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Abstract

Wireless communications have become indispensable in modern society, driven by the proliferation

of mobile devices, Internet-of-Things applications, and data-intensive services. As the world moves

towards sixth-generation (6G) wireless networks, optimizing limited bandwidth and power resources

is crucial to meet growing data demands. Additionally, harnessing the complete capabilities of all

available wireless media, including space, air, and water, is deemed essential to ensure the seamless

communications promised by the 6G wireless and beyond networks. This thesis focuses on overcoming

data rate and security issues in two communication media, namely underwater and terrestrial.

Acoustic is the most prominent wireless communication technology in underwater communication.

In underwater acoustic networks, full-duplex (FD) and non-orthogonal multiple access (NOMA) tech-

niques are explored to address challenges unique to the underwater environment. The goal is to enhance

the data rates, reliability, and security of underwater communication systems. Power optimization is

studied to maximize the sum rate or secrecy sum rate against cyber attacks. The proposed algorithms

provide enhanced sum rates and security when FD and NOMA are applied with effective interference

cancellation.

In terrestrial communications, accurate cellular signal identification is essential for resource op-

timization and wireless network security. Hence, in this thesis, I provide multiple methodologies to

enhance the ability to identify over-the-air signals from various technologies: global systems for mo-

bile communications, universal mobile telecommunication systems, and long-term evolution in real-

time. Morphological analysis and machine learning algorithms are proposed to achieve accurate signal
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detection and identification to enhance the security and efficiency of wireless communication systems.

By tackling both media, this thesis aims to provide unique solutions to improve the security and

data rates for future networks.
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Chapter 1

Introduction

1.1 Background

In the ever-evolving technological milieu, heightened anticipation surrounds the forthcoming genera-

tion of wireless communication networks. This fervor reflects the profound advancements expected in

the realm of future networks. Envisioned as the heir to the fifth-generation (5G) of wireless commu-

nication networks, future networks hold the potential to inaugurate a paradigm shift in connectivity,

promising unparalleled speed, reliability, and capabilities [1]–[4].

Fig. 1.1, generated based on data from [5], illustrates a projection indicating a nearly twofold in-

crease in the number of connected devices, including fixed phones, mobile phones, PC devices, short-

range and wide-area Internet of Things (IoT) devices, by the year 2029. Consequently, the projected

annual growth rate of global mobile data traffic from the year 2020 to 2030 is expected to be 55%, cul-

minating in a monthly data volume of 5,016 exabytes by 2030 [6]. This anticipated surge in data traffic

necessitates a departure from the constraints of 5G, reaching its saturation point by 2030, compelling

an exploration of innovative paradigms to overcome obstacles encountered in earlier generations of

mobile networks. Such innovation and evolution are illustrated in [7] as shown in Fig. 1.2.

The anticipated augmentation in data rates is poised to support an array of novel applications and
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services hitherto inconceivable. This transformative landscape encompasses facets such as holographic

presence, immersive virtual reality (VR) experiences, real-time remote surgery, unmanned aerial ve-

hicles (UAV), extended reality, space, and deep-sea tourism [4]. In addition, recent advancements

in communication have introduced several novel concepts, such as edge intelligence, communication

spanning sub-6GHz to Terahertz, non-orthogonal multiple access (NOMA), large intelligent surfaces,

swarm networks, and self-sustaining networks [4], [8], [9]. These concepts are rapidly evolving into

fully-fledged technologies poised to support the next generations of communication networks. How-

ever, the demands of these applications, such as ultra-high data rates, real-time access to potent com-

puting resources, extremely low latency, precision localization and sensing, and exceptionally high

reliability and availability, surpass the network capabilities promised by 5G [4], [10], [11].

Hence, 5G is anticipated to reach its saturation point by 2030, necessitating the exploration of in-

novative paradigms to address the obstacles encountered in earlier generations of mobile networks.

The emergence of the sixth-generation (6G) mobile network is poised to establish elevated practical

benchmarks, catering to the performance demands of the Internet of Everything, VR, 3D applications,

artificial intelligence (AI), machine-to-machine communication, enhanced mobile broadband, and re-

lated technological advancements [2], [12]. To meet the escalating traffic demands, 6G is anticipated

to provide 100-fold more spectrum compared to 5G [2], [12].

In the following sections of this chapter, the author expounds upon the fundamental framework of

6G, serving as the cornerstone for future wireless networks. Additionally, the chapter will delve into the

challenges confronting 6G networks, elucidating how this thesis addresses some of these formidable

issues.
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Figure 1.1: Forecast number of devices connected.

1.2 Future Wireless Networks

1.2.1 Features of Future Wireless Networks

The key features of future wireless networks encompass a spectrum of advancements poised to redefine

the wireless communication landscape. Among these features is the pursuit of unprecedented speeds,

with 6G targeting data rates far exceeding those of its predecessor, potentially reaching terabits per sec-

ond. This significant leap in speed holds the promise of facilitating real-time applications, immersive

experiences, and instantaneous connectivity. Complementing this speed is the defining characteristic

of ultra-low latency, a crucial element for applications such as augmented reality, VR, and autonomous
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Figure 1.2: The evolution of mobile generation from 1G to 6G [7].

systems, where imperceptible communication delays are paramount. Another salient feature is the cen-

tral role assigned to AI in future networks. From optimizing resource allocation to enabling intelligent

network management, AI integration is positioned to enhance overall efficiency and responsiveness.

Recognizing the environmental impact of network infrastructure, 6G places a premium on energy effi-

ciency, with a commitment to implementing sustainable practices and technologies. Finally, the advent

of 6G is expected to propel the development and deployment of autonomous systems, such as vehicles,

drones, and robotics, by providing reliable and ultra-responsive connectivity. In concert, these key

features herald a transformative era in wireless communication, underlining 6G’s potential to reshape

how people connect, communicate, and interact with technology. Furthermore, 6G envisions ubiqui-

tous connectivity, aspiring to ensure seamless communication even in the most remote and challenging

environments. This vision is set to materialize through a synergy of four main tiers: satellite communi-

cation, high-altitude platforms, advanced terrestrial networks, and underwater networks. Each tier will
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present unique challenges and opportunities for optimizing resource utilization and ensuring secure

communications.

1.2.2 Tiers of Future Wireless Networks

N

Figure 1.3: 6G wireless network tiers [2].

The existing terrestrial network infrastructure falls short of meeting the extensive coverage and

pervasive connectivity demanded by the requirement of the omnipresence of 6G wireless networks.

Consequently, there is a necessity for a comprehensive network encompassing both non-terrestrial

and terrestrial elements to facilitate diverse applications like airborne travel, maritime navigation, and

ground-based vehicles [13], [2]. In its structural design, 6G will manifest as a cell-free and four-tier

large-dimensional network, partitioned into tiers for space, air, terrestrial, and underwater (or sea) net-
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works. The structure is shown in Fig. 1.3. AI, intelligent radio, and edge computing are the tools used

to control traffic over future networks.

Space-Network Tier

This tier will facilitate orbit or space Internet services, catering to applications such as space travel.

It aims to provide wireless coverage by densely deploying low-Earth-orbit, medium-Earth-orbit, and

geostationary-Earth-orbit satellites, especially in unserved and underserved areas not covered by ter-

restrial networks [13], [14]. For high-capacity satellite–ground transmission, satellites equipped with

mm-wave communications will be deployed. Laser communications will be employed to achieve long-

distance inter-satellite transmission in free space.

Air-Network Tier

This tier operates in the low-frequency, microwave, and mm-wave bands to offer more flexible and

reliable connectivity. It addresses urgent events or remote mountain areas by densely deploying flying

base stations (BS), including UAVs [14], and floating BSs like high-altitude platforms. The location

features of floating BSs can facilitate the connection between space networks and reachable UAV BSs

through the 6G-defined optical interface.

Terrestrial-Network Tier

This tier remains the primary solution for providing wireless coverage for most human activities. Be-

sides, the THz band will be utilized to efficiently maximize the utilization of the current bands to meet

the requirements for services with a Terabit per second (Tb/s) data rate, such as hologram and full-

sense digital reality. Therefore, terrestrial networks, including low-frequency, microwave, mm-wave,

and THz bands, will support the full band. Due to the high path loss associated with mm-wave and THz

communications, more small BSs will be deployed, making 6G terrestrial networks an ultradense het-

erogeneous environment. This necessitates the deployment of ultrahigh-capacity x-haul. Optical fibre
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will continue to play a crucial role for 6G, while THz wireless x-haul will be an attractive solution.

Underwater Tier

Figure 1.4: Underwater networks integrated within 6G networks [15].

This tier is designed to offer coverage and internet services for broad-sea and deep-sea activities,

catering to both military and commercial applications [16], [17]. Due to the distinct propagation char-

acteristics of water compared to land, acoustic and optical communications will be utilized to achieve

high-speed data transmission for bi-directional underwater communications. Additionally, the deploy-

ment of more underwater hubs will be necessary to enhance the underwater network infrastructure.

Underwater wireless communication (UWC) is one of the least studied frontiers of 6G, yet it holds

immense potential for a wide range of applications, including oil and gas exploration, environmental

monitoring, and defence.
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There is a plethora of civil and military applications for UWC [16], [17]. The underwater IoT

will enable the deployment of a vast network of underwater sensors and devices, enabling real-time

monitoring of the marine environment. Underwater robotics is required for the development of more

advanced and autonomous underwater robots capable of performing complex tasks such as inspection

and maintenance. Besides, underwater exploration will require new underwater exploration tools, such

as high-resolution underwater imaging and mapping systems [16], [17]. These applications require

secure, fast, and high-bandwidth wireless communication technology underwater. Several types of un-

derwater communications include acoustic, optical, radio frequency (RF), and magneto-inductive (MI)

communications [18], [19]. The differences between these types of wireless underwater communica-

tion are summarized in Table 1.1 [18], [19].

The prominence of underwater acoustic communication as a primary choice among various meth-

ods stems from several key attributes. First and foremost, its efficiency in underwater environments

is noteworthy, as sound waves travel adeptly through water, facilitating reliable communication over

extended distances and through challenging underwater terrains. Additionally, acoustic signals exhibit

lower attenuation rates in water compared to alternative communication methods, providing a founda-

tion for robust and long-range communication. Notably, underwater acoustic communication systems

are meticulously designed to operate within frequency ranges that minimize interference with marine

life, underscoring their commitment to reducing potential impacts on aquatic ecosystems. Moreover,

the proven reliability of acoustic communication is evident in its successful application across vari-

ous underwater domains, including oceanographic research, environmental monitoring, and offshore

industry operations. The compatibility of acoustic communication with underwater sensors further en-

hances its appeal, fostering seamless integration with existing underwater infrastructure. Finally, the

adaptability of acoustic communication to different water conditions, encompassing variations in tem-

perature and salinity levels, underscores its versatility and suitability for diverse underwater scenarios.

In aggregate, these attributes position underwater acoustic communication as a standout choice, pivotal

for the effective and sustainable advancement of underwater communication systems. However, several
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challenges characterize underwater acoustic communication, each posing unique obstacles to the reli-

able transmission of signals. First, propagation loss is a formidable challenge, with underwater acoustic

signals experiencing significant attenuation, particularly over long distances. The multipath effects fur-

ther compound the complexities, introducing distortion and interference to the transmitted signals as

they bounce off underwater surfaces. Additionally, the Doppler effect emerges as a concern, leading

to frequency shifts in underwater acoustic signals and, consequently, complicating the demodulation

process. Furthermore, the inherent noise in underwater acoustic channels adds another layer of diffi-

culty, creating a scenario where distinguishing between desired signals and background noise becomes

a formidable task. In navigating these challenges, advancements in underwater acoustic communica-

tion technologies are imperative to unlock the full potential of reliable and efficient communication

beneath the water’s surface.

Hence, exploring various advanced techniques to improve the spectral efficiency, reliability, and

range of underwater acoustic (UWA) systems is essential for advancing future networks. However,

this tier is one of the most under-researched tiers of future networks, especially regarding security and

spectral efficiency [15].

1.2.3 Vision of Future Wireless Networks

Challenges of 6G Wireless Networks

Sustainability

The digital revolution is poised to be pivotal in transforming the economy and society to meet sustain-

able development goals [1], [2]. 6G should be an integral and critical component of this transformative

journey. Notably, current 5G networks incorporate a design principle allowing sparse transmission of

signals to conserve energy on the network side, potentially reducing carbon emissions from the infor-

mation and communication technology industry. Nevertheless, achieving significant energy savings

with wireless terminals under very sparse transmissions (e.g., on the order of 100 ms) remains a chal-
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Figure 1.5: Challenges of 6G.

lenge requiring further study. Beyond reducing the carbon footprint of communication networks, 6G

technologies should aspire to streamline other industry sectors and practices, significantly reducing car-

bon emissions. This transformational effect has the potential to yield a much higher positive impact on

climate change than the climate footprint of the 6G network itself.

In addition to its positive climate impact, 6G aims to transform modern life by enhancing efficiency

in agriculture, transportation, and environmental monitoring. It also seeks to enable reliable, inherently

trustworthy, and high-capacity connectivity to support world-class education, transparent governance,

and equitable and efficient law enforcement.

Security

While significant security advances have been achieved in 5G and are continually enhanced, future

society is expected to impose increasing demands on wireless network security [1], [2]. Compliance

with standards and regulations is crucial for the entire end-to-end communication chain. The operation

of the wireless network should be highly predictable, with a robust level of resilience for the delivered
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functionality. Personal security is of growing importance, and 6G should provide tools to protect end

users. The wireless network must be capable of isolating and withstanding potential attacks, such as

intrusion, tampering, and jamming, to establish wireless as a fully trustworthy solution.

Omnipresent Service Coverage

The move towards a fully digitalized world necessitates providing mobile services wherever needed.

With 6G, the aim is to achieve coverage not only everywhere humans are, but also everywhere wireless

devices are and can be. This includes coverage over land, sea, and air, encompassing large cells and

focused capillary networks. Wireless services through 6G should be accessible to everyone and ev-

erything that can benefit from them. Achieving omnipresent 3D coverage involves connecting diverse

links from land-based, air-based, and space-based nodes into one cohesive network.

Extreme Applications and Performance

As 5G technologies enable more use cases with better performance, 6G is expected to support novel ap-

plications beyond the capabilities of 5G. This includes supporting the future’s vast information needs

and full sensory communication, where extreme throughput is coupled with ultra-low latencies, ex-

tended range, and reduced power consumption. Novel use cases encompass extended reality appli-

cations, automated and remote control, distributed cognition, and their application in entertainment,

e-health, industry, agriculture, transportation, governance, and law enforcement. Among the most chal-

lenging applications are fully immersive human-centric experiences, featuring perceived zero latency

and non-limiting rates and mobility for enhanced interaction and natural meetings [1], [2].

Simultaneously, capacity needs are anticipated to increase, requiring more bandwidth, denser de-

ployments, and increased spectral efficiency for 6G to accommodate higher traffic and bit rates, akin to

the evolutionary trends seen in 5G and previous generations.
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Connected Intelligent Systems

As machine learning (ML) tools and AI evolve, they are poised to become integral components of

connected intelligent systems. Initially replacing heuristic, algorithmic, or brute force solutions to op-

timize specific localized tasks, these technologies are expected to mature and expand in their applica-

tions within integrated systems [1], [2]. Advancements in cognizant systems pave the way for real-time

analysis and automated zero-touch operation and control. The 6G network is poised to serve as a fun-

damental cornerstone of such systems, relying on data streamed from wireless devices, particularly

in applications that demand extreme bandwidth, such as real-time video monitoring, and low-latency

requirements.

To fully harness these capabilities, the wireless network should also accommodate native AI agents,

both centralized and distributed. These agents should be strategically placed and movable within the

network based on specific requirements and needs. The wireless network must ensure the availability

of timely data and analysis results where needed. Furthermore, mobile devices can play a role in

performing additional ML and AI-related actions or predictions. The outcomes can be reported to assist

network decisions, particularly in resource management aspects like mobility and multi-connectivity

setup, making mobile devices an integral part of the infrastructure resource. 6G will be critical in

addressing the evolving communication needs of distributed AI systems or agents operating in society,

especially in applications like smart cities and intelligent traffic systems.

Network Fabric

The diverse use cases and applications anticipated in 6G present widely varying requirements, rang-

ing from extreme throughput and imperceptible interruptions related to mobility handling to reliably

ultra-low latencies and extreme battery longevity with cost-effective deployments and operations. Con-

sequently, the network architecture must be flexible enough to support various deployments of network

components and processing instances, tailored to the specific needs of each use case and leveraging its

particular circumstances.
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As part of adapting to different use cases, deploying applications at the network edge and new

network-application interactions are expected to be crucial. This adaptation aims to enable optimized

performance concerning quality of experience (QoE), particularly regarding latency and bandwidth

requirements.

Technical Objectives of 6G Wireless Networks

To realize the potential frontiers of communications, 6G networks have to provide extended network

capabilities beyond 5G networks. The key performance indicators for evaluating 6G wireless networks

encompass spectrum and energy efficiencies, peak data rate, user-experienced data rate, area traffic ca-

pacity (or space traffic capacity), connectivity density, latency, and mobility [20]. The detailed technical

objectives are presented in Fig. 1.6 and include the following:

• A peak data rate of at least 1 Tb/s, which is 100 times that of 5G. For specific scenarios, such as

THz wireless backhaul and fronthaul (x-haul), the peak data rate is expected to reach up to 10

Tb/s [21].

• A user-experienced data rate of 1 Gb/s, which is 10 times that of 5G. It is also expected to provide

a user-experienced data rate of up to 10 Gb/s for some scenarios, such as indoor hotspots [21].

• An over-the-air latency of 10–100 µs and high mobility (≥ 1,000 km/h). This will ensure accept-

able QoE for scenarios like hyper-high-speed rail and airline systems [13].

• Ten times the connectivity density of 5G, reaching up to 107 devices/km2 and an area traffic

capacity of up to 1 Gb/s/m2 for scenarios like hotspots [13].

• An energy efficiency of 10–100 times and a spectrum efficiency of 5–10 times those of 5G [13].
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Figure 1.6: Technical objectives of 6G vs. 5G and 4G wireless networks [4].

1.3 Thesis Motivation

Two major challenges facing future wireless networks are spectrum allocation and security. Also, as

future networks are expected to be more sophisticated, energy consumption tends to increase, while

at the same time, they need to be environmentally friendly. Hence, energy optimization is a crucial

challenge. Also, future wireless networks are expected to be omnipresent. This thesis improves the

resource utilization efficiency and security of the first two tiers of 6G communications: underwater and

terrestrial communications. Underwater wireless communication is one of the least studied frontiers,

and with the vast oceans and water bodies and the number of operations underwater for civil and

military applications, including oil and gas, submarine communication, sea bed monitoring, and others,

underwater wireless communications is expected to be handling more data in 6G networks. Hence, it is

essential to ramp up research on this tier so it will not act as a bottleneck for the rest of the future of 6G

15



network. New technologies need to be explored for the challenging underwater environment, e.g., the

application of the intelligent, reflective surface technology is studied in [22]. In this thesis, two of the

major emerging technologies are applied, full-duplex (FD) and NOMA, to optimize spectral efficiency

with respect to power utilization and enhance system security. Specifically, this part of the thesis will

focus on:

• Developing and implementing advanced techniques, FD and NOMA, to improve underwater

communication systems’ spectral efficiency and power utilization.

• Improving spectral efficiency and security of two of the four tiers of future networks, namely

underwater and terrestrial, utilizing advanced wireless communications techniques.

The other frontier is the terrestrial tier. Terrestrial is the most utilized wireless communication

form, which is essential to attempt to improve its security and spectrum efficiency. As for terrestrial

communication, the primary scarcity lies in the spectrum domain. Spectrum allocation and manage-

ment constitute pivotal aspects of managing and securing terrestrial communication. Automatic signal

identification (ASI) is instrumental in spectrum allocation and management. ASI is also indispensable

for ensuring communication security. Consequently, the latter part of this research introduces innova-

tive approaches, leveraging feature-based likelihood and ML techniques to proficiently identify cellular

signals from power spectral density (PSD) readings. Specifically, this part of the thesis will focus on:

• Utilizing a feature-based approach to detect the noise floor of a PSD, the presence of signals, and

identify the types of the detected signals.

• Improving spectral efficiency and security of two of the four tiers of future networks, namely

underwater and terrestrial, utilizing advanced wireless communications techniques.

This multifaceted approach aims to address spectrum scarcity challenges while concurrently fortifying

communication systems’ security aspects.
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1.4 Thesis Organization

In this thesis, innovative methodologies are employed to enhance the efficiency of utilizing limited

resources and to fortify the security of future networks. Chapters 2 and 3 focus on UWC. Specifically,

in Chapter 2, a system that applies FD and NOMA is proposed to improve the system sum rate of UWA

communications. Chapter 3 evaluates the security robustness of the devised system, particularly in

safeguarding against potential eavesdropping threats. In terrestrial communications, new technologies

are employed to apply ASI to identify several cellular signals from PSD real measurements. Chapter

4 proposes a feature-based likelihood methodology to detect the noise floor of a PSD measurement

and identify the number and types of signals on the measurement. Chapter 5 proposes a ML algorithm

that uses a feedforward neural network to determine whether a signal belongs to a certain cellular

technology. Chapter 6 proposes a ML algorithm that uses a convolutional neural network to identify

a cellular signal type. Chapter 7 improves the identification accuracy of cellular signal types using an

extreme learning machine (ELM) model. Finally, Chapter 8 concludes this work and provides future

work directions.

1.5 Thesis Contribution

1. FD and NOMA are applied on UWA communications systems, and a convex optimization al-

gorithm that efficiently allocates power to maximize the sum rate of the network is proposed.

The outcomes of this investigation enhance both the spectral and power efficiency of the UWA

network [23].

2. The resilience of the aforementioned algorithm against potential eavesdropper attacks is studied,

considering scenarios with known and unknown eavesdropper locations. In this study, effective

power allocation strategies are used to maximize the secrecy sum rate, thereby bolstering the

security of the UWA communication network [24].
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3. Morphological techniques are used to detect and identify cellular signals, contributing to the

development of reliable and accurate identification methods in wireless communication networks

[25].

4. ML techniques are applied to identify whether the measured signal belongs to a specific cellular

technology, enhancing the precision and efficiency of identifying individual cellular signals [26].

5. ML techniques are utilized in cellular signal identification to identify the cellular technology

of signal measurement, enabling the simultaneous identification of multiple types of cellular

signals [27].

6. Innovative ML approaches are explored, ELM in particular, to classify cellular signals, simplify

the training process, and improve identification accuracy [28].
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Chapter 2

Hierarchical Full-Duplex Underwater

Acoustic Network: A NOMA Approach

2.1 Abstract

The prevalent technology in underwater wireless is underwater acoustic communications. The sum rate

in underwater acoustic channels is limited by the underwater environment properties. In this chapter, the

author attempts to increase the sum rate of underwater channels without utilizing additional resources

through adding a relay and employing full-duplex (FD) and non-orthogonal multiple access (NOMA)

technologies. The adopted system model has two sensors and two robotic arms communicating with a

buoy via a relay. Employing FD-NOMA allows multiple uplink and downlink transmissions to occur

simultaneously, using the same time and frequency resources. The main challenge for this deployment

is the interference between the transmissions. Interference cancellation techniques, successive inter-

ference cancellation, and self-interference cancellation are employed to mitigate the interference due

to NOMA and FD, respectively. In order to maximize the sum rate, an optimization problem over the

power is formulated and solved as a convex optimization problem. The performance of the system is

benchmarked against the performance of non-relay (NR) aided FD-NOMA and relay-aided (R) half-

duplex orthogonal multiple access (HD-NOMA). It is shown that R-FD-NOMA always has a higher
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sum rate than NR-FD-NOMA, irrespective of the efficiency of interference cancellation. In addition, it

is shown that at efficient interference cancellation, the sum rate of FD-NOMA is higher than HD-OMA.

2.2 Introduction

Oceanic applications, such as oil and gas exploration and pipeline monitoring, rely on underwater

wireless communications [1]–[3]. The most common examples of underwater wireless communication

technologies are acoustic, optical wireless and radio frequency communication. Long-range wireless

communications is dominated by underwater acoustic (UWA) transmission [2]. UWA communica-

tion is challenging due to the complex underwater environment, where signals suffer from multiple

reflections, severe dispersions and variations. Besides, the UWA channel is characterized by long prop-

agation delay due to the slow acoustic wave speed [1]. These characteristics limit the sum rate of UWA

channels.

In addition, underwater devices are power-limited. Hence, relays are used to increase power uti-

lization efficiency, channel reliability and transmission distance. Incorporating relays supports com-

munication systems by amplifying and forwarding, or decoding and forwarding the data, among other

strategies [4]–[6].

Furthermore, technologies such as full-duplex (FD) and non-orthogonal multiple access (NOMA)

are indispensable for enhancing the sum rate without additional radio resources. FD communications

enhance the channel rate by allowing for simultaneous transmission and reception of signals on the

same frequency. Owing to the self-interference (SI) caused by the FD operation, the rate enhancement

is possible only if the SI is cancelled up to the noise level. Theoretically, FD can double the throughput

of the system when compared to the conventional half-duplex [7]. On the other hand, NOMA allows the

multiplexing of multiple users at the same time and frequency resource, and hence, improves the rate

[8]. NOMA differentiates between users by assigning different power levels (power-domain NOMA)

or different codes (code-domain NOMA). The power level assignment depends on the channel strength.
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NOMA was shown to provide better spectral efficiency than orthogonal multiple access (OMA) systems

in wireless communications [8].

Previously, FD and NOMA have been investigated independently in UWA communications [9],

[10]. In this chapter, FD and NOMA are integrated with a relay-based UWA network with the goal

of improving the network sum rate and reliability. The integration of FD and NOMA is not straight-

forward, especially in underwater channels and with the additional interference in uplink (UL) and

downlink (DL) channels due to SI and interference from NOMA. A sum rate maximization problem is

formulated for UWA channels under interference and transmission power constraints. The problem is

solved by optimizing the transmission powers to provide the highest sum rate.

The rest of this chapter is organized as follows: Section 2.3 describes the system model, Section 2.4

formulates the sum rate maximization problem, and Section 2.5 presents the solution for the problem.

The results are shown in Section 2.6, and Section 2.7 concludes the chapter.

2.3 System Model

Consider a hierarchical UWA communication system consisting of an FD-buoy (B), an FD-relay (R),

two sensors (S1 and S2) and two robotic actuators (RA1 and RA2), as depicted in Fig. 2.1. The sensors

send data to the buoy on the UL channel, while the buoy sends data to the two RAs on the DL channels.

Both UL and DL channels use the relay node, which decodes-and-forwards the received data to the

buoy and RAs, respectively.

The channels B→R, S1→R and S2→R form the UL-NOMA group, whereas R→B, R→RA1 and

R→RA2 form the DL-NOMA group. In NOMA, the receiver performs successive interference cancel-

lation (SuIC) on strong interfering signals in order to guarantee accurate signal detection. The SuIC

efficiency is represented by θ ∈ [0, 1], where θ = 0 denotes perfect SuIC.

The relay and buoy employ SI cancellation (SIC) techniques and are left with residual SI (RSI),

25



Figure 2.1: System model.

which is represented by IA as:

IA =
p(1-λ)
A

βµλ
, (2.1)

where A ∈ {R,B}, pA denotes the transmission power of the relay or buoy, β is the interference

suppression factor due to passive cancellation technique, and µ and λ are SIC cancellation factors [7],

[11]. In order to study the impact of imperfect SIC on the system performance, λ is varied between 0

and 1 as per [11], where λ = 0 and 1 correspond to no and perfect SIC, respectively.

The UWA channel is usually characterized by slow propagation and the distinct reflections of the

signal from the sea bottom and surface. Consequently, signals have different delays at the receiver. For

the UWA channel gain, G, there is no standard statistical channel model available. The chosen model

for this chapter includes large- and small-scale fading in [12], as

G = E
{

1

W

f0+W∫
f0

|H̄0 (f )
∑
ℓ

hℓγ̃ℓ(f, t)e
−2πfℓτℓ |2df

}
, (2.2)

where H̄0 represents the channel filtering effect, and hℓ and τℓ are large-scale parameters on the ℓth

path. The small-scale fading effect on the channel is represented by γℓ(f, t)e2πaℓft. γℓ is the small-scale

fading coefficient, while aℓ is the Doppler scaling factor on the ℓth path. W is the bandwidth and f0 is
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the minimum frequency of the channel.

Next, for each channel, the signal-to-interference-plus-noise ratios (SINRs) for the channels S1→R,

S2→R, B→R, R→RA1, R→RA2 and R→B, are respectively defined as:

γ1(p) =
pS1GS1,R

pS2GS2,R + θpBGB,R + IR + σ2
N

(2.3)

γ2(p) =
pS2GS2,R

θpS1GS1,R+θpBGB,R + IR + σ2
N

, (2.4)

γ3(p) =
pBGB,R

pS1GS1,R+pS2GS2,R + IR + σ2
N

, (2.5)

γ4(p) =
pR1GR,RA1

GR,RA1

∑
j=2,3

pRjωj+
∑

k=1,2,B

pSk
GSk ,RA1 + σ2

N

, (2.6)

γ5(p) =
pR2GR,RA2

GR,RA2

∑
j=1,3

pRj +
∑

k=1,2,B

pSk
GSk,RA2

+ σ2
N

, (2.7)

γ6(p) =
pR3GR,B

θGR,B

∑
j=1,2

pRj +pS2GS2,B+ pS1GS1,B+IB + σ2
N

, (2.8)

where Gx,y is the average channel gain on x→y. pS1 , pS2 and pB are the transmission powers of S1,

S2, and B, respectively. pR1 , pR2 , and pR3 are the transmission powers from R to RA1, RA2, and B,

respectively. The vector p collects pS1 , pS2 , pB, pR1 , pR2 and pR3 . IB and IR are the RSIs at B and R,

respectively. Distances are chosen so that UL channel gains are sorted as GB,R > GS1,R > GS2,R, and

the DL channel gains are sorted as GR,B > GR,RA1 > GR,RA2 . ω2 is equal to θ, while ω3 is equal to 1.

The ambient noise power, σ2
N , has four components: turbulence noise, shipping noise, wave noise,

and thermal noise. The following empirical formulas give the individual power spectral densities

(PSDs) of these noise components in dB re μ Pa per Hz as a function of frequency f in kHz [13]:
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Nt(f) = 17− 30 log f,

Ns(f) = 40 + 20 (s− 0.5) + 26 log f − 60 log(f + 0.03),

Nw(f) = 50 + 7.5w1/2 + 20 log f − 40 log(f + 0.4),

Nth(f) = −15 + 20 log f. (2.9)

The level of shipping activity is represented by s ∈ [0,1]. w denotes the wind speed in m/s. The

overall acoustic PSD is calculated as [13]:

Na(f) = 10Nt(f)/10 + 10Ns(f)/10 + 10Nw(f)/10 + 10Nth((f)/10. (2.10)

In order to convert the PSD from the acoustic to the electrical domain (W/Hz), the following formula

is used [4]:

N(f) =
10−17.2Na(f)

ϕ
, (2.11)

where N(f) is the equivalent electrical noise PSD and ϕ denotes the efficiency of the electric circuit in

converting the acoustic power to electrical power.

2.4 Sum Rate Optimization

In this section, the sum rate maximization problem is formulated using equations (2.3)-(2.8), where

the relationship between the rate (C) and the SINR (γ) of a channel is expressed as C = log2(1+γ) in

bps/Hz. The goal is to obtain the optimal transmit powers of the sensors, buoy, and relay nodes. The

optimization problem is thus expressed as:
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max
p

6∑
i=1

log2(1 + γi(p)) (2.12a)

s.t. Cmin ≤ CS1,R, Cmin ≤ CS2,R,

Cmin ≤ CRA1,R, Cmin ≤ CRA2,R, (2.12b)

CRA1,R + CRA2,R ≤ CB,R, (2.12c)

CS1,R + CS2,R ≤ CR,B, (2.12d)

pR1 + pR2 + pR3 ≤ p̄R, (2.12e)

0 ≤ pS1 ≤ p̄S1 , 0 ≤ pS2 ≤ p̄S2 , 0 ≤ pB ≤ p̄B, 0 ≤ pR1 , 0 ≤ pR2 , 0 ≤ pR3 , (2.12f)

where p̄S1 , p̄S2 , p̄B, and p̄R denote the maximum transmit powers of S1, S2, B, and R, respectively.

Cx,y represents the rate of channel x→y. The constraints in (2.12b) guarantee that every channel gets

a minimum rate of Cmin. Constraints (2.12c) and (2.12d) limit the sum rates of DL channels, CR,RA1

and CR,RA2
, and the sum rates of UL channels CS1,R and CS2,R to the achievable capacities of channels,

CR,B and CB,R, respectively. Furthermore, constraints (2.12e) and (2.12f) limit the transmission power

of the nodes.

2.5 Proposed Solution

It can be observed that (2.12) is non-convex in nature due to the non-convexity involved in the objective

function (2.12a) and the constraints (2.12c) and (2.12d).

Equations (2.12a), (2.12c), and (2.12d) are non-convex because γi(p) is a quotient of two functions

in p. Since the division does not conserve linearity, γi(p) is not linear. As a result, log2 (1+γi(p)) is nei-

ther concave nor convex and solving this problem optimally is computationally challenging especially

for UWA devices. To solve (2.12) more efficiently, (2.12) is transformed for tractability, approximates

the resulting problem by a convex problem, and then proposes a rapidly converging iterative algorithm.
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To transform the problem into an equivalent problem, two new slack variables are introduced xi and

zi such that:

γi(p)
∆
=
gi(p)

hi(p)
≥ xi ∀i, (2.13)

xizi ≤ gi(p) ∀i. (2.14)

hi(p) ≤ zi ∀i, (2.15)

After applying the transformation, (2.12) can be equivalently rewritten as:

max
p,zi,xi

6∑
i=1

log2(1 + xi) (2.16a)

s.t. xizi ≤ gi(p) ∀i, (2.16b)

hi(p) ≤ zi ∀i, (2.16c)

(2.12b)− (2.12f). (2.16d)

The equivalence between (2.12) and (2.16) can be verified by the fact that the newly introduced con-

straints are active at optimality. It can be observed that (2.16) is still not convex because of constraints,

(2.16b) and (2.16c), which are non-convex.

The constraint in equation (2.16b) is neither convex nor concave because it involves the multipli-

cation of two variables, xizi. The inequality in (2.16c) is not convex for all i. As observed, hi(p) in

(2.3)-(2.5) and (2.8), have concave interference terms. Given that hi(p) is on the left hand side (lesser

side) of the inequality, whenever hi(p) has interference terms, the constraint in (2.16c) is not convex.

In the following, these constraints are approximated to become convex.

For constraint (2.16b), the upper bound approximation is used as in [14] as follows:

f(xi, zi) = xizi ≤ F (xi, zi, ξi)
△
=

1

2ξi
x2i +

ξi
2
z2i ∀ξi > 0. (2.17)
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For ξ̂i = xi/zi, it can be easily observed that, f(xi, zi) = F(xi, zi,ξ̂i) and ∇f(xi, zi) = ∇F(xi, zi,ξ̂i),

where ∇f denotes the gradient operator.

While, for constraint (2.16c) p(1−λ) is approximated, for 0 ≤ λ ≤ 1, with a first-order Taylor series

at p(n) as follows [15]:

IRL(n + 1) =
(pR(n))

(1−λ)

βµλ
+ (1− λ)

(pR(n))
(−λ)

βµλ
× (pR − pR(n)),

IBL(n + 1) =
(pB(n))

(1−λ)

βµλ
+ (1− λ)

(pB(n))
(−λ)

βµλ
× (pB − pB(n)), (2.18)

where n is the iteration index for Algorithm 1 and pR(n) =
∑3

j=1 pRj
(n).

Applying the above approximations, problem (2.12) can be solved by iteratively solving the convex

problem (2.19), which is formulated for the nth iteration index as:

max
p,zi,xi

6∑
i=1

log2(1 + xi) (2.19a)

s.t. pS2GS2,R + θpBGB,R + IRL(n) + σ2
N − z1 ≤ 0, (2.19b)

θpS1GS1,R+θpB GB,R + IRL(n) + σ2
N − z2 ≤ 0, (2.19c)

pS1GS1,R+pS2GS2,R + IRL(n) + σ2
N − z3 ≤ 0, (2.19d)

θGR,B

∑
j=1,2

pRj
+

∑
k=1,2

pSk
GSk ,B+IBL

(n) + σ2
N − z6 ≤ 0, (2.19e)

hq(p)− zq ≤ 0 ∀q = [4, 5], (2.19f)

1

2ξ̂i(n)
x2i +

ξ̂i(n)

2
z2i − gi(p) ≤ 0 ∀i, (2.19g)

(2.12b)− (2.12f). (2.19h)

Problem (2.19) needs to be solved iteratively and the pseudocode for the proposed sum rate opti-

mization algorithm is summarized in Algorithm 1. Ctot is the total sum rate on all channels. G is a

set that consists of all the channel gains, GB,R, GS1,R, GS2,R, GR,B, GR,RA1 , GR,RA2 . The problem at the
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Algorithm 1 Iterative Sum Rate Maximization Algorithm
Input p̄S1 , p̄S2 , p̄B, p̄R, G, λ, θ, σ2, Cmin, and tolerance (ϵ),

Output p and Ctot,

Set n := 0 and initialize p(n), zi(n), xi(n), and ξ̂i (n) by xi(n)
zi(n)

,

1: Repeat:

2: Solve (19) for p∗, z∗i , x
∗
i ∀i;

3: Set n := n+ 1;

4: Update xi (n) by x∗i , zi (n) by z∗i and ξ̂i (n) by x∗
i

z∗i
∀i;

5: Until convergence of sum rate with tolerance ϵ.

nth iteration is convex and the optimal solution of this iteration is a feasible input point to the problem

at the (n + 1)th iteration. It can be shown that the algorithm generates non-decreasing objective func-

tion values at each iteration. Since the problem is bounded from above by the power constraints, the

algorithm converges to some local optimal solution.

2.6 Results and Discussion

In this section, the performance of the system is studied as obtained by using Algorithm 1. The opti-

mization problem is solved centrally at the buoy, which is assumed to have perfect knowledge of the

channel gains. p̄S1 and p̄S2 are set to 0 dBW, while p̄B and p̄R are set to 4.8 dBW [16], [17]. f0 is 10 kHz

and W is 5.5 kHz [12]. β and µ are 38 dB and 18 dB, respectively [7], [11]. The noise is calculated

based on moderate wind speed of 10 m/s, a maximum shipping activity factor of 1 and perfect circuit

efficiency of 1 [13], [18]. The minimum sum rate for each channel (Cmin) is 2 kbps. The tolerance, ϵ, is

set to 10−4. The algorithm is implemented using CVX with SDPT3 as the internal solver [19], [20].

Fig. 2.2 colour blueshows the convergence behaviour of Algorithm 1. For λ = 0.8 and θ = 0.1,
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Figure 2.2: The number of iterations to converge for SIC efficiency (λ) = 0.8 at SuIC efficiency (θ) = 0.1.
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the algorithm was run for four different initial values. It can be observed that for all four initial values

the algorithm converges within two iterations.

In order to benchmark the effect of adding the relay and employing FD and NOMA, the perfor-

mance of relay-aided (R) FD-NOMA, non-relay (NR) aided FD-NOMA and relay-aided half-duplex

orthogonal multiple access (R-HD-OMA) are compared. In NR-FD-NOMA, it is assumed that there is

no relay and hence, the communication is direct between the buoy and the robotic arms or the sensors.

The minimum guaranteed sum rate per channel is reduced to 0.8 kbps, due to the weak channels be-

tween the buoy and the seabed. The maximum power levels are kept the same. The other benchmark

model is R-HD-OMA. In R-HD-OMA, it is assumed that each communication channel has a dedicated

bandwidth. In addition, the bandwidth is divided equally among all concurrent transmissions. Only

UL or DL communications can take place during one time slot. Consequently, for the UL and DL

communications to take place, two time slots are needed. Each transmission utilizes different time or

frequency resources and hence, there is no interference. The absence of interference between different

transmissions means that the SIC and SuIC efficiencies will have no effect on the power or the sum rate

of the system. The same constraints from (2.12) are applied to the transmission. For a fair comparison,

the sum rate of two time slots will be considered. The channel conditions are assumed to be the same

in both time slots. The results are depicted in Figs. 2.3-2.7.

Fig. 2.3 shows that as the efficiency of SuIC increases, represented as a decrease in θ, the sum rate

increases. As the SuIC efficiency increases, the interference from other transmissions due to NOMA

decreases, and consequently, the sum rate increases. It is assumed that if θ > 0.3, the SuIC efficiency

is not acceptable. Similarly, Fig. 2.3 shows that as the efficiency of SIC increases, represented as an

increase in λ, the sum rate increases. This shows that as the isolation between the DL and UL signals

increases, interference decreases, and hence, the sum rate increases. The maximum sum rate is achieved

at λ = 1 and θ = 0, where the minimal interference occurs.

Fig. 2.3 also compares R-FD-NOMA and the NR-FD-NOMA. R-FD-NOMA always supports a

higher sum rate when compared to NR-FD-NOMA, irrespective of the SuIC and SIC efficiencies. It is
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shown that R-FD-NOMA can (at θ = 0 and λ = 0.2) octuple the sum rate of the system when compared

to the NR-FD-NOMA.

Figs. 2.4-2.7 compare R-FD-NOMA with R-HD-OMA as per the total power consumed (shown on

the right-hand side y-axis) and the sum rate (shown on the left hand side y-axis). Total power refers

to the sum of the power required by all devices. Note that the letter “R” is omitted in the figures for

simplicity.

In R-HD-OMA, the absence of interference between different transmissions means that the SIC and

SuIC efficiencies will have no effect on the power or the sum rate of the system. This is shown in Figs.

2.4 and 2.5, where the sum rate for R-HD-OMA system is constant at 190 kbps and the total power

consumed by all nodes is constant at 6 W for all θ and λ. For a single time slot in R-FD-NOMA, all

UL and DL transmissions are performed consuming the full bandwidth.

As seen from Fig. 2.4, the SuIC has to be efficient for R-FD-NOMA to provide a higher sum rate

than R-HD-OMA. The sum rate at a good SuIC can provide up to 30% increase in rate of R-FD-NOMA

when compared to sum rate of R-HD-OMA. Also, the figure shows that as the efficiency increases (θ

decreases) more capacity could be achieved and hence more power is needed. Fig. 2.5 shows that at θ

=0, if the SIC efficiency (λ) is greater than 0.4, the sum rate of R-FD-NOMA is greater than can the

sum rate of R-HD-OMA.

In order to further understand the behavior of the total power in Figs. 2.4 and 2.5, individual node

powers are studied in Fig. 2.6. Given that the effect of the interference on each transmission is different,

the transmission power on each channel is altered individually to cater for the highest possible total sum

rate. In addition, the buoy has the highest possible power of all nodes. Thus, a sharp increase in pB leads

to an overall increase in the total power. In Fig. 2.5a, it is shown that the power increases once λ takes

a non-zero value. Then, the power decreases slowly afterwards. From Fig. 2.6a, it can be seen that the

main reason for the spike was an increase in the pB. This increase is based on the nature of the RSI

model in (3.1). At λ = 0, the SI is at its maximum as nearly no SIC mechanism is applied, and the term

for RSI in (3.1) is reduced to pβ . Hence, the effect of the power on the RSI increased. Once λ takes
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Figure 2.4: Sum rate and total power vs. SuIC efficiency (θ) at different SIC efficiencies(λ).
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a non-zero value, the original term for the RSI is operational. Given that θ = 0, the power increase

at the bouy does not cause interference due to NOMA. Consequently, pB goes to its maximum level;

hence, the total power of the system increases. At the same time, as λ increases, the power needed by

S1 and S2 to combat the interference decreases. This is not reflected in Fig. 2.5a for 0 ≤ λ ≤ 0.1 due

to the increase in pB, but as pB reaches its maximum, the effect of the decrease in ps1 and ps2 shows

a slight decrease in the total power. The power at the relay exhibits similar performance as the buoy.

Similarly, from Figs. 2.6b and 2.4b, when λ = 1, at θ = 0, the buoy transmits at its maximum power. As

θ increases, pB decreases to avoid causing interference on other NOMA links. While, for the sensors,

as the efficiency decreases, the power increases in an attempt to combat the effect of the interference.

However, the effect from that slight increase is not reflected in Fig. 2.4b, because pB continued to

decrease at a higher rate than the increase in pS1 and pS2 .
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Figure 2.7: Energy efficiency vs. SIC efficiency (λ) at SuIC efficiency (θ) = 0.

In terms of power deficiency, at perfect SuIC with λ = 0, although the sum rate of R-FD-NOMA is

lower than that of R-HD-OMA, R-FD-NOMA could be preferred because of higher energy efficiency

as shown in Fig. 2.7.
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2.7 Conclusion

In this chapter, R-FD-NOMA UWA was investigated in order to increase the sum rate of the UWA

channel without utilizing additional radio resources. The proposed optimization problem varies the

power level at the network devices to provide the highest possible sum rate. Expressions for the sum

rate of the R-FD-NOMA UWA system were derived and the sum rate maximization problem was

formulated. As the problem is non-convex, a low-complexity iterative algorithm was proposed to obtain

a sub-optimal-solution. The problem was solved centrally at buoy. Numerical simulations showed a

direct relation between the sum rate and the interference cancellation efficiency and advocates for

relay- aided communications. The results showed that R-FD-NOMA performs better than R-HD-OMA

at high SuIC efficiency. Given a perfect SuIC, an increase in the efficiency of the SIC provides a higher

sum rate at a better energy efficiency when compared to R-HD-OMA as long as λ is greater than or

equal to 0.4. For lower values of λ, R-HD-OMA provides better sum rate than R-FD-NOMA. However,

R-FD-NOMA could be preferred at low SIC efficiency, where it may provide higher energy efficiency.
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Chapter 3

On the Security of Full-Duplex Relay-Assisted

Underwater Acoustic Network with NOMA

3.1 Abstract

Wireless underwater acoustic (UWA) networks serve several civilian and military applications. The

multiple reflections and dispersion, along with the long propagation delay limit the sum rate of UWA

networks. Earlier works discussed adding full-duplex (FD), relay assistance, and non-orthogonal multi-

ple access (NOMA) to enhance the system sum rate. Another challenge in UWA networks is the power

limitation of devices. Hence, power optimization is crucial to maximize the energy efficiency. Further-

more, securing the UWA network against eavesdropping is essential to guaranteeing the confidentiality

of communication. This work optimizes the power to maximize the secrecy sum rate (SSR) of a FD

relay-assisted NOMA (FD-R-NOMA) underwater acoustic network subject to an eavesdropper (Eve)

attack. The network is studied in two states: when the network has or has not the channel informa-

tion (CI) of the threat. FD-R-NOMA UWA network shows to be more resilient to eavesdropping with

higher secrecy energy efficiency when compared to the conventional half-duplex orthogonal multiple

access network. Also, the results reveal that knowing the CI of Eve improves the SSR of the network.
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Additionally, the results show the effect of factors like the location of Eve, interference cancellation

efficiency, noise in the environment, and sensor distributions in the system.

3.2 Introduction

Reliable and secure underwater wireless communications are crucial for civilian applications, such

as oil and gas exploration, pipeline monitoring, and environment monitoring, as well as for military

applications [1]–[4]. Furthermore, underwater communication is essential to achieve the ubiquitous

coverage targeted by 6G wireless [5]–[7]. Hence, there is an increased research interest to exploit its

capabilities. Underwater communications have depended mostly on wired transmissions to maintain re-

liability and security [8]. However, the use of cables entails costly network deployment and difficulties

in maintaining and repairing physical and chemical damages [8]. In recent years, there has been a shift

towards wireless communications due to the ease of maintenance, flexibility and lower cost [8]. There

are three wireless communications technologies used for underwater communications: radio frequency

(RF), optical, and acoustic (UWA). While RF is the prevalent technology for terrestrial communica-

tions, it is not reliable for underwater communications due to the high absorption losses occurring in

the underwater medium [2]. Optical communications requires line-of-sight, which is hard to guarantee

in the underwater medium due to the presence of aquatic life, except for very short distances [2]. Acous-

tic communications is the most commonly used technology due to the long propagation range [2]. Still,

there are several challenges in UWA communications, including multiple reflections, dispersion, and

time-variations [1]. Besides, the UWA channel is characterized by long propagation delay due to the

slow acoustic wave speed [1]. These characteristics limit the sum rate of UWA channels. Furthermore,

underwater devices are power-limited, which deems energy efficiency as crucial [9], [10]. To increase

the power utilization efficiency, channel reliability, and transmission distance, relay-assistance is used

in UWA communications. Incorporating relays supports the communication systems by amplifying and

forwarding or decoding and forwarding the data, among other strategies [9]–[12].
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In terrestrial communications, full-duplex (FD) and non-orthogonal division multiple access (NOMA)

have been proven to enhance the sum rate of the network without additional resources [13]–[15]. FD

allows for simultaneous transmission and reception of signals on the same frequency. Theoretically,

FD can double the sum rate of the channel compared to the conventional half duplex transmission

mode. The self-interference (SI), caused by the FD operation, limits the rate enhancement [16], [17].

NOMA improves the sum rate by allowing the multiplexing of several users at the same time while

using the same frequency resource [18], [19]. NOMA has shown the potential to augment spectral

efficiency, balance user fairness, and increase the number of connections [11], [20]. There are two

types of NOMA schemes, namely power domain and code domain [11], [20]. In the former, NOMA

differentiates between users by assigning different power levels depending on the channel strength. In

the latter, different codes are assigned to different users [11]. The network investigated in this chapter

is power-domain NOMA. While NOMA enables multiple users to communicate using the same re-

source block, the interference from the other users needs to be canceled efficiently through successive

interference cancellation (SuIC). The use of FD, NOMA, and relay-assisted communications in UWA

has been investigated independently in [10], [20], [21]. For the first time in the literature, chapter 2

introduced an UWA network in which the FD relay-assisted NOMA (FD-R-NOMA) was applied to

enhance the sum rate [22]. Given the confidentiality of most underwater communication applications,

it is compelling to assess and enhance the security of a UWA system. There are two approaches to

secure a system, namely computational security and information-theoretic security [23]. Computa-

tional security depends on ciphering the data in order to conceal it from attackers. All cryptography

measures are based on the premise that it is computationally infeasible for the attackers to decipher

the communication without knowledge of the secret key. However, with the relentless enhancements

in computational abilities, there have been numerous cases where cryptography failed to secure the

system [23]. Recently, the information-theoretic approach has been investigated both as an alternative

and a complementary approach to conventional cryptography methods [24]. The information-theoretic

methods depend on the physical layer characteristics to secure the data. Information-theoretic security
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provides guarantees by requiring security to be a design constraint just like reliability. As a result, the

design possibilities offered by an information-theoretic approach are invariant to the increase in the

computational power of an adversary [23], [24]. Another disadvantage of the cryptographic schemes

is the need to exchange the secret key between legitimate parties. Key sharing requires a trusted en-

tity, which cannot always be ensured in distributed wireless networks, like wireless sensor networks

and wireless ad-hoc networks [24]. On the other hand, the lower layers (physical and data link layers)

are oblivious to any security considerations. Considering the recent challenges, physical layer security

needs to be implemented to increase the robustness of existing schemes [24]. The fundamental prin-

ciple behind physical layer security is to exploit the inherent randomness of noise and communication

channels, as well as the capabilities of the information sources, to limit the amount of information that

can be extracted at the bit level by an unauthorized receiver [25]. The attack might be by a jammer

acting as a fake server, a fake device sending a large amount of information to cripple the network, or

an eavesdropper (Eve) that listens to the communication. Physical security of the FD-R-NOMA UWA

network has not been investigated in the literature. This chapter analyzes the physical security of an

FD-R-NOMA UWA network against an Eve attack. The contributions of this chapter are as follows:

1. Assess the inherent security of a FD-R-NOMA network in an UWA environment against an Eve

attack.

2. Formulate and solve an optimization problem to calculate the secrecy sum rate (SSR) in two

cases:

(a) If the system is oblivious to the presence of an Eve, and hence allocates the power to maxi-

mize the sum rate.

(b) If the system adjusts the power based on the presence of an Eve and allocates the power to

maximize the SSR.

3. Compare the performance of the system in the two aforementioned cases.
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4. Compare the performance of the half-duplex orthogonal multiple access (HD-OMA) and FD-R-

NOMA from the physical security perspective.

The remainder of this chapter is organized as follows: the system model is presented in Section 3.3.

The optimization problems are formulated and solved in Section 3.4, and the results are discussed in

Section 3.5. Finally, conclusions are drawn in Section 3.6.

3.3 System Model

In this chapter, a hierarchical UWA communication network consisting of a buoy (B), a FD-R, and two

sensors S1, S2 is considered, as depicted in Fig. 3.1. An Eve is attempting to intercept the communi-

cation of the network. The network nodes, B, R, S1, and S2 are located at two dimensional coordinates

of [xB, yB], [xR, yR], [xS1 , yS1] and [xS2 , yS2] respectively. The x co-ordinate represents the horizontal

location of the node with respect to R, and the y co-ordinate represents the height of the node from

the seabed. The sensors send data to R on the uplink (UL) channel, and R forwards the data to B.

The UL-NOMA group is formed as S1−→R, S2−→R. R performs SuIC on the strong interfering signal

in order to guarantee accurate signal detection. The SuIC efficiency is represented by θ ∈ [0,1], where

θ=0 denotes perfect SuIC. R decodes-and-forwards the received data to B.

The FD-R uses FD to receive data from the sensors and send data to B simultaneously. The FD

transmission causes SI. The FD-R is equipped with a SI cancellation (SIC) unit. Residual SI (RSI) is

calculated as [16]:

I =
p(1-λ)

R

βµλ
, (3.1)

where pR denotes the transmit power of the FD-R, β and µ are the interference suppression factors due

to the passive cancellation technique, and λ is the SIC factor. In this chapter, λ=1 represents the perfect

SIC.
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Figure 3.1: System model.

Underwater Channel Model: There is no standardized UWA channel model [26]. In this chapter,

the large-scale fading is represented by the path loss model from [27], while the small-scale fading is

modeled by Rayleigh fading [28]. In UWA communications, the path loss (A) is governed by the trans-

mission frequency (f in kHz) and the transmission distance (l in km) [27] according to the expression

10 log(A(l, f)) = 10k log(1000l) + 10 log(a(f)), (3.2)

where k ∈[0,2] denotes the spreading factor that describes the geometry of propagation, e.g., k = 2

corresponds to spherical spreading, k = 1 to cylindrical spreading, and k = 1.5 to typical, practical

spreading. a(f) denotes the absorption coefficient given by the Thorp’s formula in (dB/km) as [27],

10 log(a(f)) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
+ 2.75(10−4)f 2 + 0.003. (3.3)

Ambient Noise Model: The ambient noise has four components, namely: turbulence noise, shipping

noise, wave noise, and thermal noise, represented by the power spectral densities (PSDs)Nt(f), Ns(f),

Nw(f), and Nth(f), respectively. The empirical formulas in (3.4) give the individual PSDs of these

noise components in dB re μ Pa per Hz as a function of frequency (f in kHz) [29]:
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Nt(f) = 17− 30 log f,

Ns(f) = 40 + 20 (s− 0.5) + 26log f − 60 log(f + 0.03),

Nw(f) = 50 + 7.5w1/2 + 20log f − 40 log(f + 0.4),

Nth(f) = −15 + 20 log f, (3.4)

where s ∈ [0,1] depends on the level of ship activity and w denotes the wind speed in m/s. The

four components added together represent the PSD of the ambient noise, Na(f), in the underwater

environment. In order to convert the PSD from acoustic to electrical domain (W/Hz), the following

formula is used [10]:

N(f) =
10−17.2Na(f)

ϕ
, (3.5)

where N(f) is the equivalent electrical noise PSD and ϕ denotes the efficiency of the electric circuit in

converting the acoustic power to electrical power. The noise power σ2
N can be easily calculated over a

frequency band. The maximum link sum rate (C in bps/Hz) is calculated as:

C = log2(1 + γ), (3.6)

where γ is the signal-to-interference-plus-noise ratio (SINR) of the link. The SINR for the channels

S1→R, S2→R, and R→B, are respectively defined as:

γ1(p) =
pS1GS1,R

pS2GS2,R + I + σ2
N

, (3.7)

γ2(p) =
pS2GS2,R

θpS1GS1,R + I + σ2
N

, (3.8)

γ3(p) =
pRGR,B

pS1GS1,B+pS2GS2,B + σ2
N

, (3.9)

where pSa is the transmit power of sensor a = 1, 2, pR is the transmit power of R, and I denotes the RSI

at R. The channel gains between S1−→R, S2−→R, and R−→B are symbolized by GS1,R, GS2,R, and GR,B,
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respectively.

In this chapter, it is assumed that Eve listens to the communication, as shown in Fig. 3.1. The channel

gains at Eve with respect to the sender nodes S1, S2, and R are denoted by GS1,E, GS2,E, and GR,E, re-

spectively. The location of Eve in the two-dimensional plane is [xE, yE]. Although all communications

happen at the same time, I assume that each signal reaches Eve on its own time, due to propagation

delays; hence, Eve could differentiate the signals. This represents a worst case scenario; in general,

Eve would not be able to differentiate the communication from one source or the other. This chapter

assumes that Eve is moving around in the water at different locations and the centralized optimiza-

tion decision-maker (B) may or may not know the channel information (CI) of Eve; accordingly, both

situations are investigated.

3.4 SSR Optimization

The legitimate sum rate (CL) is the sum rate between the two communicating nodes. SSR is the amount

of information that can be sent, not only reliably, but also confidentially in the presence of an Eve.

Eve sum rate (CE) is the sum rate Eve can achieve using the channel between Eve and the sender. The

system SSR (CS) is calculated as:

CS = CL − CE = log2(1 + γi)− log2(1 + γiE). (3.10)

CL and CE are calculated based on Shannon’s formula, where γi is the SINR on link i and γiE is the

SINR on the channel between Eve and the sender on that link. For each link, γiE is calculated as follows:

γ1E
(p) =

pS1GS1,E

pS2GS2,E + pRGR,E + σ2
N

, (3.11)

γ2E(p) =
pS2GS2,E

pS1GS1,E + pRGR,E + σ2
N

, (3.12)

γ3E
(p) =

pRGR,E

pS1GS1,E + pS2GS2,E + σ2
N

. (3.13)
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This chapter considers two possible scenarios: the system has knowledge of the CI of Eve, and it

has no knowledge.

3.4.1 Unknown CI of Eve

If the CI of Eve is unknown to B, the power is optimized in order to increase the system’s legitimate sum

rate irrespective of the SSR. Based on that the objective of the optimization function is the maximization

of the legitimate sum rate of the system. The CL maximization problem is formulated using equations

(3.7)-(3.9), where the relationship between the rate and the SINR (γ) of a channel is expressed as

per (3.6) in bps/Hz. The goal is to obtain the optimal transmit powers of the sensors, B, and R. The

optimization problem is thus expressed as:

max
p

3∑
i=1

log2(1 + γi(p)) (3.14)

s.t. Cmin ≤ CS1,R, Cmin ≤ CS2,R, (3.14a)

CS1,R + CS2,R ≤ CR,B, (3.14b)

0 ≤ pS1 ≤ p̄S1 , 0 ≤ pS2 ≤ p̄S2 ,

0 ≤ pR ≤ p̄R, (3.14c)

where p̄S1 , p̄S2 , p̄B, and p̄R denote the maximum transmit powers of S1, S2, B, and R, respectively, and

Cx,y represents the rate of channel x→y. The constraints in (3.14a) guarantee that a minimum sum rate

of Cmin is achieved on each channel. Constraint (3.14b) limits the sum rates of UL channels CS,R1
and

CS,R2
to their achievable capacities, CR,B and CB,R, respectively. Furthermore, constraint (3.14c) limits

the transmission power of the nodes.

Problem (3.14) is non-convex because of the non-convexity in the objective function (3.14) and the

constraint (3.14b). γi(p) is a fraction of two functions in p. The linearity of γi(p) is not conserved due
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to the division of these functions. Therefore, (3.14) and (3.14b) are non-convex. Consequently, opti-

mally solving this problem is computationally exigent. To solve (3.14) more efficiently, the resulting

problem will be transformed and approximated by a convex problem, and then a convergent iterative

algorithm will be proposed as a solution.

First, two new slack xi and yi are introduced such that:

γi(p)
∆
=
ζi(p)

ωi(p)
≥ xi ∀i, (3.15)

xiyi ≤ ζi(p) ∀i, (3.16)

ωi(p) ≤ yi ∀i. (3.17)

After applying the transformation, (3.14) can be equivalently rewritten as:

max
p,yi,xi

3∑
i=1

log2(1 + xi) (3.18)

s.t. xiyi ≤ ζi(p) ∀i, (3.18a)

ωi(p) ≤ yi ∀i, (3.18b)

(3.14a)− (3.14c). (3.18c)

The constraint (3.18a) incorporates the product of two variables xi and yi; therefore, it is neither

concave nor convex. Besides, ωi(p) has concave interference terms according to (3.7) and (3.8), and

hence, the inequality in (3.18b) is not convex for all i. Whenever ωi(p) has interference terms, the

constraint in (3.18b) is not convex, as ωi(p) is on the left-hand side of the inequality. The non-convex

constraints are approximated by convex functions using (3.19) and (3.20), as follows:

For constraint (3.18a), the upper bound approximation is used as [30]:

f(xi, yi) = xiyi ≤ F (xi, yi,Λi)
△
=

1

2Λi

x2i +
Λi

2
y2i ∀Λi > 0. (3.19)

For Λ̂i = xi/yi, it can be easily observed that f(xi, yi) = F(xi, yi,Λ̂i) and ∇f(xi, yi) = ∇F(xi, yi,Λ̂i),

where ∇f represents the gradient of f .

For constraint (3.18b) and (3.14b) The first-order Taylor series. For (3.18b), I approximate p(1−λ), for
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0 ≤ λ ≤ 1, with a first-order Taylor series at p(n) as follows [31]:

IL(n + 1) =
(pR(n))

(1−λ)

βµλ
+ (1− λ)

(pR(n))
(−λ)

βµλ
× (pR − pR(n)). (3.20)

Using a similar approach, CS1,R and CS2,R are approximated as:

CS1,RL(n+ 1) = log2(1 + x1(n)) +
(x1 − x1(n))

log2(1 + x1(n))
, (3.21)

CS2,RL(n+ 1) = log2(1 + x2(n)) +
(x2 − x2(n))

log2(1 + x2(n))
, (3.22)

where n is the iteration index. Hence, the condition (3.14b) can be approximated as:

CS1,RL + CS2,RL ≤ CR,B. (3.23)

After applying the aforementioned transformations, (3.14) is equivalently rewritten as:

max
p,yi,xi

3∑
i=1

log2(1 + xi) (3.24)

s.t. pS2GS2,R + IL(n) + σ2
N − y1 ≤ 0, (3.24a)

θpS1GS1,R + IL(n) + σ2
N − y2 ≤ 0, (3.24b)

pS1GS1,R+pS2GS2,R + σ2
N − y3 ≤ 0, (3.24c)

1

2Λ̂i(n)
x2i +

Λ̂i(n)

2
y2i − ζi(p) ≤ 0 ∀i, (3.24d)

CS1,RL + CS2,RL ≤ CR,B, (3.24e)

(3.14a), (3.14c). (3.24f)

Problem (3.24) is then solved iteratively using the proposed sum rate optimization algorithm sum-

marized in Algorithm 2, where Ctot is the total sum rate on all channels and G is a set that consists of

the channel gains, GS1,R, GS2,R, and GR,B.

The problem at the nth iteration is convex and the optimal solution of this iteration is a feasible

input point to the problem at the (n+ 1)th iteration. The algorithm produces non-decreasing objective
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Algorithm 2 Iterative Sum Rate Maximization Algorithm.
Input p̄S1 , p̄S2 , p̄R, G, λ, θ, σ2, Cmin, and tolerance (ϵ)

Output p and Ctot.

Set n := 0 and initialize p(n), yi(n), xi(n), and Λ̂i (n) by xi(n)
yi(n)

.

1: Repeat:

2: Solve (3.24), for p∗, y∗i , x
∗
i ∀i;

3: Set n := n+ 1;

4: Update xi (n) by x∗i , yi (n) by y∗i and Λ̂i (n) by x∗
i

y∗i
∀i;

5: Until convergence of sum rate with tolerance ϵ.

function values at each iteration. The algorithm converges to a local optimal solution representing the

network sum rate because the problem is bounded by the maximum power constraints. The resultant

sum rate and the CI of Eve are used to calculate the SSR as per (3.10).

3.4.2 Known CI of Eve

If the CI of Eve is known, the system can calculate Eve’s sum rate, and hence, maximize the SSR as:

max
p

3∑
i=1

log2(1 + γi(p))−
3∑

i=1

log2(1 + γiE(p)) (3.25)

s.t. Cmin ≤ CS1,R, Cmin ≤ CS2,R, (3.25a)

CS1,R + CS2,R ≤ CR,B, (3.25b)

0 ≤ pS1 ≤ p̄S1 , 0 ≤ pS2 ≤ p̄S2 , 0 ≤ pR ≤ p̄R, (3.25c)

CS1,E ≥ 0, CS2,E ≥ 0, CR,E ≥ 0, (3.25d)
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whereCsa,E is the SSR at the link between a= S1, S2, R, and Eve. Equations (3.25a) - (3.25c) are similar

to (3.14a) - (3.14c), respectively. Equation (3.25a) ensures a minimum sum rate per link, (3.25b) limits

the sum rate of the links of R from the two sensors to the sum rate between R and B, and (3.25c)

guarantees a positive value for the power of each node. Finally, (3.25d) guarantees that the SSR of each

link is above zero [32]. This condition might not be feasible in some situations, as similarly mentioned

in [33]. In order to approximate log2(1+γi(p)) into a convex function the same transformations are

followed as in (3.15)-(3.17) and (3.19)-(3.22). For -log2(1+γiE(p)), two new slack variables xiE and yiE

are used as follows:

γiE(p)
∆
=
ζiE(p)

ωiE(p)
≤ xiE ∀i, (3.26)

ζiE(p)yiE ≤ xiE ∀i, (3.27)

1− ωiE(p)yiE ≤ 0 ∀i. (3.28)

Utilizing the above approximations, (3.25) can be transformed into:

max
p,yi,yiE ,xi,xiE

3∑
i=1

log2(1 + xi)−
3∑

i=1

log2(1 + xiE) (3.29)

s.t. pS2GS2,R + IL(n) + σ2
N − y1 ≤ 0, (3.29a)

θpS1GS1,R + IL(n) + σ2
N − y2 ≤ 0, (3.29b)

pS1GS1,R+pS2GS2,R + σ2
N − y3 ≤ 0, (3.29c)

1

2Λ̂i(n)
x2i +

Λ̂i(n)

2
y2i − ζi(p) ≤ 0 ∀i, (3.29d)

(ζiE(p)yiE) ≤ xiE ∀i, (3.29e)

1− ωiE(p)yiE ≤ 0 ∀i, (3.29f)

CS1,RL + CS2,RL ≤ CR,B, (3.29g)

(3.25a)− (3.25d). (3.29h)
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the upper bound transformation is used as in (3.19) to approximate (3.29e), where ΛiE =
ζiE (p)

yiE
. In

order to approximate (3.29f) to a convex equation, the following transformation is applied:

1 ≤ ωiE(p)yiE , (3.30)

1 ≤ 1

4
(yiE + ωiE(p))

2 − 1

4
(yiE − ωiE(p))

2,

1 +
1

4
(yiE − ωiE(p))

2 ≤ 1

4
(yiE + ωiE(p))

2,√
1 +

1

4
(yiE − ωiE(p))

2 ≤ 1

2
(yiE + ωiE(p)),

∥0.5(yiE − ωiE(p)), 1∥2 ≤ 1

2
(yiE + ωiE(p)).

At this point, the constraints are resolved to either linear or convex constraints; however, the ob-

jective function is still non-convex because the subtraction of two convex functions is not universally

convex; so, it is converted as:

3∑
i=1

(log2(1 + xi)− log2(1 + xiE)) =
3∑

i=1

log(
1 + xi
1 + xiE

). (3.31)

Similar to (3.15), two new slack variables ui and vi are incorporated , where

1 + xi
1 + xiE

≥ ui ∀i, (3.32)

uivi ≤ 1 + xi ∀i, (3.33)

1 + xiE ≤ vi ∀i. (3.34)

After applying the transformation (3.31)-(3.34), and an upper bound transformation (3.19) on (3.33),
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using Λi2 =
ui(n)
vi(n)

, (3.29) can be equivalently rewritten as:

max
p,yi,yiE ,xi,xiE ,ui,di

3∑
i=1

log2(ui) (3.35)

s.t. pS2GS2,R + IL(n) + σ2
N − y1 ≤ 0, (3.35a)

θpS1GS1,R + IL(n) + σ2
N − y2 ≤ 0, (3.35b)

pS1GS1,B+pS2GS2,B + σ2
N − y3 ≤ 0, (3.35c)

1

2Λ̂i(n)
x2i +

Λ̂i(n)

2
y2i − ζi(p) ≤ 0 ∀i, (3.35d)

1

2Λ̂iE(n)
ζi(p)

2 +
Λ̂iE(n)

2
y2iE

− (1 + xiE) ≤ 0 ∀i, (3.35e)

1

2Λ̂i2(n)
u2i +

Λ̂i2(n)

2
v2i − (1 + xi) ≤ 0 ∀i, (3.35f)

(1 + xiE)− di ≤ 0 ∀i, (3.35g)

∥0.5(yiE − ωiE(p)), 1∥2 ≤
1

2
(yiE + ωiE(p)), (3.35h)

(3.29g)− (3.29h). (3.35i)

The pseudocode for the proposed SSR optimization is summarized in Algorithm 3.

In Algorithm 3, CStot is the total SSR on all channels, and GE is a set that includes the channel gains

between Eve and the network nodes, GS1,E, GS2,E, and GR,E.

Problem (3.35) is solved iteratively using Algorithm 3. The convexity of the problem at the nth

iteration is achieved. Similar to Algorithm 2, Algorithm 3 converges to a local optimal solution, which

is used to calculate the SSR of the network.

58



Algorithm 3 Iterative SSR Maximization Algorithm.
Input p̄S1 , p̄S2 , p̄R, G, GE, λ, θ, σ2, Cmin, and tolerance (ϵ).

Output p and CStot .

Set n := 0 and initialize p(n), yi(n), xi(n), yiE(n), xiE(n), ui(n), vi(n), Λ̂i (n) by xi(n)
yi(n)

, Λ̂i2(n) by ui(n)
vi(n)

and Λ̂iE (n) by xiE (n)

yiE (n)
.

1: Repeat:

2: Solve (3.35), for p∗, y∗i , x
∗
i , y

∗
iE
, x∗iE

, u∗i , v
∗
i ∀i;

3: Set n := n+ 1;

4: Update all parameters with corresponding values from the iteration (n);

5: Until convergence of SSR with tolerance ϵ.

3.5 Results and Discussion

This section studies the performance of an FD-R-NOMA UWA network with respect to the SSR and

energy efficiency. The optimization problems from Section 3.4, (3.24) and (3.35), are solved centrally at

B. The algorithms are implemented using CVX with SEDUMI as internal solver on Matlab [36], [37].

The employed system parameters are given in Table 1, unless otherwise mentioned. It is assumed

that Eve moves from the left hand-side (LHS) to the right hand-side (RHS), in all scenarios. The SSR

of FD-R-NOMA with and without knowledge of Eve’s CI, are compared. Then, the performance of

FD-R-NOMA is evaluated versus the performance of HD-OMA in terms of SSR, energy efficiency,

and feasibility. Afterwards, the effect of the depth of Eve, interference cancellation efficiency, noise

and sensor distribution on the SSR of a FD-R-NOMA UWA system is investigated.
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Table 3.1: Simulation parameters.

Parameter Value

System Parameters

Water depth 1000 m

R coordinates [0 m, 0.5 depth m]

B x and y coordinates [0 m, 1000 m]

S1 x and y coordinates [-1050 m, 0 m]

S2 x and y coordinates [-3100 m, 0 m]

Eve x-coordinates [-30e3 : 30e3 m]

Eve y-coordinates 0.5 depth m

Maximum power of each sensor 3 W [34]

Maximum power of R 3 W [35]

Cmin 25 kbps

ϵ 0.5 kbps

Channel Parameters

SuIC efficiency θ 0 [22]

SIC efficiency λ 1 [22]

Bandwidth 5.5 kHz [26]

Minimum frequency 10 kHz [26]

Spreading factor k 1.5 [26]

Shipping activity s 1 [27]

Speed of wind w 10 m/s [27]

Conversion efficiency Φ 1 [10]
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Figure 3.2: The achievable sum rate and the SSR vs. the horizontal distance between R and Eve.

3.5.1 FD-R-NOMA with and without CI knowledge versus HD-NOMA

3.5.1.1 SSR

The SSR of FD-R-NOMA with CI knowledge is compared versus FD-R-NOMA without CI knowl-

edge; then, the worst of the two is compared with HD-OMA.

Fig. 3.2 shows the achievable system sum rate and the SSR if Eve’s CI is known or not. The

knowledge of Eve’s CI allows the system to make better decisions when assigning the power. Therefore,

it guarantees better SSR compared to not knowing Eve’s CI, while Eve is at the vicinity of the network.

As Eve moves farther from the network, its capability to intercept the communication diminishes;

hence, the SSR for both cases becomes similar.

Fig. 3.2 also illustrates that when Eve is on the RHS of R and B, the SSR is lower. As Eve moves to

the RHS of R, the interference from the sensors declines. In addition, the sum rate of the link between

R and B, by definition, is greater than the sum rate of the other links as per (3.14b) and (3.25b). Hence,

the SSR decreases, as Eve is capable of intercepting the communication on R →B better when located

on the RHS of R and B.

Furthermore, Fig. 3.2 shows that problem (3.14) is infeasible from 0 to 400 m on the RHS of R for

FD-R-NOMA with Eve’s CI knowledge. As mentioned earlier, at some locations of Eve, it is infeasible
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Figure 3.3: SSR of FD-R-NOMA case A, FD-R-NOMA case B, and HD-OMA vs. the horizontal distance

between R and Eve.

to achieve the minimum secrecy rate per link. Given that problem (3.14) is conditioned on the secrecy

rate per link, it is not possible to calculate the power per node or the SSR at these locations of Eve

(in our case it is from 0 to 400 m). For FD-R-NOMA without the knowledge of Eve’s CI, the SSR is

calculated, irrespective of the feasibility of the secrecy rate per link, as the secrecy rate per link is not a

condition of (3.25). The feasibility of securing the communication for FD-R-NOMA with and without

the knowledge of Eve’s CI, and HD-OMA is studied later in this section.

Fig. 3.3 compares the SSR of FD-R-NOMA without CI knowledge, without and with interference

from Gs1,B and Gs2,B (case A and case B respectively), with the SSR of HD-OMA.1 It is expected that

applying FD and NOMA provides better SSR when compared to HD-OMA, due to the better utilization

of resources. However, the interference fromGs1,B andGs2,B shown in (3.9) affects the SSR of FD relay-

assisted NOMA (FD-R-NOMA). FD-R-NOMA has a better SSR compared to HD-OMA when Eve is

moving from -10 km (10 km to the LHS) to 5 km (to the RHS) of R in both cases. However, as Eve

moves farther from the system, the performance of HD-OMA becomes better than FD-R-NOMA with

1Note that FD-R-NOMA with Eve’s CI knowledge is omitted as its SSR is better than the case without Eve’s CI

knowledge, and for the readability of the figure.
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interference from Gs1,B and Gs2,B. When Gs1,B and Gs2,B are insignificant, the system secrecy rate for

FD-R-NOMA is better than HD-OMA at all locations of Eve.

3.5.1.2 Secrecy of Communication

Figs. 3.4a, 3.4b, and 3.4c show the secrecy rate per link versus the horizontal distance between R to Eve

for HD-OMA, FD-R-NOMA without and with Eve’s CI knowledge. If the secrecy rate per any of the

links is below zero, this indicates that it is infeasible to secure the system under the given constraints and

conditions. The interference from the simultaneous communicating links in the FD-R-NOMA assists

in securing the system, and makes it possible to maintain the security of the communication for more

Eve locations than HD-OMA. Fig. 3.4a shows that the HD-OMA communication cannot be secured

for 7000 m, 2500 m, and 1000 m for the time slots for S2→ R, S1→ R, and R→ B, respectively. This

averages to an insecure region of 3500 m. Figs. 3.4b and 3.4c illustrate that introducing FD-R-NOMA

decreases the infeasible region to less than half, (around 1500 m) for FD-R-NOMA without knowing

Eve’s CI, and to nearly one third (400 m) with knowledge of Eve’s CI.

3.5.1.3 Secrecy Energy Efficiency (SEE)

SEE is the ratio of the achievable SSR to the total consumed power of the system [38]. Fig. 3.5 depicts

the SEE versus the horizontal distance between Eve and R, in FD-R-NOMA with and without Eve’s CI

knowledge and HD-OMA. It shows that FD-R-NOMA is more energy efficient than HD-OMA for all

Eve’s locations, except when Eve is at R. At R, the energy efficiency of the three systems (HD-OMA,

FD-R-NOMA with CI known/ unknown) are nearly the same. However, as previously discussed, it is

infeasible to maintain the security close to R, and hence, the SEE is not applicable. Furthermore, the

results illustrate that Eve’s CI knowledge has a significant effect on the SEE. It compels the system to

assign the power in order to maximize the SSR, and decreases the power utilization; hence, it increases

the energy efficiency. It can be noticed that the SEE of the FD-R-NOMA with CI knowledge can be

more efficient that FD-R-NOMA without CI knowledge by up to 6 kbps/W.
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Figure 3.4: Secrecy rate per link vs. the horizontal distance from R to Eve.
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3.5.2 FD-R-NOMA with Eve’s CI: Investigating the Effect of Changing Param-

eters

This subsection investigates the effect of the change of different parameters on the SSR of a network

with FD-R-NOMA with Eve’s CI.

3.5.2.1 Depth of Eve

Fig. 3.6a depicts the effect of changing Eve’s depth on the SSR versus the horizontal location of Eve.

The figure illustrates the variation in the SSR of the network with Eve at different depths, namely 0 m,

200 m, 500 m, 800 m, and 1000 m. For the purpose of this chapter, I assume that Eve moves from the

LHS to the RHS of the network. As shown in the figure, the change in the depth of Eve causes only a

minor change of the SSR. The most change is noticeable when one of the sensors and Eve overlap.

When Eve is at or close to the sea bed (0 m and 200 m), Eve is at a close vertical location from

the sensors. Hence, as it approaches the sensors horizontally from the LHS, the capability of Eve to

listen to the communication from the sensors increases, and thus, the SSR decreases. This is shown

in Fig. 3.6a: as Eve moves close to S2, the SSR exhibits a sharp dip because Eve is very close to S2,
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Figure 3.6: SSR for different depths of Eve vs. the horizontal distance from R to Eve.
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while still far from possible interference from other links. As Eve moves towards the RHS, the SSR

improves because the interference from the legitimate communication escalates gradually, decreasing

the capability of Eve to intercept the data from S2. As Eve approaches S1, it can better intercept the

communication between S1 and R, so another dip in the SSR occurs. It should be noted that the dip in

SSR at S1 is not as steep as the dip that occurs at S2. The reason for the aforementioned behavior is that

S1 is closer to the rest of the network nodes, and consequently, Eve is susceptible to more interference

than when located at S2. Another behavior that can be observed from Fig. 3.6a is that the SSR decreases

as Eve approaches R horizontally, irrespective of the depth of Eve. This is because Eve’s capability to

intercept R→ B increases, and hence, the SSR decreases. It should be noted that the link R→ B has the

highest sum rate as per equation (25b). Consequently, the SSR is affected the most when the security

of the link R→ B is compromised. As Eve goes further from the sensors vertically (500 m to 1000

m), the vertical distance between Eve and the sensors is enough to secure the communication from the

sensor, irrespective of the horizontal location of Eve. Hence, it is feasible to maintain high SSR of all

the studied horizontal locations of Eve, except when R and Eve nearly coincide (500 m vertically, 0 m

horizontally). In spite of the information provided by Fig. 3.6a, it is hard to understand the full effect

of the depth of Eve on the communication from the figure, as most of the curves overlap. In order to

further investigate the effect of changing the depth of Eve, I increase the water depth to 3000 m and

show results in Fig. 3.6b.

It can be seen that securing the communication when Eve is at 1500 m depth and 0 m horizontally is

infeasible; hence, it is the worst location. This is because the locations of Eve and R coincide, which

gives Eve high access to the data received and sent by R. As Eve goes further up or down, the SSR

increases due to getting away from R. Moving towards the buoy allows Eve to better intercept the

communication between R and B, and hence a lower SSR is achieved. As Eve goes downwards from

R, the SSR increases due to the higher interference by the sensors. Hence, the network is more resilient

to attacks when Eve is at the sea bed, due to the interference from S1 and S2, along with being at the

farthest distance from R. Besides, if Eve’s location coincides with one of the network nodes (same
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vertical and horizontal coordinates), the capability of Eve to intercept the communication increases,

causing a dip in the SSR.

3.5.2.2 Interference Cancellation Efficiency

In this section, the effect of interference cancellation (SuIC and SIC) efficiency is investigated. Fig.

3.7a shows the effect of varying the efficiency of the SuIC as 0, 0.0001, and 0.001. As the SuIC factor

increases, the SuIC efficiency decreases, and the SSR decreases. When θ is zero, the interference from

S1 on the communication of S2 → R is negligible. Hence, increasing θ degrades the system sum rate,

which results in a decrease in the SSR.

Fig. 3.7b shows that a similar effect occurs as the SIC decreases from 1 to 0.7 and 0.5, respectively.

It is shown that the SSR is lower when RSI exists, irrespective of the location of Eve. Further, the

interference from the SI of the relay on Eve decreases the ability of Eve to intercept the communications

at S1. Thus, the improvement in the SSR as Eve moves between S2 and S1 enhances as the interference

from SI increases.

3.5.2.3 Shipping and Wind Noises

Here, the effect of the noise on the SSR is studied. The shipping and the wind noises are dependent

on the s and w factors, respectively. The typical values for s range from 0 to 1, denoting low and

high shipping activity, respectively [27]. w represents the wind speed; the higher the wind speed is,

the higher the noise caused by the wind is. In this chapter, it is assumed that harsh shipping noise

conditions with a shipping factor of 1 and an average wind speed of 10 m/s, which is equivalent to a

fresh breeze [39]. The chapter compares the previously mentioned setup with the case when the noise

is minimal, with a shipping factor of 0 and the wind speed of 0 m/s. Fig. 3.8 shows the SSR versus the

horizontal distance between Eve and R with a change in the noise level, high and low, representing the

original setup and the low noise setup, respectively. When Eve is close to the system, the decrease of

noise does not change the SSR. However, when Eve is far from the system, lower noise allows Eve to
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Figure 3.7: SSR vs. horizontal distance from R to Eve: efficiency of interference cancellation.
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tap the network from far distance, and hence, a lower SSR occurs. When Eve and R coincide, the SSR

decreases sharply as explained earlier.

3.5.2.4 Sensor Distribution

The sensor distribution is an important factor in the SSR behavior. Fig. 3.9 presents the SSR versus

the horizontal distance from Eve to R, where the sensors are distributed on the LHS, the RHS, and

both sides of R, respectively. When the sensors are placed on one side, it can be noticed that there

is asymmetry in the shape of the SSR curve. This happens because when Eve is on the same side as

the sensors, the sensors interfere with the capability of Eve to tap the communication, and hence, the

secrecy rate improves. However, when Eve moves to the other side (without the sensors), Eve can tap

the communication between R and B, and the secrecy rate on the opposite side to the sensors drops.

When the sensors are evenly distributed, they interfere on both sides and the SSR is similar on both

sides. In all cases, as Eve gets far from the system nodes, the SSR improves.
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3.6 Conclusion

The study of secrecy of UWA networks is crucial due to the sensitivity of the applications of under-

water communication. In this chapter, the secrecy performance of a FD-R-NOMA network has been

studied. A power allocation problem has been solved in order to maximize the SSR under two scenar-

ios, namely in the presence and absence of Eve’s CI knowledge. The problem has been approximated

by a convex problem and solved. The SSR of FD-R-NOMA with and without knowledge of Eve’s CI

has been compared. The performance of FD-R-NOMA has been also evaluated versus the performance

of HD-OMA in terms of SSR, energy efficiency, and feasibility. FD-R-NOMA has better resilience to

an Eve attack, as it maintains better feasibility to secure the network at higher SEE when compared to

HD-OMA. Knowing Eve’s CI increases the SSR, decreases the possibility of a security breach, and in-

creases SEE. Furthermore, the effect of different factors, like the depth of Eve, interference cancellation

efficiency, noise and sensor distribution, on FD-NOMA has been studied. It has been found that Eve’s

depth affects the SSR differently, depending on the water’s depth. At a water depth of 1000 m, the

change in Eve’s depth is not effective on the sum rate. At a water depth of 3000 m, as Eve gets closer

to R, the SSR decreases. It has been shown that improving the interference cancellation efficiency,
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whether SuIC or SIC, improves the SSR. In addition, it has been illustrated that changes in the shipping

and wind noises do not affect the SSR when Eve is close to the system. However as Eve goes farther,

lower noise allows for better tapping of the communication, and hence, decreases the SSR. The change

in the distribution of the sensors affects the SSR, as it changes the interference Eve is subject to. As

Eve approaches a sensor or multiple sensors, the interference affects the ability of Eve to monitor the

communication, which increases the SSR. In future work, the expansion of the system is considered to

include multiple sensors and applying machine learning techniques to achieve the power allocation.
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Chapter 4

Detection and Identification of Mobile

Network Signals

4.1 Abstract

This chapter presents a method to detect and identify mobile network signals. The method relies on

features extracted from the power spectral density of the signals. The performance of the proposed

method is evaluated using over-the-air measurements acquired in various cellular bands, in different

geographical areas, and in rural and urban settings. Results verify the high detection and identification

accuracy of the method.

4.2 Introduction

Intelligent radios can detect and identify radio signals and transmission parameters. There is a rising

demand for employing intelligent radios in commercial and military applications, such as cognitive

radios, electronic warfare, and spectrum surveillance [1], [2]. An example application is improving

the effectiveness of electronic countermeasure (ECM) devices in targeting network threats by trans-

mitting a tailored waveform, rather than a generic one [3]. Automatic signal identification (ASI) is
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an essential task of such intelligent radios [4], [5]. There are two common types of ASI algorithms:

likelihood-based and feature-based [3], [6]. Although the former category provides higher accuracy

of identification, the solutions are complex and susceptible to error due to model mismatches, such

as frequency offset [7]. Feature-based algorithms are simpler to implement and provide sub-optimal

performance [3].

Feature-based algorithms typically require estimation of the noise floor, signal segmentation and

setting a detection threshold in order to detect the signals accurately. Some segmentation methods are

found in the literature, such as histogram, wavelet and multi-scale product methods [8], [9], [10]. The

wavelet and multi-scale product methods are computationally heavy techniques, while the histogram

method requires user refinement and changes to its parameters [10]. Detection thresholds are set by

the user based on prior knowledge or assumption of the environment [11]. An exception is in [12],

where the presence of a signal is detected from the power spectral density (PSD) without estimating

the noise floor. Further, in [13] the PSD is converted into a binary image that undergoes morphological

operations to estimate the detection threshold. In [14] it is assumed that the PSD contains two distinct

groups, namely a noise group and a signal group, with small variance within each group. Based on

this assumption, the PSD is split into segments with specific thresholds to guarantee the flatness of

each PSD within each segment and enable signal detection. Earlier work [15] used deep learning for

signal identification using synthetic data. The proposed algorithm does not rely on synthetic data and

does not require training, but rather uses hand-crafted features that are adjusted based on each PSD

measurement.

In this context, the contribution of this chapter is as follows:

1. Propose a signal detection algorithm that automatically updates the detection threshold based on

the content of the PSD.

2. Propose an identification algorithm that categorizes the signal types based on features extracted

from the PSD of the detected signal, including its bandwidth, variance and edge slope.
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3. Combine both algorithms to form a novel method that detects the signals and identifies their types

without prior knowledge of the environment.

4. Evaluate the performance of the proposed method using over-the-air measurements of different

cellular systems, namely global system for mobile communications (GSM), universal mobile

telecommunications service (UMTS), and long term evolution (LTE).

5. Validate the detection and identification performance of the method through over-the-air mea-

surements, versus a commercial detection and identification software [16].

The rest of this chapter is organized as follows: Section 4.3 introduces the proposed signal detection

and identification method; Section 4.4 provides the experimental setup and results; and Section 4.5

draws conclusions.

4.3 Signal Detection and Identification Method

The method consists of two algorithms: (A) Signal Detection, in which the noise floor estimate is

automatically updated and the PSD measurement is segmented; (B) Signal Identification, in which the

signal type in each segment is identified to be either GSM, UMTS or LTE, depending on features such

as bandwidth and variance of the PSD.

4.3.1 Signal Detection Algorithm

Let x = {x1, x2, . . . , xN} represent the measured PSD values, where xj is the PSD value in dB at

frequency bin jand N is the total number of frequency bins. The first step of the detection algorithm

is to estimate the detection threshold (Γ). A bin with xj above Γ is considered to contain a signal. To
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estimate Γ, x is mapped into a 2D binary array A =
[
aij

]
100×N

as follows:

aij =



1, if i ≤ 100(xj−υ)
Υ−υ

, 1 ≤ j ≤ N,

0, otherwise,

(4.1)

where Υ = max
1≤j≤N

{xj} and υ = min
1≤j≤N

{xj}. The vector defines b =
[
bj
]
1×N

such that bj =
∑100

i=1 aij .

A vector c =
[
cj
]
1×L

, where L ≤ N , is formed by sorting the components of vector b (ascending

order) and considering the components with the same value only once.

Based on the relationship between x, A, b, and c, the detection threshold Γ is calculated as

Γ =


cn +G if ψ ≤ 0.3,

cn, otherwise,

(4.2)

where cn is the n-th component of c, ψ=
∑100

i=1

∑N
j=1 aij

100N
is the ratio of ones to the total number of elements

in A, which is indicative of the area under the PSD curve, and G = P
3
× max

1≤j≤L
{cj} is a guard margin,

with

P = min(Ψ, 0.3). (4.3)

Based on extensive observations, n = [
]
PL is selected, where [

]
denotes the ceiling function. ψ has

a direct relation with n: the higher the ambient noise, the more 1’s will appear in A to represent the

noise.

Using the detection threshold, the PSD of the detected signals x̂ = {x̂1, x̂2, . . . , x̂N} is obtained as

x̂j =


xj, if bj ≥ Γ,

υ, otherwise.

(4.4)

Figs 4.1a and 4.1b illustrate a measured PSD and the resulting PSD after subtracting the noise floor

using (4.4), respectively. Results are obtained based on over-the-air measurement data. At this point,
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all the bins that contain signals are detected. A given signal ŝ is defined in x̂ as

ŝ = {x̂ks+1, x̂ks+2, . . . , x̂ks+Js}, (4.5)

such that ks is the index of the last noise bin before signal ŝ, x̂m > υ ∀m (ks + 1 ≤ m ≤ ks + Js),

x̂ks = υ and x̂ks+Js+1 = υ, and Js is the number of bins in signal ŝ.

Adjacent signals in x̂ may not be well separated due to a coarse spectral resolution, which affects

the identification accuracy. To locate the signal edges, the fluctuation is considered in power within one

signal ŝ should not exceed 6 dB per bin. When a change in the values of any two adjacent signal bins

in ŝ is more than 6 dB, this indicates the start of a new signal. Consequently, all successive elements

x̂j > α and x̂j+1 > α ∈ ŝ, j = ks + 1, 2, . . . , ks + Js, are updated as follows

x̂j = α if x̂j+1 − x̂j > 6,

x̂j+1 = α if x̂j − x̂j+1 > 6.

(4.6)

ŝ is then updated based on (4.5). Then, a signal s in x can be defined as:

s = {xks+1, xks+2, . . . , xks+Js}. (4.7)

Each signal s is associated with a vector bs = {bks+1, bks+2, . . . , bks+Js}. Fig. 4.1c illustrates the

resulted PSD after detecting signal edges using (4.6), separated and ready to undergo the type identifi-

cation algorithm.
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(a) A measured PSD.
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(b) PSD after subtracting the noise floor using (4.4).
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(c) Magnified PSD after edge separation using (4.6).

Figure 4.1: A sample PSD at different stages of the signal detection algorithm, obtained based on over-the-air

measurements.
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4.3.2 Signal Identification Algorithm

In this algorithm, the signal type (GSM, UMTS or LTE) is identified based on the following features of

s: (1) Signal bandwidth (Ws), which can be obtained as

Ws =
W

N
Js, (4.8)

where W is the total observed bandwidth; (2) The variation of the values of the elements in bs.

4.3.2.1 Stage 1: Differentiating GSM from UMTS/LTE

The bandwidth of a UMTS signal is 5 MHz [17], the bandwidth of an LTE signal can be 1.4, 5, 10, 15,

or 20 MHz [18], while the minimum bandwidth of a signal in GSM band is 200 kHz [19]. Hence, if

Ws is less than 1.4 MHz, the spectrum segment is identified as a GSM band.

To identify signals with Ws greater than 1.4 MHz, 5,685 PSD readings are examined, containing a

total of 28,311 over-the-air captured signals and noticed that the values of the PSDs of GSM signals

fluctuate more compared to those of UMTS/LTE signals. Consequently, the variance of the elements

in bs (σ2
bs

) is calculated for each signal; Fig. 4.2 illustrates the resulting histogram. In Fig. 4.2, it is

clear that σ2
bs

for the over-the-air captured GSM signal is generally higher in comparison with that of

the over-the-air captured UMTS/LTE signals. However, there is no clear threshold that separates the

histograms of the GSM and UMTS/LTE due to the overlap.

Figure 4.2: Variance of the components of bs.
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Figure 4.3: Variance of the components of b̄s vs. variance of the components of bs.

To separate the histograms of GSM and UMTS/LTE, a vector b̄s = {b̄ks+1, b̄ks+2, . . . , b̄ks+Js} is

obtained for each signal s, such that ∀ks + 1 ≤ ms ≤ ks + Js.

b̄ms =



bms , if bms ≤ λ,

λ, otherwise,

(4.9)

where λ = 0.30× max
ks+1≤ms≤ks+Js

{bms}. σ2
b̄s

is defined as the variance of the elements in b̄s and calculate

σ2
b̄s

of each signal. Fig. 4.3 shows that for signals withWs >1.4 MHz, most of the over-the-air captured

GSM signals have σ2
b̄s
> 0.3 and σ2

bs
> 140. Consequently, a signal s with Ws greater than 1.4 MHz is

identified based on σ2
b̄s

and σ2
bs

. If σ2
b̄s
> 0.3 and σ2

bs
> 140, s is identified as a GSM signal. Otherwise,

s is not a GSM signal and undergoes the next stage.

4.3.2.2 Stage 2: Differentiating LTE from UMTS

If s is not a GSM signal, the signal is either UMTS or LTE. According to [18], the use of LTE band-

width below 10 MHz is rare. Hence, Ws is used to differentiate between LTE and UMTS, such that

if Ws > 5.5 MHz, s is identified as an LTE signal; otherwise s is identified as an UMTS signal. The

identification algorithm flow chart is shown in Fig. 4.4.
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Figure 4.4: Identification algorithm flow chart.

4.3.2.3 Stage 3: Grouping

By this stage, the type of each signal in x is identified. However, some signals may be over-divided

due to (4.4) and (4.6). Consequently, over-divided signals should be grouped. Grouping is done in two

steps; small signal re-identification and type-based grouping.

1. Small Signal Re-identification:

A small signal is defined as a GSM signal with bandwidth below 1.4 MHz or a UMTS/LTE signal

with bandwidth below 2.5 MHz. A GSM signal with bandwidth below 1.4 MHz is considered a

small signal because of the insufficient number of representative bins of the signal, which inhibits

the ability to calculate an accurate variance of the signal. A UMTS or LTE signal with bandwidth

below 2.5 MHz is considered a small signal because the smallest possible bandwidth of a UMTS

signal is 5 MHz, and in this chapter the smallest considered bandwidth of an LTE is 10 MHz.

Any three consecutive signals in x are defined as s(l−1) = {xks(l−1)
+1, xks(l−1)

+2, . . . , xks(l−1)
+Js(l−1)

},
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sl = {xksl+1, xksl+2, . . . , xksl+Jsl
}, and s(l+1) = {xks(l+1)

+1, xks(l+1)
+2, . . . , xks(l+1)

+Js(l+1)
}. The

separation between s(l−1) and sl is defined as δ1sl =

(
ksl+1−

(
ks(l−1)

+Js(l−1)

))
W

N
MHz and the sep-

aration between sl and sl+1 is defined as δ2sl =
(
ks(l+1)

+1−(ksl+Jsl)
)
W

N
MHz.

A small signal is considered as sl , if δ1sl is below 0.2 MHz, and sl−1 has a greater bandwidth than

sl, then sl is identified with the same type as sl−1. Also, if sl−1 and sl+1 have the same type and

δ1sl and δ2sl are both below 0.5 MHz, sl is identified with the same type as the adjacent signals.

Some noise bins have values greater than Γ, which leads to recognizing them as small signals.

In order to avoid false alarms, each signal s with
∑ks+Js

m=ks
bm < 200 is discarded, where 200 is

double the maximum value at one bin (i.e., max
1≤j≤N

{bj} = 100).

4.3.2.4 Stage 4: Signal Recovery

The bandwidth of a UMTS signal is 5 MHz, and the bandwidth of a LTE signal is either 10, 15 or

20 MHz. The operations in (4) and (5) may alter the borders of the signals of the UMTS and LTE.

Henceforth, the number of bins of the affected signal are roudn up to obtain a bandwidth as close as

possible to 5, 10, 15 or 20 MHz, without interfering with the neighbouring signals.

Figure 4.5: Illustration of the spectral identification using a commercial drive test software.

4.4 Experimental Setup and Results

A Rohde and Schwartz R&S® TSME drive test scanner was used to capture measurement data [16].

This instrument can measure multiple cellular technologies simultaneously in wireless communications

bands from 350 MHz to 4.4 GHz. The scanner recorded power spectrum readings from several cellular
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bands with distinct bandwidths, to assess the efficacy of the method to detect and identify different

signals. Recorded data in R&S propriety format was exported into ASCII files to be processed in

MATLAB® using the export tool provided with the scanner software.

A 20 MHz instantaneous capture bandwidth was utilized to scan each cellular band. PSD measure-

ments with a frequency resolution of 180 kHz were provided by the measurement device by applying

the fast Fourier transform with the size of 128 to time domain signal samples. PSD measurements were

processed with the R&S® ROMES software automatic channel detection tool to label the measure-

ment results as a reference for validation [16]. An example of spectrum capture from 1900 MHz band

covering the downlink of UMTS, GSM and LTE is shown in Figs 4.5 and 4.6. Fig. 4.5 depicts the

labeled output showing spectral identifications of the validation software, while Fig. 4.6 illustrates the

spectrum capture, signal detection and type identification of the proposed method for the same band.

1920 1940 1960 1980 2000

Bandwidth

-120

-110

-100

-90

-80

-70

-60

-50

P
S

D
 (

dB
)

Number of signals 7

PSD

UMTS

GSM

LTE

Noise floor

Figure 4.6: The proposed method output.

The proposed algorithm has been evaluated using 10243 real-world PSD measurements captured

from three different locations, including both rural and urban settings, and at different times. Table 4.1

illustrates the identification performance of the proposed algorithm at these locations. It is noticed that
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the algorithm demonstrates a robust identification performance with identification accuracies above

92%.

Table 4.1: Results of the proposed algorithm.

Location 1 2 3

Number of sites 21 4 1

Number of PSD readings 4395 5786 62

Identification accuracy 93% 92% 98%

The average execution time of the algorithm on a machine with Intel ® Core i7 CPU working at a

clock frequency of 1.7 GHz with 8 GB of RAM is 16 ms per PSD reading.

4.5 Conclusion

In this chapter, a method was proposed to detect and identify mobile network signals from their PSD

measurements. The method consists of a signal detection and an identification algorithm. The detection

algorithm sets a decision threshold automatically without complex operations or human intervention.

The identification algorithm relies on spectral shape parameters such as bandwidth and variance of

the PSD of each detected signal to classify them as GSM, UMTS or LTE. Proposed algorithms were

validated against a commercial automatic channel detection software using data captured from a drive

test scanner. The proposed method successfully detected all of the experimental data and accurately

identified 92% of the signals.
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Chapter 5

Identification of Cellular Signal

Measurements Using Machine Learning

5.1 Abstract

Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource man-

agement, adaptive transmissions, interference detection, and identification of threat signals. This chap-

ter proposes an identification neural network (INN)-based model that identifies cellular signals from

three different radio access technologies, namely global system for mobile communications, universal

mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or

not the measured power spectral density belongs to a certain cellular signal type. Two data collection

approaches (DCAs) are considered; in-band and multiple-band. The over-the-air measurements for

the two DCAs show that, with low computational complexity, the proposed INN model provides an

identification accuracy between 93% and 100%, with a false alarm rate between 0% and 10%.

93



5.2 Introduction

The exponential growth in the number of wireless devices has led to rising demands for the limited

radio spectrum. Intelligent radios manage the limited available resources to provide the most efficient

communication in both commercial and military applications [1]. Intelligent radios require spectrum

awareness, where the transmitter gathers knowledge of the surrounding environment to adapt to the

environment and transmit accordingly. Automatic signal identification (ASI) is a leading technique

to achieve intelligent radios [2], [3]. The two major types of ASI algorithms are likelihood-based and

feature-based [1], [4]–[7]. The former is complex and susceptible to error due to model mismatches [3],

whereas the latter is simpler and easier to implement at the expense of reduced performance [2].

The works in [8]–[10] investigated the use of traditional machine learning (ML), such as support

vector machine, decision tree, and Naı̈ve Bayes algorithm, to identify wireless signals. When trained

with diverse and representative data, the ML classification models were more robust to various channel

distortions than likelihood-based and feature-based classification techniques. Although ML is more

costly and computationally efficient than traditional signal identification techniques, the computational

cost and time consumption of ML algorithms are still high [11]. Such complexity prevents the applica-

tion of ML algorithms to all devices or nodes in the network [12].

Deep learning (DL) is a computational paradigm that encompasses a diverse array of techniques,

including deep neural networks (DNNs), reinforcement learning, generative models, transfer learning,

unsupervised learning, and others. In the context of this work, DL refers mainly to DNNs, which uti-

lize multi-layered neural networks (NNs) aimed at extracting increasingly representative and concise

information from data, frequently achieving this while minimizing computational and time expendi-

ture. DL models need less feature engineering because of the inherent automatic feature extraction.

Consequently, DL can provide better solutions than traditional ML algorithms. DL algorithms have

been used in earlier signal identification problems, such as identifying ZigBee, WiFi, and Bluetooth

based on phase and amplitude data [13]. Other works used in identification are based on features such
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as frequency, bandwidth, and power spectral density [14]–[16]. The authors in [12] and [17] used DL

to identify the cellular signals based on synthetic raw signals. Previous works have concluded that for

synthetic data, the DL models often provide better identification performance than the traditional ML

models due to their architecture [4]. To identify cellular signals automatically in real systems, drive test

scanners rely on on demodulating/decoding RF signals, which introduces a high latency as detection

over multiple channels in a large spectrum is required. To the best of the author’s knowledge, this is the

first proposed DL framework for identifying cellular networks based on real measurements that can be

readily applied to real systems. This chapter proposes an identification neural network (INN) to iden-

tify cellular signal types based on real power spectral density (PSD) measurements without the need for

demodulation/decoding of the targeted cellular signal. The contribution of this research is summarized

as follows:

• Propose an INN model that is based on the PSD of the over-the-air measurements of cellular

networks, namely global system for mobile communications (GSM), universal mobile telecom-

munications service (UMTS), and long term evolution (LTE) system.

• The identification accuracy and false alarm (FA) rate of the proposed INN model are assessed

using two different PSD data collection approaches (DCAs): in-band and multiple-band.

• The computational complexity of the proposed INN model for different scenarios is presented.

The chapter is organized as follows: Section 5.3 introduces the system model, Section 5.4 presents

the experimental setup, Section 5.5 shows the numerical results, and Section 5.6 concludes the chapter.

5.3 Proposed Signal Identification Model

5.3.1 Model Description

The proposed INN model determines if the PSD measurement of an occupied bandwidth belongs to a

target cellular signal type or not. Fig. 5.1 shows the identification process of the proposed model, which
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includes data preprocessing and the proposed NN structure. The data preprocessing stage consists of

PSD-to-2D image mapping and reshaping. The proposed NN consists of an input layer, multiple fully

connected feed-forward (FC-FF) NN layers, and an output layer.

Figure 5.1: Proposed INN model.

PSD-to-2D Image Mapping

Consider that the measured PSD values are represented by P = {p1, p2, . . . , pF}, where pj is the PSD

value in dB at frequency bin j and F is the total number of frequency bins. To build a 2D binary image,

I, using the PSD data, the following equation is formulated:

I =
[
aij

]
H×T

, aij =



1, if i =
⌊
100(pj−ϕ)

Φ−ϕ

⌉
, 1 ≤ j ≤ T,

0, otherwise,

(5.1)

where Φ = max
1≤j≤T

{pj}, ϕ = min
1≤j≤T

{pj}, and ⌊·⌉ approximates a fractional number to the nearest

integer. H and T are the number of pixels along the height and width of the image I, respectively. Each
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I is then divided into its constituent signals, using a signal detection algorithm to determine the signal

borders [18].

Reshaping

After obtaining the dataset of the binary images, reshaping is needed to ensure that all input images

have the same size. Two reshaping methods are considered: re-sizing (RS) and zero-padding (ZP). In

RS, the input image size is scaled up or down to the desired image size, whereas in ZP, the desired

image size is achieved by padding the image edges with zeros. The reshaping method is carefully

chosen as a hyperparameter.

NN structure

The proposed NN has four different types of layers: an input layer, a flatten layer, multiple FC-FF

hidden layers, and an output layer. The input layer receives a 2D binary image, representing the PSD

measurement variation over the signal bandwidth, and inputs it to the flatten layer. The frequency bands

corresponding to the PSD measurements are not used as an input to the INN model, as a priori knowl-

edge of the spectral allocation cannot be assumed for ad-hoc deployments. The number of neurons of

the input layer is the number of pixels of the input image. The flatten layer reshapes the 2D binary

image into a 1D vector, then forwards it to the FC-FF hidden layers. The number of FC-FF hidden

layers and their sizes vary according to each scenario. Finally, the output layer contains a single neuron

that shows whether the input PSD measurement belongs to the target cellular technology or not.

The proposed NN is trained using one cellular signal type, while the testing dataset contains all the

cellular signal types that are available in the deployment location.

5.3.2 Complexity Analysis

The complexity of the proposed INN can be measured by three parameters: CP , CM , and CA, denoting

the number of weights and biases of the INN, number of real multiplications, and number of real
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additions, respectively. Since the proposed INN consists of FC-FF hidden layers, CP , CM , and CA are

respectively given as

CP =
N∑
i=1

(ηi + 1)ηi+1, (5.2)

CM =
N∑
i=1

ηiηi+1, (5.3)

and

CA =
N∑
i=1

ηiηi+1 +
N∑
i=1

ηi+1, (5.4)

where ηi and N are the number of neurons in the i-th layer and total number of layers, respectively, that

are employed in each scenario. It is worth noting that the cost of each activation function is assumed to

be one real addition. Also, the flatten layer shown in Fig. 5.1 is a reshaping layer that does not add a

computational cost.

5.4 Measurement Setup

In order to build a reliable NN with a high identification accuracy, the training dataset needs to be

accurate, variant, representative, and large enough. This section explains how the data is collected to

guarantee such conditions.

The over-the-air measurements were collected through a proprietary software defined radio receiver.

Each captured band was band-pass filtered, down-converted to intermediate frequency (IF) and filtered

to 100 MHz bandwidth, but did not have the same center frequency. The IF signals were then sampled

at 250 MSPS and converted to complex in-phase and quadrature components. 1024-point fast Fourier

transforms (FFT) were applied to complex time domain samples in a field-programmable gate array,

resulting in about 122 kHz FFT bin size. Magnitude squared FFT values were then averaged over

several frames to compose PSD estimates.

The PSDs were captured from the downlink of three different cellular bands: 850 MHz (Band 1),

1900 MHz (Band 2), and 2100 MHz (Band 3). This enhances the diversity in the data as different
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cellular bands have various path losses and multi-path delays. The number of PSD measurements for

Band 1, Band 2, and Band 3 are 931, 825 and 830, respectively. Typically, the PSD measured from

each band contains several cellular signals, as exemplified in Fig. 5.2. The measured cellular signals for

each band and their type are categorized as 2493 LTE and 1662 UMTS signals in Band 1; 2793 UMTS

and 2793 GSM signals in Band 2; 1652 LTE, 1652 UMTS, and 825 GSM signals in Band 3. In Fig.

5.2, three UMTS channels of 5 MHz each, one 20 MHz LTE channel, one 15 MHz LTE channel and a

number of GSM channels are manually marked. Note that the measurement FFT bin size of 122 kHz

is not fine enough to resolve individual GSM channels of 200 kHz separation in these PSD captures.

Figs. 5.3(a), 5.3(b) and 5.3(c) show samples of the labeled PSD-2D images of GSM, UMTS and LTE,

respectively.
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Figure 5.2: Sample PSD measurement.

In order to accurately label the measured PSD data automatically, a Rohde and Schwartz R&S®

TSME drive test scanner [18] is used to assess the accuracy of identification of the proposed INN model.

This instrument scanned all bands of interest, and the R&S® ROMES4 drive test software automatic

channel detection (ACD) tool labeled cellular spectrum as GSM, UMTS or LTE [18].
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(a) (b) (c)

Figure 5.3: PSD to 2-D of (a) GSM (b) UMTS (c) LTE.

5.5 Numerical Results

In this section, the identification performance of the proposed INN model is assessed in terms of iden-

tification accuracy and FA rate. The identification accuracy is expressed as the probability of correctly

identifying the signal within the target class. An FA happens when the algorithm identifies a PSD

measurement as belonging to the target signal type, although it does not. Finally, the output of the

proposed INN shows whether the input PSD measurement belongs to the target cellular technology or

not. Hence, the output layer contains a single neuron. The training dataset consists of 70% of the PSD

captured for each scenario, while the remaining 30% is employed for testing. The reshaping size (i.e.,

H×T ), the number of hidden layers, and their sizes are hyperparameters of the model, which change

for each scenario. The hyperparameters used in the proposed INN are as follows: the activation func-

tion is ReLU, the optimizer is Adam, the loss function is binary cross-entropy, the learning rate is 0.01,

the number of epochs is 5, and the batch size is 100. The hyperparameters were selected based on an

exhaustive trial and error search.

Tables 5.1, 5.2 and 5.3 display selected hyperparameters for the proposed INN models correspond-

ing to GSM, LTE and UMTS signals, respectively, and the performance of each INN model based on

the identification accuracy and FA rate. The first column depicts the scenario specifications (S), the

DCA, either in-band (I) or multiple-band (M), and the scenario number. In the in-band DCA, the train-

ing and test datasets are selected from the PSD measurement of one band, whereas in multiple-band
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Table 5.1: GSM performance.

S Band Layers L1/L2+ Preprocessing Accuracy FA

I,1 1 2 50/50 RS (100×140) 100% 0%

I,2 2 2 50/50 RS (100×140) 100% 0%

M 1&2 2 100/50 RS (100×200) 97% 3%

Table 5.2: LTE performance.

S Band Layers L1/L2+ Preprocessing Accuracy FA

I,1 3 2 100/50 ZP (100× 200) 97% 2%

I,2 2 2 50/50 ZP (100× 200) 99% 0%

M 2&3 2 50/200 ZP (200× 200) 97% 2%

DCA, training and test data were collected from multiple acquisition bands. The second column rep-

resents the band where the measurements were taken. The third column provides the number of NN

hidden layers, while the fourth column shows the number of neurons in each hidden layer. The first

hidden layer’s size is denoted by L1, and all subsequent hidden layers have the same size as L2+. The

fifth column presents the selected prepossessing method, whether RS or ZP along with the input image

size (H×T ). Finally, the identification accuracy and the FA rate performances are provided in the last

two columns.

Table 5.1 shows that the proposed INN model identifies the GSM signals in Band 1 (850 MHz)

and Band 2 (1900 MHz) perfectly under in-band DCA. In the multiple-band DCA, a high accuracy of

nearly 97% and a low FA rate of 3% are achieved.

Table 5.2 depicts that the INN model provides a high identification accuracy of the LTE signals

(i.e., between 97% and 99%), with low FA rates between 0% and 2%.
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Table 5.3: UMTS performance.

S Band Layers L1/L2+ Preprocessing Accuracy FA

I,1 3 3 100/50 RS (100× 140) 98% 4%

I,2 1 2 50/50 ZP (100× 100) 100% 0%

I,3 2 3 500/50 RS (300× 50)0 99% 0%

M 1, 2&3 5 50/50 RS (300× 50)0 93% 10%

The UMTS technology is used in all three bands of interest. Table 5.3 shows that the identification

accuracy of the proposed INN is high when the in-band datasets are used. UMTS signal identification

performance degrades slightly in multiple-band DCA cases, e.g., an accuracy of 97% and FA rate of

10%. This could be attributed to a more significant change in the RF propagation characteristics over

three bands (850 MHz, 1900 MHz, 2100 MHz), indicating the need for a more extensive training dataset

from these bands.

Figs. 5.4 and 5.5 present the accuracy and the FA rate of the GSM, LTE, and UMTS signal identi-

fication side-by-side, respectively. As summarized in Fig. 5.4, the proposed INN model identifies the

three cellular signals with an accuracy between 93% and 100%. Moreover, Fig. 5.5 shows that the

proposed INN model provides a low FA rate for the studied scenarios, with the maximum FA rate of

about 10% for the multiple-band DCA while targeting UMTS.

Fig. 5.6 illustrates the complexity comparison of the ten studied scenarios, in terms of CP , CA,

and CM in (2)-(4) after plugging the parameters of each scenario mentioned in Tables I-III. From this

figure, it is seen that the UMTS scenario I,3 has the highest complexity due to its corresponding INN

parameters. In particular, in comparison to other INNs, the INN for the UMTS scenario I,3 has a

significantly higher number of neurons in its first hidden layer (500 vs. 50 and 100 neurons). The

varying propagation characteristics resulting from the existence of UMTS signals in all three bands,

required a larger number of neurons, to achieve the needed identification accuracy. It is worth noting

that the proposed INN model may need a hyperparameter retuning to identify 5G cellular signals.
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5.6 Conclusion

This chapter proposed an INN model that can be appropriately adapted to identify the GSM, UMTS,

or LTE cellular signals. The performance of the proposed INN model was assessed in terms of iden-

tification accuracy, FA rate, and complexity using two DCAs of the measurements, i.e., in-band and

multiple-band. For the in-band DCA, the proposed INN identified the predetermined cellular signal

type with a minimum of 97% accuracy and a maximum of 4% FA rate. For the multiple-band DCA, the

identification accuracy of both GSM and LTE was around 97%, while the FA rates were below 3%. For

the UMTS, the identification accuracy was 93%, and the FA rate was 10%. Hence, the proposed INN

successfully identified the cellular signals when trained with both in-band and multiple-band datasets.

Most of the scenarios had comparable low complexity. The most complex scenario occured when the

three signal types coexisted in the same band. Such an arrangement required a larger NN to learn the

changes in the dataset containing the three technologies. Future work will include exploring other NN

models, multiple-class identification, and identifying other cellular signal types, including 5G signals.
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Chapter 6

Identification of Cellular Measurements:

A Neural Network Approach

6.1 Abstract

The efficient utilization of the wireless spectrum is essential to fulfill the rising demand of scarce band-

width resources. Identifying the cellular signal types occupying the spectrum allows for usage opti-

mization. Neural networks (NNs) are a promising approach for the signal identification problems. This

chapter proposes a hybrid convolutional and feedforward NN (HCFNN) that classifies the cellular sig-

nals from the power spectral density (PSD) of real measurements into their corresponding types: global

system for mobile communications, universal mobile telecommunications service, and long-term evo-

lution. The measured dataset is collected based on two acquisition modes: multiple-band and in-band

PSD acquisition modes. In the multiple-band model, the data is collected, trained and tested from vari-

ous frequency bands, while in the in-band model, the data is collected, trained and tested from a single

frequency band. The accuracy and the precision-recall metrics are used to evaluate the performance

of the proposed HCFNN model. Moreover, the complexity analysis of the model is derived in terms

of the number of real additions, real multiplications, and parameters. The extensive assessments of
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the over-the-air measurements show that the proposed HCFNN model accurately identifies the cellular

signal types in all studied scenarios.

6.2 Introduction

The introduction of the Internet of Things has boosted the demand on wireless devices over the past

years. Such growth creates an increased demand on the limited spectrum. Therefore, a need emerges

to utilize the spectrum efficiently by capitalizing on intelligent radio technologies. Intelligent radios

are used across civil and military applications [1], [2]. One of the pivotal pillars of intelligent radios

is spectrum awareness, in which the transmitter gathers information from the environment to adjust

its transmission accordingly. One of the tools of spectrum awareness is automatic signal identifica-

tion (ASI) [3]. Traditional ASI methods are based on either likelihood calculations or feature assess-

ments [2], [4], [5]. Likelihood-based ASI is cost inefficient, but susceptible to error due to possible

mismatches [6]. Feature-based ASI is faster, simpler, and more accessible; however, its performance is

sub-optimal compared to the likelihood-based methods.

Earlier research explored the application of machine learning (ML) in wireless signal identification

to identify wireless signals to overcome the limitations associated with traditional ASI methods [7]–

[15]. It was proven that when trained with diverse and representative datasets, the ML-based methods

are more robust and resilient to dynamic channel conditions than traditional ASI methods. Although the

traditional ML methods are more efficient than traditional ASI ones, their cost and time consumption

are not adequate to be executed by all devices or nodes in a network for large datasets, especially by

simpler nodes like handheld devices or sensors [16], [17]. In addition, the performance of the traditional

ML-based algorithms varies heavily based on the selected features and dataset. Hence, the traditional

ML methods depend on expert knowledge to extract the relevant features, as well as on the proper size

of the dataset.

Deep neural networks (DNNs) have been proposed to overcome the limitations of the traditional
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ML-based algorithms. DNNs are based on layering multiple shallow NNs together to enable the ex-

traction of more representative and concise information at efficient complexity and time costs. More-

over, sometimes the DNN models do not require feature engineering because of the inherent automatic

feature extraction [3]. Earlier works used DNNs in signal identification problems [18]–[23]. Some

investigated the identification of cellular signals based on features such as frequency, bandwidth, and

power spectral density (PSD) [18]–[20]. In [21], DNN was used to classify whether a signal belongs

to a certain cellular technology or not. The works in [22], [23] used a deep convolutional NN (DCNN)

to identify the cellular signals based on a synthetic raw dataset. In the DCNN, multiple convolutional

layers are stacked to form the model. A convolutional layer processes the input as regions instead of

processing it as a whole. These regions are employed to extract the essential features used to discrim-

inate between different classes. This reduces the size of the input dimension and hence simplifies the

processing.

The global system for mobile communications (GSM), universal mobile telecommunications ser-

vice (UMTS), and long-term evolution (LTE) are major mobile communication technologies that have

significantly influenced cellular networks. GSM, the pioneering digital standard, operates at frequen-

cies such as 900 MHz and 1800 MHz in Europe, Africa, and Asia, and 850 MHz and 1900 MHz in

North and South America. UMTS, also known as 3G, offers higher data rates and operates in the

700-2600 MHz frequency range. LTE, the 4G successor, achieves even higher data rates using various

frequency bands, including 700 MHz, 1800 MHz, 1900 MHz, 2100 MHz, and 2600 MHz.

In this chapter, a hybrid convolutional feedforward NN (HCFNN) is proposed to classify GSM,

UMTS, and LTE cellular signals measured over-the-air in diverse frequency bands. Two PSD acquisi-

tion modes for the measured datasets are considered; multiple-band (MB) and in-band (IB) acquisition

modes. The MB-PSD model is trained, and tested over measurements from various frequency bands,

whereas the IB-PSD model is trained and tested over measurements from a single frequency band.

The proposed HCFNN models of the two studied acquisition modes (i.e., MB-PSD and IB-PSD) are

assessed and compared in terms of identification accuracy, and precision-recall (PR) metrics. The con-
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tributions of this chapter are as follows:

1. Introduce a mapper that extracts the signal images from the PSD of the measured dataset.

2. Propose a DNN model (i.e., HCFNN model) to identify over-the-air measurements based on the

PSD signal images into one of three classes (i.e, GSM, UMTS, or LTE).

3. Propose two PSD acquisition modes (i.e., MB-PSD and IB-PSD) to study the proposed HCFNN

model.

4. Assess the accuracy of the HCFNN model in identifying cellular PSD measurements using real

measurements, evaluating both identification accuracy and PR metrics. The numerical results

demonstrate that the proposed model effectively identifies all cellular PSD measurements in the

two examined acquisition modes.

5. Derive and discuss the complexity of the proposed HCFNN model in terms of the number of real

additions, multiplications, and parameters that are required to identify the cellular signal types.

6. Compare the identification performance and complexity cost of the proposed HCFNN model

with other DNN structures, and traditional ASI methods, to verify the superiority of the proposed

HCFNN model.

The remainder of this chapter is organized as follows: Section 6.3 introduces the proposed signal

identification model, and Section 6.4 analyzes its complexity. The experimental setup and numerical

results are discussed in Section 6.5, and Section 6.6 concludes the chapter.

6.3 Proposed Signal Identification Model

The proposed HCFNN model aims to identify the cellular signals based on over-the-air PSD mea-

surements. The model, shown in Fig. 6.1, encompasses multiple stages: PSD acquisition, PSD/two-
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Fig. 6.1: Proposed HCFNN model.

dimensional (2D) image mapper, data preprocessing, and the proposed DNN structure. Each block of

the proposed HCFNN model in Fig. 6.1 is explained in detail in the following subsections.

6.3.1 PSD Acquisition

Over-the-air PSD measurements are collected from diverse frequency bands. Samples of the measured

PSD are shown in Fig. 6.2. The PSD measurements are represented as P = p1, p2, . . . , pT , where T

denotes the total number of frequency bins and pt represents the PSD value in dB at frequency bin t.

The images of signals are acquired by one of the two acquisition modes, namely MB-PSD or IB-PSD.

6.3.1.1 MB-PSD Acquisition

In MB-PSD, the dataset is gathered from all the frequency bands to train the proposed HCFNN model.

Hence, to build a model using the MB-PSD acquisition mode, readings are collected from all bands

to be used for training and testing. Within Fig. 6.2a, a representative subset of the MB-PSD dataset

is presented, showcasing three samples sourced from individual spectral bands. The comprehensive

dataset encompasses all information gleaned across all different spectral bands, serving as the primary
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Fig. 6.2: Data collection sample (a) MB-PSD (b) IB-PSD.
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corpus for training and testing the proposed HCFNN model. The well-trained HCFNN is used to

identify cellular signals from any of the frequency bands in the assembly. The proposed HCFNN

identification performance is tested using a dataset with measurements from all frequency bands.

6.3.1.2 IB-PSD Acquisition

In the context of IB-PSD, data extracted from each distinct frequency band serves as the basis for train-

ing and testing the proposed HCFNN model tailored to that specific frequency band. Consequently, the

process of model construction for a given frequency band exclusively relies on the PSD measurements

collected from that particular band alone. Fig. 6.2b presents an illustrative excerpt from the acquired

dataset of the IB-PSD at the frequency band of 2100 MHz. The graphical representation therein de-

lineates different measurements obtained from the 2100 MHz band, serving as representative samples

for the broader set of measurements to be employed in both training and testing the proposed HCFNN

in the 2100 MHz band. Hence, this approach inherently entails the development of individualized

HCFNNs for each frequency band, characterized by their unique weights and biases.

6.3.2 PSD/2D-Image Mapper

In this stage, the PSD measured values are converted to a 2-D binary image with the dimensions of 100

by 1024 that encapsulates all the data in a single PSD measurement, Gd. In Gd, all pixels are assigned a

value of zero (denoting black pixels), except for the points corresponding to the value of the PSD curve

at the calibrated scale, which are assigned the value of one (denoted by white pixels). Gd is computed

using the equation below:

Gd =
[
aty

]
H×T

, (6.1)
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where aty is given by

aty =



1, if y =
⌊
H(pt−ϕd)
Φd−ϕd

⌉
, 1 ≤ t ≤ T,

0, otherwise,

(6.2)

where d ranges from 1 to the number of acquired PSD measurements. H is the image height, assumed

to be 100, and the image width is equal to T for all Gd. Here, pt is the PSD value at bin t. Φd and

ϕd are the maximum and minimum measurement of the d-th PSD represented as Φd = max
1≤t≤T

{pt} and

ϕd = min
1≤t≤T

{pt}, respectively, and ⌊·⌉ approximates the fractional number to the nearest integer value.

6.3.3 Data Preprocessing

Each Gd is segmented into Sd windows. Sd denotes the number of signals occupying the d-th PSD

measurement. Each window, Gs, is a binary image of a single signal with a height Hs and width Ts.

The boundaries of each Gs are estimated by a commercial software that determines the frequency band

occupancy. Gs is defined as

Gs =
[
˙aty
]
Hs×Ts

, (6.3)

with

˙aty =



1, if y =
⌊H(pt−ϕd)

Φd−ϕd

⌉
, fst ≤ t ≤ fe,

0, otherwise,

(6.4)

where Hs, is the height of the window that has the same value as the image height H , while fst and fe

are the start and end frequency bins of the signal s. Each Gs has its unique image width, Ns, based on

its bandwidth occupancy, in which
∑s=Sd

s=1 Ts ≤ T . Fig. 6.3 illustrates samples Gs, for UMTS, GSM

and LTE.

It is important to note that the frequency bands associated with the PSD measurements do not

qualify as inputs for the DNN model because ad-hoc deployments cannot presume prior knowledge of
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Fig. 6.3: Samples of Gs (a) GSM (b) UMTS (c) LTE.

spectral allocation.

Since the dimensions of all Gs need to be standardized, the Gs images are resized to the same

height and width of Hin and Tin, respectively. The resizing can up-scale or down-scale Gs to match the

required dimensions, using bicubic interpolation. Since Hin and Tin affect the computational complex-

ity and identification accuracy of the proposed HCFNN model, they are considered as hyperparameters

that are properly tuned to enhance the identification accuracy and optimize the computational complex-

ity of the proposed HCFNN model.

6.3.4 Proposed HCFNN Model

DNNs in general are universal approximators composed of several hidden layers between the input and

output layers. The DNN approximates any function, v = g(u), to map the input u ∈ Rm to the output

v ∈ Rn, where Rm and Rn represent two distinct spaces of real numbers. By applying a cascade of Ω

non-linear transformations, Z, on the input u, a DNN approximates v as [24]

v ≈ ZΩ(Z(Ω−1)(...Z1(u; θ1); θZ)), (6.5)

with

Zω(u; θω)
∆
= Aω(Wωu+ bω)ω = 1, .....Ω, (6.6)

where θω
∆
= (Wω, bω) is a set of the DNN parameters, with Wω and bω as the set of weights and biases,

respectively, and Aω denotes the activation function. The weights and biases are learned through the
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training dataset using a sample set of the data with known labels [24].

In this work, a hybrid between convolutional and feedforward layers is used, namely the HCFNN

model. The proposed HCFNN model, shown in Fig. 6.1, has a 2D input image with a height ofHin and

width of Tin, followed by four hidden convolutional layers. To regularize the output of these layers and

avoid overfitting, maxpooling and dropout layers are added. A flatten layer is then used to convert the

2D matrix into a 1D array to fit the feedforward layer. Lastly, a fully connected dense (i.e., feedforward)

hidden layer after the flatten layer adds another degree of freedom to compromise between the model

identification performance and computational complexity. A final dense output layer is used to classify

the output into one of the three classes (i.e., UMTS, LTE or GSM). The details of each type of layer are

discussed below.

6.3.4.1 Convolutional Layer

The convolutional layer employs a set of filters, each of which scans the input image to identify particu-

lar features, such as edges or textures. The filters are applied via the convolution process, which entails

multiplying each filter element by a corresponding element in the input image, summing the results,

and producing a single output value.

In this procedure, the convolutional layer employs shared weights, meaning that the same set of

weights is applied to each input pixel location. Each filter examines only a small portion of the input

image at a time due to the layer’s use of local connections. This method assists the convolutional

layer in efficiently capturing the spatial features of the input image, while simultaneously reducing

the number of NN parameters [25]. Hence, it eliminates the need for manual feature engineering and

human intervention [25], [26].

The elements of the convolutional layer are the convolutional filter and activation function. Details

on these elements are presented below.

• Convolutional filter: Each convolutional layer is comprised of a number of convolutional filters.

The convolutional filter is a small-sized matrix of values (i.e., convolutional filter weights). Each
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convolutional filter has three dimensions: height, width, and depth. The height and width of

the convolutional filter must be smaller than those of the input image, whereas the depth of the

convolutional filter may be less than or equal to that of the input image. At the onset of the DNN,

the convolutional filter weights are allocated arbitrarily; they are then fine-tuned during each

training period. The tunning assists the convolutional filter in extracting significant characteristics

from the input image.

The convolution operation, depicted in Fig. 6.4a, is the primary mathematical component of the

convolutional filter. It begins by dragging the convolutional filter horizontally and vertically until

the entire image has been parsed. The stride specifies how many blocks the convolutional filter

traverses per step. Calculated concurrently is the dot product between the input image pixels and

the filter, where their respective values are multiplied and added to generate a single scalar value.

The same procedure is repeated until the entire image has been parsed. The output feature map is

the calculated dot product values. The illustration in Fig. 6.4a depicts an image of 100×50 pixels

convolved with eight filters, with the height and width of each convolutional filter being 5 and 5,

respectively (i.e., 5×5). This operation will continue the same procedure by using the output of

each convolutional layer as an input for the following layer. The convolutional layers can tune

their filters during training. Since the filters are updated during training, manual convolutional

filter creation is no longer necessary. In addition, the flexibility of the quantity and relevance of

convolutional filters is realized to extract complex features.

• Activation function: The activation function is the leading arbitrator of whether or not a neuron

is fired, given a particular input. Hence, it determines the corresponding output and employs

non-linear operations [25]. The nonlinearity of the activation functions results in a nonlinear

relationship between input and output, enabling the convolutional layer to learn complex struc-

tures. Significantly, the activation function can differentiate between various outputs, allowing

error back-propagation to train the NN. Examples of activation functions are sigmoid, tanh, recti-
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fied linear unit (ReLU), and its derivatives. In this study, the selected activation function is ReLU

because it demands a lesser computing load than other activation functions, making it preferable

for CNN. ReLU converts the input, d, values to 0 or positive by transforming all negative values

to 0, as

ReLU(d) = max(0, d). (6.7)

6.3.4.2 Regularization

Regularization is a method for appropriately fitting the loss function to the available training dataset

and avoiding overfitting or underfitting. In the proposed HCFNN model, regularization is performed in

two layers: maxpooling and dropout. Fig. 6.4b illustrates both regularization stages.

• Maxpooling: Pooling is used in NN models to reduce the dimensionality of intermediate feature

maps. Maxpooling is a form of pooling that retains the maximum value within each sub-region of

the feature map while discarding all other values. Hence, maxpooling extracts the most dominant

and significant features while eliminating irrelevant or chaotic data. Maxpooling is generally

regarded as more effective than average pooling at reducing noise and preserving the overall

shape of feature maps [27].

The mathematical formulation of maxpooling is given as

q̇ = max{Q|Q ∈ [qr]∀r ∈ {1, filter size}, (6.8)

where Q is a set representing all the pixels of the image, qr, covered by the convolutional filter

at one stride. The size of Q is directly related to the size of the convolutional filter. In Fig.

6.4a, the convolutional filter is assumed to have a size of 2×2 and a stride of two. Based on that

assumption, the convolutional filter will overlap with one color (from Fig. 6.4a) at a time. Hence,

the filter divides the image into four color-coded sets of pixels, each of which corresponds to a

distinct set. These sets are passed to the maxpooling. As shown in Fig. 6.4b the maxpooling

operation returns the utmost value of each pixel set as its output. Therefore, the scale of the
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Fig. 6.4: Illustration of (a) Convolution (b) Maxpooling and dropout.

image is reduced from sixteen to four pixels, and any noise or irrelevant features are removed.

For example, if the values of pixels q1 through q4 range from 1 to 4, the resultant q̇1 will be 4,

which is the maximum value in this set.

• Dropout: This is a regularization technique for reducing overfitting in artificial DNNs. The

term dropout refers to the random elimination of neurons during the training of an NN [27].

This compels the model to learn different independent features. The equation which represents

dropout is O = δIdo, where δ is the dropout factor determining the percentage of the remaining

data after omission, Ido is the size of the input to the dropout layer, and O is the size of of the

output. Fig. 6.4b illustrates the application of 50% dropout on a 2×2 image, reducing the image

size to 2×1. δ affects the amount of information retained, so it highly affects the performance

and optimization of the NN. Hence, δ is a hyperparameter that needs to be properly tuned.
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6.3.4.3 Flatten Layer

After learning non-linear combinations of abstract-level structures, the flatten layer creates a column

vector from the output image.

6.3.4.4 Dense Layer

Each element from the column output of the flatten layer is connected to all neurons in the dense layer,

and similarly each neuron of the dense layer is connected to the three output neurons. The type of the

input image will be determined based on the neuron with the highest probability of occurrence.

6.4 Complexity Analysis

Inference complexity, which pertains to the speed and efficiency of making predictions using a pre-

trained model, gains prominence over training complexity due to its immediate relevance in providing

timely responses. Hence, the memory complexity and computational complexity are the primary con-

tributors to the complexity cost of a DNN. The DNN memory complexity is determined by the number

of stored parameters, such as weights and biases for each layer, which are proportional to the memory

utilization of the algorithm. The memory complexity is known as parameter complexity, CP. The com-

putational complexity denotes the amount of processing power required to execute the mathematical

operations carried out by the DNN. Real multiplications, CM, and additions, CA, are the two primary

types of operations that contribute to the computational complexity. CP, CM and CA of a DNN are

calculated as the summation over the layers of the DNN. This is mathematically represented as

CP = ΣiC
P
i , (6.9)

CM = ΣiC
M
i , (6.10)

and

CA = ΣiC
A
i , (6.11)
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where CP
i , CM

i , and CA
i represent the number of parameters, real additions, and real multiplications

of the i-th layer, respectively. In the proposed HCFNN model, layer i can be either a convolutional,

regularization, or dense layer. The complexity introduced by each type of layer is presented as follows.

6.4.1 Complexity of Convolutional Layer

The complexity factors of each convolutional layer are calculated as

CP
cnni = flifwi

Fi + Fi, (6.12)

CM
cnni = flifwi

oliowi
Fi, (6.13)

and

CA
cnni = oliowi

Fi + flifwi
oliowi

Fi, (6.14)

where CP
cnni , C

M
cnni and CA

cnni are the complexity factors for parameters, real multiplications and addition

of a convolutional layer, respectively. Here, fli and fwi
are the length and width of the convolutional

filter applied in layer i, respectively, and Fi is the number of convolutional filters. oli and owi
are the

length and width of the output of the i-th layer, calculated as

oli =
⌊Ili − fli + 1

s

⌋
, (6.15)

and

owi
=

⌊Iwi
− fwi

+ 1

s

⌋
, (6.16)

where Ili and Iwi
are layer i input dimensions. For i = 1, Il1 and Iw1 are equivalent to the dimensions

of the input image. For layers starting i = 2, Ili and Iwi
are equivalent to ol(i−1)

and ow(i−1)
, respectively,

as the output of layer i− 1 is the input of layer i. Here, s is the stride of the convolutional filters.

6.4.2 Complexity of Regularization

The regularization layers do not directly contribute to CP, CM, or CA. However, the regularization

operation changes the size of the layer input going through it. Consequently, the regularization layer
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affects the complexity of the subsequent layers, by varying the size of the input of the subsequent layer.

In the proposed HFCNN model, the regularization layer operates on the output of the last convolutional

layer. Assume the size of the last convolutional layer is ocnn. Then, the size of the output of the maxpool

layer, omp, is calculated as

omp = ηocnn, (6.17)

where η is the maxpool factor and ocnn is the multiplication of oli by owi
of the last convolutional layers,

calculated using (6.15) and (6.16), respectively. fli , fwi
, and s are considered as hyperparameters.

The maxpool layer is followed by a dropout layer. The size of the output of the dropout layer is

denoted by odo, which is calculated as

odo = δomp, (6.18)

where δ is the dropout factor assigned as a hyperparameter.

The flatten layer succeeds the regularization, and transforms the 2D output from the drop out layer

to a column vector of the size odo. The flatten layer does not introduce any additional complexity, as its

sole function is to reorganize the input’s structure.

6.4.3 Complexity of Dense Layer

The complexity of the dense layer is calculated as

CP
Di

= (odo + 1)Ni, (6.19)

CM
Di

= (odo)Ni, (6.20)

and

CA
Di

= (odo)Ni +Ni, (6.21)

where the number of neurons of the dense layer is Ni.
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6.5 Experimental Setup and Results

This section describes the experimental setup used to acquire over-the-air PSD measurements for the

three cellular signal types, followed by a performance evaluation of the proposed HCFNN model in

terms of the identification accuracy and PR for both acquisition modes. The complexity cost and

identification accuracy metrics are then used to evaluate the proposed HCFNN model compared to

other DNN and ASI models.

6.5.1 Experimental Setup

A proprietary software defined radio receiver was used to gather the over-the-air measurements. The

receiver can capture RF signals within the 20-6000 MHz band with a spur free dynamic range of 70 dB

and noise figure of 10 dB in an instantaneous capture bandwidth of 100 MHz. Each captured band had

a different centre frequency and was band-pass filtered before being down-converted to intermediate

frequency (IF) and filtered to 100 MHz bandwidth. The IF signals were next converted to complex

in-phase and quadrature components by sampling them at 250 MSPS. In a field-programmable gate

array, complex time domain samples were subjected to 1024-point fast Fourier transforms (FFT), which

produced an approximate 122 kHz FFT bin size. To generate PSD estimates, magnitude squared FFT

values were then averaged over a number of frames. The SNR range of the captured data is 10 dB to 50

dB. The data were collected and exported to ASCII files to be processed in MATLAB®. MATLAB®

was then used to divide the processed PSD measurements into their constituent signals as per Section

6.3. The signal images were fed into a Python code that constructs and evaluated the proposed HCFNN

model.

Fig. 6.5 depicts a modified capture of a 1900 MHz spectrum from the ROMES software that in-

cludes the downlinks of UMTS, GSM, and LTE. The colored rectangles show the occupied areas of

the spectrum, and the grey areas show the unoccupied parts of the spectrum. Data is gathered from

four distinct frequency bands employed at different locations. The frequency bands are 900 MHz, 2100
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TABLE 6.1: Count and types of signals per frequency band.

Band
Frequency

(MHz)
GSM UMTS LTE

1 900 104 78 -

2 2100 - 1662 1662

3 1900 1652 1652 825

4 850 2793 2793 -

MHz, 1900 MHz, and 850 MHz, designated as frequency bands 1 through 4. Table 6.1 shows the num-

ber and types of signals extracted from each frequency band. Band 1 is comprised of 104 GSM signals

and 78 UMTS signals. Band 2 is composed of 1662 UMTS and 1662 LTE signals. Band 3 contains

1652 LTE, 1652 UMTS, and 825 GSM signals, while band 4 contains 2793 UMTS and 2793 GSM

signals. The measurements of the signals were used to construct balanced training and testing datasets,

with 70% for training and 30% for testing, for various scenarios. The identification accuracy and PR

metrics are used to construct and evaluate the proposed HCFNN model.

Fig. 6.5: ROMES software output.

6.5.2 Proposed HCFNN Parameters

Table 6.2 shows the parameters of the proposed HCFNN algorithm. The input image is resized to

Hin×Tin dimensions of 100×50 pixels. The input image is sent to a DCNN structure with four hidden

layers; each layer contains eight 5×5 convolutional filters. The output of the CNN is forwarded to a
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TABLE 6.2: Proposed HCFNN parameters.

Parameter Value

Input image height (Hin) 100

Input image width (Tin) 50

CNN filter size 5 × 5

Number of filters 8

Maxpool filter size 2×2

Maxpool stride (s) 2

Drop out factor (δ) 0.4

Dense layer neuroens 400

Learning rate 0.01

maxpool layer of a 2×2 convolutional filter with s = 2. Then, a dropout layer with δ = 0.4 is applied.

The output of the dropout layer is flattened, then passed to a 400 neuron dense layer through a fully

connected feedforward network. Finally, the output layer is a fully connected dense layer with three

neurons, which categorizes the input PSD signal into one of three categories representing the three

cellular signal types. The optimizer employed in this work is Adam at a learning rate of 0.01. The loss

function used is categorical-cross-entropy. The number of epochs and batch size are independently

tuned hyperparameters for each scenario. For the IB-PSD acquisition mode, the following parameters

are selected: epochs of 58, 100, 20, and 19, batch sizes of 4, 32, 500, and 10 for frequency bands 1 to

4, respectively. A batch size of 500 and 20 epochs are used for the MB-PSD acquisition mode.
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6.5.3 Results and Discussion

6.5.3.1 IB-PSD Acquisition

In the IB-PSD acquisition mode, the data from each frequency band is assessed independently of the

other frequency bands. The proposed HCFNN model is trained and tested using datasets collected from

the same frequency band.

The accuracy in identifying cellular signal types using the proposed HCFNN model with IB-PSD

acquisition mode is presented in Table 6.3. The results show that the cellular signal identification

is nearly perfect across all types for the best TensorFlow (TF) seed. To assess the robustness of the

proposed HCFNN model, training and testing are performed using 10 and 30 random TF seeds. The

identification accuracies of 10 randomly selected TF seeds are robust, with a minimum average ac-

curacy of 97.50%. Furthermore, the results indicate that the average identification accuracies of 30

randomly selected TF seeds are good, with a minimum average accuracy above 92%. The table shows

that the frequency band with the highest average identification accuracy is band 3. This is primarily

due to the diversity of the training dataset, which includes all types of data, unlike the rest of the bands

with only two cellular signal types. Thus, the ability to identify distinct characteristics is enhanced.

In order to examine the distribution of the average identification accuracy for each type across all

frequencies, the histogram of the identification accuracy is depicted in Fig. 6.6. Figs. 6 (a), (b) and

(c) show the identification accuracy values corresponding to 30 random TF seeds per band for GSM,

UMTS, and LTE, respectively. Based on Table I, GSM can be found in the frequency bands 1, 3, and 4

with 30 random TF seeds each; accordingly, GSM has 90 identification accuracy measurements. Simi-

larly, UMTS and LTE exist in four and two frequency bands, respectively. Thus, the figures showcase

a total of 90 identification accuracy measurements for GSM, 120 for UMTS, and 60 for LTE. Figs. 6

(a), (b), and (c) show that most of the random TF seeds for all cellular types provide near-perfect iden-

tification accuracy. The average identification accuracy of GSM, UMTS, and LTE across all frequency

bands for 30 random TF seeds are 97.68%, 97.04%, and 98.67%, respectively.
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Fig. 6.6: IB-PSD identification accuracy histogram of 30 random TF seeds per band (a) GSM (b) UMTS (c)

LTE.
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TABLE 6.4: Average MB-PSD identification accuracy: best seed and multiple random TF seeds.

No. Seeds GSM Accuracy UMTS Accuracy LTE Accuracy

Best seed 100% 99.90% 99.80%

10 100% 99.89% 99.76%

30 99.99% 99.88% 99.58%

6.5.3.2 MB-PSD Acquisition

In the MB-PSD acquisition model, all PSD measurements from all frequency bands are used for training

and testing. The signal identification accuracy of the best and different number of TF seeds is shown

in Table 6.4. The MB-PSD identification accuracy is nearly perfect for the 10 and 30 random TF

seeds with a minimum of 99.99%, 99.88%, and 99.58% for GSM, UMTS, and LTE, respectively, and

a maximum of 100%. For further illustration, the histogram showing the distribution of the 30 random

TF seeds for each cellular signal type is illustrated in Fig. 6.7. This figure shows that the minimum

identification accuracy of all cellular signal types for all random TF seeds is 99.17% for LTE. The

average identification accuracy of GSM, UMTS, and LTE across all frequency bands for 30 random TF

seeds is 99.99%, 99.88%, and 99.58%, respectively.

6.5.3.3 Comparison of Different Acquisition Modes

Fig. 6.8 compares the identification accuracy of various frequency bands in IB-PSD and MB-PSD, over

30 random TF seeds. This figure shows that frequency band 3 in the IB-PSD and MB-PSD acquisition

modes has the best identification accuracy for the three cellular signal types due to the diversity of the

dataset used in training.

To compare the overall performance of all cellular signal types for the IB-PSD and MB-PSD ac-

quisition modes, the average identification accuracy of each frequency band for 30 random TF seeds is

depicted in Fig. 6.9. The figure shows that the average identification accuracy of the MB-PSD model
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is around 3% better than identification accuracy of the IB-PSD model. The average identification ac-

curacy of the GSM, UMTS, and LTE is improved in the MB-PSD model by around 3%, 2%, and 1%,

respectively, compared with the same cellular signal type in the IB-PSD model. The main reason be-

hind the improved performance of the MB-PSD acquisition mode is the variety and more extensive
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Fig. 6.7: MB-PSD identification accuracy histogram of 30 random TF seeds (a) GSM (b) UMTS (c) LTE.
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Fig. 6.8: Identification accuracy of IB-PSD on each band compared to MB-PSD for 30 random TF seeds.

dataset used to train the proposed HCFNN model.

6.5.3.4 PR Performance Assessments

Other metrics than accuracy are sometimes used to evaluate the performance of the proposed HCFNN

model. PR are the most widely employed performance metrics. The following formulas respectively

illustrate the definition of PR, as

Precision =
TP

FP + TP
, (6.22)

and

Recall =
TP

FN + TP
, (6.23)

where TP , FP , and FN stand for true positive, false positive, and false negative, respectively. TP

indicates the values that are correctly identified as belonging to a particular output category, whereas
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Fig. 6.9: Average identification accuracy for MB-PSD vs. IB-PSD acquisition modes for 30 random TF seeds.

FP refers to identifying the input as belonging to a particular output category when it does not. FN

represents identifying an input as not belonging to a particular output category when it does.

The average PR values for 30 random TF seeds are presented in Table 6.5. The table shows high

PR with a minimum precision of 92.10% for the UMTS in frequency band 1, and minimum recall of

93.08% for the GSM in the frequency band 1. On the other hand, most of the PR vary from 97% to

100%. Moreover, the overall improved identification performance of the MB-PSD acquisition mode

when compared to the IB-PSD acquisition mode is also maintained when considering the PR perfor-

mance metrics.

The PR-curves for the proposed HCFNN model of the IB-PSD acquisition mode for frequency

bands 1 to 4 are shown in Figs. 6.10-6.13, respectively, while the MB-PSD acquisition mode is depicted

in Fig. 6.14. The PR curves are illustrated per TF seed, so each curve contains a plot of the best-

performing and worst-performing TF seeds out of 30 random TF seeds. In both IB-PSD and MB-PSD

acquisition modes, the best TF seed exhibits the ideal PR curve across all frequency bands for all

cellular signal types, while the worst-performing TF seed provides a near-ideal performance. This

proves the robustness of the proposed HCFNN model from the perspective of the PR metrics.
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Fig. 6.10: PR curves of the IB-PSD frequency band 1 for the best and worst seeds out of 30 random TF seeds (a)

GSM (b) UMTS.
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Fig. 6.11: PR curves of the IB-PSD frequency band 2 for the best and worst seeds out of 30 random TF seeds (a)

UMTS (b) LTE.
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Fig. 6.12: PR curves of the IB-PSD frequency band 3 for the best and worst seeds out of 30 random TF seeds

GSM, UMTS and LTE.
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Fig. 6.13: PR curves of the IB-PSD frequency band 4 for the best and worst seeds out of 30 random TF seeds (a)

GSM and (b) UMTS.
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Fig. 6.14: PR curves of the MB-PSD for the best and worst seeds out of 30 random TF seeds GSM, UMTS and

LTE.

6.5.3.5 Comparison with other Identification Models

The proposed HCFNN model is compared with a four-hidden layer DCNN with and without regulariza-

tion preprocessing. The DCNN structure with regularization is referred to as DCNNR. Furthermore,

the proposed HCFNN model is compared against two recently published signal identification models,

namely ASI [5], which employs a traditional ASI method, and DNN [21], which presents a model

based on DNN architecture. Both models are comparable to our work because they use over-the-air

signals, rather than synthetically generated signals. All models are compared in terms of complexity

and identification accuracy. The calculation of the complexity of the two DCNN structures and the

proposed HCFNN model is based on Section 6.4, and that of the complexity DNN and ASI methods is

based on [21] and [5], respectively. The result of the complexity analysis is shown in Fig. 6.15. The

identification accuracy for the IB-PSD and MB-PSD acquisition modes are shown in Fig. 6.16 and

6.17, respectively.

As depicted in Fig. 6.15, the most complex models are ASI and DNN. The proposed HCFNN model

has at least 25% improvement in complexity compared to these models per complexity factor. The

HCFNN model has a slight increase in complexity compared to the DCNN model, and the DCNNR
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model has the lowest level of complexity among all models. However, the difference in the overall

complexity between HCFNN, DCNN and DCNNR is barely perceptible. It can be seen in Fig. 6.15

that the complexity factors CM and CA are nearly similar across the three algorithms. Only for the CP

does the proposed algorithm have a higher complexity than the other two scenarios. However, the CP

values (on the order of 103) are negligible when compared to the overall complexity (on the order of

106); therefore, the big discrepancy in CP is similarly inconsequential.

For the identification accuracy, the proposed model exhibits an outstanding improvement in accu-

racy of up to 26% when compared to the traditional ASI model [5], as shown in Figs. 6.15 and 6.16.

In both IB-PSD and MB-PSD acquisition modes, the proposed HCFNN model yields impressive im-

provements in identification accuracy. These are 7%, 26%, and 10% for identifying GSM, UMTS, and

LTE signals in the former and 8%, 3%, and 11% in the latter, respectively.

When comparing the proposed HCFNN model to the DNN [21] model in terms of identification

accuracy in the IB-PSD acquisition mode, the proposed HCFNN model achieves a 2% improvement for

UMTS and a 3% enhancement for LTE. Additionally, for the MB-PSD acquisition mode, the proposed

HCFNN model has an enhanced identification accuracy of 3% for GSM and LTE, and 7% for UMTS.

This comparison unequivocally establishes the superiority of the proposed HCFNN model over

literature models in terms of identification accuracy and complexity for various signal types in both

IB-PSD and MB-PSD acquisition modes.

Following the comparison with literature models, the identification accuracy of the proposed model

is compared with other DCNN models, specifically DCNN and DCNNR. As shown in Fig. 6.16,

the average identification accuracy for HCFNN is better than that of the other models for all cellular

signal types in the IB-PSD acquisition mode with an improvement of up to 6%. For the MB-PSD,

the improvement is minimal for GSM, which is accurately identified for all models. The identification

accuracy of the UMTS improves by 2% and 1% for the HCFNN model when compared with DCNNR

and DCNN, respectively. The variation between the identification accuracy of the LTE and the GSM

for the three models is negligible.
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Consequently, the proposed HCFNN model substantiates its superiority across all alternative mod-

els, irrespective of the acquisition mode or the signal types under consideration.
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Fig. 6.15: Complexity comparison of different models.

6.6 Conclusion

In this chapter, I proposed an HCFNN model to identify the cellular signals of LTE, GSM, and UMTS.

The proposed model consists of an input layer, four convolutional hidden layers, a regularization layer,

a 400-neuron dense layer, and an output layer that classifies the input PSD signals into one of the

three cellular signal types. Two PSD acquisition modes were investigated: MB-PSD and IB-PSD

models. The training and testing datasets are collected from multiple frequency bands in the MB-PSD

acquisition mode. For IB-PSD, the proposed HCFNN model for each frequency band was trained based

only on its data. Different numbers of random TF seeds, performance metrics, and the complexity

cost were considered to assess the proposed HCFNN model. For the IB-PSD acquisition mode, the
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Fig. 6.16: Average identification accuracy of different models for the IB-PSD acquisition mode.
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Fig. 6.17: Average identification accuracy of different models for the MB-PSD acquisition mode.

identification accuracy varied from 94.33% to 100%, from 92.17% to 100%, and from 97.34% to 100%

for GSM, UMTS, and LTE, respectively, for all frequency bands. For the MB-PSD acquisition mode,
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the identification accuracy varied from 99.99% to 100%, from 99.88% to 100%, and from 99.58% to

100% for GSM, UMTS, and LTE, respectively. Furthermore, the PR of the proposed HCFNN model

varied from near-ideal performance to ideal performance for both IB-PSD and MB-PSD acquisitions.

Finally, the proposed HCFNN model was compared to different DCNN structures, and earlier DNN

model and ASI models from the literature in terms of identification accuracy and complexity. The

proposed model provided the highest identification accuracy across all the studied scenarios, with lower

complexity compared to ASI and DNN structures and with comparable complexity compared to DCNN

structures.
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Chapter 7

Identification of Cellular Signal

Measurements Using Extreme Learning

Machine

7.1 Abstract

Intelligent radios play a pivotal role in optimizing communication resources for both commercial and

military applications. Automatic signal identification (ASI) serves as a crucial component for intelli-

gent radios, with likelihood-based and feature-based ASI algorithms being conventional approaches.

Recent studies have explored the integration of machine learning (ML) algorithms for ASI, revealing

their enhanced resilience to channel distortions compared to traditional methods. This chapter proposes

the application of an extreme learning machine (ELM), a type of ML algorithm, for the identification

of cellular signals based on over-the-air measurements of power spectral density (PSD). The proposed

ELM structure is comprehensively discussed, and its complexity cost is derived in terms of real multi-

plications, real additions, and stored parameters. The proposed ELM undergoes evaluation using two

distinct datasets of PSDs to assess identification accuracy, with the first dataset utilized for hyperpa-
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rameter optimization and the second unseen dataset employed to evaluate robustness and generality.

The experimental results showcase improved performance in both accuracy and training complexity

compared to recent work in the literature.

7.2 Introduction

The rise in the number of wireless devices has elevated the demand on the scarce radio spectrum. This

has motivated the need to utilize the spectrum efficiently. Intelligent radios efficiently use commu-

nication resources for commercial and military purposes [1]. Automatic signal identification (ASI)

plays a pivotal role in intelligent radios [2], [3]. The principle ASI algorithms are likelihood-based and

feature-based, as extensively discussed in literature such as [1], [4]–[7]. The former are characterized

by their higher complexity, whereas the latter perform poorly in comparison [3] [2]. Recent research has

focused on using machine learning (ML) algorithms in ASI [8]–[14]. ML classification models demon-

strated a more robust response to various channel variations than likelihood-based and feature-based

classification strategies when trained with representative and diverse data. In earlier works [15] [16],

ML techniques, including convolutional and feedforward neural networks (NNs), were used to classify

real power spectral density (PSD) measurements into their corresponding cellular signals type. Despite

the fact that ML is more computationally efficient than classic ASI techniques, ML algorithms continue

to be regarded as resource-intensive [11]. In their training methodology, ML algorithms heavily rely on

numerical optimization and backpropagation [17]. In order to compute the error gradient for each NN

parameter, these methods necessitate lengthy training periods and costly hardware [17].

Random vector functional link (RVFL) networks were introduced and explained in [18], [19]. In

earlier times, RVFL was ambitious with regard to hardware capability. Recently, with the advancement

of hardware, it has been further developed and evaluated in [20], [21]. Using a single hidden layer and

direct connections between the input and output layers, the feedforward network RVFL bypasses the

hidden layer. The differentiating feature of the RVFL is that the hidden layer’s weights are set randomly
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and not optimized. Hence, the weights of the output layer are the sole trainable parameters. As a special

instance of the RVFL NN, the authors of [22] proposed an extreme learning machine (ELM). ELM is an

ML algorithm that belongs to the family of single-hidden layer feedforward NNs. It was introduced as a

fast and efficient learning algorithm. In ELM, the direct input-output link is disabled [23]. ELM shares

the same architecture as conventional feedforward NNs with a single hidden layer. The distinction

between them is their respective training methods. Unlike traditional NNs that require iterative training,

the ELM adopts a random initialization of the input-to-hidden layer weights and analytically determines

the output weights. This approach allows the ELM to achieve fast training speed while maintaining

good generalization performance. The ELM can be considered a linear algorithm, gaining nonlinearity

from the activation function. ELM has gained popularity in various applications due to its simplicity,

computational efficiency, excellent generalization performance at an incredibly rapid learning rate, and

ability to handle large-scale datasets [22], [24].

Cellular drive test scanners automatically identify network signals by demodulating/decoding radio

frequency (RF) signals. The need for detection across multiple channels in a broad spectrum results

in a high latency. In this chapter, the use of ELM shape-based networks is proposed to identify the

PSD measurements of cellular signals belonging to various cellular technologies, namely the universal

mobile telecommunications service (UMTS), global system for mobile communications (GSM), and

long-term evolution (LTE) system. According to the knowledge of the authors, this is the first proposal

of an ELM framework to identify real cellular signal PSD measurements that can be readily applied to

real systems. The following contributions are presented in this chapter:

• An ELM model to identify over-the-air PSD measurements automatically in real systems, specif-

ically the GSM, UMTS, and LTE cellular signal types.

• Derivation and analysis of the training and computational complexities associated with the pro-

posed ELM model that include training time, number of real multiplications, additions, and pa-

rameters necessary for the identification of cellular signals.
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• Robustness assessment of the proposed ELM model against the change in datasets by utilizing

two different datasets collected under different conditions.

• Comparison of the proposed ELM model against other existing in the literature in terms of its

complexity and identification accuracy.

The chapter is divided as follows: Section 7.3 explains the proposed ELM and system model,

Section 7.4 shows the computational complexity analysis, Section 7.5 discusses the experimental setup

and numerical results, and Section 7.6 concludes the chapter.

7.3 Proposed Signal Identification Model

Fig. 7.1: Proposed ELM identification model.
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7.3.1 Description of the ELM Model

The proposed ELM identification model is depicted in Fig. 7.1 and consists of three major stages:

measurement acquisition, pre-processing, and ELM network processing. In the subsections that follow,

I provide a detailed explanation of each stage.

7.3.2 Measurement Acquisition

Over-the-air PSD measurements are gathered from various frequency bands. Specifically, the PSD

value in decibels (dB) at a given frequency bin f is denoted as mf , where mf ∈ M. The vector M en-

compasses a single PSD measurement and is expressed as M = {m1,m2, . . . ,mF}, where F signifies

the total count of frequency bins within a single measurement. The dataset is collected separately from

each frequency band to train and test the NN identification model tailored to that band. The construc-

tion of each model relies on PSD measurements from the respective frequency band. This approach

develops a unique ELM network for each frequency band, with distinct weights and biases.

Fig. 7.2 provides an illustrative excerpt from the 2100 MHz frequency band dataset. This graphical

representation showcases distinct measurements acquired in the 2100 MHz band, which are samples

from the larger collection of PSD measurements used to train and test the proposed ELM model tailored

for that band.

7.3.3 PSD/2D Image Mapper

In this stage, an image is generated from each measured PSD using the following formula

I = [pab]IH×IW
, (7.1)

where IH represents the image height, IW denotes the image width, and pab signifies the value assigned

to the pixel located at coordinates (a, b) within the image I. Since I is a 2D binary image, each pab

assumes a binary state, either 1 or 0, based on the following criterion
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Fig. 7.2: PSD samples collected from 2100 MHz band.
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(a) (b) (c)

Fig. 7.3: Samples of Is (a) GSM (b) UMTS (c) LTE.

pab =


1, if b =

⌊
IH(ma−ϕ)

Φ−ϕ

⌉
, 1 ≤ a ≤ IW .

0, otherwise

(7.2)

In this context,ma represents the PSD value at bin a, while Φ and ϕ denote the maximum and minimum

measurements of the PSD, respectively. These are mathematically expressed as Φ = max
1≤a≤IW

{ma} and

ϕ = min
1≤a≤IW

{ma}. IH is set to 100, and IW is assigned the value F for all PSDs. All fractional

numbers are rounded to the nearest integer value using the ⌊·⌉ function. By applying this process to

each PSD measurement within the acquired dataset, an image is systematically derived to represent

each individual PSD measurement comprehensively.

7.3.4 Data Preprocessing

This subsection explains the process of extracting signal images from PSD measurement images. Let

S denote the number of signals occupying a single PSD measurement. Consequently, from each PSD

measurement, S distinct images are extracted, each representing one of the S signals. Each signal

image, denoted by Is, is defined as follows:

Is = [pac]IsH×IsW
, ∀s = 1, .., S. (7.3)

Here, IsH is selected to be equal to IH , implying that the full image height is extracted from image
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I, and IsW represents the horizontal span of the desired signal. In this chapter, the horizontal span is

determined based on automatic channel detection decisions provided by the R&S® ROMES software

[25].

Each PSD measurement is transformed into S labeled 2D binary (black and white) images, depict-

ing discrete PSD measurements of individual cellular signals and corresponding labels. A sample of

these input 2D binary images is depicted in Fig. 7.3. All these images from all PSDs are then gathered

for input to the proposed ELM network. All the input 2D images need to have a standard height and

width; this resizing process involves upscaling or downscaling the dimensions of IsW and IsH using

bicubic interpolation. Since the dimensions of the input images substantially affect the computational

complexity and classification accuracy of the proposed ELM model, they are amongst the finely tuned

hyperparameters. It is essential to emphasize that because it is implausible to assume prior knowledge

of spectrum allocation for ad-hoc deployments, the proposed ELM model does not use the occupied

frequency bins and bandwidths as input data.

7.3.5 Proposed Extreme Learning Machine (ELM) Model

ELMs are a novel type of NN with distinct characteristics compared to conventional NNs. ELMs

are single-hidden layer feedforward NN algorithms for supervised learning proposed in [24]. ELM is

adequate for various tasks, including regression, classification, and clustering [26]. In this section, the

ELM methodology is elucidated.

7.3.6 Architecture of ELM

ELMs have gained prominence in machine learning due to their distinctive architecture and efficient

learning capabilities. This section shows the structural elements that differentiate them from conven-

tional NNs. Central to the design of ELMs is a three-tiered architectural framework comprising the

input layer, fully connected hidden layer, and output layer [20], [21]. Each layer serves a pivotal role
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in facilitating the network’s operations, that is detailed as follows:

7.3.6.1 Input Layer

The input layer is the point of ingress for data. The network receives data as a feature vector conven-

tionally denoted as x. This vector embodies the attributes or features characterizing the input data,

and its dimensionality symbolized as k, corresponds to the number of these distinctive features. The

primary responsibility of the input layer resides in preprocessing and normalizing the incoming data,

ensuring it is optimally conditioned for subsequent processing stages.

7.3.6.2 Hidden Layer

The hidden layer serves as the central component in the ELM architecture, acting as the focal point

of computational operations. An array of hidden neurons populates this tier, each endowed with in-

dependently and randomly initialized weights and biases [20], [21]. The weight matrix, W, is the

intermediary, establishing connections between the input layer and these hidden neurons; W ∈ R

{k × j}, wherein j represents the number of hidden neurons. The output of the hidden layer, H, is

expressed as

H = σ(xW + ζ), (7.4)

where ζ represents the biases intrinsic to each hidden neuron, while σ delineates an activation function

applied element-wise to the input. The hidden layer is highly regarded for its capability to capture

intricate data patterns and representations with enhanced computational efficiency.

7.3.6.3 Output Layer

The final layer in the ELM architectural framework is the output layer, where predictions are generated

based on the information assimilated and processed within the hidden layer. In contrast to the hidden

layer, wherein weights are randomly initialized, the output layer features weights calibrated during the
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training regimen. For regression tasks, wherein the primary objective is the estimation of continuous

values, the target outputs are denoted as Y. In scenarios demanding classification, entailing the cate-

gorization of input data into discrete classes, Y∈ R {j × d}, where d conveys the number of output

neurons. The derivation of output predictions, denoted as O, is expressed as

O = Hγ. (7.5)

Herein, γ embodies the weight coefficients connecting the hidden and output layers. These weights

undergo dynamic adjustments during the training stage, wherein the cardinal aspiration minimizes pre-

diction errors, enhancing the model’s predictive accuracy.

7.3.6.4 Training and Weight Calculation

In machine learning, ELMs stand out as a unique and efficient paradigm, notably for their unconven-

tional approach to weight assignment and training. This subsection delves into the intricate details

of the ELMs’ training process and weight calculation, elucidating the reasons behind their distinctive

characteristics.

• Distinctive Weight Initialization

ELMs fundamentally differ from traditional NNs in their weight initialization strategy. Rather

than iteratively fine-tuning weights and biases between the input and hidden layers, ELMs opt

for a radically different approach: random weight assignment. This departure from convention is

a hallmark of ELMs and underpins their efficiency.

The motivation behind random weight assignment is to expedite the learning process and enhance

convergence. In contrast to traditional NNs, where weights are meticulously adjusted during

training, ELMs delegate the initial weight assignment to randomness. This strategy dramatically

reduces the computational burden typically associated with weight fine-tuning, enabling ELMs

to process data swiftly.
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• Learning the output layer weights

While ELMs embrace randomization in the input-to-hidden layer connections, they are not en-

tirely devoid of learning. The essence of learning in the ELMs lies in determining the optimal

output layer weights, γ. These weights are the key to translating the representations learned in

the hidden layer into meaningful predictions.

To find the optimal γ, ELMs employ a linear regression technique. The objective is to minimize

the disparity between the predicted outputs O and desired outputs Y. This process is akin to

fitting a linear model that best captures the relationship between the hidden layer’s activation and

the target outputs. The linear regression problem can be formulated as

γ = H†Y, (7.6)

where H† represents the pseudoinverse of the hidden layer matrix H. The pseudoinverse is a

mathematical construct that provides a least-squares solution to the linear regression problem.

It enables the efficient calculation of γ without the need for backpropagation optimization algo-

rithms, even for high-dimensional datasets.

The architectural design of ELMs embodies simplicity, rapid convergence, and an effective learning

process. This unconventional NN framework, marked by the utilization of randomly assigned weights

in the hidden layer and a linear regression-based approach for output layer training, has positioned

ELMs as powerful tools across various domains within the field of machine learning. ELM’s distinctive

approach to machine learning comes with its own set of advantages, including:

1. Rapid Training Process: One of the primary advantages of the ELMs is their speed in the

training phase. The random weight initialization and the use of linear regression for output layer

weight calculation allow ELMs to train significantly faster than traditional NNs. This speed is

particularly advantageous when dealing with real-time large datasets applications.
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2. Efficiency: ELMs are highly efficient regarding computational resources. The utilization of

the Moore-Penrose pseudoinverse for calculating output layer weights eliminates the need for

iterative optimization algorithms, making ELMs well-suited for high-dimensional datasets.

3. Simplicity: ELMs have a simple architecture since they contain a single feedforward hidden

layer. Thus, they are easy to implement and require minimal hyperparameter tuning, making

them accessible to both researchers and practitioners in the field of machine learning.

4. Generalization: ELMs often exhibit good generalization performance, which means they can

perform well on unseen datasets. This is especially valuable in scenarios where the availability

of labelled datasets is limited.

5. Robustness: ELMs are robust to noisy datasets and can handle situations where the hidden layer

may not be full rank. This robustness is a result of the pseudoinverse-based approach of the

weight calculation.

7.4 Computational Complexity Analysis of the Proposed ELM

In the realm of ML, a fundamental aspect of assessing the suitability of a model for practical applica-

tions is understanding its computational complexity. This evaluation provides insights into the compu-

tational demands, resource requirements, and efficiency of the model. In the case of the proposed ELM,

the computational complexity is assessed by examining parameters such as the number of weights and

biases CP, the total number of real multiplications CM, and the overall number of real additions CA.

7.4.1 Parameter Complexity (CP)

The parameter complexity, denoted as CP, considers the total number of weights and biases involved

in the ELM network. These weights and biases are crucial elements of the NN complexity as they
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determine the ability of the model to capture and represent complex relationships within the dataset. In

the proposed ELM, CP can be given as

CP =
N∑
i=1

(ηi + 1)ηi+1, (7.7)

where ηi represents the number of neurons in the i-th layer of the ELM network. The term (ηi +1)ηi+1

signifies the product of the number of neurons in layers i and i + 1. The summation extends over all

layers of the ELM, including the input and output layers. In the context of an ELM model, the value of

N is equal to 3.

7.4.2 Real Multiplication Complexity (CM)

The multiplication count, represented as CM, quantifies the total number of real multiplications carried

out during the execution of the ELM network. Multiplications are computationally expensive opera-

tions, and their count is an essential factor in assessing the computing time complexity of the model.

To compute CM, a similar principle is applied as in CP as

CM =
N∑
i=1

ηiηi+1. (7.8)

7.4.3 Real Addition Complexity (CA)

The addition complexity, denoted as CA, provides insights into the total number of real additions per-

formed in the ELM network. While additions are generally less computationally intensive than multi-

plications, they still contribute to the overall time complexity of the proposed ELM model. The formula

for CA encompasses two components: First, it includes the sum of products of the number of neurons

in each layer i and the number of neurons in the subsequent layer i+1. Second, it accounts for the sum

of neurons in the subsequent layer i+ 1. Thus, CA can be given as
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CA =
N∑
i=1

ηiηi+1 +
N∑
i=1

ηi+1. (7.9)

The complexity metrics (i.e., CP, CM, and CA) offer a comprehensive evaluation of the compu-

tational demands and efficiency of the proposed ELM model. CP provides insights into the memory

requirements, while CM and CA reflect the computational time and hardware cost for the NN opera-

tions.

7.5 Experimental Setup and Numerical Results

In this section, the designated hyperparameters of the proposed ELM model are presented, accom-

panied by an examination of the impact of varying the neurons within the proposed ELM model on

identification accuracy. The evaluation of the proposed ELM model is conducted with respect to the

identification accuracy on two datasets, referred to as DS1 and DS2. Additionally, the efficacy of the

ELM model is substantiated through a comparative analysis with the most accurate findings in the

existing literature.

7.5.1 Experimental Setup

A proprietary software-defined radio receiver is employed to collect over-the-air PSD measurements.

This receiver operates in the 20–6000 MHz region and can pick up RF signals with a spur-free dynamic

range of 70 dB and a noise figure of 10 dB. 100 MHz is the instantaneous capture bandwidth. Prior

to being filtered to a 100 MHz bandwidth, the gathered frequency bands undergo band-pass filtering,

followed by down-conversion to an intermediate frequency (IF). Each band has its own unique centre

frequency.

Two independent datasets, DS1 and DS2, are collected. The two datasets were obtained under dis-

parate conditions due to being collected several years apart. Consequently, they represent two entirely

distinct datasets, albeit encompassing the same frequency bands. For DS1, the data collection is com-
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piled from four separate bands of frequencies that are used in various regions; these bands are numbered

1 through 4, and their corresponding frequencies are 900 MHz, 2100 MHz, 1900 MHz, and 850 MHz.

Band 1 includes 104 PSD signal measurements of GSM and 78 PSD signal measurements of UMTS.

Band 2 comprises 1662 PSD signal measurements of UMTS and 2493 PSD signal measurements of

LTE. Band 3 encompasses 1652 LTE PSD signal measurements, 1652 PSD signal measurements of

UMTS, and 825 PSD signal measurements of GSM. Band 4 includes 2793 PSD signal measurements

of UMTS and 2793 PSD signal measurements of GSM. DS2 is available for bands 2-4, with band 2

containing 5696 UMTS PSD signal measurements and 8544 LTE PSD signal measurements, band 3

having 3454 LTE PSD signal measurements, 3454 UMTS PSD signal measurements, and 1727 GSM

PSD signal measurements, and band 4 consisting of 2688 UMTS PSD signal measurements and 2688

GSM signal measurements. The acquired PSD signal measurements are utilized to build balanced

training and testing datasets with 70% used for training and 30% assigned for testing. Subsequently,

collected datasets are exported to ASCII (American standard code for information interchange) files

for processing in MATLAB software. The processed PSD measurements are broken down into their

individual cellular signals using MATLAB, in accordance with the procedure described in Section 7.3.

After that, the images of the signal measurements are sent into a Python code that builds and evaluates

the proposed ELM model.

By utilizing the R&S® TSME drive test scanner tool and ROMES software with its automated chan-

nel detection feature, accurate labels of PSD measurements of cellular signals across various cellular

bands can be acquired for further applications in both training and testing scenarios of the proposed

ELM model.

7.5.2 Proposed ELM Model Hyperparameters

The rectified linear unit (ReLU) activation function, denoted as σ, introduces non-linearity into the

model, thereby enhancing its expressive capabilities. The selection of the input random distribution

contributes to the model’s ability to capture intricate data patterns and relationships effectively. In the
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Fig. 7.4: The effect of varying the number of hidden neurons in DS1 on: (a) Band 1 (b) Band 2 (c) Band 3 (4)

Band 4.
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proposed ELM model, a Beta distribution with α = 1 and β = 3 is chosen to initialize the weights and

biases within the network. The dimensions of the input images are adjusted to be 100 by 30 pixels. It

is noteworthy that the hyperparameters of the proposed ELM are exclusively optimized using the DS1

dataset. Subsequently, the DS2 dataset is employed to assess the generalization and robustness of the

proposed ELM model under the conditions where the hyperparameters have been optimized using DS1.

The determination of the number of hidden neurons holds a pivotal role in shaping the capacity

and learning capability of the ELM model. Treated as a hyperparameter, the number of hidden nodes

undergoes meticulous tuning, allowing for the optimization of the overall performance of the ELM

network. This tuning process aims to strike a balance between model complexity and the acquisition

of generalization abilities. A detailed discussion on tuning the number of hidden neurons is presented

in the following subsection.

7.5.3 Optimizing Hidden Neurons of the Proposed ELM Model

In this subsection, a systematic variation of the number of hidden neurons was executed to optimize

the performance (i.e., the identification accuracy and computational complexity) of the proposed ELM

model across different frequency bands within DS1.

Fig. 7.4 depicts the relation between the number of hidden neurons and the identification accu-

racy for each frequency band. Notably, for band 1, the identification accuracy reached 100% across

all cellular signal types with the utilization of 500 hidden neurons. Regarding bands 2 and 3, the ac-

curacy approached 100% when the number of hidden neurons reached approximately 4000, although

satisfactory accuracy levels were maintained at around 1000 hidden neurons for both bands. Band 4

demonstrated stability at 1000 hidden neurons. In the proposed ELM model, a nuanced selection of

1130 hidden neurons was made through meticulous fine-tuning, aiming to achieve optimal accuracy

with minimal complexity, considering the increment in the number of neurons.
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7.5.4 Assessing the Proposed ELM Model using DS1: Hyperparameters’ Selec-

tion Assessment

TABLE 7.1: Identification accuracy of the proposed ELM model DS1.

Band Accuracy UMTS Accuracy GSM Accuracy LTE Avg. accuracy

1 100% 100% - 100%

2 99.7% - 99.4% 99.6%

3 99.2% 99.6% 99.8% 99.6%

4 100% 100% - 100%

Table 7.1 presents a comprehensive overview of the experimental findings derived from DS1 dataset

using the proposed ELM model with hyperparameters optimized based on DS1. The table offers de-

tailed insights into the average identification accuracy percentages for UMTS, GSM, and LTE cellular

signals. The proposed ELM model attains an identification accuracy of 100% for bands 1 and 4. Bands

2 and 3 consistently exhibit near-perfect identification accuracy percentages, consistently surpassing

99.2%. The proposed ELM model demonstrates exceptional accuracy, achieving 99.9%, 99.7%, and

99.6% identification accuracy for GSM, UMTS, and LTE, respectively. The outcomes obtained from

the proposed ELM model underscore its efficacy in discerning various cellular communication tech-

nologies.

To visualize the proposed ELM model’s performance, Fig. 7.5 presents the confusion matrices

across all frequency bands. A confusion matrix succinctly evaluates the accuracy and error character-

istics of a classification model by quantifying true positives, true negatives, false positives, and false

negatives. It serves as a pivotal tool for assessing the proficiency of the proposed model in distinguish-

ing distinct classes within a dataset. The results indicate that the proposed ELM model achieves a

perfect confusion matrix with negligible occurrences of false negatives and false positives, accurately
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Fig. 7.5: Normalized confusion matrices for different bands in DS1.

identifying all true positives and true negatives.

7.5.5 Assessing the Proposed ELM Model using DS2: Generalization and Ro-

bustness Assessment

To further assess the generality and robustness of the proposed ELM model, the same model is ap-

plied, without re-tuning, to an unseen DS2 dataset. It is crucial to emphasize that the DS1 and DS2

datasets were obtained under distinct conditions, as mentioned previously. The identification accuracy

results are summarized in Table 7.2. Remarkably, when the dataset was utilized in conjunction with the

generalized ELM model structure, all cellular technologies achieved an average identification accuracy

exceeding of 92%. The minimum identification accuracy achieved is 90.1% for UMTS in band 3.
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Fig. 7.6 displays the confusion matrix of the proposed ELM model for DS2. The confusion ma-

trix reveals that GSM is never confused with LTE, and vice versa. Furthermore, it indicates that any

confusion that occurs is minimal despite the proposed ELM model not being trained on this dataset at

all. This outcome underscores the model’s capability to maintain high identification accuracy even in

situations where stationary data collection is not feasible, and fine-tuning the proposed ELM model for

specific scenarios is not a possibility. These results demonstrate the robustness and practical applica-

bility of the proposed ELM algorithm in real-world wireless communication systems.

TABLE 7.2: Identification accuracy ELM for DS2.

Band Accuracy UMTS Accuracy GSM Accuracy LTE Avg. accuracy

2 96.6% - 96.3% 96.5%

3 90.1% 90.9% 97.4% 92.8%

4 98.8% 91.1% - 94.9%

7.5.6 Assessing the Proposed ELM Model Compared to Literature

In the existing literature, a hybrid convolutional feedforward neural network (HCFNN) model was

introduced in [16] as a solution for identifying GSM, UMTS, and LTE cellular signals from images.

The HCFNN model represents a hybrid architecture incorporating multiple convolutional layers and a

feedforward neural network. Maxpooling and dropout techniques are also applied within the network.

The identification accuracy of the HCFNN model was benchmarked against several earlier works in the

literature, including [6] and [15]. The HCFNN model demonstrated its superiority over other proposed

models in the literature. A comparative analysis of the performance of the proposed ELM model with

the HCFNN model [16], reported as one of the most efficient and accurate models in the literature, is

conducted in this section.

Fig. 7.7(a) visually illustrates the comparison of identification accuracy between the proposed ELM
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Fig. 7.6: Normalized confusion matrices for different bands in DS2.
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model and the HCFNN model in [16], focusing on the accuracy of identifying cellular PSD measure-

ments in the DS1 dataset. This figure demonstrates that the proposed ELM model consistently achieves

superior identification accuracy across different cellular technologies. Specifically, the proposed ELM

outperforms HCFNN with an improvement in the identification accuracy of 3%, 2%, and 1% for UMTS,

GSM, and LTE, respectively, resulting in an average accuracy improvement of 2%. Fig. 7.7(b) further

reveals that the HCFNN model encounters challenges when identifying cellular technologies with the

unseen dataset of DS2. In this context, the proposed ELM model’s accuracy improvement over the

HCFNN model increases to 8%, 1%, and 3% for UMTS, GSM, and LTE, respectively, providing an

average accuracy improvement of 4%. In conclusion, Fig. 7.7 highlights that the proposed ELM model

not only exhibits better identification accuracy compared to the most efficient model in the literature

but also demonstrates enhanced robustness and generalization capabilities for unseen datasets.

The comparison of the complexity between the proposed ELM model and the HCFNN model in

[16] is presented in Fig. 7.8. The complexity assessment is divided into two components: the time

complexity consumed in the training phase (i.e., the time to learn the neural network model), and the

complexity cost for the testing phase (i.e., CP , CM , and CA as in (7.7)-(7.9)). As depicted in Fig. 7.8(a),

the training time complexity of the proposed ELM is 7.5 times less than the training complexity of the

HCFNN. For the testing complexity cost, the proposed ELM model exhibits similar values to HCFNN

for CM and CA, but it shows a higher number of required parameters, CP , as shown in Fig. 7.8(b).

In light of this comparative analysis, it becomes evident that the proposed ELM model consistently

outperforms the HCFNN model across different situations, offering superior identification accuracy

and significantly reduced training time, albeit with a slight increase in the number of stored parameters

required for testing.
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7.6 Conclusion

In response to the escalating demand for efficient spectrum utilization due to the proliferation of wire-

less devices, this study proposes an ELM model for the identification of real PSD measurements in

cellular systems, including LTE, UMTS, and GSM. The hyperparameters of the ELM model are rig-

orously optimized using the DS1 dataset, while the unexplored DS2 dataset is employed to assess the

model’s robustness and generality. An evaluation based on the derived complexity cost and experimen-

tal results demonstrates the proposed ELM model’s remarkable performance, achieving nearly 100%

identification accuracy for all cellular signal types. Additionally, the proposed ELM model undergoes

a comparative analysis with the most efficient model in the literature, namely the HCFNN model. This

comparison encompasses both DS1 and DS2 datasets, with DS1 contributing to the model’s develop-

ment and DS2 representing an unseen dataset. Remarkably, the proposed ELM model, with a training

time complexity 7.5 times less than the HCFNN model, exhibits notable superiority across all cellular

technologies, yielding an improvement in the identification accuracy ranging from 1% to 8%.
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Chapter 8

Conclusion and Future Research

In this chapter, the contributions of this thesis are presented and several potential directions for future

research are discussed.

8.1 Contributions

This work focused on improving the performance of UWA networks and terrestrial networks through

using advanced techniques. In Chapters 2 and 3, the integration of FD and NOMA into a UWA network

is studied. Specifically, in Chapter 2, FD and NOMA were applied on a UWA, and mathematical

optimization was used to maximize the sum rate and energy efficiency. Specifically, in Chapter 3, the

effect of a cyber attack by an Eve on an UWA system was explored when applying FD and NOMA. Two

scenarios were analyzed: Eve’s CI was known and unknown. A power allocation problem optimized

the secrecy sum rate, highlighting the system resilience against Eve’s attacks.

In Chapters 4-7, cellular network signal identification from over-the-air measurements is studied.

The terrestrial communication technologies in the study were GSM, UMTS, and LTE. Specifically, in

Chapter 4, two algorithms were proposed, namely a signal detection algorithm and a signal identifi-

cation algorithm. The signal detection algorithm detects 100% of the signals in the data set, and the

identification algorithm identifies more than 90% of the signals with their correct types. Chapters 5-7
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focused on using different ML models to identify cellular signals. The acquisition models utilized for

the data fall into two categories: in-band (IB) PSD and multi-band (MB) PSD. In the IB approach, the

data employed for model training and testing originates from a single band. On the other hand, in the

MB approach, the data used for training and testing was gathered from multiple bands. Chapter 5 used

a feedforward neural network to identify whether a measured signal belongs to a specific cellular type.

The identification accuracy was above 94% for all scenarios. In Chapter 6, the proposed hybrid convo-

lutional feedforward neural network model was used to identify the measured signals with an accuracy

above 92% for IB-PSD scenarios and above 99.5% for MB-PSD scenarios. In Chapter 7, ELM was

applied to improve the average identification accuracy of IB-PSD to 99.9% 99.7% and 99.6% for GSM,

UMTS, and LTE, respectively. Also, the ELM model proved to be more robust against measurement

changes.

8.2 Potential Avenues for Future Research

In this thesis, enhancement of the spectral efficiency and security aspects across various strata of forth-

coming 6G networks are examined. The research presented herein serves as a foundation for prospec-

tive investigations, pointing toward several promising directions:

• Enhanced Underwater Network Modeling: The current underwater network model can be further

enriched by incorporating more sensors and robotic arms. This augmentation extends the model’s

reach and coverage, enhancing its effectiveness in capturing underwater data and facilitating a

broader range of real-world applications.

The current underwater network model can be further enriched by incorporating renewable en-

ergy sources to power sensor networks, enhancing their sustainability and autonomy. This ad-

dition expands the model’s applicability to real-world scenarios by ensuring continuous power

supply to underwater nodes, thereby increasing resilience and extending operational lifespan in

remote or environmentally sensitive regions.
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• Integration of Underwater Technologies: Explore the feasibility of integrating multiple under-

water technologies. For instance, the potential synergy between acoustic links connecting relays

and nodes and optical links between relays and buoys could be examined.

• Security Against Multi-Faceted Threats: Investigate the robustness of the underwater system

against diverse security threats, such as multiple jammers and active eavesdroppers, to fortify its

resilience in practical deployment.

• Integration with Unmanned Aerial Vehicles (UAVs): Assess the inclusion of UAVs in the network

architecture, aiming to integrate underwater networks with terrestrial counterparts seamlessly.

• Power Optimization using Machine Learning: Optimize the sum rate and secrecy sum rate in re-

lation to power consumption by leveraging advanced ML models, such as reinforcement learning

tools.

• A more complicated model with code-domain NOMA and/or decode and forward relay can be

studied.

• Expansion of Signal Identification: Broaden the scope of signal identification datasets by incor-

porating 5G signals, facilitating the adaptation of identification techniques for future network

configurations.

• Different training and test data splits can be used to evaluate the algorithms in Chapters 5-7.

• The raw data from the PSD can be used without conversion to an image.

• Cross-Domain Signal Identification: Extend the signal identification methodologies developed

for terrestrial communications to the domain of underwater signal processing, exploring their

adaptability and effectiveness in diverse environments.

The directions mentioned above aim to build upon the foundations of this thesis, offering ample

opportunities for further exploration and advancement in the realm of 6G network optimization and
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