cancellation provided by the NN-based cancelers over the employed 15 network

initializations. As seen from the figure, all NNs attain a comparable cancellation

performance to the polynomial canceler at P = 5 (red dashed-line in Fig. 3.8).

Specifically, the mean cancellation achieved by all NN-based cancelers varies from

44.40 to 45.27 dB, which is very close to the polynomial target cancellation. It is
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worth noting that I configure the NN settings to achieve a comparable cancellation

performance to the polynomial canceler as it is not easy to adjust the setting to

exactly achieve the target cancellation.

3.7.4 PSD Performance

In this subsection, I evaluate the PSD of the SI signal before applying any SI cancel-

lation techniques (blue curve in Fig. 3.9). Further, the PSD of the residual SI signal

after the linear cancellation process is assessed (red curve). Similarly, I depict the

PSD of the SI signal after performing non-linear cancellation using the polynomial

and NN-based cancelers. Finally, I show the PSD of the receiver background noise

when there is no transmission, i.e., the receiver’s noise floor (black curve). As can

be inferred from Fig. 3.9, the linear canceler provides 37.90 dB SI cancellation by

bringing the SI signal’s power down from -42.74 dBm to -80.60 dBm. Moreover, the

polynomial-based canceler attains an additional 6.6 dB cancellation by bringing the

residual SI signal’s power down from -80.60 dBm to -87.19 dBm, making it very close

to the receiver noise floor (approximately 3 dB above the receiver’s noise floor). A

similar task is performed by the proposed and the state-of-the-art NN-based cancelers,

in which they cancel the SI signal after the linear canceler by 6.55-7.40 dB, making

it very akin to the receiver’s background noise level as illustrated in the inset graph

of Fig. 3.9.

3.7.5 Computational Complexity and Memory Requirements

In this subsection, I assess the computational complexity of the proposed and the

state-of-the-art NN-based cancelers in terms of the number of FLOPs and calculate the

complexity reduction provided by each canceler compared to the polynomial canceler.

Similarly, I quantify the memory requirements of each NN-based canceler in terms
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NN-based cancelers.

of the number of parameters and calculate the amount of reduction compared to the

baseline canceler. The results of the comparison are graphically shown in Fig. 3.10

and numerically summarized in Table 3.11.

3.7.5.1 Computational Complexity

Table 3.11 illustrates the reduction in the number of FLOPs provided by the pro-

posed HCRNN and HCRDNN-based cancelers compared to the polynomial and the

state-of-the-art NN-based cancelers. As seen from Table 3.11, the proposed NN-based

cancelers achieve a superior enhancement in the computational complexity compared
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to the polynomial-based canceler. For instance, the HCRNN provides a 52.18% reduc-

tion in the number of FLOPs while maintaining the same cancellation performance of

the polynomial canceler. In addition, the HCRDNN 1 and HCRDNN 2 achieve 55.07%

and 53.47% reduction compared to the polynomial canceler, respectively. However,

the shallow and deep RV-TDNN, RNN, and CV-TDNN barely attain one half of the

complexity reduction provided by the proposed NN architectures.

On the other hand, the proposed HCRNN, HCRDNN 1, and HCRDNN 2 architec-

tures outperform the state-of-the-art MWGS by providing 18%, 20.92%, and 19.32%

more reduction in FLOPs, respectively. Further, they attain 2.4%, 5.3%, and 3.7%

more saving in FLOPs compared to the LWGS-based canceler, respectively. The

above-mentioned results substantiate the proposed cancelers’ superiority in model-

ing the SI with low computational complexity compared to the polynomial and the

state-of-the-art NN-based cancelers.
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TABLE 3.11: Complexity of the proposed and the state-of-the-art NN-based cancelers
compared to the polynomial canceler with P = 5.

Network SI Canc. (dB)

Complexity Complexity

increase/reduction

# Par. # FLOPs # Par. # FLOPs

Polynomial (P = 5) 44.45 312 1558 - -

RV-TDNN 44.76 550 1156 +76.28% -25.80%

RNN 44.94 528 1210 +69.23% -22.34%

CV-TDNN 44.50 238 1166 -23.72% -25.16%

LWGS 44.48 162 782 -48.08% -49.81%

MWGS 44.40 212 1026 -32.05% -34.15%

Deep RV-TDNN 44.73 538 1120 +72.44% -28.11%

Deep RNN 45.27 1420 3106 +355.13% +99.36%

Deep CV-TDNN 44.63 228 1106 -26.92% -29.01%

HCRNN 44.50 229 745 -26.60% -52.18%

HCRDNN 1 44.44 248 700 -20.51% -55.07%

HCRDNN 2 44.41 223 725 -28.53% -53.47%

3.7.5.2 Memory Requirements

Similarly, the reduction in the number of parameters of the proposed HCRNN and

HCRDNN-based cancelers compared to the polynomial and the state-of-the-art NN-

based cancelers is illustrated in Table 3.11. As can be observed, the shallow and deep

structures of the RV-TDNN and RNN significantly increase the required parameters

compared to the polynomial canceler. The former comes from dealing with the real

and imaginary parts separately, while the latter results from employing a large num-

ber of feedback connections to efficiently detect the data sequences. On the other

hand, the proposed HCRNN, HCRDNN 1, and HCRDNN 2 reduce the number of

parameters by 26.60%, 20.51%, and 28.53% compared to the polynomial canceler, re-

spectively. This reduction is due to the application of a convolutional layer before the

recurrent layer in the proposed NN architectures, which mitigates the huge memory

requirements of the recurrent layer. It can also be seen from Table 3.11 that the re-

duction in parameters provided by the proposed NNs is comparable to that attained
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by the shallow and deep CV-TDNN. Further, the LWGS and MWGS provide the

most reduction in the number of parameters.

However, the proposed NNs outperform the LWGS and MWGS in the number of

FLOPs. More importantly, it can be inferred from Table 3.11 that among all NN

architectures, the proposed HCRDNN 1 attains the best reduction in FLOPs. Fur-

thermore, the proposed HCRNN achieves the best compromise among the cancellation

performance, number of FLOPs, and parameters. As such, the proposed NN-based

cancelers offer high design flexibility for hardware implementation, depending on the

system demands.

3.8 Future Research Directions

In this work, the proposed NN architectures have been verified using a dataset that

is captured by a single-input single-output FD test-bed. The joint design of multiple-

input multiple-output (MIMO) and FD should be considered for B5G wireless net-

works [37]-[39], and the prospects of the proposed NNs could be generalized and

verified using datasets captured by massive MIMO FD test-beds. In this context,

the spatial correlation between the transmit and receive antennas can be exploited

to design low-complexity NN-based SI cancelers [40]. Nevertheless, several challenges

need to be solved prior to the deployment and design of such a system, which include

but are not limited to the self- and cross-talks among the transceiver’s antennas [16],

[40]. Such challenges deserve a full investigation and will be studied in future work.

On the other hand, applying different machine learning techniques, such as support

vector machines (SVMs) [41], for SI cancellation in FD systems is identified as another

future direction of investigation. Several challenges related to the high computational

complexity of the SVM models can be considered in the future.
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3.9 Conclusion

In this chapter, two hybrid-layers NN architectures, referred to as hybrid-convolutional

recurrent NN (HCRNN) and hybrid-convolutional recurrent dense NN (HCRDNN),

have been proposed for the first time to model the FD system SI with reduced com-

putational complexity. The former exploits the weight sharing characteristics and

dimensionality reduction potential of the convolutional layer to extract the memory

effect and non-linearity incorporated into the input signal using a reduced network

scale. Moreover, it employs the high modeling capabilities of the recurrent layer to

help learn the temporal behavior of the input signal. The latter exploits an addi-

tional dense layer to build a deeper NN model with low complexity. The complexity

analysis of the proposed NN architectures has been conducted, and the optimum

settings for their training have been selected. Our findings demonstrate that the pro-

posed HCRNN and HCRDNN-based cancelers attain a reduction in the computational

complexity with 52% and 55% over the polynomial-based canceler, respectively, while

maintaining the same cancellation performance. In addition, the proposed HCRNN

and HCRDNN offer astounding complexity reduction over the shallow and deep NN-

based cancelers in the literature.

Appendix: Representation of Non-linear Systems

using Polynomial based Models

In the following, I review the common methods for representing non-linear systems

using polynomial-based models (e.g., Hammerstein and parallel-Hammerstein), which

are considered the cornerstone of approximating the SI in FD transceivers. Herein, it

is assumed that all signals are of a narrow-band nature [34]. In addition, only the odd
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order non-linearities are considered since the even order non-linearities lay outside the

passband [34] and are typically filtered by the BPFs in the FD transceiver [32].

A. Hammerstein Model

The Hammerstein model is one of the widely-known models for approximating the

non-linear behavior with M -tap memory. In the Hammerstein model, a static non-

linearity N(.) is employed in series with a linear filter L(.) in order to model the

non-linearity with memory as follows [34]:

y(n) = L [N [x (n)]] =
M∑
m=0

hm

P∑
p=1,
p odd

ap x(n−m) | x(n−m)|p−1 , (3.46)

where P indicates the order of non-linearity, whereas hm and ap represent the coeffi-

cients of the linear filter L(.) and the non-linearity N(.), respectively.

B. Parallel-Hammerstein (PH) Model

An extended version of the Hammerstein model is the PH model, which is constructed

by combining the outputs of several Hammerstein models and can be identified as [34]:

y(n) =
P∑
p=1,
p odd

M∑
m=0

hm,p x(n−m) |x(n−m)|p−1 , (3.47)

where hm,p represent the coefficients of the linear filter corresponding to that order of

non-linearity.

The PH model (3.47) can be rewritten as [16] as follows:

y(n) =
P∑
p=1,
p odd

M∑
m=0

hm,p x(n−m)
p+1
2 x∗(n−m)

p−1
2 , (3.48)
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where (.)∗ indicates the complex conjugate operator. The PH model (3.48) provides

a more general polynomial representation for approximating the non-linearity with

memory and is considered the cornerstone of modeling the SI in FD transceivers.
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Chapter 4

Full-Duplex Self-Interference

Cancellation Using Dual-Neurons

Neural Networks

4.1 Abstract

In-band full-duplex (FD) technology has protruded as one of the most promising solu-

tions for spectrum scarcity, by allowing users to transmit and receive simultaneously

at the same center frequency. However, the FD systems suffer from a severe self-

interference (SI) caused by the coupling between the transmit and receive antennas.

Thereby, the potential of FD systems can not be attained without employing robust SI

cancellation techniques. Traditionally, the SI is modeled using the polynomial-based

cancelers, which are computationally expensive. Consequently, neural networks (NNs)

have been recently introduced to model the SI with lower computational complexity.

In this chapter, a novel NN structure referred to as the dual neurons-` hidden lay-

ers NN (DN-`HLNN) is proposed. The DN-`HLNN exploits two neurons in the first
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hidden layer to recognize the memory effect of the input and output samples with

reduced complexity. The numerical simulations show that the DN-`HLNN-based can-

celer significantly reduces the computational complexity and memory requirements

compared to the polynomial- and the existing NN-based cancelers while maintaining

a similar non-linear cancellation performance.

4.2 Introduction

Self-interference (SI) represents a major barrier toward the practical deployment of

in-band full-duplex (FD) systems [1]. Therefore, to be viable, each FD node should

incorporate effective SI cancellation techniques in order to maintain the SI signal

below the receiver noise floor and to avoid the saturation of the analog parts of the

receiver, such as the low-noise amplifier (LNA) and the analog-to-digital converter

(ADC) [1]. The cancellation of the SI could be implemented in analog and/or digital

domains. Typically, analog domain cancellation is insufficient for SI suppression. As

such, digital domain cancellation stages are required to suppress the remaining SI.

Since the source of the SI is known to the receiver, theoretically it would be a simple

task to entirely cancel the SI in the digital domain. However, this is far from practice

due to the non-idealities incorporated into the input signal by various transceiver

components and by the SI channel. The non-linearities of the FD transceiver are

caused by the power amplifier (PA), IQ mixer, digital-to-analog converter (DAC),

ADC, and LNA [2], [3].

Conventionally, the non-linearities of the FD system are approximated using the

polynomial model, which can be accurate for representing the SI. However, it requires

high computational complexity as the number of basis functions and model parameters

significantly increases with the non-linearity order [3]. As such, neural networks (NNs)
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have emerged recently to model the SI with lower computational complexity.

In [2], the non-linear SI signal is modeled using the conventional real-valued feed-

forward NN (RV-FFNN). Moreover, in [4], advanced NNs such as recurrent NN (RNN)

and complex-valued FFNN (CV-FFNN) are introduced to estimate the SI signal’s non-

linear part; it is shown that the CV-FFNN is more suitable than the RV-FFNN and

RNN for SI cancellation. In [5], the authors propose two CV NN structures termed as

the ladder-wise grid structure (LWGS) and moving-window grid structure (MWGS) to

model the non-linear part of the SI signal with lower computational complexity than

the CV-FFNN introduced in [4]. In addition, in [6], two hybrid-layers NN structures,

namely the hybrid-convolutional recurrent NN (HCRNN) and hybrid-convolutional

recurrent dense NN (HCRDNN), have been recently introduced to modeling the non-

linear SI with lower computational complexity than the CV-FFNN [4], LWGS [5], and

MWGS [5]. On the other hand, in [7] and [8], an RV-FFNN known as a two-hidden

layer NN (2HLNN) is used to model the non-linearity of memory-based systems such

as the Doherty RF PA. In this case, the 2HLNN significantly outperforms the time-

delay NN (TDNN)1 introduced in [9].

Motivation: The existing NN-based cancelers [2], [4]-[6] provide a good reduction

in the complexity when compared to the traditional polynomial canceler; however,

further reduction in complexity is mandated for building energy-efficient digital can-

celers, which can be feasible for hardware implementation in wireless devices. Thus,

designing novel NN-based cancelers with lower computation and memory requirements

than the existing NN-based cancelers, and having the scope of practical applicability,

is the main motivation of this chapter.

Contributions: The major contributions of this chapter are summarized as follows.

1It is noted that the FFNN implemented in [2] has a similar structure to the TDNN introduced
in [9] since both employ the buffered samples of the input signal at the input layer. Henceforward,
I will use the term TDNN instead of FFNN for the sake of accurate terminology.

95



DAC VGA LPF

BPFLPFADC

PA

LNAVGA 

IQ Mixer 

IQ Mixer 

 (݊)ݔ

SI 
Channel

LO

 (݊)ܣܲݔ (݊)ܳܫݔ

RF 
Canceler

Digital 
Canceler

+ +
 (݊)ܫܵݕ

 (݊)ܫ෤ܵݕ

BPF

(݊)ݕ =  (݊)ܫ෤ܵݕ -(݊)ܫܵݕ 

 ෡ࢎ (݊)ܫ

Tx 
antenna

Rx 
antenna

(a) Detailed system model.

+

LS 

Linear Canceler 

 

 

 

Non-linear Canceler 

 

 

 

(b) Digital canceler.

Fig. 4.1: Full-duplex transceiver system model.

Firstly, I investigate the 2HLNN for SI cancellation in FD systems, but by applying

the CV framework instead of the traditional RV employed in [7], due to the potential

complexity reduction [4]. Secondly, I propose a novel CV NN structure, known as the

dual neurons-` hidden layers NN (DN-`HLNN), to model the SI with lower complexity

and memory requirements than the polynomial- and the existing NN-based cancelers.

4.3 System Model

The FD transceiver system emphasizing the SI signal path is shown in Figs. 4.1(a)

and (b). In this work, the typical polynomial model is employed as a benchmark to

approximate the SI signal. To derive this model, it is considered that the PA and IQ

mixer are the main sources for non-linearities in the FD transceiver [10].

Polynomial-based SI Signal Representation: The digital baseband signal x(n),

shown in Fig. 4.1(a), is converted to analog using the DAC, filtered by the low-

pass filter (LPF), and then up-converted using the IQ mixer, which introduces IQ

imbalance to the input signal. The digital equivalent of the output signal after the

IQ mixer can be expressed as [3]
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xIQ(n) =
1

2
(1 + ψejθ) x(n) +

1

2
(1− ψejθ) x∗(n), (4.1)

with θ and ψ as the phase and gain imbalance components of the transmitter, re-

spectively. The mixed-signal amplitude is adjusted using the variable gain amplifier

(VGA) before it is amplified by the PA, which exhibits an additional non-linearity to

the input signal. This non-linearity can be modeled using the parallel Hammerstein

model as [3]

xPA(n) =
P∑
p=1,
p odd

M∑
m=0

hm,p xIQ(n−m)
p+1
2 x∗IQ(n−m)

p−1
2 , (4.2)

where hm,p indicates the parallel Hammerstein model’s impulse response, while M

and P are the memory depth and non-linearity order of the PA, respectively.

The output signal of the PA is filtered using the band-pass filter (BPF) before

passing through the SI channel. It is assumed, for simplicity of exposition, that no

signal of interest (SoI) exists from a remote FD node and no thermal noise [2], [10].

Accordingly, the residual SI signal, after employing RF cancellation using antenna

separation and/or using adaptive techniques such as [1], is filtered, amplified, down

converted, and digitized using the BPF, LNA, IQ mixer, and ADC, respectively, and

is expressed as [2]

y
SI

(n) =
P∑
p=1,
p odd

p∑
q=0

Mi−1∑
m=0

hm,q,p x(n−m)qx∗(n−m)p−q, (4.3)

where hm,q,p denotes the impulse response of a channel that includes the overall ef-

fect of the SI channel, PA, and IQ mixer, whereas Mi represents the memory effect

incorporated into the input signal by the SI channel and PA.

Digital Domain Cancellation: In the digital domain, the main function of the can-
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celer is to provide an accurate estimate of the SI (4.3), which is denoted by ỹ
SI

(n) as

shown in Fig. 4.1(a). This is subtracted from the SI signal, and the residual SI after

the digital SI cancellation is given by y(n) = y
SI

(n)−ỹ
SI

(n). The SI cancellation over a

K-length window is calculated in dB as ξdB = 10 log10

(∑K−1
n=0 |ySI (n)|2 /

∑K−1
n=0 |y(n)|2

)
.

Linear and Non-Linear Cancellations: In this work, the digital SI signal is esti-

mated by approximating its linear and non-linear parts using the linear and non-linear

cancelers, respectively, as shown in Fig. 4.1(b). The linear component of the SI can

be approximated by letting p = q = 1 in (4.3) as

ỹ
SI,lin

(n) =

Mi−1∑
m=0

hm,1,1 x(n−m), (4.4)

where hm,1,1 is estimated using the least-squares (LS) channel estimation approach as

follows [6]:

ĥ =
(
XHX

)−1
XHy

SI
, (4.5)

with (.)H as the conjugate transpose, whereas X ∈ CN×Mi and y
SI
∈ CN×1 are the

input and output training data, respectively, with N as the length of training data.

The non-linear component of the SI signal is estimated using the NN, and its value

depends on the NN model, as will be shown in the next section. The approximated

SI is then reconstructed by summing the linear and non-linear parts as ỹ
SI

(n) =

ỹ
SI,lin

(n) + ỹ
SI,nl

(n).
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4.4 Proposed NN-Based Canceler

4.4.1 NN Structure

The main target of the NN-based canceler is to detect the temporal behavior that

exists in the SI signal. This motivates the use of NN structures that accommodate the

SI signal’s memory effect, such as RNN and TDNN. However, the training complexity

of the RNN is considered impractically high [8]. Therefore, the TDNN is preferred

to model the SI versus the RNN [4]. Another NN that could accommodate the SI

signal’s temporal behavior is the 2HLNN [7], as it is shown to outperform the TDNN

in modeling the PA’s non-linearity. However, the 2HLNN can come at a cost in

computational complexity since the delayed versions of both input and output signals

are fully connected to the first hidden layer neurons [7].

To relax the computational complexity of the 2HLNN, the DN-`HLNN structure,

shown in Fig. 4.2, is proposed in this chapter. In the DN-`HLNN, only two neurons are

utilized in the first hidden layer instead of an arbitrary number of neurons used in the

case of 2HLNN. Moreover, in the DN-`HLNN, the input units are not fully connected

to the first hidden layer; the input samples are connected to the first neuron only,

while the output samples are connected to the second neuron. As such, the non-linear

SI signal, modeled by the proposed DN-`HLNN structure as shown in Figs. 4.1 and

4.2, can be given as:

ỹ
SI,nl

(n) = g {x (n) , I (n) ,O (n)} , (4.6)

where g {.} is the DN-`HLNN mapping function, while I (n) can be expressed as

I (n) = {x (n− 1) , x (n− 2) , ..., x (n−Mi + 1)} and O (n) can be written as O (n) =

{z (n− 1) , z (n− 2) , ..., z (n−Mo)}, with z (n) = y
SI

(n) − ỹ
SI,lin

(n) as the feedback

output signal after applying the linear cancellation. Finally, Mi and Mo represent
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Fig. 4.2: Proposed DN-`HLNN structure.

the memory effect attributed to the input and output signals, respectively. Including

Mo samples of the received data at the input of the DN-`HLNN helps to take into

account the composite effect of the transceiver’s non-linearities and the over-the-air

SI propagation delay spread.

The main idea behind this configuration is to allow the two neurons employed in

the first hidden layer to recognize the memory effect of the input and output signals

separately while reducing the required number of network parameters (e.g., weights

and biases). To detect the above-mentioned memory effects, the DN-`HLNN employs

linear activation functions in the first hidden layer. On the other hand, the second,

third, and `th hidden layers’ neurons of the DN-`HLNN are utilized to approximate

the non-linearities induced by the various components of the FD transceiver. To

model these non-linearities, the DN-`HLNN uses non-linear activation functions in

the aforementioned hidden layers, such as the complex ReLU (CReLU) activation

function [4], [5].
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4.4.2 Computational Complexity

In this subsection, I derive the computational complexity of the DN-`HLNN for ` ≥ 2.

This is evaluated in terms of the total number of floating-point operations (FLOPs)

that are required in the NN’s inference phase. In this stage, I evaluate the RV mul-

tiplications (MULs) and additions (ADDs) utilized at the DN-`HLNN’s neurons to

calculate the weighted sum of its inputs, add the biases, and apply the activation

function. Thus, the overall complexity of the DN-`HLNN is given as

ODN−`HLNN = Ow,b +Oa, (4.7)

where Ow,b = γ<mw,b + γ<aw,b and Oa = γ<ma + γ<aa , with γ<mw,b and γ<aw,b representing the

overall RV MULs and ADDs, respectively, which are used for evaluating the weighted

sum of the inputs and adding the bias terms in all neurons of the DN-`HLNN. Likewise,

γ<ma and γ<aa denote the overall RV MULs and ADDs needed to apply the activation

functions in all neurons of DN-`HLNN.

Since the DN-`HLNN deals with CV inputs and CV network parameters, all the

network operations (e.g., MULs and ADDs) will be CV. I consider that each CV ADD

requires two RV ADDs, and each CV MUL costs five RV ADDs and three RV MULs

[10]. Accordingly, it can be easily deduced that γ<mw,b and γ<aw,b can be obtained as

γ<mw,b = 3γCmw,b , γ<aw,b = 5γCmw,b + 2γCaw,b, (4.8)

where γCmw,b and γCaw,b represent the CV counterparts of γ<mw,b and γ<aw,b, respectively. At

the jth hidden layer of the DN-`HLNN, γCm,jw,b and γCa,jw,b can be calculated as

γCm,jw,b = γCa,jw,b = nj−1nj, 1 < j ≤ `, (4.9)
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where nj denotes the number of neurons in the jth hidden layer of the DN-`HLNN. It

is worth mentioning that (4.9) is applied to all the hidden layers of the DN-`HLNN

except the first hidden layer since it is not fully connected to all the input layer’s

neurons. The computation of the CV operations of the first hidden layer is performed

as follows. For the first (second) neuron with Mi (Mo) inputs connected to it, the

number of CV MULs and ADDs is Mi (Mo), respectively, to calculate the weighted

sum of its inputs and add the bias term. Thus, γCm,1w,b = γCa,1w,b = Mi +Mo.

Furthermore, since the DN-`HLNN employs only one neuron at the output layer,

the number of CV MULs and ADDs associated with the output layer is equal to the

number of neurons in the last hidden layer (i.e., n`). Thus, γCmw,b and γCaw,b can be

expressed as

γCmw,b = γCaw,b = Mi +Mo +
∑̀
j=2

nj−1nj + n`. (4.10)

Finally, the number of RV MULs and ADDs required for applying the activation

functions at all neurons of the DN-`HLNN can be expressed as follows [5]:

γ<ma =
∑̀
j=2

2nj, γ<aa =
∑̀
j=2

6nj. (4.11)

Using (4.8), (4.10), and (4.11), the overall complexity of the DN-`HLNN (including

the linear canceler complexity) can be obtained according to (4.7) as follows:

O = 10

{
Mi +Mo +

∑̀
j=2

nj−1nj + n`

}
+
∑̀
j=2

8nj +Olin + 2, (4.12)

where Olin represents the number of FLOPs of the linear canceler. The two FLOPs

added in (4.12) indicate the number of RV ADDs needed to sum the outputs of the

linear and non-linear cancelers as in [6], [10].
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4.5 Results and Discussion

In this section, the performance of the proposed DN-`HLNN is evaluated and com-

pared with that of the CV-TDNN [4], LWGS [5], MWGS [5], HCRNN [6], HCRDNN

[6], and 2HLNN [7] using different network configurations. All NNs are employed

to estimate the SI signal’s non-linear part using CV inputs, except for the hybrid-

layers structures, which employ RV inputs [6]. The NNs are developed in Python

using TensorFlow and Keras libraries. Further, to train the NNs, in this work, I used

the dataset2 employed in [2] and [4], which contains measured data from a hardware

FD test-bed that employs an orthogonal frequency division multiplexing signal with

quadrature phase-shift keying modulation and 10 MHz pass-band bandwidth. The

dataset consists of 20,480 observations, where 90% of the observations are utilized for

training, while 10% are applied for testing.

The network configuration of the proposed DN-`HLNN (e.g., number of hidden

layers, number of neurons) is adjusted using a trial and error mechanism, such that

it achieves a comparable SI cancellation to the polynomial-based canceler at P =

5. In other words, in this work, the polynomial canceler is considered the baseline

versus which the complexity of the proposed and the existing NN-based cancelers is

compared. To that end, I tested a large number of configurations for the proposed

DN-`HLNN using ` = 2 and ` = 3 and varied the number of neurons in the 2nd and

the 3rd (if any) hidden layers such that nj ∈ {3, 4..., 13}, with j ∈ {2, 3}. Among

a large number of tested configurations, I select the shallow DN-2HLNN (2-6) and

DN-2HLNN (2-7), for the case of ` = 2, as they attain a comparable cancellation

performance to that of the polynomial-based canceler with the lowest computational

2In this work, the system model is simplified for exposition; however, the employed dataset is
coming from measurements, and hence, takes into consideration the effect of noise as well as all
transceiver’s non-linearities.
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TABLE 4.1: Optimum settings of the proposed and the existing NNs.

Structure Mi Mo

#

Filters

Filter

size

# Hidden

layers

neurons

Window

size
Act.

Learning

rate

(×10−3)

Batch

size
Opti.

Shallow CV-TDNN [4] 13 N/A N/A N/A 7 N/A CReLU 4.5 62 Adam

Shallow 2HLNN [7] 13 12 N/A N/A (2-7) N/A CReLU 4.5 62 Adam

Shallow DN-2HLNN 13 12 N/A N/A (2-6)/(2-7) N/A CReLU 4.5 62 Adam

Deep CV-TDNN [4] 13 N/A N/A N/A (4-4-4) N/A CReLU 4.5 62 Adam

Deep 3HLNN [7] 13 12 N/A N/A (2-4-5) N/A CReLU 4.5 62 Adam

Deep DN-3HLNN 13 12 N/A N/A (2-4-5) N/A CReLU 4.5 62 Adam

Shallow LWGS [5] 13 N/A N/A N/A 9 N/A CReLU 4.5 62 Adam

Shallow MWGS [5] 13 N/A N/A N/A 12 5 CReLU 4.5 62 Adam

Shallow HCRNN [6] 13 N/A 3 12×1×1 9 N/A ReLU 5 62 Adam

Deep HCRDNN 1 [6] 13 N/A 2 12×1×1 (7-11) N/A ReLU 5 158 Adam

Deep HCRDNN 2 [6] 13 N/A 3 12×1×1 (5-12) N/A ReLU 5 158 Adam

complexity. Further, for the case of ` = 3, I select the deep DN-3HLNN (2-4-5).3

Using a similar procedure, I choose the shallow 2HLNN (2-7) and the deep 3HLNN

(2-4-5)4 for ` = 2 and ` = 3, respectively, as they achieve the baseline cancellation

with the lowest complexity.

In addition, among the traditional NNs in the literature (i.e., RV-TDNN, RNN,

and CV-TDNN), the CV-TDNN is selected for comparison as it is shown to be more

powerful for the SI cancellation problem than the RV-TDNN and RNN [4]. Finally, to

show the advantage of the proposed NNs over the recent works in [5] and [6], I include

the LWGS, MWGS, HCRNN, and HCRDNN. The network settings for training the

above-mentioned NNs (e.g., learning rate, batch size, activation functions, etc.) are

also optimized based on a trial and error methodology and are summarized in Table

4.1.

Figs. 4.3(a) and (b) depict the mean square error (MSE) in the training and testing

phases, respectively, for the aforementioned NNs using 15 random initializations. As

illustrated in Fig. 4.3, the MSE curves of all NNs are very akin to each other since

3Interestingly, It is noted that increasing the number of hidden layers of the proposed DN-`HLNN
over ` = 3 slightly enhances the cancellation performance at the cost of a significant increase in
complexity.

4It is noted that the 3HLNN structure is not considered in [7], and it is investigated for the first
time in this chapter.
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Fig. 4.3: MSE performance for different NN structures.

the NNs are configured to attain a similar cancellation performance. Moreover, it can

be seen from Figs. 4.3(a) and (b) that the MSE values for training and testing phases

are comparable for each NN, and there is no case of overfitting for any of the NN

structures.

The boxplots of the non-linear cancellation provided by each NN-based canceler

over the different seed initializations are shown in Fig. 4.4. As can be seen from this

figure, the mean non-linear cancellations achieved by all NNs are comparable to that

of the polynomial canceler at P = 5 (dashed red-line in Fig. 4.4). Further, it can be

observed from the boxplots in Fig. 4.4 that the non-linear cancellation of the proposed

DN-`HLNN structures exhibits good stability over the different seed initializations.

The power spectral density (PSD) of the SI signal after applying the linear and non-

linear cancellations is shown in Fig. 4.5. As seen from the figure, the LS-based linear

canceler provides 37.86 dB linear cancellation, whereas the proposed DN-`HLNN-

based non-linear cancelers (i.e., DN-2HLNN and DN-3HLNN) achieve around 6.6

dB non-linear cancellation, and thus, 44.45 dB total cancellation. This amount of

total cancellation is comparable to that of the polynomial- and the existing NN-based
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Fig. 4.4: Non-linear SI cancellation on the test data for various NN structures.

cancelers. As such, the gap to the receiver noise floor provided by the polynomial-

and all NN-based cancelers are comparable subsequently, as can be seen from Fig.

4.5. Finally, it can be observed from Fig. 4.5 that the residual SI signal’s spectra

after applying the proposed NNs is similar to that of the receiver noise floor, which

reveals the high modeling capabilities of the proposed structures to suppress the SI

to the receiver’s noise level.

In Table 4.2, the complexity of the proposed and the existing NNs is evaluated

in terms of the number of network parameters and FLOPs and compared with the

complexity of the polynomial canceler at a similar cancellation performance. As seen

from the table, in the case of ` = 2, the shallow DN-2HLNN (2-6) and DN-2HLNN

(2-7) attain the best reduction in the complexity among all other shallow and deep

NNs in the literature; they reduce the number of parameters and FLOPs by 58%

and 61%; 56% and 59%, respectively, compared to the polynomial-based canceler at

P = 5. It is worth noting that increasing the number of neurons from six to seven
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Fig. 4.5: PSD of the SI signal modeled by various NN structures.

for the DN-2HLNN structure provides an additional SI cancellation of 0.06 dB at

the expense of increasing both the number of parameters and FLOPs by 2.5%. This

indicates the reliability of the proposed DN-2HLNN from both SI cancellation and

complexity reduction perspectives.

On the other hand, for ` = 3, the deep DN-3HLNN (2-4-5) attains a significant

reduction in the parameters compared to its deep (three-hidden layers) NN counter-

parts, i.e., CV-TDNN (4-4-4), 3HLNN (2-4-5), HCRDNN 1, and HCRDNN 2; to this

end, it provides more than half of the reduction achieved by the most efficient structure

from this group of NNs (i.e., 3HLNN (2-4-5)). However, in terms of FLOPs, it slightly

requires more operations than the most efficient structure from the same group (i.e.,
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TABLE 4.2: Complexity reduction for various NN structures.

Network LSIC (dB) NSIC (dB) TSIC (dB) GAP2RX
Complexity Reduction

# Par. # FLOPs # Par. # FLOPs

Polynomial (P = 5) 37.86 6.59 44.45 3.61 312 1558 - -

CV-TDNN (7) 37.86 6.64 44.50 3.54 238 1166 -23.72% -25.16%

2HLNN (2-7) 37.86 6.72 44.58 3.45 188 896 -39.74% -42.49%

DN-2HLNN (2-6) 37.86 6.58 44.44 3.60 130 608 -58.33% -60.98%

DN-2HLNN (2-7) 37.86 6.64 44.50 3.54 138 646 -55.77% -58.54%

CV-TDNN (4-4-4) 37.86 6.77 44.63 3.41 228 1106 -26.92% -29.01%

3HLNN (2-4-5) 37.86 6.71 44.57 3.46 216 1032 -30.77% -33.76%

DN-3HLNN (2-4-5) 37.86 6.65 44.51 3.52 166 782 -46.79% -49.81%

LWGS (9) 37.86 6.62 44.48 3.57 162 782 -48.08% -49.81%

MWGS (12,5) 37.86 6.54 44.40 3.64 212 1026 -32.05% -34.15%

HCRNN 37.86 6.64 44.50 3.55 229 745 -26.60% -52.18%

HCRDNN 1 37.86 6.58 44.44 3.60 248 700 -20.51% -55.07%

HCRDNN 2 37.86 6.55 44.41 3.64 223 725 -28.53% -53.47%

LSIC: linear SIC; NSIC: non-linear SIC; TSIC: total SIC; GAP2RX: gap to Rx noise floor.

HCRDNN 1). Thus, in sum, one can use the shallow DN-2HLNN (2-6) rather than

the deep DN-3HLNN (2-4-5) as it requires lower memory and computations than all

shallow and deep NN structures.

4.6 Conclusion

In this chapter, a novel NN structure referred to as the DN-`HLNN has been pro-

posed for modeling the SI in an FD transceiver. The DN-`HLNN reduces the com-

putational complexity versus the existing polynomial and NN-based cancelers while

achieving a similar cancellation performance. The simulation results have demon-

strated that, using ` = 2, the DN-2HLNN-based canceler provides about 60% re-

duction in the number of network parameters and FLOPs over the polynomial-based

canceler. Furthermore, the DN-2HLNN has attained a superior performance enhance-

ment in parameters and FLOPs over the existing NN-based cancelers. Future works

can consider testing the performance of the proposed NNs using a dataset captured

by a multiple-input multiple-output FD testbed. Further, the effect of the SoI on the

system performance can also be investigated in the future.
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Chapter 5

Machine Learning-based

Self-Interference Cancellation for

Full-Duplex Radio: Approaches,

Open Challenges, and Future

Research Directions

5.1 Abstract

In contrast to the long-held belief that wireless systems can only work in half-duplex

mode, full-duplex (FD) systems are able to concurrently transmit and receive in-

formation over the same frequency bands to theoretically enable a twofold increase

in spectral efficiency. Despite their significant potential, FD systems suffer from an

inherent self-interference (SI) due to a coupling of the transmit signal to its own

FD receive chain. Self-interference cancellation (SIC) techniques are the key enablers
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for realizing the FD operation, and they could be implemented in the propagation,

analog, and/or digital domains. Particularly, digital domain cancellation is typically

performed using model-driven approaches, which have proven to be insufficient to

seize the growing complexity of forthcoming communication systems. For the time

being, machine learning (ML) data-driven approaches have been introduced for digital

SIC to overcome the complexity hurdles of traditional methods. This chapter reviews

and summarizes the recent advances in applying ML to SIC in FD systems. Further,

it analyzes the performance of various ML approaches using different performance

metrics, such as the achieved SIC, training overhead, memory storage, and computa-

tional complexity. Finally, this chapter discusses the challenges of applying ML-based

techniques to SIC, highlights their potential solutions, and provides a guide for future

research directions.

5.2 Introduction

The sixth-generation (6G) wireless networks are anticipated to connect “intelligence”

rather than “things” while maintaining the quality-of-service requirements of low la-

tency, massive connectivity, and stringent energy efficiency [1]-[20]. Through several

technologies, 6G visionaries expect an unprecedented provision of services to 6G users

by allowing 10 times lower latency, 100 times higher connectivity, and 1000 times

higher data rates compared to the fifth-generation wireless systems’ users [1]-[4].

To meet the high data rate requirements of 6G networks, the in-band full-duplex

(IBFD) systems have emerged as one of the potential technologies owing to their

ability to serve a large number of devices concurrently on the same frequency bands

[21]-[43]. Given this potential, the IBFD devices can theoretically provide a twofold

increase in spectral efficiency, making them promising candidates for 6G networks.
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Doubling the spectral efficiency, however, comes at the cost of having an inevitable

self-interference (SI) at the receiver (Rx) chain of an FD node from its own transmitter

(Tx) chain. To break through such a bottleneck, SI cancellation (SIC) has been

verified as the panacea that can enable the essence of IBFD communications [21],

[25], [26], [30], [34].

In the past few decades, researchers have drawn attention to canceling the SI in

IBFD systems.1 Generally, the SIC can be performed in propagation, analog, and/or

digital domains. Propagation domain cancellation can be performed at the radio fre-

quency (RF) level using antenna isolation [21], beamforming [28], polarized antennas

[44], circulators [45], and/or hybrid junction networks [46]. On the other hand, analog

domain cancellation can be carried out actively by generating a pre-processed copy

of the SI signal, which is exploited to cancel the original SI signal at the Rx chain.

Analog domain cancellations are often incapacitated to suppress the SI signal to the

Rx noise floor level. As a consequence, additional focus has been directed to cancel-

ing the SI at the baseband level using digital domain cancellation [47]-[56]. At low or

moderate transmit power levels, the digital domain cancellation is typically performed

using linear cancelers, which reconstruct an estimated copy of the SI signal based on

techniques such as least-squares (LS) channel estimation [47], [49], [53]. However,

at high transmit power levels, such cancellation only becomes insufficient to entirely

suppress the SI to the Rx noise floor due to the stringent non-linear behavior of FD

transceiver’s components, such as the power and low-noise amplifiers (PA and LNA)

[47], [49], [52]. Thus, non-linear digital cancellation is applied with the linear cancel-

lation to bring the SI to the Rx noise floor level. The non-linear SIC is conventionally

1Investigating the SIC for sub-band FD, where a single frequency band is partitioned into sub-
bands for down-link and up-link transmissions, and both can take place simultaneously, is an im-
portant point that can be considered for future explorations. Further, investigating the SIC for
wide-band FD, where the FD capability is to be achieved over wide bandwidths, can also be consid-
ered in the future.
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performed using model-driven approaches, e.g., polynomial models, which are shown

to fit well in practice; however, they need many trainable parameters that, in turn,

translate to higher computational requirements [57].

Artificial intelligence, a wide-ranging area of computer science, has currently made

a profound technological revolution in all disciplines of communications [58]-[87].

Specifically, machine and deep learning (ML and DL), aiming to extract hidden fea-

tures, i.e., insights, from training data, have attained considerable success in channel

coding [64], [65], channel estimation [73], [80], [85], [86], channel equalization [73],

signal identification [70], [87], signal detection [63], optical fiber’s signal-to-noise ratio

estimation [82], [83], digital pre-distortion [88], and PA behavioral modeling [89]. In

these works, the data-driven ML approaches have achieved astonishing enhancements

in either performance or complexity when compared to the model-driven approaches.

Applying ML to IBFD communications has recently been regarded as one of the

promising techniques that supports the horizon of 6G networks [90]-[126]. To that

extent, traditional ML techniques, such as neural networks (NNs) and support vector

regressors (SVRs), have been introduced for SIC in FD transceivers [90]-[108]. Fur-

ther, advanced ML techniques, such as tensor completion (TC), TensorFlow graphs,

and so forth, have also been investigated for learning the SI in FD transceivers [109],

[110], [112]. Other ML techniques, such as Gaussian mixture models (GMMs), deep

unfolding (DU), lazy learning (LL), and so forth, have additionally been explored

for FD SIC [119], [120], [122], [125], [126]. Integrating ML with FD communications

has achieved considerable success in terms of performance and/or complexity when

compared to the model-driven approaches. A comprehensive survey of such integra-

tion has thus far been lacking. Hence, this chapter addresses the knowledge gap in

integrating data-driven ML approaches with FD communications, applying digital

SIC.
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The major contributions of this chapter are as follows:

� I firstly introduce a general and comprehensive system model to integrate ML

with FD communications.

� I have briefly reviewed the traditional approaches for SIC in FD transceivers.

� I have surveyed the up-to-date contributions for applying data-driven ML ap-

proaches for SIC in FD systems, in which the SI can be directly learned from

data rather than relying on traditional model-driven approaches.

� I have investigated the effect of using part of the output samples as features for

training the SVR-based cancelers.

� I have provided a case study to assess the performance of the prominent ML

approaches—in terms of SIC, power spectral density (PSD), training overhead,

memory storage, and computational complexity—using two different test setups,

i.e., two training datasets, and using various dataset sizes.

� I have devised an efficiency measure to select a suitable ML approach for SIC

in FD transceivers, depending on the system requirements.

� I have highlighted the main challenges and potential research directions for

successful adoption of ML approaches for canceling the SI in FD transceivers.

The rest of this chapter is organized as follows. Section 5.3 introduces the ML-based

FD system model. Section 5.4 summarizes the traditional approaches for SIC in

FD transceivers. Section 5.5 reviews the up-to-date contributions that apply ML

approaches for SIC. Simulation results are presented in Section 5.6, challenges and

future directions are summarized in Section 5.7, and finally, concluding remarks are

drawn in Section 5.8.

115



DAC VGA LPF

BPFLPFADC

PA

LNAVGA 

IQ Mixer 

IQ Mixer 

SI 
Channel

LO

RF SI Signal 
Generator

BPF

LS channel 
estimation

Linear SI signal 
reconstruction

R
e

sh
ap

e
 

R
A

M

ML
model

R
e

a
l a

n
d

 im
a

g
in

a
ry

 
se

p
ar

a
ti

o
n

 &
 in

p
u

t 
fe

a
tu

re
 g

e
n

e
ra

ti
o

n

Real part 
prediction

Tx chain

Rx chain

Linear SI Signal Generator

Digital SI Signal Generator

FD Transceiver

Imag part 
prediction

Non-linear SI Signal Generator 

Testing phase

Training phase

Reshape

Fig. 5.1: ML-based FD system model with linear and non-linear digital cancellation
stages.

5.3 ML-based FD System Model

The system model consisting of an FD transceiver with single transmit and single

receive antennas, RF, and digital cancellation stages is illustrated in Fig. 5.1. At

the Tx chain, the digital baseband samples, denoted by x (n)—with n as the sample

index—are firstly distorted by the in-phase and quadrature-phase (IQ) imbalance of

the mixer and then by the non-linearities of the PA. The digital equivalent of the

baseband transmitted signal at the output of the Tx chain can be expressed as [99]-

[101]

116



xt(n) =
P∑
p=1,
p odd

M
PA∑

m=0

hm,p xIQ(n−m)
p+1
2 x∗

IQ
(n−m)

p−1
2 , (5.1)

with x
IQ

(n) as the IQ mixer’s output signal and (.)∗ as the complex conjugate operator,

whereas M
PA

, hm,p, and P are the memory depth, impulse response, and non-linearity

order of the PA, respectively. In (5.1), p is an odd number, i.e., the odd-order non-

linearities are only taken into account, e.g., p ∈ {3, 5..., 9}, as the even-order non-

linearities are out-of-band and they are filtered by the Rx’s analog and digital filters

[100]. The transmitted signal xt is propagated through an SI channel, forming an

inevitable SI at the Rx chain. As a consequence, the received signal at the output

of the Rx chain, i.e., at the output of the analog-to-digital converter (ADC), can be

written as [127]

y (n) = y
SI

(n) + y
SoI

(n) + w (n) , (5.2)

where w (n) ∼ CN (0, σ2) denotes the thermal noise, which is complex-valued Gaus-

sian distributed with zero mean and variance σ2, y
SoI

(n) indicates the received signal

of interest (SoI), and y
SI

(n) represents the SI signal, which can be expressed as [99]-

[101]

y
SI

(n) =
P∑
p=1,
p odd

p∑
q=0

Mi−1∑
m=0

hm,q,p x (n−m)q x∗ (n−m)
p−q

, (5.3)

with hm,q,p as the impulse response of an overall channel containing the total effect

of all transceiver impairments, e.g., PA non-linearities, IQ imbalance, and SI channel,

and Mi as the memory effect introduced by the PA, SI channel delay spread at the

Rx, etc.

To better evaluate the capabilities of the SI cancelers to suppress the SI signal
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properly, I assume, for simplicity, that there is no SoI from any other FD transmit

receive points (TRPs) and no mutual interference from any base station transmitting

at the same frequency [90], [96], [97], [99]-[101]; hence, the received signal at the Rx

chain’s output will end up with the SI signal plus noise. The objective of the digital

SI canceler is thus to suppress the SI to the Rx noise floor level. To that end, I

firstly estimate the linear SI channel (i.e., causing the linear SI component) using the

traditional LS channel estimation, which is performed for the case of single transmit

and single receive antenna as follows [99]-[101]:

ĥ =
((

Xtr
)H

Xtr
)−1 (

Xtr
)H

ytr, (5.4)

with (.)-1 and (.)H as the inverse and conjugate transpose operators, respectively. The

channel estimate ĥ ∈ CMi×1 while Xtr ∈ C(Ntr−Mi)×Mi , and ytr ∈ C(Ntr−Mi)×1 are

respectively formed as

Xtr =



x (n) x (n− 1) · · · x (n−Mi + 1)

x (n+ 1) x (n) · · · x (n−Mi + 2)

...
. . .

. . .
...

...
. . .

. . .
...

x (n+Ntr −Mi − 1) · · · · · · x (n+Ntr − 2Mi)


. (5.5)

and ytr = [ y (n) y (n+ 1) · · · y (n+Ntr −Mi − 1) ]T, with Ntr as the number of

training samples and (.)T as the transpose operator. Upon estimating the SI channel

ĥ, the linear SI component can be respectively reconstructed in the training and

testing phases as follows:

ỹtr
SI,lin

= ĥ⊗ xtr, (5.6)
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ỹts
SI,lin

= ĥ⊗ xts, (5.7)

where ⊗ indicates the convolution operator. xtr ∈ C(Ntr−Mi)×1 is formed from the

training samples as xtr =

[
x (n) x (n+ 1) · · · x (n+Ntr −Mi − 1)

]T

, xts ∈

C(Nts−Mi)×1 is constructed similarly to xtr from the testing samples (not from the

training samples), and by replacing Ntr with Nts, where Nts represents the number of

testing samples. Noting that, upon performing the convolution, the sequences ỹtr

SI,lin

are resized to be aligned with the dimension of ytr.

The non-linear SI component, employed to train the ML approaches, e.g., NNs and

SVRs, is obtained by subtracting the linear component from the original SI signal2 as

follows:

ỳtr
SI,nl

= ytr − ỹtr
SI,lin

. (5.8)

Since the ML approaches are typically trained using real-valued inputs,3 I separate

the real and imaginary parts of Xtr and construct the input feature map, Ztr
nl =[

z (n) z (n+ 1) · · · z (n+Ntr −Mi − 1)

]T

, to train the non-linear canceler, with

z (n)=
[
<{x (n)} ... <{x (n−Mi + 1)} = {x (n)} ... ={x (n−Mi + 1)}

]
for the case of the

ML algorithms trained using the input samples only. However, for those trained with

the input and output samples, z (n) will include a part of the output samples, as will

be discussed later in Section 5.5. Upon constructing the input feature map, Ztr
nl, I

separate the real and imaginary parts of ỳtr
SI,nl

to serve as labels for training. Thus,

during the training phase of the non-linear canceler, the input feature map Ztr
nl is

2It is noted that training the ML approaches using the residual SI after linear cancellation, i.e.,
non-linear component, can enhance the SIC compared to the case when they are trained using both
linear and non-linear components [97].

3Without loss of generality, it is assumed that training the ML approaches in the system model
of Fig. 5.1 is done using real-valued inputs; however, complex-valued inputs can also be employed,
as will be discussed in the following sections.
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utilized with <
{

ỳtr
SI,nl

}
and =

{
ỳtr
SI,nl

}
to generate the modeling functions, f<(.) and

f=(.), associated with approximating the real and imaginary parts of the non-linear SI

signal, respectively. The real and imaginary parts can then be respectively predicted

in the testing phase as

<
{

ỹts
SI,nl

}
= f<

(
Zts
nl

)
, (5.9)

=
{

ỹts
SI,nl

}
= f=

(
Zts
nl

)
, (5.10)

where Zts
nl is the non-linear canceler’s testing matrix, which is formed similarly to Ztr

nl,

but with replacing Ntr by Nts. Based on the aforementioned, the non-linear SI signal

is obtained by summing the real and imaginary parts as

ỹts
SI,nl

= <
{

ỹts
SI,nl

}
+ j=

{
ỹts
SI,nl

}
. (5.11)

The estimated SI signal, i.e., after applying the linear and non-linear cancellations,

can be expressed as

ỹts
SI

= ỹts
SI,lin

+ ỹts
SI,nl

, (5.12)

and the residual SI signal can be written as

yts
res

= yts − ỹts
SI
. (5.13)

The total SIC achieved upon applying the linear and non-linear cancellations can be

quantified in dB as
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Fig. 5.2: Traditional approaches for SIC in FD transceivers [43].

CdB = 10 log10

( ∑Nts
n=1 |y(n)|2∑Nts

n=1 |yres(n)|2

)
, (5.14)

with y(n) and yres(n) as the nth samples of yts and yts
res

, respectively.

5.4 Traditional Approaches for SIC in FD Transceivers

Canceling the SI in FD transceivers can be performed using various techniques that

span the propagation, analog, and/or digital domains [28], [43], as summarized in Fig.

5.2. The following subsections briefly review such SIC approaches, discussing their

advantages, disadvantages, and/or challenges.

5.4.1 Propagation Domain Self-Interference Cancellation

Canceling the SI within the propagation domain is typically performed at the early

stage of the FD transceiver, i.e., it revolves around the Tx and Rx antennas. Prop-

agation domain cancellation can be accomplished passively using techniques such as
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antenna separation, coupling networks, phase control, cross-polarization, and/or sur-

face treatments [28], [43], as shown in Fig. 5.2. Alternatively, it can be done actively

using techniques such as active coupling networks, active cross-polarization, and/or

Tx beamforming [43]. Additionally, antenna interfaces, such as balanced duplexers

and circulators, can also be employed. Applying the SIC within the propagation do-

main has the advantage of refraining the SI signal from saturating the front end of the

FD Rx; however, in some cases, it may lead to the suppression of the desired signal

(i.e., SoI) [28]. Also, it can come at the cost of adding a hardware circuity to the

FD transceiver. Hence, the focus is directed to additionally canceling the SI in other

signal domains, e.g., analog and digital domains.

5.4.2 Analog Domain Self-Interference Cancellation

Canceling the SI within the analog domain is performed in the analog circuits between

the antennas and digital conversion stages [28], [43]. Analog domain cancellation

approaches have been classified based on their architecture, location, and tunability,

as depicted in Fig. 5.2 [43]. One of the common architectures for analog domain

cancellation is to use digitally-assisted techniques based on auxiliary transmit chains

[43]. Digitally assisted analog domain cancellation has the advantage of preventing

the SI signal from saturating the ADC, especially in mobility channel environments.

However, it can result in an auxiliary transmit noise floor desensitization problem at

the Rx. In addition to the Rx desensitization, the processing in the analog domain

can be very costly and challenging to scale up into a higher number of antennas (i.e.,

multiple-input multiple-output (MIMO) scenario) [28]. The focus is thus directed to

additionally canceling the SI in the digital domain, considering that the propagation

and analog domain SIC have sufficient performance to provide the optimal dynamic

range to the Rx’s ADC.
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5.4.3 Digital Domain Self-Interference Cancellation

Canceling the SI in the digital domain is performed after the ADC using techniques

such as channel modeling and/or Rx beamforming, as shown in Fig. 5.2. Digital

domain approaches, applying channel modeling techniques, use the fact that the Rx

of any IBFD TRP has knowledge of its transmitted signal in order to model the

transceiver’s impairments. Specifically, in channel modeling-based SIC, linear, widely

linear, and reference-based models are applied to approximate the SI channel effects.

Additionally, non-linear models, such as Wiener, Hammerstein, Wiener-Hammerstein,

and parallel Hammerstein, are employed to model the transceiver’s non-linearities, as

shown in Fig. 5.2. Digital domain cancellation has the advantage that the processing

becomes relatively easy to perform and less hardware-expensive compared to the

analog domain cancellation [28]; however, it can come at the cost of increasing the

computational complexity of the FD transceiver [57].4

From the previous discussion, applying the traditional approaches for SIC in

FD transceivers can come with challenges, such as imposing extra hardware, higher

cost, and/or additional computational complexity. In contrast, applying the ML ap-

proaches for SIC in FD communications can relax such requirements, as reported in

[90], [95]-[97], [99]-[101]. Given these potentials, more research efforts have recently

been spurred to cancel the SI in FD transceivers using ML approaches. This chapter

provides an in-depth survey of using the digital domain SIC based on ML non-linearity

modeling techniques to tackle the SIC problem in FD transceivers.

4A detailed description of the traditional SIC approaches can be found in the survey papers [28]
and [43].
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5.5 ML-based Approaches for SIC in FD Transceivers

Fig. 5.3 summarizes the up-to-date contributions for applying ML-based approaches

for SIC in FD transceivers. As can be seen from the figure, the SIC in FD systems

can be performed using traditional ML approaches, such as NNs and SVRs. Also, ad-

vanced ML techniques, such as TC, TensorFlow graphs, and random Fourier features

(RFFs), integrated with online learning, have been investigated for modeling the SI

in FD transceivers. Other ML approaches, such as dynamic regression (DR), GMMs,

DU, LL, and adaptive projected subgradient method (APSM), have also been studied

for SIC. Among the different ML approaches applied for SIC, one can notice that NNs

are the most popular due to their proven capabilities in modeling non-linearities with

reduced complexity compared to other ML techniques. In this section, I aim to review

and summarize the up-to-date research progress in applying ML-based approaches for

SIC in FD transceivers.5

5.5.1 Neural Network (NN)-based SIC Approaches

Broadly speaking, canceling the SI in FD transceivers using ML mostly relies on NNs

to make use of their potential compared to other ML approaches. As can be seen

from the right-hand side of Fig. 5.3, a broad range of NN architectures, starting from

typical NNs reaching to customized NN architectures, such as grid-based NNs, hybrid-

layers NNs, and adaptive NNs, have been introduced for SIC in FD transceivers. The

following subsections review and summarize the recent advances in applying NNs to

SIC in FD transceivers.

5I use the term “advanced” to describe the recent—and not commonly utilized in other
disciplines—ML approaches that are applied for SIC in FD transceivers. On the other hand, I
employ the term “other” to describe the ML approaches—rather than the NNs and SVRs—that are
frequently applied in other disciplines and subsequently introduced for SIC in FD transceivers.
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5.5.1.1 Typical Structures

The first attempt to apply NNs for SIC in FD transceivers is done in [90], where a

shallow feed-forward NN (FFNN) is utilized to approximate the non-linear SI signal.

The FFNN in [90] is constructed—similarly to the real-valued time delay NN (RV-

TDNN) in [128]—from an input layer fed by real-valued inputs consisting of current

and past samples of the input signal to consider the FD system’s memory effect.6 The

current and past samples are then transferred to a hidden layer to detect the FD sys-

tem’s non-linearities and finally to an output layer to estimate the target non-linear

SI signal, as can be observed from Fig. 5.4(a-i). Simulation results show that the

RV-TDNN could be beneficial from memory storage and computational complexity

perspectives when compared to the polynomial model—a general form of the widely

utilized parallel Hammerstein model [122]—at a similar SIC performance [90].7 The

hardware implementation of the NN-based cancelers is investigated in [95]-[96], where

the RV-TDNN-based canceler is proved to be efficient in terms of area and energy

consumption when compared to the polynomial-based canceler at a similar perfor-

mance.

In [97], a typical recurrent NN (RNN) is introduced for canceling the interference

in FD transceivers. The RNN [97] is trained similarly to the RV-TDNN using real-

valued inputs consisting of current and past samples with memory. Contrary to the

RV-TDNN [90], the RNN employs both forward and recurrent connections to enhance

the learning capabilities [97], as can be seen from Fig. 5.4(a-ii). Applying a shallow

RNN—with a single-hidden layer—for canceling the SI in FD transceivers can be

beneficial from memory and computational complexity perspectives when compared

to the typical RV-TDNN at a similar cancellation performance [97].

6Throughout this chapter, I will use the term RV-TDNN instead of FFNN.
7The RV-TDNN is also investigated for SIC in FD systems in [91]-[94].
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In [97], [98], a complex-valued time delay NN (CV-TDNN) is investigated for

canceling the FD system’s SI. As can be observed from Fig. 5.4(a-iii), the CV-TDNN

has a similar network architecture to that of RV-TDNN [90], while employing only one

neuron instead of two neurons at the output layer. As its name implies, the CV-TDNN

is trained using CV inputs and labels instead of the real-valued ones utilized in the

case of RV-TDNN and RNN. Simulation results show that a shallow CV-TDNN-based

canceler could be beneficial in terms of computational complexity when compared to

its RV-TDNN and RNN counterparts at a similar SIC performance [90], [97].

5.5.1.2 Grid-based Structures

In [99], two grid-based NN structures, termed as ladder-wise grid structure (LWGS)

and moving-window grid structure (MWGS), are introduced for modeling the interfer-

ence in FD transceivers. The LWGS and MWGS are trained using CV data and built

by a grid of connections—analog to nodes in the fully-connected NNs—between the

input, hidden, and output layers’ neurons, as shown in Fig. 5.4(b). As their names

imply, the LWGS constructs the connections between the layers’ neurons based on

a ladder-wise topology, while the MWGS employs a moving window technique to

arrange the connections, as can be seen from Figs. 5.4(b-i) and (b-ii), respectively.

Using such a grid topology, the LWGS and MWGS exploit a fewer number of connec-

tions between the input and hidden layers’ neurons to reduce the number of required

parameters and, as a consequence, relax the computational complexity compared to

the fully-connected NN counterparts. Simulation results indicate that the LWGS and

MWGS [99] could achieve a comparable performance to that of CV-TDNN [97] while

being beneficial in terms of memory storage and computational complexity.
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5.5.1.3 Hybrid-Layers Structures

In [100], two hybrid-layers NN architectures—referred to as hybrid convolutional re-

current NN (HCRNN) and hybrid convolutional recurrent dense NN (HCRDNN)—

have been introduced for learning the FD system’s SI. The HCRNN and HCRDNN

are trained using RV inputs and built using a combination of different NN layers, such

as convolutional, recurrent, and dense layers, as shown in Fig. 5.4(c). The HCRNN

and HCRDNN exploit the advantages of each layer in their network design to make

use of their combined characteristics to improve the learning capabilities compared

to the typical and grid-based NN architectures [90], [97], [99]. In particular, the

HCRNN relies on a convolutional layer to use the weight-sharing property to reduce

the number of required parameters and, consequently, relax the computational com-

plexity. Further, it depends on a recurrent hidden layer to use its ability to learn

the temporal behavior. On the other hand, the HCRDNN relies on an additional

dense layer—added after the convolutional and recurrent layers—to build a highly

predictive NN model with low computational complexity requirements. The HCRNN

and HCRDNN [100] are shown to be beneficial from the computational complexity

perspective while achieving a similar SIC performance compared to the typical and

grid-based structures, albeit at the cost of increased memory requirements [90], [97],

[99].

5.5.1.4 Output Feedback Structures

In [101], two output-feedback (OF)-based NN structures, namely two-hidden layers

NN (2HLNN) and dual-neurons two-hidden layers NN (DN-2HLNN), have been in-

troduced for canceling the SI in FD transceivers. As their names imply, the OF-based

NN structures exploit a part of the output samples—fed back through a buffer to the

input layer—to be utilized as features for training. In other words, the OF-based NN
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structures are trained using an input feature map that considers not only the input

samples as features for training but also the output samples, as shown in Fig. 5.4(d).

Feeding part of the output samples for training helps to consider the effect of over-the-

air SI propagation delay spread, which in turn enhances the learning capabilities, and

as a consequence, improves the SIC performance compared to the NN structures only

trained by the input samples. In the 2HLNN, a full connection is established between

the input features—including both input and output samples—and the first hidden

layer’s neurons, as shown in Fig. 5.4(d-i). However, in the DN-2HLNN, the input

features are not fully connected traditionally to the first hidden layer’s neurons. The

features related to the input samples are connected to one neuron to recognize the

input signal’s memory effect, while those related to the output samples are connected

to another neuron to recognize the output signal’s memory effect, as shown in Fig.

5.4(d-ii). Simulation results [101] reveal that the DN-2HLNN could be beneficial from

memory storage and computational complexity perspectives while achieving a similar

SIC performance to that of the LWGS, MWGS, HCRNN, HCRDNN, and 2HLNN

[99], [100], [101].

5.5.1.5 Adaptive Structures

In [102], a channel adaptive NN structure, referred to as channel-robust NN (CHRNN),

has been integrated with an LS-based linear canceler to model the SIC in FD trans-

ceivers over time-varying SI channels. In more detail, in [102], a linear canceler is

trained continuously in each frame to estimate the channel coefficients, and a pre-

trained NN is then utilized to construct the non-linear SI signal based on either raw

or processed channel coefficients, as shown in Figs. 5.4(e-i) and (e-ii), respectively.

For the former, the pre-trained NN is fed directly with the estimated channel coeffi-

cients obtained by the linear canceler, whereas for the latter, the pre-trained NN is fed
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by a processed version of the estimated channel coefficients [102, Eq. (7)]. Simulation

results indicate that CHRNN learns well when it is fed by processed channel coeffi-

cients rather than the raw ones. Further, the results reveal that the CHRNN-based

canceler could lead to time reductions in computational complexity while attaining

a similar performance to that of the polynomial-based canceler, adapted to handle

time-varying SI channels [102].

5.5.1.6 Deep Structures

The concept of DL has also been introduced for modeling the interference in FD

transceivers. In [97], deep versions of the typical RV-TDNN, RNN, and CV-TDNN,

as shown in Fig. 5.4(f), have been introduced to model the SIC with lower memory

and complexity. Using deep rather than shallow NNs is motivated by the fact that

a deep NN with a small number of neurons in each layer, i.e., lower memory storage

and computational complexity, can typically generalize better than a shallow NN

with a large number of neurons in one layer [89]. Simulation results show that a deep

CV-TDNN could be beneficial from memory storage and computational complexity

perspectives while achieving a similar performance to that of a shallow CV-TDNN

[97]. However, this is not applicable in all cases, as using a deep RNN increases the

memory storage and computational complexity compared to the shallow RNN due to

using many recurrent connections. Finally, adapting deep RV-TDNN for SIC results

in decreasing the complexity while augmenting the memory storage compared to its

shallow counterpart [97]. The concept of DL has also been studied for SIC in FD

systems in other contexts, such as [103]-[105].
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Fig. 5.5: SVR-based approaches for SIC in FD transceivers.

5.5.2 Support Vector Regressor (SVR)-based SIC Approaches

Despite being extensively used for SIC in FD transceivers, the NN-based cancelers

are prone to some inherent characteristics of NN models, such as intolerable training

complexity and less generalization when few examples are available for the training

process. To overcome such bottlenecks, the SVRs, variants of support vector ma-

chines, have recently been introduced as alternatives to NNs for modeling the SI. The

initial attempt of applying the SVRs for SIC is presented in [106] for frequency di-

vision duplex (FDD) transceivers—not for FD transceivers—where an SVR model is

employed to generate a replica of the undesired transmit leakage-based second-order

intermodulation distortion (IMD2) signal. Applying SVRs for SIC in FD systems

came after in a few works in [107]-[108]. The following subsections review and sum-

marize the few attempts to apply SVRs to cancel the SI in FD transceivers.

5.5.2.1 Nested-based Approaches

The first attempt to apply SVRs for SIC in FD transceivers is made in [107], where

a non-linear time-delay SVR (TDSVR)-based canceler is integrated with a linear

canceler—in a nested scenario—to suppress the SI signal down to the Rx noise floor

level. The nested TDSVR (NTDSVR), shown in Fig. 5.5(i), is trained using an input

feature map that considers the real and imaginary parts of the current and past input

samples. Besides, the odd higher-order terms of the input samples (with memory) are

also considered for training. The output labels for training the NTDSVR are created

132



by first estimating the SI channel; thereafter, an inverse filtering is applied to remove

the effect of the linear SI channel [107]. Upon eliminating the channel effect, the out-

put samples, denoted by ỹ
SI,nes

in Fig. 5.5(i), and including the impact of non-linearity

only, are served as labels to train the NTDSVR. After the non-linear SI component is

reconstructed, the linear channel is then applied for linear component reconstruction.

The estimated SI signal, including the linear and non-linear components, is then sub-

tracted from the original SI signal to perform the SIC. Simulation results show that

the NTDSVR-based canceler is beneficial in terms of SIC performance enhancement

compared to the conventional non-linear polynomial-based cancelers [107].

5.5.2.2 Residual-based Approaches

a) RTDSVR: The second attempt to apply SVRs for SIC in FD transceivers is

investigated in [108], where a residual-based TDSVR (RTDSVR) is introduced. The

input feature map to train the RTDSVR is constructed similarly to the nested ap-

proach [107]. However, the output labels are created differently based on the residual

output signal after applying the linear SIC, as can be seen from Fig. 5.5(ii). Partic-

ularly, in the residual scheme, the linear SI channel is first estimated, and then the

linear SI signal’s component is fully reconstructed. The estimated linear SI signal

is then subtracted from the original SI signal, and the residual SI signal, denoted

by ỹ
SI,nl

, and involving the non-linear component only, is utilized for training the

RTDSVR. Upon reconstructing the non-linear SI, it is combined with the linear one

before being subtracted from the original SI to perform the SIC. Simulation results

reveal a superiority of the RTDSVR to improve the SIC compared to the NTDSVR,

especially for low or moderate transmit power levels [108].8

8It is noted that the residual scheme applied for SVRs in [108] follows a similar mechanism to
that of NNs-based cancelers, where the residual output signal’s samples, after applying the linear
SIC, are used as labels for training.
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b) OF-TDSVR: Investigating the effect of feeding back part of the output samples

to be exploited as features for training the SVR-based cancelers has not previously

considered in the literature and is examined for the first time in this chapter, in which

an SVR model, referred to as output-feedback time-delay SVR (OF-TDSVR), is inte-

grated with a linear canceler in a residual scheme to suppress the SI signal. Similar to

the OF-based NN structures, the OF-TDSVR is trained using an input feature map

that considers both input and output samples as features for training, as shown in

Fig. 5.5(iii). As proved for NNs, feeding part of output samples for training helps

to consider the effect of over-the-air SI propagation delay spread, which in turn can

enhance the learning capabilities and, subsequently, improve the SIC performance

compared to the existing SVR-based cancelers—trained only by the input samples.

Also, it may be beneficial for reducing the training overhead compared to the existing

SVR and NN literature benchmarks.

5.5.3 Advanced ML-based SIC Approaches

Advanced ML approaches, such as TC, TensorFlow graphs, and RFFs, integrated

with online learning, have recently been introduced for SIC in FD transceivers. The

details of such advances are provided in the following subsections.

5.5.3.1 Tensor Completion (TC)

In [109], a canonical system identification (CSID) approach, based on a low-rank

tensor constraint optimization problem, is utilized to approximate the non-linear SI

signal as in the case of NNs and residual-based SVRs. In more detail, the CSID

approach formulates the SIC problem as a low-rank tensor decomposition problem

to be solved using an alternating least squares optimization algorithm. Simulation

results [109] indicate that the CSID-based cancelers could achieve similar performance
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to that of the polynomial and NN-based cancelers [90], [96]. Meanwhile, they can be

beneficial from the computational complexity perspective at the cost of higher memory

storage requirements.

5.5.3.2 TensorFlow Graphs

In [110], TensorFlow graphs, recent advances in ML, are introduced to cancel the

SI in a real-time software-defined radio (SDR). Generally, graphs are exploited in

ML to enable ML researchers/developers to write an abstracted version of their ML

techniques in the form of data-flow graphs, which can then be utilized and applied to

any of the ML algorithms [111]. Based on such graphs, in [110], the SIC is performed in

real-time SDR based on an NN that employs a Google TensorFlow graph. Simulation

results reveal that the TensorFlow graph-based approach could achieve a SIC that can

reach the hardware limit and surpass existing digital non-ML-based SIC approaches

in the literature [110].

5.5.3.3 Random Fourier Features (RFFs)

In [112], the RFFs and the least mean-squares (LMS) algorithm are integrated with

online linear regression to perform the SIC in FD transceivers. Principally, RFFs are

utilized to scale up kernel-based ML techniques by providing a non-linear transfor-

mation of input data to a higher dimensional feature space. So, non-linearities can

be efficiently modeled using linear-based techniques in the original space, resulting in

scalable, fastly-converged, and computationally efficient solutions [113], [114]. Based

on this, in [112], the input samples are first transformed using RFFs, then the residual

SI signal, after applying the linear SIC, is used with the transformed input to approx-

imate the non-linear SI signal using an LMS-based canceler. The estimated signal is

then subtracted from the original SI to obtain the residual SI signal; thereafter, an
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estimation vector is updated online based on that residual and using an RFFs-based

observation matrix. Simulation results show that an online RFFs-LMS-based canceler

could be beneficial from SIC and complexity perspectives compared to batch learning

algorithms involving NTDSVRs [112].9

5.5.4 Other ML-based SIC Approaches

Seeking more advantages in other ML approaches investigated in other disciplines,

the DR, GMMs, DU, LL, and APSM have been explored for SIC in FD transceivers.

The details of such approaches are provided in the following subsections.

5.5.4.1 Dynamic Regression (DR)

In [119], a classical DR model is introduced for canceling the interference in FD

transceivers. Generally, DR models are exploited in ML problems to identify how

related a certain output is to an input and allow future output forecasting. Based

on this, in [119], a classical DR model is utilized to represent the memory effect

caused by the amplifiers in FD systems. Upon estimating the DR coefficients, the

SI signal is jointly estimated in time and frequency domains and is subtracted from

the original SI signal to perform the digital SIC. Simulation results reveal that the

DR-based SIC approach could achieve a high digital SIC performance and effectively

attenuate the SI signal close to the Rx noise floor level. Besides, the DR-based SIC

approach is validated using a real-time SDR platform and is able to properly provide

a demonstration via video streaming [119].

9Although the RFFs are integrated with online regression in [112], they are utilized with various
ML algorithms in other disciplines, such as [115]-[118].
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5.5.4.2 Gaussian Mixture Models (GMMs)

In [120], an ML approach based on GMMs clustering is introduced to design an

FD transceiver, which can detect the desired signal (i.e., SoI) directly without us-

ing digital-domain cancellation or even channel estimation. As the name implies,

GMMs clustering uses a mixture, i.e., a superposition, of Gaussian distributions to

fit the training data and assign the data points to a certain cluster based on their

conditional probabilities [121]. In more detail, in [120], the received signal is firstly

clustered, and a one-to-one mapping of the symbols, based on a GMMs clustering

and an expectation-maximization (EM) algorithm, is utilized to perform the signal

detection in each cluster. Simulation results reveal that an FD transceiver, utiliz-

ing the GMMs clustering, could achieve a comparable bit error rate with that of FD

transceivers employing maximum likelihood detectors when perfect channel knowledge

is considered and a better one when the LS/LMS channel estimation is used [120].

However, this transceiver is limited to operating scenarios when low-order modulation

techniques are employed.

5.5.4.3 Deep Unfolding (DU)

In [122], an ML approach based on DU is introduced for canceling the interference in

FD transceivers. DU involves converting the model-based methods, requiring itera-

tive optimization algorithms for solving, into layer-wise structures analog to that of

NNs [123], [124]. This enables fusing the iterative optimization methods with NNs’

libraries/tools to cover a wide range of tasks and applications. The concept of DU is

applied for SIC in [122], where a cascade of non-linear blocks—involving the impact

of PA and IQ mixer non-linearities—is exploited with the traditional backpropaga-

tion algorithm to approximate the SI signal. Simulation results corroborate that

the DU-based SIC approach could be beneficial from memory storage and compu-
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tational complexity perspectives when compared to the literature benchmarks, e.g.,

polynomial- and CV-TDNN-based cancelers, at a similar SIC performance [122].

5.5.4.4 Lazy Learning (LL)

In [125], an ML approach based on LL is introduced to perform the SIC in cellular

wireless networks operating with FD transmission. As their names imply, the LL-

based models postpone the generalization to the training data until a system query is

performed. Based on this concept, in [125], offline and online stages are exploited to

generate the interference database and transmit the data, respectively. In the offline

phase, the FD system’s output signal excluding the SoI, is recorded in a database.

However, in the online phase—in which the system is fully operated with the SoI—a

suitable SI value is looked up in the offline-generated database with the help of a

learning approach to perform the digital SIC. Simulation results show that the LL-

based SIC approach could be effectively utilized for canceling the interference and

enabling the FD transmission in cellular wireless networks [125].

5.5.4.5 Adaptive Projected Subgradient Method (APSM)

In [126], an ML SIC approach based on parallel APSM is introduced for canceling

the interference in FD transceivers. Specifically, in [126], a hybrid kernel is first

constructed by combining linear and non-linear Gaussian kernels. This kernel is then

adapted to a parallel APSM approach where a non-linear function—approximating the

SIC problem—is extracted using projection. Simulation results show that the hybrid

kernel-based APSM approach could properly model the SI compared to a SIC method

employing the normalized LMS filtering [126]. Moreover, it can also be parallelized,

i.e., it can perform parallel processing to reduce the system latency.

Thus so far, I have surveyed the up-to-date contributions that apply ML-based
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TABLE 5.1: Summary of ML-based approaches applied for SIC in FD transceivers.

ML approach Key feature(s) Methodology Proposed Technique(s) Ref.

N
e
u

ra
l

N
e
tw

o
rk

s

Typical
structures

RV-TDNN

A typical RV-TDNN is introduced to learn the SI in FD transceivers with
lower memory and complexity than those of model-based approaches, e.g.,
polynomial-based cancelers.

[90]-[94]

A hardware implementation for NN-based cancelers, employing RV-TDNNs,
is introduced.

[95], [96]

RNN
A typical RNN is introduced to learn the SI in FD transceivers with lower
memory and complexity than the polynomial and RV-TDNN-based cancelers.

[97]

CV-TDNN
A typical CV-TDNN is introduced to learn the SI in FD transceivers with
lower memory and complexity than the polynomial-, RV-TDNN-, and
RNN-based cancelers.

[97], [98]

Grid-based
structures

LWGS
An NN structure based on a ladder-wise grid topology is introduced to learn
the SI in FD transceivers with lower memory and complexity than the typical
NN-based cancelers.

[99]

MWGS
An NN structure based on a moving-window grid topology is introduced to
learn the SI in FD transceivers with lower memory and complexity than the
typical NN-based cancelers.

[99]

Hybrid-layers
structures

HCRNN
An NN structure based on convolutional and recurrent layers is introduced to
learn the SI in FD transceivers with lower complexity than the typical and
grid-based cancelers.

[100]

HCRDNN
An NN structure based on convolutional, recurrent, and dense layers is
introduced to learn the SI in FD transceivers with lower complexity than the
typical and grid-based cancelers.

[100]

Output-
feedback

structures

2HLNN
An NN structure based on feedback samples from the output layer is
introduced to learn the SI in FD transceivers with lower memory and
complexity than the typical, grid, and hybrid-layers NN-based cancelers.

[101]

DN-2HLNN

An NN structure based on two neurons in the first hidden layer and feedback
samples from the output layer is introduced to learn the SI in FD
transceivers with lower memory and complexity than the typical, grid, and
hybrid-layers NN-based cancelers.

[101]

Adaptive
structures

CHRNN

A channel adaptive NN structure, based on row channel input or processed
channel input, is integrated with a linear canceler to learn the SI in FD
transceivers with lower memory and complexity than the adaptive
polynomial-based cancelers.

[102]

Deep structures DL-NNs
DL-based NN structures, employing multiple hidden layers, are introduced to
learn the SI in FD transceivers with lower memory and complexity than the
model-based approaches.

[103]-[105]

S
u

p
p

o
rt

V
e
ct

o
r

R
e
g
re

ss
o
rs

FDD-based
scheme

IMD2-based
SVR

An SVR-based canceler is introduced for canceling the IMD2 leakage signal
in FDD, not in FD transceivers.

[106]

Nested scheme NTDSVR
An SVR-based canceler, using nested generated training labels, is introduced
to learn the SI in FD transceivers, with lower training overhead than the
NN-based cancelers.

[107]

Residual scheme

RTDSVR
An SVR-based canceler, using residual generated training labels, is
introduced to learn the SI in FD transceivers, with lower training overhead
than the NN-based cancelers.

[108]

OF-TDSVR
An SVR-based canceler, using residual generated training labels and
feedback output samples, is introduced to learn the SI in FD transceivers
with lower training overhead than the NN-based cancelers.

[This work]

A
d

v
a
n

ce
d

M
L

A
p

p
ro

a
ch

e
s

Tensor
completion

CSID
A CSID approach based on a low-rank tensor decomposition problem is
introduced to learn the SI in FD transceivers with lower complexity than the
polynomial and NN-based cancelers.

[109]

TensorFlow
graphs

Google
TensorFlow

Google TensorFlow graphs are integrated with a real-time SDR to cancel the
SI with higher SIC than that of existing digital non-ML-based SIC
approaches in the literature.

[110]

Random Fourier
features

RFFs+LMS+
online regression

An ML approach based on RFFs, LMS, and online regression is introduced
to learn the SI in FD transceivers with lower complexity than the batch
learning algorithms involving NTDSVRs.

[112]

O
th

e
r

M
L

A
p

p
ro

a
ch

e
s

Dynamic
regression

DR
A classical DR model is integrated with a real-time SDR to model the
memory effects caused by amplifiers in FD transceivers.

[119]

Gaussian
mixture models

GMM+EM
An ML approach based on GMMs clustering is introduced for designing an
FD transceiver that can detect the desired signal directly without using
digital-domain cancellation or even channel estimation.

[120]

Deep unfolding DU-based NN

An ML approach based on DU, integrating a cascade of non-linear blocks to
mimic the impact of PA and IQ mixer non-linearities, is introduced to learn
the SI in FD transceivers with lower memory and complexity than the
polynomial and NN-based cancelers.

[122]

Lazy learning
Offline+online

phases

An ML approach based on LL and integrating offline and online phases for
generating the SI database and transmitting the data, respectively, is
introduced to perform the SIC in FD-operated cellular wireless networks.

[125]

Parallel APSM
Hybrid

kernels+APSM

An ML approach based on a hybrid kernel—involving linear and non-linear
Gaussian kernels—and parallel APSM is introduced to learn the SI in FD
transceivers.

[126]

139



approaches for SIC in FD transceivers, as summarized in Table 5.1. The adaption

of a particular ML-based approach for SIC depends on the system demands, such as

the achieved SIC, training overhead, memory storage, and computational complexity.

The following section will help to select a suitable ML-based approach for SIC in FD

systems.

5.6 Simulation Results and Discussions

In this section, I provide a case study to compare the performance of the prominent

ML approaches, surveyed in Section 5.5, with that of the polynomial canceler for

two test setups (i.e., two training datasets) and using various dataset sizes. Specif-

ically, I evaluate the prominent ML approaches in terms of the achieved SIC, PSD

performance, training overhead, memory storage, and computational complexity and

compare them with those of the polynomial-based canceler.

5.6.1 Selected Approaches

First, from the NN-based approaches shown on the right-hand side of Fig. 5.3, I select

the typical NN architectures, i.e., RV-TDNN, RNN, and CV-TDNN [90], [97]; being

the first literature benchmarks to apply ML approaches for SIC in FD transceivers.

Further, I select the OF-based NN architectures, i.e., 2HLNN and DN-2HLNN, as

proved to be efficient in terms of memory storage and computational complexity

when compared to the other NNs [101]. Second, from the SVR-based approaches

shown on the upper hand-side of Fig. 5.3, I select the RTDSVR [108] as it is shown to

outperform the NTDSVR [107], especially for low or moderate transmit power levels.

Additionally, I consider the investigated OF-TDSVR to be compared in reference to

the existing NN and SVR benchmarks. Third and last, from the advanced and other

140



Fig. 5.6: Measurement setup.

ML approaches, shown on the lower- and left-hand sides of Fig. 5.3, I select the TC

[109] and DU [122] approaches, as proven to be efficient in terms of memory storage

and/or computational complexity when compared to the RV-TDNN and CV-TDNN,

respectively. In the following subsections, I will evaluate and compare the previously

selected approaches based on two test setups and using various performance metrics,

such as the achieved SIC, PSD performance, training overhead, memory storage, and

computational complexity.10

5.6.2 Measurement Setup

The measurement setup utilized to capture the datasets employed for training the

prominent ML-based approaches selected in Section 5.6.1 is described in Fig. 5.6.

Herein, an FD testbed, employing one transmit antenna and one receive antenna

(1T1R), was set up in an indoor lab environment to generate two datasets [90], [96].

The first dataset [90] applies an orthogonal frequency division multiplexing (OFDM)

10Up to the author’s knowledge, it is the first time in literature to compare the different ML-based
SIC approaches based on two different test setups, i.e., two training datasets, and using various
performance metrics, such as the SIC, PSD, training overhead, memory storage, and computational
complexity.
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TABLE 5.2: Measurement setup specifications.

Unit Parameter First dataset [90] Second dataset [96]

F
D

te
st

b
e
d

Modulation QPSK-modulated OFDM QPSK-modulated OFDM

FFT size 1024 2048

Pass-band bandwidth 10 MHz 20 MHz

Sampling frequency 20 MHz 80 MHz

Average transmit power 10 dBm 32 dBm

Passive analog suppression 53 dB 15 dB

Active analog suppression N/A 50 dB

Total analog cancellation 53 dB 65 dB

Transmit/receive antennas 1T1R 1T1R

Dataset size {2k, 3k, 4k, 5k} {2k, 3k, 4k, 5k}

Training/test splits 0.9/0.1 0.9/0.1

P
C

u
n
it

Operating system Windows 10

Processor Intel(R) Xeon(R) W-2265, CPU @3.50GHz

# Cores 12

# Threads 24

RAM 128 GB

Python 3.7.5

Spyder 5.1.5

TensorFlow 2.0.0

Keras 2.3.1

NumPy 1.17.4

MATALB R2020b

signal with a quadrature phase-shift keying (QPSK) modulation and 10 MHz band-

width, while the second [96] uses a QPSK-modulated OFDM signal with 20 MHz

bandwidth. The average transmit power is set to 10 dBm and 32 dBm in the first

and second datasets, respectively. The transmitted and received data are captured at

20 MHz and 80 MHz sampling rate for the first and second datasets, respectively. It

is worth noting that using a higher sampling frequency enables the ML approaches

to model the higher-order intermodulation distortion terms to efficiently suppress the

SI, especially when high-transmit power levels are utilized.

At the Rx side of the FD testbed, total analog (i.e., passive and active) cancella-

tions of 53 dB and 65 dB are applied in the first and second datasets, respectively, to
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refrain the SI signal from saturating the FD-sensitive Rx chain. The digital received

data after the ADC is then captured and retrieved to a personal computer (PC) for

offline post-processing. In order to post-process the captured data at the PC, a 3.7.5

version of Python is installed in a Windows environment, using the 5.1.5 version of

Spyder as the integrated environment for development, comparisons, and evaluation

of different ML-based SIC approaches.11 Finally, for analyzing the performance of

various ML-based approaches at different dataset sizes, I have split each of the above-

mentioned datasets into four separate datasets containing 2000, 3000, 4000, and 5000

samples, respectively. In all test cases, the first 90% of samples are used for training

(and validation, if any), while the last 10% are reserved for testing. The specifications

of the measurement setup employed in this work are detailed in Table 5.2.

5.6.3 Parameters Setting

The goal of this analysis is to find the peak performance of each SI canceler, e.g.,

polynomial, NN, SVR, TC, and DU. In other words, I aim to find the maximum

SIC that each canceler can attain. Then, I compare the different cancelers in terms

of the training overhead, memory storage, and computational complexity required

to achieve their maximum SIC. To that extent: 1) for the polynomial canceler [90],

I have optimized the non-linearity order P and memory length Mi; 2) for the NN-

based cancelers, e.g., RV-TDNN, RNN, and CV-TDNN, etc. [90], [97], [101], I have

optimized the memory length Mi along with the NN’s hyperparameters, such as the

number of hidden layers’ neurons n
h
, batch size (BS), learning rate (LR), activation

function, and training optimizer; 3) for the SVR-based cancelers, i.e., RTDSVR and

OF-TDSVR [108], I have obtained the optimum value for the memory length Mi, reg-

11It is noted that all ML-based SIC approaches selected for comparison in this chapter are imple-
mented using Python integrated development environment, except for the TC, which is developed
using the MATLAB independent development environment [109].
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TABLE 5.3: Ranges for hyperparameters tuning for various SIC approaches.

ML Approach Methodology Hyperparameter Hyperparameter tuning range

M
o
d
e
l-

b
a
s
e
d

Polynomial
Non-linearity order P ∈ {3, 5..., 9}

Memory length Mi ∈ {2, 3..., 13}
N

N
s

Typical structures

Memory length Mi ∈ {2, 3..., 13}

Number of neurons nh1 ∈ {2, 3..., 100}

Learning rate LR ∈ {0.5, 0.05, 0.005, 0.25, 0.025, 0.0025, 0.45, 0.045, 0.0045}

Batch Size BS ∈ {22, 62, 158, 256, 512, 1024}

Activation function Act ∈ {Relu, Sigmoid, tanh}

Optimizer Opt ∈ {Adam,RMSprop, SGD,Adadelta}

OF structures

Memory length Mi ∈ {2, 3..., 13}, Mo = Mi − 1

Number of first layer neurons nh1 = 2

Number of second layer neurons nh2 ∈ {2, 3..., 100}

Learning rate LR ∈ {0.5, 0.05, 0.005, 0.25, 0.025, 0.0025, 0.45, 0.045, 0.0045}

Batch Size BS ∈ {22, 62, 158, 256, 512, 1024}

Activation function Act ∈ {CRelu,AmpPhase, Cardioid,ModRelu}

Optimizer Opt ∈ {Adam,RMSprop, SGD,Adadelta}

S
V

R
s

Residual schemes

Memory length Mi ∈ {2, 3..., 13}, Mo = Mi − 1

Regularization term C ∈
{

21, 22..., 27
}

Margin ε ∈
{

1
102

, ..., 1
103

, 1
4
, 1
4×10

, ..., 1
4×103

, 1
2
, 1
2×10

, ..., 1
2×103

}
Gamma γ ∈

{
1
16
, 1
8
, 1
4
, 1
2
, 1
}

A
d

v
a
n

c
e
d

Tensor completion

Memory length Mi ∈ {2, 3..., 13}

Tensor rank F ∈ {1, 2..., 5}

Quantization levels I ∈ {4, 8..., 128}

Regularization parameter ρ ∈ {10−6, 10−5..., 10−3}

Smoothness factor µn ∈ {10−4, 10−3..., 10−1}

O
th

e
r

Deep unfolding

Memory length Mi ∈ {2, 3..., 13}

Learning rate LR ∈ {0.5, 0.05, 0.005, 0.25, 0.025, 0.0025, 0.45, 0.045, 0.0045}

Batch Size BS ∈ {4, 6, ..., 10}

ularization term C, margin ε, along with the kernel hyperparameter, namely γ; 4) for

the TC approach [109], I have tuned the memory length Mi, along with the optimiza-

tion problem’s hyperparameters, such as the tensor rank F , number of quantization

levels I, regularization parameter ρ, and the smoothness factor µn; 5) for the DU

approach, I have optimized the memory length Mi, and the LR and BS of the follow

the regularized leader (FTRL) optimizer as in [122]. The ranges for hyperparameter

tuning and the optimal values for hyperparameters over the first and second datasets

are summarized in Tables 5.3 and 5.4, respectively.
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(a) First dataset.
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(b) Second dataset.

Fig. 5.7: SIC of different ML-based SI cancelers compared to the polynomial canceler
over the first and second datasets.

5.6.4 Performance Comparison

In this subsection, I assess the performance of the prominent ML-based SIC ap-

proaches in terms of their SIC, PSD, training time, memory storage, and computa-

tional complexity and compare them with those of the polynomial model. Afterward,

I evaluate the efficiency of each canceler according to system demands. All the SIC

approaches considered in this analysis are trained using the datasets described in

Section 5.6.2, and with parameter settings optimized in Section 5.6.3.

5.6.4.1 SIC Performance

The total SIC achieved by different ML-based SIC approaches compared to the poly-

nomial model upon tested using the first and second datasets, and with 2000, 3000,

4000, and 5000 samples is shown in Figs. 5.7a and 5.7b, respectively.12 From the

12In this chapter, I provide a case study to compare the performance of different ML approaches
with the polynomial canceler when achieving the maximum SIC (i.e., peak-performance) at short
dataset sizes, e.g., 2000, 3000, 4000, and 5000 samples. However, in my previous works in [99], [100],
[101], I have compared the different ML approaches with the polynomial canceler when attaining a
similar SIC (i.e., equi-performance) at a large dataset size, e.g., 20,000 samples. Accordingly, some
of the results obtained in this chapter may differ from those reported in [99], [100], [101].
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TABLE 5.5: SIC of different approaches when trained using 5000 samples of the first
and second datasets.

Dataset

size
Method

First dataset Second dataset

Lin.

Canc.

Non-

lin.

Canc.

Total

Canc.

Lin.

Canc.

Non-

lin.

Canc.

Total

Canc.

5
0
0
0

sa
m

p
le

s

Poly. 37.8 8.0 45.8 21.4 10.5 31.9

RV-TDNN 37.8 7.5 45.3 21.4 16.3 37.6

RNN 37.7 7.6 45.3 21.4 16.0 37.4

CV-TDNN 37.7 7.9 45.6 21.4 9.90 31.3

2HLNN 37.7 7.8 45.5 21.4 10.8 32.2

DN-2HLNN 37.7 7.6 45.3 21.4 10.6 32.0

RTDSVR 37.7 1.4 39.1 21.4 7.8 29.2

OF-TDSVR 37.8 5.0 42.8 21.4 9.8 31.2

TC 37.5 5.8 43.3 19.1 12.1 31.2

DU NA NA 44.5 NA NA 31.0

figures, one can observe that in the first dataset, where a low average transmit power

is employed, the polynomial-based canceler achieves the highest cancellation perfor-

mance compared to other cancelers for most of the dataset sizes. However, in the

second dataset, where a high average transmit power is utilized, the RV-TDNN-based

canceler provides the highest cancellation among the other cancelers for all dataset

sizes. It can also be inferred from the figures that the RTDSVR achieves the lowest

cancellation performance among the others, even if a low or high transmit power is uti-

lized. Further, one can notice that employing a part of the output samples as features

for training the SVR models can enhance the cancellation performance compared to

the existing RTDSVR, i.e., the OF-TDSVR attains a significantly higher SIC than the

RTDSVR benchmark. In sum, the polynomial canceler could be a good choice when a

low transmit power is utilized, i.e., low transmit power generates less non-linearity SI

signals. However, when a higher transmit power is employed, the RV-TDNN could be

a better choice, i.e., high transmit power generates higher non-linearity SI signals.13

13Although all SI cancelers achieve a high non-linear cancellation in the second dataset compared
to that attained in the first, as a result of having increased non-linearity, I interestingly note that
the total SIC achieved in the former is lower than that in the latter, as can be seen from the sample
results in Table 5.5. This is due to the degradation of the linear canceler’s performance with increased
non-linearity.
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Fig. 5.8: PSD of different ML-based SI cancelers compared to the polynomial canceler
over the first and second datasets.

5.6.4.2 PSD Performance

The power spectra of the residual SI signal after applying the different ML-based SIC

approaches compared to that of the polynomial-based canceler when tested using the

first and second datasets and with 5000 samples, as an example, is shown in Figs. 5.8a

and 5.8b, respectively. From Fig. 5.8a, one can observe that the polynomial-based

canceler is able to suppress the SI signal with the lowest gap to Rx noise floor among

the other cancelers in the first dataset; it can provide a gap to Rx noise floor value of

(90.8− 88.7 = 2.1 dB), bringing the SI signal very close to the Rx noise floor level. It

can also be inferred from Fig. 5.8b that the RV-TDNN-based canceler provides the

lowest gap to Rx noise floor compared to the others in the second dataset; it attains

a gap to Rx noise floor value of (85.3 − 81.3 = 4 dB), bringing the SI signal close to

the Rx noise floor level. The low gap to Rx noise floor achieved by the RV-TDNN

compared to the polynomial canceler in the second dataset comes from the fact that

it can reduce the leakage of the carrier around the DC tone, as shown in Fig. 5.8b
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Fig. 5.9: Training time of different ML-based SI cancelers compared to the polynomial
canceler over the first and second datasets.

[96]. Finally, one can observe from the figures that the SIC values achieved by the

polynomial, RV-TDNN, and RTDSVR cancelers, as an example, match those reported

in Table 5.5.

5.6.4.3 Training Overhead

In this subsection, I assess the training time, i.e., fitting time, required by each SI can-

celer to complete the training process. Specifically, for the polynomial-based canceler,

I evaluate the training time needed to estimate the polynomial model’s coefficients

based on the LS algorithm. For the NN- and DU-based cancelers, I calculate the

training time as the average training time required over different random seeds. For

the SVR models, I approximate the training time as the maximum between the times

needed to fit the SVR< and SVR=, associated with estimating the real and imagi-

nary parts of the non-linear SI signal, respectively, as shown in Fig. 5.5. Finally, for

the TC-based canceler, I evaluate the training time required for fitting the low-rank

tensor decomposition problem. Based on the aforementioned, in Figs. 5.9a and 5.9b,
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I depict the training time of all the ML-based cancelers compared to the polynomial

model upon tested using the first and second datasets, respectively. From the figures,

it can be observed that the polynomial-based canceler requires the lowest training

time among the others even if low or high average transmit power is employed, i.e.,

even if it is trained using the first or second dataset. Further, one can notice that

the RTDSVR shows a good training time, i.e., it requires a lower training time than

all other cancelers except the polynomial-based canceler. One can also observe that

the SIC enhancement provided by the OF-TDSVR comes at the cost of increasing its

training time compared to the RTDSVR benchmark. Additionally, it can be noticed

that the TC- and DU-based cancelers require significantly higher training than the

others, making them unfavorable choices for SIC, especially for operating scenarios

where the training time is of interest. Finally, it can be observed from the figures that

typically, as the dataset size increases, the training time of all SI cancelers increases

as well.

5.6.4.4 Memory Storage

In this subsection, I assess the memory storage of different ML approaches in terms

of the total number of parameters required in the inference stage and compare it

with that of the polynomial model. Specifically, the number of parameters of the

polynomial-based canceler is calculated as 2Mi + 2Mi

{(
P+1

2

) (
P+1

2
+ 1
)
− 1
}

[90].

Further, the number of parameters of the typical RV-TDNN, RNN, and CV-TDNN

is respectively evaluated as 2Mi (nh + 1) + 3nh + 2, 2Mi + nh (nh + 5) + 2, and

2Mi + 2 (Minh + 2nh + 1), with nh as the number of hidden neurons [90], [97]. The

number of parameters of the OF-based NN structures, i.e., 2HLNN and DN-2HLNN,

is respectively calculated as 2Mi+2 {nh1 (Mi +Mo + nh2 + 1) + 2nh2 + 1}, and 2Mi+

2 (Mi +Mo + 4nh2 + 3), with nh1 and nh2 as the number of neurons in the first and
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TABLE 5.6: Memory storage and computational complexity of different SIC ap-
proaches.

Method Number of parameters Number of FLOPs

Polynomial [90] 2Mi + 2Mi

{(
P+1
2

)(
P+1
2

+ 1
)
− 1
}

10Mi + 10Mi

{(
P+1
2

)(
P+1
2

+ 1
)
− 1
}
− 2

RV-TDNN [90] 2Mi (nh + 1) + 3nh + 2 10Mi + nh (4Mi + 5)

RNN [97] 2Mi + nh (nh + 5) + 2 10Mi + 2nh
(
nh + 9

2

)
CV-TDNN [97] 2Mi + 2 (Minh + 2nh + 1) 10

{
Mi (nh + 1) + 6

5
nh
}

2HLNN [101] 2Mi + 2 {nh1 (Mi +Mo + nh2 + 1) + 2nh2 + 1} 10Mi + 10
{
nh1 (Mi +Mo) + nh1nh2 + 6

5
nh2

}
DN-2HLNN [101] 2Mi + 2 (Mi +Mo + 4nh2 + 3) 10Mi + 10

(
Mi +Mo + 16

5
nh2

)
RTDSVR [108] 2Mi +N<sv +N=sv + 8 10Mi + 4dMi

(
N<

sv+N
=
sv

2

)
Q

OF-TDSVR 2Mi +N<sv +N=sv + 8 10Mi + 4d (Mi +Mo)

(
N<

sv+N
=
sv

2

)
Q

TC [109] 2 {Mi (2FI + 1)} 8Mi (2F + 1)− 3F − 7

DU [122] 2
{
Mi

(
P+1
2

)
+ 2
}

10Mi

(
P+1
2

)
+ P + 18

second hidden layers, respectively [101]. The number of parameters of the SVR mod-

els, i.e., RTDSVR and OF-TDSVR, employing a radial basis function (RBF) kernel,

is evaluated as 2Mi +N<sv +N=sv + 8, with N<sv and N=sv as the number of support vec-

tors required to approximate the unknown functions of SVR< and SVR=, respectively

[108], [129]. Finally, the number of parameters for the TC- and DU-based cancelers

is respectively given by 2 {Mi (2FI + 1)} and 2
{
Mi

(
P+1

2

)
+ 2
}

, with F and I indi-

cating the tensor rank and the number of quantization levels employed in the TC

approach, respectively [109], [122]. A summary of the total parameters utilized to

evaluate the memory storage of various SI cancelers is shown in Table 5.6.

Based on the aforementioned, I depict the number of parameters required by the

various SI cancelers when tested by the first and second datasets in Figs. 5.10a and

5.10b, respectively. From the figures, one can observe that the DU-based canceler

requires the lowest number of parameters compared to the others for both datasets

and for all dataset sizes. The SVR-based cancelers, i.e., RTDSVR and OF-TDSVR,

require the highest number of parameters among the others in the first dataset, as

their parameters basically depend on the number of support vectors, i.e., N<sv and

N=sv, which in turn depend on the number of training data [129]. Thus, one can
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Fig. 5.10: Memory storage of different ML-based SI cancelers compared to the poly-
nomial canceler over the first and second datasets.

notice from Figs. 5.10a and 5.10b that as the dataset size increases, the SVR models’

parameters significantly increase as well. Finally, it can be inferred from the figures

that the RNN-based canceler requires the highest number of parameters compared to

the others in the second dataset as a result of using many recurrent connections.

5.6.4.5 Computational Complexity

In this subsection, I evaluate the computational complexity of various ML-based SIC

approaches in terms of the total number of floating-point operations (FLOPs) re-

quired in the inference stage and compare it with that of the polynomial model.

Particularly, the number of FLOPs of the polynomial-based canceler is calculated

as 10Mi + 10Mi

{(
P+1

2

) (
P+1

2
+ 1
)
− 1
}
− 2 [90]. Besides, the number of FLOPs of

the typical RV-TDNN, RNN, and CV-TDNN are respectively evaluated as 10Mi +

nh (4Mi + 5), 10Mi + 2nh
(
nh + 9

2

)
, and 10

{
Mi (nh + 1) + 6

5
nh
}

[90], [97]. Further,

the number of FLOPs of the 2HLNN and DN-2HLNN are calculated as 10Mi +

10
{
nh1 (Mi +Mo) + nh1nh2 + 6

5
nh2

}
and 10Mi + 10

(
Mi +Mo + 16

5
nh2

)
, respectively
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Fig. 5.11: FLOPs of different ML-based SI cancelers compared to the polynomial
canceler over the first and second datasets.

[101]. On the other hand, the number of FLOPs of the SVR models, i.e., RTDSVR

and OF-TDSVR, employing an RBF kernel, are respectively evaluated in the worst

case as 10Mi+4dMi

(
N<sv+N=sv

2

)
Q and 10Mi+4d (Mi +Mo)

(
N<sv+N=sv

2

)
Q, with d and Q

as the degree (e.g., d = 3 for RTDSVR and d = 1 for OF-TDSVR) and the number of

testing samples, respectively [108]. Finally, the number of FLOPs of the TC and DU

approaches are respectively given by 8Mi (2F + 1) − 3F − 7 and 10
{
Mi

(
P+1

2

)
+ 2
}

[109], [122]. A summary of the number of FLOPs utilized to asses the computational

complexity of various cancelers is shown in Table 5.6.14

Based on the aforementioned, in Figs. 5.11a and 5.11b, I depict the FLOPs re-

quired by various SI cancelers when tested using the first and second datasets, respec-

tively. From the figures, one can observe that the DU- and TC-based cancelers require

the lowest number of FLOPs for all dataset sizes in the first and second datasets, re-

spectively. Further, the polynomial-, RV-TDNN-, and DN-2HLNN-based cancelers

require a reasonable number of FLOPs when compared to the others for all dataset

14In Table 5.6, I assume for simplicity that each RV and CV activation function costs one and two
RV additions, respectively [97].
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sizes. Finally, it can be inferred from the figures that the SVR-based cancelers, i.e.,

RTDSVR and OF-TDSVR require an intolerable computational complexity compared

to the others, as their FLOPs depend on the number of support vectors, N<sv and N=sv,

as well as the number of testing samples Q [108].

5.6.4.6 Canceler Efficiency

In the previous subsections, I evaluated the performance of each SI canceler in terms of

its SIC (or PSD), training overhead, memory storage, and computational complexity.

Based on this analysis, I have found that some of the cancelers outperform in terms of

SIC performance, and some are promising in terms of training time, memory storage,

and/or computational complexity. So, the question is how to select a certain ML-based

SIC approach to fit a target application, i.e., meet system criteria. This subsection

will help to address the above question to select a suitable SIC approach depending

on the system requirements.

As the challenge in the SIC problem is to find an SI canceler that maximizes the

achieved SIC while minimizing the training time, memory storage, and computational

complexity requirements, I have devised an efficiency measure η to evaluate each

canceler based on the aforementioned metrics as follows:

η =
wCηC + wτητ + w%η% + wFηF

wC + wτ + w% + wF
, (5.15)

where wC ∈ {0, 1}, wτ ∈ {0, 1}, w% ∈ {0, 1}, wF ∈ {0, 1} represent the cancellation,

training, storage, and complexity weighting factors, respectively, which take either

0 or 1 values depending on the system requirements.15 Moreover, ηC , ητ , η%, and

ηF indicate the cancellation, training, storage, and complexity efficiencies of each

15In the following results, I will fix wC = 1 for all test cases as the SIC is the main requirement
for any SI canceler.
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canceler, which can be respectively expressed as

ηC =
C − Cmin
Cmax − Cmin

, (5.16a)

ητ = 1− τ − τmin
τmax − τmin

, (5.16b)

η% = 1− %− %min
%max − %min

, (5.16c)

η
F

= 1− F −Fmin
Fmax −Fmin

, (5.16d)

with C as the total SIC achieved by each canceler over a certain dataset, while Cmax

and Cmin are the maximum and minimum SIC attained by any of the cancelers within

this dataset, respectively. Similarly, τ is the training time needed by each canceler

over a certain dataset, whereas τmax and τmin are the maximum and minimum training

time required by any of the cancelers within this dataset, respectively. Likewise, %

represents the number of parameters required by each of the cancelers over a certain

dataset, while %max and %min indicate the maximum and minimum parameters needed

by any of the cancelers within this dataset, respectively. Finally, F represents the

number of FLOPs required by each of the cancelers over a certain dataset, whereas

Fmax and Fmin denote the maximum and minimum number of FLOPs required by

any of the cancelers within this dataset, respectively.

Based on the above, I have assessed the efficiency η for various SI cancelers over

the first and second datasets in Table 5.7. It can be observed from the table that

the polynomial model achieves the highest efficiency among the other SI cancelers

for most of the test cases in the first dataset; i.e., the polynomial-based canceler is

efficient for the test cases where a low average transmit power is utilized, and the

non-linearity is not severe. However, in the second dataset, where a high transmit

power is used, the RV-TDNN-based canceler achieves the highest efficiency among
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TABLE 5.7: Efficiency η of different ML-based SI cancelers compared to the polyno-
mial canceler for the first and second datasets.

Dataset Data size wC wτ w% wF
Test case

η

Poly.
RV-

TDNN
RNN

CV-

TDNN
2HLNN

DN-

2HLNN
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OF-
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TC DU
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se
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s
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w
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w
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,
a
n
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n

a
r
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o
w

e
r
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n

d
w

id
th

)

2000

1 0 0 0
SIC is the only system

criterion.

1st 3rd 2nd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 2nd 3rd

2000

1 1 0 0

SIC and training time

are the only system

criteria.

1st 2nd 3rd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 3rd 2nd

2000

1 0 1 0

SIC and memory are

the only system

criteria.

2nd 3rd 1st

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 2nd 3rd

2000

1 0 0 1

SIC and complexity

are the only system

criteria.

1st 2nd 3rd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 2nd 3rd

2000

1 1 1 0

SIC, training time,

and memory are the

only system criteria.

1st 3rd 2nd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 3rd 2nd

2000

1 1 0 1

SIC, training time,

and complexity are

the only system

criteria.

1st 2nd 3rd
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4000 1st 2nd 3rd

5000 1st 3rd 2nd

2000

1 0 1 1

SIC, memory, and

complexity are the

only system criteria.

2nd 3rd 1st

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 1st 2nd 3rd

2000

1 1 1 1

SIC, training time,

memory, and

complexity are all

system criteria.
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4000 1st 2nd 3rd

5000 1st 3rd 2nd
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)

2000

1 0 0 0
SIC is the only system

criterion.

1st 3rd 2nd

3000 1st 3rd 2nd

4000 3rd 1st 2nd

5000 1st 2nd 3rd

2000

1 1 0 0

SIC and training time

are the only system

criteria.

2nd 3rd 1st

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 3rd 1st 2nd

2000

1 0 1 0

SIC and memory are

the only system

criteria.

1st 2nd 3rd

3000 1st 3rd 2nd

4000 2nd 1st 3rd

5000 2nd 1st 3rd

2000

1 0 0 1

SIC and complexity

are the only system

criteria.

1st 3rd 2nd

3000 1st 3rd 2nd

4000 3rd 1st 2nd

5000 1st 2nd 3rd

2000

1 1 1 0

SIC, training time,

and memory are the

only system criteria.

1st 2nd 3rd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 2nd 1st 3rd

2000

1 1 0 1

SIC, training time,

and complexity are

the only system

criteria.

1st 2nd 3rd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 3rd 1st 2nd

2000

1 0 1 1

SIC, memory, and

complexity are the

only system criteria.

1st 2nd 3rd

3000 1st 3rd 2nd

4000 2nd 1st 3rd

5000 2nd 1st 3rd

2000

1 1 1 1

SIC, training time,

memory, and

complexity are all

system criteria.

1st 2nd 3rd

3000 1st 2nd 3rd

4000 1st 2nd 3rd

5000 2nd 1st 3rd

The best three cancelers that achieve the highest efficiency are ranked by the 1st, 2nd, and 3rd, respectively.
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the others for most of the test cases. One can also notice from Table 5.7 that the

polynomial-based canceler requires a large number of training examples to achieve the

highest efficiency, e.g., the polynomial-based canceler is unable to attain the highest

efficiency when being trained using 2000 samples of the first dataset. In addition, one

can infer from the table that the RV-TDNN works well in the test cases where the

training overhead is not of the system demands, e.g., the RV-TDNN-based canceler

is unable to attain the highest efficiency in the second dataset for all test cases where

wτ = 1 and the polynomial-based canceler becomes a better choice in such test cases.

In sum, upon testing several ML-based approaches for SIC in FD transceivers,

using two test setups and over short dataset sizes, I can conclude that the model-

driven approaches, i.e., polynomial-based canceler, can be a good choice in operating

scenarios where a low transmit power is employed; however, at high transmit power

levels, the data-driven ML approaches, i.e., RV-TDNN-based canceler, can be a better

choice.

5.7 Challenges and Future Research Directions

The previous sections provided a comprehensive overview of applying ML-based ap-

proaches for SIC in FD transceivers. Suitable SIC approaches have also been selected

for SIC, depending on the system criteria. Although the literature works surveyed

in this chapter provide a significant role in empowering the application of ML tech-

niques for SIC in FD transceivers, more efforts remain to be made to adopt such

techniques in practical wireless systems employing FD transmission. The following

subsections delve into the main challenges of applying ML-based approaches for SIC

in FD transceivers and provide a guide for future research directions.
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5.7.1 Considering the Effect of SoI while Performing the SIC

The existing ML-based SIC approaches consider the cancellation of the SI signal only,

i.e., no signal from any remote FD or half-duplex TRPs is considered. However, in

practical situations, i.e., real-time FD systems, the SIC in one FD node has to be done

while an SoI from another TRP is received and demodulated. Initial works in [127],

[130] investigated a joint detection of the SI and SoI and proved that an NN-based

SI canceler is beneficial to enhance the signal demodulation. Despite the potential

of the works in [127], [130], there are still more issues remaining to be addressed,

and the point of detecting the SoI while performing the SIC is open to improvements

from both performance and complexity perspectives. For instance, one issue is that

all ML-based approaches surveyed in this chapter are trained and verified using time-

domain samples, i.e., they are completely working in the time domain. However, if

the SoI signal employs any of the frequency-domain modulation formats, e.g., OFDM

modulation, performing the SIC could be done in the frequency domain; this would

be similar to the fifth-generation new radio or future 6G demodulation pilots (demod-

ulation reference signals uplink or downlink) which are in specific time and frequency

symbols [127]. Thus, adapting the ML-based SIC approaches to work with frequency-

rather than time-domain samples can be a direction for future investigation.

5.7.2 Tackling the Time-Varying SI Channels

The existing ML-based SIC approaches use offline-trained ML algorithms to estimate

the SI signal over a static SI channel. However, in practical situations, the movements

of user equipment TRPs and/or environmental changes can vary the SI channel over

time, and the ML algorithms may need to be retrained in order to adapt to the

time-varying SI channel. Nevertheless, as presented in Fig. 5.9, some ML algorithms
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require a higher training time, i.e., they are not fast enough to be retrained during the

FD transmission, which can lead to significant performance degradation. Initial works

in [102], [131] investigate the effect of canceling the SI signal under time-varying SI

channels. However, these are incipient works, and the point is open to improvements

in both performance and complexity perspectives. For instance, applying reinforce-

ment and online learning to iteratively tackle the time-varying SI channel can be a

future direction of investigation. Scaling the performance and/or complexity as a re-

sult of employing reinforcement and online learning can also be considered for future

investigation.

5.7.3 Applying ML Approaches for SIC in FD MIMO Sys-

tems

The ML-based SIC approaches surveyed in this work are trained and verified us-

ing a single-input single-output (SISO) FD testbed. However, in recent communica-

tion standards, the MIMO technology has become a basic transmit/receive scheme.

Hence, extending the above ML-based SIC techniques to MIMO rather than SISO

FD transceivers is imperative. Typically, the complexity of the SIC approaches expo-

nentially increases under MIMO operation where M transmit antennas interfere with

N receive antennas. A straightforward approach—to process several SI signals in the

digital domain—is to perform the SIC using separate SI cancelers, which consider the

interfering signals from all transmit antennas; however, this results in excessive com-

plexity. To address this issue, alternative approaches can be designed. For instance,

exploiting the spatial correlation between the MIMO channels to develop a common

SI canceler, i.e., not separate cancelers, can be a direction for future investigation in

order to reduce the impractical computational complexity of the traditional MIMO

SIC-based approaches [40].
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5.7.4 Training Complexity of ML-based SIC Approaches

The computational complexity of the existing ML-based SIC approaches is typically

evaluated and compared in terms of FLOPs required in the inference stage, i.e., upon

performing and finalizing the training process. However, estimating the training com-

plexity (in terms of FLOPs) is crucial and should be considered, especially for ML

algorithms targeted to be integrated with online learning as described in Section 5.7.2.

For instance, calculating the number of FLOPs required for performing the backprop-

agation in NNs, approximating the unknown function using optimization in SVRs,

and solving the low-rank tensor decomposition problem in TC-based cancelers should

be explored to provide insights about the feasibility of applying ML-based approaches

for SIC in real-time FD transceivers.

5.8 Conclusions

In this chapter, I have surveyed the up-to-date contributions in applying ML ap-

proaches for SIC in FD transceivers. Based on a comprehensive review, I have found

that canceling the interference in FD transceivers using ML has been initially per-

formed by traditional approaches, such as NNs and SVRs. Advanced ML approaches,

such as TC, TensorFlow graphs, and RFFs, integrated with online learning, have

been employed for SIC as well. Further, other ML approaches proven in other disci-

plines, such as DR, GMMs, DU, LL, and APSM, have also been utilized for modeling

the SI in FD transceivers. Upon surveying the literature, I have provided a case

study to evaluate the performance of the prominent ML-based approaches over short

dataset sizes and using two test setups employing different transmit power levels.

Specifically, I have assessed the performance of the prominent data-driven ML-based

approaches in terms of the SIC, PSD, training time, memory storage, and compu-
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tational complexity and compared them with those of the model-driven approaches,

e.g., polynomial-based canceler. Afterward, I evaluated the efficiency of the different

SIC approaches based on the aforementioned metrics to select a suitable approach

for SIC, depending on system requirements. Based on this study, I have found that

the model-driven approaches, i.e., polynomial-based canceler, could be a good choice

when a low transmit power is utilized (i.e., low non-linearity exists). However, at high

transmit power (i.e., high non-linearity exists), the data-driven ML-based approaches,

i.e., RV-TDNN-based canceler, could be a better choice. I have finally identified the

research gaps in applying ML approaches for SIC in FD transceivers, paving the way

for future research directions, such as considering the SoI effect, extension to MIMO

FD transceivers, and tackling the time-varying SI channels.
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Chapter 6

Residual Neural Networks for

Learning the Full-Duplex

Self-Interference

6.1 Abstract

Full-duplex (FD) is a key technology for enhancing the capacity of next-generation

wireless systems by jointly maximizing the utilization of time and frequency resources,

resulting in low latency and high spectral efficiency. However, the self-interference

(SI), leaking to the receiver chain from its own transmitter chain, is the main issue

that hinders reaping the key benefits of FD systems, and SI cancellation (SIC) is intro-

duced to enable such benefits. Digital non-linear SIC is traditionally performed using

model-driven approaches, such as polynomial models, which are of high complexity.

Thus, data-driven machine learning (ML) approaches are introduced for learning the

FD non-linear SI with lower complexity. This chapter proposes an ML approach

based on residual neural network (Res-NN) to learn the FD non-linear SI and relax
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the computational requirements of the traditional methods. Res-NN uses shortcut

connections from the input/hidden layer to the output layer to enhance the learn-

ing capabilities of the SI cancelers. Simulation results show that an NN employing

residual connections could effectively learn the FD SI and outperform the existing

benchmarks in the literature.

6.2 Introduction

Full-duplex (FD), maximizing the utilization of time and frequency resources, has

become one of the emerging technologies for widespread applications ranging from

wireless and vehicular to optical and underwater communications [1]-[4]. However,

the self-interference (SI)—a loop-back signal from the transmitter (Tx) chain to its

co-located receiver (Rx) chain—is the main issue that hinders reaping the key ben-

efits of FD systems [5]. Such interference is crucial to the performance of FD sys-

tems as it significantly degrades their ability to detect the desired signal of interest

(SoI). Reaping the benefits of FD systems can only be realized by applying various

self-interference cancellation (SIC) techniques, which can be done in three domains:

propagation, analog, and/or digital [5], [6].

Propagation domain cancellation can be performed around the antennas using pas-

sive or active elements, such as antenna separation, phase control, surface treatment,

coupling networks, duplexers, and/or circulators [5], [6]. Analog domain cancellation

can be done in the analog circuity after performing the propagation domain can-

cellation and before applying the analog-to-digital converter (ADC). Analog domain

cancellation generates a copy of the SI signal using techniques such as auxiliary Tx

chains [5], [6]. Digital domain cancellation is performed after applying the ADC using

model-driven approaches such as linear, widely-linear, and polynomial models, e.g.,
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Wiener, Hammerstein, and parallel Hammerstein [5], [6]. Digital domain cancellation

using polynomial models is shown to be effective for non-linear SIC in FD transceivers.

However, they suffer from a higher computational complexity [7]. Thus, data-driven

machine learning (ML) approaches have been recently introduced for learning the FD

non-linear SI with reduced complexity.

For the time being, there have been significant advances in applying ML ap-

proaches for SIC in FD transceivers. Approaches such as neural networks (NNs)

[8]-[13], support vector regressors (SVRs) [14], [15], tensor completion [16], deep un-

folding [17], and others [18],1 have been introduced to learn the SI with lower com-

plexity than the traditional polynomial model. The synergy between ML and FD

communications was shown to be efficient in terms of computational resources when

compared to the polynomial model. However, further reduction in these resources is

required to enable the synergy of ML with real-time FD transmit and receive points

(TRPs). This chapter fills this gap by proposing an ML solution based on residual-

NN (Res-NN) in order to learn the SI with reduced computational resources. The

proposed Res-NN exploits shortcut connections from the hidden to the output layer

to enhance the learning capabilities of the SI cancelers. The results show that an

NN employing residual connections could effectively learn the FD non-linear SI and

outperform the existing benchmarks in the literature. Digital SIC, power spectral

density (PSD), network parameters, and computational complexity evaluations are

provided to support the findings.

The rest of this chapter is structured as follows. The system model integrating

Res-NN with FD communications is introduced in Section 6.3. The basic concepts of

residual learning and the proposed residual NN-based architecture are described in

Section 6.4. The experimental setup and the achieved results are discussed in Section

1A detailed description of the different ML approaches applied for SIC in FD transceivers can be
found in chapter 5.
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Fig. 6.1: A system model integrating Res-NN with FD communications [18].

6.5. Finally, Section 6.6 concludes the chapter.

6.3 System Model

The system model, integrating Res-NN with FD communications, is shown in Fig. 6.1.

The digital baseband signal after the ADC, i.e., after applying the propagation and

analog domain cancellation (if any) and upon exposure to different transceiver’s im-

pairments, e.g., power amplifier (PA) and I/Q mixer’s non-linearities, can be written

as [18]
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y (n) = y
SI

(n) + y
SoI

(n) + w (n) , (6.1)

with w (n) ∼ CN (0, σ2) as a complex-valued Gaussian distributed thermal noise with

zero mean and variance σ2, y
SoI

(n) as the SoI, while y
SI

(n) as the SI signal, which

can be written as [8]-[13], [18]

y
SI

(n) =
P∑
p=1,
p odd

p∑
q=0

Mi−1∑
m=0

hp,q (m) x (n−m)q x∗ (n−m)
p−q

, (6.2)

where P denotes the order of non-linearity and hp,q (m) represents an impulse response

of a channel comprising the effect of all transceiver non-idealities [18]. Finally, Mi

represents the memory effect incorporated into the input samples x (n) by the SI

channel, PA, etc.

For the sake of simplicity, I assume that there is no SoI from any remote TRPs;

thus, the aim of the digital canceler is to find an accurate estimate for the SI signal,

which I denote by ỹ
SI

(n). This can be done by first estimating the linear SI compo-

nent using the least-squares channel estimation and then estimating the non-linear

component using the Res-NN model, as illustrated in Fig. 6.1. The achieved SIC is

then quantified over a window of N testing samples as [8]-[13], [18]

CdB = 10 log10

( ∑N
n=1 |y(n)|2∑N

n=1 |yres(n)|2

)
, (6.3)

with yres(n) as the residual SI signal after applying digital SIC using the linear and

non-linear cancelers, as shown in Fig. 6.1.2

2A detailed description of the FD system model shown in Fig. 6.1 can be found in chapter 5.
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6.4 Proposed Residual NN Architecture

Residual learning of deep NNs [19] was initially proposed to mitigate the performance

degradation problem, i.e., increasing the depth of NN leads to an increase in the

training errors, which in turn decreases the accuracy of the NN models [20]. Res-

NN differs from its NN counterparts by introducing a shortcut connection between

the input and output layers of the network, as depicted in Fig. 6.2. This shortcut

represents an identity mapping and is added to the output of the stacked/hidden

layers. In such manner, the Res-NN drives the non-linear layers to fit a residual

mapping F (u) := H(u) − u, given a desired underlying mapping H(u), i.e., the

original mapping is adjusted to F (u) + u.

The adjusted mapping, i.e., F (u) + u, is flexible in construction and can be easily

realized by different types of feed-forward NNs, and the entire network can eventually

be trained by the traditional backpropagation algorithm [19], [20]. In addition, the

extra identity shortcut requires only an element-wise addition and, thus, has a negligi-

ble effect on the required memory storage and computational complexity compared to

the traditional NNs [20], [21]. The aforementioned illustrates the easy implementation

and optimization of Res-NN.

185



...

∑  

∑  

∑  

∑  

...

Identity shortcut

∑  

∑  

∑  

∑  

∑  
...

Input
layer

1st hidden 
layer

2nd hidden 
layer

∑  

∑  

ℜ y 𝑆𝐼,𝑛𝑙(𝑛)  

ℑ y 𝑆𝐼,𝑛𝑙(𝑛)  

Output 
layer

ℑ 𝑥(𝑛)  

ℑ{𝑥(𝑛 − 𝑀𝑖 + 1)} 

⋮ 

ℜ 𝑥(𝑛)  

ℜ{𝑥(𝑛 − 𝑀𝑖 + 1)} 
⋮ 
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Inspired by residual learning, I develop a customized Res-NN referred to as resid-

ual real-valued time-delay NN (Res-RV-TDNN) to model the FD non-linear SI by

exploiting shortcut connections from the first hidden layer to the output layer and

thus enhance the learning capabilities of the existing NN-based SI cancelers.

The network design of the proposed Res-RV-TDNN is shown in Fig. 6.3. Herein,

I have introduced some modifications to the Res-NN [19]-[21] and the classic RV-

TDNN [8] to enhance their learning capabilities for the SIC problem. I construct the

combined Res-NN and RV-TDNN with two hidden layers, as follows. The input to

the model is a feature map that considers the separated real and imaginary parts of

the current and previous samples of the input signal x (n). To take the memory effect

of the SI into account, the identity connection is taken from the first hidden layer and

not from the input as in the original method, i.e., Res-NN. In more detail, I employed

an identity shortcut connection to forward a transformed version of the weighted sum

of the model inputs (including all the current and past samples) from one neuron of

the first hidden layer to the output layer in order to consider the temporal behavior of

the SI signal. Moreover, I used non-linear activation functions in the first and second
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TABLE 6.1: Training datasets specifications.

Parameter First dataset [8] Second dataset [9]

Modulation QPSK-OFDM QPSK-OFDM

FFT size 1024 2048

Pass-band bandwidth 10 MHz 20 MHz

Sampling frequency 20 MHz 80 MHz

Average transmit power 10 dBm 32 dBm

Passive analog SIC 53 dB 15 dB

Active analog SIC N/A 50 dB

Total analog SIC 53 dB 65 dB

Transmit/receive antennas 1T1R 1T1R

Dataset size 5000 samples 5000 samples

Training/test splits 0.9/0.1 0.9/0.1

hidden layers (i.e., stacked non-linear layers) to fit the adjusted residual mapping,

involving the SI non-linearities.

Appending this customized connection to the RV-TDNN model quite enhances it

from both performance and complexity perspectives, as will be shown in the following

section.

6.5 Results and Discussion

In this section, I compare the performance of the proposed Res-RV-TDNN with that of

the best cancelers introduced in [18], i.e., polynomial and RV-TDNN-based cancelers.

The comparison between the different cancelers in this study is conducted based on

two different datasets that were captured using real-time FD testbeds [8], [9]. The

first dataset’s average transmit power, bandwidth, and sampling frequency are set to

10 dBm, 10 MHz, and 20 MHz, respectively [8], while those of the second are set to 32

dBm, 20 MHz, and 80 MHz, respectively [9]. Using these setups, 5000 data samples

from each dataset are utilized for training and testing. Among the 5000 data samples,

the first 90% of the samples are reserved for training, while the last 10% are exploited
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TABLE 6.2: Optimal hyperparameters of the proposed Res-RV-TDNN compared to
those of the polynomial and RV-TDNN-based cancelers [18].

Dataset Canceler Mi P Nh1 Nh2 LR BS Act. Opt.

F
is

r
t Polynomial 7 11 - - - - - -

RV-TDNN 9 - 57 - 0.005 22 Relu Adam

Res-RV-TDNN 13 - 10 46 0.0025 22 Relu Adam
S
e
c
o
n
d Polynomial 9 6 - - - - - -

RV-TDNN 6 - 100 - 0.0025 22 Relu Adam

Res-RV-TDNN 6 - 10 48 0.0025 22 Relu Adam

for testing. The specifications of the two training datasets employed in this study are

detailed in Table 6.1.

Based on the above-mentioned datasets, I have optimized the hyperparameters of

the proposed Res-RV-TDNN to achieve better or comparable performance to that of

the polynomial and RV-TDNN-based cancelers introduced in [18]. In more detail, I

have optimized the memory length Mi, the number of neurons in the first and second

hidden layers, Nh1 and Nh2, the activation function, the learning rate (LR), the batch

size (BS), and the training optimizer. The optimal hyperparameters of the proposed

Res-RV-TDNN, along with those of the polynomial and RV-TDNN, are summarized

in Table 6.2.

Based on the obtained optimal hyperparameters, I have compared, in Fig. 6.4,

the SIC performance of the proposed Res-RV-TDNN versus those of the polynomial

and RV-TDNN over the first and second datasets, employing 10 dBm and 32 dBm,

respectively. As can be seen from the figure, the proposed Res-RV-TDNN achieves a

better SIC performance than the RV-TDNN and a comparable SIC to the polynomial

in the first dataset. However, it attains a better SIC performance than the polynomial-

based canceler and a comparable SIC to the RV-TDNN-based canceler in the second

dataset.

The PSDs of the residual SI signal after applying the polynomial-, RV-TDNN-,
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Fig. 6.4: SIC of the proposed Res-RV-TDNN compared to the polynomial and RV-
TDNN-based cancelers.

and Res-RV-TDNN-based SIC approaches for the first and second datasets are shown

in Figs. 6.5 and 6.6, respectively. From Fig. 6.5, it is observed that the polynomial-

, RV-TDNN-, and Res-RV-TDNN-based cancelers provide a comparable gap to Rx

noise floor values of 2.1, 2.6, and 2.3 dB, respectively. Further, Fig. 6.6 demonstrates

that the polynomial-based canceler provides a large gap to Rx noise floor, i.e., 9.7 dB,

compared to the RV-TDNN- and Res-RV-TDNN-based cancelers that only have a gap

to Rx noise floor values of 4 and 4.1 dB, respectively. This verifies the prominence

of applying data-driven ML techniques to model the SI when high transmit power is

employed in FD systems.

The previous results also substantiate the feasibility of adding residual connections

to the NN, as it guarantees a good SIC performance, regardless of the transmit power

level, i.e., the Res-RV-TDNN works well in the case of low transmit power levels (first

dataset) and also for the case of the higher transmit power levels (second dataset).
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Fig. 6.5: PSD of the proposed Res-RV-TDNN compared to the polynomial and RV-
TDNN-based cancelers over the first dataset.
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Fig. 6.6: PSD of the proposed Res-RV-TDNN compared to the polynomial and RV-
TDNN-based cancelers over the second dataset.
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Upon evaluating the SIC and PSD performances, I have compared the required

memory storage—in terms of the number of parameters—of the proposed Res-RV-

TDNN compared to that of the polynomial and RV-TDNN-based cancelers over the

first and second datasets, in Fig. 6.7. As can be seen from the figure, the proposed

Res-RV-TDNN provides up to 26% and 49% reduction in the number of required

parameters compared to the RV-TDNN in the first and second datasets, respec-

tively. However, it demands approximately double the parameters required by the

polynomial-based canceler in both datasets.

In Fig. 6.8, I have evaluated the computational complexity of the proposed Res-

RV-TDNN—in terms of the number of floating points operations (FLOPs) in the

inference phase—and compared it with that of the polynomial and RV-TDNN-based

cancelers over the first and second datasets. As can be seen from the figure, the

proposed Res-RV-TDNN significantly reduces the number of FLOPs compared to the
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Fig. 6.8: Number of FLOPs of the proposed Res-RV-TDNN compared to the polyno-
mial and RV-TDNN-based cancelers.

polynomial and RV-TDNN-based cancelers for the two datasets. In more detail, it

provides a 25% and 49% reduction in the computational complexity over the RV-

TDNN in the first and second datasets, respectively. In addition, it exhibits about

a 18% and 16% reduction in the complexity compared to the polynomial canceler

for both datasets, respectively. The previous results substantiate the superiority of

the proposed Res-RV-TDNN in achieving a high SIC with low computational require-

ments.

Upon evaluating the SIC, memory storage, and computational complexity of var-

ious SI cancelers, I have evaluated the efficiency η of each canceler for different test

cases/system requirements in Table 6.3, as in [18].3 From the results in Table 6.3, it

is observed that the proposed Res-RV-TDNN surpasses the classical RV-TDNN for

both datasets. In addition, it can be concluded that the polynomial canceler is the

3In this chapter, the canceler efficiency η of each SI canceler is evaluated in terms of its SIC
performance, memory storage, and computational complexity. A detailed description of calculating
η can be found in [18].
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TABLE 6.3: Efficiency η of RV-TDNN and Res-RV-TDNN-based SI cancelers com-
pared to the polynomial canceler for the first and second datasets.

Test case

η

First dataset Second dataset

Polynomial RV-TDNN Res-RV-TDNN Polynomial RV-TDNN Res-RV-TDNN

SIC is the only system criterion. 1st 3rd 2nd 3rd 1st 2nd

SIC and memory are the only system criteria. 1st 3rd 2nd 3rd 2nd 1st

SIC and complexity are the only system criteria. 2nd 3rd 1st 3rd 2nd 1st

SIC, memory, and complexity are the only system criteria. 1st 3rd 2nd 3rd 2nd 1st

The cancelers that achieve the highest efficiency are ranked by the 1st, 2nd, and 3rd, respectively.

efficient one when using the first dataset, while the proposed Res-RV-TDNN is the

efficient canceler when using the second dataset; note that the second dataset uses

higher transmission power, bandwidth, and sampling frequency hence considered a

more realistic representation for the TRPs, employing FD communications.

6.6 Conclusion

In this chapter, I proposed a residual NN-based SI canceler, referred to as Res-RV-

TDNN, to effectively learn the FD SI problem. The Res-RV-TDNN combined the

concepts of residual learning and time-delay NNs to model the memory effect and

different non-linearities affecting the SI in FD transceivers. The proposed method is

examined by using two training datasets and various performance metrics such as dig-

ital SIC, memory requirements, and computational complexity. The achieved results

demonstrate that the proposed method gives a similar non-linear SIC to the exist-

ing benchmarks in the literature and provides significant reductions in computational

resources. Further, the proposed method is shown to be more efficient for realistic

FD operating scenarios, employing high transmit power levels, bandwidth, and sam-

pling frequency. Exploiting the concept of residual learning to further enhance the

performance of grid-based, hybrid-layers, and output feedback NN structures can be

considered in the future.
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Chapter 7

Extreme Learning

Machine-Assisted Full-Duplex

Self-Interference Cancellation

7.1 Abstract

This chapter introduces an extreme learning machine (ELM)-assisted self-interference

cancellation (SIC) approach to suppress the self-interference signal in full-duplex

transceivers. The proposed ELM-assisted SIC approach exploits a single hidden layer

neural network (NN) topology without performing iterative backpropagation tuning,

yielding reduced training time and better generalization than the conventional NN-

assisted SIC approaches. The over-the-air measurements corroborate that the pro-

posed ELM-assisted approach could achieve a higher SIC performance with a lower

training time than the literature benchmarks, albeit at higher memory and computa-

tional requirements.
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7.2 Introduction

Full-duplex (FD), enabling remote parties to transfer information simultaneously in

both directions and in the same bandwidth, has been envisioned as an important

technology for the next-generation cellular networks [1]. This is due to the ability

to leverage both time and frequency resources and theoretically double the spectral

efficiency. Enabling the FD communications is, however, highly challenging due to

the self-interference (SI) [2]. The power of the SI signal is significantly higher when

compared with the signal of interest (SoI) from a remote node as a result of the

proximity of the Tx to its co-located receiver (Rx). The SI signal is thus swamping

the SoI and degrading the FD system’s overall performance.

In the past, traditional self-interference cancellation (SIC) approaches, spanning

the propagation, analog, and/or digital techniques, have been explored to diminish

the SI. Such approaches are shown to be effective for SIC in FD transceivers (TRXs);

however, they could impose additional cost, hardware, memory, and/or computational

complexity requirements [3].

In recent years, applying machine learning (ML)-assisted SIC approaches for sup-

pressing the SI in FD TRXs has gained popularity to address the extra requirements

imposed by the traditional methods [4]-[11]. Diverse neural networks (NNs) [4]-[8] and

other ML approaches, such as support vector regressors [9], tensor completion [10],

and more [11], have been extensively explored to reduce the FD SI signal’s power

with lower cost, hardware, memory, and/or computational requirements. Applying

ML-assisted SIC approaches for suppressing the FD SI, however, can come at the

expense of excessive training time, especially in the case of NNs, tensor completion,

etc., making them unfavorable for real-time dynamic scenarios where the training

time is a crucial factor [11]. To cope with this problem, this chapter proposes an

extreme learning machine (ELM)-assisted SIC approach for suppressing the SI in FD
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Fig. 7.1: ML-assisted FD system model [11].

TRXs with higher SIC performance and lower training overhead compared to the ex-

isting benchmarks. In addition, this chapter conducts comprehensive evaluations of

the proposed SIC approach and current benchmarks using captured data from real-

time FD experiments, which are found to be significant for performance verification

of real-world communication systems [12].

The original contributions brought by this chapter are listed as follows:

1. I propose an ELM-assisted SIC approach for suppressing the SI in FD TRXs,

for the first time in literature.

2. Using the over-the-air measurements, I evaluate the SIC performance of the
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ELM-assisted SIC approach and compare it to the existing benchmarks, em-

ploying polynomial and NN modeling.

3. I also investigate the training overhead, memory resources, and computational

requirements of the ELM-assisted SIC approach and compare them with the

benchmarks.

This chapter is structured as follows: A general ML-assisted FD system model is

outlined in Section 7.3. The proposed ELM-assisted SIC approach is presented in

Section 7.4. Numerical results are discussed in Section 7.5, and conclusions are drawn

in Section 7.6.

7.3 ML-Assisted FD System Model

A generic ML-assisted FD system model is shown in Fig. 7.1. The input samples,

x (n), with n denoting the sample’s index, are exposed to various impairments of the

TRX’s blocks, such as the power amplifier (PA) and analog-digital/digital-to-analog

domain converters (ADC and DAC). The baseband samples after digitization are

given by [4]-[8], [11]

y (n) = y
SI

(n) + y
SoI

(n) + ψ (n) , (7.1)

where ψ (n) ∼ CN (0, σ2) indicates the thermal noise samples, having a complex-

valued zero-mean normal distribution with variance σ2. y
SoI

(n) represents the SoI,

whereas y
SI

(n) denotes the SI signal, which can be expressed as [4]-[8], [11]

y
SI

(n) =
P∑
p=1,
p odd

p∑
q=0

Mi−1∑
m=0

hp,q (m) x (n−m)q x∗ (n−m)
p−q
, (7.2)
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with hp,q (m) as the channel impulse response modeling the impact of the TRX’s im-

pairments, P as the PA’s non-linearity order, and Mi as the memory length associated

with the input samples, respectively [11].

I assume that no SoI is received from any other remote nodes, for the ease of

exposition [4]-[8], [11]. The task of the digital canceler is thus to generate a proper

estimate of the SI signal y
SI

(n), represented by ỹ
SI

(n). This can be achieved through

two main tasks, as depicted in Fig. 7.1. Firstly, the common least-squares channel

estimation technique is used to generate the linear component of the SI. Then, the

non-linear component is generated using any ML model, e.g., NN, ELM. The total

attainable SIC is then evaluated over a number of testing samples N as [4]-[8], [11]

CdB = 10 log10

( N∑
n=1

|y(n)|2
)(

N∑
n=1

|yres(n)|2
)−1

 , (7.3)

where yres(n) represents the residual SI after the application of the digital SIC tech-

niques, as illustrated in Fig. 7.1.1

7.4 Proposed ELM-Assisted SIC Approach

ELM is a fast and accurate learning algorithm that relies on a single hidden layer

feed-forward NN topology [13], [14]. In ELM, the hidden nodes’ parameters, i.e.,

weights and biases, are not traditionally tuned using the iterative backpropagation

algorithm as in the conventional NNs; however, they are randomly assigned from

a certain distribution and then utilized to analytically compute the output layer’s

parameters, i.e., output layer’s weights [13], [14]. Avoiding backpropagation tuning

enables the ELM to achieve a better generalization with a lower training time than

1The ML-assisted FD system model, depicted in Fig. 7.1, is detailed in [11].
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Fig. 7.2: Proposed ELM-assisted SIC approach.

Ztrnl =


<{x (n)} ... <{x (n−Mi + 1)} = {x (n)} ... ={x (n−Mi + 1)}
< {x (n+ 1)} ... <{x (n−Mi + 2)} = {x (n+ 1)} ... ={x (n−Mi + 2)}

...
...

. . .
. . .

...
...

<{x (n+Ntr −Mi − 1)} ... <{x (n+Ntr − 2Mi)} = {x (n+Ntr −Mi − 1)} ... ={x (n+Ntr − 2Mi)}

,
(7.4)

the traditional NNs [13], [14]. Inspired by these potentials, this chapter proposes an

ELM-assisted SIC approach for modeling the SI in FD TRXs. The architecture of the

designed ELM is illustrated in Fig. 7.2. According to the figure, the proposed ELM

exploits an NN topology consisting of three layers, namely the input, hidden, and

output layers. The feature map Ztr
nl ∈ R(Ntr−Mi)×2Mi , containing the in-phase, (< (�)),

and quadrature, (= (�)), components of both the current and past (memory effect)

input samples, is utilized as an input for training, as expressed in (7.4), with R as the

set of real-valued numbers and Ntr as the number of training samples. At the hidden

layer, the hidden nodes’ parameters are randomly generated from a standard normal

distribution. The output matrix, H ∈ R(Ntr−Mi)×k, corresponding to the hidden layer,

is then computed as [13], [14]
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H =



f
(
ztrnl,1w1 + b1

)
· · · f

(
ztrnl,1wk + bk

)
f
(
ztrnl,2w1 + b1

)
· · · f

(
ztrnl,2wk + bk

)
. . . . . . . . .

f
(
ztrnl,Ntr−Mi

w1 + b1

)
· · · f

(
ztrnl,Ntr−Mi

wk + bk
)


, (7.5)

with f (�) as the activation function operator and k as the number of ELM hidden

neurons. ztrnl,1,· · · , ztrnl,Ntr−Mi
∈ R1×2Mi represent the row vectors of the predefined

Ztr
nl, while w1,· · · , wk ∈ R2Mi×1 denote the column vectors of the randomly-generated

weight matrix W ∈ R2Mi×k. Finally, b1,· · · , bk ∈ R1×1 indicate the bias elements

drawn from the randomly-generated bias vector b ∈ Rk×1. The randomly-generated

weight matrix W and bias vector b can be respectively expressed as

W =



w1,1 w1,2 · · · w1,k

w2,1 w2,2 · · · w2,k

. . . · · · · · · . . .

w2Mi,1 w2Mi,2 · · · w2Mi,k


, b =



b1

b2

. . .

bk


. (7.6)

The output layer’s parameters, i.e., output layer’s weights, β ∈ Rk×2, are then learned,

being computed as [13], [14]

β = H†ỳ
tr

SI,nl, (7.7)

where (�)† indicates the Moore–Penrose inverse operation and ỳtrSI,nl ∈ R(Ntr−Mi)×2

denotes the output vector containing the training labels for the ELM model, which

are constructed using the residual SI after performing the linear cancellation, as shown

in Fig. 7.1. Upon finishing the training process, the trained ELM model is fed with

the testing matrix Zts
nl to generate the estimated SI signal’s samples ỹts

SI,nl
, as depicted

in Fig. 7.1, with Nts representing the number of testing samples.
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7.5 Numerical Results

Here, I compare the performance of the ELM-assisted SIC approach with the existing

benchmarks, namely polynomial and RV-TDNN—a time-delay NN based on a real-

valued framework [4], [11]. The measurement setup, hyperparameter tuning, and

performance metrics used to assess the aforementioned approaches are detailed in the

following subsections.

7.5.1 Measurement Setup

The experimental setup employed for capturing the over-the-air measurements utilized

to train the proposed ELM-assisted SIC approach is described in this subsection. The

measured data was collected using a real-time FD testbed [4], [10]; this relies on a

National Instruments PXI platform and a National Instruments NI-5791 RF card

for data transmission and reception. An orthogonal frequency division multiplexing

signal, modulated by a QPSK technique, was generated over 20 MHz bandwidth and

sampled at an 80 MHz sampling rate. A 2.45 GHz carrier frequency and a 32 dBm

average transmit power were set. At the Rx side, 15 dB and 50 dB passive and

active analog cancellations were respectively used, resulting in 65 dB total analog

cancellation. Using the above setup, 20,480 data samples were stored in a dataset

to train the ELM-assisted SIC approach [4], [10]. Among the 20,480 samples, 90%

were reserved for training, whereas 10% were customized for testing. Upon capturing

the training dataset, 3.7.5 and 5.1.5 versions of Python and Spyder were respectively

used in a Windows environment for post-processing, i.e., generating the cancellation

signals after performing the training for the ELM-assisted SIC approach.2

2The measurement setup described in Section 7.5.1 is detailed in [4], [11].
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TABLE 7.1: Optimal hyperparameters of the proposed ELM-, polynomial-, and RV-
TDNN-assisted SIC approaches.

SI Canceler Mi P k LR BS Act. Opt.

Polynomial 13 9 - - - - -

RV-TDNN 6 - 53 0.005 22 Relu Adam

ELM 6 - 702 - - tanh -

7.5.2 Hyperparameter Tuning

A hyperparameter tuning for the proposed ELM-assisted SIC approach is performed

to achieve its maximum SIC. The obtained SIC is then compared with the maximum

SIC acquired by the polynomial and the RV-TDNN approaches [4]. Specifically, I have

optimized the memory length, number of hidden neurons, and activation function by

considering Mi ∈ {1, 2, . . . , 13} , k ∈ {1, 2, . . . , 2000}, and f ∈ {Relu, Sigmoid, tanh},

respectively. The optimal hyperparameters for the proposed ELM-, polynomial-, and

RV-TDNN-assisted SIC approaches are summarized in Table 7.1.

7.5.3 Performance Metrics

7.5.3.1 SIC Performance

The attainable performance of the proposed ELM-assisted SI canceler is compared

to that accomplished by the polynomial- and RV-TDNN, as illustrated in Fig. 7.3a.

The ELM-assisted canceler outperforms the two benchmarks by achieving a higher

SIC performance. The previous results have also been confirmed in Fig. 7.4 by

plotting the power spectral density (PSD) of the residual SI after the application of

the aforementioned non-linear cancellation using the above techniques. As can be

observed from Fig. 7.4, the ELM-assisted canceler efficiently reduces the power of

the SI signal to the Rx noise floor level by providing a gap to the Rx’s noise floor of

4.3 dB compared to 10.8 dB and 4.7 dB achieved by the polynomial and RV-TDNN,

respectively.
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Fig. 7.3: Performance analysis of the proposed ELM-assisted SIC approach compared
to polynomial and RV-TDNN-assisted SIC approaches.

7.5.3.2 Training Overhead

The training overhead, i.e., training time, of the proposed ELM-assisted SI canceler

compared to the polynomial and RV-TDNN-assisted cancelers is also depicted in Fig.

7.3a. As seen from the figure, the proposed ELM distinctly reduces the training

time; this is a result of performing the training process without conducting itera-

tive backpropagation tuning. It is worth mentioning that all ML-assisted SIC ap-

proaches reported in the literature have a higher training time than the polynomial-

assisted SIC approach [11]; however, the proposed ELM is the only ML method that

is able to shorten the training overhead compared to the analytical technique, i.e.,

the polynomial-based approach, due to its simple mechanism compared to others, as

mentioned before.

7.5.3.3 Memory and Computational Requirements

The memory and computational requirements of the proposed ELM-assisted SIC can-

celer are evaluated in the inference stage by counting the required number of parame-
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Fig. 7.4: PSD of the proposed ELM-assisted SIC approach compared to polynomial
and RV-TDNN-assisted SIC approaches.

ters and floating-point operations (FLOPs), respectively, and compared with those of

the polynomial- and RV-TDNN-assisted cancelers in Fig. 7.3b. As can be seen from

the figure, the proposed ELM requires a higher number of parameters and FLOPs

than the polynomial and RV-TDNN due to the use of a higher number of hidden

neurons, as illustrated in Table 7.1.

In summary, the proposed ELM-assisted SIC approach achieves a higher SIC with

a lower training overhead than the existing literature benchmarks at the expense of

higher memory and computational requirements.

7.6 Conclusion

This chapter proposed an ELM-assisted SIC approach to model the FD SI. The pro-

posed model uses a single hidden layer NN topology, without performing iterative
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backpropagation tuning. The performance of the ELM-assisted SIC approach was

evaluated and compared with the existing benchmarks using over-the-air measure-

ments obtained from a real-time FD testbed. The over-the-air measurements sub-

stantiated that the proposed ELM-assisted SIC approach could achieve a higher SIC

with a lower training overhead than the literature benchmarks, albeit with higher

memory and computational resources. Solutions to relax such requirements should

be sought in the future.
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Chapter 8

Conclusions and Future Work

In this chapter, I summarize the contributions presented in this thesis and provide a

guide for future research directions.

8.1 Conclusions

The focus of this thesis is to apply machine learning (ML)-assisted self-interference

cancellation (SIC) approaches to cancel the self-interference (SI) in full-duplex (FD)

transceivers. In Chapter 2, two grid-based neural network (NN) structures, referred to

as ladder-wise grid structure and moving-window grid structure, have been proposed

to model the SI in FD transceivers with lower memory and computational require-

ments than the literature benchmarks. Further reduction in the computational com-

plexity is provided in Chapter 3, where two hybrid-layers NN structures, referred to

as hybrid-convolutional recurrent NN and hybrid-convolutional recurrent dense NN,

have been proposed to model the FD SI. The proposed NN structures exhibit lower

computational requirements than the grid-based structures and without degradation

in the SIC performance. In Chapter 4, an output-feedback NN structure, referred to

as the dual neurons-` hidden layers NN, has been designed to model the SI in FD
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transceivers with less memory and computational requirements than the grid-based

and hybrid-layers NN structures and without any additional deterioration to the can-

cellation performance. In Chapter 5, support vector regressors (SVRs), variants of

support vector machines, have been proposed to cancel the SI in FD transceivers. A

case study to assess the performance of SVR-based approaches compared to the clas-

sical and other ML-based approaches, using different performance metrics and two

different test setups, has also been provided in this chapter. The SVR-based SIC ap-

proaches were able to reduce the training time compared to the NN-based approaches,

which have, contrarily, shown to be more efficient in terms of SIC, especially when high

transmit power is employed. In Chapter 6, the concept of residual learning has been

exploited to develop an NN structure, referred to as residual real-valued time-delay

NN, to model the FD SI with lower computational requirements than the benchmarks

of Chapter 5. In Chapter 7, a fast and accurate learning algorithm, namely extreme

learning machine, has been proposed to suppress the SI in FD transceivers with higher

SIC performance and lower training overhead than the benchmarks of Chapter 5.

8.2 Potential Directions of Future Investigation

The research presented in this thesis serves as a foundation for prospective investiga-

tions, pointing towards several future directions, among which I list the following:

� Considering the Effect of Signal of Interest (SoI) while Performing the

SIC: The existing ML-based SIC approaches consider the cancellation of the SI

signal only, i.e., no signal from any remote FD or half-duplex node is considered.

However, in practical situations, i.e., real-time FD systems, the SIC in one FD

node has to be done while an SoI from another node is received and demodulated.

Initial works in [1], [2] investigated a joint detection of the SI and SoI and proved
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that an NN-based SI canceler is beneficial to enhance the signal demodulation.

Despite the potential of the works in [1], [2], there are still more issues remaining

to be addressed, and the point of detecting the SoI while performing the SIC

is open to improvements in both performance and complexity perspectives. For

instance, one issue is that all ML-based approaches introduced in this thesis

are trained and verified using time-domain samples, i.e., they are completely

working in the time domain. However, if the SoI employs any of the frequency-

domain modulation formats, e.g., orthogonal frequency division multiplexing,

performing the SIC could be done in the frequency domain [1]. Thus, adapting

the ML-based SIC approaches to work with frequency- rather than time-domain

samples can be a direction for future investigation.

� Tackling the Time-Varying SI Channels: The existing ML-based SIC ap-

proaches use offline-trained ML algorithms to estimate the SI signal over a static

SI channel. However, in practical situations, the movements of user equipment

and/or environmental changes can vary the SI channel over time, and the ML

algorithms need to be retrained in order to adapt to the time-varying SI chan-

nel. Nevertheless, some ML algorithms require a higher training time, i.e., they

are not fast enough to be retrained during the FD transmission, which can lead

to significant performance degradation. Initial works in [3], [4] investigate the

effect of canceling the SI signal under time-varying SI channels. However, these

are incipient works, and the point is open to improvements in both performance

and complexity perspectives. For instance, applying reinforcement and online

learning to iteratively tackle the time-varying SI channel can be a future direc-

tion of investigation. Scaling the performance and/or complexity as a result of

applying reinforcement and online learning can also be considered in the future.
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� Applying ML Approaches for SIC in FD MIMO Systems: The ML-

based SIC approaches introduced in this thesis are trained and verified using

a single-input single-output (SISO) FD testbed. However, in recent communi-

cation standards, the multiple-input multiple-output (MIMO) technology has

become a basic transmit/receive scheme. Hence, extending the ML-based SIC

techniques to MIMO rather than SISO FD transceivers is imperative. Typically,

the complexity of the SIC approaches exponentially increases under MIMO

operation where M transmit antennas interfere with N receive antennas. A

straightforward approach—to process several SI signals in the digital domain—

is to perform the SIC using separate SI cancelers, which consider the interfering

signals from all transmit antennas; however, this can result in excessive complex-

ity. To address this issue, alternative approaches can be designed. For instance,

exploiting the spatial correlation between the MIMO channels to develop a com-

mon SI canceler, i.e., not separate cancelers, in order to reduce the impractical

computational complexity of the traditional MIMO SIC-based approaches, can

be a direction for future investigation [5].

� Training Complexity of ML-based SIC Approaches: The computational

complexity of the existing ML-based SIC approaches is typically evaluated and

compared in terms of the number of floating-point operations (FLOPs) required

in the inference stage, i.e., upon performing and finalizing the training process.

However, estimating the training complexity (in terms of FLOPs) is crucial and

should be considered, especially for ML algorithms targeted to be integrated

with reinforcement and online learning. For instance, calculating the number of

FLOPs required for performing the backpropagation in NNs and approximating

the unknown function using optimization in support vector regressors should

be explored to provide insights about the feasibility of applying ML-based ap-
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proaches for SIC in real-time FD transceivers.

The aforementioned directions aim to build upon the foundations laid by this dis-

sertation, providing a guide for future exploration in order to successfully integrate

data-driven ML approaches with FD communication systems, applying digital SIC.
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