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Abstract

Climate change rapidly drives species range dynamics, prompting many terrestrial

organisms to shift northward to higher latitudes and forcing new species-environment and

species-species interactions. The tick vector Ixodes scapularis, commonly known as the

blacklegged tick, has historically been endemic to the United States but is establishing a

persistent population in Canada, potentially exposing people to a novel zoonotic pathogen,

Borrelia burgdorferi, the causative agent of Lyme disease. The collection of tick records (within

Canada and the United States) between 2017 and 2022 via citizen-/community-science programs

and the usage of high-resolution 1km climate data enabled me to produce robust, ensemble

ecological niche models. I carried out 4,704 model iterations across two datasets, 12 algorithms,

and 10 climate profiles using 40 environmental variables. I extrapolated select models over three

time periods, 2011-2040, 2041-2070, and 2071-2100, across two projected climate scenarios,

SSP5-8.5 and SSP3-7.0, incorporating 2,094 future predictions of I. scapularis distribution. My

ensembles (AUC: 0.9565 ± 0.0065; TSS: 0.8435 ± 0.0155; Kappa: 0.819 ± 0.014) identified

temperature, precipitation, biomass production (NPP), length of the growing season, climate

moisture index, and the number of yearly degree days as the variables that best explained the

distribution of I. scapularis. Further changes to these climate conditions will result in continued

I. scapularis range expansion, with estimates ranging from ~205% (409,475 km2 to 1,247,689

km2) up to ~248% (447,532 km2 to 1,556,760 km2) before the end of the century. These

distributional niche changes coincide with a northern latitude limit reaching as far as ~48°N by

2040, ~50°N by 2070, and ~52°N by 2100. These findings highlight the invasive potential of I.

scapularis, with implications for public health and changing ecosystem dynamics.

ii



General Summary

Climate change is causing various species to migrate northward. Among them is the

blacklegged tick (Ixodes scapularis), notorious for transmitting Lyme disease. The continuous

intrusion of this tick into Canada poses a significant threat. Using environmental data and

documented blacklegged tick sightings; I have developed predictive models to identify the most

suitable habitats for the blacklegged tick in Canada now and in the foreseeable future. My

research highlights that the temperature, precipitation, plant density, moisture levels, and

prolonged warmth of a location are key factors for determining where the blacklegged tick can

live. As climate change alters these factors, the suitable habitat for the blacklegged tick in

Canada is projected to expand more than threefold by 2100. Additionally, their range is expected

to extend an additional 4°N.
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Chapter 1: Literature Review

Introduction

Since the pre-industrial period, there has been a 1.1°C increase in the temperature of the

Earth's biosphere. Without intervention, an additional 2°C to 5°C of warming is expected within

the 21st century (Harvey et al., 2022). This warming will produce compounding effects,

impacting various environmental, ecological, socio-economic, and socio-political components

(Abbass et al., 2022). Many ecosystems (e.g., terrestrial, coastal, freshwater, etc.) are

experiencing significant and potentially irreversible changes (IPCC, 2023); many local plant and

animal species are threatened with extinction, spearheaded by climate changes (Parmesan et al.,

2022). Close to half of the species assessed within the IPCC Sixth Assessment Report (AR6)

have moved to higher elevations and farther toward the poles (2023). Many species cannot adapt

quickly enough in response to the rapid onset of climate change (IPCC, 2023). These rapid

changes are driving changes in species' biology with implications for their physiology, which

ultimately dictates phenology (timing of life events, e.g., spring emergence), body size, fitness,

and changing species distributions – universal species responses to climate change (McCauley &

Mabry, 2011). Species range shifts, for example, could indicate that a species is declining, as is

often the case for rare species with a specific suite of ecological niche requirements. Similarly,

species with broad thermal limits or ecological requirements (e.g., many pest species) are

capable of rapidly expanding their range (Lancaster, 2016). Range expansion could affect novel

species interactions, with implications for ecology, economics and human health (Alexander et

al., 2015; Gilman et al., 2010; Wikel, 2018).

1



Due to their physiology being mediated by the external environment, terrestrial

arthropods (e.g., spiders, insects, mites) respond readily to environmental change (Harrison et al.,

2012). As such, terrestrial arthropods exhibit significant rapid changes in response to climate

change, including shifts in phenology, body size and range (e.g., Bowden et al., 2015; Levi et al.,

2015; Porretta et al., 2013). Humans are especially concerned with arthropods that could

significantly impact the ecology of the landscape, economies and human health as a result of

changes to species distributions. Arthropods that can transmit zoonotic pathogens, such as ticks,

rapidly respond to warmer climates by increasing locally in abundance via more favourable

climates (Ogden et al., 2021), expanding their range northward (Porretta et al., 2013), and

advancing their phenology (Levi et al., 2015).

Ixodes scapularis, commonly known as the blacklegged tick (or deer tick), is of growing

concern in Canada from a macroecological and epidemiological perspective. While capable of

spreading seven human pathogens (Eisen & Eisen, 2018), I. scapularis is the primary vector for

the spirochete bacterium Borrelia burgdorferi, the etiological microbe responsible for borreliosis

(i.e., Lyme disease; Belli et al., 2017). Lyme borreliosis is the most common vector-borne

infectious disease in North America (Levi, 2015), responsible for over 300,000 cases annually in

the United States (Talbot et al., 2019). Transmitted via tick bites, early symptoms of Lyme

disease may consist of a characteristic skin rash (i.e., erythema migrans), fever, chills,

musculoskeletal aches, fatigue, headaches, and swollen lymph nodes (Centers for Disease

Control and Prevention [CDC], 2022). If left untreated, the infection can spread, exacerbating

previous symptoms or introducing new acute ones, namely swelling of the central nervous

system, heart or eye complications, cognitive impairment, facial paralysis, nerve damage,

arthritis, and, in rare cases, death (CDC, 2022).
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In North America, I. scapularis has historically been endemic to the eastern United States

(Its close relative, Ixodes pacificus, or the western blacklegged tick, is primarily distributed

within the Pacific U.S.; Eisen et al., 2016a). However, climate change is pushing the

geographical limits of I. scapularis northward into Canada. Areas once considered unsuitable are

becoming viable habitats for establishing sustained populations (Slatculescu et al., 2020). I.

scapularis sightings have been reported across various Canadian provinces. Southern Ontario,

Quebec, and Nova Scotia stand out as the most heavily infested and expanding regions, while

populations also inhabit New Brunswick and Manitoba (Chilton et al., 2020; eTick, 2023;

iNaturalist, 2023). In addition, I. scapularis has been sighted sporadically in insular

Newfoundland and Labrador (NL), Prince Edward Island (PEI), and lower Saskatchewan (eTick,

2023; iNaturalist, 2023).

Over the past 70 years, species have moved approximately 17 (±3) km per year towards

higher latitudes due to climate change (IPCC, 2021a).. This shift has enabled many tick

host-species ranges to extend northward, leading to spatial diffusion from present tick localities

(Morrill, 1988). The leading edge of I. scapularis’ range is expanding nearly three times as fast

as the average species, at ~48 (±2) km/year (Clow et al., 2017; Talbot et al., 2019). Terrestrial

animals, such as deer and smaller mammals, are capable of transporting ticks shorter distances,

while birds are the leading cause of long-range expansion (Halsey et al., 2018; Keirans et al.,

1996). The rising population of both I. scapularis and infected hosts/carriers in Canada has

corresponded with an increased number of human Lyme disease cases in the country, with 144

recorded exposures in 2009 to 2,850 in 2021 (Figure 1, Public Health Agency of Canada

[PHAC], 2022).
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Figure 1. Number of reported human cases of Lyme disease in Canada from 2009 to

2021, adapted from “Lyme disease: Surveillance” (PHAC, 2022). The dashed red line depicts

the upward trend in recorded human cases.

The Biology and Ecology of I. scapularis

I. scapularis have a life cycle of about two years, sometimes prolonged to three. They are

hematophagous arthropods (Nuss et al., 2021) with three life stages after eclosion: larva, nymph,

and adult. Each transition requires a blood meal before developing into the next phase. Female

adult I. scapularis ticks are oviparous insects, laying up to ~3000 eggs near the end of their

lifespan (Halsey & Miller, 2018). However, this value is highly variable and contingent on

ambient temperatures (Gaff et al., 2020). While transovarial transmission (i.e., the transmission

4



of B. burgdorferi bacteria from an adult to an egg) is possible, there is less than a 1% chance of it

occurring (Rosenthal & Coburn, 2008).

I. scapularis is a host-generalist identified on over 125 North American vertebrate

species (Halsey et al., 2018; Keirans et al., 1996). I. scapularis larvae or nymphs primarily feed

on small mammals, which several are pathogen-reservoir hosts (e.g., mice, squirrels, chipmunks,

and shrews; Dumas et al., 2022) Adult I. scapularis primarily feed on larger mammals (Halsey &

Miller, 2018) such as the white-tailed deer, Odocoileus virginianus (Huang et al., 2019). Feeding

success rates range from ~3% to 49%, depending on host species and grooming behaviour

(Halsey et al., 2018). The probability of B. burgdorferi transmission via a single infected

nymphal tick to a vulnerable host species is high (Gaff et al., 2020), particularly among northern

I. scapularis ticks that have engorged for a minimum of 3 days (Goddard et al., 2015). The

transmission of B. burgdorgeri can occur within a shorter period, with Ixodes ticks capable of

transmitting the pathogen in as little as 16 hours and consistently within 24 hours (Cook, 2014).

Once a tick becomes infected with the bacterium, transmission is transstadial, where the

pathogen persists within each subsequent life stage (Rosenthal & Coburn, 2008). Ticks aim to

feed to satiety; failing to do so means they lack the proper nutrients and energy to moult into

nymphs or adults (Halsey & Miller, 2018). I. scapularis can spend up to ~98% of its life span

off host vertebrates (Mathisson et al., 2021). They can survive for months without feeding

because of low basal metabolic processes (Mathisson et al., 2021) and within refugia that protect

them against harmful climatic conditions (Burtis et al., 2019). They have an acute ability to

detect if a host is within 1m² and can discern temperature (Halsey & Miller, 2018). The

phenology of Ixodes ticks is variable geographically and differs across species (Levi et al., 2015).

For I. scapularis, peak nymph activity is within late spring and early summer, with larval activity
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peaking in the late summer. (Burtis et al., 2023; Levi et al., 2015; Ogden et al., 2018). Adult I.

scapularis has a bimodal distribution in activity, peaking in spring and fall (Hamer et al., 2012).

Under optimal conditions, I. scapularis can complete a lifecycle in less than a year. In some

extreme cases in southeastern Canada (i.e., one of the coldest regions of I. scapularis known

range), the life cycle can take 3-4 years to complete (Eisen et al., 2016b).

The close linkages between climate and phenology suggest that climate change could

induce earlier nymph and larva activity in I. scapularis and, consequently, favour increased

transmission of Lyme borreliosis (Levi et al., 2015; Ogden et al., 2008a) I. scapularis exhibits

asynchronous phenology, unlike Ixodes pacificus and European genera of Ixodes. If variations

among geographic, climatic, and other natural processes generate a longer lag (greater

asynchronous) in activity, nymph I. scapularis ticks may vector B. burgdorferi within host

populations, preceding the arrival of larvae ticks, who can then acquire the pathogen from the

infected hosts (Levi et al., 2015). This could facilitate increased transmissions of Lyme disease.

If the particular strain of B. burgdorferi found in the Canadian I. scapularis ticks resembles the

variant of I. scapularis found in the northeastern United States, known for their prolonged period

of infectivity in vertebrate hosts (Levi et al., 2015).

The transmission dynamics of I. scapularis are facilitated by their host-seeking

behaviour. I. scapularis employ an ambush strategy (Mathisson et al., 2021) called questing. A

questing tick ascends natural objects (e.g., vegetation, rocks), outstretchs its front legs, and waits

to clasp onto a host to feed (Leal et al., 2020). Travelling (and questing) comes at a risk to a

tick’s life as they may expend a potentially detrimental amount of energy at the potential cost of

receiving no blood meal (Leal et al., 2020), or they may need to modify questing behaviour to

avoid desiccation (Couper et al., 2021). When not questing, ticks must find protection under
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suitable biotic and abiotic conditions or the risk of death is significantly increased. I. scapularis

ticks are positively associated with deciduous forests with closed canopies, while they have an

aversion to grasslands, coniferous forests, and open areas (Mathisson et al., 2021). Within

refugia, they have an affinity for soils with good water drainage (Burtis et al., 2019) and seek

vegetation with dense undergrowth (e.g., Berberis thunbergii, Ilex verticillata; Lonicera and

Osmunda species; Mathisson et al., 2021) that protects against variable weather and creates

humid microclimates to prevent desiccation (Mathisson et al., 2021). Snow and leaf litter that

covers the soil surface act as insulators against seasonal changes (e.g., dormant overwintering),

particularly against ambient temperature and relative humidity (for which developmental and

extinction thresholds exist; Ogden, 2004). Many generalist arthropod groups (e.g., spiders,

beetles, ants) prey upon I. scapularis, though these interactions are likely haphazard (Burtis &

Pflueger., 2017).

While climate change remains a significant factor in the distribution of ticks,

globalisation, particularly human travel, can impact their movement. Anthropogenic alterations

to land use, such as habitat fragmentation, agricultural expansion, and deforestation (Harvey et

al., 2022), can disrupt natural ecosystems, leading to changes in microclimates and resource

availability (Léger et al., 2013). Additionally, increased movement of humans, domestic

livestock, and pets can lead to rising interactions between ticks and host species in novel

territories (Léger et al., 2013). These disruptions can result in shifts in ecological dynamics,

influencing the abundance of reservoir host species or tick density (Léger et al., 2013). However,

the broader expansion of I. scapularis distribution in Canada is less likely due to the local spread

of ticks from terrestrial hosts but instead from northward migration from avian species (Ogden et

al., 2008b). Each spring in Canada, ~2% of the estimated 3 billion birds that migrate northward
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into central and eastern Canada transport and scatter I. scapularis ticks; this is between 50 - 175

million I. scapularis ticks (Ogden et al., 2008b). The long distances that migratory birds undergo

provide enough time (2-4 days) for larvae and nymph ticks to become engorged, acquire B.

burgdorferi, and subsequently transmit the bacteria at the next blood meal (Ogden et al., 2008c).

In bird-borne ticks, infection prevalence is relatively low, up to 10%, consequently delaying the

establishment of transmission cycles in new populations (Ogden et al., 2008b; Ogden et al.,

2013). In eastern Canada, the tick population likely precedes bacterial invasion, typically

occurring three to five years later (Ogden et al., 2013).

The effects temperature has on tick behaviour and survival have been well documented

(e.g., Brunner et al., 2012; Burtis et al., 2016; Ogden et al., 2004). Fieler et al. (2021) showed

that I. scapularis has the lowest survival at both low and high temperatures compared to other

Ixodes species (e.g., Amblyomma americanum, Dermacentor variabilis, Rhipicephalus

sanguineus, Amblyomma maculatum, Dermacentor variabilis), with continual temperatures

between 4°C and under 32°C needed for reproduction and moulting success (Fieler et al., 2021).

If I. scapularis are kept at temperatures upwards of 30°C, tick premoulting duration and

moulting success rates are adversely impacted (Ogden et al., 2004). I. scapularis are killed

outright when exposed to temperatures below -10°C to -12°C, whereas even lower subzero

temperatures coupled with high humidity may induce lethal inoculative freezing (Burks et al.,

1996; Nabbout et al., 2023). The colder temperatures historically limit the spread of I.

scapularis, restricting them to only the lowest northern latitudes of Canada (e.g., Northwestern

Ontario; Lindsay et al., 1995), where overwintering was and is possible, provided individual tick

thermal limits are above the aforementioned threshold temperatures (Nabbout et al., 2023). Clark

(1995) found that the temperatures in which I. scapularis can move are strongly correlated with
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tick size. The temperature range for coordinated host-seeking behaviour in I. scapularis is above

13.9°C ± 3.0°C for nymphs, 9.2°C ± 4.1°C for males, and 11.2°C ± 3.4°C for females. (Clark,

1995). Clark (1995) further observed that the activity threshold, the temperature at which all

activity ceases, is 9.8°C ± 3.4°C in nymph ticks, 8.5°C ± 3.0°C in males, and 6.2°C ± 3.6°C in

females. To resume questing, the temperature must range between 4°C and 21°C on consecutive

days (Clark, 1995), with immature ticks capable of questing at higher temperatures (Mount et al.,

1997). Duffy and Campbell (1994) also observed a questing activity threshold of ~4°C; however,

Schultz et al. (2001) found I. scapularis questing at temperatures as low as -0.6°C, suggesting

that underlying factors (e.g., soil temperature) may explain the differences in temperatures

(Shultz et al., 2001). Additional ways I. scapularis can persist in the cold is by employing

inherent physiological and behavioural qualities (Nabbout et al., 2023), such as producing

antifreeze molecules (Neelakanta et al., 2010), seeking leaf litter for insulation and protection, or

autophagy (Nabbout et al., 2023). B. burgdorferi-infected I. scapularis may experience

behavioural changes (e.g., increased phototaxis and lure to vertical surfaces; Benelli, 2020) and

physiological adaptations (e.g., increased activation of tick histamine release factor [tHRF],

lower mobility; Benelli, 2020; Nabbout et al., 2023). Female I. scapularis infected with B.

burgdorferi may have increased resilience to survive overwintering in comparison to uninfected

female ticks (Nabbout et al., 2023), potentially aiding in tick population growth (e.g., Elias et al.,

2022). When the temperature is constantly below 4°C, female ticks do not lay eggs (Lindsay et

al., 1995). The number of eggs a female produces strongly correlates with temperature (Gaff et

al., 2020). If temperatures are 8°C and maintain high humidity (tested at > 95% humidity;

Lindsay et al., 1995), female I. scapularis may lay eggs, but they will not metamorphose into

larvae at temperatures lower than 10°C, potentially at 12°C (Lindsay et al., 1995). Lindsay et al.
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(1995) used these values to develop threshold development temperatures, maintaining that

132±37 degree days (DD) above 6°C is required for oviposition in fed adult I. scapularis that

overwinter, and 636±6 DD above 11°C for eggs to develop into larva. Rand et al. (2004) used the

same threshold values for pre-oviposition and pre-eclosion, finding that degree days are

apportioned around 243 and 429 DD, respectively. The discrepancies in values across each of the

subsequent studies express some of the challenges in recording thermal dynamics and the

developmental response of I. scapularis at the northern extremes of their range, whereas when

latitude increased, the length of each stage progressively extended (Lindsay et al., 1995; Rand et

al., 2004). Regardless, the likelihood of many Ixodida species completing ontogenesis is very

low, at < 1% (Burtis et al., 2019). Diapause (delayed development) in immature I. scapularis

ticks changes in response to the photoperiod (Ogden et al., 2004), with seasonal activity shown

to be between 10-15 hours of daylight (Mount et al., 1997). These values are not immutable, and

I. scapularis may have biological adaptations in different geographic spaces. They have shown

capabilities to respond and adapt to environmental conditions, notably temperature (Mount et al.,

1997).

Ecological Niche Modelling

Although not explicitly coined, the niche concept has been an ecological term since the

19th century. It was present in Darwinian ideas, where ecosystems are competitive and structured

on survival within the interconnected assemblage of habitats, resources, and predators

(Pocheville, 2015). The term 'niche' or 'ecological niche' is generally credited to being first

contextualised (in a research capacity) by Joseph Grinnell in 1924, who defined it as the

ecological position of a species and all the factors (e.g., biotic and abiotic) that condition its
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existence (Pocheville, 2015; Vandermeer, 1972). By exploring communities in different regions,

Grinnell found evidence of similar niches within geographically distant places (Pocheville, 2015)

through evolutionary equivalency, where species that play the same ecological role but in

independent locations occur (Pianka, 2011; Pocheville, 2015). Elton, another researcher

exploring evolutionary equivalencies, furthered the niche concept theory by integrating the

importance of interactions between species within a community (Sales et al., 2021). In 1957, a

revolutionary change in ecology occurred (Schoener, 1989) when George Hutchinson postulated

the niche around species' attributes rather than the environment's (Pocheville, 2015; Sales et al.,

2021). This change was a nuanced shift from previous theories. Researchers such as Grinnell and

Eltons saw the niche as independent and occupied by a species; Hutchinson saw the niche as a

property of the species (Pocheville, 2015; Sales et al., 2021).

Hutchinson's work conceptualises and quantifies the ecological niche as an n-dimensional

volume within a hyperspace (Colwell & Rangel, 2009; Hutchinson, 1957). The multidimensional

volume exhibits the range of environmental conditions (each "n" is an environmental axis in the

suite of environmental factors that make up a species niche, e.g., temperature, humidity), while

the hyperspace separates the physical entity of place from the environment (Colwell & Rangel,

2009). If place is defined by geographic coordinates, and n-environmental attributes delineate the

niche space of a species, it enables the potential to project a species' actual or potential

geographical distribution and niche, present or future (Colwell & Rangel, 2009).

Also attributed to Hutchinson is the conception of the fundamental and realised niche

(Hutchinson, 1957). The refined niche theory suggests that a species' fundamental niche is

delineated by its physiological range of tolerance to environmental variables without biotic

interactions (Soberón & Arroyo-Peña, 2017; Zurell, 2017) and permits the species to exist
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indefinitely (Pocheville, 2015; Hutchinson, 1957) with population growth (Zurell, 2017). The

realised niche is confined within the boundaries of the fundamental niche and is the niche

actually occupied by the species (Pocheville, 2015). Hutchinson's realised niche was constrained

only by species interactions (Colwell & Rangel, 2009) but has since extended to include the

addition of dispersal, demographic processes, and interspecific species interactions, which may

shrink the realised niche while source-sink dynamics, facilitation, and time-delayed extinctions

may expand the realised niche (Zurell et al., 2017).

The finer concepts of the niche are enigmatic (Mathiopoulos, 2022), with ambiguity on

how to measure, predict or analyse niches (Dormann et al., 2012; Sales et al., 2021). Ecological

niche models (ENM), species distribution models (SDM), bioclimatic envelope models, and

habitat suitability models are terms used synonymously (sometimes controversially; McInerny &

Etienne, 2013; Peterson & Soberón, 2012; Zurell et al., 2020) to describe species' occupancy,

habitat, niche, or invasiveness in ecological or biogeographical environments (Melo-Merino et

al., 2020). These models are often employed to answer questions on geographical ranges, climate

change impacts, or conservation strategies (Melo-Merino et al., 2020).

Three types of niche models stand out enough to delineate unique types: correlative

models, mechanistic models, and process-based or hybrid models (Neineri et al., 2015; Peterson

et al., 2015; Tourinho & Vale, 2023). Mechanistic and correlative models are conceptually

different. Correlative models use implicit processes and focus on prediction (Tourinho & Vale,

2023). These models aim to depict the patterns, rather than the mechanisms, of the association

between species occurrences and environmental data (Dormann et al., 2012). On the niche

spectrum, correlative models usually estimate between the realised niche and the existing niche;

a subset of the fundamental niche represents real-world geography (not just the suite of
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environmental conditions, e.g., I. scapularis in Ontario, Quebec, Eastern US) paramount to the

species (Peterson et al., 2015). In contrast, mechanistic models explicitly represent processes

(Tourinho & Vale, 2023). They focus on understanding a species' environmental requirements

and using biophysical models to determine the fundamental niche of a species. Mechanistic

models often require detailed, accurate, and complex parameters such as microclimatic

conditions, species physiology, and species behavioural characteristics to estimate a species

niche (Peterson et al., 2015). Process-based models combine correlative and mechanistic

approaches by integrating implicit and explicit causal aspects into models (Tournho & Vale,

2023). They estimate species distribution by additionally incorporating dispersal capabilities and

biotic interactions into the modelling process (Melo-Merino et al., 2020; Peterson et al., 2015).

Process-based models do not prioritise estimating species niches (Peterson et al., 2015). Instead,

they use niche estimates, potentially produced by integrating correlative and mechanistic models,

and incorporate dispersal characteristics to simulate the actions that produce an occupied

distribution of a species: the area in which a species may be found and potentially persist

(Peterson et al., 2015).

I used correlative models to estimate the I. scapularis niche. Correlative models use

empirical, telemetry-based species occurrence data and environmental variables to infer a species

niche. The models produced are only as good as the input data used to build them (Collins et al.,

2017). Parameters used within these models have no a priori ecological context (Dormann et al.,

2012) or, at present, little ecological hypotheses (Gobeyn et al., 2019). Instead, the characteristics

of the environments where the target species is recorded can identify the conditions in which the

same target species can survive (Peterson et al., 2015). Machine learning and statistical
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algorithms are employed to uncover spatial patterns within the data and to estimate species'

responses to environmental predictors (Gobeyn et al., 2019).

Higher-resolution and precise environmental layers are becoming increasingly produced

and accessible. Most available environmental layers are derived from statistical interpolation

from weather stations, satellite data, or statistical downscaling of climate layers

(Morales-Barbero & Vega-Álvarez, 2019). Downscaling and satellite environmental data are

more accurate than statistical interpolation because weather stations which track environmental

conditions are unevenly distributed. However, inputs from satellite data may still deviate from

observed environmental values, particularly some regional temperature, humidity, and

precipitation estimates (Morales-Barbero & Vega-Álvarez, 2019). Discrepancies, uncertainties,

or biases inherent in most climatic input data highlight the significance of selecting a suitable

database and caution against assuming that a single database is best suited for all regions and

scales (Morales-Barbero & Vega-Álvarez, 2019).

Species occurrence data is also becoming increasingly available with improved sharing

initiatives, better ways to generate data, and broader conservation and scientific communities

aiding in expanding biodiversity databases (Aubry et al., 2017; Graham et al., 2008). If we first

consider Tobler's first law of geography: "Everything is related to everything else, but near things

are more related than distant things" (Tobler, 1970), then it logically follows that a greater

abundance of presence points enhances the precision of assessing spatial autocorrelation between

variables. Otherwise, there is no environmental gradient; all environmental variables are

considered equal to assessing the species distribution, which within natural contexts is

exceedingly unlikely (Sillero & Barbosa, 2020). Collected species records often show a spatial

clustering of points in areas that are more accessible to larger human populations (e.g., near
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urban zones, cities, and roads), which leads to a spatial bias. This bias explains ecological

patterns in a way that favours geographic space and strongly autocorrelated environmental

variables (Franklin, 2010), which can lead to overfitting when assessing model accuracy,

coefficients, residuals (e.g., more type 1 errors), and statistical inferences (Franklin, 2010; Sillero

& Barbosa, 2020). The conventional approach to alleviating bias is to thin the dataset, either by a

nearest neighbour distance equation or through random sampling (Aiello-Lammens et al., 2015).

However, thinning the data could be problematic. Eliminating a substantial portion of data that

captures small-scale environmental conditions or endogenous spatial autocorrelation data may

make models less accurate and realistic (Franklin, 2010). Determining the ideal quantity of

records to exclude relies on empirical trial and error, which is time-consuming and

computationally intensive (Aiello-Lammens et al., 2015).

Correlative-based models can utilise species records in three ways: presence-only,

presence-background or presence-absence models, with each method using inherently different

mathematical approaches. As the name suggests, present-only models, sometimes classified as

profile methods (Hijman & Elith, 2023), only require precise species sightings, limiting the

environmental conditions to those within a bounding envelope of their known distribution.

Various distance rules and polygonal envelopes (e.g., rectilinear shapes; Barbet-Massin et al.,

2012) help define the environmental hyperspace of the species; any unknown sites are compared

to a percentile distribution of environmental values within that hyperspace and given a predictive

score (Hijman & Elith., 2023; Piñeiro et al., 2007; Senay et al., 2013). Some examples of

presence-only models are BIOCLIM, Mahalanobis models (MAHAL), and DOMAIN (Hijman &

Elith, 2023; Senay et al., 2013). Presence-background models take the same observation data and

generate "background" points, new records that indiscriminately sample environmental and
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geographic spaces within the designated extent (Liu et al., 2019). The models look at the

environmental conditions of known records relative to those in alternative spaces and infer a

final prediction (Senay et al., 2013). The widely used maximum entropy approach (MAXENT) is

an example of this type, along with ecological niche factor analysis (ENFA; Senay et al., 2013)

and genetic algorithms for rule set production (GARP; Barbet-Massin et al., 2012).

Presence-absence models, sometimes called group discrimination methods, apply a different

methodology, availing of absence data. Absence points, often called true or real absences, are

positions where the environmental conditions are unsuitable for the species to survive (Liu et al.,

2019). Statistically, it is better to model using negative classes, which are absence points, in

conjunction with positive classes, which are the occurrence points, than just positive classes

(Manevitz & Yousef., 2001; Senay et al., 2013). The main caveat is that true absences are rare;

they often occur from active surveillance by entomologists or health authorities, which can be

expensive, time-consuming and labour-intensive to cover a limited area (Soucy et al., 2018).

Additionally, the absence of the species can stem from factors beyond environmental

unsuitability, such as unique ecosystem dynamics (e.g., barriers, predation, competition,

temporal anomalies) or instances where it remained undetected during survey efforts (Senay et

al., 2013).

The complexities associated with acquiring authentic absence data have prompted the

adoption of pseudo-absences, artificially generated absence points serving as the negative or

opposing class in datasets (Jiménez & Soberón, 2020). These pseudo-absences are strategically

positioned within environmental or spatial dimensions to maximise the detection of

environmental or spatial disparities, namely, within dissimilar environmental contexts that

capture local variations rather than in incongruous locations where the species would obviously
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be absent (e.g., ticks in the ocean; Senay et al., 2013). Only a few studies have explored the

placement and abundance of pseudo-absences in-depth (Barbet-Massin et al., 2013; Liu et al.,

2019) despite their influence on algorithms (Senay et al., 2013). Within the literature,

pseudo-absence selection methods are often varied, with contradicting claims and results per

method (Senay et al., 2013). If the input data is reliable, abundant, and all-encompassing of a

species' bionomic conditions, presence-only or present-background methods can be helpful, but

if there is bias or uncertainty with the input data, pseudo-absence methods may be better at

reducing overfitting and accurately approximate the output when provided new information (e.g.,

a changing climate; Senay et al., 2013). In general, presence-absence algorithms are more robust

and perform the best of the correlative approaches, along with the presence-background method

MAXENT (Liu et al., 2019).

Given that variations in mathematical algorithms lead to increased sensitivity in

processing derivatives, resulting in disparity amongst model results (Araújo & New, 2007), an

ensemble framework was introduced to help alleviate model-based uncertainty in correlative

models. Based on a succession of individual models, the ensemble (consensus) approach is

founded on the theory that individual predictors are replicas of potential states of the real

distribution (Marmion et al., 2009). However, each state can vary considerably per modelling

technique - particularly in biogeographical or species distribution studies (Marmion et al., 2009).

When combined within a single estimator, the variance is reduced, producing an ensemble that

indicates trends or points of agreement within the models (Zhu et al., 2021), feasibly improving

accuracy and providing a more concise picture. Some standard techniques to transition individual

models into ensembles are to take the mean or median of single models or the weighted average

or principal component analysis median, subdividing single models based on fixed criteria
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(Marmion et al., 2009). In addition, models have shown the potential to lose accuracy when

extrapolated into environmental conditions outside those used to train the models (e.g., changing

of novel climate conditions common in most future projections). In these situations, simple

models show greater transferability (lower interpolative), while complex models show greater

explanatory value (lower transferability, Zhu et al., 2021). However, both transferability and

explanatory power can not be simultaneously maximised (Bokulich, 2013), so using a

combination of models depends on the context itself. There is no de facto model algorithm (Qiao

et al., 2015); a consensus model helps create modelled scenarios closest to the truth by

incorporating all circumstances (Araújo & New, 2007).

Chapter 2: Ecological Niche Modelling of the Blacklegged Tick (Ixodes

scapularis, Say) in Eastern Canada with the Aid of Community Science

Data

Introduction

Atmospheric greenhouse gases, extreme weather events, and sea-land temperatures are

experiencing concentrations, frequencies or accelerated rates not seen for millions of years,

decades, or millennia, respectively. Without intervention, global warming in this century will

reach or surpass 1.5°C to 2°C above pre-industrial levels. (IPCC, 2021b). This warming,

attributable to human-induced greenhouse gas emissions (IPCC, 2021b), will lead to a shift in

climatic zones, with implications for the distribution of species (i.e., species range, seasonal

phenomena, abundance, IPCC, 2019).
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Many terrestrial species have shifted poleward in response to changes in climate

envelopes (climates in which given species can live). The shifts observed in species distributions

have been rapid, exhibiting an average displacement of 17 (±3) km toward higher latitudes and

11 (±2) m towards higher elevations per decade throughout the preceding 70 years (IPCC,

2021a). The changes in species distribution have significant implications for changes in

species-environment and species-species interactions. One novel species-species interaction that

is of concern to people is between humans and vectors (e.g., ticks) of zoonotic pathogens such as

B. burgdorferi (Lyme disease).

Pest species, such as ticks, are responding rapidly to climate change with changes in their

distribution, abundance, phenology, microbiota, development rate, species phenotype, host

preference, and genotype ( Backus et al., 2021; Nuttall, 2021; Ogden et al., 2021). Dermacentor

variabilis Say, 1821; Amblyomma americanum Linnaeus, 1758; and Ixodes ricinus are all

examples of tick species experiencing range expansion (Nuttall, 2021). Haemaphysalis

longicornis Neumann, 1901, and Hyalomma marginatum marginatum, Koch, 1844, are species

that have been detected in novel environments outside of their traditional ranges, such as within

new countries (Nuttall, 2021). I. scapularis is of particular concern in northeastern North

America as it is the primary vector of Lyme disease (Bouchard et al., 2019). Over the past three

decades, there has been a notable northward expansion of I. scapularis into central and eastern

Canada, particularly in Ontario, where decades prior, there was minimal evidence of an

established population (Robinson et al., 2022). I. scapularis is capable of both short and

long-range dispersal (via migratory birds, Ogden et al., 2008b). Climate change and host species

movements are considered key contributors to subsequent range expansion (Robinson et al.,

2022), with studies showing that temperature, rainfall, elevation (Leighton et al., 2012), canopy
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cover, and proportion of forested landcover (Slatculescu et al., 2020) are important

environmental drivers of I. scapularis occurrence and abundance.

Ecological niche models effectively develop predictions of current and future species

distributions (Zhu et al., 2021), thereby aiding in the formulation of conservation planning efforts

(Esser et al., 2019). Leveraging environmental and georeferenced empirical occurrence data,

these models are often employed to forecast a species shifting niche under different climate

scenarios (Zhu et al., 2021). With increasingly accurate and precise environmental data and the

advancement of novel statistical methods (i.e., the introduction of machine learning techniques),

consensus (ensemble) modelling approaches are routinely used (Zhu et al., 2021) to combine the

results from individual modelling algorithms to produce a more robust, explicit result, including

multiple modelling parameters (Melo-Merino et al., 2020).

Studying the expansion of I. scapularis into eastern Canada is invaluable to

understanding other broader ecological shifts influenced by climate change. As I. scapularis is

highly sensitive to environmental conditions, movement into novel territories is an indicator of

shifting climatic patterns and can provide insight into changing tick-borne disease dynamics.

Whereas previous studies have typically focused on evaluating the expansion of I. scapularis

range in Canada at a provincial scale, this study advances the field by employing a more

extensive spatial scope. It stands out for its thorough utilisation of occurrence records and

environmental variables, as well as the comprehensive use of algorithms and model outputs, all

within the broader context of eastern Canada. I use ecological niche models to determine the key

drivers that explain the current distribution of I. scapularis and how changes to those drivers

(i.e., climate change) will influence the species’ range and ability to establish across eastern

Canada this century. In addition, I aimed to determine which environmental drivers used within
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the models best explain the current climatic distribution of I. scapularis and how they respond to

the environmental drivers, their optimum conditions relative to covariate values, and their

tolerance to changing conditions. I test whether the leading edge of I. scapularis’ range will push

further into Canada, colonising new, previously uninhabitable landscapes that could act as

dispersal-foci (Rehm et al., 2015). From a contemporary context, I test if established in situ I.

scapularis populations in southeastern Canada will become more prevalent as their range

expands where, typically, optimal conditions for a species are found near the center of their range

(Rehm et al., 2015).

Methods

Data

I combined a comprehensive dataset of georeferenced verified tick occurrence data from

2017-2022 within Manitoba, eastern Canada (Ontario, Quebec, Newfoundland and Labrador,

Prince Edward Island, Nova Scotia and New Brunswick), and the United States (North and South

Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Arkansas, Louisiana,

Wisconsin, Illinois, Tennessee, Mississippi, Michigan, Indiana, Kentucky, Alabama, Ohio,

Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New Jersey,

Delaware, Maryland, Washington D.C, West Virginia, North and South Carolina, Georgia, and

Florida) from iNaturalist and eTick (eTick, 2021; iNaturalist, 2022).
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Table 1. The identified whereabouts and quantity of I. scapularis documented from 2017 to

2022.

Country Province/State Count of I. scapularis records

CAN Ontario 4766

CAN Quebec / Québec 2013

CAN Nova Scotia / Nouvelle-Écosse 1044

USA New York 472

USA Pennsylvania 376

USA Massachusetts 375

CAN New Brunswick / Nouveau-Brunswick 328

USA Vermont 325

USA Ohio 156

USA Wisconsin 121

USA New Jersey 119

USA Virginia 113

USA Minnesota 113

USA Maryland 111

USA Connecticut 102

USA Michigan 96

USA New Hampshire 85

USA Texas 85

USA Illinois 78

CAN Prince Edward Island / Île-du-Prince-Édouard 72

USA Florida 66

USA Maine 53

USA West Virginia 52

USA Tennessee 36

USA North Carolina 36

USA Indiana 35
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USA Georgia 35

USA Kentucky 29

USA Alabama 27

CAN
Newfoundland and Labrador /
Terre-Neuve-et-Labrador 26

USA Oklahoma 21

USA South Carolina 19

USA Missouri 17

USA Mississippi 15

USA Rhode Island 15

USA Delaware 14

USA Iowa 14

USA Arkansas 14

CAN Manitoba 11

USA Louisiana 7

USA District of Columbia 6

USA Kansas 3

USA North Dakota 1

USA South Dakota 1

USA Nebraska 1

Total 11504

Records were not collected equally or uniformly across the five years, with ~75%

collected in 2020 and 2021; the 2022 records were only collected during a six-month period,

from January to June (for a complete breakdown, see Appendix H). Most acquisitions were

acquired during spring and early summer (April, May, and June) and in October and November

during the fall season. January contained the lowest number of identifications, with only a select

few recorded within Canada (lower Ontario and Quebec).
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I removed records with coordinate systems treated as private or obscured from within the

iNaturalist dataset; if requested by the uploader, iNaturalist will conceal I. scapularis sightings

randomly within a 0.2° x 0.2° (~22 x 22 km) proximity for privacy reasons (Loarie, 2021). This

large envelope diminishes the precision of the location data and prevents the records from

matching with the environmental data (~1 km resolution) at the observed tick location. I filtered

additional sightings if data entries had erroneous positional accuracy of upward of ~1 km or

showed apparent errors or inconsistencies. ArcGIS Pro 3.0 (ESRI, 2020) and QGIS 3.28.4 (QGIS

Development Team, 2022) were used to overlay merged point data (eTick and iNaturalist

records) over a North American shapefile: “Canada - United States Boundary,” provided by

Natural Resources Canada [NRCan] and the U.S. Geological Survey ([USGC], 2010).

Bioclimatic data was sourced from two locations: AdaptWest (AdaptWest Project, 2022;

Mahony et al., 2022; Wang et al., 2022; Wang et al., 2016) and Chelsa-Bioclim+ (Brun et al.,

2022; Karger et al., 2023; Karger et al., 2021a; Karger et al., 2021b), in GeoTiff format. Both

datasets have a spatial resolution of ~1 km, derived by downscaling climate projections from the

Coupled Model Intercomparison Project Phase 6 (CMIP6) database and standardised by values

reported in the 6th IPCC Assessment Report (AdaptWest Project, 2022). The Chelsa-Bioclim+

raster dataset used was modelled on the Geophysical Fluid Dynamic Laboratory: Earth System

Model 4 (GFDL-ESM4), with historical data derived from 1981-2010. Future climatologies are

from 2011-2040, 2041-2070, and 2071-2100 (Brun et al., 2022) using emission scenarios of

SSP5-8.5 and SSP3-7.0. The AdaptWest rasters were interpolated by ClimateNA v7.3, with

future values averaged over 13 CMIP6 Atmosphere-Ocean General Circulation Models

(CMIP6-AOGCM) through 30-year periods. Historical data exist from 1991-2020, followed by

predictive climate normals for the future timeframes: 2011-2040, 2041-2070, and 2071-2100
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using SSP5-8.5 and SSP3-7.0 values (AdaptWest Project, 2022). Additional data included the

“Global Man-made Impervious Surface Dataset From Landsat, v1 (2010)” mosaiced by Brown

de Colstounet et al. (2017) with a Kappa coefficient of ~0.92 (evaluated by a cross-validated

random forest; Zhang et al., 2020). The impervious surface data for Canada and the United States

is available at a resolution of 30m.

Procedure

There is a lack of congruences within different climate datasets (Morales-Barbero &

Vega-Álvarez, 2019). For this reason, I utilised two datasets and two SSP scenarios within the

study to produce more reliable predictions. The Chelsa-Bioclim+ dataset, which I considered the

primary dataset, outlines the results presented in this thesis. I based the essential findings and

outcomes on the information and data provided by this dataset. The other dataset, AdaptWest

(herein mentioned as AdaptWest, the complementary dataset, or the secondary dataset), provided

a secondary function to my research. The complementary dataset, which provided more

up-to-date historical data (and an expanded array of future models), was used to cross-reference

the results of the first dataset, certifying that environmental variables and severity of range

expansion were similar, enhancing the robustness and credibility of the models while

incorporating additional environmental factors not covered within the primary set (e.g., degree

days, seasonal precipitations).

The environmental data was used first to explore I. scapularis’ contemporary distribution

and later forecasted to identify their potential geographic expansion (over 30-year increments,

i.e., 2011-2040, 2041-2070, and 2071-2100). The forecasting data used SSP3-7.0 and SSP5-8.5

values to account for a spectrum of future emission scenarios; SSP5-8.5 is a high-emission
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scenario, while SSP3-7.0 provides more conservative, middle-high estimates (Meinshausen et

al., 2020).

I projected rasters and shapefiles into Lambert Azimuthal Equal Area spatially referenced

projection system from the standard Geographic Coordinate System (GCS), World Geodetic

System 1984 (WGS 1984). The "Canada - United States Boundary" shapefile (NRCan & USGC,

2010) was clipped within ArcGIS Pro 3.0 (ESRI, 2020) to a spatial extent based explicitly on an

understanding of I. scapularis fundamental niche (the environmental niche or E-space;

Melo-Merino et al., 2020). The extent allowed me to integrate a considerable number of

pseudo-absence points situated within optimal ranges of the known distribution (VanDerWal et

al., 2009).

The AdaptWest and Chelsa-Bioclim+ rasters were masked within ArcGIS Pro 3.0 (ESRI,

2020) to match the study's extent. Utilising the raster calculator tool, I rescaled the values.

Specific environmental parameters underwent internal scale adjustments and offsets to convert

them into integers, simplifying the download process (Karger et al., 2022). Some versions of

GDAL or ArcGIS do not automatically rectify these offsets and scale changes, necessitating

manual adjustments to conform to conventionally known values (adhering to CHELSA V2.1

technical documentation; Karger et al., 2022).

The "Global Man-made Impervious Surface Dataset From Landsat, v1 (2010)" was

imported into ArcGIS Pro 3.0 (ESRI, 2020) and converted to a polygon layer to overlay against

the I. scapularis records to thin the distribution points.
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Statistical Analysis

My framework consisted of running complementary R-scripts under modified conditions,

targeting culpable factors of model bias, overfitting, and uncertainty - increasing model strength

and realism. Each time the script was processed (herein called “sequences”), the ensuing

sequences used different environmental variables to capture further the broad spectrum of biotic

and abiotic factors that mediate I. scapularis distribution. Reproducing models leads to

noticeable patterns in the resulting raster images, response curves, and permutation importance,

culminating in establishing a final predictability paradigm (i.e., ensemble).

I integrated statistical modelling using R Programming Language (R Core Team, 2020)

within the RStudio environment (RStudio Team, 2020). The following packages (and their

correspondent dependencies) automated tasks: sdm (Naimi & Araujo, 2016), rgdal (Bivand et al.,

2022), raster (Hijmans, 2022), plyr (Wickham, 2011), usdm (Naimi et al., 2023), caret (Kuhn,

2022), biomod2 (Thuiller et al., 2022), ENMeval (Kass et al., 2021), gridExtra (Auguie, 2017),

dplyr (Wickham et al., 2022), CENFA (Rinnan, 2021), and corrplot (Wei & Simko, 2021). The

reproducible code is available in Supplementary Materials.

The georeferenced records (turned point data) and environmental variables were

transferred and staged within the RStudio program. Environmental variables were tested for

multicollinearity problems in each sequence, with pairwise exclusion of highly correlated

variables using variance inflation factor (VIF) and VIFstep. Given the ecological insights

highlighted in the literature concerning the significance of certain variables in influencing I.

scapularis distribution (e.g., temperature as a causative factor), I used a correlation threshold of

< 0.8 and a VIFstep threshold of < 10 between each paired variable in each sequence (Dormann

et al., 2012; Naimi et al., 2014, Naimi, 2023). However, I prioritised maintaining a a correlation
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coefficient of < 0.7 whenever feasible, aligning with recommendations found in some literature

(Naimi et al., 2014). The remaining variables (through VIF and trained analysis) were overlaid

with the point data. Raster cell values corresponding to the established environmental variables

were extracted and recorded, while any records with null attributes were excluded.

I used twelve algorithms in the production of the ensemble of models: Generalised Linear

Models (GLM), Generalised Additive Models (GAM), Generalised Linear Models with

Polynomial Regression (GLMPoly), Multivariate Adaptive Regression Splines (MARS), Multiple

Discriminant Analysis (MDA), Flexible Discrimination Analysis (FDA), Recursive Partitioning

(RPART), Classification and Regression Trees (CART), Boosted Regression Trees; otherwise

known as Generalised Boosted Regression Models (BRT/GBM), Random Forests (RF), Support

Vector Machines (SVM), Radial Basis Function Network (RBF), and Multilayer Perceptron

(MLP). Applicable algorithms were selected and tuned using the caret package to find best-fit,

modifiable, manually-set hyperparameters that control the learning process of a model and can

increase model performance (Kuhn, 2022; Yang & Shami, 2020). Using a 5-fold cross-validation

procedure run eight times with a tuning length of 50 (i.e. 50 combinations of each configurable

tuning parameter were tested), the values of the hyperparameters, which can be continuous,

integers, or categorical (Hutter et al., 2015), were selected based on the highest receiver

operating characteristic curve (ROC) value. GAM models were built using splines, with ‘select’

and ‘method’ as tuning hyperparameters. MDA models use subclasses, while FDA and MARS

(using bagging and generalised, cross-validating pruning) have hyperparameters of the number

of ‘degrees’ and ‘nprunes.’ RPART is CART using recursive partitions (instead of the tree

command; Morgan, 2014), which uses complexity parameters (‘cp’) to calibrate the algorithm.

BRT becomes stochastic gradient boosting models, optimised with ‘n.trees,’ ‘interaction.depth’,

28



‘shrinkage,’ and ‘n.minobsinnode.’ RF became a regularised model with: ‘mtry’, ‘coefRef’, and

‘coefImp’ hyperparameters. SVMs are built with polynomial kernels and augmented with

‘degree’, ‘scale’ and ‘C’ values. Lastly, RBF uses a ‘negativeThreshold’ value while MLP uses

multiple layers: ‘layer1’, ‘layer2’, and ‘layer3’.

AdaptWest & Chelsa-Bioclim+ Sequences 1-3

The position and quantity of pseudo-absences have been extensively studied (and

scrutinised, Chefaoui & Lobo, 2008; Dubos et al., 2022; Hazen et al., 2021; Liu et al., 2019;

Senay et al., 2013; VanDerWal et al., 2009; Wisz & Guisan, 2009). I based the conceptual

generation of pseudo-absences for each algorithm on the working of Barbet-Massin et al. (2012),

which provides insight into the optimal quantity and distribution of pseudo-absence points,

considering factors such as spatial or climatic biases within the data (Barbet-Massin et al., 2012).

Subsequent studies, such as the work conducted by Liu et al. (2019), have affirmed the results

presented by Barbet-Massin et al. (2012). I iterated the execution of an R-script three times, each

time selecting identical environmental variables but varying the presence records and the ratio of

pseudo-absences to reflect these changes. The configuration that yielded the most robust models

and indicated a comprehensive understanding of I. scapularis' environmental dynamics,

particularly evident in how closely the models' response curves aligned with I. scapularis'

preferred environmental conditions, was selected for subsequent sequence and model

constructions.

The initial sequence utilised all available records, potentially resulting in multiple records

within each 1 km aggregate grid of environmental values. In the second scenario, records were

thinned without altering the spatial distribution, focusing solely on reducing abundance. This
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nuanced adjustment led to a reduction of records by more than half. The third change prioritised

keeping records outside the scope of human activities, such as within secluded regions with less

human traffic, manufacturing a distribution influenced less by accessibility and thinned to one

record per grid cell. Sequences one to three yielded approximately 12,000; 5,500; and 3,500 I.

scapularis records, respectively

The following variables were used from the Chelsa-Bioclim+ dataset for sequences 1-3:

(a) mean diurnal air temperature range (Bio2), (b) mean daily air temperature of the wettest

quarter (Bio8), (c) precipitation amount of the wettest month (Bio13), (d) precipitation

seasonality (Bio15), (e) net primary productivity (NPP; based on Lieth’s "Modelling the primary

productivity of the earth”, 1975).

The following variables were used from the AdaptWest dataset: (a) Elevation (ELEV),

(b) Mean annual precipitation (MAP), (c) Precipitation as snow (PAS), (d) Mean annual relative

humidity (RH), (e) Temperature difference between the mean temperature of the coldest month

(MCMT) and the mean temperature of the warmest month (MWMT), (f) Annual heat moisture

index (AHM).

For AdaptWest and Chelsa-Bioclim+ sequence one (i.e., all records, biased distribution),

GLM, GAM, GLMPoly, and MARS used 10,000 pseudo-absence points, randomly distributed

across the study area. MDA, FDA, RPART, and CART used 4,000 pseudo-absence points, using

a 2°far distribution from presence records (i.e., a ≥ 222 km buffer from known occurrence

points). BRT, RF, RBF, and MLP algorithms used 11,500 pseudo-absence points, similar to the

count of I. scapularis records, with an SRE distribution (i.e., a minimum bounding geometric

polygon is positioned around the presences, dispersing pseudo-absences outside that envelope).

In the second sequence, where records were reduced to one point per grid cell (~5,500 points),
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the same set of algorithms and pseudo-absence distributions were applied. However, the

allocation of pseudo-absence points varied: GLM, GAM, GLMPoly, and MARS models

employed 10,000 pseudo-absences, while MDA, FDA, RPART, and CART models utilised

1,750, and BRT, RF, RBF, and MLP models used 5,500. Sequence three used the impervious

surface shapefile with interval buffers to mollify human sampling bias from heavily frequented

areas. Each interval extended by 10 meters progressively, reaching a distance of up to 50 meters

from any artificially created surfaces or structures.

Area Remaining Removed

default overlay 7,951 observations 3,772 observations

10–meter buffer 7556 observations 4,157 observations

20–meter buffer 7,266 observations 4,457 observations

30–meter buffer 7,067 observations 4,659 observations

40–meter buffer 6,846 observations 4,877 observations

50–meter buffer 6,703 observations 5,013 observations

Table 2. Filtered out georeferenced points situated within or in proximity to an impervious

surface shapefile.

I used a 50-meter buffer; enough points remained to accurately assess I. scapularis

environmental conditions (within their niche) while also addressing potential errors or temporal

gaps in the spatial alignment of relevant layers (e.g., point vectors, polygon vectors,

environmental variables). The remaining points were lowered to one point per grid cell, resulting

in approximately 3,500 observations remaining. Pseudo-absences were then allocated as follows:
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10,000 for GLM, GAM, GLMPoly, and MARS; 1,100 for MDA, FDA, RPART, and CART; and

3,400 for BRT, RF, RBF, and MLP algorithms.

The results of sequences 1-3 determined the subsequent number of presences used in

sequences 4-8 (i.e., ~3,500 presence records), with sequence three superseding one and two in

the ensembles. The resulting rasters, response curves, and variable significance were

comprehensively similar; however, sequences one and two showed additional signs of

overfitting. This manifested in specific algorithms showing inflated AUC, sensitivity, and

specificity values, along with difficulties in isolating finer-scale environmental conditions where

one variable exerted an unrealistic disproportionate influence. Given the identical environmental

variables shared among sequences 1-3, I retained only one sequence. Sequence three

demonstrated superior performance, excluding sequences one and two from further

consideration, thereby employing only sequence three in the final ensemble. Additionally, to

better optimise the amalgamation of models used, I augmented the combinations of algorithms in

subsequent sequences to refine the performance of underperforming model types. This alteration

affected the count and placement of pseudo-absences in separate algorithms, aiming to improve

the performance of underperforming model types.

AdaptWest & Chelsa-Bioclim+ Sequences 4-7

AdaptWest & Chelsa-Bioclim+ Sequences 4

Sequence four for AdaptWest used (a) degree days above 18°C (DD18), (b) degree days

below 0°C (DD_0), (c) mean annual relative humidity (RH), (d) Hargreaves climate moisture
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deficit (CMD; Hargreaves & Allen, 2003), (e) mean annual precipitation (MAP). Sequence four

for the Chelsa-Bioclim+ models used: (a) isothermality (Bio3), (b) annual precipitation amount

(Bio12), (c) frost cover frequency (FCF), (d) growing season length (GSL; per “TREELIM”;

Paulsen & Körner, 2014) and, (e) growing season temperature (GST; in keeping with

“TREELIM”; Paulsen & Körner, 2014). The amended pseudo-absence selections for both

datasets continue to group GLM, GAM and GLMPoly models as previously (with 10,000

random records). However, MARS gets separated with considerably fewer pseudo-absence

records (1,100; 2° away). MDA and FDA models used 1,100 absences with an SRE distribution

– removing the RPART and CART models, which are integrated with the same count and spatial

diffusion as BRT, RF, SVM, RBF, and MLP models (3,425; SRE distributed pseudo-absences).

AdaptWest & Chelsa-Bioclim+ Sequences 5

Sequence five used the same pseudo-point parameters, with six Chelsa-Bioclim+

covariates: (a) temperature seasonality (Bio4), (b) mean daily air temperature of the warmest

month (Bio5), (c) accumulated precipitation of the growing season (GSP; adhering to

“TREELIM” values; Paulsen & Körner, 2014), (d) and the last growing degree days above 0°C

(GDDLGD0), (e) above 5°C (GDDLGD5), (f) and above 10°C (GDDLGD10). AdaptWest

sequence five used: (a) Hogg’s climate moisture index (CMI; NRCan, 2020), (b) mean

precipitation amount during the summer (MSP; precipitation amounts between May to

September), (c) mean spring precipitation (PPT_sp), (d) and the number of degree-days above

5°C (DD5).
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AdaptWest & Chelsa-Bioclim+ Sequences 6

The distribution parameters of the MARS algorithm were changed to “environmentally

random.” Chelsa-Bioclim+ sequence six used: (a) annual range of air temperature (Bio7;

difference between max temperature of warmest month and minimum temperature of the coldest

month), (b) mean daily air temperature of the warmest quarter (Bio10), (c) precipitation amount

of the driest month (Bio14), mean monthly precipitation of the warmest quarter (Bio18), and

snow water equivalent (SWE; melted amount of snow turned to liquid water) as variables.

AdaptWest sequence six used (a) mean annual temperature (MAT), (b) summer heat moisture

(SHM), (c) summer precipitation (PPT_sm; precipitation amounts between June and August), (d)

precipitation during the winter (PPT_wt).

AdaptWest & Chelsa-Bioclim+ Sequences 7

Chelsa-Bioclim+ sequence seven used three environmental variables: (a) Mean annual

temperature (Bio1), (b) mean monthly precipitation amount of the wettest quarter (Bio16), (c)

mean monthly precipitation amount of the driest quarter (Bio17). The AdaptWest dataset used:

(a) degree-days above 10°C and below 40°C (DD1040), (b) extreme maximum temperature over

30 years (EXT), (c) spring precipitation (PPT_sp), (d) summer precipitation (PPT_sm), (e)

autumn precipitation (PPT_at).
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Evaluation Metrics

Algorithms were trained with an 80:20 data-partition, training-test split of the data

(replicated four times - constrained due to limitations in computer memory). A training dataset is

used to 'teach' a model; the algorithms 'learn' patterns and relationships within the data. The test

dataset is used to evaluate model performance post-training. Resampling methodologies were

adopted to evaluate the models and assess their efficacy. Resampling techniques involve

iteratively selecting samples to constitute the test set. Three resampling techniques were

employed: subsampling, bootstrapping, and 5-fold cross-validation methods (Naimi & Araujo,

2016). Each algorithm generated twenty-eight models. Resampled models were trichotomised

into four subsampled, four bootstrapped, and twenty cross-validated methods. The evaluation of

each model performance, derived from the dependent test data, considered three metrics: Area

Under the ROC (receiving-operating characteristics) Curve (AUC), True Skill Statistic (TSS),

and Cohen's kappa (Kappa).

Liu et al. (2013) suggested using pseudo-absences as true-absence data to create

confusion matrices (Jiménez & Soberón, 2020), which provides a means to evaluate models by

deriving the sensitivity (correctly predicted presence locations) and specificity (correctly

predicted absence locations) of a classification and verifies those against the false-positive rate

(i.e., 1- specificity, Shabani et al., 2018).

Cohen's kappa (Kappa) measures the degree of concordance between the observed and

predicted and determines if this agreement is higher than what would occur from chance alone

(Liu et al., 2009). Kappa classifies predictions as either presence or absence but also measures
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model calibration by evaluating the ratio of correct presences summed over all observations

(Steen et al., 2021). A Kappa value can range from -1.0 to 1.0, with the suggested standard

interpretation of "values ≤ 0 as indicating no agreement and 0.01-0.20 as none to slight,

0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as almost perfect

agreement" (McHugh et al., 2012, p. 4). While kappa is a standardised measurement across

studies, the consequential weight of the agreement depends on the discipline in question (e.g.,

clinical trials in healthcare: a substantial agreement would still lead to approximately 20% to

40% of evaluations being wrong; an unpropitious result for quality control, such as in the

assessment of a new medicinal drug (McHugh et al., 2012). A suggested agreement quartile for

species-climate envelope modelling is that Kappa values ≤ 0.40 indicate poor agreement, values

between 0.40-0.75 indicate good agreement, and values ≥ 0.75 indicate excellent agreement

(Araújo et al., 2005)."

The AUC of a model represents the likelihood of the model ranking a randomly selected

presence site higher than a randomly chosen absence site (Liu et al., 2011). A score of 0.5

suggests the model performs no better than random chance (Elith et al., 2006; Raes & ter Steege.,

2007). A higher AUC value signifies that algorithms learned well and performed better than a

random classification or chance occurrence (Jiménez & Soberón., 2020; O'Neill et al., 2023); a

score of 1.0 signifies a perfect fit of the model (Elith et al., 2006; Raes & ter Steege., 2007).

When predicting species niche using presence-absence data, an ordinal value ≤ 0.7 could indicate

a poor model, a value between 0.7-0.9 could indicate a good model, and ≥ 0.9 could point to an

excellent model (Ringwaldt et al., 2023; Zhang et al., 2015).

TSS demonstrates a robust correlation with AUC metric values and is regarded as a more

realistic statistic for assessing the accuracy of biodiversity models (Shabani et al., 2018). TSS
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and AUC are both prevalence-free methods; however, they can be distinguished because TSS is a

threshold-dependent statistic. In niche modelling, it is sometimes advantageous to use a binary

distribution classification over a continuous result (e.g., for hotspot analysis or presence-absence

maps; Shabani et al., 2018). TSS can be a better metric for evaluating models developed on the

same dataset (Liu et al., 2015). TSS uses a threshold to dichotomise a confusion matrix's true

presences and false absences (i.e., true presence values fall above the threshold; false absence

values fall below the threshold; Liu et al., 2015). I chose a threshold, MaxSSS, that maximises

the sensitivity and specificity (Max[se+sp]) of the present/absence data. MaxSSS optimises

objectivity, discriminability, and equality; helps evaluate TSS values that may have inflated AUC

or Kappa metrics; and is considered one of, if not the best, threshold methods for ENMs using

present/absent data (Liu et al., 2015; Liu et al., 2013; Liu et al., 2005)

AUC and TSS are discrimination metrics that are ideal for predicting the probability of

species presence/absence or the relative suitability of a location. Kappa is considered a

calibration metric effective at dealing with uncertainty or prevalence (Steen et al., 2021). Models

with metrics below the threshold values of AUC < 0.80 (Li et al., 2023), TSS < 0.70 (e.g.,

Thuiller et al., 2019), and Kappa < 0.6 (e.g., as suggested in McHugh’s work, 2012) were

removed.

Models within each sequence, which utilise distinct environmental variables, underwent

separate evaluation from other sequences. Models failing to meet the threshold criteria (i.e.,

AUC < 0.80, TSS < 0.70, and Kappa < 0.6) were eliminated. The top-performing model from

each algorithm was singled out; in cases where multiple top models demonstrated comparable

performance metrics, they were amalgamated to reduce noise, averaging covariate influence,

response curves, and niche predictions. Each algorithm within each sequence now yields a single
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averaged model, used to produce raster layers of each algorithm for the following periods:

contemporary, 2011-2040, 2041-2070, and 2071-2100, under RCP3-7.0 and RCP5-8.5 scenarios.

Raster layers of each algorithm in each period of time underwent another averaging to generate

ensembles, iterated five times for each sequence. These ensembles were subsequently merged

with the other sequences of the same period, culminating in unified ensembles for both present

and future timeframes. I repeated this process for the AdaptWest dataset (i.e., the secondary

dataset).

Results

Evaluation (Contemporary and Future Tick Response to Climate)

Each ensemble is made up of raster cells. Each ~1 km grid square represents ~1 km of the

area on the ground. These grid cells have a predictive value between zero and one, denoting

niche suitability for I. scapularis. As varied predictions represent potential states of actual

distributions, individual grid cells may exhibit good predictions while inaccurately predicting

others (Marmion et al., 2009). Combining ensembles distinguishes a prevailing viewpoint or

agreement among diverse model outputs. Each sequence resulted in a present-day raster, three

SSP3-7.0 scenarios, and three SSP5-8.5 scenarios (2011-2040, 2041-2070, and 2071-2100).

From evaluating the Chelsa-Bioclim+ data set, the following algorithms were used in each

ensemble:

Table 3. Comparison of model statistics (with standard error indicated by ±) among the selected

algorithms for each ensemble.
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Algorithm Count AUC TSS Kappa

GAM 17 0.924 ± 0.007 0.727 ± 0.014 0.6755 ± 0.0235

GLMPoly 13 0.9175 ± 0.0095 0.720 + 0.18 0.657 ± 0.038

MARS 6 0.930 ± 0.014 0.7445 ± 0.0145 0.7005 ± 0.0375

MDA 10 0.970 ± 0.012 0.9025 ± 0.0185 0.850 ± 0.023

FDA 17 0.9295 ± 0.0525 0.8115 ± 0.0885 0.754 ± 0.099

RPART 9 0.954 ± 0.029 0.8285 ± 0.1015 0.791 ± 0.139

CART 17 0.974 ± 0.012 0.898 ± 0.026 0.898 ± 0.026

BRT 23 0.992 ± 0.002 0.9205 ± 0.0105 0.9205 ± 0.0105

RF 22 0.993 ± 0.003 0.9365 ± 0.0265 0.9365 ± 0.0265

SVM 13 0.9875 ± 0.0045 0.918 ± 0.018 0.918 ± 0.018

RBF 20 0.960 ± 0.017 0.8485 ± 0.0285 0.8485 ± 0.0286

MLP 16 0.985 ± 0.005 0.9135 ± 0.0225 0.9135 ± 0.0225

I conducted 4,704 model iterations across two datasets, employing up to 12 algorithms,

investigated 10 climate profiles and considered 40 environmental variables. Under the two

projected climate scenarios (SSP5-8.5 and SSP3-7.0), I encompassed a total of 2,094 future

predictions of I. scapularis distribution. After evaluating all the models, the Chelsa-Bioclim+

ensembles (i.e., the primary dataset) consisted of 183 models employing 11 algorithms, while the

AdaptWest (i.e., the complementary dataset) ensembles were produced using 166 models

employing 12 algorithms. The final ensembled results demonstrated an average performance

with AUC: 0.963, TSS: 0.859, and Kappa: 0.833. Complementary ensembles exhibited an

averaged performance with AUC: 0.950, TSS: 0.828, and Kappa: 0.805. Models employing
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GLMs exhibited high AUC values but were characterised by underperforming TSS and Kappa

values, thus being excluded from the final Chelsa-Bioclim ensemble, with only two selected

within the AdaptWest ensembles. A GLM introduced with polynomial regression exhibited

significantly better performance, although slightly inferior to GAMs that were identified as the

most robust in their amalgam.

MDA and FDA models demonstrated consistent performance within their grouping, with MARS

models showing overfitting tendencies when used with the same number of pseudo-absences as

GLMs, GAMs, and GLMPolys. However, MARS models exhibited improved performance and

reduced overfitting using fewer pseudo-absences. Nonetheless, the efficacy of this claim was

hindered by challenges in appropriately setting MARS pruning hyperparameters (i.e., nprunes

and degrees), resulting in overgeneralisation and difficulties in interpreting variable responses

and fluctuations.

BRTs and RFs consistently emerged as the top-performing algorithms across sequences,

followed closely by SVM models. Radial Basis Function RBF models were noted for their

inconsistency, failing periodically in production or displaying significant disparities in

performance outcomes. MLP models were reliable, exhibiting high evaluation metrics, albeit

slightly less robust than SVM, RF, and BRT algorithms. RPART and CART algorithms

demonstrated enhanced performance when an equal number of pseudo-absence and presence

points were utilised, compared to scenarios with a limited number of pseudo-absence points,

with RPART showing marginal superiority. These findings are reflected in Table 3 and

Appendices F, H, and I.
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Range Expansion and Land Suitability Changes

To analyse the expansion rate specifically within eastern Canada, area calculations were

performed by reclassifying values into predefined intervals following a breakdown similar to the

one used by Yang et al., 2023 but with an additional classification for the highest suitability. These

classifications are as follows: unsuitable niche (0-0.1), low-suitable niche (0.1- 0.3),

medium-suitable niche (0.3-0.6), highly-suitable niche (0.6-0.8), optimal suitable niche (0.8-1).

Table 4. Changes in total land suitability per each timestamp. Total area was computed by

converting rasters into polygons with the above classification values and summing their respective

area values.

Time Period Suitability Total Area (km2) Relative Percentage (%)

Current (Historic) Unsuitable 2,432,522 km2 64.81 %

Current (Historic) Low Suitability 613,459 km2 16.34 %

Current (Historic) Medium Suitability 259,804 km2 6.92 %

Current (Historic) High Suitability 126,529 km2 3.37%

Current (Historic) Optimal Suitability 321,003 km2 8.56%

2011-2040 (SSP5-8.5) Unsuitable 1,793,798 km2 47.79%

2011-2040 (SSP5-8.5) Low Suitability 705,938 km2 18.81%

2011-2040 (SSP5-8.5) Medium Suitability 486,881 km2 12.97%

2011-2040 (SSP5-8.5) High Suitability 286,599 km2 7.64%

2011-2040 (SSP5-8.5) Optimal Suitability 480,101 km2 12.80%

2041-2070 (SSP5-8.5) Unsuitable 1,321,509 km2 35.20%

2041-2070 (SSP5-8.5) Low Suitability 731,502 km2 19.49%
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2041-2070 (SSP5-8.5) Medium Suitability 533,652 km2 14.22%

2041-2070 (SSP5-8.5) High Suitability 502,100 km2 13.38%

2041-2070 (SSP5-8.5) Optimal Suitability 664,554 km2 17.71%

2071-2100 (SSP5-8.5) Unsuitable 716,294 km2 19.08%

2071-2100 (SSP5-8.5) Low Suitability 851,324 km2 22.68%

2071-2100 (SSP5-8.5) Medium Suitability 628,939 km2 16.76%

2071-2100 (SSP5-8.5) High Suitability 864,089 km2 23.02%

2071-2100 (SSP5-8.5) Optimal Suitability 692,671 km2 18.45%

Current I. scapularis Distribution

In my contemporary ensemble (Figure 2), the peak suitability reaches approximately

94%, with the most favourable conditions for I. scapularis observed in southern and southeastern

Canada, notably in lower Ontario and Quebec (covering the majority of major urban centers).

Suitability is sporadic in Nova Scotia, near Summerside and Kensington in Prince Edward Island

(P.E.I.), and in regions of New Brunswick between Fredericton, Moncton, and Saint John. The

suitability for I. scapularis diminishes beyond approximately 47°N, with Newfoundland and

Labrador exhibiting low to medium suitability except in the Burin Peninsula. Much of Manitoba

shows insufficient suitability, with most cell values below 30%, except for a southeastern region

near Winnipeg, which is slightly more suited for I. scapularis. Of the combined ~3,753,317 km2

of land measured within Eastern Canada (and Manitoba), only ~450,000 km2, or ~12% of our

extent, is categorised as having high or optimal suitability for I. scapularis, with the majority of

land low to unsuitable (~75%, Table 4).
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The historical and contemporary ensemble, utilising the AdaptWest environmental

dataset (Figure A1), averages future environmental conditions from 13 climate normals. It

showcases a nuanced reduction in predictive accuracy compared to the Chelsa-Bioclim+

ensembles, notably evident in lower Ontario and Quebec, where estimates remain largely

unchanged. Newfoundland and Labrador exhibit similar trends, with the province devoid of high

suitability. Nova Scotia and New Brunswick also demonstrate comparative estimations, with

subtle variations in values, particularly in the lower and upper-east regions of Nova Scotia. In

Prince Edward Island, AdaptWest ensembles present the island as optimal for I. scapularis

habitation, displaying raster values exceeding 90% throughout.

The Chelsea-Bioclim+ ensemble predicts ~321,000 km2 (8.56%) of land characterised by

optimal coverage for I. scapularis, with an additional ~126,500 km2 exhibiting high niche

suitability (Table 4). The AdaptWest dataset presents ~317,000 km2 as optimal and 92,500 km2

as high (Tables G2 and G3).
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Figure 2. Ensemble produced using historic environmental data. Each ~1 km cell

received a predictive value between 0-1. Zero indicates no suitability or likelihood of I.

scapularis; one indicates the highest suitability or likelihood of occurrence. Additional

classification breaks down I. scapularis suitability as follows: unsuitable niche (white:

0-0.1), low-suitable niche (blue: 0.1-0.3), medium suitable niche (green: 0.3-0.6),

high-suitable niche (orange: 0.6-0.8), optimally suitable niche (red: 0.8-1.0).

Variable Permutation and Key Response

The main text illustrates the eight primary determinant factors within Chelsa-Bioclim+

ensembles. These determinants are identified through a permutation of climate variables.

Variable significance is listed in Table 5, and the response curves of eight key variables are
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illustrated in Figure 3. These factors are the primary drivers behind both the ensemble results

discussed within the text and the mapped I. scapularis distribution showcased in the results

section. The additional response curves for the Chelsa-Bioclim+ dataset are provided in

Appendix D, while the response curves for the AdaptWests dataset are included in Appendix E.

For details regarding the individual variable importance in the AdaptWest ensembles, refer to

Appendix A, Table A1.

Variables of particular importance are net primary productivity (NPP), contributing

~10.29% to the overall ensemble results, mean annual temperature (Bio1), responsible for

~10.14%, and the growing season length (GSL), for ~8.44%. Additionally, the mean monthly

precipitation of the driest quarter (Bio17) explains ~7.95% of the ensemble variation, while the

mean daily air temperature of the warmest quarter (Bio10) accounts for ~7.72%. The

environmental variable representing precipitation during the driest month (Bio14) elucidates

6.46% of the variance within the ensembles. Additionally, annual precipitation (Bio12) accounts

for 5.61% of the total, and temperature seasonality (Bio4) explains 5.46%.

Net primary productivity (NPP) response exhibits a distinct pattern characterised by an

asymmetrical, unimodal distribution. The peak of this distribution occurs at approximately 1250

gCm−2yr−1, with a confidence level of ~75%. Notably, to the left of the inflection point, the

response demonstrates a steep slope, starting from 0% probability at approximately 2500

gCm−2yr−1, indicating a heightened sensitivity to changes in NPP compared to the right side of

the curve, where the decline is more gradual (refer to Figure 3). The modelled influence of mean

annual temperature on the distribution of I. scapularis suggests an optimal thermal range

between 5°C and 15°C, coinciding with a high probability of ~80%. Beyond this range, the

probability diminishes, reaching near 0% suitability at temperatures below -10°C and above
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25°C (Figure 3). Regions with a short growing season length (GSL) indicate a low probability of

I. scapularis suitability. As the GSL increases, so does the probability, which exhibits a sharp

increase in responsiveness for a GSL of 100 to 200 days. The optimal GSL is 250 days, beyond

which the responsiveness tapers off (Figure 3). The mean monthly precipitation of the driest

quarter (Bio17) shows a notable increase in probability from 0 to 150mm month-1 before

plateauing between 200 and 350mm month-1 at ~90% probability, followed by a gradual decline

in probability with further increases in precipitation. The mean air temperature of the warmest

quarter (Bio10) exhibited similarities with the response pattern observed in Bio5 (i.e., the mean

air temperature of the warmest month). However, Bio10 displayed more pronounced

probabilities and a heightened sensitivity to temperature variations. For instance, Bio10

demonstrated a low probability below 10°C, followed by a steep gradient from 10°C to 20°C,

resulting in a notable increase in probability percentage from ~15% to ~90%. The peak

probability occurred between 20°C and 23°C, followed by a substantial decrease again (Figure

3). The precipitation observed during the driest month (Bio14), which accounts for 6.46% of the

ensemble, displays a bell-shaped curve with a nearly symmetrical distribution. This pattern

reveals optimal precipitation levels ranging between 50 mm and 150 mm at ~90% to ~95%

probability. as illustrated in Figure 3. Conversely, the annual precipitation (Bio12), featuring a

variable importance of 5.61% according to Table 5, exhibits a steep response gradient as it

ascends from 0 to 1000mm. Notably, suitability dramatically increases from ~0% to 80%.

Bio12's response curve gradually peaks and levels at ~90% between 1250mm and 2500mm of

precipitation (Figure 3). Temperature seasonality (Bio4) explains 5.46% of the ensemble. Bio4

expounds on the degree of variation or fluctuations across different monthly temperatures. The
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response of Bio4 is characterised by a unimodal curve, demonstrating a narrow range between its

peak and trough probabilities, ~20% to ~40%, respectively (Figure 3).

Table 5. Environmental variable permutations in Chelsa-Bioclim+ ensembles

Chelsa-Bioclim+

Variables

Variable Abbrev
Relative Sequence

Variable Importance

Ensembled

Variable

Importance

Net Primary Productivity NPP 61.33% 10.29%

Mean Annual Temperature Bio1 60.43% 10.14%

Growing Season Length GSL 50.30% 8.44%

Mean Monthly Precipitation - Driest Quarter Bio17 47.40% 7.95%

Mean Daily Air Temperature - Warmest Quarter Bio10 46% 7.72%

Precipitation - Driest Month Bio14 38.52% 6.46%

Annual Precipitation Bio12 33.46% 5.61%

Temperature Seasonality Bio4 32.52% 5.46%

Last (Growing Degree) Day above 10°C GDDLGD10 30.87% 5.18%

Maximum Daily Mean Air Temperature -

Warmest Month
Bio5 28.08% 4.71%
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Growing Season Precipitation GSP 25.36% 4.25%

Last (Growing Degree) Day above 0°C GDDLGD0 20.85% 3.50%

Last (Growing Degree) Day above 5°C GDDLGD5 18.80% 3.15%

Precipitation Seasonality Bio15 18.55% 3.11%

Mean Diurnal Air Temperature Range Bio2 13.71% 2.30%

Isothermality Bio3 13.58% 2.28%

Snow-Water Equivalent SWE 10.77% 1.81%

Frost-Cover-Frequency FCF 12.46% 2.09%

Growing Season Temperatures GST 10.82% 1.82%

Annual Air Temperature Range Bio7 9.56% 1.60%

Mean Monthly Precipitation - Wettest Quarter Bio16 5.53% 0.93%

Mean Daily Air Temperature - Wettest Quarter Bio8 4.96% 0.83%

Precipitation - Wettest Month Bio13 2.16% 0.36%

Total: 596.02 100.00%
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Figure 3. The response curves corresponding to the eight most influential variables in the

Chelsa-Bioclim+ ensembles

Future I. scapularis Distribution

By 2040, the niche areas (i.e., above 80% I. scapularis suitability) will experience

notable expansion from contemporary locales, shifting northeasterly, growing by ~160,000 km2

and reaching an upper northern threshold of ~48°N (Figure 4). The only notable shift from 90%

suitability zones is from near Lake Erie (e.g., around Hamilton, London, and Toronto), where the

compatibility decreases by 10%. All low, medium, and high suitability areas have expanding

zones, with low suitability areas reaching ~52°N, medium zones reaching ~50°N, and high

reaching ~49°N. Manitoba still reaches low to medium environmental compatibility, though the

clustering of medium-valued raster cells does increase. Newfoundland will experience a

significant and rapid expansion in niche suitability for I. scapularis. This expansion is marked by
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continued growth in the Burin area, along with the emergence of niche zones in various regions:

the Avalon Peninsula (e.g., Conception Bay South, Holyrood, and Butter Pot Provincial Park),

the northern coast of central Newfoundland (e.g., near Terra Nova National Park, Lewisport, and

Notre Dame Provincial Park) and Western Newfoundland (e.g., Corner Brook and Deer Lake).

The only area that reaches 90% suitability in Newfoundland is close to the west coast near

Stephenville and Stephenville Crossing. Prince Edward Island is characterised by consistently

high suitability throughout, with only the eastern point in medium suitability zones. I. scapularis

optimal range in Ontario, which historically reaches as far north as Sudbury, expands an

additional ~100 km north in central and northeastern Ontario (as far as Lady Evelyn

Smoothwater Provincial Park and Temiskaming Shores); western Ontario expands across Lake

Huron and near the entire length, and area, of Lake Superior Provincial Park. The optimal limits

for I. scapularis within western and central Quebec reach the top of La Vérendrye Wildlife

Reserve. Heading eastward from Saint Georges along the St. Lawrence River to the

Quebec/Maine border and onward to New Brunswick, the niche suitability for the blacklegged

tick now largely exceeds 80%. The further northern bank of the St. Lawrence River also provides

optimal conditions for I. scapularis (from Quebec City to Baie-Comeau).

By 2070, the northern range of I. scapularis niche extends to ~49°N (high suitability

reaches ~51°N, medium suitability reaches ~52°N, low suitability reaches ~53°N, Figure 5).

Discernable changes of improved suitability occur on the northern bank of the St. Lawrence

River, situated near a rare cold spot proximate to Parc national de la Jacques-Carter, Quebec. The

total area of optimal suitability (over 80% suitability) is increasing from ~480,000 km2 (12.8% of

total cover) to ~665,000 km2 (or ~17.70%), whereas the percentage of raster cells above ninety

marginally decreases (Table 5). Most previous composites of near-valued cells are expanding in
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size; central Newfoundland hot spots continue to extend, with a few additional locations reaching

90% suitability (e.g., near Terra Nova National Park, Port Blandford).

Near the turn of the century, the northern threshold and the optimal niche space

percentage will increase to ~50°N and ~18.50%, respectively. High suitability reaches upwards

of ~52°N, medium suitability and low suitability reach ~53°N and ~55°N (Figure 6). While the

percentage of land predicted to be over 80% has increased, the percentage of land over 90% has

decreased significantly. Reduced conditions to medium values occur in lower Ontario, lower

Nova Scotia, and parts of Lower Quebec. Labrador now has land that reaches high suitability,

with one location reaching optimal suitability, near Happy Valley-Goose Bay.

Between 2011 and 2040, the supplementary ensembles (Adaptwest, Appendix A), in

relation to the principal ensembles (Chelsa-Bioclim+, Figures 2, 4, 5, and 6), reached higher

northern latitudes (~52°N) at lower suitabilities; comparable at medium suitability (i.e., reaching

~49-50°N), but extend less in high and optimal I. scapularis suitability zones (~48°N, Figure

A2). Much of the ninety-percentile rasters have reduced certainty but are still within the margins

of optimal suitability (e.g., Prince Edward Island is still compromised wholly of raster cells

within the optimal suitability categorisation). Most optimal suitability conditions are similar to

those in the aforementioned rasters (e.g., situated within lower Ontario and Quebec, eastern New

Brunswick and central Nova Scotia). Only one large conglomeration of raster cells consists of

values over 90%, near Windsor, Nova Scotia, covering most of the division of Hants County. The

largest Newfoundland subsection with optimal conditions for I. scapularis is near Botwood and

Bishop's Falls, following the Bay d'Espoir highway (route 360) for ~40 km. High suitability is

found by Central and near the western hubs of Corner Brook, Pasadena, and Stephenville.
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By 2070 (Figure A3), notable hotspots shift north once more. Low suitability reaches

~44-45°N, medium and high reach ~51°N and ~50°N. The optimal niche reaches ~48-49°N; All

Nova Scotia and New Brunswick are considered high or optimal suitability, and over half the

island of Newfoundland. The highly suitable sites in Newfoundland by 2040 continue to hold the

highest suitability, escalating in values to optimal I. scapularis environmental conditions. Near

Happy Valley-Goose Bay in Labrador, medium suitability is reached, the first within the region

(a notable feature predicted within the primary dataset). The one location reaching 90%

predictability is to the left and right of Quebec City. Near this location, the cold spot identified

within the primary dataset (i.e., near Parc National de la Jacques-Carter, Quebec) is additionally

within this collection of models.

By the end of the century (Figure A4), nearly all of Canada contains at least low

suitability (i.e., between 10-30% niche suitability, reaching 58N-59°N). Medium suitability

reaches ~55-56°N (52N in Ontario), and high suitability (higher in Quebec and Labrador than in

Ontario) reaches ~53-54°N. The optimal suitability locations have dropped significantly, with

Nova Scotia largely (and P.E.I completely) consisting of high suitability cover. The northwest

portion of New Brunswick now consists of the optimal conditions for I. scapularis, joined at the

Quebec-New Brunswick regional border. Quebec contains the highest concentration of optimal

conditions, still to the east of Quebec City but also creeping along the northern coast of the St.

Lawrence River and sporadically up the Gulf of St. Lawrence until reaching the

Quebec-Labrador coastal border. Lake Superior Provincial Park in Ontario is the one provincial

location with quintessential I. scapularis habitat conditions. Newfoundland exhibits a slight

northwesterly shift, with the optimal location moving from Pasadena, Corner Brook, and

Stephenville to East Arm Bay and the coastline of Gros Morne National Park. The western
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interior and up the Baie Verte Peninsula also contain optimal conditions, while the western and

eastern coast contain only medium suitability conditions. In Labrador, the one optimal location

(coincidently identified as significant across late-century ensembles) is near Happy Valley-Goose

Bay, in which high suitability conditions expand, reaching the Quebec border and the Gulf of St.

Lawrence coastline.

Figure 4. Ensemble produced for the time-period 2011-2040 using SSP5-8.5 environmental data.

Each ~1 km cell received a predictive value between 0-1. Zero indicates no suitability or likelihood

of I. scapularis; one indicates the highest suitability or likelihood of occurrence. Additional

classification breaks down I. scapularis suitability as follows: unsuitable niche (white: 0-0.1),
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low-suitable niche (blue: 0.1-0.3), medium suitable niche (green: 0.3-0.6), high-suitable niche

(orange: 0.6-0.8), optimally suitable niche (red: 0.8-1.0).

Figure 5. Ensemble produced for the time-period 2041-2070 using SSP5-8.5 environmental data.

Each ~1 km cell received a predictive value between 0 - 1. Zero indicates no suitability or

likelihood of I. scapularis; one indicates the highest suitability or likelihood of occurrence.

Additional classification breaks down I. scapularis suitability as follows: unsuitable niche (white: 0

- 0.1), low-suitable niche (blue: 0.1 - 0.3), medium suitable niche (green: 0.3 - 0.6), high-suitable

niche (orange: 0.6 - 0.8), optimally suitable niche (red: 0.8 - 1.0).
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Figure 6. Ensemble produced for the time-period 2071-2100 using SSP5-8.5 environmental data.

Each ~1 km cell received a predictive value between 0-1. Zero indicates no suitability or likelihood

of I. scapularis; one indicates the highest suitability or likelihood of occurrence. Additional

classification breaks down I. scapularis suitability as follows: unsuitable niche (white: 0-0.1),

low-suitable niche (blue: 0.1-0.3), medium suitable niche (green: 0.3-0.6), high-suitable niche

(orange: 0.6-0.8), optimally suitable niche (red: 0.8-1.0).
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Future I. scapularis Distribution Under SSP3-7.0 Scenarios

The future predictive ensembled using SSP3-7.0 scenario environmental data (Appendix

B) depicts a similar projection of I. scapularis range expansion from 2011-2040 to that of the

SSP5-8.5 scenario (Figure B1 compared to Figure 4). The northern ranges match, aside from

latitudinal growth in low suitability in Labrador; minor discrepancies exist in the expansion of

optimal suitability habitats (e.g., hot spots are slightly larger in Ontario, Quebec, Nova Scotia, P.

E. I, and New Brunswick using SSP5-8.5 values - slightly smaller in Newfoundland). By 2070

(Figure B2), SSP3-7.0 future values provide a more conservative estimate of range expansion,

with the leading edge of the suitability envelope not extending as far north with reduced

suitability, particularly in the growth of niche zones (e.g., central Newfoundland, lower and

central Ontario, lower Nova Scotia, and central Quebec ). Within this division of time, there were

more apparent changes than within the previous epoch (i.e., 2011-2040, Figure B1). Once again,

by 2100 (Figure B3), the northern range has extended, with lower estimates in the SSP3-7.0

scenario compared to the SSP5-8.5 projections (Figure B3 set against Figure 6). However, the

lower concentrations scenario seems to have I. scapularis favouring the lower, southern edges of

Ontario, Quebec, New Brunswick and Nova Scotia, which, in addition, these provinces (and

P.E.I) also have a larger concentration of 90% predictive cells then the SSP5-8.5 ensemble.

The separation between the SSP5-8.5 and SSP3-7.0 AdaptWest datasets (Appendix A and

Appendix C) is, again, inconsequential up to 2040, with differences in the northern limits of low

and medium suitabilities - SSP5-8.5 reaching farther. From 2041-2070, the ensembles continue

the trend of slight separation with SSP5-8.5 advancing further north, but the locations of optimal

I. scapularis niche differ slightly. Both datasets have ~372,000 km2 (or 9.90% of the extent;

Tables G2 and G3) as optimal. However, SSP5-8.5 has a larger concentration in Newfoundland
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and New Brunswick and slightly less within the other provinces. The most significant differences

exist within the AdaptWest 2071-2100 rasters, where a stark contrast exists between optimal

zones (SSP5-8.5s 7.14% to SSP3-7.0s 2.98%; Tables G2 and G3); the hot spot distributions are

similar, with the exception of a few additional localities within the SS5-8.5 scenario (e.g., Lake

Superior National Park, Algonquin National Park, Happy-Valley Goose Bay). However, the

corresponding locations have an expanded magnitude, containing P.E.I and northeastern Nova

Scotia as well).

Discussion

Climate change is occurring at an alarming rate; as such, the blacklegged tick (I.

scapularis) is responding rapidly. I have shown here that temperature, precipitation, net primary

production (i.e., the quantity of biomass/carbon production), length of the growing season,

climate moisture index (i.e., moisture balance), and the number of degree days in a year explain

well the current distribution of ticks in eastern North America and that climate change will

continue to strongly influence the distribution of I. scapularis within the 21st century. As the

prevalent environmental conditions change over time, so will the likelihood of I. scapularis

occurring, with a 583% increase in highly suitable land and a 116% increase in optimum suitable

land at higher latitudes by the end of the century (Figure 6 and Table 4). The rising suitability

coincides with the projected expansion of I. scapularis' optimal niche, which reaches northern

latitudes of ~48°N by 2040, ~49°N by 2070, and ~52°N by 2100 (see Figures 2, 4, 5 and 6 ). The

forecasted ensembles show good discrimination between categorised zones, which is

corroborated by the expressed range expansion, range direction, hotspots, and many of the same
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environmental factors within the complementary dataset (AdaptWest; Appendix A, Appendix C,

Appendix E and Appendix G), notwithstanding, some more conservative estimates in suitability.

Environmental Influences on Distribution

Temperature and precipitation conditions, either alone or acting in tandem, considerably

influence the prevalence of I. scapularis (Schulze et al., 2009). My models reveal that 1,250mm

to 2,000mm of annual precipitation is ideal, with less precipitation during the year progressively

suboptimal for survivability (Figure 3, Appendix E). Within each morphological phase, I.

scapularis must find a balance between wet and dry precipitation conditions, particularly during

the winter (ideal amounts of 200 to 400mm, Appendix E ) and spring (ideally 200 to 300mm,

Appendix E). These seasons have a stronger association with tick presence than the fall and

summer. This is potentially due to mild, wet winters increasing overwintering survivability

(Hayes et al., 2015), while heavier precipitation in late spring (and early summer) can coincide

with increased nymphal questing and longevity, potentially halting larval diapause and aiding in

the emergence of new ticks (McCabe & Bunnell, 2004). The models suggest snow accumulation

could also be a factor during the colder months, acting, along with leaf litter, as an insulator to

the cold (Burtis & Pflueger., 2017; Templer et al., 2012), with greater survival rates under the

accretion of leaf litter and snow cover (Linske et al., 2019). If climate change generates a

reduced or delayed winter snowpack, there could also be increased mortality amongst arthropod

species (Templer et al., 2012). Annual snowfall amounts of 250mm are ideal for I. scapularis

niche (Appendix E), with even minor increments of snowfall preferable to none. Additionally,

increased rainfall can induce higher relative humidity, stabilise fluctuating temperatures, and

increase moisture content in the duff layer of forests (McCabe & Bunnell, 2004). The
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contribution of rainfall is further supported by the increased significance of monthly precipitation

during the driest month and driest quarter (relative to wetter attributes) where precipitation is

scarce, making precipitation events critical (Figure 3, Table 5, and Appendix D). However,

ever-increasing rainfall leads to more frequent and extreme rainfall events, which could hinder I.

scapularis survivability and expansion (Ogden et al., 2006a).

Temperature is often the most important variable determining the distribution of I.

scapularis (Clark, 1995), with most temperature-based variables (e.g., annual mean temperature,

degree-days above a threshold temperature, length of the growing season, temperature

seasonality, last day of the year above a threshold temperature) strongly correlated with I.

scapularis (Table 5; Appendix D and Appendix E). In my models (both datasets), the suitable

annual mean temperature range is between ~6.0 to ~12.0 °C ± 1.0°C (Figure 3 and Appendix E),

coinciding well with a documented uncoordinated activity threshold of 9.2 ± 4.1 and 11.2 ±3.4

for females and males and an activity threshold of 6.2 ± 3.6 for females, 8.5 ± 3.0 for males,

respectively (Clarke, 1995). A temperature at or below -10°C exhibits a 0% probability of tick

occurrence(Figure 3 and Appendix E). This finding is supported by empirical evidence

indicating that I. scapularis ticks can only survive at temperatures of -10.0°C for brief durations

(i.e., a few hours; Lindsay et al., 1998), while temperatures ranging from -11.0°C to -16.0°C are

lethal (Brunner et al., 2012).

The models additionally suggest that locations characterised by a higher frequency of

degree days below freezing (Appendix E) are rendered unfavourable for I. scapularis, thereby

affirming the predictive capabilities of the models. Moreover, the duration of optimal

temperatures plays a crucial role, as warmer climates are associated with an accelerated life cycle

and reproductive rate for the tick population (Eisen et al., 2016b). The ensembles also indicate

60



that an extended growing season, particularly upward of 200 days, leads to peak suitability

(Figure 3). I. scapularis can complete its life cycle with optimal conditions in less than 230 days

(Eisen et al., 2016b). As the duration of the growing season is anticipated to become longer

throughout the 21st century (NRCan, 2022), I. scapularis may experience accelerated activity

and development. This phenomenon is particularly notable in relation to degree days, wherein

growing degree days (defined as degree days above 5 °C, Appendix E) exhibit a greater relative

significance (and a progressed response to changing conditions) compared to other degree day

variables measured (including degree days above 10 °C and less than 40 °C, as well as degree

days above 18 °C; Appendix E). One possibility for this is because the growing season, and

likewise growing degree days, occur during the spring and summer, a period that coincides with

resumed activity (i.e., from May to June) and development and engagement (i.e., from May to

September) in I. scapularis (Lindsay et al., 1998).

Net primary production (NPP) is a measure of annual plant biomass production (Green &

Byrne, 2004). Associated vegetation types with lower NPP are deserts, tundra, and some

shrublands, with the highest NPP values within tropical forests (Melillo et al., 1993). Our models

suggest peak suitability at ~ 1,250g C m−2 yr−1 to ~1,400g C m−2 yr−1, which is around the middle

range of values (Table 5). A greater NPP exhibits increased suitability and is less responsive to

changes in conditions relative to lower NPP values. Contemporarily, temperate forests and tall

grasslands could be considered the intermediate zone in terms of NPP (and the most suitable for

I. scapularis), with temperate and boreal forests expected to experience increased NPP values in

response to climate change (Melillo et al., 1993). Hogg's climate moisture index (CMI) reports

the difference between precipitation and potential evapotranspiration (i.e., water vapour loss

from vegetated land cover; NRCan, 2020) and is independent of forest type and vegetation
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indices (NRCan, 2020; Wang et al., 2014). A CMI value above zero indicates wet and moist

conditions (e.g., can nourish a closed-canopy forest; NRCan, 2020); a negative CMI value

suggests drier conditions. Most of the eastern Boreal ecozone has a CMI value exceeding 20 over

the past half-century or longer (Wang et al., 2014). My analysis suggests I. scapularis favour

locations with positive CMI values, particularly above 50 CMI (Appendix E). Anything below

50 CMI created a threshold reaction to increased sensitivity to change, and any negative CMI

values could conceivably impact I. scapularis's ability to persist or survive due to water stress

(Berger et al., 2014; Rodgers et al., 2007). Over the next century, locations in eastern Canada that

experience high precipitation levels will likely continue to have a high CMI, while other

locations in eastern Canada may become marginally wetter, furthering a potential increase in

suitable land cover (Wang et al., 2014).

SSP5-8.5 and SSP3-7.0 Climate Scenarios

SSPs tell of differences in the future state of affairs with the changes in climate

mitigation/adaptation challenges, climate change (O'Neill et al., 2016), or socioeconomic trends

(Riahi et al., 2017). They aid in our understanding of potential futures and provide a reference

point for researchers to integrate results across studies (Riahi et al., 2017). The numbers

following the SSP initialism (e.g., the 2-4.5 in SSP2-4.5) stand for stratospheric-adjusted

radiative forcing, ranging from 2.6 to 8.5 W m-2 (Tebaldi et al., 2021). There are four (sometimes

five, Meinshausen et al., 2020) high-priority scenarios: SSP1-2.6, SSP2-4.5, SSP4-6.0, and

SSP5-8.5 (O'Neill et al., 2016; Tebaldi et al., 2021). SSP1-2.6 is considered the sustainable path,

with interests in inclusion, equality, economic growth, less consumption, and low difficulties in

adaptation and mitigation (Riahi et al., 2017). SSP2-4.5 simulations are middle-of-the-road,
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where trends (e.g., social, economic, political) do not deviate far from historical patterns.

SSP3-7.0 is a medium-high scenario that incorporates "regional rivalry" dynamics (Meinshausen

et al., 2020). Economic and population growth is slow, material consumption is high, resources

and opportunities are unequal, there is a low environmental priority, and adaptation and

mitigation potential are considered highly challenging (Riahi et al., 2017). SSP5-8.5 is within the

upper echelon of predictive forcing levels, relying on high fossil fuel usage. Markets remain

competitive with increased globalisation; the push for socioeconomic and economic growth leads

to a resource-intensive and energy-intensive society. Mitigation is a challenge, but adaptation

practices are sometimes successful (e.g., accomplished use of managing local ecological

systems; Riahi et al., 2017). SSP5-8.5 scenarios correlate with a wide range of CO2

concentrations that are higher than the previous RCP8.5 values (Meinshausen et al., 2020).

A significant amount of literature contentiously refers to RCP8.5's climate predictions as

the "business as usual" scenario, which suggests that it represents likely future outcomes if

climate mitigation strategies are not employed (Hausfather & Peters, 2020). I prioritised the

high-emission SSP5-8.5 scenario because, from a risk management standpoint, overpredicting I.

scapularis’ range is preferable to underpredicting risk (Soucy et al., 2018). The confidence level

associated with future scenarios remains subject to debate as they integrate fundamental

assumptions (Nazarenko et al., 2022). For instance, projections assume greenhouse gas

emissions will continue along the same accelerating, anthropogenically-driven growth trajectory

observed in recent decades. Additionally, there are indications that many nations are unlikely to

fulfill their commitments outlined in political agreements, such as their pledged contributions to

the Paris Agreement (Liu & Raftery, 2021). Moreover, there is uncertainty in the forecasting of

economic growth (Christensen et al., 2018), feedback loops (Kemp et al., 2022), compound
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hazards/events (Mathews et al., 2019), and tipping cascades (Klose et al., 2021). This sets a

dangerous precedent to underestimate the magnitude of climate change and the consequential

risk I. scapularis brings. While contentious, some reports suggest that projected global warming

in CMIP6 is lower than the observed, placing the observed values closer to the upper SSP5-8.5

emission scenario (Carvalho et al., 2022). Additionally, SSPs do not capture uncertainty in

long-run productivity growth rates. This is problematic because the high-emission scenarios

(e.g., SSP5-8.5 and RCP8.5) often negate this factor, rejecting a subset of climate forcing values

that indicate (through a series of economic projections) that emission concentration will surpass

a radiative forcing of 8.5 W/m2 used in upper-tier baseline emission scenarios (Christensen et al.,

2018). The probability of emission values reaching greater severity than those used in RCP8.5 is

greater than 35% (Christensen et al., 2018), warranting consideration for prioritising extreme

outcomes (i.e., SSP5-8.5).

Nevertheless, I simulated SSP3-7.0 scenarios to provide an alternative, high-priority

experiment founded on different baseline assumptions. Still considered a high-emission scenario

(IPCC, 2021b), my results show scarce differences between the two primary SSP scenarios up to

2040 (Figure 4 and Figure B1). From thereon to 2100, there are no new focal points, but instead,

dynamic expansions from current foci (both northward and omnidirectional), with greater

expansion apparent with SSP5-8.5 ensembles over SSP3-7.0 (Figures 5 and 6; Figures B2 and

B3.

Implications

Climate variables, which follow a more uniform pattern over larger extents, are critical

for range expansion and colonising new areas (Slatculescu et al., 2020). In contrast, ecological
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variables, which are localised and may experience high variability in conditions, are more

impactful in ensuring that a population can establish and maintain itself (Slatculescu et al.,

2020). While I have shown the extent to which suitable I. scapularis habitat will change through

climate, so too will the rate of species invasions (Leighton et al., 2012). The species populations

will likely expand from the current Canadian foci (i.e., southeastern Canada), with a high density

of suitable hosts and rodent reservoir species of zoonotic, tick-borne pathogen (Ogden et al.,

2006b). My models suggest that the northern spread into Canada will veer easterly instead of

towards the Canadian prairies, likely because they are excessively dry and arid, a condition that

will persist with climate change, even if temperature conditions become more favourable for I.

scapularis (Ogden et al., 2006b). The mass migration of birds each spring into Canada aids this

expansion, passing through north-central and northeastern states where there is a high prevalence

of I. scapularis and Lyme borreliosis (Ogden et al., 2006b). The long-range dispersal capabilities

of birds are an efficient way for ticks to expand their range without dealing with restrictive

dispersal constraints (e.g., ecological connectivity, land cover) and could explain any suitable

habitats that may appear stochastic. The southern (or trailing) edge of the range will also

consolidate in lower Ontario, Quebec, New Brunswick and Nova Scotia; although, after the 21st

century, there are suggestions that the ideal conditions for I. scapularis will advance again.
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In southeastern Manitoba, established populations of I. scapularis have been documented

(e.g., on the Lake of the Woods; Krakowetz et al., 2011). Despite their presence, these habitats

were not shown as suitable within my contemporary models, and the projections indicate their

suitability in shifting away from Manitoba in all foreseeable scenarios. The persistence of I.

scapularis in this region could be attributed to the presence of woodland habitats, an aspect not

considered in the model due to the omission of land cover variables (Ogden et al., 2008c).

Furthermore, the intricate nature of microclimates, pivotal for tick survival, could explain why

ticks could persist in Manitoba despite low climate suitability (Ogden et al., 2008c). Conversely,

areas flagged as ideal habitats for I. scapularis might be limited due to barriers or obstacles

hindering their colonization. Although my models indicate that significant parts of southwestern

Ontario provide optimal conditions for the tick's persistence, certain pockets within this region,

particularly those in or near major urban hubs such as Toronto, Ottawa, and Quebec, suffer from

extensive urbanization or agricultural activities. Despite favourable climatic conditions, these

locales may not offer suitable habitats due to human development.

However, in general, accurate modelling of I. scapularis range and subsequent expansion

makes it feasible to infer patterns within the landscape, enabling the implementation of proactive

preventive measures. This allows authorities, such as public health, to efficiently allocate

resources and raise awareness of affected regions to safeguard the population. Additionally,

advanced forewarning before I. scapularis achieves permanency in a region provides time for

authorities to enact wildlife management strategies for targeted intervention strategies (e.g.,

through acaricides or habitat modification) to mitigate the impacts on sensitive species and

ecosystems. Decision-makers must prioritize explicit articulation of the public costs, the intended

scale of intervention implementation, and the documented impacts on ecosystems when
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presenting interventions to target populations. Such clarity is crucial as these aspects can

influence the acceptability of the intervention (Aenishaenslin et al., 2015).

Limitations

Multi-model-averaged climate projections, such as those used within the AdaptWest

dataset, are an approach that has emerged in prominence in recent years to combat ambiguities in

climate change predictions (Shen et al., 2023). The deviation in values within inter-models can

sometimes capture missing or over/under-estimated variability within climatic processes,

increasing model precision (Shen et al., 2023). I consider this an implicit reason for producing

the complementary dataset (AdaptWest); however, it could also explain why there are fewer

optimal cells compared to the Chelsa-Bioclim+ dataset because the multi-model AdaptWest

dataset represents the range of equilibrium and transient climate sensitivities (Mahony et al.,

2022), which, when considering the models are trained on empirical historical data, could

provide conflicting patterns and make identifying of these patterns in forecasted conditions

nuanced.

Using high-performing quantitative benchmarks to evaluate a model's predictive ability

does not ensure model certainty, particularly when selecting and relying on an appropriate

framework to accurately represent your data to answer research questions or substantiate any

underlying assumptions. Thoughtful considerations for the count and placement of absences and

the integrity of input data are essential to reduce bias or noise generated within the models.

Randomly generated pseudoabsences may lead to inaccurate predictions. Therefore, giving

thoughtful consideration to how pseudoabsences are chosen is essential, with a myriad of

literature available (and growing) to help with the process (Chefaoui & Lobo, 2008; Dubos et al.,
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2022; Hazen et al., 2021; Liu et al., 2019; Senay et al., 2013; VanDerWal et al., 2009; Wisz &

Guisan, 2009).

In addition to the variables I used, land cover, soil conditions, microhabitats, host species

density, and leaf litter quantity are known factors influencing tick activity, adaptability, and

survivability (Clow et al., 2017). My study used a cell resolution of ~1 km, which is too coarse to

pick up the intricacies of small-scale observable changes (e.g., microclimates, slopes).

Additionally, I refrained from using categorical variables and those that do not exhibit an

accurate shift or alteration in conditions over time (e.g., land cover). Steady-state variables may

represent an underlying continuum or are interdependent on other unexamined attributes, which

introduce complexities that are not efficiently modelled or assessed. For example, I. scapularis

could show favouritism for a particular soil type when, in reality, there was a propensity for soil

depth, which was not addressed. Another possibility could be that land cover pivotally exerts an

influence on I. scapularis distribution, or is it the underlying mechanisms of land cover that drive

the observed significance, such as confounding variables of temperature or precipitation.

A caveat of using environmental data is that to control for some of the limitations of the

data, ecological relationships (i.e., species-species and species-environmental interactions) have

to be considered in isolation and in equilibrium, which is rarely the case. In particular, the

dynamic nature of I. scapularis to travel on host species and traverse restrictive boundaries

means the utmost consideration has to go into vetting the input data, such as ensuring that the I.

scapularis records are founded on discernible ecological judgement, as well the values of the

environmental data must accurately cohere to a given place and time. Nevertheless, the outcome

reflects the input; ensuring adequate quality and quantity of input data leads to a more robust

result; over time, input data will improve, and so too will the results.

68



Additionally, biogeographical models are prone to uncertainty when extrapolated to novel

environmental conditions (in this instance, using SSP3-7.0 and SSP5-8.5 scenarios). SSP models

attempt to simulate how conditions will change over time with increased greenhouse gas

concentrations and newly incorporating socio-economic indicators. Our models, and therefore

the distribution of I. scapularis, are trained on historical data within a calibration range, opposite

to forecasted scenarios that fundamentally contain some level of ambiguity, potentially using

climate values outside the range of values in which I trained the models on (i.e., non-analogue

conditions).

Reusing a variable might slightly bias the results; using the same variable (albeit in

different sequences) impacts the variable's weight in the final ensemble, thereby influencing the

mapped distribution. The reprocessing of certain variables (apparent only in the secondary

dataset) was for two reasons: firstly, relative humidity (as a percentage; Appendix A) is used in

two sequences (sequences three and four). Studies show that high humidity is a factor paramount

to the survival of I. scapularis (e.g., Berger et al., 2014; Brunner et al., 2012; Ginsberg et al.,

2020; Stafford, 1994). The results of sequence three showed R.H. explaining only ~6.8%, a low

estimate compared to its role in nature. Because of its significance, I included R.H. to see if the

strength of other factors (i.e., the ecological indicators of annual snowfall, heat moisture, and

precipitation) was heavily correlated with I. scapularis distribution and overshadowed the impact

and response of humidity. Additionally, strong confounding variables (e.g., temperature) limited

the viable variables to process a sequence; I deemed it necessary to recycle variables capable of

acting as a counterbalance to assess critical variables.
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Contemporary models can identify areas where I. scapularis might be present but

undetected (Fouquet et al., 2010). To verify the validity of the models, the foremost available

information on local knowledge and species behaviour should be used (Frans et al., 2022).

Model data is split into training and test sets. The training set is used to tune the models, and the

test set is used to verify model accuracy and its usefulness if used on unseen data (e.g., climate

projection data). During the tuning of the training set, there is a risk that they 'learn' and

'memorise' patterns specific within the data subsets (Quinn et al., 2020). Instead of learning

general concepts from the data, models may lose efficiency when generalising to novel

information or data, resulting in overfitting problems and inferior forecasting (Quinn et al.,

2020). Ideally, the test set is collected separately from the training set to avoid these issues.

When a separate test set is unavailable, as in this study, then the test set should be evaluated

using resampling methods (e.g., cross-validation; Quinn et al., 2020). Resources permitting,

evaluating the test set using an external, unseen collection of I. scapularis records, using

true-absences collected in the field, not artificially collected ones, would be beneficial.

Moreover, it is important to determine ground-truth areas as “optimal” or those that have a

“high” likelihood of I. scapularis occurrence (even at small scales). This can be achieved with

the collection of empirical data to assess whether the modern niche ensembles produce an actual

representation of the state of I. scapularis as predicted and if there is potential to use the maps

for further analyses (e.g., risk analysis).
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Conclusion

The small size of terrestrial arthropods means they are highly susceptible to some degree

of phenotypic plasticity under warming temperatures and shifting moisture regimes; this

particularly appears to be the case with those that are considered pest species. This frequently

results in changes to physiology, behaviour, phenology, distribution, abundance, species

assemblages, and species interactions (Harvey et al., 2022). Climate change is subsequently

shifting many species northward; this includes species of public health concern like I. scapularis,

with hundreds of documented records within previously uninhabited areas of Canada over the

last five years. My investigation into the ecological niche and range expansion of I. scapularis

within eastern Canada has provided valuable insights into the complex interplay between

environmental factors and the distribution of tick species. Through the culmination of my

research, which is a comprehensive assessment of key ecological variables and advanced

geospatial modelling techniques, it is evident that records alone do not definitively confirm the

establishment of or help us predict the future distribution of I. scapularis populations in Canada.

Therefore, we should consider the increased interplay between tick surveillance and information

gained by geospatial models to further our collective ability to validate models and improve our

knowledge of I. scapularis range dynamics and host-species interactions.

With habitats altered over time, I have shown that I. scapularis will extend significantly into

novel environments, particularly to the north, within the 21st century, underlying the importance

of ongoing monitoring and adaptation to changing environmental conditions. The foreseeable

trajectory of I. scapularis, with the potential risk of Lyme disease this entails, serves as a

poignant reminder of the intricate and multifaceted relationship between biological distributions
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and environmental parameters, emphasising the need for future research into risk prevention

measures and better understanding of species-environment interactions.
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Appendix A

Complementary (AdaptWest) Ensembles (SSP5-8.5) and Variable Importance

SSP5-8.5 ensembles produced using environmental data from complementary dataset,

AdaptWest. Each ~1 km cell received a predictive value between 0-1. Zero indicates no

suitability or likelihood of I. scapularis; one indicates the highest suitability or likelihood

of occurrence. Additional classification breaks down I. scapularis suitability as follows:

unsuitable niche (white: 0-0.1), low-suitable niche (blue: 0.1-0.3), medium suitable niche

(green: 0.3-0.6), high-suitable niche (orange: 0.6-0.8), optimally suitable niche (red:

0.8-1.0)
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Figure A1: Contemporary ensemble of the AdaptWest dataset
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Figure A2: Ensemble produced for 2011-2040 using Adaptwest dataset and SSP5-8.5 environmental
data.
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Figure A3: Ensemble produced for 2041-2070 using AdaptWest dataset and SSP5-8.5 environmental
data.
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Figure A4: Ensemble produced for 2071-2100 using AdaptWest dataset and SSP5-8.5 environmental
data.
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Table A1: Environmental variable permutations in the complementary (AdaptWest) dataset
ensembles.

AdaptWest
Variables

Variable Abbrev
Relative Sequence
Variable Importance

Ensembled
Variable
Importance

Degree Days Above 5°C DD5 54.84% 10.00%

Hogg's Climate Moisture Index CMI 52.84% 9.63%

Mean Annual Temperature MAT 52.09% 9.50%

Mean Annual Precipitation MAP 49.93% 9.10%

Winter Precipitation PPT_wt 42.70% 7.79%

Degree Days Above 18°C DD18 39.99% 7.29%

Degree Days Between 10°C and 40°C DD1040 36.27% 6.61%

Precipitation as Snow PAS 34.26% 6.25%

Degree Days Below °0C DD_0 34.17% 6.23%

Mean Extreme Maximum Temperature Over Past 30-Years EXT 28.15% 5.13%

Annual Heat Moisture AHM 26.22% 4.78%

Spring Precipitation PPT_sp 24.69% 4.50%

Autumn Precipitation PPT_at 16.63% 3.03%

Summer Heat Moisture SHM 16.39% 2.99%

Temperature Difference between Warmest and Coldest
Month (i.e., Measure of Continentality) TD 10.45%

1.91%

Summer Precip PPT_sm 9.04% 1.65%

Hargreaves Climate Moisture Index CMD 8.47% 1.54%

Annual Relative Humidity RH 7.72% 1.41%

Elevation DEM 3.57% 0.64%

Total: 548.42% 100%
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Appendix B

Primary Ensembles using SSP3-7.0

SSP3-7.0 (i.e., medium-high scenario) ensembles produced using environmental data

from primary dataset, Chelsa-Bioclim+. Each ~1 km cell received a predictive value

between 0-1. Zero indicates no suitability or likelihood of I. scapularis; one indicates the

highest suitability or likelihood of occurrence. Additional classification breaks down I.

scapularis suitability as follows: unsuitable niche (white: 0-0.1), low-suitable niche (blue:

0.1-0.3), medium suitable niche (green: 0.3-0.6), high-suitable niche (orange: 0.6-0.8),

optimally suitable niche (red: 0.8-1.0)
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Figure B1: Ensemble produced for 2011-2040 using primary dataset and SSP3-7.0 environmental data.
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Figure B2: Ensemble produced for 2041-2070 using primary dataset and SSP3-7.0 environmental data.
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Figure B3: Ensemble produced for 2041-2070 using primary dataset and SSP3-7.0 environmental data.

Appendix C

SSP3.7-0 (i.e., medium-high scenario) ensembles produced using environmental data

from complementary dataset, AdaptWest. Each ~1 km cell received a predictive value

between 0-1. Zero indicates no suitability or likelihood of I. scapularis; one indicates the

highest suitability or likelihood of occurrence. Additional classification breaks down I.

scapularis suitability as follows: unsuitable niche (white: 0-0.1), low-suitable niche (blue:

0.1-0.3), medium suitable niche (green: 0.3-0.6), high-suitable niche (orange: 0.6-0.8),

optimally suitable niche (red: 0.8-1.0)
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Figure C1: Ensemble produced for 2011-2040 using AdaptWest dataset and SSP3-7.0 environmental
data.
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Figure C2: Ensemble produced for 2041-2070 using AdaptWest dataset and SSP3-7.0 environmental
data.
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Figure C3: Ensemble produced for 2071-2100 using AdaptWest dataset and SSP3-7.0 environmental
data.

Appendix D

Remaining Primary Models Response Curves (and relative variable importance)

The remaining graphs that were not shown in the main text predict or forecast the response of I.
scapularis to changes in stimulus conditions within each sequence of the primary dataset in

descending order of importance.
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Appendix E

Complementary (AdaptWest) Models Response Curves (and relative variable importance)

The graphs predict or forecast the response of I. scapularis to changes in stimulus conditions
within each sequence of the secondary dataset in descending order of importance.
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Appendix F

Algorithms selected for use within complementary (AdaptWest) ensembles with major statistics

Table F1. Comparison of model statistics (± standard error) between the remaining algorithms
chosen for each ensemble in the complementary dataset.

Algorithm Count AUC TSS Kappa

GLM 2 0.879 ± 0.002 0.7010 0.607 ± 0.004

GAM 26 0.9225 ±0.0105 0.714 ± 0.034 0.652 ± 0.052

GLMPoly 11 0.914±0.008 0.702±0.021 0.637 ±0.035

MARS 3 0.9325 ± 0.0015 0.763 ± 0.012 0.709 ± 0.032

MDA 8 0.9605 ±0.01905 0.845 ± 0.045 0.7995 ± 0.0475

FDA 9 0.8985 ± 0.0785 0.763 ± 0.140 0.7295 ± 0.1025

RPART 11 0.9805 ± 0.0035 0.928 ± 0.056 0.937 ± 0.037

CART 16 0.960 ± 0.012 0.8845 ± 0.0125 0.9295 ± 0.0575

BRT 13 0.9875 ± 0.0045 0.918 ± 0.017 0.9185 ± 0.0175

RF 25 0.9925 ± 0.0035 0.9255 ± 0.0225 0.9255 ± 0.025

SVM 6 0.984 ± 0.004 0.909 ± 0.019 0.909 ± 0.019

RBF 17 0.9555 ± 0.0155 0.8475 ± 0.0255 0.847 ± 0.025

MLP 19 0.985 ± 0.005 0.9095 ± 0.0185 0.9095 ± 0.0185
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Appendix G

Changes in total land suitability per each timestamp per each additional SSP scenario (i.e.,

Chelsa-Bioclim+ dataset using SSP 3-7.0; AdaptWest dataset using SSP3-7.0 and SSP5-8.5)

Table G1. Changes in total land suitability in the (Chelsea-Bioclim+ dataset using SSP3-7.0.

Time Period Suitability Total Area (km2) Relative Percentage (%)

Current (Historic) Unsuitable 2,432,522 km2 64.81%

Current (Historic) Low Suitability 613,459 km2 16.33%

Current (Historic) Medium Suitability 259,804 km2 6.92%

Current (Historic) High Suitability 126,529 km2 3.37%

Current (Historic) Optimal Suitability 321,003 km2 8.56%

2011-2040 (SSP3-7.0) Unsuitable 1,788,838 km2 47.66%

2011-2040 (SSP3-7.0) Low Suitability 777,284 km2 20.71%

2011-2040 (SSP3-7.0) Medium Suitability 457,502 km2 12.19%

2011-2040 (SSP3-7.0) High Suitability 272,212 km2 7.25%

2011-2040 (SSP3-7.0) Optimal Suitability 457,481 km2 12.18%

2041-2070 (SSP3-7.0) Unsuitable 1,507,336 km2 40.16%

2041-2070 (SSP3-7.0) Low Suitability 695,700 km2 18.54%

2041-2070 (SSP3-7.0) Medium Suitability 526,056 km2 14.02%

2041-2070 (SSP3-7.0) High Suitability 424,689 km2 11.32%

2041-2070 (SSP3-7.0) Optimal Suitability 599,536 km2 15.97%

2071-2100 (SSP3-7.0) Unsuitable 1,018,118 km2 27.13%

2071-2100 (SSP3-7.0) Low Suitability 768,076 km2 20.46%
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2071-2100 (SSP3-7.0) Medium Suitability 622,371 km2 16.58%

2071-2100 (SSP3-7.0) High Suitability 632,165 km2 16.84%

2071-2100 (SSP3-7.0) Optimal Suitability 712,587 km2 18.99%

Table G2. Changes in total land suitability in the secondary (AdaptWest) dataset using SSP5-8.5.

Time Period Suitability Total Area (km2) Relative Percentage (%)

Current (Historic) Unsuitable 2,433,392 km2 64.71%

Current (Historic) Low Suitability 728,614 km2 19.38%

Current (Historic) Medium Suitability 189,052 km2 5.03%

Current (Historic) High Suitability 92,534 km2 2.46%

Current (Historic) Optimal Suitability 316,938 km2 8.43%

2011-2040 (SSP5-8.5) Unsuitable 1,197,774 km2 31.85%

2011-2040 (SSP5-8.5) Low Suitability 1,449,894 km2 38.56%

2011-2040 (SSP5-8.5) Medium Suitability 494,122 km2 13.14%

2011-2040 (SSP5-8.5) High Suitability 309,595 km2 8.23%

2011-2040 (SSP5-8.5) Optimal Suitability 308,901 km2 8.21%

2041-2070 (SSP5-8.5) Unsuitable 1,001,291 km2 26.63%

2041-2070 (SSP5-8.5) Low Suitability 1,077,897 km2 28.67%

2041-2070 (SSP5-8.5) Medium Suitability 693,718 km2 18.45%

2041-2070 (SSP5-8.5) High Suitability 610,194 km2 16.23%

2041-2070 (SSP5-8.5) Optimal Suitability 377,188 km2 10.03%

2071-2100 (SSP5-8.5) Unsuitable 117,971 km2 3.14%
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2071-2100 (SSP5-8.5) Low Suitability 1,329,188 km2 35.35%

2071-2100 (SSP5-8.5) Medium Suitability 944,997 km2 25.13%

2071-2100 (SSP5-8.5) High Suitability 1,256,237 km2 33.41%

2071-2100 (SSP5-8.5) Optimal Suitability 111,895 km2 2.98%

Table G3. Changes in total land suitability in the secondary (AdaptWest) dataset using SSP3-7.0.

Time Period Suitability Total Area (km2) Relative Percentage (%)

Current (Historic) Unsuitable 2,433,392 km2 64.71%

Current (Historic) Low Suitability 728,614 km2 19.38%

Current (Historic) Medium Suitability 189,052 km2 5.03%

Current (Historic) High Suitability 92,534 km2 2.46%

Current (Historic) Optimal Suitability 316,938 km2 8.43%

2011-2040 (SSP5-8.5) Unsuitable 1,851,959 km2 49.25%

2011-2040 (SSP5-8.5) Low Suitability 917,943 km2 24.41%

2011-2040 (SSP5-8.5) Medium Suitability 401,259 km2 10.67%

2011-2040 (SSP5-8.5) High Suitability 275,642 km2 7.33%

2011-2040 (SSP5-8.5) Optimal Suitability 313,485 km2 8.34%

2041-2070 (SSP5-8.5) Unsuitable 1,208,590 km2 32.14%

2041-2070 (SSP5-8.5) Low Suitability 1,024,294 km2 27.24%

2041-2070 (SSP5-8.5) Medium Suitability 635,489 km2 16.90%

2041-2070 (SSP5-8.5) High Suitability 519,582 km2 13.82%

2041-2070 (SSP5-8.5) Optimal Suitability 372,233 km2 9.90%
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2071-2100 (SSP5-8.5) Unsuitable 325,239 km2 8.65%

2071-2100 (SSP5-8.5) Low Suitability 1,335,207 km2 35.51%

2071-2100 (SSP5-8.5) Medium Suitability 852,153 km2 22.66%

2071-2100 (SSP5-8.5) High Suitability 979,081 km2 26.04%

2071-2100 (SSP5-8.5) Optimal Suitability 268,608 km2 7.14%

Appendix H

Original count of I. scapularis records in each province or state over the five-year period

Year Country Province/State Ixodes Scapularis

2017 USA Delaware 0

2017 USA Kentucky 0

2017 USA Virginia 0

2017 USA Pennsylvania 8

2017 USA
South
Carolina 1

2017 USA South Dakota 0

2017 USA Ohio 5

2017 USA New Jersey 6

2017 USA Alabama 1

2017 USA
North
Carolina 0

2017 USA Missouri 1

2017 USA North Dakota 0

2017 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 0
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2017 USA Georgia 1

2017 USA Kansas 0

2017 CAN

New
Brunswick /
Nouveau-Bru

nswick 0

2017 USA Tennessee 2

2017 USA Rhode Island 0

2017 CAN
Quebec /
Québec 158

2017 USA Maine 1

2017 USA Minnesota 2

2017 USA Connecticut 5

2017 USA
New

Hampshire 1

2017 USA Florida 4

2017 CAN Ontario 18

2017 USA Texas 0

2017 USA Iowa 0

2017 USA Wisconsin 1

2017 USA Maryland 3

2017 USA
District of
Columbia 0

2017 USA Vermont 27

2017 USA Nebraska 0

2017 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 0

2017 USA New York 30

2017 CAN Manitoba 1

2017 USA Illinois 1
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2017 USA Mississippi 0

2017 USA Oklahoma 1

2017 USA Louisiana 0

2017 USA Massachusetts 14

2017 USA West Virginia 1

2017 USA Indiana 2

2017 CAN

Nova Scotia /
Nouvelle-Éco

sse 1

2017 USA Michigan 1

2017 USA Arkansas 2

2018 USA Delaware 1

2018 USA Kentucky 0

2018 USA Virginia 5

2018 USA Pennsylvania 28

2018 USA
South
Carolina 0

2018 USA South Dakota 0

2018 USA Ohio 10

2018 USA New Jersey 3

2018 USA Alabama 4

2018 USA
North
Carolina 0

2018 USA Missouri 2

2018 USA North Dakota 0

2018 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 0

2018 USA Georgia 1

2018 USA Kansas 0
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2018 CAN

New
Brunswick /
Nouveau-Bru

nswick 0

2018 USA Tennessee 4

2018 USA Rhode Island 1

2018 CAN
Quebec /
Québec 126

2018 USA Maine 1

2018 USA Minnesota 3

2018 USA Connecticut 19

2018 USA
New

Hampshire 1

2018 USA Florida 6

2018 CAN Ontario 31

2018 USA Texas 7

2018 USA Iowa 0

2018 USA Wisconsin 3

2018 USA Maryland 1

2018 USA
District of
Columbia 1

2018 USA Vermont 24

2018 USA Nebraska 0

2018 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 0

2018 USA New York 30

2018 CAN Manitoba 0

2018 USA Illinois 5

2018 USA Mississippi 1

2018 USA Oklahoma 0
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2018 USA Louisiana 2

2018 USA Massachusetts 22

2018 USA West Virginia 0

2018 USA Indiana 3

2018 CAN

Nova Scotia /
Nouvelle-Éco

sse 8

2018 USA Michigan 5

2018 USA Arkansas 2

2019 USA Delaware 0

2019 USA Kentucky 2

2019 USA Virginia 9

2019 USA Pennsylvania 60

2019 USA
South
Carolina 1

2019 USA South Dakota 0

2019 USA Ohio 14

2019 USA New Jersey 16

2019 USA Alabama 10

2019 USA
North
Carolina 5

2019 USA Missouri 5

2019 USA North Dakota 0

2019 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 0

2019 USA Georgia 7

2019 USA Kansas 1

2019 CAN
New

Brunswick / 45
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Nouveau-Bru
nswick

2019 USA Tennessee 11

2019 USA Rhode Island 2

2019 CAN
Quebec /
Québec 552

2019 USA Maine 10

2019 USA Minnesota 17

2019 USA Connecticut 11

2019 USA
New

Hampshire 6

2019 USA Florida 7

2019 CAN Ontario 448

2019 USA Texas 9

2019 USA Iowa 0

2019 USA Wisconsin 12

2019 USA Maryland 14

2019 USA
District of
Columbia 0

2019 USA Vermont 101

2019 USA Nebraska 0

2019 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 0

2019 USA New York 69

2019 CAN Manitoba 3

2019 USA Illinois 14

2019 USA Mississippi 2

2019 USA Oklahoma 4

2019 USA Louisiana 0
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2019 USA Massachusetts 62

2019 USA West Virginia 4

2019 USA Indiana 5

2019 CAN

Nova Scotia /
Nouvelle-Éco

sse 14

2019 USA Michigan 13

2019 USA Arkansas 0

2020 USA Delaware 3

2020 USA Kentucky 9

2020 USA Virginia 42

2020 USA Pennsylvania 111

2020 USA
South
Carolina 6

2020 USA South Dakota 0

2020 USA Ohio 47

2020 USA New Jersey 28

2020 USA Alabama 2

2020 USA
North
Carolina 11

2020 USA Missouri 4

2020 USA North Dakota 1

2020 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 3

2020 USA Georgia 7

2020 USA Kansas 1

2020 CAN

New
Brunswick /
Nouveau-Bru

nswick 132
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2020 USA Tennessee 7

2020 USA Rhode Island 3

2020 CAN
Quebec /
Québec 440

2020 USA Maine 13

2020 USA Minnesota 25

2020 USA Connecticut 33

2020 USA
New

Hampshire 29

2020 USA Florida 9

2020 CAN Ontario 1563

2020 USA Texas 26

2020 USA Iowa 5

2020 USA Wisconsin 30

2020 USA Maryland 28

2020 USA
District of
Columbia 4

2020 USA Vermont 84

2020 USA Nebraska 1

2020 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 11

2020 USA New York 114

2020 CAN Manitoba 3

2020 USA Illinois 20

2020 USA Mississippi 5

2020 USA Oklahoma 4

2020 USA Louisiana 5

2020 USA Massachusetts 101

2020 USA West Virginia 5
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2020 USA Indiana 7

2020 CAN

Nova Scotia /
Nouvelle-Éco

sse 370

2020 USA Michigan 21

2020 USA Arkansas 2

2021 USA Delaware 1

2021 USA Kentucky 14

2021 USA Virginia 39

2021 USA Pennsylvania 110

2021 USA
South
Carolina 8

2021 USA South Dakota 1

2021 USA Ohio 51

2021 USA New Jersey 54

2021 USA Alabama 6

2021 USA
North
Carolina 12

2021 USA Missouri 3

2021 USA North Dakota 0

2021 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 69

2021 USA Georgia 10

2021 USA Kansas 0

2021 CAN

New
Brunswick /
Nouveau-Bru

nswick 146

2021 USA Tennessee 8

2021 USA Rhode Island 4
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2021 CAN
Quebec /
Québec 724

2021 USA Maine 14

2021 USA Minnesota 32

2021 USA Connecticut 20

2021 USA
New

Hampshire 29

2021 USA Florida 22

2021 CAN Ontario 2593

2021 USA Texas 31

2021 USA Iowa 8

2021 USA Wisconsin 44

2021 USA Maryland 42

2021 USA
District of
Columbia 1

2021 USA Vermont 51

2021 USA Nebraska 0

2021 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 15

2021 USA New York 160

2021 CAN Manitoba 2

2021 USA Illinois 18

2021 USA Mississippi 7

2021 USA Oklahoma 7

2021 USA Louisiana 0

2021 USA Massachusetts 96

2021 USA West Virginia 33

2021 USA Indiana 13
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2021 CAN

Nova Scotia /
Nouvelle-Éco

sse 608

2021 USA Michigan 38

2021 USA Arkansas 6

2022 USA Delaware 9

2022 USA Kentucky 4

2022 USA Virginia 18

2022 USA Pennsylvania 59

2022 USA
South
Carolina 3

2022 USA South Dakota 0

2022 USA Ohio 29

2022 USA New Jersey 12

2022 USA Alabama 4

2022 USA
North
Carolina 8

2022 USA Missouri 2

2022 USA North Dakota 0

2022 CAN

Prince
Edward Island

/
Île-du-Prince-
Édouard 0

2022 USA Georgia 9

2022 USA Kansas 1

2022 CAN

New
Brunswick /
Nouveau-Bru

nswick 5

2022 USA Tennessee 4

2022 USA Rhode Island 5
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2022 CAN
Quebec /
Québec 13

2022 USA Maine 14

2022 USA Minnesota 34

2022 USA Connecticut 14

2022 USA
New

Hampshire 19

2022 USA Florida 18

2022 CAN Ontario 113

2022 USA Texas 12

2022 USA Iowa 1

2022 USA Wisconsin 31

2022 USA Maryland 23

2022 USA
District of
Columbia 0

2022 USA Vermont 38

2022 USA Nebraska 0

2022 CAN

Newfoundlan
d and

Labrador /
Terre-Neuve-e
t-Labrador 0

2022 USA New York 69

2022 CAN Manitoba 2

2022 USA Illinois 20

2022 USA Mississippi 0

2022 USA Oklahoma 5

2022 USA Louisiana 0

2022 USA Massachusetts 80

2022 USA West Virginia 9

2022 USA Indiana 5
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2022 CAN

Nova Scotia /
Nouvelle-Éco

sse 43

2022 USA Michigan 18

2022 USA Arkansas 2

Total 11504

Appendix I

Primary (Chelsa-Bioclim+) datasets selected models and metrics
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Sequence Algorithm modelID AUC COR Devia
nce

Preva
lence

thres
hold TSS Kapp

a
sensit
ivity

specif
icity NMI phi ppv npv ccr prevalence

3 GAM 29 0.926 0.72 0.593 0.255 0.301 0.713 0.658 0.851 0.862 0.388 0.666 0.678 0.944 0.859 0.321

3 GAM 36 0.931 0.728 0.573 0.254 0.269 0.729 0.655 0.885 0.845 0.403 0.67 0.66 0.956 0.855 0.341

3 GAM 40 0.93 0.731 0.577 0.255 0.281 0.732 0.666 0.878 0.855 0.408 0.678 0.674 0.953 0.86 0.332

3 GAM 51 0.929 0.728 0.575 0.255 0.263 0.723 0.657 0.872 0.852 0.397 0.669 0.668 0.951 0.857 0.333

3 GAM 55 0.927 0.722 0.586 0.255 0.309 0.717 0.668 0.847 0.871 0.396 0.675 0.691 0.943 0.864 0.312

3 GLMPOLY 68 0.927 0.719 0.592 0.255 0.252 0.732 0.652 0.895 0.837 0.405 0.669 0.652 0.959 0.851 0.35

3 GLMPOLY 69 0.925 0.711 0.595 0.255 0.292 0.727 0.666 0.869 0.859 0.404 0.676 0.678 0.95 0.861 0.327

3 FDA 36 0.931 0.728 0.573 0.254 0.269 0.729 0.655 0.885 0.845 0.403 0.67 0.66 0.956 0.855 0.341

3 FDA 40 0.93 0.731 0.577 0.255 0.281 0.732 0.666 0.878 0.855 0.408 0.678 0.674 0.953 0.86 0.332

3 FDA 51 0.929 0.728 0.575 0.255 0.263 0.723 0.657 0.872 0.852 0.397 0.669 0.668 0.951 0.857 0.333

3 RPART 68 0.927 0.719 0.592 0.255 0.252 0.732 0.652 0.895 0.837 0.405 0.669 0.652 0.959 0.851 0.35

3 RPART 69 0.925 0.711 0.595 0.255 0.292 0.727 0.666 0.869 0.859 0.404 0.676 0.678 0.95 0.861 0.327

3 BRT 2 0.99 0.925 0.250 0.5 0.468 0.913 0.912 0.936 0.977 0.747 0.913 0.976 0.938 0.956 0.48

3 BRT 6 0.991 0.929 0.236 0.5 0.584 0.912 0.912 0.944 0.968 0.741 0.912 0.967 0.945 0.956 0.488

3 RF 30 0.991 0.929 0.237 0.5 0.493 0.918 0.918 0.945 0.974 0.757 0.919 0.973 0.946 0.959 0.486

3 RF 33 0.99 0.923 0.260 0.502 0.422 0.911 0.911 0.938 0.974 0.743 0.912 0.973 0.939 0.956 0.484

3 RF 34 0.993 0.937 0.207 0.5 0.520 0.926 0.926 0.956 0.97 0.773 0.926 0.969 0.957 0.963 0.493

3 RF 35 0.991 0.935 0.236 0.501 0.505 0.929 0.929 0.955 0.974 0.78 0.929 0.974 0.955 0.964 0.491

3 RF 36 0.991 0.933 0.225 0.512 0.522 0.922 0.922 0.945 0.978 0.767 0.922 0.978 0.944 0.961 0.495

3 RF 43 0.989 0.923 0.255 0.5 0.550 0.914 0.914 0.924 0.99 0.762 0.916 0.989 0.929 0.957 0.468

3 MLP 114 0.98 0.908 0.412 0.5 0.608 0.895 0.895 0.924 0.971 0.71 0.896 0.969 0.927 0.947 0.477

3 MLP 115 0.982 0.902 0.360 0.5 0.551 0.891 0.891 0.933 0.958 0.696 0.891 0.957 0.934 0.945 0.488
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Sequence Algorithm modelID AUC COR Devia
nce

Preva
lence

thres
hold TSS Kapp

a
sensit
ivity

specif
icity NMI phi ppv npv ccr prevalence

3 MLP 127 0.981 0.914 0.349 0.5 0.375 0.896 0.896 0.936 0.961 0.708 0.897 0.96 0.937 0.948 0.488

3 MLP 134 0.983 0.911 0.340 0.5 0.565 0.898 0.898 0.921 0.977 0.719 0.899 0.975 0.925 0.949 0.472

4 GAM 30 0.917 0.695 0.626 0.255 0.256 0.723 0.652 0.879 0.845 0.396 0.666 0.659 0.953 0.853 0.34

4 GAM 35 0.919 0.699 0.620 0.262 0.241 0.729 0.655 0.891 0.838 0.403 0.67 0.661 0.956 0.852 0.353

4 GAM 56 0.927 0.715 0.592 0.255 0.241 0.735 0.658 0.893 0.842 0.41 0.673 0.658 0.958 0.855 0.346

4 GLMPOLY 69 0.907 0.67 0.655 0.255 0.280 0.703 0.619 0.885 0.819 0.37 0.638 0.625 0.954 0.835 0.361

4 GLMPOLY 70 0.911 0.685 0.646 0.255 0.411 0.714 0.669 0.839 0.875 0.393 0.674 0.696 0.941 0.866 0.308

4 GLMPOLY 76 0.916 0.69 0.637 0.255 0.354 0.702 0.641 0.853 0.85 0.373 0.651 0.66 0.944 0.85 0.33

4 GLMPOLY 84 0.908 0.676 0.655 0.255 0.366 0.7 0.645 0.842 0.858 0.372 0.653 0.669 0.941 0.854 0.321

4 MDA 16 0.982 0.888 0.359 0.757 0.808 0.902 0.857 0.939 0.964 0.687 0.861 0.988 0.835 0.945 0.719

4 MDA 25 0.977 0.858 0.419 0.757 0.907 0.921 0.859 0.93 0.991 0.722 0.867 0.997 0.819 0.945 0.707

4 MDA 26 0.958 0.857 0.557 0.757 0.790 0.887 0.85 0.942 0.945 0.662 0.853 0.982 0.838 0.942 0.726

4 MDA 27 0.978 0.875 0.380 0.757 0.815 0.896 0.851 0.937 0.959 0.675 0.855 0.986 0.83 0.942 0.72

4 FDA 44 0.978 0.837 0.394 0.757 0.948 0.889 0.853 0.943 0.945 0.666 0.856 0.982 0.842 0.944 0.727

4 FDA 53 0.982 0.851 0.344 0.757 0.974 0.9 0.842 0.927 0.973 0.676 0.849 0.991 0.81 0.938 0.709

4 RPART 8 0.983 0.922 0.314 0.495 0.500 0.908 0.908 0.939 0.969 0.734 0.909 0.967 0.942 0.954 0.481

4 CART 36 0.962 0.895 0.391 0.495 0.823 0.888 0.888 0.917 0.971 0.697 0.89 0.969 0.923 0.944 0.468

4 CART 46 0.97 0.9 0.362 0.5 0.633 0.889 0.889 0.928 0.961 0.693 0.889 0.959 0.931 0.944 0.484

4 BRT 63 0.994 0.943 0.195 0.501 0.434 0.932 0.932 0.971 0.961 0.786 0.932 0.962 0.97 0.966 0.506

4 BRT 64 0.993 0.942 0.200 0.495 0.585 0.929 0.93 0.944 0.985 0.788 0.93 0.984 0.947 0.965 0.475

4 BRT 71 0.991 0.933 0.224 0.5 0.515 0.921 0.921 0.947 0.974 0.763 0.921 0.973 0.949 0.961 0.487

4 BRT 74 0.992 0.932 0.218 0.5 0.709 0.921 0.921 0.937 0.984 0.77 0.922 0.983 0.94 0.961 0.477

4 RF 89 0.993 0.942 0.200 0.497 0.436 0.937 0.937 0.957 0.98 0.801 0.937 0.979 0.959 0.969 0.486

4 RF 90 0.994 0.944 0.187 0.493 0.463 0.938 0.938 0.964 0.974 0.801 0.938 0.973 0.965 0.969 0.489

4 RF 91 0.995 0.95 0.180 0.501 0.573 0.946 0.946 0.971 0.975 0.821 0.946 0.975 0.971 0.973 0.5

4 RF 92 0.995 0.952 0.173 0.495 0.523 0.944 0.944 0.957 0.987 0.82 0.944 0.986 0.959 0.972 0.48

4 RBF 158 0.97 0.774 0.618 0.5 0.643 0.877 0.877 0.924 0.953 0.669 0.878 0.952 0.926 0.939 0.486

4 RBF 164 0.968 0.81 0.561 0.501 0.596 0.864 0.864 0.909 0.955 0.646 0.865 0.953 0.913 0.932 0.478

4 MLP 171 0.988 0.92 0.281 0.5 0.342 0.912 0.912 0.952 0.961 0.741 0.912 0.96 0.952 0.956 0.496

4 MLP 175 0.987 0.922 0.283 0.501 0.341 0.913 0.913 0.966 0.947 0.742 0.913 0.948 0.965 0.956 0.511

4 MLP 176 0.982 0.914 0.374 0.495 0.319 0.911 0.911 0.949 0.962 0.739 0.911 0.961 0.951 0.956 0.489

4 MLP 183 0.986 0.919 0.304 0.5 0.675 0.912 0.912 0.942 0.971 0.744 0.913 0.97 0.943 0.956 0.486

5 GAM 47 0.927 0.718 0.588 0.255 0.356 0.731 0.681 0.857 0.875 0.413 0.688 0.7 0.947 0.87 0.312

5 GAM 56 0.927 0.722 0.587 0.255 0.324 0.738 0.682 0.868 0.87 0.419 0.69 0.695 0.951 0.869 0.319

5 GLMPoly 65 0.911 0.681 0.650 0.255 0.360 0.709 0.653 0.85 0.86 0.383 0.662 0.674 0.943 0.857 0.321

5 GLMPoly 75 0.908 0.669 0.660 0.255 0.310 0.709 0.627 0.885 0.825 0.377 0.645 0.633 0.954 0.84 0.356

5 MDA 8 0.974 0.856 1.166 0.76 0.725 0.888 0.84 0.933 0.955 0.658 0.845 0.985 0.818 0.938 0.72
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Sequence Algorithm modelID AUC COR Devia
nce

Preva
lence

thres
hold TSS Kapp

a
sensit
ivity

specif
icity NMI phi ppv npv ccr prevalence

5 MDA 27 0.979 0.856 0.566 0.757 0.862 0.888 0.827 0.92 0.968 0.652 0.834 0.989 0.795 0.931 0.704

5 FDA 31 0.974 0.806 0.437 0.757 0.957 0.881 0.81 0.908 0.973 0.637 0.82 0.99 0.773 0.924 0.694

5 FDA 36 0.974 0.818 0.447 0.76 0.941 0.894 0.836 0.926 0.968 0.664 0.842 0.989 0.805 0.936 0.711

5 FDA 48 0.975 0.819 0.421 0.757 0.947 0.884 0.815 0.911 0.973 0.643 0.824 0.99 0.778 0.926 0.696

5 FDA 53 0.981 0.834 0.382 0.757 0.943 0.892 0.839 0.928 0.964 0.663 0.845 0.988 0.812 0.937 0.711

5 RPART 21 0.973 0.897 0.385 0.5 0.857 0.902 0.902 0.909 0.993 0.745 0.905 0.992 0.916 0.951 0.458

5 CART 29 0.954 0.88 0.438 0.5 0.904 0.872 0.872 0.905 0.966 0.665 0.873 0.964 0.911 0.936 0.469

5 CART 39 0.949 0.876 0.451 0.5 0.779 0.872 0.872 0.912 0.959 0.661 0.872 0.957 0.916 0.936 0.477

5 CART 49 0.959 0.883 0.424 0.5 0.762 0.87 0.87 0.923 0.947 0.655 0.87 0.946 0.925 0.935 0.488

5 BRT 61 0.993 0.942 0.193 0.509 0.442 0.931 0.931 0.96 0.972 0.785 0.931 0.972 0.959 0.966 0.502

5 BRT 62 0.992 0.936 0.218 0.48 0.476 0.926 0.926 0.961 0.965 0.772 0.926 0.962 0.964 0.963 0.48

5 BRT 63 0.992 0.934 0.216 0.499 0.534 0.923 0.923 0.947 0.976 0.768 0.923 0.975 0.949 0.961 0.485

5 BRT 64 0.993 0.938 0.209 0.505 0.521 0.933 0.933 0.954 0.979 0.791 0.933 0.978 0.954 0.966 0.492

5 RF 89 0.991 0.928 0.233 0.509 0.450 0.91 0.91 0.942 0.969 0.738 0.91 0.969 0.941 0.955 0.494

5 RF 92 0.99 0.926 0.242 0.505 0.530 0.912 0.911 0.938 0.974 0.744 0.912 0.973 0.939 0.956 0.486

5 SVM 115 0.983 0.912 0.294 0.5 0.411 0.901 0.901 0.924 0.977 0.724 0.902 0.975 0.928 0.95 0.474

5 SVM 117 0.987 0.917 0.268 0.509 0.443 0.9 0.9 0.934 0.966 0.717 0.9 0.966 0.934 0.95 0.492

5 SVM 119 0.985 0.912 0.295 0.499 0.398 0.9 0.9 0.933 0.967 0.717 0.901 0.966 0.935 0.95 0.483

5 SVM 122 0.984 0.917 0.278 0.5 0.456 0.905 0.905 0.923 0.982 0.737 0.907 0.981 0.927 0.953 0.47

5 SVM 123 0.986 0.917 0.275 0.5 0.458 0.904 0.904 0.93 0.974 0.728 0.905 0.973 0.933 0.952 0.478

5 SVM 129 0.983 0.916 0.283 0.5 0.399 0.908 0.908 0.933 0.975 0.737 0.909 0.974 0.936 0.954 0.479

5 SVM 134 0.985 0.918 0.276 0.5 0.463 0.908 0.908 0.939 0.969 0.734 0.908 0.968 0.941 0.954 0.485

5 RBF 145 0.949 0.759 0.696 0.509 0.590 0.828 0.827 0.893 0.935 0.579 0.828 0.934 0.894 0.913 0.486

5 RBF 147 0.947 0.775 0.694 0.499 0.593 0.827 0.827 0.884 0.943 0.581 0.828 0.939 0.891 0.913 0.47

5 RBF 150 0.953 0.78 0.650 0.5 0.587 0.825 0.825 0.888 0.937 0.575 0.826 0.934 0.893 0.912 0.475

5 RBF 151 0.944 0.754 0.696 0.5 0.596 0.822 0.822 0.896 0.926 0.568 0.822 0.923 0.899 0.911 0.485

5 RBF 157 0.956 0.769 0.669 0.5 0.509 0.828 0.828 0.926 0.902 0.577 0.828 0.904 0.924 0.914 0.512

5 RBF 162 0.943 0.757 0.727 0.5 0.565 0.82 0.82 0.907 0.914 0.564 0.82 0.913 0.907 0.91 0.496

5 MLP 173 0.983 0.911 0.308 0.509 0.452 0.9 0.9 0.932 0.969 0.718 0.9 0.968 0.932 0.95 0.489

5 MLP 178 0.986 0.92 0.269 0.5 0.611 0.908 0.908 0.918 0.99 0.751 0.91 0.989 0.924 0.954 0.464

5 MLP 189 0.985 0.917 0.294 0.5 0.452 0.909 0.909 0.946 0.964 0.735 0.91 0.963 0.947 0.955 0.491

5 MLP 190 0.984 0.915 0.302 0.5 0.598 0.902 0.902 0.921 0.981 0.731 0.904 0.98 0.926 0.951 0.47

5 MARS 5 0.916 0.75 0.541 0.767 0.723 0.915 0.817 0.732 0.708 0.431 0.709 0.943 0.745 0.892 0.744

5 MARS 10 0.936 0.786 0.484 0.757 0.664 0.926 0.827 0.753 0.738 0.465 0.739 0.943 0.781 0.902 0.743

5 MARS 17 0.941 0.778 0.496 0.757 0.755 0.911 0.85 0.761 0.729 0.464 0.732 0.95 0.754 0.896 0.726

6 GAM 29 0.928 0.727 0.586 0.255 0.289 0.734 0.684 0.86 0.875 0.417 0.69 0.701 0.948 0.871 0.313

6 GAM 54 0.925 0.718 0.590 0.255 0.356 0.727 0.689 0.839 0.888 0.414 0.693 0.719 0.942 0.876 0.297
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icity NMI phi ppv npv ccr prevalence

6 GLMPOLY 57 0.923 0.718 0.628 0.255 0.394 0.735 0.695 0.847 0.888 0.422 0.699 0.721 0.944 0.877 0.299

6 GLMPOLY 82 0.916 0.703 0.644 0.255 0.403 0.723 0.681 0.841 0.882 0.406 0.686 0.709 0.942 0.871 0.302

6 MDA 5 0.985 0.893 0.532 0.761 0.684 0.905 0.871 0.95 0.955 0.7 0.873 0.985 0.858 0.951 0.734

6 MDA 11 0.982 0.876 0.455 0.757 0.743 0.908 0.873 0.949 0.959 0.705 0.875 0.986 0.858 0.951 0.728

6 FDA 30 0.883 0.714 0.665 0.757 0.823 0.743 0.712 0.907 0.836 0.44 0.714 0.945 0.742 0.89 0.726

6 FDA 31 0.878 0.701 0.698 0.757 0.720 0.749 0.714 0.904 0.845 0.445 0.717 0.948 0.738 0.89 0.722

6 FDA 53 0.878 0.716 0.683 0.757 0.773 0.755 0.719 0.905 0.85 0.453 0.723 0.949 0.742 0.892 0.721

6 FDA 55 0.877 0.7 0.695 0.757 0.788 0.752 0.707 0.893 0.859 0.443 0.712 0.952 0.721 0.885 0.71

6 RPART 13 0.98 0.923 0.330 0.5 0.571 0.915 0.915 0.947 0.968 0.749 0.916 0.967 0.958 0.49

6 RPART 18 0.98 0.924 0.327 0.5 0.571 0.918 0.918 0.942 0.977 0.759 0.919 0.976 0.959 0.482

6 RPART 27 0.978 0.924 0.340 0.5 0.600 0.917 0.917 0.95 0.966 0.751 0.917 0.966 0.958 0.492

6 CART 30 0.975 0.916 0.320 0.5 0.577 0.899 0.899 0.936 0.964 0.714 0.9 0.962 0.95 0.486

6 CART 31 0.979 0.909 0.326 0.5 0.563 0.895 0.895 0.939 0.956 0.704 0.895 0.955 0.947 0.491

6 CART 45 0.972 0.908 0.344 0.5 0.512 0.895 0.895 0.936 0.959 0.704 0.895 0.958 0.947 0.488

6 CART 55 0.974 0.913 0.326 0.5 0.923 0.895 0.895 0.918 0.977 0.713 0.896 0.975 0.947 0.47

6 BRT 59 0.993 0.938 0.227 0.5 0.410 0.923 0.923 0.955 0.968 0.764 0.923 0.967 0.961 0.493

6 BRT 60 0.991 0.935 0.235 0.5 0.452 0.926 0.926 0.955 0.971 0.772 0.926 0.97 0.963 0.492

6 BRT 71 0.991 0.932 0.246 0.5 0.382 0.927 0.927 0.958 0.969 0.775 0.927 0.969 0.964 0.494

6 BRT 72 0.992 0.936 0.229 0.5 0.668 0.924 0.924 0.933 0.991 0.784 0.926 0.991 0.962 0.471

6 BRT 73 0.992 0.935 0.233 0.5 0.420 0.923 0.923 0.953 0.969 0.765 0.923 0.969 0.961 0.492

6 BRT 74 0.991 0.936 0.235 0.5 0.440 0.924 0.924 0.947 0.977 0.771 0.924 0.976 0.962 0.485

6 BRT 83 0.991 0.932 0.242 0.5 0.538 0.921 0.921 0.944 0.977 0.765 0.922 0.976 0.961 0.484

6 RF 89 0.995 0.95 0.176 0.527 0.485 0.944 0.944 0.968 0.977 0.816 0.944 0.979 0.972 0.521

6 RF 90 0.994 0.953 0.172 0.532 0.547 0.953 0.951 0.965 0.988 0.841 0.952 0.989 0.976 0.519

6 RF 91 0.995 0.951 0.181 0.504 0.480 0.947 0.947 0.969 0.978 0.823 0.947 0.978 0.973 0.499

6 RF 92 0.995 0.956 0.160 0.499 0.521 0.952 0.952 0.963 0.99 0.843 0.953 0.989 0.976 0.486

6 SVM 115 0.991 0.941 0.219 0.5 0.317 0.936 0.936 0.962 0.974 0.796 0.936 0.973 0.968 0.494

6 SVM 116 0.99 0.938 0.221 0.5 0.586 0.931 0.931 0.947 0.984 0.791 0.932 0.983 0.966 0.482

6 SVM 130 0.991 0.939 0.215 0.5 0.523 0.93 0.93 0.942 0.988 0.792 0.931 0.988 0.965 0.477

6 RBF 155 0.974 0.837 0.489 0.5 0.554 0.87 0.87 0.915 0.955 0.657 0.871 0.953 0.935 0.48

6 RBF 156 0.975 0.844 0.475 0.5 0.574 0.874 0.874 0.92 0.955 0.665 0.875 0.953 0.937 0.482

6 RBF 157 0.977 0.845 0.481 0.5 0.577 0.866 0.866 0.905 0.961 0.652 0.867 0.958 0.933 0.472

6 RBF 158 0.973 0.834 0.495 0.5 0.531 0.867 0.867 0.918 0.949 0.65 0.868 0.947 0.934 0.485

6 MLP 171 0.989 0.937 0.251 0.5 0.650 0.934 0.934 0.953 0.981 0.795 0.935 0.98 0.967 0.486

6 MARS 13 0.944 0.754 0.513 0.757 0.792 0.753 0.664 0.844 0.909 0.43 0.682 0.967 0.651 0.86 0.661

6 MARS 22 0.935 0.759 0.519 0.757 0.679 0.733 0.68 0.879 0.855 0.415 0.687 0.95 0.694 0.873 0.701

6 MARS 27 0.924 0.759 0.548 0.757 0.767 0.74 0.663 0.854 0.886 0.416 0.677 0.959 0.661 0.862 0.674
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7 GAM 32 0.925 0.717 0.594 0.255 0.353 0.721 0.679 0.84 0.881 0.403 0.684 0.708 0.941 0.87 0.303

7 GAM 42 0.931 0.727 0.576 0.255 0.343 0.729 0.677 0.857 0.872 0.409 0.684 0.696 0.947 0.868 0.315

7 GAM 50 0.927 0.726 0.587 0.255 0.308 0.741 0.687 0.869 0.873 0.424 0.695 0.7 0.951 0.872 0.317

7 GAM 51 0.93 0.734 0.575 0.255 0.390 0.734 0.699 0.841 0.893 0.424 0.702 0.729 0.942 0.88 0.294

7 GAM 56 0.931 0.735 0.572 0.255 0.311 0.732 0.673 0.869 0.864 0.411 0.682 0.685 0.95 0.865 0.323

7 GLMPOLY 70 0.927 0.713 0.602 0.255 0.453 0.72 0.68 0.837 0.883 0.403 0.684 0.71 0.94 0.871 0.301

7 GLMPOLY 79 0.924 0.719 0.604 0.255 0.429 0.732 0.687 0.851 0.881 0.416 0.693 0.71 0.945 0.873 0.306

7 GLMPOLY 84 0.926 0.719 0.602 0.255 0.448 0.725 0.689 0.836 0.889 0.412 0.693 0.721 0.941 0.876 0.296

7 MDA 8 0.976 0.865 0.535 0.756 0.696 0.888 0.835 0.927 0.961 0.654 0.84 0.986 0.809 0.935 0.711

7 MDA 26 0.968 0.86 0.494 0.757 0.829 0.884 0.835 0.93 0.955 0.65 0.84 0.985 0.814 0.936 0.715

7 FDA 31 0.982 0.819 0.419 0.757 0.986 0.89 0.82 0.913 0.977 0.655 0.83 0.992 0.782 0.928 0.696

7 FDA 32 0.982 0.835 0.370 0.757 0.970 0.898 0.84 0.926 0.973 0.674 0.847 0.991 0.808 0.937 0.708

7 FDA 39 0.98 0.815 0.429 0.757 0.968 0.88 0.828 0.926 0.955 0.641 0.833 0.984 0.805 0.933 0.712

7 FDA 53 0.978 0.796 0.493 0.757 0.982 0.895 0.835 0.923 0.973 0.667 0.842 0.991 0.801 0.935 0.705

7 RPART 10 0.979 0.927 0.306 0.5 0.643 0.93 0.93 0.942 0.988 0.792 0.931 0.988 0.944 0.965 0.477

7 RPART 11 0.981 0.928 0.297 0.5 0.714 0.93 0.93 0.942 0.988 0.792 0.931 0.988 0.944 0.965 0.477

7 CART 30 0.973 0.926 0.285 0.5 0.570 0.92 0.92 0.933 0.987 0.77 0.921 0.986 0.936 0.96 0.473

7 CART 32 0.973 0.916 0.319 0.5 0.966 0.91 0.91 0.929 0.981 0.745 0.911 0.98 0.932 0.955 0.474

7 CART 34 0.979 0.93 0.277 0.505 0.934 0.924 0.924 0.941 0.983 0.774 0.924 0.983 0.942 0.962 0.483

7 CART 38 0.986 0.927 0.256 0.5 0.602 0.915 0.915 0.929 0.987 0.761 0.917 0.986 0.932 0.958 0.471

7 CART 39 0.981 0.927 0.259 0.5 0.529 0.921 0.921 0.931 0.99 0.776 0.923 0.989 0.935 0.961 0.471

7 CART 40 0.978 0.928 0.273 0.5 0.583 0.921 0.921 0.933 0.988 0.774 0.923 0.988 0.936 0.961 0.473

7 CART 43 0.977 0.921 0.300 0.5 0.584 0.914 0.914 0.931 0.982 0.754 0.915 0.982 0.935 0.957 0.475

7 CART 50 0.98 0.924 0.277 0.5 0.961 0.915 0.915 0.923 0.993 0.769 0.918 0.992 0.928 0.958 0.465

7 BRT 62 0.993 0.942 0.209 0.505 0.712 0.929 0.928 0.935 0.994 0.796 0.93 0.993 0.938 0.964 0.475

7 BRT 63 0.992 0.937 0.219 0.489 0.436 0.927 0.927 0.956 0.971 0.775 0.927 0.969 0.959 0.964 0.482

7 BRT 67 0.994 0.946 0.197 0.5 0.606 0.939 0.939 0.946 0.993 0.816 0.94 0.992 0.948 0.969 0.477

7 BRT 68 0.99 0.936 0.221 0.5 0.506 0.929 0.929 0.94 0.988 0.789 0.93 0.988 0.943 0.964 0.476

7 BRT 71 0.99 0.935 0.228 0.5 0.775 0.926 0.926 0.93 0.996 0.794 0.928 0.995 0.934 0.963 0.468

7 BRT 78 0.991 0.934 0.229 0.5 0.711 0.926 0.926 0.933 0.993 0.789 0.927 0.992 0.937 0.963 0.47

7 RF 90 0.996 0.961 0.147 0.505 0.518 0.963 0.963 0.972 0.991 0.871 0.963 0.991 0.972 0.981 0.495

7 RF 91 0.997 0.959 0.151 0.489 0.477 0.954 0.955 0.968 0.987 0.846 0.955 0.986 0.97 0.977 0.479

7 RF 92 0.995 0.949 0.180 0.499 0.490 0.944 0.944 0.96 0.984 0.818 0.944 0.983 0.961 0.972 0.488

7 RF 95 0.994 0.949 0.175 0.5 0.632 0.949 0.949 0.949 1 0.853 0.95 1 0.951 0.974 0.475

7 RF 99 0.991 0.94 0.206 0.5 0.756 0.93 0.93 0.931 0.999 0.809 0.932 0.998 0.936 0.965 0.467

7 RF 105 0.993 0.942 0.199 0.5 0.396 0.934 0.934 0.958 0.977 0.793 0.934 0.976 0.958 0.967 0.491

7 SVM 118 0.991 0.936 0.233 0.505 0.298 0.93 0.93 0.952 0.978 0.785 0.93 0.978 0.953 0.965 0.491
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Complementary (AdaptWest) datasets selected models and metrics

Sequence Algori
thm
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icity NMI phi ppv npv ccr prevalence

3 BRT 2 0.988 0.916 0.286 0.5 0.436 0.901 0.901 0.943 0.959 0.718 0.902 0.958 0.944 0.951 0.492

3 BRT 12 0.983 0.908 0.312 0.5 0.525 0.904 0.904 0.934 0.971 0.728 0.905 0.969 0.936 0.952 0.482

3 GAM 31 0.912 0.688 0.661 0.254 0.347 0.68 0.626 0.828 0.853 0.35 0.635 0.656 0.936 0.846 0.32

3 GAM 34 0.916 0.691 0.625 0.253 0.273 0.688 0.606 0.87 0.818 0.352 0.625 0.618 0.949 0.831 0.357

3 GAM 36 0.914 0.691 0.627 0.251 0.306 0.692 0.628 0.847 0.846 0.36 0.639 0.648 0.943 0.846 0.328

3 GAM 39 0.918 0.697 0.616 0.254 0.223 0.696 0.606 0.887 0.809 0.36 0.628 0.612 0.955 0.829 0.368

3 GAM 40 0.916 0.691 0.623 0.254 0.272 0.688 0.623 0.847 0.841 0.355 0.634 0.644 0.942 0.842 0.334

3 GAM 42 0.92 0.7 0.612 0.254 0.230 0.688 0.603 0.876 0.812 0.352 0.623 0.613 0.951 0.828 0.363

3 GAM 43 0.919 0.7 0.634 0.254 0.263 0.696 0.615 0.875 0.822 0.362 0.633 0.625 0.951 0.835 0.355

3 GAM 45 0.916 0.691 0.627 0.254 0.260 0.687 0.605 0.871 0.817 0.351 0.624 0.617 0.949 0.83 0.358

3 GAM 53 0.916 0.697 0.646 0.253 0.265 0.681 0.607 0.854 0.827 0.345 0.622 0.626 0.943 0.834 0.346

3 GAM 56 0.912 0.688 0.634 0.253 0.237 0.689 0.6 0.881 0.808 0.352 0.622 0.609 0.952 0.826 0.367

3 GLM
POLY 66 0.911 0.681 0.641 0.254 0.263 0.681 0.61 0.853 0.829 0.346 0.624 0.628 0.943 0.835 0.344

3 GLM
POLY 67 0.913 0.684 0.634 0.254 0.243 0.683 0.602 0.868 0.816 0.346 0.62 0.615 0.948 0.829 0.358
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7 SVM 123 0.99 0.937 0.225 0.5 0.503 0.93 0.93 0.949 0.981 0.786 0.93 0.98 0.95 0.965 0.484

7 SVM 133 0.992 0.938 0.229 0.5 0.438 0.931 0.931 0.945 0.987 0.794 0.932 0.986 0.947 0.966 0.479

7 RBF 145 0.96 0.776 0.628 0.511 0.678 0.84 0.838 0.883 0.957 0.606 0.841 0.955 0.887 0.919 0.472

7 RBF 146 0.97 0.811 0.570 0.505 0.669 0.853 0.853 0.9 0.953 0.627 0.854 0.951 0.904 0.926 0.478

7 RBF 150 0.962 0.799 0.573 0.5 0.594 0.825 0.825 0.897 0.928 0.573 0.825 0.926 0.9 0.912 0.484

7 RBF 155 0.966 0.806 0.593 0.5 0.685 0.829 0.829 0.862 0.968 0.599 0.834 0.964 0.875 0.915 0.447

7 RBF 158 0.954 0.776 0.653 0.5 0.681 0.822 0.822 0.88 0.942 0.573 0.823 0.938 0.887 0.911 0.469

7 RBF 160 0.959 0.771 0.655 0.5 0.667 0.838 0.838 0.893 0.945 0.599 0.839 0.942 0.899 0.919 0.474

7 RBF 164 0.963 0.789 0.616 0.5 0.683 0.832 0.832 0.874 0.958 0.596 0.835 0.954 0.884 0.916 0.458

7 RBF 165 0.969 0.808 0.578 0.5 0.626 0.854 0.854 0.911 0.943 0.625 0.854 0.941 0.914 0.927 0.484

7 MLP 179 0.989 0.943 0.237 0.5 0.725 0.936 0.936 0.945 0.991 0.808 0.937 0.991 0.947 0.968 0.477

7 MLP 183 0.988 0.934 0.250 0.5 0.669 0.931 0.931 0.939 0.993 0.801 0.933 0.992 0.942 0.966 0.473

7 MLP 189 0.99 0.94 0.238 0.5 0.595 0.934 0.934 0.936 0.999 0.817 0.936 0.998 0.94 0.967 0.469
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3 GLM
POLY 71 0.917 0.695 0.625 0.254 0.294 0.692 0.626 0.85 0.842 0.359 0.638 0.646 0.943 0.844 0.334

3 MLP 120 0.984 0.911 0.335 0.512 0.552 0.9 0.899 0.925 0.975 0.72 0.9 0.975 0.925 0.949 0.486

3 MLP 124 0.98 0.903 0.346 0.5 0.535 0.891 0.891 0.925 0.966 0.7 0.892 0.965 0.928 0.946 0.479

3 MLP 131 0.981 0.909 0.409 0.5 0.606 0.894 0.894 0.924 0.971 0.708 0.895 0.969 0.927 0.947 0.476

3 RBF 88 0.964 0.818 0.541 0.5 0.580 0.863 0.863 0.928 0.935 0.64 0.863 0.935 0.928 0.932 0.496

3 RBF 105 0.963 0.817 0.600 0.5 0.640 0.85 0.85 0.903 0.947 0.619 0.851 0.945 0.907 0.925 0.478

3 RBF 111 0.97 0.819 0.545 0.5 0.652 0.857 0.857 0.892 0.965 0.64 0.859 0.962 0.9 0.929 0.464

3 RF 30 0.989 0.925 0.251 0.5 0.622 0.913 0.913 0.924 0.99 0.761 0.915 0.989 0.928 0.957 0.467

3 RF 33 0.992 0.939 0.212 0.504 0.518 0.926 0.926 0.951 0.975 0.774 0.926 0.975 0.951 0.963 0.491

3 RF 34 0.993 0.937 0.213 0.49 0.420 0.926 0.926 0.961 0.965 0.771 0.926 0.963 0.963 0.963 0.489

3 RF 35 0.993 0.939 0.209 0.501 0.446 0.928 0.928 0.959 0.969 0.776 0.928 0.969 0.959 0.964 0.496

3 RF 36 0.995 0.947 0.187 0.512 0.509 0.943 0.942 0.966 0.977 0.813 0.943 0.978 0.964 0.971 0.505

3 RF 47 0.989 0.921 0.254 0.5 0.664 0.903 0.903 0.918 0.985 0.736 0.905 0.984 0.923 0.951 0.466

4 GLM 15 0.881 0.597 0.745 0.253 0.294 0.701 0.603 0.901 0.8 0.366 0.629 0.604 0.96 0.825 0.377

4 GLM 28 0.877 0.591 0.754 0.253 0.314 0.701 0.611 0.889 0.812 0.366 0.633 0.616 0.956 0.831 0.366

4 GAM 42 0.933 0.733 0.575 0.253 0.243 0.748 0.663 0.91 0.838 0.425 0.681 0.655 0.965 0.856 0.351

4 GAM 56 0.931 0.73 0.572 0.253 0.253 0.746 0.662 0.907 0.839 0.423 0.68 0.656 0.964 0.856 0.35

4 GLM
POLY 62 0.916 0.687 0.630 0.25 0.364 0.702 0.638 0.851 0.851 0.372 0.649 0.655 0.945 0.851 0.325

4 GLM
POLY 70 0.918 0.69 0.629 0.253 0.329 0.7 0.625 0.867 0.833 0.367 0.64 0.637 0.949 0.842 0.344

4 GLM
POLY 84 0.921 0.694 0.625 0.253 0.344 0.702 0.628 0.869 0.834 0.37 0.643 0.639 0.949 0.843 0.344

4 MDA 16 0.98 0.839 0.550 0.755 0.900 0.885 0.838 0.931 0.955 0.652 0.842 0.984 0.817 0.936 0.713

4 MDA 19 0.974 0.84 0.543 0.755 0.914 0.874 0.834 0.934 0.941 0.636 0.837 0.98 0.821 0.935 0.719

4 MDA 25 0.969 0.874 0.887 0.755 0.679 0.865 0.847 0.951 0.914 0.637 0.847 0.971 0.859 0.942 0.739

4 FDA 47 0.962 0.847 0.399 0.755 0.866 0.858 0.833 0.944 0.914 0.618 0.835 0.971 0.841 0.936 0.734

4 FDA 48 0.951 0.814 0.467 0.755 0.889 0.874 0.838 0.938 0.936 0.639 0.841 0.978 0.831 0.938 0.724

4 RPAR
T 3 0.979 0.911 0.346 0.497 0.714 0.9 0.9 0.92 0.98 0.726 0.902 0.979 0.925 0.95 0.467

4 RPAR
T 8 0.984 0.921 0.304 0.486 0.625 0.905 0.906 0.933 0.972 0.73 0.906 0.969 0.939 0.953 0.468

4 RPAR
T 21 0.98 0.912 0.340 0.497 0.538 0.903 0.903 0.942 0.961 0.721 0.903 0.959 0.944 0.952 0.488

4 CART 29 0.962 0.888 0.410 0.497 0.973 0.876 0.877 0.907 0.97 0.676 0.878 0.967 0.913 0.938 0.466

4 CART 32 0.957 0.886 0.404 0.497 0.527 0.875 0.876 0.902 0.973 0.676 0.878 0.971 0.909 0.938 0.462

4 CART 43 0.959 0.886 0.406 0.497 0.618 0.876 0.877 0.914 0.962 0.671 0.878 0.96 0.919 0.938 0.474

4 CART 54 0.956 0.884 0.421 0.497 0.971 0.875 0.875 0.9 0.975 0.677 0.878 0.973 0.908 0.938 0.46

4 BRT 64 0.992 0.937 0.220 0.486 0.384 0.924 0.924 0.96 0.964 0.767 0.924 0.962 0.962 0.962 0.485
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4 RF 89 0.993 0.94 0.203 0.499 0.472 0.93 0.93 0.961 0.97 0.782 0.93 0.969 0.961 0.965 0.495

4 RF 90 0.995 0.946 0.185 0.509 0.412 0.941 0.94 0.96 0.981 0.81 0.941 0.981 0.96 0.97 0.498

4 RF 91 0.991 0.934 0.225 0.505 0.497 0.923 0.923 0.948 0.975 0.767 0.923 0.974 0.949 0.961 0.492

4 RF 92 0.996 0.953 0.164 0.486 0.450 0.948 0.948 0.973 0.976 0.826 0.948 0.974 0.974 0.974 0.485

4 MLP 172 0.986 0.919 0.285 0.497 0.428 0.908 0.908 0.932 0.977 0.739 0.909 0.975 0.935 0.954 0.475

4 MLP 176 0.985 0.922 0.296 0.486 0.619 0.912 0.913 0.933 0.98 0.749 0.914 0.977 0.939 0.957 0.464

4 MLP 182 0.985 0.917 0.298 0.497 0.533 0.909 0.909 0.922 0.987 0.749 0.911 0.986 0.927 0.954 0.465

4 MLP 189 0.985 0.916 0.311 0.497 0.493 0.907 0.907 0.941 0.966 0.732 0.908 0.965 0.943 0.954 0.485

4 MLP 193 0.98 0.905 0.411 0.497 0.790 0.904 0.905 0.922 0.982 0.736 0.906 0.981 0.927 0.952 0.467

5 GLM 6 0.791 0.421 0.943 0.259 0.264 0.539 0.452 0.811 0.728 0.206 0.48 0.51 0.917 0.749 0.412

5 GLM 15 0.787 0.407 0.939 0.253 0.268 0.551 0.453 0.831 0.721 0.216 0.486 0.502 0.926 0.748 0.419

5 GAM 41 0.926 0.724 0.607 0.253 0.334 0.73 0.675 0.862 0.869 0.409 0.683 0.69 0.949 0.867 0.317

5 GAM 42 0.932 0.736 0.571 0.253 0.313 0.739 0.686 0.865 0.875 0.422 0.693 0.7 0.95 0.872 0.313

5 GAM 43 0.932 0.733 0.566 0.253 0.312 0.735 0.67 0.876 0.859 0.412 0.681 0.678 0.953 0.863 0.328

5 GAM 44 0.929 0.728 0.575 0.253 0.301 0.74 0.677 0.878 0.863 0.42 0.687 0.684 0.954 0.866 0.325

5 GAM 56 0.933 0.739 0.569 0.253 0.281 0.745 0.68 0.884 0.862 0.425 0.691 0.684 0.956 0.867 0.327

5 GLM
POLY 70 0.925 0.721 0.598 0.253 0.307 0.738 0.676 0.875 0.864 0.418 0.686 0.685 0.953 0.866 0.324

5 GLM
POLY 84 0.926 0.726 0.592 0.253 0.380 0.758 0.715 0.866 0.892 0.451 0.719 0.731 0.951 0.885 0.3

5 MDA 11 0.965 0.834 0.623 0.756 0.923 0.896 0.847 0.932 0.964 0.672 0.852 0.988 0.822 0.94 0.713

5 MDA 13 0.981 0.85 0.394 0.755 0.955 0.899 0.833 0.918 0.982 0.675 0.842 0.994 0.794 0.933 0.697

5 MDA 19 0.98 0.86 0.653 0.755 0.789 0.902 0.833 0.916 0.986 0.682 0.843 0.995 0.792 0.933 0.695

5 MDA 20 0.977 0.854 0.465 0.755 0.844 0.896 0.846 0.932 0.964 0.672 0.851 0.988 0.822 0.94 0.713

5 MDA 22 0.974 0.862 0.659 0.755 0.853 0.898 0.83 0.916 0.982 0.672 0.839 0.994 0.791 0.932 0.696

5 FDA 44 0.836 0.653 0.775 0.755 0.743 0.708 0.702 0.922 0.786 0.413 0.702 0.93 0.765 0.889 0.749

5 RPAR
T 7 0.984 0.926 0.279 0.496 0.571 0.911 0.911 0.944 0.968 0.74 0.912 0.966 0.946 0.956 0.484

5 RPAR
T 8 0.981 0.927 0.301 0.501 0.625 0.915 0.915 0.939 0.976 0.752 0.916 0.975 0.941 0.958 0.482

5 RPAR
T 21 0.976 0.917 0.339 0.498 0.643 0.91 0.911 0.929 0.981 0.746 0.912 0.98 0.933 0.955 0.472

5 CART 36 0.971 0.907 0.327 0.501 0.992 0.897 0.897 0.902 0.995 0.741 0.901 0.995 0.91 0.949 0.454

5 CART 50 0.967 0.903 0.355 0.498 0.994 0.894 0.894 0.904 0.99 0.726 0.898 0.989 0.913 0.947 0.455

5 BRT 62 0.99 0.932 0.233 0.493 0.522 0.92 0.92 0.944 0.976 0.762 0.921 0.975 0.947 0.96 0.477

5 BRT 64 0.992 0.937 0.214 0.501 0.473 0.924 0.924 0.95 0.975 0.77 0.925 0.974 0.951 0.962 0.488

5 BRT 77 0.988 0.93 0.242 0.498 0.693 0.922 0.922 0.931 0.991 0.78 0.924 0.991 0.935 0.961 0.468

5 RF 89 0.991 0.938 0.221 0.498 0.560 0.935 0.935 0.95 0.985 0.8 0.936 0.984 0.952 0.968 0.48

5 RF 90 0.994 0.949 0.190 0.493 0.454 0.944 0.944 0.966 0.979 0.818 0.944 0.978 0.967 0.972 0.487
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5 RF 91 0.994 0.946 0.187 0.496 0.558 0.937 0.937 0.956 0.981 0.801 0.937 0.98 0.958 0.969 0.484

5 RF 92 0.995 0.954 0.160 0.501 0.560 0.951 0.951 0.961 0.99 0.841 0.952 0.99 0.962 0.976 0.486

5 SVM 114 0.98 0.924 0.274 0.498 0.721 0.922 0.922 0.932 0.99 0.778 0.924 0.989 0.936 0.961 0.47

5 SVM 133 0.988 0.935 0.246 0.498 0.576 0.928 0.928 0.943 0.985 0.785 0.929 0.985 0.945 0.964 0.477

5 RBF 147 0.971 0.825 0.536 0.496 0.569 0.873 0.873 0.929 0.944 0.66 0.873 0.942 0.931 0.937 0.489

5 RBF 148 0.966 0.821 0.576 0.501 0.605 0.86 0.86 0.89 0.97 0.648 0.863 0.967 0.898 0.93 0.461

5 RBF 160 0.968 0.821 0.575 0.498 0.606 0.868 0.868 0.909 0.959 0.655 0.869 0.957 0.914 0.934 0.473

5 MLP 170 0.987 0.923 0.258 0.498 0.579 0.912 0.912 0.932 0.98 0.748 0.913 0.978 0.936 0.956 0.475

5 MLP 189 0.99 0.93 0.236 0.498 0.385 0.919 0.919 0.954 0.965 0.757 0.919 0.964 0.955 0.96 0.493

5 MLP 190 0.986 0.92 0.281 0.498 0.745 0.913 0.913 0.931 0.982 0.753 0.915 0.981 0.935 0.957 0.472

5 MAR
S 1 0.931 0.782 0.494 0.756 0.742 0.775 0.741 0.912 0.864 0.482 0.744 0.954 0.76 0.9 0.722

5 MAR
S 17 0.932 0.75 0.530 0.755 0.819 0.751 0.677 0.86 0.891 0.43 0.69 0.961 0.674 0.868 0.676

5 MAR
S 28 0.934 0.759 0.524 0.755 0.776 0.758 0.712 0.894 0.864 0.45 0.717 0.953 0.725 0.887 0.709

6 GAM 29 0.925 0.717 0.596 0.254 0.390 0.718 0.683 0.829 0.889 0.404 0.687 0.718 0.939 0.874 0.293

6 GAM 42 0.932 0.734 0.569 0.253 0.431 0.721 0.704 0.81 0.911 0.42 0.705 0.755 0.934 0.885 0.272

6 GAM 55 0.928 0.726 0.583 0.253 0.343 0.728 0.683 0.847 0.881 0.411 0.689 0.707 0.944 0.872 0.303

6 GLM
POLY 57 0.917 0.699 0.622 0.254 0.430 0.711 0.666 0.837 0.875 0.39 0.672 0.694 0.94 0.865 0.306

6 GLM
POLY 77 0.919 0.699 0.617 0.253 0.422 0.714 0.662 0.847 0.868 0.391 0.67 0.685 0.943 0.862 0.314

6 GLM
POLY 83 0.922 0.71 0.606 0.253 0.346 0.723 0.664 0.862 0.862 0.399 0.673 0.679 0.948 0.862 0.322

6 MDA 12 0.973 0.863 0.493 0.756 0.780 0.865 0.842 0.947 0.918 0.633 0.843 0.973 0.849 0.94 0.736

6 MDA 14 0.981 0.887 0.431 0.755 0.596 0.895 0.881 0.963 0.932 0.698 0.882 0.978 0.891 0.956 0.744

6 MDA 15 0.975 0.866 0.554 0.755 0.855 0.877 0.849 0.946 0.932 0.65 0.85 0.977 0.847 0.942 0.731

6 MDA 21 0.981 0.877 0.453 0.755 0.738 0.898 0.872 0.953 0.945 0.692 0.873 0.982 0.867 0.951 0.733

6 FDA 41 0.977 0.816 0.416 0.755 0.980 0.893 0.827 0.916 0.977 0.663 0.836 0.992 0.79 0.931 0.697

6 FDA 42 0.969 0.809 0.454 0.755 0.984 0.877 0.8 0.9 0.977 0.63 0.812 0.992 0.76 0.919 0.685

6 RPAR
T 18 0.983 0.919 0.325 0.498 0.636 0.905 0.905 0.94 0.965 0.726 0.905 0.964 0.942 0.952 0.485

6 RPAR
T 25 0.976 0.908 0.388 0.498 0.647 0.905 0.905 0.931 0.974 0.73 0.905 0.972 0.934 0.952 0.477

6 RPAR
T 28 0.981 0.914 0.331 0.498 0.625 0.902 0.902 0.937 0.965 0.72 0.902 0.964 0.939 0.951 0.484

6 CART 37 0.972 0.891 0.374 0.498 0.459 0.874 0.874 0.938 0.936 0.661 0.874 0.935 0.939 0.937 0.5

6 CART 46 0.964 0.887 0.399 0.498 0.786 0.88 0.88 0.922 0.958 0.675 0.88 0.956 0.925 0.94 0.48

6 CART 53 0.961 0.883 0.411 0.498 0.468 0.872 0.872 0.923 0.949 0.659 0.873 0.947 0.926 0.936 0.485

6 CART 55 0.966 0.886 0.399 0.498 0.808 0.877 0.877 0.912 0.965 0.673 0.878 0.963 0.917 0.938 0.471
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6 CART 56 0.963 0.887 0.399 0.498 0.449 0.878 0.878 0.934 0.945 0.669 0.878 0.943 0.935 0.939 0.493

6 BRT 61 0.993 0.937 0.211 0.48 0.545 0.922 0.922 0.947 0.975 0.766 0.923 0.972 0.952 0.961 0.467

6 BRT 62 0.992 0.931 0.230 0.502 0.419 0.916 0.916 0.959 0.957 0.749 0.916 0.958 0.959 0.958 0.502

6 BRT 64 0.99 0.928 0.244 0.506 0.530 0.916 0.916 0.932 0.985 0.761 0.917 0.984 0.934 0.958 0.479

6 BRT 74 0.992 0.93 0.230 0.498 0.551 0.918 0.918 0.943 0.975 0.757 0.918 0.974 0.945 0.959 0.482

6 BRT 84 0.991 0.929 0.235 0.498 0.565 0.915 0.915 0.935 0.98 0.754 0.916 0.978 0.938 0.957 0.476

6 RF 89 0.995 0.95 0.177 0.48 0.497 0.945 0.945 0.962 0.983 0.821 0.946 0.981 0.966 0.973 0.471

6 RF 90 0.994 0.943 0.193 0.502 0.476 0.933 0.933 0.965 0.968 0.788 0.933 0.968 0.965 0.966 0.5

6 RF 91 0.994 0.94 0.196 0.473 0.496 0.924 0.924 0.955 0.969 0.768 0.924 0.965 0.96 0.962 0.468

6 RF 92 0.992 0.94 0.209 0.506 0.482 0.934 0.934 0.953 0.982 0.795 0.934 0.982 0.953 0.967 0.491

6 RF 102 0.993 0.937 0.213 0.498 0.482 0.928 0.928 0.959 0.969 0.777 0.928 0.969 0.96 0.964 0.493

6 SVM 130 0.985 0.914 0.301 0.498 0.499 0.902 0.902 0.937 0.965 0.72 0.902 0.964 0.939 0.951 0.484

6 SVM 132 0.98 0.902 0.336 0.498 0.595 0.891 0.891 0.918 0.974 0.705 0.893 0.972 0.923 0.946 0.47

6 SVM 140 0.986 0.907 0.315 0.498 0.266 0.89 0.89 0.944 0.946 0.693 0.89 0.945 0.945 0.945 0.497

6 RBF 143 0.946 0.764 0.697 0.498 0.668 0.83 0.83 0.894 0.936 0.583 0.831 0.933 0.899 0.915 0.478

6 RBF 147 0.958 0.787 0.638 0.473 0.599 0.828 0.829 0.903 0.925 0.578 0.829 0.915 0.914 0.915 0.467

6 RBF 153 0.953 0.756 0.678 0.498 0.599 0.827 0.827 0.891 0.936 0.578 0.828 0.932 0.897 0.913 0.476

6 RBF 154 0.948 0.78 0.632 0.498 0.640 0.844 0.845 0.912 0.933 0.607 0.845 0.931 0.914 0.922 0.488

6 RBF 156 0.94 0.758 0.716 0.498 0.617 0.827 0.827 0.907 0.92 0.575 0.827 0.918 0.909 0.913 0.492

6 RBF 160 0.949 0.763 0.679 0.498 0.645 0.822 0.823 0.89 0.933 0.57 0.823 0.929 0.895 0.911 0.477

6 RBF 161 0.958 0.775 0.648 0.498 0.650 0.849 0.849 0.9 0.949 0.618 0.85 0.946 0.905 0.924 0.474

6 RBF 164 0.957 0.774 0.680 0.498 0.639 0.828 0.828 0.888 0.94 0.582 0.829 0.936 0.894 0.914 0.472

6 RBF 165 0.94 0.734 0.753 0.498 0.657 0.836 0.836 0.897 0.939 0.593 0.836 0.935 0.902 0.918 0.477

6 MLP 174 0.986 0.913 0.305 0.502 0.426 0.897 0.897 0.941 0.956 0.709 0.897 0.956 0.941 0.949 0.494

6 MLP 178 0.985 0.909 0.297 0.498 0.473 0.897 0.897 0.921 0.977 0.718 0.899 0.975 0.925 0.949 0.47

6 MLP 182 0.982 0.908 0.335 0.498 0.473 0.897 0.897 0.937 0.961 0.71 0.898 0.959 0.939 0.949 0.486

6 MLP 186 0.99 0.925 0.250 0.498 0.380 0.909 0.909 0.95 0.959 0.733 0.909 0.958 0.951 0.955 0.493

6 MLP 189 0.981 0.909 0.332 0.498 0.546 0.897 0.897 0.931 0.966 0.712 0.898 0.965 0.934 0.949 0.48

6 MLP 193 0.982 0.903 0.336 0.498 0.691 0.896 0.896 0.922 0.974 0.713 0.897 0.972 0.926 0.948 0.472

6 MLP 195 0.984 0.914 0.310 0.498 0.475 0.903 0.903 0.932 0.971 0.725 0.904 0.969 0.935 0.952 0.479

7 GAM 33 0.924 0.709 0.605 0.259 0.324 0.719 0.658 0.866 0.854 0.394 0.669 0.674 0.948 0.857 0.333

7 GAM 41 0.921 0.701 0.610 0.254 0.344 0.708 0.657 0.842 0.866 0.384 0.664 0.681 0.942 0.86 0.314

7 GAM 42 0.923 0.709 0.604 0.254 0.305 0.733 0.668 0.876 0.857 0.41 0.679 0.675 0.953 0.862 0.329

7 GAM 46 0.921 0.696 0.607 0.254 0.336 0.714 0.654 0.857 0.857 0.388 0.664 0.671 0.946 0.857 0.324

7 GAM 49 0.923 0.703 0.608 0.254 0.365 0.714 0.657 0.853 0.861 0.388 0.666 0.676 0.945 0.859 0.32

7 GAM 56 0.93 0.722 0.576 0.254 0.295 0.728 0.655 0.882 0.846 0.402 0.669 0.66 0.955 0.855 0.339

7 GLM
POLY 70 0.911 0.681 0.655 0.254 0.421 0.716 0.672 0.839 0.877 0.397 0.677 0.699 0.941 0.867 0.305
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7 GLM
POLY 77 0.906 0.669 0.671 0.254 0.425 0.706 0.657 0.838 0.868 0.382 0.663 0.683 0.94 0.86 0.311

7 MDA 2 0.957 0.799 0.509 0.756 0.883 0.812 0.767 0.912 0.9 0.529 0.771 0.966 0.767 0.909 0.713

7 MDA 8 0.954 0.786 0.536 0.754 0.902 0.808 0.752 0.898 0.91 0.518 0.759 0.968 0.744 0.901 0.699

7 MDA 10 0.941 0.777 0.681 0.756 0.830 0.814 0.781 0.924 0.891 0.54 0.783 0.963 0.79 0.916 0.724

7 MDA 19 0.954 0.771 0.659 0.755 0.903 0.841 0.775 0.9 0.941 0.566 0.784 0.979 0.753 0.91 0.694

7 MDA 21 0.951 0.803 0.542 0.755 0.827 0.805 0.774 0.923 0.882 0.528 0.777 0.96 0.789 0.913 0.726

7 RPAR
T 6 0.981 0.918 0.331 0.501 0.500 0.902 0.902 0.956 0.947 0.719 0.902 0.947 0.955 0.951 0.505

7 RPAR
T 11 0.977 0.913 0.340 0.498 0.667 0.91 0.911 0.937 0.974 0.741 0.911 0.973 0.939 0.955 0.48

7 CART 34 0.948 0.867 0.470 0.501 0.972 0.861 0.86 0.893 0.967 0.647 0.863 0.965 0.9 0.93 0.464

7 CART 35 0.958 0.879 0.409 0.504 0.994 0.865 0.864 0.873 0.993 0.683 0.871 0.992 0.885 0.932 0.443

7 CART 37 0.956 0.879 0.428 0.498 0.974 0.862 0.862 0.881 0.981 0.662 0.867 0.979 0.892 0.931 0.448

7 CART 39 0.965 0.897 0.378 0.498 0.974 0.877 0.877 0.89 0.987 0.693 0.881 0.985 0.9 0.938 0.45

7 CART 42 0.951 0.873 0.446 0.498 0.977 0.86 0.861 0.881 0.98 0.658 0.865 0.977 0.892 0.93 0.449

7 BRT 61 0.993 0.937 0.211 0.48 0.545 0.922 0.922 0.947 0.975 0.766 0.923 0.972 0.952 0.961 0.467

7 BRT 62 0.992 0.931 0.230 0.502 0.419 0.916 0.916 0.959 0.957 0.749 0.916 0.958 0.959 0.958 0.502

7 BRT 64 0.99 0.928 0.244 0.506 0.530 0.916 0.916 0.932 0.985 0.761 0.917 0.984 0.934 0.958 0.479

7 BRT 74 0.992 0.93 0.230 0.498 0.551 0.918 0.918 0.943 0.975 0.757 0.918 0.974 0.945 0.959 0.482

7 BRT 84 0.991 0.929 0.235 0.498 0.565 0.915 0.915 0.935 0.98 0.754 0.916 0.978 0.938 0.957 0.476

7 RF 89 0.993 0.939 0.210 0.494 0.463 0.936 0.936 0.961 0.975 0.796 0.936 0.974 0.962 0.968 0.487

7 RF 90 0.995 0.95 0.173 0.501 0.465 0.941 0.941 0.971 0.97 0.809 0.941 0.97 0.971 0.971 0.502

7 RF 91 0.992 0.936 0.215 0.504 0.454 0.928 0.928 0.95 0.978 0.78 0.928 0.977 0.951 0.964 0.49

7 RF 92 0.994 0.945 0.192 0.493 0.498 0.943 0.943 0.966 0.977 0.813 0.943 0.976 0.967 0.971 0.488

7 RF 93 0.989 0.925 0.240 0.498 0.559 0.925 0.925 0.938 0.987 0.781 0.926 0.986 0.942 0.963 0.474

7 RF 95 0.99 0.932 0.224 0.498 0.582 0.925 0.925 0.938 0.987 0.781 0.926 0.986 0.942 0.963 0.474

7 SVM 123 0.988 0.93 0.259 0.498 0.700 0.921 0.921 0.934 0.987 0.772 0.922 0.986 0.938 0.96 0.472

7 RBF 151 0.961 0.79 0.639 0.498 0.605 0.852 0.852 0.918 0.934 0.62 0.852 0.933 0.92 0.926 0.49

7 RBF 162 0.971 0.822 0.567 0.498 0.640 0.85 0.85 0.887 0.964 0.628 0.853 0.96 0.896 0.925 0.46
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Supplementary Material

Example script:

# This is the standard workflow within RStudio for sequence seven of the primary dataset

install.package('plyr')
install.package('usdm')
install.package('caret')
install.package('biomod2')
install.package('gridExtra')
install.package('dplyr')
install.package('CENFA')
install.package('ENMeval')
install.package('sdm')
installAll()

library(sdm)
library(rgdal)
library(raster)
library(plyr)
library(usdm)
library(caret)
library(biomod2)
library(ENMeval)
library(gridExtra)
library(dplyr)
library(CENFA)
library(corrplot)
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Ixodes_Scapularis_Shapefile <-
readOGR("C:/Users/jwestcot/AGIS9000/Ixodes_Scapularis/Shapefile","Ixodes_Scapularis")

Raster_Stack <- stack(List_Rasters)

vifcor_Rasters <- vifcor(Raster_Stack, th = 0.7)

Rasters_Present <- exclude(Raster_Stack,vifcor_Rasters)

PearsonR <- layerStats(Raster_Stack, 'pearson', na.rm=T)

Corr_Matrix = PearsonR$'pearson correlation coefficient'

sdmData_GLM_GAM_GLMPoly <- sdmData(formula = I_Scap~., train=
Ixodes_Scapularis_Shapefile, predictors=Rasters_Present, bg = list(n=10000,
method='gRandom'))

IScap_Shapefile_Turned_DF <- as.data.frame(Ixodes_Scapularis_Shapefile)

Background_Grid_MDA_FDA <- BIOMOD_FormatingData(resp.var = rep(1,
nrow(IScap_Shapefile_Turned_DF)),
expl.var = Rasters_Present,
resp.xy = IScap_Shapefile_Turned_DF[,c("coords.x1","coords.x2")], # colnames of coords in DF
resp.name = "Ixodes_Scapularis", # species name in DF
PA.strategy = "sre",
PA.nb.rep = 1,
PA.nb.absences = 1100,
na.rm = FALSE)

Background_MDA_FDA <- cbind(sp = c(rep(1,nrow(IScap_Shapefile_Turned_DF)),rep(0,
1100)), Background_Grid_MDA_FDA@coord)

names(Background_MDA_FDA)[1] <- names(IScap_Shapefile_Turned_DF)[1]

coordinates(Background_MDA_FDA) <- 2:3

sdmData_MDA_FDA <- sdmData(formula = I_Scap~., train= Background_MDA_FDA)

Background_Grid_MARS <- BIOMOD_FormatingData(resp.var = rep(1,
nrow(IScap_Shapefile_Turned_DF)),
expl.var = Rasters_Present,
resp.xy = IScap_Shapefile_Turned_DF[,c("coords.x1","coords.x2")],
resp.name = "Ixodes_Scapularis",
PA.strategy = "disk",
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PA.dist.min = 220000,
PA.nb.rep = 1,
PA.nb.absences = 1100,
na.rm = FALSE)

Background_MARS <- cbind(sp = c(rep(1,nrow(IScap_Shapefile_Turned_DF)),rep(0, 1100)),
Background_Grid_MARS@coord)

names(Background_MARS)[1] <- names(IScap_Shapefile_Turned_DF)[1]

coordinates(Background_MARS) <- 2:3

sdmData_MARS <- sdmData(formula = I_Scap~., train= Background_MARS)

Background_Grid_RPART_CART_BRT_RF_SVM_RBF_MLP <-
BIOMOD_FormatingData(resp.var = rep(1, nrow(IScap_Shapefile_Turned_DF)),
expl.var = Rasters_Present,
resp.xy = IScap_Shapefile_Turned_DF[,c("coords.x1","coords.x2")],
resp.name = "Ixodes_Scapularis",
PA.strategy = "sre",
PA.nb.rep = 1,
PA.nb.absences = 3425,
na.rm = FALSE)

Background_RPART_CART_BRT_RF_SVM_RBF_MLP <- cbind(sp =
c(rep(1,nrow(IScap_Shapefile_Turned_DF)),rep(0, 3425)),
Background_Grid_RPART_CART_BRT_RF_SVM_RBF_MLP@coord)

names(Background_RPART_CART_BRT_RF_SVM_RBF_MLP)[1] <-
names(IScap_Shapefile_Turned_DF)[1]

coordinates(Background_RPART_CART_BRT_RF_SVM_RBF_MLP) <- 2:3

sdmData_RPART_CART_BRT_RF_SVM_RBF_MLP <- sdmData(formula = I_Scap~., train=
Background_RPART_CART_BRT_RF_SVM_RBF_MLP)

DF_GLM_GAM_GLMPoly <- as.data.frame(sdmData_GLM_GAM_GLMPoly)

DF_MDA_FDA <- as.data.frame(sdmData_MDA_FDA)

DF_MARS <- as.data.frame(sdmData_MARS)

DF_RPART_CART_BRT_RF_SVM_RBF_MLP <-
as.data.frame(sdmDaa_RPART_CART_BRT_RF_SVM_RBF_MLP)
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DF_GLM_GAM_GLMPoly <- subset(DF_GLM_GAM_GLMPoly, select = -rID)
DF_GLM_GAM_GLMPoly <- subset(DF_GLM_GAM_GLMPoly, select = -coords.x1)
DF_GLM_GAM_GLMPoly <- subset(DF_GLM_GAM_GLMPoly, select = -coords.x2)

DF_MDA_FDA <- subset(DF_MDA_FDA, select = -rID)
DF_MDA_FDA <- subset(DF_MDA_FDA, select = -coords.x1)
DF_MDA_FDA <- subset(DF_MDA_FDA, select = -coords.x2)

DF_MARS <- subset(DF_MARS, select = -rID)
DF_MARS <- subset(DF_MARS, select = -coords.x1)
DF_MARS <- subset(DF_MARS, select = -coords.x2)

DF_RPART_CART_BRT_RF_SVM_RBF_MLP <-
subset(DF_RPART_CART_BRT_RF_SVM_RBF_MLP, select = -rID)
DF_RPART_CART_BRT_RF_SVM_RBF_MLP <-
subset(DF_RPART_CART_BRT_RF_SVM_RBF_MLP, select = -coords.x1)
DF_RPART_CART_BRT_RF_SVM_RBF_MLP <-
subset(DF_RPART_CART_BRT_RF_SVM_RBF_MLP, select = -coords.x2)

DF_GLM_GAM_GLMPoly$Ixodes_Scapularis <-
as.factor(DF_GLM_GAM_GLMPoly$Ixodes_Scapularis)
DF_MDA_FDA$Ixodes_Scapularis <- as.factor(DF_MDA_FDA$Ixodes_Scapularis)
DF_MARS$Ixodes_Scapularis <- as.factor(DF_MARS$Ixodes_Scapularis)
DF_RPART_CART_BRT_RF_SVM_RBF_MLP$Ixodes_Scapularis <-
as.factor(DF_RPART_CART_BRT_RF_SVM_RBF_MLP$Ixodes_Scapularis)

levels(DF_GLM_GAM_GLMPoly$Ixodes_Scapularis) <- c("A", "P") # A = Absence, P =
Presence
levels(DF_MDA_FDA$Ixodes_Scapularis) <- c("A", "P")
levels(DF_MARS$Ixodes_Scapularis) <- c("A", "P")
levels(DF_RPART_CART_BRT_RF_SVM_RBF_MLP$Ixodes_Scapularis) <- c("A", "P")

fitControl <- trainControl(method = "repeatedcv",
number = 5,
repeats = 8,
classProbs = TRUE,
summaryFunction = twoClassSummary,
search = "random")

GAM_Fit <- caret::train(Ixodes_Scapularis~., data = DF_GLM_GAM_GLMPoly,
method = "gam",
metric = "ROC",
tuneLength = 50,
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trControl = fitControl)
GLMPoly_Fit <- caret::train(Ixodes_Scapularis~., data = DF_GLM_GAM_GLMPoly,
method = "gam",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)

MDA_Fit <- caret::train(Ixodes_Scapularis~., data = DF_MDA_FDA,
method = "mda",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)
FDA_Fit <- caret::train(Ixodes_Scapularis~., data = DF_MDA_FDA,
method = "fda",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)

MARS_Fit <- caret::train(Ixodes_Scapularis~., data = DF_MARS,,
method = "bagEarth",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)

RPART_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "rpart",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)
BRT_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "gbm",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)
RF_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "RRF",
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metric = "ROC",
tuneLength = 50,
trControl = fitControl)
SVM_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "svmPoly",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)
RBF_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "rbfDDA",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)
MLP_Fit <- caret::train(Ixodes_Scapularis~., data =
DF_RPART_CART_BRT_RF_SVM_RBF_MLP,
method = "mlpML",
metric = "ROC",
tuneLength = 50,
trControl = fitControl)

SDM_GLM_GAM_GLMPoly <-
sdm(Ixodes_Scapularis~.,data=sdmData_GLM_GAM_GLMPoly,methods=c('glm','gam','glmpol
y'), replication = c('sub','boot','cv'), cv.folds = 5,n=4,test.percent=20, modelSettings =
list(gam=list(select = FALSE, method = 'GCV.Cp')))

SDM_MARS <- sdm(Ixodes_Scapularis~.,data=sdmData_MARS,methods=c('mars'), replication
= c('sub','boot','cv'), cv.folds = 5,n=4,test.percent=20, modelSettings = list(mars=list(nprune = 2,
degree = 2)))

SDM_MDA_FDA <-
sdm(Ixodes_Scapularis~.,data=sdmData_MDA_FDA,methods=c('mda','fda'), replication =
c('sub','boot','cv'), cv.folds = 5,n=4,test.percent=20, modelSettings = list(mda=list(subclasses =
47),fda = list(degree = 2, nprune = 13)))

SDM_RPART_CART_BRT_RF_SVM_RBF_MLP <-
sdm(Ixodes_Scapularis~.,data=sdmData_RPART_CART_BRT_RF_SVM_RBF_MLP,methods=
c('rpart','cart','brt','svm','rbf','mlp'), replication = c('sub','boot','cv'), cv.folds =
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5,n=4,test.percent=20, modelSettings = list(rpart=list(cp = 9.735202e-05), brt = list(n.trees =
1311, interaction.depth = 9, shrinkage = 0.01702334, n.minobsinnode = 20),rf = list(mtry = 5,
coefReg = 0.7684281, coefImp = 0.2433694),svm = list(degree = 3, scale = 0.3088387, C =
112.9314),rbf = list(negativeThreshold = 0.08416721), mlp = list(layer1 = 19, layer2 = 14, layer3
= 4)))

gui(SDM_GLM_GAM_GLMPoly) # user interface to see results of models

gui(SDM_MARS)

gui(SDM_MDA_FDA)

gui(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP)

eval_glm_gam_glmpoly <- lapply(c("SDM_GLM_GAM_GLMPoly"),
function(x) {
getEvaluation(get(x),wtest='test.dep',stat=c('AUC','COR','Deviance','obs.prevalence',
'threshold','TSS','Kappa','sensitivity','specificity','NMI','phi','ppv','npv','ccr','prevalence'),opt=2) } )
n <- 28 # number of models in each algorithm
algo_glm_gam_glmpoly <- c('GLM','GAM','GLMPoly') ######whatever one you want
eval_algo_glm_gam_glmpoly <- data.frame(algo = c(rep(algo_glm_gam_glmpoly,
each=n)),bind_rows(eval_glm_gam_glmpoly))
good_models_glm_gam_glmpoly <-
eval_algo_glm_gam_glmpoly[eval_algo_glm_gam_glmpoly[,"AUC"] >= 0.9 &
eval_algo_glm_gam_glmpoly[,"TSS"] >= 0.88 & eval_algo_glm_gam_glmpoly[,"Kappa"] >=
0.82,]
good_models_glm_gam_glmpoly

eval_mars <- lapply(c("SDM_MARS"),
function(x) {
getEvaluation(get(x),wtest='test.dep',stat=c('AUC','COR','Deviance','obs.prevalence',
'threshold','TSS','Kappa','sensitivity','specificity','NMI','phi','ppv','npv','ccr','prevalence'),opt=2) } )
n <- 28 # number of models in each algorithm
algo_mars <- c('MARS')
eval_algo_mars <- data.frame(algo = c(rep(algo_mars, each=n)),bind_rows(eval_mars))
good_models_mars <- eval_algo_mars[eval_algo_mars[,"AUC"] >= 0.9 &
eval_algo_mars[,"TSS"] >= 0.72 & eval_algo_mars[,"Kappa"] >= 0.67,]
good_models_mars
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eval_mda_fda <- lapply(c("SDM_MDA_FDA"),
function(x) {
getEvaluation(get(x),wtest='test.dep',stat=c('AUC','COR','Deviance','obs.prevalence',
'threshold','TSS','Kappa','sensitivity','specificity','NMI','phi','ppv','npv','ccr','prevalence'),opt=2) } )
n <- 28 # number of models in each algorithm
algo_mda_fda <- c('MDA','FDA') ######whatever one you want
eval_algo_mda_fda <- data.frame(algo = c(rep(algo_mda_fda,
each=n)),bind_rows(eval_mda_fda))
good_models_mda_fda <- eval_algo_mda_fda[eval_algo_mda_fda[,"AUC"] >= 0.9 &
eval_algo_mda_fda[,"TSS"] >= 0.88 & eval_algo_mda_fda[,"Kappa"] >= 0.82,]
good_models_mda_fda

eval_rpart_cart_brt_rf_svm_rbf_mlp <-
lapply(c("SDM_RPART_CART_BRT_RF_SVM_RBF_MLP),
function(x) {
getEvaluation(get(x),wtest='test.dep',stat=c('AUC','COR','Deviance','obs.prevalence',
'threshold','TSS','Kappa','sensitivity','specificity','NMI','phi','ppv','npv','ccr','prevalence'),opt=2) } )
n <- 28 # number of models in each algorithm
algo_rpart_cart_brt_rf_svm_rbf_mlp <- c('RPART','CART','BRT','RF','SVM','RBF','MLP')
######whatever one you want
eval_algo_rpart_cart_brt_rf_svm_rbf_mlp <- data.frame(algo = c(rep(algo_,
each=n)),bind_rows(eval_mda_fda))
good_models_rpart_cart_brt_rf_svm_rbf_mlp <-
eval_algo_rpart_cart_brt_rf_svm_rbf_mlp[eval_algo_rpart_cart_brt_rf_svm_rbf_mlp[,"AUC"]
>= 0.9 & eval_algo_rpart_cart_brt_rf_svm_rbf_mlp[,"TSS"] >= 0.88 &
eval_algo_rpart_cart_brt_rf_svm_rbf_mlp[,"Kappa"] >= 0.82,]
good_models_rpart_cart_brt_rf_svm_rbf_mlp

ID_GLM <- good_models_glm_gam_glmpoly[good_models_glm_gam_glmpoly$algo
=="GLM",]
ID_GAM <- good_models_glm_gam_glmpoly[good_models_glm_gam_glmpoly$algo
=="GAM",]
ID_GLMPoly <- good_models_glm_gam_glmpoly[good_models_glm_gam_glmpoly$algo
=="GLMPoly",]

ID_MARS <- good_models_mars[good_models_mars$algo =="MARS",]

ID_MDA <- good_models_mda_fda[good_models_mda_fda$algo =="MDA",]
ID_FDA <- good_models_mda_fda[good_models_mda_fda$algo =="FDA",]
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ID_RPART <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="RPART",]
ID_CART <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="CART",]
ID_BRT <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="BRT",]
ID_RF <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="RF",]
ID_SVM <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="SVM",]
ID_RBF <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="RBF",]
ID_MLP <-
good_models_rpart_cart_brt_rf_svm_rbf_mlp[good_models_rpart_cart_brt_rf_svm_rbf_mlp$alg
o =="MLP",]

List_Rasters_SSP585_2011_2040 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/SSP585/2011_2040/SQ/PJ/Msk", pattern = 'tif$',
full.names = T)
List_Rasters_SSP585_2041_2070 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/SSP585/2041-2070/Sq/PJ/Msk", pattern = 'tif$',
full.names = T)
List_Rasters_SSP585_2071_2100 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/SSP585/2071-2100/Sq\PJ\Msk", pattern = 'tif$',
full.names = T)

Rasters_SSP585_2011_2040 <- stack(List_Rasters_SSP585_2011_2040)
Rasters_SSP585_2041_2070 <- stack(List_Rasters_SSP585_2041_2070)
Rasters_SSP585_2071_2100 <- stack(List_Rasters_SSP585_2071_2100)

List_Rasters_SSP370_2011_2040 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/2011_2040/SQ/PJ/Msk", pattern = 'tif$', full.names = T)
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List_Rasters_SSP370_2041_2070 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/2041-2070/Sq/PJ/Msk", pattern = 'tif$', full.names = T)
List_Rasters_SSP370_2071_2100 <- list.files(path =
"D:/Westcott/Raster_Data/Sequence_7/2071-2100/Sq\PJ\Msk", pattern = 'tif$', full.names = T)

Rasters_SSP370_2011_2040 <- stack(List_Rasters_SSP370_2011_2040)
Rasters_SSP370_2041_2070 <- stack(List_Rasters_SSP370_2041_2070)
Rasters_SSP370_2071_2100 <- stack(List_Rasters_SSP370_2071_2100)

Ensemble_GAM <- ensemble(SDM_GLM_GAM_GLMPoly, Rasters_Present, filename =
"IS_CB_S7_GAM.tif", setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP585_2011_2040 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2011_2040, filename = "IS_CB_S7_GAM_SSP585_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP585_2041_2070 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2041_2070, filename = "IS_CB_S7_GAM_SSP585_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP585_2071_2100 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2071_2100, filename = "IS_CB_S7_GAM_SSP585_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP370_2011_2040 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2011_2040, filename = "IS_CB_S7_GAM_SSP370_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP370_2041_2070 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2041_2070, filename = "IS_CB_S7_GAM_SSP370_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))
Ensemble_GAM_SSP370_2071_2100 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2071_2100, filename = "IS_CB_S7_GAM_SSP370_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_GAM$modelID))

Ensemble_GLMPoly <- ensemble(SDM_GLM_GAM_GLMPoly, Rasters_Present, filename =
"IS_CB_S7_GLMPoly.tif", setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
Ensemble_GLMPoly_SSP585_2011_2040 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2011_2040, filename = "IS_CB_S7_GLMPoly_SSP585_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
Ensemble_GLMPoly_SSP585_2041_2070 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2041_2070, filename = "IS_CB_S7_GLMPoly_SSP585_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
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Ensemble_GLMPoly_SSP585_2071_2100 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP585_2071_2100, filename = "IS_CB_S7_GLMPoly_SSP585_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
Ensemble_GLMPoly_SSP370_2011_2040 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2011_2040, filename = "IS_CB_S7_GLMPoly_SSP370_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
Ensemble_GLMPoly_SSP370_2041_2070 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2041_2070, filename = "IS_CB_S7_GLMPoly_SSP370_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))
Ensemble_GLMPoly_SSP370_2071_2100 <- ensemble(SDM_GLM_GAM_GLMPoly,
Rasters_SSP370_2071_2100, filename = "IS_CB_S7_GLMPoly_SSP370_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_GLMPoly$modelID))

Ensemble_MDA <- ensemble(SDM_MDA_FDA, Rasters_Present, filename =
"IS_CB_S7_MDA.tif", setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP585_2011_2040 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2011_2040, filename = "IS_CB_S7_MDA_SSP585_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP585_2041_2070 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2041_2070, filename = "IS_CB_S7_MDA_SSP585_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP585_2071_2100 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2071_2100, filename = "IS_CB_S7_MDA_SSP585_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP370_2011_2040 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2011_2040, filename = "IS_CB_S7_MDA_SSP370_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP370_2041_2070 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2041_2070, filename = "IS_CB_S7_MDA_SSP370_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))
Ensemble_MDA_SSP370_2071_2100 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2071_2100, filename = "IS_CB_S7_MDA_SSP370_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_MDA$modelID))

Ensemble_FDA <- ensemble(SDM_SDM_MDA_FDA, Rasters_Present, filename =
"IS_CB_S7_FDA.tif", setting=list(method = 'unweighted', id = ID_FDA$modelID))
Ensemble_FDA_SSP585_2011_2040 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2011_2040, filename = "IS_CB_S7_FDA_SSP585_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))
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Ensemble_FDA_SSP585_2041_2070 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2041_2070, filename = "IS_CB_S7_FDA_SSP585_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))
Ensemble_FDA_SSP585_2071_2100 <- ensemble(SDM_MDA_FDA,
Rasters_SSP585_2071_2100, filename = "IS_CB_S7_FDA_SSP585_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))
Ensemble_FDA_SSP370_2011_2040 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2011_2040, filename = "IS_CB_S7_FDA_SSP370_2011_2040.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))
Ensemble_FDA_SSP370_2041_2070 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2041_2070, filename = "IS_CB_S7_FDA_SSP370_2041_2070.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))
Ensemble_FDA_SSP370_2071_2100 <- ensemble(SDM_MDA_FDA,
Rasters_SSP370_2071_2100, filename = "IS_CB_S7_FDA_SSP370_2071_2100.tif",
setting=list(method = 'unweighted', id = ID_FDA$modelID))

Ensemble_RPART <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_RPART.tif", setting=list(method = 'unweighted', id =
ID_RPART$modelID))
Ensemble_RPART_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_RPART_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))
Ensemble_RPART_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_RPART_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))
Ensemble_RPART_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_RPART_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))
Ensemble_RPART_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_RPART_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))
Ensemble_RPART_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_RPART_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))
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Ensemble_RPART_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_RPART_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id
= ID_RPART$modelID))

Ensemble_CART <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_RPART.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_CART_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_CART_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_CART_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_CART_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_CART_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))
Ensemble_CART_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_CART_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_CART$modelID))

Ensemble_BRT <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_BRT.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
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filename = "IS_CB_S7_BRT_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_BRT_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_BRT_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_BRT_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_BRT_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))
Ensemble_BRT_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_BRT_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_BRT$modelID))

Ensemble_RF <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_Present,
filename = "IS_CB_S7_RF.tif", setting=list(method = 'unweighted', id = ID_RF$modelID))
Ensemble_RF_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_RF_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))
Ensemble_RF_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_RF_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))
Ensemble_RF_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_RF_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))
Ensemble_RF_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
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filename = "IS_CB_S7_RF_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))
Ensemble_RF_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_RF_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))
Ensemble_RF_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_RF_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_RF$modelID))

Ensemble_SVM <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_SVM.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_SVM_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_SVM_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_SVM_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_SVM_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_SVM_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
Ensemble_SVM_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_SVM_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_SVM$modelID))
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Ensemble_RBF <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_RBF.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_RBF_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_SVM_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_SVM_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_RBF_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_RBF_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))
Ensemble_RBF_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_RBF_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_RBF$modelID))

Ensemble_MLP <- ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP,
Rasters_Present, filename = "IS_CB_S7_MLP.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
Ensemble_MLP_SSP585_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2011_2040,
filename = "IS_CB_S7_MLP_SSP585_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
Ensemble_MLP_SSP585_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2041_2070,
filename = "IS_CB_S7_MLP_SSP585_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
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Ensemble_MLP_SSP585_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP585_2071_2100,
filename = "IS_CB_S7_MLP_SSP585_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
Ensemble_MLP_SSP370_2011_2040 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2011_2040,
filename = "IS_CB_S7_MLP_SSP370_2011_2040.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
Ensemble_MLP_SSP370_2041_2070 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2041_2070,
filename = "IS_CB_S7_MLP_SSP370_2041_2070.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))
Ensemble_MLP_SSP370_2071_2100 <-
ensemble(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, Rasters_SSP370_2071_2100,
filename = "IS_CB_S7_MLP_SSP370_2071_2100.tif", setting=list(method = 'unweighted', id =
ID_MLP$modelID))

write.csv(ID_GAM,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapular
is/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/
Tables/IS_CB_S7_GAM_ID.csv")
write.csv(ID_GLMPoly,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scap
ularis/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Sev
en/Tables/IS_CB_S7_GLMPoly_ID.csv")
write.csv(ID_MDA,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapulari
s/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/T
ables/IS_CB_S7_MDA_ID.csv")
write.csv(ID_FDA,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapulari
s/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/T
ables/IS_CB_S7_FDA_ID.csv")
write.csv(ID_RPART,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapul
aris/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seve
n/Tables/IS_CB_S7_RPART_ID.csv")
write.csv(ID_CART,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapular
is/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/
Tables/IS_CB_S7_CART_ID.csv")
write.csv(ID_BRT,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapularis
/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/Ta
bles/IS_CB_S7_BRT_ID.csv")
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write.csv(ID_RF,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapularis/
R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/Ta
bles/IS_CB_S7_RF_ID.csv")
write.csv(ID_SVM,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapulari
s/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/T
ables/IS_CB_S7_SVM_ID.csv")
write.csv(ID_RBF,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapularis
/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/Ta
bles/IS_CB_S7_RBF_ID.csv")
write.csv(ID_MLP,"C:/Users/jwestcot/Permission_Check/Black_Legged_Tick/Ixodes_Scapulari
s/R/Ixodes_Scapularis/Ixodes_Scapularis_Scenario_Seven/Ixodes_Scapularis_Scenario_Seven/T
ables/IS_CB_S7_MLP_ID.csv")

RC_GAM <- rcurve(SDM_GLM_GAM_GLMPoly, id = c(32,42,50,51,56), gg=T, mean=T,
confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_GLMPoly <- rcurve(SDM_GLM_GAM_GLMPoly, id = c(70,79,84), gg=T, mean=T, confidence=T,
main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_MDA <- rcurve(SDM_MDA_FDA, id = c(70,79,84), gg=T, mean=T, confidence=T, main =
'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_MDA <- rcurve(SDM_MDA_FDA, id = c(8,26), gg=T, mean=T, confidence=T, main = 'Response
Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1, vjust=0.5),text=element_text(size=10))
RC_FDA <- rcurve(SDM_MDA_FDA, id = c(31,32,39,53), gg=T, mean=T, confidence=T, main =
'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_RPART <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(10,11), gg=T, mean=T,
confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_CART <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(30,32,34,38,39,40,43,50), gg=T, mean=T, confidence=T, main = 'Response Curve')+
theme(axis.text.x=element_text(angle=90, hjust=1, vjust=0.5),text=element_text(size=10))
RC_BRT <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(62,63,67,68,71,78), gg=T,
mean=T, confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_RF <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(90,91,92,95,99,105), gg=T,
mean=T, confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
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RC_SVM <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(118,123,133), gg=T,
mean=T, confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))
RC_RBF <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(145,146,150,155,158,160,164,165), gg=T, mean=T, confidence=T, main = 'Response Curve')+
theme(axis.text.x=element_text(angle=90, hjust=1, vjust=0.5),text=element_text(size=10))
RC_MLP <- rcurve(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(179,183,189), gg=T,
mean=T, confidence=T, main = 'Response Curve')+ theme(axis.text.x=element_text(angle=90, hjust=1,
vjust=0.5),text=element_text(size=10))

RC_BIND <-
rbind(RC_GAM$data,RC_GLMPoly$data,RC_MDA$data,RC_FDA$data,RC_RPART$data,RC_CART$
data,RC_BRT$data,RC_RF$data,RC_SVM$data,RC_RBF$data,RC_MLP$data)

RC_V_BIO1 <- RC_BIND[RC_BIND$variable=="Band_1.1",]
RC_V_BIO16 <- RC_BIND[RC_BIND$variable=="Band_1.2",]
RC_V_BIO17 <- RC_BIND[RC_BIND$variable=="Band_1.3",]

VARIMP_GAM <- getVarImp(SDM_GLM_GAM_GLMPoly, id = c(32,42,50,51,56), wtest = 'test.dep')
VARIMP_GLMPoly <- getVarImp(SDM_GLM_GAM_GLMPoly, id = c(70,79,84), wtest = 'test.dep')
VARIMP_MDA <- getVarImp(SDM_MDA_FDA, id = c(8,26), wtest = 'test.dep')
VARIMP_FDA <- getVarImp(SDM_MDA_FDA, id = c(31,32,39,53), wtest = 'test.dep')
VARIMP_RPART <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(10,11), wtest
= 'test.dep')
VARIMP_CART <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(30,32,34,38,39,40,43,50), wtest = 'test.dep')
VARIMP_BRT <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(62,63,67,68,71,78), wtest = 'test.dep')
VARIMP_RF <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(90,91,92,95,99,105), wtest = 'test.dep')
VARIMP_SVM <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(118,123,133),
wtest = 'test.dep')
VARIMP_RBF <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id =
c(145,146,150,155,158,160,164,165), wtest = 'test.dep')
VARIMP_MLP <- getVarImp(SDM_RPART_CART_BRT_RF_SVM_RBF_MLP, id = c(179,183,189),
wtest = 'test.dep')

Mean_VI_Bio1 <-
(VARIMP_GAM@varImportanceMean$corTest$corTest[1]+VARIMP_GLMPoly@varImportanceMean$
corTest$corTest[1]+VARIMP_MDA@varImportanceMean$corTest$corTest[1]+VARIMP_FDA@varImp
ortanceMean$corTest$corTest[1]+VARIMP_RPART@varImportanceMean$corTest$corTest[1]+VARIMP
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_CART@varImportanceMean$corTest$corTest[1]+VARIMP_BRT@varImportanceMean$corTest$corTes
t[1]+VARIMP_RF@varImportanceMean$corTest$corTest[1]+VARIMP_SVM@varImportanceMean$cor
Test$corTest[1]+VARIMP_RBF@varImportanceMean$corTest$corTest[1]+VARIMP_MLP@varImporta
nceMean$corTest$corTest[1])/11
Mean_VI_Bio16 <-
(VARIMP_GAM@varImportanceMean$corTest$corTest[2]+VARIMP_GLMPoly@varImportanceMean$
corTest$corTest[2]+VARIMP_MDA@varImportanceMean$corTest$corTest[2]+VARIMP_FDA@varImp
ortanceMean$corTest$corTest[2]+VARIMP_RPART@varImportanceMean$corTest$corTest[2]+VARIMP
_CART@varImportanceMean$corTest$corTest[2]+VARIMP_BRT@varImportanceMean$corTest$corTes
t[2]+VARIMP_RF@varImportanceMean$corTest$corTest[2]+VARIMP_SVM@varImportanceMean$cor
Test$corTest[2]+VARIMP_RBF@varImportanceMean$corTest$corTest[2]+VARIMP_MLP@varImporta
nceMean$corTest$corTest[2])/11
Mean_VI_Bio17 <-
(VARIMP_GAM@varImportanceMean$corTest$corTest[3]+VARIMP_GLMPoly@varImportanceMean$
corTest$corTest[3]+VARIMP_MDA@varImportanceMean$corTest$corTest[3]+VARIMP_FDA@varImp
ortanceMean$corTest$corTest[3]+VARIMP_RPART@varImportanceMean$corTest$corTest[3]+VARIMP
_CART@varImportanceMean$corTest$corTest[3]+VARIMP_BRT@varImportanceMean$corTest$corTes
t[3]+VARIMP_RF@varImportanceMean$corTest$corTest[3]+VARIMP_SVM@varImportanceMean$cor
Test$corTest[3]+VARIMP_RBF@varImportanceMean$corTest$corTest[3]+VARIMP_MLP@varImporta
nceMean$corTest$corTest[3])/11

PLOT_BIO1 <- RC_V_BIO1 %>% ggplot(aes(Value, Response)) + ylim(0,1) +
geom_text(x = ((max(RC_V_BIO1$Value)-min(RC_V_BIO1$Value))*0.2 + min(RC_V_BIO1$Value)),
y = 0.9,
label = paste0("Variable Importance = ",round(Mean_VI_Bio1, 4)), parse = F) +
labs(x = "Mean Annual Precipitation (Bio1)", y = "Probability") +
geom_smooth(color="Black", span = 0.50, method = "loess", method.args = list(degree=1))
PLOT_BIO16 <- RC_V_BIO16 %>% ggplot(aes(Value, Response)) + ylim(0,1) +
geom_text(x = ((max(RC_V_BIO16$Value)-min(RC_V_BIO16$Value))*0.2 +
min(RC_V_BIO16$Value)), y = 0.9,
label = paste0("Variable Importance = ",round(Mean_VI_Bio16, 4)), parse = F) +
labs(x = "Mean Monthly Precipitation: Wettest Quarter (Bio16)", y = "Probability") +
geom_smooth(color="Black", span = 0.50, method = "loess", method.args = list(degree=1))
PLOT_BIO17 <- RC_V_BIO17 %>% ggplot(aes(Value, Response)) + ylim(0,1) +
geom_text(x = ((max(RC_V_BIO17$Value)-min(RC_V_BIO17$Value))*0.2 +
min(RC_V_BIO17$Value)), y = 0.9,
label = paste0("Variable Importance = ",round(Mean_VI_Bio17, 4)), parse = F) +
labs(x = "Mean Monthly Precipitation: Warmest Quarter (Bio17)", y = "Probability") +
geom_smooth(color="Black", span = 0.50, method = "loess", method.args = list(degree=1))
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